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,AQ__;ggst The statistiCal preblem*we are concerned with

is the-well knawn ciUstering prablem.viz. to partitian a
set of n objects into m.nonempty disjaint* subsets called
clusters, This clustering or grouping is 4done in such a
manner that within clusteré a gertain criterpm of homogene-
nity and between clusters a certain cfite:ion of heterogéne-

nity is maintained.
Though total eny n of all possible cluster-

ing necessarily outputs a global mptimum, for large n and. m

it is impossible to stick to this method. So, instead of total
enumeration, the dynamiéipragramming.methcd for getting opti=
mum clustering {s examined which shows'é considerable redqc—
tion in the number nf inhereht calculations., Later on we
develap a heuristic function to make use of the method called-
anﬂ!ﬂli mgmj.m method with reducing heura.stic. The heu=
| ristic is develaped in such a way that to solve the problem |
for small m.and n. the am@unt of calculation taken is almost
the same but for problems with larger dimensions (i.e. larger
I"m,and n) the reduction in intermediate calculation is

spactecularly well.,



The technique of partitiening n GbJQCts inte m nen-; _é
.empty subsets or clusters, cemmenly khewn in the literature |
as cluster analysts encompasses many situetiens in $Cien— :§

rtlfic end businese investigation. We etate the problemtfona-_

elly as fellewe. 

~ Let the set I= *;1,_.t;.i, Inf‘ deeote afsét,cf n
";individuele frem 2 cenceptuel pepuletzen “l' tt is tacitly

“tassumed that ‘there. exists a set ef features or characteris-

tiC 3 = (cl’.iillil’ C ! wthh are observable and ar‘ pﬁss-  §

o P’
feesed;by each 1nd1viduah in I. The term cebservable is used

cheee to. denete characterietics that yield both quentztative

.
..-.'l:.:lu.__'l"...l-'-h_- o o .

‘and qualitetive eeta, although we willhbaee mest of the folle.

ewing diecuseiens on euantitative data which we call measurefi

E,rp

ments. - ---,i!.w o B ; ,;t“e{};e
We denete the value ef the'measurement ef the i-th

tcharaeteristic of the ;ndiuiduel lj bY xij end let xj =
denete pxl veetpr of meaeuremente of o

R - L e T I 0. U TP T s - e I T

_'.:(le’ xzj' eeu-lx j)'
individuel 13 |

Hence fer the set ef individuels It there is eveileble;

| to the investigater a cerreSponding Set X = x1r Xg:i'--- xﬂ,j



e R L e
of_aﬂasurem@nt_vectersfwhien.inﬁnece:tezn;menne;‘&escrihes
the set I. ' '

Let m ‘and n be netural numberS'With m.lees then n.
The cluster problem.is te determine m clustere of individu-

els in I, say ﬂl’ “2’ cosny Ty such that I, belongs to

L

one and only one 3Ubsét and individuals in. the same cluster_'
are,_;milg; in certein.manner while 1nd1viduale frem diffe

erent clusters are

in certain manner. These being'

_-determined on the besis ef the obeerved set x.j

| .A solutien {0 the cluster preblem is. to partitien n '
individuels into m subsets 5atisfy1ng ste;-fj - |

on « This may be determined in ‘such’ a mdnnerise as to

refl@(;t - ‘the lﬁvel of -deeirabik itY Gf the various parti.tion- -
inge '

. "'Aﬁ'anVﬁxaﬁblef?sﬂppese'p*e l*ﬁﬁareeteristic.is me a=
”sured en ‘gach of n = 8§ individuals resulting in the set

x = 3, 4,‘7 4, 3 34,4 ~The. gitl}in Qreup Sum efff §quares or
WGSS is glven by 1

WaI (xi-— x)2 z xiz -,1 (E xi)2
oo A=l RERURTEY < i O 4=l

where x, 15 the méasusomont of e ;:rm. individual.



If we censtruct a. 51ngle .gToup., ef all. the 8 persens, the

8 | -2 § »)
WGSS becomes I =Xy 1(8)2= 140 - 123 12
AR T TP i s

1f, instead we partitien then in~3 greups viz. G, =

3,3,3 ;'G2 - 4,4,4,4 and G3 — 7 then the required WGSS

is W, + W, 4fW3]# 0'+'0'e'e'=fo, wheze W, is ‘the sum of
squares for Gy« The optimal value, in this examplc is O, if
one desires three groups. In general oné must consider both,
“the values of the~ebjective+funﬂtion~a$-W9ll.a§.39! of clus=
ters de51red.
By this time, it sheuld be clear that te tackle this sort
ef clustering problem, one sheuld clearly define the term s

similarities and difference in a quantitatlve fashlen.,lt is

1mpertant te nete here that each. individual fremLP can be

L though as a peint in the p-dimensional plane, E .

