
 1

Efficient Window-Based Elliptic curve Scalar Multiplication using Double base

Number Representation

Ravi Pankaj

mtc0520

Professor Rana Barua

 2

Indian Statistical Institute,

Kolkata, 700 108

CERTIFICATE

This is to certify that the thesis entitled “Efficient Window-Based

Elliptic curve scalar Multiplication using Double base Representation” is

submitted in partial fulfillment of the requirement for the award of the

degree of the Masters in Technology in Computer science at Indian

Statistical Institute, Kolkata.

It is a faithful record of bona fide research work carried out by Mr.

Ravi Pankaj (mtc0521) under my supervision and guidance. It is further

certified that no part of thesis has been submitted to any other University or

Institute for the award of any Degree or Diploma.

(Professor Rana Barua)
Supervisor

Countersigned

External Examiner

Date: of July, 2007.

 3

Acknowledgements

With great pleasure and sense of obligation I express my heartfelt

gratitude to my guide and supervisor Prof. Rana Barua of Stat-Math unit,

Indian Statistical Institute, Kolkata. I am highly indebted to him for his

invaluable guidance and ever ready support. His persisting encouragement,

perpetual motivation, everlasting patience and excellent expertise in

discussions, during progress of Project Work, have benefited to an extent,

which is beyond expression.

The chain of my gratitude would be definitely incomplete without

expressing my gratitude to all my batch mates, for their support and

encouragement throughout the entire M.Tech course. Lastly I sincerely

thank all my friends and well wishers who helped me directly or indirectly

towards the completion of this work.

Ravi Pankaj,

mtc0521,

Indian Statistical Institute,

Kolkata 700 108.

 4

M.Tech. (Computer Science) Dissertation Series

Efficient Window-Based Elliptic curve Scalar Multiplication using

Double base Number Representation

a dissertation submitted in partial fulfillment of the

requirements for the M. Tech. (Computer Science)

degree of the Indian Statistical Institute

By

Ravi Pankaj

mtc0520

under the supervision of

Professor Rana Barua

INDIAN STATISTICAL INSTITUTE

203, Barrackpore Trunk Road

Kolkata- 700 108

 5

Abstract

Exponentiation is the most basic operation in the implementation of all discrete logarithm

based cryptosystems. It translates to scalar multiplication, where the underlying group is

additive in nature. Window based methods are very efficient methods to compute

exponentiation. Double-base number system (DBNS) is a non standard number

representation scheme with many interesting and useful properties. In this work we have

proposed method for scalar multiplication where scalar (integer) is represented in DBNS

format. We have adopted new way to represent the scalar in DBNS format. For that we

have new algorithm to have representation in DBNS. This algorithm is faster than the

previous conversion algorithms. The proposed method is more efficient than its single

base counter part as well as straight double base part.

Synopsis of dissertation titled “Efficient window-based elliptic curve Scalar

Multiplication using Double base number representation”

 Submitted by- Ravi Pankaj (MTC0520)

Under Supervision of Prof. Rana Barua

1 Introduction

 Elliptic curve cryptography (ECC) has occupied the centre stage of public key

cryptography research because of its relatively small key-length and enhanced theoretical

robustness. The reason behind these is the fact that there is no known algorithm to solve

elliptic curve discrete logarithm problem (ECDLP) even in sub exponential time. Hence

it is believed that a 160-bit ECC key can provide the same level of security as an 80-bit

symmetric – key for block ciphers or a 1024-bit RSA modulus. This is a major device

with limited hardware resources as smart cards, cell phones or PDAs. The efficiency of

an ECC implementation depends largely on the scalar multiplication computed. It is the

computation of the point
m

i
PmP

1
, for a given point P on the curve and an integer m.

Enormous efforts have been devoted to accelerate and secure this operation.

 Among the various methods proposed for efficient and secure implementation of

exponentiation, the window-based methods occupy a special place. In the present work

we propose a new window-based scalar multiplication algorithm where the scalar is

represented in double-base number system (DBNS). DBNS is a number representation

scheme, which uses 2 radii to represent integers. In this work we use 2 and 3 as radii. In

this work we show that the terms of DBNS representation can be grouped together in

small windows to reduce the number of addition further.

We use 2 and 3 as the base of the DBNS representation. That is because, in ECC, we

have efficient formulas to compute doubling and tripling of elliptic curve points. Thus

the exponent is represented as a sum of terms of the form tb32 . In this work we have

proposed algorithms to convert an integer in to a suitable DBNS representation. Though

we use greedy algorithm, but it will be used for those integer which falls in a window.

That will decrease search time up to great extent. We store some pre computed points

which can be used while calculation of [n] P. Finally for our representation of n we

have proposed algorithm to compute [n] P.

2 Methodology

Our goal is that for given an integer k and an elliptic curve point P, we have to compute

kP. Efficiency of the scalar multiplication depends largely upon efficiency of the

algorithms used for group arithmetic and representation of the scalar. we have proposed

an efficient and secure scalar multiplication algorithm based on double-base chains. We

use new window method to find double-base representation.

The whole task is divided in two parts: i) finding a representation of n, using windows of

2 and 3 and ii) computing scalar multiplication using the obtained representation.

2.1 Finding representation of n

Let 32 max,max be the maximum powers of 2 and 3 to occur in the DBNS

representation. The selection of bounds of 32 max,max and the dimension of windows

effects the DBNS representation greatly, so appropriate selection of 32 max,max and

window size is needed. Thus the task is divided into two parts: i) finding appropriate

maximum bounds and ii) finding appropriate window dimension.

Finding appropriate maximum bounds

We can find the suitable bounds of binary and ternary exponents. The method is

heuristic, but the bounds are significantly much less and work better.

