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" Abstract

Cellular automata are simple systems, dynamic in nature, and yet

capable of exhibiting'extreme1y comp licated behaviour.

The present work deals with, analysing certain features of additive,

two-dimensionai cellular automata. The properties were studied Using
matrix algebraic methods. In all our proofs, we have worked, using only

one approach, even though other equivalent methods have been discussed

briefly.

The work has been mostly theoretical in nature, but the app lication
aspect has not been complietely left out. Efficiency of certain special 2-d

CA's, regarding the generation of pseudo-random sequences, was

investigated.
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Introduction to Cellular Automata

Cellular automata are mathematical idealisations of
physical systems , where space and time are discrete and
the physical guantities take on a finite set of discrete
values. They are discrete dynamical systems which exhibit
complex and varied behaviour, A cellular automaton consists
0f a regular uniform lattice or an array (which could be
multi-dimensional and it is the dimension of this array,
which 1s referred to as the dimension of the cellular
automata), which in the general case could be infinite in
extent. Our discussion would always be restricted to finite
cellular automata, i.e.,, we shall always assume that the

extent of the lattices along any dimension, is finite,.

The evolution of the cellular automata is in discrete ~
time steps in which each site or cell (which is a position in
the lattice) carries a value, The value of the variable in a
particular site is affected by the values of the variables at
the sites in its neighbourhood (which is a collection of sites
specified in advance) on the previous time step according to
certain local rule (which is also specified in advance). Thus
the variables at each site are updé%ed synchronously,based on
the values of the variables in their neighbourhood at the
preceeding time step, followiﬁg the local rules correspoﬁdingx
to each site. We explain the above concept with a simple

example. In the simplest case, a cellular automaton consists



of a line of sites with each site carrying a value O or 1. The
rule for evolution could take the value of a site at a parti-
cular time step to be the sum modulo two of the values of its
nearest neilghbours at the previous time step. This (one dimen-

sional) CA 1is referred to as Rule—-90 CA (cf. Wolfram [28]).

Ve now glve a brief introduction to the origination and

applicability of cellular automata,

Cellular automata were originated by Von Neumann and Ulam
under the name oI fcellular spaces' with the specific purpose
0f modelling biological self-reproduction. Since then, cellular
automata has found a wide range of applications in areas like

Physlcs, Chemistry, Biology, Number Theory and Computer Science,

Physical systems containing various discrete elements with
"local lnteractions can be viewed as a system of differential
equations with various initial and boundary conditions. This
may be conveniently modelled using cellular automaton,_by intro-

ducing finite differences and discrete variables.

Also cellular agutomaton cah provide models for kKinetic
aspects of phase transitions (e.g. Harvey et al. (cf, [28))),
it 1s possible that crystal growth could be described by aggre-
gation of discrete packets,(Langer [ 16]) with a local growth inhi-
bition effect associated with local releases of latent heat and

thereby treated as a celular automaton,



Many blological systems have also been modelled using
Cellular automata (Lindenmayer [ 17], Hemman [13], Ulam (30 ]
etc.). The develﬁpment ot structure and patterns in the growth
0f organisms often appear +to be goverﬁed by very simple local

rules and is therefore reasonably well eXplalned using cellular

automaton model,

Cellular automata have also been used to study problems
in number theory (Miller [21], Sutton [27]). In a typical case,
succe551ve differences in a sequence of numbers (such as prlmes) ,

reduced w1th a small modulus, are taken and then the geometry

0of zero regions is investigated,

In Computer Science, cellular automaton has been uged for
highly parallel multipliers (Atrubin 12 ], Cole [8 ]), sorters
(Nishio (20]), etc., They could be used as parallel processing
computers. In itwo dimensions cellular autométa have been used
extensiye;y for image processing and visual pattern recognition
(Deutsch (12], Rosenfeld [23], Sternberg [25]). The computational
fcapabilities have been studied minutely (Codd [ 717, Burks'[ 61,
Banks [ 3], etc.,) and it has been shown that certéin cellular

automaton are capable of being used as general purpose computers,

and hence could be used as general paradigms for parallel com-

putation. Applications of CA in the field of VLSI have also been

Ilnvestigated (see [ 9]). Thus we see that, since cellular auto-

maton models a variety of physical, biological and computational



systems, the mathematical analysis of the general cellular

automaton features could yield general resulis concerning the

behaviour of many complex systems.

Formalism

In the following discussions, we shall always restrict
curselves to one and two dimensional cellular gutomata. Also.,
we shall consider that each site carries a value O or 1 i.e.

the states of a site are entries from Z2 .

One dimensional Cellular Automats
Nelghbourhood of a l-d CA ':

Definition

A K-nelghbourhood system of size 'n' , 1s a sequence
N = {Ni . 0 < i g_n-l} y Where each Ny » 1s a point of Zg .
Each neighbourhood of N; 1s a k-tuple of points of Z, and

. _ i i 1 i
we write N. —h(nl,n2,...,nk) where each n’; € ZAN

We now give the formal definition of a finite cellular

aUt Gmata-

A l-dimensional finite cellular automata is quadruple

(Q:Zn;N,F) where |-

(1) Q 1is a non-empty finite set of cell states.



(ii) N = {Ni . 0 Ci g,n-l}:is a k-neighbourhood system
where each Ni .1s the nelghbourhood of the ith

cell or site,

(1ii) Zn = Iing of integers modulo n, which specifies ang

enumerates the n cells (sites), in cyclic order,

(iv) F = {fi . 0 <1 g_n-lJ 1s a.sequence of maps

i l
the local rule of the ith cell. (In our case we

have Q =— 22 -)

Qk —~> Q called the local rules ’ fi being

Note { In the above definition we have implicitly assumed

that the n cells are visited in a c¢cyclic manner, dué to ths

the operation of addition modulo n, in Zn . That is we have

and the last cells are considered to be adjacent, This type of

site arrangeméht 1s referred to as periodic boundary condition .

By virtue of this,any cell or site can have any number of sites

(£ n-1) to its left or right, as its neighbours,

There is another type of boundary condition, which is

commonly called null boundary condition ,in which the sites are



last sites to be adjacent. In such CA the cells to the left
of the first and those to the right of the last are assumed
to be always in state . Thus when we conslder a cellular

automaton with null boundary conditions, a slight modification

0f the neighbourhood criterion, in the above definition (as this
1s the only point where they differ), enables us to extend the

same definition, to cellular automata with null boundary

conditions,
Definition

The cellular automaton defined above is sald to be

uniform if every site has the same neighbourhood characteris-

tics and the same local rule, i.e, f. =f and N, =N ¥i,

0 £ 1 n-1, In this case the CA will be written as (Q,Zn,N,F).

If this 1s not the case then the cellular automaton is

said to be hybrid.

Configuration of a Cellular Automaton °
— s S ame—m el AMLOHAL0T

Definition

A map ¢  Z > Q(= 22) »1s called a confiquration
of a cellular automaton, Intuitively the configuration at any'

time step is the sites carrying their respective values of

states at that time step,



We denote by 'C',the set of all possible configurations

0f the cellular automaton.
Def@nition

The global transition function or rule induced by each

of the local rules,is the map, T ¢ C —> C given by '~

T(c)(i) = fi(c(i+ni),.c(i+n;),,¢t,c(i+nt))' where '3' denotes

addition modulo n,

Note ¢ This definition is in case of cellular automaton with
‘periodic boundary condition ,as then the neighbours of the ith

site are the sites numbered (i+ni),...,(i+ni) and the corresponding

~states are c(i+ni),...,c(i+ni) where '+' denotes addition modulo n,

In case of a cellular automata with null boundary conditions,
this definition can easily be modified appropriately (If the sites
are numbered as O.,.n-1 and if the sum (i+n3) exceeds n-1 for

"some §, then the site value is taken to be 0).

- Definition

A cellular automaton i1s said to be linear or additive ,

iff each fisF is so, that is for each 'it',there exists
i i 1

ajsanseeesdy € Q (if the 1ith site has a neighbourhood of size
k .
k) such that fi(xl’f"*xk) = T agxi . INn our case since Q = 22

j=1



~

1=1

Remark ¢ The set of configurations !'C' is clearly Q" = Zg
which 1s a vector space over Z2 .

Theorem ([ 4 ])

A cellular automaton M”““(ZQ’Zn’"{Ni} ’ {fi} ) is
additive or linear iff its global transition function

-'- n n - "
T < Z2 —9-22 1s a linear transformation or a vector space
__-“““_ _—-_m_*

‘homomorphism.

Also given any linear map G . Zg —%-Zn s+ G can be

realised as a global transition function of some additive

cellular automaton over 22 .

NOot much theoretical development has been achieved in

»

the case of non-linear cellular automata. There has only been

Some experlmental studies on the behaviour of certain special

types of non-linear cellular automata ([28]). In case of addi.

tive cellular automaton, we can take advantage of the fact that

the global transition rule 1s a linear transformation and then

make use of the properties of this linear transfarmation, to

study the evolution of the cellular automaton with time, A

humber of mathematical techniques exist in order to analyse

situations of these types but unfortunately in the non-linear



Case, since the global transition function is not linear, no

such general method exists,

Henceforth, all our discussions will be restricted +to the

additive case only,

Since the global transition rule in case of an additive
CA 1s a linear transformation, it is characterised by an nxn
matrix,where 'n' is the number of sites in the l-d CA. e
regard each configuration as a column vector x (nxl) and then

the global transition function T ,can be written as ! T(x) = AX

where A 1s the matrix of T, taken relative to the cannonical

basis, and is called the characteristic matrix of the CA ([ 41).,
This important fact, regarding the global transition funczion,
was observed by Aso and Honda, Sutner and others ([1 ], [ 26]).