Djistance Fgggtign§ ﬂ

r;Deﬁinitigg;1A hen#negetivereal-valued function~d"(xi, XJ)
.is said 1o be a distance function (metric) if

y

(i) d (xi' X ) > o fer 211 xi and xj in E.p



Pt '
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(111) d (x y X ) ='d (x Xy énd
( iv) § (xi, xj) ( d (xi,'xk) + d (x ,.x )
‘Where xi; xj¢ X, are anY three vectors in Ep, The value of |
d (xl, X ) for Specified xi and xJ is said to be the distance
- between Ii and_Ij'wlth reSpect to the selected characteristcs
¢ = (ci,.,i;.., cp)T}_ Same.p@pular distancé*fgnctibns are
.given below,
Name = o - Form - | |

_ - 2,73

1. Ewclidean . d (xi’ xy) = [kfl(“ki *3)"]
e g = G ngl

3 Sup=-norm - d (X X4) = sup IX - ijl
ot o o 173 lﬂkSp ki

1os notm - g xox o r By ip /e

4. 1py norm - d (x,x ) =[ZI ! x . = x 4P ]

~ ’ . . <IN R k=1 ki kJ
5.2Mahalanabis o EDJ-(xi,xj) = (xi,&j)' W (x, xj)_
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Among the abeve distance funqmians, the Euclidean'~

j metric is peseibly the moet pepular end very cemmenly uses
f

_ene. Unless eteted te the centrery} we will st;ck te this

ahfunctien in subsequent discussien.ﬁf:.

Clu! _-"e i b - C i" t.e .-j u cation

The principle is etralght ferwerd. First the all
 "pess1b1e way ef partitionlng n- objects inte m clusters ere
| determlned. All peseible such partitlenlng is glven by the

Stlrllng S. number ef eeeend kind vxz.j

B .
S(n, m=1 2% (1) ™K(m ) K
. m k=0 .k

‘where s (n, m) denetee the tetal number ef eueh pertltlens.

»

Then we consider thet clustering alternative Wthh gives

'_t'he; \iiup WGSS

Suepeee there are’ fk ind1v1duele 1n the cluster Gk

. ef a given alternat*ve fer partitiong n Gntiti@s 1nt0 m

clusters. In subeequent diecuseien* 31 will be essumed that

W= E T(g )
| kwl

is the-criterien measure ef’eluetering hemegeneity,"where

K

'ciueterik.'



Thoughhthe undorlying'prinCiple'loeke-eimple enough,
in most cases; total enumeration of all feaSible clusteriqg
alternative for the optimal eolution is out of thc question,
even wzth the 1argest as well as fastest electronic C Olfw
- puters at hand. Interestingly, the 6ifficulty is usually
ohe of computing speed, rather than rapid aocess storage.,
1The-number of feasibleJclustering aiternative,is_astrono-

mical for even moderate m and n.

As for example, for n =.25, m = 10

S (25, 10) = 1,203, 163, 392:175 387;500

This inefficiency of total enumeration has led the
evolution of several other practicable clustering methods
wnich areicomputationally more efficient.-But unlike total
enumeration method, they merely search for the best solu-

tion.among;a small subset of clustering alternatives,

The dynamic programming algorithm (enunciated Sub=
sequently) ensures convergence to the‘g;ggg11gg§im§1 S$0luU=
. tion using W minimization criterion, without having to

‘enumérate all cluetering alternatives.
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l Stand paint the algorlthm cli=
1mplicit in “the total'

From.a computatlona

mlnates many reduntant computatians

enumeratlon methed

Inefficioency Dy ic Programping

Though it eiiminéteSZreduntant'calculatiena consi-
. w¥le$ _ .
additional rapid

ﬁwderably, unfortunately it also Tequi-

L total enumerafien e m
access ‘storage and like methods, may not be practlcal in

very large-problemsibecause of=addeq seapph;time in auxi.e
lary storége._

| 'HOwe#er”for problems for certaln dimenslons, the
| dYnamic:pragfémﬁinQ m@thod suggested here may be practical

