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SUMMARY. This papee in divided into tireo metions.  Siction 1§ deuls with Mamay's thoorom
ltself and gives certuin nedditional nrguments which apprar to mo to bo Recessnry for & romploto proof
thervof. In Seclivn 2 is given the main rwult of thix paper, extending Mamay's theorm in & comprehene
sive form to 1ho eao whers tho finiclions concemed have wros in the domain of u\nlynrlly s«lmn 3
denls with nn applicotion of tho feed) thoonm and Ll a ' Uk
theorem' for tho composition of a binomind and a Pvimun law having tho eamo maximum apan. An
announcement by R. Cuppene (1963) contains a atutement of part of Theorem | of tho pre-ent paper
(namely, thal evety fy s andytio in D, in the cnse whero D b & cincdo around tho origin}. Cuppone
apponls 1o & (heorem arsiounced by I. G. Laha (Bull. Amer. Muth. Sos, Vol. 67, 1901, pp. M5—149)

of shaalulet; ic functivne, whilo our aproach mnkoes direct we of

proportios of chansctoritic functions as in Mamay (1960).

1. COMPLETION OF TME PROOF OF MAMAY'S THEOREM

Let f, 5=1,2,... bo o seq of ol Loristio funotions (e.f) of ono-
diwmensional probability distribution funotions (d.f.), and lot {x}} bo a soquence of posi-
tive constants bounded below by 8 positive constant. Throughout what follows,
let D denoto either {t] < Ror |[Imt| < R. Alio, for convenionco, we shall morely
writo X or # to denote an infinite sum or product respectivoly, and specify the range of
the index only in the case of finite sums and producta.  Suppuse f iz analytie and non-
vonishing in D and that there oxists n resl neighbourhood of £ = 0 in whioh every
Jy is non-vanishing and in which the rolation

2% ) = ) e (LD

bolds. (By tho logarithm of a o.f. In any neighbourhood of the erigin in which the
c.f. doos not vanish, we shall always mean that branch defined by continuity snd by

tho condition that it vanishes at tho origin. f;‘ (1) shall bo taken to mean

exp (3 In f; (1)) Setting @y (1) =J; (N fy (=) and g(0) = f() f{—1), Mamay (1960)
has proved that (a) every ¢, is analytio and non-vanishing in D, and (b) the relation

gl () =) v (12)

bolds thore. From (s) and a thoorem duo to D. A. Raikov (seo, for instanco, Lukaos,
1060, p. 173}, it follows that overy f) is also analytic and (s0) non-vanishing in D,
sinco g,(1) is tho produoct of tho o.f.'s £(?) and f(—1). In Mamay (1960), it is nssorted
that it then follows {preswmnbly without any further argument being needed) that
(1.1) is valid lhronghout D. I havo not boon nhlo to convinco mysulf that this assor-
tion is nn i li of the foregoing facty, but have, howover, boon
ablo to supply tho following pruuf (Incidentally, 1L in of intorost to note that, while

SVart of thin work was duno whilo the nuthor was smupported by the Council of Sciontiils and
Induntrinl Rewenreh, Govornmmt of ludin undor tho *Beientifle Pool' Schwime.  Their support 1 geatefully
acknowlodgwl hero.
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the validity of relation (1.2) is suffici takon in oonj ion with tho Lévy-Cramér
theoreis on tho Normal lnw, to establish that, if £ is & normal o.f., so ia evory f;, the
validity of relation (1.1) appears to bo indirp blo for the di jion of tho caso
where f is a Puisson o.f. : vido Ramnachandran (1061).)
Fort =iy, 0 < y < R, (1.2) can bo writton in tho form

Xy [(1y) In £y (i) +(1/y) In £ (—iy)] = (1/y) In G(iy)- e (13)
Sinco both /() and f{—1) aro o.f’s analytio in D, it follows that the functions
(1y) In £ (£iy) aro both non-lecreasing funotions of y in 0<y <R (cf
Ramachandran, 1064, pp. 13-16). It thon fullows from (1.3) that, for 0 < ¢’ <y <R
and for all pouitive integers N,

/g:,a;l(lly) T fy ()= (1) Inf 6

is & scries of non-negativo terms with sum less than or equal to
(1/y) In gliy)— (1)y’) In Qiy’).