Window selection

After getting the maximum bounds for binary and ternary exponents, the window is

selected in such a way that each window should be of same length. For that we break

entire range (bounds) in parts. Each part will be called a window. Let 32 , wandw are

the window length of base 2 and 3.

As we get the maximum bounds of exponents of binary and ternary radii, and valid

window size, we need to represent n in double- base number system. We have proposed

a new way to achieve this task. For correctness of our representation we proved 3

propositions.

We represent n in (DBNS) according to our format is :

02

2

1

1)32()32(3232 MMMn
wwww 

where .32,,,0 32

021

ww
MMM  Here all iM ’s fall in a particular window.

We now use greedy algorithm to find the DBNS representation of iM ’s.

2.2 Calculation of complexities

We will calculate the complexity of average number of inverse, square and multiplication

applied in calculating scalar multiplication. Suppose on average there are t number of

terms needed to represent iM ’s in a given window. Writing n according to Horner’s rule.

021)))(32((32 3222 MMMn
wwww 

As we can see that for calculating nP, there will 2)1(w doublings, 3)1(w triplings

and 1t addition needed. Let there are iii adtd ,, no. of inverses, mmm adtd ,, no. of

multiplications and sss adtd ,, no. of square needed in doubling, tripling and addition

respectively. Then for calculating nP the total number of inverses, multiplication, square

and addition required are:

 Average number of inverses =))(1(}){1(32 iii adttwdw

 Average number of Squares=))(1(}){1(32 sss adttwdw

 Average number of multiplication=))(1(}){1(32 mmm adttwdw .

Here we assume that there are t terms on an average present in 'jM s, which cause and

addition overhead of 1t additions. If we store all values of sM j ' which ranges

from 1 to 132 32 ww
 in a table say mT , then we can save computation for calculating PM j

. Now the probability of having non-zero jM is 3232 32/)132(
wwww

.Thus we need the

following costs:

 Average no. of inverses =))(32/)132((}){1(3232

32 i

wwww

ii adtwdw

 Average no. of squares =))(32/)132((}){1(3232

32 s

wwww

ss adtwdw

 Average no. of Multiplication =))(32/)132((}){1(3232

32 m

wwww

mm adtwdw

We have static storage table mT where all the value of tbm 32 ,

32 0,0 wtwb such that tbm tbT 32),(. We will also need to calculate PM j .

We can use the static table mT to calculate PM j and store in a table say prT .

2.3 Finding Scalar multiplication Pn][

We use the following steps:

1. To represent n we calculate 'jM s first.

2. Now we find out PM j][. We need the DBNS representation of jM ’s which can be

obtained by greedy algorithm using. In the greedy algorithm we use the table mT for

quick representation. Once we get the representation we can calculate PM j][by

looking at the precomputed points stored in prT .

3. Now to compute [n] P, we use the value PM j][by using w-doubling and w-tripling.

3 Conclusion and Future Scope

The DBNS representation computed by conversion algorithms reported in literature is not

suitable for our window based method. Hence we have proposed a new algorithm to

convert a given integer to a suitable DBNS format. In Earlier proposed method the

conversion scheme searching space is more for finding best approximation to the integer

n .Also the maximum bounds of exponents of binary and ternary has been chosen

suitably which are much reasonable. Hence the search space becomes smaller. The

selection of length of window has also been made reasonably, which satisfy our validity

criteria. Our conversion scheme is fast, as our searching task for the nearest DBNS integer

is being done in a particular window, which is relatively small. The format obtained so

far allow us to have less space to store some precomputed points which increase speed of

calculation. The proposed algorithms can be extended to multi-base number system

(MBNS)

 6

Contents

Chapter 1 Introduction .. 7

Chapter 2 Elliptic Curve Cryptography in a Public-Key Cryptosystem 9

2.1 Elliptic Curves over Real Numbers ... 9

2.2 Elliptic Curves Modulo a Prime .. 12

2.3 Discrete Logarithm Problem ... 13

2.4 ElGamal Public-key Cryptosystem in
*

pZ ... 14

2.5 The Elliptic Curve Discrete Logarithm Problem ... 15

Chapter 3 Point Arithmetic on Elliptic Curves ... 16

3.1 Point Addition ... 166

3.1.1 Fields of Characteristic p > 3. ... 166

3.1.2 Fields of characteristic two. .. 199

3.2 New Point Arithmetic Results .. 20

Chapter 4 Scalar Multiplication Using Double-Base Number System 22

4.1 Double-Base number System ... 22

4.2 Proposed Window–based method for scalar multiplication 24

4.2.1 Finding representation of n ... 24

4.3 Calculation of complexities .. 288

4.4 Finding Scalar multiplication Pn][... 299

Chapter 5 Discussion and Conclusion .. 36

Bibliography ... 377

 7

Chapter 1

 Introduction

Elliptic curve cryptography (ECC) has occupied the centre stage of public key

cryptography research because of its relatively small key-length and enhanced theoretical

robustness. The reason behind these is the fact that there is no known algorithm to solve

elliptic curve discrete logarithm problem (ECDLP) even in sub exponential time. Hence

it is believed that a 160-bit ECC key can provide the same level of security as an 80-bit

symmetric – key for block ciphers or a 1024-bit RSA modulus. This is a major device

with limited hardware resources as smart cards, cell phones or PDAs. The efficiency of

an ECC implementation depends largely on the scalar multiplication computed. It is the

computation of the point
m

i
PmP

1
, for a given point P on the curve and an integer m.

Enormous efforts have been devoted to accelerate and secure this operation.

 Among the various methods proposed for efficient and secure implementation of

exponentiation, the window-based methods occupy a special place. For exponentiation of

a group element in general exponentiations, the window based methods are the fastest.