.. and yield Sub§tantial_¢0mﬁuter'53Vings*ggl;



The_recuisive"formula“fai'ihéfdyﬁEMic programming

formulation may be written as o | B : |
. o for k 'ﬂ";- '," : i--(*g
( G )

miny[ T (G— y) +-w l(y) ] for ksl,

.III, m

m. = number of dlsjolnt and non—empty subsets 1nto which n

entities arc to be partitiened

.k.= index of stage variéble”'

m§=:ﬁifn>2mandn-mifn<2m'

'G = state variable representing a given set of entities at'

stage k

y_#'state variable representing a giwéh_set of'éntities at

stage k « 1

G=y = set of all elements in G which'are not in Yo

(G_Y) I dij 2, where n. is the number of entities
. nk i(J | . k -
| " (G-Y)
in G=y,

| . | - | |
Values of Wk (G) as defined in (*) represent the minimum

W criterion value for the optimum way to partition entities
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centa;nedﬁin?Qiihfe;k:neh-?mpty_andimutually cxclusive

subsete;.

To

All the S(n, m) clusterlng alternatlves can he classl—
fied according to varlous distrlbution ferms ef m clusters.
e:Por example, for n = 4, 2, the dlstrlbutien forms are

3 , 1 and 5 y 2 Distributlen forms essentially
stands for the sjize of the clusters. In the example above,
~the clusters cerre3pend1ng to the dlstrlbutlen ferm 3 1

:ere_glven by.

(1, 2, 3), (4)
(1, 2, 4), (3)
(1, 3, 4), (2)
(2, 3, 4), (1) |
For- comtatlonal convenlence, the distributlen ferms'are '
.written in descendlng erder. The number ef distrlbutlon

ferms, in general is substanhiully smaller than the nuMber

of clueters 1tself.

The clustering alternatlves ere first classifled

according te their-dist;ibutien forms.ﬁ

At the first stage, the ebjectlve ‘function for each‘

~clusteracerre$pending to the first distribution form com-
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objective function for the cluaters correspondlng to
the flrst 2 companents of the dlstrlbutlon forms is eva-
luated u31ng all information from the first stage, i.e.

the WGSS is net recomputed for any cluster but cgrr;gd
; from the first stage.':

We will §ubseqUent1y work out a numerical cxample

after develoving relevant theories.

Theory:

r

The maximum number of entities max (k), at. stage
k is equal to the maximum sum of the distribution form

components from stage 1 to stage k inclusively;

v’ max (k) =n = m+ k

similarly, if n is an even multiple of m, we have min (k)

= k.[a].

othérwise, when n is not a even'multiplé m,ﬁ
" ([pJ+)k . for1¢k&n-m[p]
. m . . in
min (k) = n - (m=k)[gMorn~mlp ] <k <m
| | . m . -m —

where [,g'] denotes the integer part of,ﬁ .
m . m
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At stage k of the dynamlc programlng prochss, the

Jﬁnumber of states that can be formulated is

l for k o (one dummy state i's " assumed to exist)

E (n) fOI‘k = 1’ ooy mG
_1__=min(k) 1
'+ Betwcen successive stages, states are ConneCted oY

arcs. As a necessary condition, fecasible arcs cannot exist

between a state in stage k and fhéféinfété§é3k+l:1fﬁihe

““former 1§ not the subset of the later,

. ' o --LE .

' Lét TFA denote the total number of feasible arcs in

the entire network, where-

'm - 1

“TFA = N5 (1) + T TA (k)
0
ff*The£e are NS(1) arcs Connectlng the dummy origln wlth the

“The value TA (k), rEpresentlng the total number of

'feasible arcs between stage k and stage k + 1, is glven for

k = l, se e m bY
max(k) max (k+1) =-min (ka-t-l)

Th (k) = I z FA (1,3)
-min(k) J=L g R b e T
(T) (n-l),rif mln(k+l)< l+j S max (k+1)
where FA (l J) O othgrwise



note that m_, as defined earlicr is the final stage of the
'dynamic:pregramming_preblem. mb = ceuld'elwaye be,pessible.