Lotting ' tend to zero from above in this inequality, we obtain

€ o) 10/5) 0 £y G911 < (419) In i)

=
or £y linf b+ 1 < 1n 80,

where 4, Is the first moment of the d.f. corresponding to the o.f. f; (note that, f; boing
analytio, nll the moments exist fur overy une of theso d.f.'s). o note that every
term of tho series on the loft in the above inequality is non-nogative.

A esimilar argumont yiolds the dual rolation

x
Jaflnf; (—iy) = y) < In Gliy)
valid for all positivo integors ¥ for 0 < y < R. Hoero again, ovory torm of the sories
on tho left is non-negative.
It follows that the sequence

oxp {Iga, [tn £, ()—ipy l]} - l'i [f; (¢) exp [ o (14)

of functions analytio in D is, for every 0 <r <R, bounded uniformly by
Dax Bliy) = lir) for all ¥ and for all £ in |¢] <r or in|Im {] <r respoctively

sccording as D donotes |¢} < R or | Im #| < R. Also, for every =iy with —R<y <R,
ftisa | ing s0q and quontly has a limit (which ia finite). Honce,
by Vitali's theorom (sco, for instance, Titchmarsh (1930), p. 183), tho soquence (1.4)
haa & limit funotion gin D which ix analytio thore. Sinco g{0) = 1, thore exiits A
neighbourhood of the originin tho 2-plans in whioh g isnon-vanishing, and consequontly
tho series ., [In f{t) —ipd] converges (indeed, roprosonts an analytio funotion, namoly,
In g(n)) thero. Sinco ¥ a, In fj(1) itsell converges in a (real) neighbourhoud of ¢ = 0 Ly
virtue of vur basio assumnption, it follows (on cunsidering any point # 0 comimon to
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both neighbourhools) that Xy converges and quently ﬂf;l (1) rop in
D an analytio function, which, by unalytic continnation, oan only be /. Honco (1.1)
holds thronghout D, as desired to provo.

2, EXTENSION OF MAMAY'S THEOREM WUERE THE PUNCTIONS CONOERNED
IAVE ZEROS IN THE DOMAIN D

Wo shall now catablish tho following oxiension of Mamay's thoorem.

Theorem 1: Let f;,j = 1,2, ..., be c.f.’s, and let {2} be a sequence of posilive
conslants bounded below by a positive constant. Let f be analytic in D and the relation
(1.1) hold in some real neighbourhood of { = 0. Then, cvery f; is analytic in D, non-
canishing at every point of D where [ is and relation (1.1) holds at all such pointe.

Proof :  Woe shall sy that & ¢-domain containod in D has the proporty P)
if the ¢; and ¢ are analytic and non-vanishing there and relation (1.2) holds thero.

Firet, we shall consider the case where D is the circle [1] < R.

Hero again, lot us first examino the cass whero ¢ dooa not vanish on the ima-
ginary axis in D. Let € >0 be arbitrary but fixed. Then ¢ has only o finito number of
zeros in || < R—¢, and, by our assuraption, nono of thom lios on tho imaginary axis,
Henco thoro exists an A = A(e) > 0 suoh that {|¢| < B—¢,| Ro t] <2h} ia fres of the
zoros of ¢, Then, by Mamay’s thoorom, |¢] <2k has the proporty (P); the Fourior-
transform rop is valid for every ¢; in [Im ¢[ <2k, since it is ana-
Iytic thero; and consequontly, the functions g (u)=g, (ih+u)/g; (ih) are o.f.'s rolated
to tho function Y(u) = @(ih+u)/@(iA) according to