These methods require precomputations and may not be suitable for devices, where

memory resources are very low.

 The computation of scalar multiplication is also target of adversaries, who use side-

channel information to attack cryptosystems. These attacks, instead of attacking the

underlying hard problem of a cryptographic protocol, recreate vital information of the

cryptosystem, by sampling and measuring side channel information like computation

time, the power consumption or the electromagnetic radiation traces. These informations

can reveal vital information to the attacker in a straight forward implementation. Many

 8

proposal have been made in literature to prevent the attacker from obtaining any

substantial data from the side-channel to endanger the security of a cryptosystem.

 In the present work we propose a new window-based scalar multiplication algorithm

where the scalar is represented in double-base number system (DBNS). DBNS is a

number representation scheme, which uses 2 radii to represent integers. In this work we

use 2 and 3 as radii. For scalar multiplication, inherent sparseness of this representation

scheme leads to fewer point addition than the double-and-add methods. In this work we

show that the terms of DBNS representation can be grouped together in small windows to

reduce the number of addition further.

 We use 2 and 3 as the base of the DBNS representation. That is because, in ECC, we

have efficient formulas to compute doubling and tripling of elliptic curve points. Thus

the exponent is represented as a sum of terms of the form tb32 . In this work we have

proposed algorithms to convert an integer in to a suitable DBNS representation. Though

we use greedy algorithm, but it will be used for those integer which falls in a window.

That will decrease search time up to great extent. We store some pre computed points

which can be used while calculation of [n] P. We have proposed how to store those

points efficiently. Finally for our representation of n we have proposed algorithm to

compute [n] P. In general other bases may also be used.

 9

Chapter 2

Elliptic Curve Cryptography in a Public-Key

Cryptosystem

2.1 Elliptic Curves over Real Numbers

Elliptic curve over real number is defined as the set E of solutions (x, y) RR to

the equation

 baxxy 32 (1.1)

Where Rba, are constants such that 0274 23 ba . There is a special point

called the point at infinity.

 The condition 0274 23 ba is necessary and sufficient to ensure that the

equation has three distinct roots. Such elliptic curves are known as non-singular

elliptic curves. If 0274 23 ba then the corresponding elliptic curve is called a

singular elliptic curve.

We define a binary operation over a non-singular elliptic curve E which makes E

into an abelian group. This operation is usually denoted by addition. The point at

infinity, O, will the identity element, so P+O = O+P = P for all P E.

 There are three cases arise when we add two points P, Q E, where P),(11 yx

and),(22 yxQ .

 10

 1. 21 xx

 2. 21 xx and 21 yy

 3. 21 xx and 21 yy

 For case 1, we define a line L through P and Q. L intersects E in the two points P and

Q, and it is easy to see that L will intersect E in one further point, which we call R .If we

reflect R in the z-axis, then we get a point which we name R. We define P+Q = R. We

can find out the formula to compute R. We can write the equation of as xy ,

where the slope of L is

12

12

xx

yy
,

and

2211 xyxy .

In order to find the intersection points of E and L, we substitute xy in to the

equation for E, we get the following:

baxxx 32)(,

Which is the same as

 0)2(2223 bxaxx (1.2)

 The roots of the above equation give the x-co-ordinate of the intersection points of E

and L. Since we have already two points P and Q .Hence 1x and 2x are the roots of

equation (1.2).

 11

 The equation (1.2) is cubic in x and two of its roots namely 1x and 2x are real then

third of its roots must be real, say 3x .The sum of the three roots must be the negative of

the coefficient of the quadratic term, or 2 .There for

21

2

3 xxx .

3x is the x-co-ordinate of the point R . We will denote the y-co-ordinate of R by 3y ,

so the, so the y-co-ordinate of R will be 3y . Now the slope of line L can be determine by

any two points on L. If we use the points),(11 yx and),(33 yx to compute the slope ,

we get

13

13

xx

yy

or,

1313)(yxxy .

Thus we have formula for P+Q in case 1: if 21 xx , then),(),(),(332211 yxyxyx ,

where

22

12

1313

21

2

3

,)(

,

xx

yy

yxxy

xxx

 and

 Case 2. where 21 xx and 21 yy is simple: we define Oyxyx),(),(for

all Eyx),(.There for(x, y) and (x, -y) are inverses with respect to the elliptic curve

addition operation.

 12

 Case 3. In this case we are adding a point),(yxP to itself. We assume that 01y ,

for then we would be in case 2. Here we compute slope with the help of calculus. The

slope of L can be computed using implicit differentiation of the equation of E:

.32 2 ax
dx

dy
y

Substituting 11, yyxx , we have the slope of the tangent

.
2

3

1

2

1

y

ax

The rest of analysis in this case is the same as in case 1.The formula obtained is identical,

except that is computed differently.

There are some properties of the addition operation as defined above are:

 1. addition is closed on the set E

 2. addition is commutative,

 3. O is an identity with respect to addition, and

 4. Every point on E has an inverse with respect to addition.

 It is quite messy to prove that (E +) is associative by algebraic methods, and hence it

is an abelian group.

2.2 Elliptic Curves Modulo a Prime

 Let p>3 be prime. The elliptic curve baxxy 32
 over pZ is the set of

solution pp ZZyx),(to the congruence

),(mod22 pbaxxy (1.3)

 13

where pZba, are constants such that)(mod0274 22 pba ,together with a special

point O called the point at infinity.