Extensive use of matrix algebra for the study of additive 1-D

CA, was done by Das et al. ([10], [11]). Another elegant and
lmportant approach due to Martin et al. ([19]) ,is by the use

of the characteristic polynomials, At any time step 't', if

the values of the sites are denoted DYy aét),ait),...,aéff, then

the configuration of the cellular automaton is I'epresentec by

(t) (e
the characteristic polynomial A‘"/(x) = % aj “x”7 (coefficient
i=0 |
of xi gives the value of the 1ith site). Multiplication of
the polynomial by x_l (resp, x) modulo the fixed_polyhomial

(xn-l) Yields a polynomial which represents the configuration
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ootained from the above by a cyclic snhift to the left (resp.
ﬁight}. Thus the time evolution of the cellular automaton is
obtained by multiplying the characteristic polynomial A(t)(x)
by a fixed dipolynomial T(x) (adipelynomial in x is one
in which powers of x as well as x_l are present) and then

reducing the product," modulo (xn_l). Thus ,more formally,
sl iy o rrt 08 () Inbalata1) |

fThe approach by characteristic polynomials has been extensively
used by Martin, Wolfram and Odlyzko ([19]) , for studyin :
properties of uniform 1l-d additive cellular automaton wit
periodic boundary conditions. We shall always work with the
matrix algebraic approach, since, as was opbserved by Das et al.

([LO0]) hybrid additive CA can easily be studied by such methods.

From the relation T(x) = Ax ,it is evident that the time evolution

of the cellular automaton is completely characterised By the matrix

A and so we need to examine it carefully,

Propezty ([ 41). 1In case of a l-d cellular automata with periodic

boundary conditions and with uniform local rule , one can show

that the characteristic matrix is a circulant matrix (Ey a ¢iz-
culant matrix,we mean a matrix,each row of which is an 'r' fold

cyclic shift of the previous row towards the left or towards the

right,for some positive integer, r), The matrix no longer remains

circulant,if we consider the same set of local rules but now with

null boundary conditions,
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We glve an example °

Consider the Rule-90 ([28]) l-d cellular automaton, where
each site Consists of either O or 1 and the rule is tc re-
place the site value at any time step by the sum modulo 2 of
fhefsite;values of its nearest (i.e, adjacenf) neighbours, at

the previous time step.

Wvhen we consider this rule with periodic boundary éonditions,

the characteristic'matrix A looks like ¢

(0 1L 0o ... 0 17
1 0 1L 0o..0 O]

1
01 O 1..0 O
0 0 veov. 10 1
1

O ceeese OL O] nxn

Note that the matrix is circulant since each row is a

one fold cyclic shift towards the right,of the previous row,

In case of the same automaton but now with null boundary

conditions , we ¢an show that ¢

l 0 -.i. 0 0
O 1-... O O
1 0 1..0 O

O veaenes 1L O 1
O eeeveee 0O 1 QJ nxn

O Qe¢s» O = O
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The matrix is no longer circulant., (It differs from its

pneriodic¢ counterpart only at the positions Ay 1ol and
s =

an_1,0 * the rest being identical.)

‘State Transition Graph

Just as in the case of a deterministic or a non-
idéterministic finite automaton, it is cusiomary to represent
‘the behaviour by means of a state transition graph, same 1is
done in case of cellular automaton too, The state transition

graph is easy to visuallise and is thus convenient in studying

the behaviour of the automaton,
5Definition

The state transition graph of a cellular automaton, also
referred to as the state transition di ram, is a directecd graph,
each of whose nodes consist of a particular configuration of the
automaton, Theie is a directed arc from one node to another, iff
the configuration represented by the second node, is reachable
in one time step (i.e, by one application of the global transi-
tion function) from the configuration represented by the first
node (note that,this definitiﬁn is perfectly general, and thus:

holds for any cellular automaton),

In our case with 1l-d CA, if x and y are configura-

tions represented by two nodes, then there is an arc from x
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to y , 1ff y = T(x), where T 1is the global transition

function,.

Certain simple properties of the state transition

graph are easily observed,

l, Every node in the state transition diagram has out-

degree exactly one, whereas the indegrees can differ.

This follows tfivially,since 'T' is a3 well—defiqed map, there-
fore every éonfiguration has an unique successor and thus the
outdegree of every node in the state transition graph has

to be one , but since a particular configuration may have

several or no predecessors, the indegrees dlffer,
2. The state transition graph consists of cycles,

This 1s true, since there are only finitely many possible con-
figurations, the cellular a?tomaton evolving out from one con-
figuration must ultimately enter into a loop, in which a
sequence of configurations are visited repeatedly. This is

represented by a directed cycle in the state transition graph.

3. If the cellular automaton is additive , we have ildentical

trees rooted at every configuration on a cycle (see [19]).

The following results have been proved in case of 1l-d

additive cellular automaton ([19]).
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In case of a Rule-90 1l-d CA with periodic boundary con-

ditions, configurations containing an odd number of
sites with value one, can never be generated in the
evolution of the cellular automaton, They can only
occur as initial states (such configu;ations which do

not have any predecessor, have been named as Garden

of Eden configuragtions),

For a Rule-90 l-d CA with periodic boundary conditions,
the fraction of the number of configurations having no
predecessor, ‘is L%' for n  odd and '%J for 'n' even

{cf. [19]).

In case of an additive l-d CA, two configurations x

and Y Yyleld the same configuration after one time

step, 1ff the configuration x - y vields the null con-
figuration i.e. Q,,aftér one time step (i.e., T(x) = T(y)
iff T(x~-y) = Q, which follows from the fact that T is

linear).

Configurations in a Rule-90 CA with periodic boundary
conditions, which have at least dne predecessor (i,e,
they are not the Garden of Eden configurations), have

exactly two predecessors if 'nt' is odd and exaCtly_four |

if 'n' is even .
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5, For 'n' odd , in case of a Rule-~-90 l-d CA with

periodic boundary conditions, a tree consisting

of a single arc is rooted at every node, on each

cycle in the state transition graph,

6. For an additive CA, every reachable configuration,
i.e. a configuration with a predecessor, has the

same number of predecessors ([19]).

We now look at certain properties of the cycle lengths
of l-d CA's. Later on, we shall show that many of these results.

carry over to 2-d CA's too,

Definition

For a l-d cellular automaton, having n-sites, we denote
.by . »the length of largest possible cycle, i,e, the length
of a maximal cycle (as we shall see later on, there could be

several such cycles which have the maximum possible length).

The following results have been proved ([19]).

l. In case of a uniform, additive l-d CA with periodic

boundary conditions, there 1s a one-one correspondence
between the evolutions of the CA starting with any two
configurations having only a single non-zero site (i.e.

any two configurations that correspond to a cannonical
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basls, by treating the configuration space 1o be g

vector space over Z5)e

As a result of this, the cycle lengths obtained by starting
lnitially with any configuration, which has a single non-zero

slte, are identical,

2, In case of a uniform, additive J-d CA with periodic
boundary conditions, the lengths of all Cycles divide
the length of a cycle obtained by starting with an

inltial seed having only one non-zero site,

Thus it follows that these cycles‘correspond to the maximum

cycle-length T, » OF in other words, these are all maximal

cycles,

3o In case of a Rule-90 l-d Cca with periodic boundary

conditions, having n-sites, if n is of the form

'2k' y for some k > O, then T, = l. Also if n is

Definition

Multiplicative order function ord (k) 1is the least

positive integer 'j', such that kj = L mod n ., According to

the results known from group theory, this definition makes

sense only when k and n are relatively prime,
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Multiplicative suborder function sordn(k} is

cF
-
L

least positive integer J such that K

Jif

i l :;Gd n. &

A
T
41
3

as before, this makes sense only when kX and n are re

f—s
0
|

tively prime,

The following result 1s known to hold ({19 ]). For e
Jniform, additive l-d CA having n-sltes and with peziodic

boundary conditions, 1f n 1is odd, then ¢ /n* where

N ord (2) o L

T = 2 -1 . If the local rule is symmetric, then we +take:
% sord (2)

2 ‘_l-

f

R

This much for l-d CA. We now focus our attention on
2-d CA's, As before we shall always work with the field 22
and conslder only additive CA's, i,e. the local rule corres-

ponding to each site will be taken to be additive,

Introduction to 2-dimensional Cellular Automata

In case of l-d cellular automata we considered the
sequence of sites to be arranged on a straight line, or on a
circle, accordingly as the choice of boundary conditions was
assumed to be null or Qeriodic. A 2-d CA is a generalisation
bf l-d CA, where the sites are arranged in a rectangular
lattice, which can be thought of as a two—dimensional_grid,
with connections among the neighbouring cells, Thus a 2-d CA

;an be thought of an 'mxn' array with 'm' rows, 'n' columns
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and mn sites. The configuration of a3 2-.d CA
represented by a mxn binary matrix, with €ach site carryi:
a VYalue O or 1, The evolution of a site may depend either on
the orthogonal neighbours (i.e, the horizontal andg vertical

neighbours), and this is called the Type-I neighbourhood o-

1t could depend on the neighbours which are diagonally ad Jacent ,

which is called the Iype~1I neighbourhood, If fij denotes the

local rule associated with the (i, j)th site (0 £1i< m=1,

———

0< J<n-1), and if qéf% denotes the state of the (1, J)th

site at time step 't', then at time step t+l we have

t+l) t) t) t) t) t)
q§,5 - fij(qénl,j’q£+l,j’qg,j-l’q§,j+l’q§,j)’

) (t) (t) (t) (t) (t)
U, = fij(qi-l,j—l’qi-l,j+l’qi+l,j—l’qi+l,j+1’qi,j)*

in case of a type-II CA.

As in the case of lad CA, for a 2-d CA we also have that,

each local rule fij gives rise to the global transition rule

T, which is additive iff each fij is so.

In case of 2-4d CA, the c0nfigurati0n.space consists of

all the 21 configurations, i,e. all possible mxn binary

natrices, As in case of l-d CA, the configuration Space of g3

2-d CA is also a vector Space over 22, where we tregt each
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configuration as a matrix. The dimension of this vector space
1s mn and the corresponding cannonical basis is the set of
configurations Eij’ C L1 <{ml, O j<n-1l and the matrix
Eij has a 1 only at the (i,j)th entry, all other entries
being O's, The global transition function T, which aé before,

ls a mapping from the configuration space into itself, becomes

a linear transformation iff the 2-d CA is additive,

We now discuss the nature of boundary conditions, in

the context of 2-d CA.

Null boundary conditions

Here, we consider the fact that, the cells in the
rightmost column, have right neighbours which are always in
state O, and cells in the leftmost column have left neighbours
aiso having a constant state Q. Similarly, a cell on the uppermost
row of the configuration,has a top neighbour and the one on the

lowermost row has a bottom neighbour, both of which are always

in state 0.