Qiall

nyz;l(u) = Plu) . 20)

valid for|«| < b, u real. Thon Mamay's theorom shows that overy y; is analytic and
non-vanishing in |u|l < min(2h, R—¢~h) and (2.1) holds thero, and henco that
|t—ik| < min (2b, R—¢—h) has tho property (P). o mny procced in this manner,
‘shifting tho origin' by stops of A upwards nlong the imaginary axis as far as necessary,
concluding that all the circles |(—ikh| < 2A for 0 < k < n—1and tho cixcle|{—inA|
< R—g—nh have tho property (P), where n+1 is the largest integer not excecding
(R—e)fh. Iience none of tho ¢, hna a singularity on tho upper imaginary axis in
|[{]< R—¢. Since € > 0 ia arbitrary, this sssertion is truo of the upper imaginary
nxis [n[¢] <R itself. But, from tho theory of analytic o.f.'s, wo know that the singu-
laritics nearest to the origin of any of the ¢,'s (which are symmetrio o.f.'s) st lio
(symmotrically about the origin) on the imaginary axis. Honco overy ¢, is analytic
in |¢{] < R — in the caso whero ¢ does not vanish on tho imaginary axis in [{| < R.
Wo now disposo of the possibility that ¢ oan vanish on tho imaginary axis
in|t|] <R. Supposo ¢ docs, and lot 4 ir bo tho zoros noarest to tho origin so that
r < R. Thon, our above analysis applics in|¢] < r, and so (1.2) holds at all points
iy with 0 <y <r. Since ¢ is & symmoirio o.f, analylio in [¢| <r, overy giy)
is o non-decroasing function of y in (0, r) and henoo tho samo is truo of ¢{iy) in that
308
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interval.  This implies, by virtuo of tho continuity of ¢, that ¢ir) # 0, contrary to
our assumption.  Henee @ cannot vanish on tho imaginary axia in|¢| < R, the earlior
analysis applics, and so every ¢, is analytio in|¢] < R. It then follows from Raikov's
theorem thnt o is overy fj.

Remark: Wo noto that it has been incidentally proved that every point on
the imaginary axis In |¢| <R has a neighbourhood with property (P),and that in parti-
eular (1.2) is valid at all points on tho imaginary axis in|¢| < R.

Wa turn to a proof of the socond assertion of the theorem. Lot € > 0 bo arbi-
trary. Then fhas only a finite number of zeros in}¢| <R—e. Let h = h(¢) bo such that
the minimum of tho absolute values of tho imnginary parts ofthose zerosin|(| <R—¢
which are not real iy 2h; obviously & > 0. Considering the o.f’s f{iA+u)/f;(ik), and
the funotion f{ih+u)/f(ih) which Is analytic and non-vanishing in {|iA+u| < R—¢,
| Tm | <A}, it ia easy to sco that, as a consquonco of (the argument loading to) Mamay's
theorom, relation (1.1} holds in tho domain {|{| < R—¢, 0< Im? < 24}, Similarly,
considering tho a.f.'s f(—ih+u)/f(—ih), and the funotion f(—ik+u)/f(—ik) which is
analytio and non-vanishing in {|—ih+u| < R—¢, |Im u| < k), wo sco that (L.1)
holds in the domain {|¢] < R—5, —2h < Im¢ < 0} as well, so that (1.2) holds in
the domain {0 < Im ¢ < 24, [¢| < R—s¢).

Let now a be any point on tho real lino in [¢] < R—s al which f dves not vanish.
Since ¢{t) = |/(t)|* on the real axis, ¢{a) 7 0 also. Henco there exists a circular
ncighbourhood of & of radius 28, where 8 = 8(a) > 0, in which ¢ docs not vanish.
Choose and fix a y bolonging to {0, &), and let z = a+iy. Then (1.2) holds for ¢t = z
by what we have just proved, and for ¢ = iy+£ for all £ with| | sufficiontly small,
by the ‘Remark’ mado carlier. Hence, setting v (1) = ¢ (i) and v{f) = ¢(it), we havo
for all §, with |E| sufficiently small,

7 +8) = tly+8.