The addition operation on E is defined as follows (where all arithmetic operations are

performed in pZ): Suppose

),(11 yxP

and

),(11 yxQ

are points on E. If 12 xx and 12 yy , then P+Q = O: otherwise P+Q = (),, 33 yx

where

1313

21

2

3

)(yxxy

xxx

and

QPifyax

QPifxxyy

,)2)(3(

,))((

1

1

2

1

1

1212

Finally, define

P+O = O+P =P

for all EP .

 The same formula can be used to define addition as we defined on the elliptic over

reals. The pair (E, +) still forms an abelian group.

 14

2.3 Discrete Logarithm Problem

 Let (G, .), be a multiplicative group and an element G having order n, and an

element .Then we define Discrete Logarithm Problem as to find the unique

integer a, 10 na , such that

a .

We will denote this integer a by log .

 The utility of the Discrete Logarithm problem in cryptographic setting is that

finding discrete logarithm is (probably) difficult, but the inverse operation of

exponentiation can be computed efficiently by using the square-multiply method

2.4 ElGamal Public-key Cryptosystem in
*

pZ

 Let p be a prime such that the Discrete Logarithm problem in),(
*

pZ is infeasible,

and let
*

pZ , be a primitive element. Let ,
*

pZ ,
**

pp ZZC and define

)}(mod:),,,{(pap a

The value p, and are the public key, and a is private key.

For),,,,(ap and a (secret) random number 1pZk , define encryption function

),,(),(21 yykxe

where

py k mod1

 15

and

.mod2 pxy k

for
*

21, pZyy , define decryption function

.mod)(),(1

1221 pyyyyd
a

A necessary condition for the ElGamal Cryptosystem to be secure is that the Discrete

Logarithm problem in
*

pZ is infeasible. This generally regarded as being the case if p is

carefully chosen and is a primitive element modulo p. In particular, there is no known

polynomial-time algorithm for this version of the Discrete Logarithm problem.

2.5 The Elliptic Curve Discrete Logarithm Problem

 Let E be the curve over some finite field, qF . Let n denotes the order of the group

)(qFE and let P denotes an element of)(qFE .The elliptic curve discrete logarithm

problem (ECDLP) on E is, given PQ , find the integer, m, such that

Q = [m] P.

 16

 Chapter 3

Point Arithmetic on Elliptic Curves

The basic building blocks of an elliptic cryptosystem over qF are computation of the

form

  
timesk

PPPPkQ][

 where P is curve point, and k is an arbitrary integer in the range)(1 Pordk . The

strength of the cryptosystem lies in the fact that given the curve, the point P (be it fixed

or arbitrary) and [k] P, it is hard to recover k, which is elliptic curve discrete logarithm

problem (ECDLP).

3.1 Point Addition

 Depending on the characteristic of the underlying field the formulae for the group

law take on different forms. We analyse the computational complexity of these formulae

separately for characteristic p > 3, and for characteristic two.

 3.1.1 Fields of Characteristic p > 3.

 Affine Coordinates.

 The point addition on an elliptic curve

baxXYE 32:

 17

with n

q pqFba ,, , p a prime greater than three. Let),(111 yxP and),(222 yxP

be points in)(qFE given in affine coordinates, and where some convention is used to

represent the point at infinity, O. Assume OPP 21 , and 21 PP , conditions that are all

easily checked. The sum 21333),(PPyxP can be computed as follows.

 If 21 PP ,

1313

21

2

3

12

12

)(

,

yxxy

xxx

xx

yy

If 21 PP

1313

1

2

3

1

2

1

)(

,2

,
2

3

yxxy

xx

y

ax

When ,21 PP the computation requires one field inversion and three field

multiplications. We will denote this computational cost by 1I+3M, where I and M denote,

respectively, the cost of field inversion and multiplication. Squaring is counted as regular

multiplications. When 21 PP , the cost of the point doubling is I + 4M. we neglect the

cost of field addition, as well as the cost of multiplication by small constants.

Projective coordinates:

 In the case where field inversions are significantly more expensive than multiplications,

it is efficient to implement projective coordinates. A projective point (X, Y, Z) on the

curve satisfies the homogeneous Weierstrass equation

 18

,3232 bZaXZXZY

and when 0Z , it corresponds to the affine point (X/Z, Y/Z). There are other projective

representations. We will prefer a weighted projective representation which is also referred

as jacobian representation. A triplet (X, Y, Z) corresponds to the affine coordinates

)/,/(32 ZYZX whenever 0Z . This equivalent to using a weighted projective curve

equation of the form

6432 bZaXZXY

The point at infinity O is represented by any triplet
*32),0,,(qF .

 Conversion from affine to projective coordinates is trivial, while conversion in other

direction costs 1I + 4M. Inversion is costless operation however it increases the number

of multiplications, so the appropriateness of using projective coordinates is strongly

determined by the ration I: M.

Let),,(1111 ZYXP and),,(2222 ZYXP , and their sum be),,(3333 ZYXP in

projective coordinates. We assume that OPP 21 , and that 21 PP .According to IEEE

P1363 draft standard, the total cost for general point addition comes out to be 16M and

the point doubling computation costs 10M. This can be reduced to 8M when 3a The

following table gives the summaries

Table 1 :Cost of point addition, characteristic p>3

Operation Coordinates

Affine Projective

General addition 1I +3M 16M

Doubling(arbitrary a) 1I +4M 10M

Doubling(a=-3) 1I +4M 8M

 19

3.1.2 Fields of characteristic two.

Affine Coordinates.

The point addition on an elliptic curve

6

2

2

32: aXaXXYYE

with .0,2,, 662 aqFaa n

q
 Let),(111 yxP and),(222 yxP be points in

affine coordinates, where some convention is used to represent the point at infinity O.

Assume OPP 21 , and 21 PP . The sum 21333),(PPyxP is computed as follows.