However in simpler problems where n < 2m, there must always
be n - m clusters with more than one entity. For the remain~-
ing single-entity clustcrs, the WGSS is vepo which does not

contribute effectively to the tetel clustering sum of squares,
Reduced Network thmgigtiggt

Although the'dynamic prog:emming_fermulation given
. can be recursively applied to a network of TFA feasible
arcs, that must be evaluated because various symmetries

create redundancies,

We now indicate how redundant fea51ble arcs c¢an be
~ted

eliming=- quite simply, Let NAT represent the number of arcs

remaining aftei such elimination i.e. NAT should be viewed

as the maximum number of feasible arcs required to solve

the problem }e For our purposes, let NAT =

m, = 1

NS (1) + T NA (k)
K=0 :

&

‘The value NA (x), representing the number ef arcs

between stage k and stage k + 1, is glven by

) f
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. - .-a_“_

max(k) I '.max(kdl) - min{k+1)

NA (lc) D R L3 TR A(l., 3)
. l = mn(k) j-— x 1_..._

e (n) (n1) if 14 34'
where A-(laé)' - 4 (n) fn—l) 1f 1= J

ﬂif

and; min (k +1) < 1 + j
_ and ¢ max (k + l),
(mvk) 3 1 > n

We proceed by way of illustration. Suppose N = 7 entis
.;gtles are to be partitioned into M &« 3 cilysters, There are 4

possible dlstrlbution forms’ as given Rolows H

ﬂw§~- 1 )
S 2 .
33 -ﬂ;r?.

:3 . .

In this case N = 7 >-24Mh= 6 S0 M, = M= 3.
pgmax,(l)ﬁ;,5 - max (2) max (3) = 7.
. min (1) =3 min (2) o 5, 'miﬂ:ﬁalg_=

-
Il PR

él NS (2)
602, TA (2)
427, NA (2)

st (1)
TA (1)
NA (1)

=28,
28

., -
) . l -
.

!l
l!

il
i
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Because there are 7 entlties tc be group(d by. taking

3, 4, 5 at a tlme, the total number of states in stage 1

is (( 7 )+ (7)) + ( 7 )
3 4 5

Angd for k

I}

1, we have the following feasible arcs:

FA (3, 1)

"1'.

O:- FA (3: 2) —] 0‘7;);;(4l)
| 3 2

( 7)) ( 4) = 140 FA (4,1)
3 3 .

210

FA (3, 3)

(7)) (4) =105
-4 1
Fad4,3) = 0, FA (5,1) = (7 ) (2 ) =42 etc.etc.

. | 5 1 . o

AS an improvement an& fastér method, the heuristic

dynamic programming search is*inttoduced below,

Heuristic Search

In order to solve many shaxd problems efflclantly,
often it is necessary ggpromlse the requirements of mobility
and systemicity and to constructhacontrel structure that is
no longer guaranteed to find the best answer but thét will ale~
most always find a very good solution. A heuristicfis a téch-
nique that improves the_efficienéy_of é:séarch_prﬁcess,pbssibly
by sacrificiﬁghhe' claims;éf completeness. Usin& ﬁéuiistids, we -
can hope to get good (even if non—optimal)_solutions to hard '
prabléms, such as. travellinglsalesman;'in less than exponen=

tial. time.
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When we were talki,m about stage-wn.se selutlon of the N

'*’f:clusterlng method with most emPhaSlse on: arcs fr@” one lQVEl

V#?we%olu

to that immedlately hlgher, we can,:as well. ‘have [/~

tlan method, that of a,g_ggg SL&ICD, the ggg S of the graph
belng the states of the dlfferent stages and grcs are that

betiween successive stages.

;.W'- That o1, h=SGATC come ynomic progrsmming r3thod
necessarlly converge to the glggﬁl;x ptlmal solutlon. Now
to 1mprove that method, we propose the 1ntroduct10n of
heuristic functione ' "

The set up is as follows,

Let the engU§;;gg fynct;gg f(n) at any node n esti=

mates the sum of the cost of the mlnlmal cost path from the
start noda s to node n«glg_‘the cost af a minlmal cost path
from node n to h (1n this SPGC1flc set up, tg the) goal node .