Periodic boundary conditions !

In this case, we assume that the topmost row is adjacenf
to the lowermost row and the leftmost column is ad jacent to the

Eﬁghtmost column, i.,e. if the configuration is an mxn matrix,
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then (O, j)th site and (m-1,j)th site are considered to be
ad Jacent, as also (i,O)Eﬁ site and (i,n-1)th site are con-
sidered to be adjacent, for all O £1<{m™l and O £ j < n-1,

This is as if the 2-d lattice were folded up cylindrically in

the horizontal and vertical directions to make it look like a

‘torus?,

Mathematical formulation °

As 1n the case of l-d CA, the global behaviour of an
additive, uniform 2-d CA could be Studied using characteristic

polynomials and characteristic matrices.

The characteristic polynomial corresponding to a configura-

tion of a mxn 2-d CA at time step 't' is, ([19])

M1 n-l
A(t)(x,y) ) (t) 1 J s where agﬁ) represents the site
lJ 1)
1=0 J=O

value of the (i, j)th cell at time 't!'. As before, this polynomial
ls multiplied by a fixed polynomial, (which represents the local
rule} and the resulting product gives the characteristic poly-

nomial corresponding to the configuration at time step t+l,

If we think of the global transition rule as a linear
transformation, and Characteristic it by a single matrix, since

now each vector corresponds to a mxn matrix, the matrix

characterising the linear transformation, will be of dimension
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mn x mn . This large dimension makes the implementation on a
computer, computationally inefficient, To overcome this
difficulty we Use a very elegant technique due to S, Ramakrishnan
([22]). It can be shown that in case of a Type-I 2-d CA with
uniform vertical dependency along each Iow, and unlrorm hori-
zontal dependency along each column, the global transition
function can be written as ° T(X) = AX + XB where X is mxn,
A 1s mxm and B is nxn, which makes T(X) mxn . The matrix

A accounts for the vertical dependency, and the matrix B accounts
for'the'horizontgl dependency., Thus in this formulation, the two

dependencies are dealt with separately.
Ve explain the above concept, with an example,

Suppose we have a Type-I CA with uniforn CRule-%90, Rule-90)> local
rule, and periodic boundary conditions. ¥ had already introduced
Rule=90 in case of l-d CA, which was sum modulo ?2 of the two
nearest sites (adjacent ones), By <Rule~90, Rule-90)> local rule
in a 2-d CA, we shall mean that, the vertical dependency of a
site 1s simply the sum modulo 2 of its nearest neighbours, and
this 1is indicated by the lst Rule-90; the 2nd Rule-90 implies
that, in the horizontal direction, we also consider the same
rule,'i.e., sum modulo 2 of adjacent sites. So the overall rule

becomes sum modulo 2 of the 4 nearest neighbours that are'ortho_

gonally adjacent, More formally, this means
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t+l) _ t - t t)
q§j+ ) = (qgizl)mod'm,j T quil)mod m,j T q&,(j—l)mod n

(t)

T 93, (j+1)mod n) mod 2,

where qgg)' is the state of the (i,j)th site, at time step 't'.

In this case, checking that T(X) = AX + X3 holds, is routine,

where

O
1
0
O O ....1 0 1
1

O *T * 8 ® O l O mxm

and B 1is the same matrix, but with dimension nxn .

Another important fact which is evident from the expression
T(X) = AX + XB , is that, we can treat A -aﬁd B as the charac;
teristic matrices of the corresponding l-d CA's and the local
rules for tﬁese l-d CAJS; are the rules for the vertical and

horizontal dependencies of the 2-d CA, treated separately,

Thus we have séen that, the relation T(X) = AX + XB
can bé viewed as the superposition of two l-d CA's, by coﬁsi—
dering the matrices A and B (which characterise the vertical and
horizontal dependencies respectively) as the characteristic

matrices of two l-d CA's. Thus it 1is not unnatural, that many
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results which hold for l-d CA's, have a natural extension to

their corresponding 2-d counterparts, Some such resulis will

be proved shortly,

In case of Type-I1 CA, the global transition function
can be shown to be of the form, T(X) = AXB; which is alsa 3
linear transformation, Here too X 1is mxn, A is mxm and
B 1s nxn so that T(X) is mxn. Here again, we assume uniform
rule along each row. The discussion Tegarding boundary conditions
is similar, only a little modification is neededtin case of
periodic boundary conditions gas compared to Type~I CA, null
boundary conditions being similar. In Case of a Type-1 2-d CA
with periodic boundary conditions, we had that (0, 3)th site was
adjacent to the (m=1, j)th site and the (1,0)th site was ad jacent
to the (i;n—l)gﬁ,site, for all 0 < i <m=1 and O < J £ n-1,
In case of 2-d CA, since we consider diagonalfadjacency instead
of orthogonal adjacency, we take (m~1, (j~1)mod n)th site to be
the neighbour of (0, j)th site, and ((i-l)mod m, n-l)th site to
be the neighbﬁur of (1,0)th site. In general, given a site

(1,J),the four nearest neighbours are °

((i-1)mod m, (j-1)mod n), ((i-l)mod m, (j+l)mod n),

((i+l)mod m, (j-l)mod n), ((i+l)mod m, (j+l)mod nj,

in case of periodic boundary conditions,
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At this.point, it is worthwhile mentioning some of the
wor< in 2-d CA, done by D, Roy Chowdhury, P. Subbarao and p.
Pal Chowdhuri ([24]). They extended the theory of l-d CA built
around matrix algebra, to characterise 2-d CA., In the paper
emphasis was laid on a special class of additive 2-d CA, known
as the restricted vertical neighbourhood (RVN) CA. In this
class of 2-d CA's, the vertical dependency of a site is res-
tricted to either the sites on its top or bottom, but not both,
The characteristic matrix representing the global transition
rule was an mn x mn one if the . CA is mxn. The technique
involved was 1o appropriately partition the T matrix iﬁto
blocks of uniform size, and then the properties of these block
matrices weré usedto predict the properties of the 2-d Ca
behaviour. The reason for working with RVN CA's, is that, the

Ccharacteristic matrix of an RVN CA becomes block-triangular,

(so we only have the blocks in the upper or lower trianglé,

including the diagonal).

Our approach of choosing the global transition rule to

be of the form T(X) = AX + XB is somewhat more general than
the above and more powerful, as we shall show later, We shall
present equivalent proofs of some of the properties of 2-d RVN
CA's (that have been previously done using the ‘partitioning

technique') using the functional form , T(X) = AX + XB
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We now turn our attention to some 0of the properties
of 2-d CA's. Many of these results, are the extensions of
the results that are known to hold for l-d CA's, to their

cCorresponding 2-d counterparts.

Theorem 1

(a) Let A and B be the characteristic matrices of
a Type-1 2-d CA., Let X(O) represent the initial configura-
tion. Then the configuration X(t) y after 't' time steps ,

is given by ¢
x(t) = Atx(o) + (t)At_lX(O)B + (E)At"'g)((c))a2 + eee + X(O)Bt ’

where (3) = (th)mod 2 . [Equivalently : Tt(X) = Atx + (E)At'lXB + .

e + XBt, where T(X) = AX + XB for any configuration X]

(b) Let A and B be the characteristic matrices of 2
Type~Il 2-d CA., Then we have X(t) = A.tX(O)Bt where X(O) is
the initial seed. [Equivalently : Tt(X) = AxBY  where
T(X) = AXB for any configuration X]

Proof.

Part (a). We proceed by induction on tt'.
For t =1 we have X(l) = T(X(O)) = AX(O) + X(O)B and thus
the result holds for t = 1,
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Assume the result to be true for t =r, i,e,

x{) o a7x(0) (3 7-1x(0)g (5)AT2x0)g2 | 4 x(O)gr

Case * t = r+l
X(I‘-I-l) —_ T(X(r)) — Ax(r) + x(r)B
= a(a%x{0) | (f)A?“lx(o)B Fooot (?)A ~3x(0)gd |
.o+ X(O)Br)

+(aTx(0) + (DA™ x0) oL (?)Ar‘jk(o)aj oo

.o+ X(O)Br)B

= AF+1y(0) [(8)+(f)]A?X(O)B + [(i)+(g)]ar'lx(°)a2 toos

o0t [(jfl)+(§)]A;+l"jX(o)Bj rouo+ x(0)gTHL

Now we have the following identity ¢

T r . I+l .

SO,(r+lcj)mod 2 = (FCy ) Imod 2 + (FC;dmod 2 i.e.,

C = (I o+ 5

Hence X(r+l) .Ar+lx(°) + CrIlJA?X(O)B + (Igl)A "lx(o)82 +e o

,...+-X(O)Br+l

S0 the result is true by induction for all t 5 O.
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Corollary 1,1

If 't' is of the form 25 for some k > O, then
((8) - at(0) , (0t

Proof.

According to Knuth ([l14]), if 't!' is of the fa:md2k
then (th)mod 2 =0 where 1 ¢ j € t-l . Thus (g) = 0
1l < j £ t-l and hence the expression for X(t) derived apove,.

reduces to .
x(t) = APX(O) +‘X(O)Bt 1f t = 2k (k > 0)

Part (b). Since T(X) = AXB, so T%(X) = T(T(X))

= A(AXB)B =.A2XE2 , ahd in this manner we can easily show,

T(AXB)

Tt(x) = AtXBt, for any t 2 O . This is equivalent to saying,
X(t) = AtX(O)Bt . Hence the proof,

Ne know that for an mxn additive 2-d CA. The set of

mn

all configurations, which are 2 in number, form a vector

spaCe over 22 . The cannonical basis for this space, is
given by the configurations E; where O < i ¢ m-l and
0 ¢ J ¢n-l and the (i,3)th entry of E.. is 1, all other

J
entries being QO's.
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Theorem 2.

There is a one-to-~o0One correSpondence between the
evolutions of a uniform 2-d CA with periodic boundary con-

ditions, starting with any two basis configurations.

Proof,

Case 1., The CA is a JType-I CA.
Then the global transition function, which is a linear trans-
formation, 1s given by T(X) = AX + XB, where A is mxm, X *
ls mxn and B 1s nxn., We prove the Theorem by showing that,
there is a one-to-one correspondence between the evoiutions

starting with E;,, for any 1i,j (0 (i {¢m-1 and 0O ¢ j £ n-1)

j!‘
and EOO .