If ,21 PP

13313

221

2

3

21

21

)(

,

,

yxxxy

axxx

xx

yy

If 21 PP

13313

2

2

3

1

1

1

)(

,

,

yxxxy

ax

x
x

y

In either case, the computation requires on field inversion, two field multiplications, and

in squaring, or 1I + 2M +1S. In the case of characteristic two, the cost of squaring

operation, denoted by S, is much lower than that of general multiplication. Therefore,

squarings are counted separately, and in fact, we will later on neglect their cost

completely.

 20

Projective coordinates.

 As in the case of characteristic p >3, we will use weighted projective coordinates where

a projective point),,(ZYX , 0Z , maps to affine point)/,/(32 ZYZX . This

corresponds to using weighted projective curve equation of the form

.6

6

2232 ZaZaXXXYZY

Conversion from projective to affine coordinates costs, in this case 1I +3M+1S.

According to IEEE [P1363] draft standard, the total cost for general point addition comes

out to be 15M + 5S. This is reduced to 14M + 4S when 02a .The point doubling

computation costs 5M +5S. Since squaring is much faster than general multiplication in

characteristic two, point doubling in projective coordinates is close to three times as fast

as general point addition.

Table 2: Cost of point addition, characteristic two

Operation Coordinates

Affine Projective

General addition)0(2a 1I +2M+1S 15M+5S

General addition ()02a 1I +2M+1S 14M + 4S

Doubling 1I +2M+1S 5M +5S

3.2 New Point Arithmetic Results

There are several efficient algorithms to compute Addition (ADD), Doubling (DBL),

Tripling (TPL), w-Doubling (w-DBL), Doubling and addition (DA), Tripling and

Addition(TA), Mixed-addition(mADD), window-Doubling(w-DBL), window-Tripling

(w-TPl) in affine and jocobian coordinates. The complexity of their calculations will be

used in our proposed work. Some of them are listed below with appropriate references.

 21

 Table 3: Cost of various Elliptic Curve group operations.

Operations Output For)(
2mFE For)(pFE

proposed Cost proposed Cost

),(

)(

),(

)(

),(

),(

)(

QPTA

TPLw

PTPL

QPDA

PDBLw

QPmADD

QPADD

PDBL

QP

P

P

QP

P

QP

P

w

w

3

3

3

2

2

2

-

-

-

[5]

[6]

[6]

-

[6]

][9][2

][7][1

][9][1

])[24(][1

][2][1

][2][1

mi

mi

mi

mwi

mi

mi

-

-

[4]

[7]

-

[8]

[8]

-

])[111(])[24(

][6][10

])[24(][4

]8][3

][12][4

][4][6

swmw

sm

swmw

ms

ms

ms

The costs for curves over binary fields))((
2mFE are in affine coordinates. Those for

curves over prime fields))((pFE are in Jcobian coordinates.

 22

 Chapter 4

Scalar Multiplication Using Double-Base Number

System

 All elliptic curve discrete logarithm problems (ECDLP) based cryptographic primitives,

like encryption, decryption, Signature generation and verification; need the operation of

scalar multiplication. Given an integer k and an elliptic curve point P, it is the operation

of computing kP. Efficiency of the scalar multiplication depends largely upon efficiency

of the algorithms used for group arithmetic and representation of the scalar. In this

chapter, we propose an efficient and secure scalar multiplication algorithm based on

double-base chains. We use new window method to find double-base representation.

4.1 Double-Base number System

The Double-base number system (DBNS)[9] is a representation scheme in which every

positive integer k is represented as the sum or difference of {2, 3}-integers (i.e., numbers

of the form tb32) as

m

i

tb

i
iisk

1

32 , with }1,1{is , and 0, ii tb

This number representation is highly redundant and most of these representations are

useless. Suitably chosen representation gives better result. So we are interested in a

special representation with restricted exponents. The most important theoretical result

about the double-base number system is the following theorem which is proved in [10]

Theorem 1. Every positive integer k can be represented as the sum of at most

k

k
O

loglog

log
{2, 3}-integers.

 23

Table 4: number of double-base representation of small numbers

We can see that for small number such a large number of double-base representations

exist. Several methods have been proposed to get suitable representation of n .one of

them is greedy algorithm, but the searching space for best approximation is too large. A

modification of the greedy algorithm is also being in practice, in which the search space

for best approximation is reduced to the size of the window. The liberty to choose

exponents of 2 and 3 in particular window gives a short representation of a number n.

The main advantage of doing this is keeping window size small our search for best

approximation becomes fast. But instead of using modified greedy algorithm for finding

a double-base representation we have proposed new method to find out the DBNS

representation. Here is greedy algorithm.

Algorithm1. Greedy Algorithm for conversion into DBNS

Input: k a positive integer; max2, max3, >0, the largest allowed binary, ternary exponents

 and the array T[0…max2; 0……max3]

Output: The sequence (si ,bi,,ti)i>0 such that
m

i

tb

i
iisk

1
32 ,

1. s 1

2. while k >o do
3. for(b=0 to max2,t=0 to max3)

 z = T[b,t], the best approximation of k

 4. print(s,b,t)

 5. max2 b, max3 t,

 6. if(k < z) then

 7. s s

 8. zkk

N B = {2, 3}

10

20

50

100

150

200

300

5

12

72

402

1296

3096

11820

 24

4.2 Proposed Window–based method for scalar multiplication

 This section is divided in two parts: i) finding a representation of n, using windows of

2 and 3 and ii) computing scalar multiplication using the obtained representation.

 4.2.1 Finding representation of n

 As DBNS is two dimensional representations, the windows are two dimensional too. Let

32 max,max be the maximum powers of 2 and 3 to occur in the DBNS representation.