- i.e;;f(n) g (n) + h (n)
where ” | o
' Celtuléted,

1f

(n) is the flrst cost component which 1s":
where as h(n) 15 an Qst;mgte of the 2nd cost compontnt.
h*(n) is the actual value of the Z-nd cost compcnent then we

call hin) is an heurmst;g functlon corfESponding to h*(n).
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Result: If h(n) ( h*(n) for all nodes n, then thls

heuristic dynamlc prOQrammlng search (supposod to be
d-hoc).guarantaes the :onvergence to the g;obg;]x optimal
Solutlon. Basﬂxyon the above result ‘we choose our heuristic

to explQit and guarantee the above criterion of OptlmalltY-

Speclflcally, h is choosen asfollows,

-

If n is a node in k-~th stage then

h(n) = min T(m), minimun being taken cver all nodes m
; in stage (k+1) s.t. there isan arc. between n and m,

Where, we should recall, for a node (set) gé Stdge k,

T(g,) = I d,.2

KD 343 13

It is sufficient to provefthéf.h:is'a reducing heuristic
i.ce h € h*, - '

P+ The optimal path from no&e n (at stagé k) to the.gqal
node must pass along one .of the arcs from n to the immedia-
tely next stage'ndde m (sa?) $ince'we,éte choosing.minimum,
cﬁst . =‘aﬁong'these arcs éﬁd therc will always be (ét least)
'nog-geggtivé cost combbnent froﬁanode m to the Qoal node,

‘we will always have h(n) < h*(n) for all n. So, by thg

result stated earliur, we Wlll indced Converge to th :

global.optzmal.sglution by thls_hpurlstic function.



gh numerical examples hew the

nt hauriatic imprauament

‘We will now see throu

dynamic programming and its subseque

-_Finda ‘an nptimal snlution in an wnrkable fashicn.

,Let_n 5y M= Do Let the alements tn bs clustered

1 20, d 5 The arpsland the associated redundant

be names'as'
arcs are exhibited latere. .
Here n. 2m.so m_ = n=m= 2" |
max (1) = 5-3+1 = 3, max (2) = 8=3+2 = 4

min (1) = ( 3. + 1)e1 =2y min(2) = (% )~2#'¢

W0y = 1, MS(D) = 5) + @ 20, NS(2) = (3) =

NU- of arcs f‘rnm staga' D to stage 1 = NS(l).;-LZU

Nn. of arcs from stage 1 to sfaéé 2giaw9..~--

;-'.T'Pt ,(2,;2)"'-‘r%r (2.) (2) - 15 and " (3’1) = (2) (2) = 20

ieve tutal NA (1) = 20 + 15 = 35

tutal nOe of arns in tha networkm is

...._...

given by 35+20 =

.||-I-l-¢l- e

Lat p=2 oT 2 chpracterigg}cs of. the ogggrggy;ﬂn is
| N\

( l 3 5 .4 5 )
| ( 1 .4 5 d 2 )



dy, 132-5 32, -ﬂ.d__mz , .;3’. | “’-152 =1,

d232 = G _ d é.; 1. d -2.=:9 4.2 = 2. d. 92 = 25
S T L s T * T35 '

-dds'z = 13 ~‘

Now we compute the rselevant transition costs as

showh' in tabls | le.

Stage o W* (0) = 0
Stage l. In tabla 11,
Stage 2. In %ab;a III.

At stage 2, tharprccasa!is terminated. At phia |
point, the minimum W* (g) 'value is found to be 1 correspon=

ding to the optim&lnﬁlustariﬁglpplicy5nf*{l,5), (2,4) and (3)

Cdmmggtg In_a uéry smaii prnblém as thiéi dynamic programe-
ming'(withiar'without'heuriatic) is no more efficient than
total anumeratiuny But as the problem increases in dimension
for larger valuesg of m_and1n, it will bé cleaperttﬁatltheaa

2 methods SUanstad-hefé are far strongers

TABLE I
T;gngitigg 80535;-

T()=0  T(L2) = ) 41,2 = 655

EN o

T (2) = 2 “'T_(l,S) =

Mol
0.