In the expression T(X) = AX + XB, we know that the
matrices A and B correspond to the vertical and horizdntal
dependencies respectively, Due to the uniformity of the CA

rule, it is easy to see that,

ajy = 1, 1ff A(1+k)mod m, (j+k)mod m = *» where 0 < i,J,k < m-1,

Hence, we have 334 = a(i+k)qu m, (j+k)mod m ° Similarly,

P33 = P(i+k)mod n, (j+k)mod n °

Let us now fix i and J»(0<t {ml and O K j ¢ n-l1).

Define an mxm matrix U such that
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u(i+k)mod m.k = + for O <k < m-l and all other entries
y

are Ots,

Similarly define an nxn matrix V such that, Vk,(j+k)mod n = 1,
O Lk £ n-1 and all other entries are zeroes,

By the very construction of the matrii U, each row has exactly
gggr'l'. and no two rows have l's in the same column. So all

rows of U are linearly independent and'hence U 1is invertible,
Also, similarly we can show that V is invertible.

Now a direct computation reveals that E;

constructions of U and V.

Now we show that, U commutes with A,

Fix p,g such that O £ p, g £ml, We proceed to show that,
(P>q)th element of the matrices UA and AU, are the same,

The (p,q)th element of UA, is the inner product of the pth
row of U and the qth column of A,

Now we have an unique integer k, O < k £ m-1, such that

p = (i+k)mod”m. But then by the construction of U, Uy k= 1

d’ =0 ¥ .
and " u, r#£k

Therefore, (p,q)th element of UA is °

a
[“p,O’up,l""’”p,m—l] 1rq
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Similarly (p,q)th element of AU is °

We have only, u(i+q)m0d m, q = 1l and all other wu 's = Q,

r,q

Thus the (p,q)th element of AU is a
py(i+gq)mod m °

But we. hav = |
ave k,q = 2(i+k)mod m, (i+q)mod m [shown before]

So, a,q = ap,(i+q)mod m [since p = (i+k)mod m].

Hence, AU = UA.

Exactly in a similar manner, VB = BV.

I

Thus we have T(Eij) AEiJ + EijB

AUEOOV + UEOOVB

!

UAEOOV + UEOOBV
='U(AEbO + EbOB)V = UT(EbO)V
and in this way ° Tr(EiJ) ='Urr(Ebo)v ¥ r>o0,

So if we define a map ¢ , from the set of configurations in

the evolution of Eij dinto the set of configurations in the
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evaolution of EOO’ as follows

T T
q)(T (El_])) = T (EOO) .
Then @ 1is well-defined and one-one, since

Q(TT(E; 3)) = G(T°(E, ;)

iff Tr(Eboj = TS(EOO)
, T _ S : -1 -1 . -
iff UT (Ebo)& = UT (EOO)V, [since U and V exists]

and @ is trivially onto. Thus ® is the desired one-one

correspondence,

Case 2. The CA is a Type-I1 CA.

Then T(X) = AXB and in the same way, Eij = UEy,V, AU = UA

and BV = VB. So T(Eij)-= AEijB = AUE,,VB = UAE BV = UT(EOO)V,
and 1in this way we have, Tr(Eij) = UTI(EOO)V s for any r > 0.
The proof of the remaining part is same as in the case of Type-I

CA. Hence the theorem.

Corollary 2,1

In case of the above 2-d CA, the cycle lengths ocbtalned
by starting with any basis qﬁnfiguration, are identical

Proof,

This is a direct consequence of the 1l-1 correspondence
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Detween the evolutions of any two basis configurations, as was

proved in the Theorem, .

AS a consequence of the above result, we have the

following theorem.

Theorem 3.

For uniform 2—d.CA,with.geriodicHbﬁundary.CQnditians,
the cycle length encountered, by starting with an arbitrary
configuration, is a'divisor of the cycle length 'g', which is.

obtalned by starting with any of the basis configurations Eij'

Proof.

Let X be a configuration on an arbitrary cycle of

length my. We are to show that , nl/n .

Since the configurations Eij’ (described before) with
O <ig¢ml and O ¢ j ¢ n-l, form the cannonical basis of the

configuration space, we can'represent X as a linear combination
m-1 n-1 |
! = N S =
of Eij s. Thus X = iioljiosiJEiJ , Where By * O or 1,
It T 1is the global transition function, which is a linear trans-

formation, we have @

) (m—l n-1 ) m=1 n-l e
T(X) =T(f fe,E. )= % e .
i=0 j=o 131" " 4o yio 1I LI

5 m-1 n-=l 5
Similarly, T5(X) = T(T(X)) = ¢ ) s.jT (E

3 'F) ’ aﬁd thus in
i=0 j=0

1)
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this way, we have for any r > Q,

| M-l n-l
T (X) = E jﬁoaij'fr(Eij). ceu (1)

Now since we have shown that, there is a one-one correspondence

between the evolutions of any two Eij‘s, we assume that esch

Eij enters into a cycle after eéxactly 'h' steps , i.e, 'R 1s

the least positive integer for which Tn+h(Eij) = Th(Eij)

0£i<ml, 0¢ 5 <n-l. Then TFN(g ) o Th(Tn+h(Eij))
_ -h,_h _ =2h |

Thus we have in this way, T“+rh(Eij) = Trh(Eij) ceesl(2)

for any r > O,

Now as X lies on a cycle of length my» SO @ is the

| n
least positive integer for which T l(X) = X. But then,

ry
T l(X) = X for any r > 0. So we have using (1)
T “(X)= 5§ z €4 .T (E.j) .
i=0 j=0 1J L
m-l1 n-l rny |
Therefore X = § ¢ e, .T (E'j)’ for any r > 0. ...(3)
n+nlh
Now we consider, T (X).
n+myh 0 mel n-l n+my h
By virtue of (1) ¢ T (X)) = ¢ 3 BijT (Ei') .
i=0 3=0 J

'I[""'nlh T‘ilh
Again by virtue of (2) (Eij) =T (Eij)
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h

i +nlh m—l n-1
| (Eij) = X, by virtue of (3).

(X) = ¢ L €. .

T
|
i=0 j=0 1J

Therefore T

TI+TIlh

Thus T (X) = X.

gy division algorithm, it is possible to find integers q and

t, such that, n = gn;+t, 0 <t < my-l.

Claim t = 0.
Tt"'ﬂlh |
From T = (X)) = X we have *
(q+h)nl+t'
T (X) = X
(g+h)n
or, TH(T Lixyy = x .
ny t
Since T “(X) =X for any r > O, we have ° T°(X) = X, If

t #0, then 0 ¢ t < T, » which means that, the length of the
cycle on which X lies, is < t ¢ My » CONTradicting the fact

that, n; 1s the cycle length. Hence t = O. Then T=qny => nl/ﬁ.
The proof follows.

Corollary 3,1;

The cycle length obtained by starting with any basis

conflguration is the maximum cycle length . ns ©f the 2-d mxn Ca,
’

Proof,

If =m 1s the desired cycle length,then by the abo;e
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! . 0 as ' t
theorem nm,n/n So Teon &7 and also a Ta,n IS the
maX lmum cycle'length, 1 < 1 . Hence g = g . The proof
— m,n | m’n
follows,

ITheorem 4. (cf. [19 : 4.7])

In case of a mxn 2-d CA with symmecric and unifornm
local rules and with periodic boundary coenditions, let the
Characteristic matrices be A and B, Let A andg B, corres-
pond to l-d CA's of maximum cycle lengths n and n, Tes-

pectively, Then if T..n 15 the maximum cycle length of the
?

Praof.

Let T be the global transition function, 'A'accounts

for the vertical dependency and 'B' for the horizontal dependency.

B8y symmetric local rules, we have that the matrices A anc B
are symmetric, and the dependency of a site, on the number of

sites towards its right (resp, top), is the same as that towards
its left (resp. bottom). But this means, each row (and hence

column) of A and B must contain an even number of 1lts,

Let x (mxl) be a l-d CA configuration with ¢

acteris-

tic matrix A, such that X lies on a maximal cyclel of length

R, o+ SO no is the least positive integer for which

L
! :

- Let us choose a mxn 2-d configuration X as follows
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X = (XsXseee5X) {n=tuple). Then X has the property that,

every row of X 1is either all O's or all 1's,

Now in  T(X) = AX + XB , let us evaluate the product
XB . Any element of XB, is the innerlprodUCt of a row of X
and a column of B, If the row of X 1is all O's, then tre
result trivially vanishes, If the row is all 1l's, then the
result is simply the sum modulo 2 of the entries in a column
of B. But as any column of B has an even number of 1l's ’

the sum vanishes over 22 . Thus we have shown that XB = CL‘.

Now Tnm(,;_f.) = Anma = X
i.e. ‘rn““(X) = Anm(ﬁ_,iu--r.’i)
= (Anmx,AfmﬁJ...,Anma)
= (Xy)Xs+.00,X) = X and

no 1s the least integer for which this is so. Hence X lies

on a cycle of length %, » in the 2-d CA, Since n. o 1S the
»

-largest cycle length, by Theorem 3 we have “m/“m,n . We could

show in a similar manner that nn/m
M, N

So f.c.m. (um,nn)/n Hence the proof,

m,n *°

Lemma 5,1.

I1f the global transition function 'T!', of g3 eneral ,

additive CA is invertible, then there exists a positive
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integer 'r' such that T" = I, where I denotes the identity

mapping.

Proof.

Let X be an arbitrary configuration, Consider the
sequence X,T(X),T2(X),... . Since the.configuration space is
finite, so the above sequence cannot be infinite i,e., there
exists integers i and Jj, i 2> Jj, for which Ti(x);=_rj(x).
Since T 1is invertible this means Ti'j(X) = X (operating by

T‘j). Since 1i-j > O we have that corresponding to each con-

figuration X, we have a least positive integer Ty that
= |
satisfies T %(X) = X.

If the configuration space is 'C', let r = f.c.m, {rx . X E C} .
Then trivially , T"(X) = X, ¥ x e C which means that T® = I.

Hence the proof,

Theorem 5.