For example, for 160 bit-integer the maximum value of max2 and max3 can be 160 and

103 respectively. But looking at greedy algorithm this will give large search space. The

selection of bounds of 32 max,max and the dimension of windows effects the DBNS

representation greatly, so appropriate selection of 32 max,max and window size is

needed. Thus the task is divided into two parts: i) finding appropriate maximum bounds

and ii) finding appropriate window dimension.

Finding appropriate maximum bounds

As we have seen in greedy algorithm the searching depends largely on the maximum

bounds max2, and max3.We can find the suitable bounds of binary and ternary

exponents. The method is heuristic, but the bounds are significantly much less and

work better. Let n an r-bit integer, then maximum value of n will be 12 1r . So,

1maxmax
232 32 r

 ,

Assuming 11 212 rr or, taking logarithm both side

 13logmaxmax 232 r (3.1)

The smallest value of 32 maxmax and which satisfy equation (3.1) will give the bounds

of binary and ternary exponents.

 25

Window selection

 After getting the maximum bounds for binary and ternary exponents, the window is

selected in such a way that each window should be of same length. For that we break

entire range (bounds) in parts. Each part will be called a window. Let 32 , wandw are

the window length of base 2 and 3.

 22max w (3.2)

 33max w (3.3)

Substituting equation (3.2) and (3.3) in equation (3.1), we get

 1)3log(232 rww (3.4)

The equation (3.1) suggests that given a number of r-bit size, we can approximate the

value of max2 and max3. With the help of equation (3.2) or (3.3) we can find number of

partitions for different value of w2 and w3. Equation (3.4) is validity criteria for the

values of windows. Thus we can find pairs of valid window values which satisfy (3.4).

For different value of w2 and w3 we have find out the number of partitions. For r = 160

bit there is a table which shows the number of partitions for different number w2 and w3.

Now we finally move on, how the number n will be represented with proposed window

double base number system.

 Let w2 and w3 be the window size for binary and ternary exponents.

Preposition 1: Let m be a number such that 32 321
ww

m and the best approximation

of m be tb32 , where 32 0,0 wtwb then mmk tb32

 Proof: Case 1: If b = t =0 then mm 1 .

 Case2: Let mmk tb32 . Take mmk 1 , then tb32 will not be the

 integer to m , a contradiction.

 26

Preposition 2: Let w2 and w3 be the window size and m be a positive integer such that

32 320
ww

m can be represented as
j

tb

j
jjs 32 where }1,0,1{js and

32 0,0 wtwb jj

Proof: Case 1: If m = 0 , put j = 1 and js = 0 .

 Case 2: If 32 321
ww

m then by Preposition 1, there exists an integer tb32

 such that

 132 mmk tb , where 32 0,0 wtwb

 Put s = 1, if 0)32(tbm else 1s , if 0)32(tbn . Since k has

 been decreased, we apply the same procedure on k till k becomes 0.

Preposition 3: Every integer 32 320
ww

n can uniquely be represented as

.32,,,0

3232

32

3232

021

02

2

1

1

ww

wwww

MMM

thatsuchMMMn





Proof: We first show that this kind of representation exists.

Let
1

1

1)32(32 RMn
ww , where 1

1)32(0 32 ww
R . 1M should be strictly

less than 32 32
ww

 i.e. 32 320 1

ww
M , otherwise)32(32 ww

n . Similarly

2

22

2

21)32(0,)32(3232 wwww
RwhereRMR

and 32 320 2

ww
M





)32(0,)32(3232

11

1

12

wwww
RwhereRMR

and 32 320 1

ww
M .

.320, 32

001

ww
MwhereMR

 Thus we get the desired representation.

 Now we show that the is unique representation of n.

 27

 Let
02

2

1

1)32()32(3232 MMMn
wwww  and

02

2

1

1)32()32(3232 MMMn
wwww  be two different representations

of n .i.e. there exist at least one ii MM for some 10 i . Thus ,

0)()()32()()32(0022

2

11

1 3232 MMMMMM
wwww 

This shows that 32 32
ww

 is the root of equation

0)()()(00

2

22

1

11 MMXMMXMM  (3.5)

 Let f be the degree of polynomial

)()()(00

2

22

1

11 MMXMMXMM 

i.e. 0)(ii MM for all i > f. The integral roots of the above equation (3.5) are in the

form of)(00 MMoffactorsome if 0)(00 MM , but

3232 32)(32 00

wwww
MM , so 32 32

ww
can not be the root of equation (3.5). If

0)(ii MM , then equation (3.5) reduces to

 0)()()(11

3

22

2

11 MMXMMXMM  (3.6)

Applying same method as above, we will get jj MM for all 10 j . Hence

proved.

Preposition 3 gives a suitable representation of n. It suggests that finding the

representation of 021 ,, MMM  in window size w2 and w3 in double base is

sufficient to represent n. Now finding the representation of iM ’s in double base number

system in the window size w2 and w3 is easy. We can apply greedy algorithm which has

been given in Algorithm 1. Just we need to search the best approximation in a window w2

and w3. The only change that we need to make is to change max2 to w2 and max3 to w3,

and the static storage space is changed to T [0…w2; 0……w3]. Finding double base

representation in window (which relatively very small compare to maximum bound)

becomes faster and static table size will be much smaller.

 28

4.3 Calculation of complexities

We will calculate the complexity of average number of inverse, square and multiplication

applied in calculating scalar multiplication. We have partition of maximum bounds of

each binary and ternary exponent. By preposition 3 we get that any integer n can have at

most terms in our proposed representation scheme. Suppose on average there are t

number of terms needed to represent iM ’s in a given window.