Let p bo a pasitive integer such that 4 = pa; > 1 for allj. (Such a p exists since the
a; have been assumed to Le bounded below by a positive number.) Henco we have,
for any positive integer n,

¥ (48 = o 5.

The power-scries oxpansion for vy about the origin has all its odd cocflicients zoro
and even coeffici real and gative; hence the derivatives of g at y (which
may be obtained by successive termwiso differentiations of the power-serics) aro all
non-negative. Thereforo, if wo raiso both eides of tho last relation above to tho
g-th power, differentiato g timea with respeet to &, sot § = 0, and omit in tho resulting
expression on tho left all the terms involving derivatives of orders less than g, we
obtain, sinco all the omitted terms aro non-negntivo (o.f. Mamay, 1960, p. 95),

Snaf, 160 Gy ) [0 ()] <52 w'o/+£)l

1=0
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Dividing through by m| é:'"' (@) | = | D) |,
and noting that
ﬂv:q’. (y)]/[ v{y) { ” 4:". (2) ”]
= I AED™ w1 46D ™ 181 > 1461
since, for all k|2 < vy, and 1 g ufy),
we have

Sna P W] @17 < g5 (™ Y1461 1o

= [g!/2ni] $()| "1 - m{‘ [ (y+ 8)/E+) 48,
by Cauchy’s integral formula,
< g1 {AUm)Prd,
whers 3 = max[ [¢(f)]: |[!|  R—¢] and m = min[|}N)] : [i—a] < 8> 0.
Henoo wo have for all j and n,
180 6] =4 (1) < g1 (U™ 8 |g) ()]~ e (22)
We now noto tho following ensily-proved facts (recalling that z = a+iy):
@ gf* @] < 1¢f# (iy)]
(i) 2]gP00) < 16§ ()| 190D (i)
(i) 165 @1 < ¢ (i) 195 6

and (iv) 1< ¢ (iy) < ¢ (i) S [$ig))Vaod C M thas,

whero a, is any positive lower bound to the a;. Using relation (2.2) for n = 2 together
with (ili) and (iv)to estimats |@; ()], and relation (2.2) for n = 1 together with (i)and
(id) to estimato the derivatives of all higher ordera ab z of tho g, we sco that thero oxists
an r > 0 depending only on ), m and &, such that for |u| <r,

I4ta-gl =1 £ wgpm |<I ¢ el

80 that &,(z+u) cannot vanish for [u| <r. Since r is indepondont of y in (0, 8), it
follows that ¢;(a) 3 0 and oonsequently f; (a) # 0. Henco overy f; is non-zero at
every point of the real axis in |¢f < R—e at which f s non-zero.

Let now a4y bo any point in |¢| < R—¢ at which f does not vanish. Sinco
¢ docs not vanish on tho imaginary axis in |f] < R and has only a finito number of
zeros in [{] < R—¢, thero oxists o & = 8(c) > 0 such that ¢ has no zeros in {t] < R—¢,
|Ro¢| < 8). It can be vorificd na usunl that ovory §, is non-vanishing in this domain,
relation (1.2) holds thero and consoquontly (ns in Scotion 1 of this papor), rolation
(1.1) holds thore as woll. Honoo tho o.f.'e k) = f; (iy+u)lf; (iy) aro rolated to tho
funotion h(u) = f(iy+u)/f(iy) according to a rolation of tho samo form as (1.1), for
|4] <8, uroal. Tho funotion f boing analytio in [t| < Rand non-zoro at ¢ = iy+a,
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it follows by the preceding disoussion that overy A, is non-zoro at u = a. Thus, no
Jfy wanishes at a point in [t| < R—e at whioh f docs not; sinco ¢ > 0 is arbitrary, this
nssertion ia truo of |¢| < R itsolf.

It is then easy to convineo ourselves, nsing tho argumenta of Section 1, that the
relation (1.1) holds at ovory point in [?] < R at whioh f doos not vanish.

We turn to the case where D is the sirip |[Im¢t| < R.