For a general, invertible, additive CA, if 'r»* 1is the
least positive integer such that " = I, then 'r' is the

least common multiple of all the cycle-~lengths in the CA,

(Note ¢ This theorem does not make any reference about the

dimension of the CA . It is a perfectly general result).,
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Proof,

If n, 1s any cycle length, we show that n, divides

'r' . Let X be a configuration on the cycle of length mny -
| T

So udY is the least positive integer for which T l(X) = X .

Now T' = I, Therefore TY(X)

X. Evidently then m LT,

By division algorithm, we have, r = qn; + t for some integers

- oqmy +t

q and t, with 0 €t < xy . Then, X=T0(X) = T + «(X)

S S L | . L5 o

= T°[T ~(X)]. Since T *(X) = X and T is invertible, so

an, : :
T “(X) =X, if 'q' is any integer,

Thus Tr(X)-= Tt(X) i, e, Tt(X) = X,

If t#0 then O <t <m and T°(X) = X, which contradicts

the choice of g;,. So t =0 and thus nl/r. Since @, is

the length of an arbitrary cycle, we have shown that, each cycle
length divides_'r'. Hence 1if f = f.c.m, of all cycle lengths,
then f/r. Our next aim is to show that, =r/f. Let X £ O (the
null configuration) be any configuration, We consider the sequence
X, T(X)‘,T2(X),... and then by imitating the proof of Lemma 5.1
we find that there exists a least positive integer k, for which
Tk(X) = X. But then .X 1lies on a cycle of length k, and as

f =f.com, of all cycle lengths, [ = tk for some integer t > O.
Then Tl(X) = Ttk(X) = X, and.trivially Tf(Q) =0 , So TK(X) = X,
for any configuration X, which means ’1"f =1, As 'rt' is the

least positive integer for which this is so, we must have r/[.

The proof follows,
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-orollary B,.1.

Let 'r' Dbe as in Theorem 5, If in particular, the CA

in Theorem 5 is a uniform mxn 2-d CA, with periodic boundary

conditions, then r =

o, n (the length of the largest cycle),

Prcocof,

By Theorem 5, r = f.c.m, of all cycle lengths, Also by
Theorem 3 each cycle length of the chosen CA, divides n . and
_— illy

so the f.c.m. of all these lengths is equal to x The

m,n °
proof follows,

Definition.

By the helght of an additive CA we shall mean the height
of the tree,rooted at thé null configuration, in the state tran-
sition graph. This definition is meaningful, since it has already
been stated ([19]) that trees on each node of a cycle in the

state transition graph, are identical.

Theorem 6.

In a symmetric, uniform 2~d CA with Eeriadiétboundary
conditions, let the global: transition rule T be given by
T(X) = AX + XB., If hy and1 h2 are the heights of the corres-
ponding l-d CA's with characteristic matrices A and B res-
pectively, and 'h! is the height of the 2-d CA, then
h zlmax(hl,hz).



Proof,

In case of the l-d CA with A as the characteristic

matrix, let x(mxl) be a configuration that reaches the null
cénfiguration after hl time ;teps, i.e. 'hl' is the least
positive integer, such that A l§_= O . Let X be the 2-d
configuration (X,X,ees %) (n-tuple), which is mxn. Then

exactly as in the proof of Theorem 4, we have XB = Q. Thus

T(X) = AX.

by - hl

Now AX =0 (X) = A 7X = A7 (X9Xs000sX)

hy h hy
= (A TX,A TXy0eerA TX) = (2;05¢.+5Q0), the null configuration

of the 2-d CA,

So the 24d_configuration X evolves to the null configuration
after hy tlme steps; therefore h 2 hy . Exactly in a similar

manner, h 2 h, . Thus h 2> max(h;,h,). Hence the proof,

Theorem 7.

In case of a mxn Type-IIl 2-d CA with symmetric and

uniform local rules, and with periodic boundary conditions, a

configuration which has all rows identical or all columns iden-

tical, is a predecessor of the null configuration,

Proof,

Here T(X) = AXB where A 1is mxm, X 1is mxn and

B 1s nxn,
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Now 1f all columns of X are ldentical, then X = (§Ji,._n,£),
where x is mxl. Then, as in Theorem 4, XB = 0. So T(X) = 0,
If all rows of X are identical then in a similar way : AX = O

el

and thus T(X) = O. Hence the proof.

Corollary 7,1

IThe kernel of the global transition rule T of the CA

described in Theorem 7,has at least 2™ + 2n - 2 elements,

Proof.
| V4

By Theorem 7, configurations with all rows identical
or all columns identical are in Ker(T). So if r is the number

of configurations with all rows equal or all columns equal, then

|Ker (T)| 2 ¢ .

Let Cl represent the set of configurations with all rows

identical and 02 represent those with all columns identieal,

n

Then evidently, LCll = 2 and |C2l = 2"  where, m = no, of

rows and n = no, of columns. CinC, consists of all O's

or all 1l's configuration. So ]cquc2] = 2 ,
Now r = [CIUC,| = [C)[+]C,|-[c;ne,| =27 + 2™ = 2,
So, [Ker(T)|2> 2" + 2" -~ 2, Hence the proof,

Theorem 8,

In case of mxn <Rule-90, Rule-90> 2-d CA with periodic
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boundary ¢onditions, the all 1's configuration is a pre-

decessor of the null configuration (cf. [1l9] for the 1l-d

case),
Proof.

If T is the global transition rule, T(X) = AX + XB

where, in case of CRule-90, Rule-%90> the matrices A and B

are as follows @

o 1 0o ... 0 1

1
A = [
0 O '.".'..l 0 l

Ll C e O 1 O mxm

il

and B 1s the same matrix with dimension nxn., Substituting

11 ... 1
1 1 ... 1

X = ‘ .
[} 1 con {_ mxn

it is only a matter Of routine checking, that AX + XB evaluates

to the null matrix. Hence the proof,

Corollary 8.1

CRule-90, Rule-90> 2-d CA with periodic boundary conditions,

is never invertible,
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The CA would be invertible iff T is so, i,e,

Ker(T) =~[Qj « But by the above theorem

| e 1i & Kér(T)“

N

Ll l L I Y l MXN

i

and thus  Ker(T) # {Q} . The proof follows.

As in the case of l-d Rule-90 CA we have the following

Theorem 9,

In a <Rule-90, Rule-90> 2-d CA with Eeriodic_baundary

condltions; configurations that have a value l, at an odd

number of sites, cannot be reachable,

Proof,

It is sufficient to show that, the configurations
that are reachable in one time step, 1.e. by one application

of T, always have an even number of 1l's,

We have T(X) = AX + XB , where

l 0 0 ... O 1
l O 1 ... O O
A = E
C O O0...1 0 1
L} O 0...0 1 0| mxm



and B 1is the same matrix but with dimension nxn

Then we easily see that the (i, j)th entry of T(X) is

-+

*i,(j=1)mod n *i,(j+l)mod n T *(i-1l)mod m,j ¥ *(1+1)mod m, 3

'(The sum is taken modulo 2),.

Ne now compute the sum of all the entries of T(X).

The sum is ¢

M-1 n-=1

iio jzo[xi,(j—l)mod n ¥ %i,(j+l)mod n * *(i-1)mod my J

* X(i+1)mod m,j‘]

m=1 n-=1 |

) iio jﬁo[xir(j-l)mﬂd n +'xi,(j+l)m0d n |}
n-1l m=1
+ = I

§=0 1=0 X (i-1)mod my,j ¥ *(i+l)moc m, j ]

n-1

We evaluate jio[xi’(j_l)mﬂd nt Xi (3s+l)mod n ]

(xi,n-l + xi,l)f(xi,o +'xi,2)+(xi,l + xi’a) + s

voe + (X3 n g3+ X5 n) )Xy n o+ Xy ()

Rearranging we get ¢

(xi’o +'xi,0)+(xi,l + xi,l) F (xi,n;l + xi,n—l) = 0 .
(As the sum is taken modulo 2.)

* In-l ’
Simllarly iio [x(ifl)mod myj ¥ *(i+l)mod m, j ] = 0.

. e — — e a2
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Thus the sum of all entries of T{(X) is O and this is

possible iff, T(X) contains an even number of l's, Hence

the proof.

Corollary 9,1

In the state transition diagram, the tree rooted at the
null configuration (and hence at each configuration on each

cycle), consists of k-1 arcs, where |Ker (T)| = k, if m+n is

odd .

Proof,

As 1n the l-d case, we assume that the trees are
balanced. By Theorem 8, all 1l's configuration is a predecessor
of the null coniiguration. So by Theorem 9, if m+n is odd,

then the all 1's configuration has no predecessor. The proof

follows,

¥ next deduce the following result of Martin et al,
([19]) using our method,

Theorem 10,

For an uniform, mxn 2-d CA with periodic boundary con-

ditions, if T n denotes the maximum cycle-length , then
?

* . f.c.m.(ordm(2), ardn(Q))

1 1 , where (| g = 2 -1

m,n/ in
general, and if the local rules are symmetric, we have °

v _ fecemi(sord, (2), sord (2)) L '



46

(Ncte : For ordm(2) and ord_(2) to be defined, we need

both m and n .to be odd., )

Proof,

We have assumed additive, uniform. local rules, so,

our global transition function T is given by T(X) = AX + XB

where A gives the vertical dependency and B gives the

horizontal dependency, We consider A which is an mxm matrix,

Let the vertical dependency of each site X35 1in the most
general case be as follows ° Xj 3 is replaced by

“0%i, 3 +'slx(i-l)mod m,j Teeot am—lx(i-m+l)mod.m,j » Where
each ak is either O or 1. Since the local rule 1ls same for

every cell, we have that €,'s are lndependent of i and j.