Then for 32 320
ww

n ,

021)))(32((32 3222 MMMn
wwww  (Horner’s rule) (3.7)

As we can see that for calculating nP, there will 2)1(w doublings, 3)1(w triplings

and 1t addition needed.

Let there are iii adtd ,, no. of inverses, mmm adtd ,, no. of multiplications and

sss adtd ,, no. of square needed in doubling, tripling and addition respectively. Then for

calculating nP the total number of inverses, multiplication, square and addition required

are:

 Average number of inverses =))(1(}){1(32 iii adttwdw

 Average number of Squares=))(1(}){1(32 sss adttwdw

 Average number of multiplication=))(1(}){1(32 mmm adttwdw .

Here we assume that there are t terms on an average present in 'jM s, which cause and

addition overhead of 1t additions. If we store all values of sM j ' which ranges

from 1 to 132 32 ww
 in a table say mT , then we can save computation for calculating PM j

. Now the probability of having non-zero jM is 3232 32/)132(
wwww

.Thus we need the

following costs:

 Average no. of inverses =))(32/)132((}){1(3232

32 i

wwww

ii adtwdw

 Average no. of squares =))(32/)132((}){1(3232

32 s

wwww

ss adtwdw

 Average no. of Multiplication =))(32/)132((}){1(3232

32 m

wwww

mm adtwdw

 29

4.4 Finding Scalar multiplication Pn][

 After finding the representation of n in the form of equation (3.7), we will choose some

dimension of window. We have static storage table mT where all the value of tbm 32 ,

32 0,0 wtwb such that tbm tbT 32),(. Cleary the size of table will be

O(w2*w3). We will also need to calculate PM j . We can use the static table mT to

calculate PM j and store in a table say prT . This table will be of same size as that of mT .

The entries of the table prT will be like PqbT tb

pr]32[),(, where P is a point on an

elliptic curve E (algorithm 2). Clearly we are storing more pre computed points, but it

will save the computation up to a great extent. The total storage size will be O(w2*w3),

which is quite less, since we will have small window dimension compare to maximum

bounds of the exponents of binary and ternary. The computation of precomputed points in

prT may becomes higher, but it can be reduced if we use recursive computation, as :

PP tbtb]]32[2[]32[1
 and PP tbtb]]32[3[]32[1

. Algorithm 2 gives method to

form prT .

Now we are approaching towards calculation of [n] P. In algorithm 5 we have the given

pseudo code to obtain this task. We use the following steps :

1. To represent n we calculate 'jM s first. Algorithm 3 tells how to calculate.

2. Now we find out PM j][. We need the DBNS representation of jM ’s which can be

obtained by greedy algorithm using algorithm 1. In the greedy algorithm we use the

table mT for quick representation. Once we get the representation we can calculate

PM j][by looking at the precomputed points stored in prT . Pseudo code is given in

algorithm 4.

3. Now to compute [n] P, we use the value PM j][by using w-doubling and w-tripling.

The pseudo code is given in algorithm 5

 30

Algorithm2. Generating static table for precomputed points(prT)

Input: dimension of window w2, w3 for 2 and 3 respectively and a point P on an elliptic

 Curve E.

Output: An array prT (i, j,) such that PjiT ji

pr]32[),(where 32 0,0 wjwi

1. PTpr]0,0[

2. 0i

3. 0j

4. while 3wj do

5]],[[3]1,[jiTjiT prpr

6. 1jj

7. 0i

8. 0j

9. while 13wj do

10. while 2wi do

11.]],[[2],1[jiTjiT prpr

12. 1ii

13. 1jj

14. return prT

 31

Algorithm 3. To find 'jM s

Input: the integer number n such that)32(0 32 ww
n for a given window length

 32 , ww for 2 and 3 respectively and number of partition

Output: a sequence of ('jM) j>0 such that jww

j jMn)32(32
1

1
, where

32 320
ww

jM for all 10 j

1. 1j

2. nR

3
1)32(32 ww

X

4. while j do

5.
X

R
M 1

6. XMRR j'

7.
32 32

ww

X
X

8. 'RR

9. 1jj

10. jMjA][

11. return A.

Algorithm4. Calculation of [m] P

Input: an integer m such that 32 320
ww

m , a point P on an elliptic curve E and prT

Output: [m] P

 1. A Algorithm 3(),, 32 wwm

 2.)(AlengthL

 3. (OP point at infinity on elliptic curve E)

 4. 1i

 5. while Li do

 6.][),,(iAtbs iii

 7.),(jipri tbTsPP

 8. 1ii

 9. return P

 32

Algorithm5. Calculation of [n] P

Input: an integer n such that)32(0 32 ww
n , a point P on an elliptic curve E, no. of

 partition and prT .

Output: [n]P

 1. A Algorithm 3(),,, 32 wwn

 2. OP (point at infinity on elliptic curve E)

 3. 1i

 4. while)1(i do

 5. Q Algorithm 4 (),,,,1 32 prTPwwA

 6. QPP

 7. PP
w

]3[3

 8. PP
w

]2[2

 9. 1ii

10. return P

 33

Table 5: Average number of terms in a given window and partition for different

 values of w2 ,w3.