In this ease, f is analytio in |{] < R a fortiori, and so overy f iy analytio in
{¢| < R by tho preceding discussion, and 80 in | Im ¢| < R by thowell-known property
of analytio c.f.’a. In this ease, wo then considor an arbitrary rectanglo contained in
D, ey {|Im¢] < R—¢, |Ret| < X} whoro (R>)e > 0 and X > 0 aro arbitrarily
chosen and fixed, and oonvince oursclves as above that any f; can vanixh at a point in
this rectanglo only if f doca (note that there aro only n finito number of zeros of f in
any such rectangle), and that rolation (1.1) holds at all points of this reotanglo at which
J docs not venish. This completes the proof of our theorom.

Additional remarks: An i diat ol of our

1f [ is an enlire function, so is every f;.

Further, accordingjto what wo have scen above, in caso f is ontiro, overy point
on tho imnginary axis has n noighbourhood with the property (P). In particular,
(1.2) holds for ¢ = iR for evory R > 0. Sinco ¢,(iR) > $,(0) = 1, it follows that,
for cvory j,

(¢ (iRNY  $(iR) < max([¢()] : |¢] € R).

Sinco tho maximum modulus of ¢ in [¢[ R is @ (iR), it follows that tho order of &,
(as an entire function) is not greater than thatof 8. Now, since the o.f. /; (1) is o 'factor’
of the o.f. ¢ (1), it followa by n well-known result that tho order of f; is not greater than
that of @; (seo, for instanco, Lukaocs, 1060, p. 173). (But, sinco &, (1) = f;(1)/;(—1),
it followa from olomentary considerations that tho order of ¢ is not greator than that
of f;. Consoquently, ¢ and f; havo tho samo order.) Sinoe ¢{t) = f{f) f(~f) shows
that tho ordor of ¢ is not groater than that of f, wo finally have :

The order of any f, is not greater than that of f, if f is entire.

3. APPLICATION TO TIIE OASE WIERE f 18 THE CONVOLUTION OF A DBINOMIAL
AND A POISSON LAW WITH TIE 8AME MAXIMUM SPAN

In this section, wo consider an application of our theorem to the case wheoro
J i8 the o.f. of the convolution of a binomial and a Poisson law having the same maxi-
mum apan. This gencralizes the results of tho author's papers (1061) and (1904) as
well as tho earlier results of D. A. Raikov, N. A. Sapogov-H. Teichor and H. Teiohor
(1958). (For brief roferonces to tho first two of tho Inttor sot of results, sco Rama-
chandran (1061)).

Theorem 2: Let, in the olatement of Theorem 1, [it) = (g+pe)™
exp [Me"—1)}, where 0 < p<1l,g=1—p,m > 0isan integer and X > 0, so that f
18 the c.f. of the convolution of a hinomial and a Poisson law having the same maximum
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span (unity), Then every f, (1) is of the form

m
(@429 0xp [ 12, (=)
whese my 2 0 iaan integer, & iareal, }; > 0, L2, A = A, Tay §; = 0, and Zaymy = m.
(The relation Tay my = m, logether with the assumplion that the a; are bounded below
by a positive number, implies thal only finitely many of the m; are von-zero.)

Proof: [ i3 ontire and its only zeros are ¥ at tho pointa fy = (2k+1)7—iz,
whero a = In(g/p) and % runs throngh all the integers. Honce, by our theorem,
every f; is entire, its only possiblo zeros aro tho 4,'s, and tho relation (1.1) holds ovory-
where in the t-plane except posaibly at theso pointa, In particular, it holds at ¢ = 27,
80 that wo have

.
7l en)” =1
This implics that overy |f; (27)] = 1, so that every f; corresponda to a ‘lattico distri-
bution’ with unit ‘span’, f.e.,
i -
s=e"( 5 poe)
r=—e

where §;iareal, p, > 0 forevery n, and S p, = 1, (For the neeessary dofinitions
»

—
and arguments, aco the author's papers (1061) and (1064)).  Without loss of generality,
we may asumo that ; is a point of incveaso for tho d.f. F; corresponding to the o.f.
Jp 80 that py > 0.