Thus given an arbitrary configuration X = (xij)’ the (i, j)th

entry of AX is ®0%iy * 8lx(i-l)mad m, ] +“'+'§m-lx(i—m+l)mod My J |

(modulo 'm' operation is taken due to eriodic boundary conditions),
RELIOCILIC

We now proceed to express A in a particular form. Let

'C' be the mxm matrix

1

[OOO'..l.

l 0 0 ,..0

O 1L 0 ...0
C =

O 01 ...0

0 0 0..10 ]
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1f we choose any mxl column vector °

X0 X1
[ X, *0
X = [. then we have Cx = Xy l.,e. one
" .
m=1 .
) _?m—z_

application of 'C' produces a l-fold cyclic shift, of the

column vector, towards the bottom. Thus 1f we consider Cri

for any r > O, the shift is r—fold. Keeping 'this property

of 'C' in mind, we now show that

2 1
A=¢egl +€)C+e,C° +u.ure_, O™,

Let X = (xij) be any configuration, We can write X as

X = (go,il,...,in_l) where

*03
-1
X} 3
:—(-j = JE *
l'_mm""-]-srj__,l

If D=egl +&)C+ueure, 1C"h , then DX = (Dx,,D,,...,Dx

n-l)'
Thus (i,J)th element of DX 1is the element in the ith row of

Dij- Since element in the'igg_ row of Crgj is the element

in row (i-r)mod m, of the vector X 4 (as Crgj is a r-fold

cyclic shift of X3 » we have that the element in the ith row
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M1

f. Dx. 3 :
© L3 9 'riogrx(l—r)mod M, j

= E . X.: E4X /. ‘ ta o . .
O 1,.] + 1 (1—l)mod My J t T Sm—lx(l—m+l)mod My J

Thus we have shown that, (i,J)th element of DX 1is same

as the (i,]j)th element of AX, for any configuration X ;3

cm—l

#

which = .« H = 2
proves D A. Hence A aol + ;lC + BQC teeo+ &

- We can see that L .i1s invertible,as all its Iows are Jlinearly

independent, The characteristic polynomial for C 1is given

by, det(C—AIm) = Qet(C+&Im). [Im 1s the mxm identity matrix].

A O O ... 1

I A 0...0

O
A
1

1
O

A
Pl
O

0 1L A ... 0 A

(e
O
~

O e L1 A| mxm (m—=1)x(m-1)

O
—
o
O

O +eevee 0O 1 :(mul)x(myl)

(Expanding by the first row)

The first (m-1)x(m-1) matrix is-upper triangular and the second
one 1s lower triangular. So the determinant is simply the pnm—l
duct of diagonal elements. So det(C-kIm) = K.hm"l + 1 =2A" 41
= A" = 1 [we are in 2,1
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Therefore by Cayely-Hamilton theorem, C"-I = O (null matrix)

. fil |
l. o h——t
e C Iml

BOI + alC + 8202 + ees -+ sm_lcm"l s, We have

Since A

ord_(2) _ ord _(2) Ordm(2)_

A2 = ¥ sﬁ Cr'2 _ (sihbe we are in Z.).
r=0 2
| 7
Also since €r ©.2,y 8. = £ _mod 2, for all k >0 .,
2ordm(2) el . 2ordm(2)
SG A b E Brc * .
r=0Q
_ i ord_(2)
If ordm(2) = J, then 2¥ =1 mod m , i,e., 2 ‘° = km + 1
for some K.
ordm(2) -
Thus CF*2 _ Cr(km+l) _ (Cm)rkcr _ (Im)rkcr = cF .
20rdm(k) m-l
Hence, A = I srC = A .
=0
| ord (k)
. | 2 I
One can similarly show that, B =8 .
m~-1
Let us write, £(C) = £ e CT =A[c® =1 ] .
r=0 o m

If we have the uniform local rule to be symmetric, it is easy
| m-1

to see that, {f(C) = f(C"l), i.es A= L SrC-r .
. r=0
2sordm(2) m_1 . 2sordm(2)
Then as before, A = L e C~°
r=0 T

If sordm(Q) = j then 2 = + 1 mod m,
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sord_(2)
m m—1 sord_{(2)
SO A2 = L ErC_r(kmil) [as 2 . = km+l, for some k]
=0
m—1 m-1
= £ e CTMcT or 1 eCTT KmoT
=0 r=0
M= 1 m—1 |
= £eCT or el [as C" =1, I
=0 r=0 ‘
M=l | m—1
Since due to symmetry - ’E'BrC“r = A= 1L e CT », WwWe have
T
=) I=
sord_(2) sord_(2)
2 m . 2 n
A = A . Similarly, B =B .
ordm(2) sordm(2)
Let [ =2 (resp. 2 ) .

Kk
Since A‘ = A, it is easy to check by induction that A! =
for any k > O.

" [.c.mﬁ(ordm(Q), ordn(2))
Now 1';+l=2

. CoMy, sord 2 sord_(2
(I‘ESPo 2l § ( m( )’ n( ))

]

There is an integer kl such that,

f.c.m. (ord (2), ordn(Q)) (resp. f.c.m.(sord (2), sord (2)))

= ky ordm(2) (resp. klsordm(z)).
% klordm(2) klsordm(2)
. = resp. A )
(L
= A = A .

%

Similarly, B® * % =38 .

Ay
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*

Now as, = + 1 1is a power of 2, we have by Corollary 1,1
* * *
that ¢ T% FL(x) = a" +1x 4 @™ +1 |
¥*
n + 1
Hence, T (X) = AX + XB = T(X).

Thus we have shown that, given any configuratinn,

* . b ] L
there 1s a repeatation after ¢ steps, anc in particular

a configuration lying on a maximal cycle, (of length R ",
ol
*
also repeats itself after g steps. Hence by Theorem 3
+*
we have, n_ . /n . The proof follows,
ily

Corollary 10,1

For mxn <Rule-90, Rule-90> 2-d CA with periodic

boundary c¢onditions, if m = 2P and n = 24 , for some inte-

gers p,q > O, then L 1, (Similar to the l-d case ([191])).

Proof,

If we can show that, in the above CA, every configu-
ration ultimately evolves to the null configuration, then we

are done.

Now as A 1s the Rule-90 matrix'of a l-d CA, imita-
ting the proof of Theorem 1O, one can easily verify that, A
can be written as C +-C"L ; where " 'C' 1is the matrix, as
described in Theorem 10, (Equivalently, A =C + o™l y as

c" = Im , the mxm 1identity matrix.) Since A is mxa ,
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so we use the notation, C_ instead of 'C'. Thus A =2C_ + C;l
-1

Similarly B = Cn + Cn . Hence

(X) = Cp + C_ml) X+ X (C, + Ggl)-

Without loss of generality, we assume that, p 2 g. Since

m = 2° , by Corollary l.l, we have, TH(X) = A™X + xa"
-1l.m ~1l\m . ¢~ —~M

= (G + C)™X + X(C + CT)T, i.e. TH(X) = (C + CT)X

+ X(C, +C," ) [as we are in Z,].

Since CI = I ,C0 + C"= 0 (null matrix) and thus,

'Im(X) = J((C;: + C'n'm). Since p 2q, let p=qg +r , where

24 p q+T
Rvatvs o _

Thus, T'(X) = X(I, + I ) =0, for any configuration X

The proof follows,

In some of our proofs given above, we had come across

situations, where the global transition rule T of the 2-d

CA 1is invertible, We shall now consider the case of inverti-

bility, a bit more closely., This case is of 1interest, since,
if T 1is invertible, all configurations other than the null
configuration, lie on some cycle and thus there are no trees
in the state transition graph, This case 1is of interest since

in certain CA applications such as pseudo-random sequence
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generation ([29]), long cycle lengths are desirable. In case
I 1s invertible, there is a possibility that excepting the
null configuration, all other_configuraticns could lie on one

cycle, giving a very large cycle length.

3ince, practically always we have been working with
the global transition rule of the form T(X) = AX + XB, we

would like to investigate the invertibility of T, from pro-
perties of A and B,

The characteristic polynomial for an nxn matrix A
is defined as det(Akan) where I~ 1s the nxn identity
matrix, Since we are always working with 22, we may rewrite

it as det(A+AIn).

Theorem 11 ([18])

For a 2-d CA with global transition rule T of the

form T(X) = AX + XB, T 1s invertible, iff the characteristic
polynomials of A and B are relatively prime (over 22).

We now proceed to determine the characteristic polynomials

for a <Rule-90, Bule-QO) 2a-d €A with both periodic and null

boundary conditions,
Theorem 12 ([5])

If *A!' is the Rule-90 matrix of a l-d CA with null
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boundary conditions, then the characteristic polyﬁomial of

A, denoted by qn(k) where 'n' is the dimensionality of A,
Isatisfie§ the ;eéurrence relation [ g (A) = Aqp_q (A) + q,_~(N).

Procft,

qn(k) = det(A + AL ).

In this case we have seen before that A 1is of the

form
©c 1 0 ... 0 0O
101...001
Ol 0 ... 0
A = :
0 0 ....1 O 1
O O e.c0ee0e 1 O nxn

Therefore, dn(}) =

0 0 veve 1 A 1
O 0 esev e 1 A nxn

»

Expanding by the first row yields :

0O ... O
1

1 O ... O
A ves O 1

> & 8 o

G.(A) = A +

O ..., 1 A (n-1l)x(n-1)

Dnl' | andll

Qoo O P~
>

| C..oo 1l A (n—l)X(n—J
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1 0 ... O

A
_ Aqn—l(h) N % A xl eee O
é O .... L1 A (nfz)x(n-2j
(Expanding the second (n-1)x{n-=1) deﬁermiﬁént by the lst column)

So qn(h) = hqn_l(h) + qnqz(l). The proof follows,

Notation ¢ qn(h) 1s the characteristic polynomial of a Rule-%0
l-d CA having 'n' sites with null boundary conditions. Let ﬁn(k)
be the characteristic polynomial of the same l-d CA but now with

periodic boundary conditions,

Then we have the following result

Theorem 13

If 'At is the Rule-90 matrix of a l-d CA with periodic
boundary conditions, then the characteristic polynomial of A,

denoted by pn(k),'where 'n' i1s the dimensionality of A,satis-

fles the recurrence relation I p_(A) = Aq,_;(A).

Proof.

In this case A looks like °

l-cal 0 ... O 1

1 O O oo O
1

O
0 ...l 0 1
[}. O ...0 1 O} nxn

O + O
O

O O
O O
O



So,

Pn(A)

© + >

- SEEN

= >

O

Expanding by the 1st row .

PL(A) = A

A
1
0
1

1 ...
h * & B

1 A ..

O O ..

o 1

O O
O O
C O

1L Al

1
A

20

O +..0

L I

eee O

O |

A 1

L A

(n=1)x(n-1)

nxn

1 0...0. 0 1§ (n=L)x(n-1)

The 1lst (n=1)x{(n-1) determinant can be easily seen to be

d,_1 (M) (refer to the proof of Theorem 12).