2w 3w Average no. terms\ no. of partitions

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0.000000

1.000000

1.777778

2.481482

0.500000

1.166667

1.722222

2.240741

1.000000

1.416667

1.888889

2.268518

1.375000

1.708333

2.097222

2.458333

1.750000

1.979167

2.333333

2.668982

2.093750

2.218750

2.552083

2.878472

102

51

34

161

63

39

28

81

45

32

24

54

36

27

21

41

29

23

19

33

25

20

17

 34

Table 7: Cost of elliptic curve scalar multiplication for 160-bit integer using affine

coordinates (mF
2

-cost) taking ()1)(1 32 ww number of storage points. 8]/[][mi

W2 W3 # storage Inverse [I] Multiplication [M] M
4

3

3

5

2

3

2

3

15

16

12

24

118.666665

130.625000

133.625000

111.934029

721.33333

721.25000

735.25000

719.86804

1670.67[m]

1766.25[m]

1804.25[m]

1615.34[m]

Table 8: Cost of elliptic curve scalar multiplication for 160-bit integer using affine

coordinates (mF
2

-cost) taking 132 32 ww
number of storage points. 8]/[][mi

W2 W3 # storage Inverse [I] Multiplication [M] M
4

3

3

5

2

2

3

3

143

71

215

863

87.8472

103.6388

99.9074

79.9814

659.6944

625.2777

659.8148

655.9629

1362.47[m]

1504.48[m]

1459.07[m]

1295.81[m]

Table 9: Cost of elliptic curve scalar multiplication for 160-bit integer using Jacobian

coordinates (mF
2

-cost) taking ()1)(1 32 ww number of storage points.

80]/[][ms

W2 W3 # storage Square[S] Multiplication [M] M
4

3

3

5

2

2

3

3

15

11

15

71

774.000

790.875

711.8750

719.8020

1235.3332

1303.0000

1285.0000

1215.4721

1854.57[m]

1935.69[m]

1854.50[m]

1791.31[m]

 35

Table 10: Cost of elliptic curve scalar multiplication for 160-bit integer using

Jacobian coordinates (mF
2

-cost) taking 132 32 ww
 number of storage points.

80]/[][ms

W2 W3 # storage Square [S] Multiplication [M] M
4

3

3

5

2

2

3

3

143

71

215

863

681.5416

700.9166

619.7222

623.9445

988.7777

1063.1110

1039.2592

959..8518

1534.01[m]

1623.84[m]

1535.07[m]

1459.00[m]

Comparison:

In earlier proposed method [8] using double- chains the cost of complexity for computing

scalar multiplication for 160- bit integer is 1863[m] . The coordinate used here is

affine. The table7 shows our better result for the same coordinate system. We store very

less number of precomputed points. Also the searching space for the best approximation

to the given scalar is more in the earlier proposed method, where as the same task has

been done in less amount of time ,because of suitably chosen maximum bound, and

window size.

 36

 Chapter 5

 Discussion and Conclusion

In the present work, we have presented a window based method for computing ECC

scalar multiplication using double-base number system DBNS representation of the

scalar. The DBNS representation computed by conversion algorithms reported in

literature is not suitable for our window based method. Hence we have proposed a new

algorithm to convert a given integer to a suitable DBNS format. In Earlier proposed

method [11] the conversion scheme searching space is more for finding best

approximation to the integer n .Also the maximum bounds of exponents of binary and

ternary has been chosen suitably which are much reasonable. Hence the search space

becomes smaller. The selection of length of window has also been made reasonably,

which satisfy our validity criteria. Our conversion scheme is fast, as our searching task

for the nearest DBNS integer is being done in a particular window, which is relatively

small. The format obtained so far allow us to have less space to store some precomputed

points which increase speed of calculation. The proposed algorithms can be extended to

multi-base number system (MBNS)

 37

Bibliography

1. Douglas R. Stinson. Cryptography theory and practice .CRC press 2002

2. Andreas Enge, Elliptic curve and their application to cryptography an

 Introduction. Kluwer Academic Publishers 2001.

 3. I. F. Blake, G. Seroussi, N.P. Smart, Elliptic curves in cryptography, Cambridge

 University press, 1999.

 4. H. Cohen, A. Miyaji, and T.Ono. Efficient Elliptic Curve Exponentation Using

 Mixed coordinates, In ASIACRYPT’98, LNCS 1514, pp. 51-65, Springer-Verlag,

 1998.

 5. R.Dahab and J.Lopez, An Improvement of Guajardo-Paar Method for

 Multiplication on non supersingular elliptic Curves. Inproceedings of The XVIII

 International Conference of the Chiliean Computer Science Society (SCCC’98),

 IEEE CS Press, November 12-14, Antofagasta, Chile, pp.91-95, 1998.

6. M.Ciet, K. Lauter, M.Joye and P.L. Montgomary Trading inversion for

multiplications in elliptic curve cryptography In Design, codes and cryptography,

32(2):189-206,2006.

7. K.Itoh, M.Takenaka, N. Torii, S. Temna, and Y. Kurihara. Fast implementation of

 public –key cryptography on a DSP TMS320C6201. In C. K. Koc and C.Paar,

 editers, Cryptographic hardware and Embedded Systems –CHES ’99,

 Volume1717 of lecture notes in computer science, pages 61-72. Springer-Verlag ,

 1999.

 38

8. V.Dimitrov, L. Imbert, and P.K.Mishra, Efficient and Secure Elliptic Curve Point

 Multiplication Using Double Base Chain. In B. Roy Ed., Asiacrypt 2005, volume

 3788 of lecture notes in computer science, Pages 59-79. Springer-Verlag, 2005

9. V.S. Dimitrov,G.A. Julient, and W.C.Miller. Theory and applications of the

 double-base number system. IEEE Transaction on computers 48(10): 1098-1106,

 Oct. 1999.

 10. V.S. Dimitrov, G.A.Jullian, W.C Miller. An algorithm for modular exponentiation,

 information Processing Letters, 66(3):155-159, may 1998.

11 P.K.Mishra, Window based Elliptic curve Scalar Multiplication Using Double

 Base Number Representation.

[P1363] IEEE P1363/D3 (Draft version 3). Standard specification for public key crypto

 graphy. May 1998.