132 = 16e0



T(3) =0 _ LT(l,d)”” -% dlzq +9e0

i) = T3 =l e a2

F.T(2r4)'*}

I
M-
o
N

i

O

v

T(2,5) =3

(N) Wy
a
N
il
&
»
O

7(3,4) - e

N
o
N
i

ohs

B
N
o

T (1,2,3)

r(1,2,4) € ,.fci,j,'zf2 * 0,2 % d),2) = 10467
| T(X, 2,5 ) |

T (33,8) - 2 + ﬂmz + 9, 2) = 17.33

T(1i3!5)7

T(1,4,5) =l (d 2+d 2+ d_2) = 10467
it RV - ( TR 1527 e ) '



.= 20 =

T (2,3,4) = 1

-

T (21355)
| ( d23

T (2,4,5) - ; B

T (3:4;5) =

B R L
-\ d.,2 *+gs T
3f(~ 23 id%ﬁ2 * d342 )

k, 7 :

2467

2 ""'252 Y dig2) = 3267

[ Te33

d 2 + A + o
% ( = d352 ddE 2) 13 '33

TRBLE IT

]ualues FD&;Stagg 1

- 1
, .
. \ .
I '
I
1
-
-
| ) "= .- .
. x
r
i

Wyt (1'293)
”1’.(1;2-45
W,® (1,2;5)
Wy* (1,3,4)
' ”1*,(1'3'5)
Wy* (1,4,5)
;W1* (2.3,4)

Wt (2,3,5)

wl*'(214t5);

Wt (3,4,5)

LT 1667
- w0.67
s 7.3

s
;“*=Tis.00_
£4-= 10.67.
= 2,67
=26
= 7433

.“.._ 1?13 33
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TABLE III ;

Values for Stage 2

W,* (1,2,3,4) = min T (4), + W,* (1,2,3),  T(3) +

W, (1,2,8), T (2) + W * (1,3,4), T (1) +W* (2,3,4),
T(2,3) + W® (1,4), T (2,8) + W% (1,3), T (3,0) +
.Ni* (1,2) =T (1) + Wli;(l,3,¢) ; 2'57 -

,(1,2,3), T(3) 0 (L,2,5),

T (2) + wl* (1'3_'5)’- T (1) + w-i* (2,3,5)s T (1,3) + wl* (2,5),

WZ* (1,2,3,5) = min T (5) + W

T (2,3) W *

T (2,3) + W,* (1,5), 7 (3,5) + W * (1,2) 1

(1,5) = 3.00

N’Z* (1_’2’4’5) = min T (5) +.w1* ('l,Z,ﬁ)r T (4) ¥ w]_*
(1,2,5), T (2) + W,* (1,4,5), T (1) + wW,* (2,4,5), T (1,2)
”1' (4,5), T (2,4) + wl* (1,5), T (2,5) + Wl*-(l,d)

= 1 (2,4) + Wi* (1,5).= 1 .00

wz* (1,3,ﬁ,'5) = m:ln_. T (5) I-l- wl* (l’B,ﬁ)-' T (d) + Nl-l
(1,3,5), T (3) + W ® (1,4,5), T (1) +W* (3,4,5), T (1,4)
FY (3,5), T (4,5) F Wt (1,3), T (L,5) ¢ Wy (5,0)

= T (1:5) M w']:* (3,&) = 1.50



w » (2 3,4, 5) - hin (5).+ W, (z j 4y, T(8)
w*(235).T(2)+N*(345)s,7(3)*w*(245):
(3 4) + W ' (2 5), T (3 5) + W * (2, 4), (4, 5)

'!'.:.

".';:wlf -(‘213) (5) * w . (2 3 4) = 2‘67

Now thsfaboua calculatiahs rawéﬁl"that minimum is attéined

{in table III) fis W,* 61;2.4;!)f;.T-(2;4);+ Wi® (1,5)
= J.IUD

‘Hence the optimum clustering is 1,5 2, 4

and . Se

I and Il of

?'I T l:'

Wa wﬁuld aften rsfar to tha tableu

A

dynamic prngramming snlutlun-
(n) = O (tha actual cnst)

Fﬂr the start ncds,

By tha heuristic msthﬂd descrlbed earller, h (start nnde)

= min nuar‘all'atataa'From.stage-i which is=(l 5 ) or

(2 4) because for both of them h (n) =T (n) = 0,50

(note nodes are statas or set of clustering alternatiuas)--

We braak the ties arbitrarily*i-e- spy in faunur of (1 5)

Again from. table I h (1,5) = 05 whers as



I‘- 24 -

g (1,5) = P () =08  (refers to dummy first

: stage single setjelément);

1 -‘
-

:'- - ' F 3(11'51 = 9; -(115_? * h ,(.1,5 ) = 05 +U'5 = 1.00

F

L

_i-e-'this is the Dptimum cluhtﬂring_éltarhatiue for

hEUristic-ssagch method i.e. 1,5 ,' ?;:4 and 3.
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