Expanding the second determinant by the lst column we get

|

1
A

Oeee = >

0 * * &
1

&

O
O

.

10 «ceeoe 1 A} (n=2)x(n-2)

1
A
0

O

O

l 0... 0

O...

.

(n-2)x(n-2)
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Now the lst (n-2)x(n-2) determinant is Clearly qn_z(h)
and the second one being lower triangular, the determinant is
simply the product of the dliagonal elements armd is thus 1.

Also expanding the third (n=1)x(n-l) determinant PY the first
column we find it to be equal to 1 + An._o{(A).

Thus ultimately :

PrA)

Aqp_1 (M) + 1 + q o(A) + Ay H(A) + 1

H

A, (A [ as we are in 22].

Hence the proof,

Remarks ¢ In case of a mxn CRule-90, Rule-~-90> 2-d CA, with
periodic boundary conditions, since the characteristic matrices

A and B in T(X) = AX + XB, are Rule~90 l-d CA matrices with
perlodic boundary conditions$ their Characteristic polynomials

are pm(h) and pn(k) respectively. Since pm(h) = hqm_i(k) and
pn(k) =2 hqn_l(h), it follows that pm(h) and pn(X) are not rela-
tively prime and thus by Theorem 11, T 4is not invertible. This

1s an alternative proof of Corollary 8,1, :

In this case we have not been able to compute the dimen-

sion of the kernel of T, which would give the number of prede-

cessors of the null configuration. However, instead of périodic,

1f we choose null boundary conditions, then we have the following
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result due to Sutner ([26]) (Also see ([3 1) for an alternative

simple proof),

Theorem 14

For an mxn <Rule-90, Rule-90> 2-d CA with null boundary

conditions, the dimension of the kernel of T is given by .

h-C-f-(m"*‘lj n+l) - l y

and thus the number of predecessors of the null configuration
2h-C-f- (m+l ,I'H-l)-l

1s
In particular the CA is invertible iff hecof.(m+l,n+l) = 1

l.e, iff m+l and n+l are relatively prime.

Remarks . The second assertion is verified from Table 1 where

we see that whenever m+l and n+l are relatively prime, the

height of the tree is O. (Look up Table 1 for results on o-e-n)

The following results can now be proved by induction

((51) +

Theorem 15

(a) A 1is a factor of qn(A) 1ff 'n' is odd.

(b) (L+A) is a factor of .qn(k) 1ff n =2 mod 3, i.e.

i1ff n = 3k+2, for some k > O .

(¢) (1) If n = 2k—2, for some k > O then

k 2

k“
+eoet+ 1

A2 —2 272

+ A

N

q, (A)
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(ii) If n = 2X.1 , then

(l
Py
-

qn(i)

(iii) If n

i
N

y then

k k k .2 |
q,(A) = A2 1A% T2 2 "2 +eset 1L

and p_(A) = Al

-Wb'had'intrﬁduted‘ﬂuleé90"earlier.'We*nﬁwpintroduce“Ru192150
([28]) along with it. In case of Rule-=90 l-d CA the local rule
consisted of adding modulo 2, the site values of the two neafést
(adjacenf) neighbours. Both periocdic and null boundary conditions
were discussed. In case of Rule-15%0, ﬁhe rule for any site is

to consider sum modulo 2 of the site values of the two nearest
neighbours glong with the site value of its own. In the Rule-90
matrix, both in the periodic and null boundary cdnditions, the
diagonal entries were O's, The Rule-15%0 matrix in both the cases
will be the corresponding Rule-90 matrix with all diagonal entries

as l's. For example,the nxn Rule-1%0 matrix looks like °

—— —_—

* 8 @® l

S

O
l1 0 ... O
1 1

1
1
0 0..e O
1

.-

0 0 e % 8 & & @ l lJ nxn

in case of periodic boundary conditions.



In case of null boundary conditions, the matrix remains same,

only that the entries at positions (0O, n-1) and (n-1, 0)

become 1.

The following is then trivial:
The characteristic polynomial for a nxn ‘Rule-150 matrix is
pn(l+k) for periodic boundary conditions and qn(l+h) for

null boundary conditions,

Theorem 16

S
(a) In a mxn <Rule-90, Rule-150> 2-d CA with null

boundary conditions,if m

2k—l and n = 21-1, for some

integers k, [ > O, then the global transition function T 1is
invertible.

(b) In a mxn <Rule-90, Rule-150> 2-d CA with periodic
boundary conditions, if m = 2k* and n = 2T , for some k,r > O,

then T 1is invertible.

Proof,
Part (a). T(X) = AX + XB.
Characteristic matrix of A is qm(k) and that for B is

k

Now as m=2"-1 and n = 2‘-1, by part (ii) of Theorem 15(¢) :

dp(r) = A" and q (A) = A",
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Thus qn(l+h) = (l+-?\)n . Since the polynomials A™ and (l+}\)n
are relatively prime, we have using Theorem 11, T is inver-

tible,

(b) T(X) = AX + XB. In this case the characteristic polynomial
for A 1is pm(h) and that for B is pn(l+h). Since m = 2k
and n = 2% » we find using part (iii) of Theorem 15(c) that

P,(A) = A" and p_(A) = A™ | So, p . (1+A) = (1L+a)" .
n M n

Again as A® and (l+?\)n are relatively prime, using Theorem 11,

the result'follows.

Hence the proof.

Earlier, we had mentioned about a special case of 2-d CA known

as, Restricted Vertical Neighbourhood (RVN) CaA ([24]). we

now present equivalent probfs of certaln properties using our
approach of ;hoosing the transition function as, T(X) = AX + X8,
Now in our terminology, the vertical dependency is givén by the.
matrix A. It is a simple observation that A has non-~zero entries
only in its lower (resp, upper) triangular portion if the vertical
dependency is restricted to the top (resp. bottdm). The diagonél
elements are always zeroes. The matrix B could be any matrix,

Having characterised the RVN 1in terms of the matrix A, the

.following result is now easy to prove ¢
Theorem 17

An mxn RVN 2-d CA whose global transition function T
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is given by T(X) = AX + XB, is inverijible iff the matrix B

is so,

Proof.

As we had mentioned previously, the matrix A 1s upper
or lower diagonal with all the diagonal entries being O's .,
Let p(A) and q{(A) be the characteristic polynomials of A
and B reépectively. Since A 1is an mxm <triangular matrix
with diagonal entries O, so the matrix A+ Al ~wlll be a
triangular matrix with all diagonal entries A, (Im is the mxm
identity matrix) and so det(A + kIm) will simply be the pr;duct
of the diagonal elements, Thus we have p(A) = A", Now according
to Theorem 11, T 1is invertible iff p(A) and q(A) are rela-
tively prime, i.e. 1iff A" and q(A) are relatively prime,
i.e. iff A and q(A) are relatively prime, i.e., iff A 1s not
a divisor of g(A), i.e., 1ff A =0 1is not a root of -q(A), i.e,
iff O is not an eigenvalue of B, i.e, 1ff B 1s invertible.

Hence the proof,

We now deduce one of the results related to cycle-lengths

of RVN CA obtained in ([24]).

Theorem 18

~For'an mxn invertible RVN CA characterlsed by
T(X) = AX + XB, the cycle-lengths will be divisors of f.c.m,(r,k)
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where k =

[Log,m]
2
. r
for which B~ = In .

Proof.

If X 1is any configuration,and we can show that

and ‘'r' 1is the least positive integer

chm(r'k)(x) = X, then we will have proved the theorem; We

have already shown in Theorem 17, that the characteristic

polynomial for A 1is ”X@'.‘By'CaY1ey;Hamilton theorem we

‘thus have, AP =0 .

log,.m
l— z_l we have,

Tk(X) = A%X + xB* . Now as'[Tbg2ﬁT 2 log,m, so we have

log.-.m
2f_ 2" >

2m 1i,e, Kk 2m . Since Am = O, therefore Ak

Now by Corollary l.l.,since k = 2

= 0.

S0, 'Tk(X) = XBk » It Can now be easily checked by 1induction

that T*(x) = xB** for any t > 0, Now if f = f.c.m.(r,

k),

we can find integers t; and t, such that [ =1t,r = t, k.
t. .k t .k - t,r t t |
Since T2(Xx)=xB2 ,s0 TH(x) =381 = x(&%) 1= X(I) * = X

The proof follows,
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Implementation and application aspects.

‘_—'—F————-——-————-———————-——-_—_____________

From the preceeding discussions, it is very clear that,
the height and cycle length of a CA, play a key role con-
cerning its behaviour, Unfortunatel?;'our theoretical know-
ledge about these two facts 1is very limited. Even far-alﬂule-wo
CA, which has such a simple local rule, and of'which Wolfram

([28]) has made so extensive a study, a general expression
regarding the cycle length is yet to be found, though its
asympiotic behaviour is :known, This was in ctase of a 1=d CA.
Analysis of 2-d CA features is yet more complicated. This
suggests that, deriving properties merely by intuition, is

not always feasible, One needs to have some concrete numerical
information at his disposal,as this could possibly throw light

upon some facts concerning the CA behaviour, which could subse-

quently be established.

So we simulated the following uniform CA's (eight in number)

on the computer, We describe them in brief.

(a) Type~I CA's (Results displayed in Table 1)

(i) o~e-p :
Local rule ! Add modulo 2, the values of all four
Nnearest orthqggnal neighbours (i.e. <Rule-90, Rule-90))
assuming periodic boundary conditions,

(ii) o-e-n ¢

Same as the previous case, but now with null

boundary conditions.
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(iii) o-i-p :

h

Local rule ;! Add modulo 2, the values at
all four nearest orthogonal neighbours, including
its own (i.e. <Rule-90, Rule-150>), assuming

periodlic boundary conditions;

(iv) 0=i-n ¢
Same a3 the previous CA, but now with null

boundary conditions,

(b) Type~-II CA's (Results displayed in Table 2)

(i) d=e-p
Local rule { Add modulo 2, the values of all four

nearest dlagonal neighbours, assuming periodic

boundary conditions,

(ii) d~e-n :
Same as the previous case, but now with null

“boundary con&itiﬁns;

(iii) d-i-p :
Local rule ! Add modulo 2, the values at all

four nearest diagonal neighbours, also including

its own, assuming periodic boundary conditions..