Wa can then show that every F is 'bounded below' and that, if & abovo be
taken as tho ‘left extromity' of F; (as it oertainly may be, being a point of increaso),
Zx%,=0. The proof follows exactly tho same lines as tho author’s paper (1964)
dealing with tho Poisson Inw, and s therefore amitted here.  Thus, fj(f) has the form

g e
") it
Ho = E o)
-
whero p, > 0, every p), 2 0, and £ p, = 1. Sinco Tz, = 0, (L1) then gives,
e
for £ 3 any fi,
< un | - 0
7 £ gt )” = (@hpey". oxp[a(ei-1) e (31)
Now )Eop"' & roprescnta an entiro function which doca not vanish excopt possibly
at the fl; sinco every z 7 0 has a representation as ¢ for a suitablo complox ¢4, it
follows that ¥ p,, 2* represcnts an entiro funotion gfz) which does not vanish for
=0
z #—(q/p) : nota that p;o > 0 implics that g; dosa not vanish at z = 0. Alse, for
z 7 0 or —(q/p), we havo from (3.1) that
.
7 (50) = (g™ oxp[Az—1)). . (32)
Now, sinco the power-seriea for g; around the origin has all its cooflicionts non-negativo,

the maximum modulus of g, in any circlo|z| < R ia attained at z = R; but, from (3),
wo aco that (for all B > 0)

g ()= (g4 pR)". oxp (A(R=1)] v (3.3)
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which shows (noting that overy g(R) > 1 for R > 1) that every gy, as an entiro function,
is of order at most unity. Sinco g, con vanish, if at all, only at the point —(q/p), it
then follows that, m; being tho order of tho zero at this point,

gle) = (g+p2) . exp A+l

Since g, is a probability-generating function, it is ensily verified that wo must have
A;» 0and ;= —A;. (Cf. Lemma 2.3 of Ramachandran, 1061).  Henco tho theorem,
the asserted relations among tho paramoters following from (3.2).

Perhaps tho most important specinl easo of this result is when all the x; are
equal to unity, the eorresponding result Leing :

1f the sum (in the equivalent senses of ‘alinost sure’, 'in probability’ and ‘in law’)
of an infinite series of independent random variables (defined on some probability space)
is dislributed as the convolution of a binomial and a Poisson law having the same maximum
apan, then (except possibly for a ‘laleral shift' in each case) 20 18 each summand.

4. CoXOLUDING REMABKS

In all the applications that have so far been considered, the function f is itself
a o.f. Since an analytic c.f. has n strip of analyticity of the form—a < Im! < B,
(x> 0, B> 0), it i worth noting that the main result (Section 2) remains valid if,
in its statement, D is replaced by the abovo strip in such cases, This obsorvation is
essentially duo to D. Dugué (vido the proof of Theorem 11.2, “Sur la théorémo do Ldvy-
Cramér”, Publ. Inst. Statist. Univ. Paris. Vol. 8, p. 220) and is a consequence of the
simplo fact that if g{t) is an analytio o.f. then g(¢+iy)/g(iy) is also an analytio o.f. if iy
belongs to the strip of analyticity of g. The proof of the above extension of the result in
Section 2 ix schioved by using this fact to mako successive “shifts of tho origin”
starting from the strip |Im¢| < min(x, #) —in which the result already holds, the
shifts being upward or downward according s f#> aor f < a.

We also notico that if f (analytio) is the c.f. of an “onc-sided” d.f., thon the
proof in Scction 3 shows that every f; is also the o.f. of an one-sided d.f. (all bounded
to tho left or all to the right according to how the d.f. corresponding to f is), and that
the finito extremitics (loft or right as tho cnse may be) &, E of these d.f.'s are related
according to: Tx; E; = E. In particular, if fis tho c.f. of a “finite” d.f. (i.e., ono
Lounded on both sides)— so that £ ia an entire funotion and cither = 1 or of order ono
and of finito typo—then so is every Jp» and reletions of tho above form hold for tho
Teft ng well as tho right extremities of tho corroxponding d.f.'s.
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