(iv) d-i-n :
Same as' the previous case, but now with null

boundary conditions.
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Generating Pseudo-random Sequences using Cellular Automata
e e e e &

Let us very briefly discuss the applicability of CA as,

possible pseudo-random number generators.

By far, one of the most popular random number generators

1s the linear congruential sequence ([15]), where the desired

Sequence of random numbers X » 1s obtained by setting

xn+l = (axn +¢)med m (n > 0),

where { 0 < a <m, ('a' is called the 'multiplier!?)
OLc<m ('c¢'is called the 'increment!')

and O 5_X0< m, ('Xb' is called the'starting value!'),.

The integers m,a,c,XO; are chosen in such a way that the

periodicity of the random sequence is large.

Apparéntly, this seems to bear no relation with CA, but

it was the genius of Wolfram to observe that the rule
Xie1 = (X, + ¢c)mod m 1is nothing but a l-d CA rule. Since
then he has made an extensive study of CA applications in

pseudo-random sequence generation ([29]).

We would like to use 2-d CA for generating such pseudo-
random sequences . Now, instead of generating a pseudo-random

sequence of numbers, we would like to generate a pseudo-random

Séquence of matrices. The CA which does it will be said to be a
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pseudo-random pattern generator., Use of 2-d CA for pseudo-

random pattern generation, has been studied eXtensively by

D. Roy Chowdhury et al. ([24]). Using'hzbrid'CA,(with null
boundary conditions ), the pseudo- random patterns obtained

by them, seemed to have passed most of the randomness tests,

as gilven in Knuth ([15]).

Ne tried the same, with some simple uniform 2-d CA's, with

both periodic and null boundary conditions, The CA's_ chosen

were the one's mentioned earlier, namely,o-e-p, O—e-n, o0-i-p;

0-i-n', d-e-p, d-e-n, d-i~-p, d-i-n $ with EOO as the seed.

The patterns were tested for randomness, Using some of
the tests like Equidistrlibuticn—test, Serial-test, Permutation-

test, etc. and in most cases, they failed to pass these tests,

This seems to suggesf that, in order to obtain good pseudo-
random patterns using 2-d CA's, one would have to use totally
hybrid CA's, rather than uniform CA's with to 0tal dependencies

(1.e. depending on each nearest neighbour),
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Conclusion

In our work, we characterised two-dimensional additive cellular

automata, using the functional forms T(X) = AX = XB, and T(X) AxB. A
great dea’l of emphasis was laid upon showing that, these functional forms
aré powerful teools, for deriving dmportant results. OQur claim s
Justified, as we were able to transiate many existing proofs, done using

other methods, into an equivalent proof, using our method. 'Mnng with

these, we also proved certain additional results by our method,

We hope that, this method will turn out to be an important tool in

the study of additive two-dimensional celiular automata.



Table 1

%

Dimen-— O=—e-=p O—€=nN O=-1i-p O=1-n

sion height cycle height cycle height cycle height cycle
(mxn) | length length length length
e R TS enerh ~ength
3x4 2 2 0 12 2 2 0 12
3x5 1 3 3 4 1 3 4 4
3x6 2 2 0 28 2" 2 0 28
3x7 1 7 8 1 1 7 0 8
3x8 4 4 0 28 4 4 4 28
3x9 1 7 3 12 1 7 0 12
3x10 1 6 0 124 1 6 0 124
3x1l 1 3l 4 8 1 3l 8 4
3x12 4 4 0 252 4 4 0 84
3x13 1 63 3 28 1 63 0 28
3x14 1 14 0 60 1 14 0 60
3x1s 1 15 16 1 1 15 0 16
4x4 2 1 2 2 0 2 2 2
4x5 2 6 0 12 0 6 0 12
4x6 2 2 0 126 2 2 0 126
4x7 2 14 0 24 0 14 0 24
4x8 4 1 0 126 0 4 0 126
4x9 2 14 4 12 2 14 4 12
4x10 2 6 0 682 0 6 0 682
4x11 2 62 o 24 0 62 0 24
4x12 2 4 0 126 4 2 0 126
4x13 2 126 0 252 0 42 0 252
4x14 2 14 2 30 0 14 2 30
4x15 2 30 0 48 2 30 0 48



Table 1 (Contd. )

Dimen- __O=®-P____ o-e-n iy otin
sion helght cycle  height cycle height cycle height cycle

(mxn) length length length length

5xH 1 3 4 4 1 3 4 4
 5x6 1 6 0 28 2 6 0 28
5x7 1 63 7 8 o 63 8 8
5x8 4 12 4 28 0 12 2 28
5X9 1 63 1 12 1 63 4 12
5x10 2 6 o 124 2 .6 o 124
5x1l 1 1023 8 8 0 1023 8 8
%x12 2 12 0O 232 4 12 0 252
5x13 1 63 1 28 0 63 4 28
5x14 1 126 4 60 0 126 2 60
5x1% 1 15 15 16 1 15 16 16
6x6 2 2 2 14 2 2 0 14
6x7 1 14 0 56 2 14 0O 56
6x8 4 4 0 14 4 4 2 14
6x9 2 14 - - 2 14 O 252
6x10 1 6 - - 2 6 - -
6x11 1 62 - - 2 62 0 56
6x12 4 4 o 126 4 4 0 126
6x13 1 126 4 28 2 126 0 28
6x14 1 14 ~ - 2 14 - _
6x15 2 30 - - 2 30 0 112



Table 1L (Contd.)

Dime N O=e=p 0O—e-N O=i-p Q=l-n

sion height cycle height cycle height cycle helght cycle
(mxn) length length length length
7x7 1 7 8 1 0 7 0 8
7x8 4 28 0 56 0 28 8 56
7x9 1 7 7 24 1 7 0 24
7x10 1 126 0O 248 0 126 0 248
7x1ll - - 8 8 - - 8 8
7x12 2 28 0 504 4 28 0 168
7x13 1 63 7 56 0 63 0 56
7x14 2 14 0 120 0 14 8 120
7x15 - - 16 1 - - 0 16




Table 2

cycle
length

d-i-p d-i-n
' helght cycle height
length length

d-e-n
height c¢ycle

length

d—e~p
height cycle

Dimen-
sion
(mxn)

3X4

3x5

3x6

3x7

3x8

3xX9

3x10

31

31

3x1ll

Ixl2

21

63

3x13

14

14

3x14

15

15

3x195

4x4

12
126

12

4x5

42

4x6

4x7

126

42

4x8

12
2046

12

4x 9

O

186

4x10

24

24

4x1ll

126

126

4x12
4x13

252

84

30

30

4x14

16

15

4x15



Table 2 (Contd. )

Di men- d-e=-p d-—e-n d-i-p G-1-n
sion height cycle height cycle height cycle height cycle
(mxn) length length length length
5x5 1 3 1 4 1 3 4 1
Bx6 1 6 1 28 O 6 O 28
5x7 ]l 21 7 1 O 63 O 8
5x8 4 1 1 28 0 4 4 28
5x9 1 21 1l 12 O 63 O 12
5x10 1 6 1 124 2 6 O 124
5x1L 1 93 3 8 0O 1023 8 4
5x12 2 12 1 252 0 12 0. 84
5x13 1 63 1 28 O 63 0 28
5xl4 1 42 1 60 O 126 4 60
5x15 1 15 15 1 1 15 0 16
6x6 1 2 O 14 2 1 O 14
6x7 1 14 7 1 O 14 O 8
6x8 4 1 O 14 0O 4 2 14
6x9 1 14 1 84 2 14 0 252
6x10 1 6 0 434 0 6 - -
6x11 1 62 3 56 0 62 0 56
6x12 2 4 O 126 4 2 O 126
6x13 1 126 1 28 O 42 O 28
6x14 1 14 0 210 O 14 - -
6x15 1 30 15 1 2 30 O 16



Table 2 (Contd, )

sion height cycle height cycle height cycle height cycle
(mxn) length length length length
—————————— R sehgEn
7X7 1 7 7 1 o 7 0 8
7x8 4 1 7 1 0 4 0 8
7x9 1 7 7 1 1 0 8
7x10 1 42 7 1 O 126 O 8
7x1ll 1 217 7 1 - - O 8
7x12 2 28 7 1 0 28 0 8
Txl3 1 63 7 1 O 63 O 8
7x1l4 1 14 7 1 O 14 O | 8
7x15 1 105 7 1 - - 0 8

The 1ist of abbreviations used is given in the next page.



breviations Used

O-e-p { Orthogonal, Excluding, Periodic.

Local rule ; Sum modulo 2 of four nearest orthogonal

neighbours, assuming periodic boundary conditions.

O-e-n , Orthogonal, Excluding, Null,

Local rule | Same as the previous case, only that the

boundary condition is null .

0-i-p | Orthogonal, Including, Periodiec,

Local rule | Sum modulo 2 of four nearest orthogonal

neighbours, including itself, assuming periodic boundary

conditions,

o-i-n . Orthogonal, Including, Null,

Local rulen: Same as the previous case, only that the

boundary condition is null,

d-e-p . Dliagonal, Excluding, Periodic

Local rule ! Sum modulo 2 of four nearest diagonal

neighbours, assuming periodic boundary conditions,

d-e~-n : Diagonal, Excluding, Null.

Local rule : Same as the previous case, only that the

boundary condition is null,



d-i-p ! Diagonal, Including, Periodic.

Local rule ! Sum modulo 2 of four nearest diagonal

neighbours, including itself, assuming periodic

boundary conditions.

d-1-n . Diagonal, Including, Null.

Local rule | Same as the previous case, only that the

boundary condition is null,

Note . The blank entries'in the above tables are due to
the fact that, the cycle lengths in these cases were

very large, so, the computations had to be abandoned,

and thus the reading was not available.

In all the cases we have taken EOO to be the
starting configuration. From Corollary 3.1, we know
that the cycle lengths of the CA's y O—e-p, O=-i-p,
d-e—p, d-i-p, are all maximum cycle l'c-:--ngths. We do
not know whether the cycle lengths in the fables of

0-e-n, 0-i-n, d-e-n, d-i-n, are the maximum cycle
lengths,
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