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Abstract 

 

Exponentiation is the most basic operation in the implementation of all discrete logarithm 

based cryptosystems. It translates to scalar multiplication, where the underlying group is 

additive in nature. Window based methods are very efficient methods to compute 

exponentiation. Double-base number system (DBNS) is a non standard number 

representation scheme with many interesting and useful properties. In this work we have 

proposed method for scalar multiplication where scalar (integer) is represented in DBNS 

format. We have adopted new way to represent the scalar in DBNS format. For that we 

have new algorithm to have representation in DBNS. This algorithm is faster than the 

previous conversion algorithms. The proposed method is more efficient than its single 

base counter part as well as straight double base part.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Synopsis of dissertation titled “Efficient window-based elliptic curve Scalar 

Multiplication using Double base number representation” 

                                                                               Submitted by- Ravi Pankaj (MTC0520) 

Under Supervision of Prof. Rana Barua 

1 Introduction  
 

 Elliptic curve cryptography (ECC) has occupied the centre stage of public key 

cryptography research because of its relatively small key-length and enhanced theoretical 

robustness. The reason behind these is the fact that there is no known algorithm to solve 

elliptic curve discrete logarithm problem (ECDLP) even in sub exponential time. Hence 

it is believed that a 160-bit ECC key can provide the same level of security as an 80-bit 

symmetric – key for block ciphers or a 1024-bit RSA modulus. This is a major device 

with limited hardware resources as smart cards, cell phones or PDAs.  The efficiency of 

an ECC implementation depends largely on the scalar multiplication computed. It is the 

computation of the point 
m

i
PmP

1
, for a given point P on the curve and an integer m.  

Enormous efforts have been devoted to accelerate and secure this operation. 

       Among the various methods proposed for efficient and secure implementation of 

exponentiation, the window-based methods occupy a special place.  In the present work 

we propose a new window-based scalar multiplication algorithm where the scalar is 

represented in double-base number system (DBNS). DBNS is a number representation 

scheme, which uses 2 radii to represent integers. In this work we use 2 and 3 as radii. In 

this work we show that the terms of DBNS representation can be grouped together in 

small windows to reduce the number of addition further. 

We use 2 and 3 as the base of the DBNS representation. That is because, in ECC, we 

have efficient formulas to compute doubling and tripling of elliptic curve points.  Thus 

the exponent is represented as a sum of terms of the form tb32 . In this work we have 

proposed algorithms to convert an integer in to a suitable DBNS representation. Though 

we use greedy algorithm, but it will be used for those integer which falls in a window. 

That will decrease search time up to great extent.  We store some pre computed points 



which can be used while calculation of [n] P.  Finally for our representation of  n we 

have proposed algorithm to compute [n] P.   

2 Methodology 
 

Our goal is that for given an integer k and an elliptic curve point P, we have to compute 

kP. Efficiency of the scalar multiplication depends largely upon efficiency of the 

algorithms used for group arithmetic and representation of the scalar. we have proposed 

an efficient and secure scalar multiplication algorithm based on double-base chains. We 

use new window method to find double-base representation. 

The whole task is  divided in two parts: i) finding a representation of n, using windows of 

2 and 3 and ii) computing scalar multiplication using the obtained representation. 

2.1 Finding representation of n 

Let   32 max,max  be the maximum powers of 2 and 3 to occur in the DBNS 

representation.  The selection of bounds of 32 max,max  and the dimension of windows 

effects the DBNS representation greatly, so appropriate selection of 32 max,max   and 

window size is needed. Thus the task is divided into two parts: i) finding appropriate 

maximum bounds and ii) finding appropriate window dimension. 

Finding appropriate maximum bounds 

We can find the suitable bounds of binary and ternary exponents.  The method is 

heuristic, but the bounds are significantly much less and work better. 

Window selection 

After getting the maximum bounds for binary and ternary exponents, the window is 

selected in such a way that each window should be of same length. For that we break 

entire range (bounds) in  parts. Each part will be called a window. Let 32 , wandw are 

the window length of base 2 and 3. 

As we get the maximum bounds of exponents of binary and ternary radii, and valid 

window size, we need to represent n in double- base number system. We have proposed 

a new way to achieve this task. For correctness of our representation we proved 3 

propositions. 



We represent  n  in (DBNS) according to our format is : 

       
02

2

1

1 )32()32( 3232 MMMn
wwww    

where  .32,,,0 32

021

ww
MMM  Here all iM ’s fall  in a particular window. 

We now use greedy algorithm to find the DBNS representation of iM ’s. 

2.2 Calculation of complexities  

We will calculate the complexity of average number of inverse, square and multiplication 

applied in calculating scalar multiplication. Suppose on average there are t number of 

terms needed to represent iM ’s in a given window. Writing n according to  Horner’s rule. 

021 )))(32((32 3222 MMMn
wwww   

As we can see that for calculating nP, there will 2)1( w  doublings, 3)1( w  triplings 

and 1t  addition needed. Let there are  iii adtd ,,  no. of inverses, mmm adtd ,,  no. of 

multiplications and sss adtd ,,  no. of square needed in doubling, tripling and addition 

respectively. Then for calculating nP the total number of inverses, multiplication, square 

and addition required are:  

   Average number of inverses =   ))(1(}){1( 32 iii adttwdw  

   Average number of Squares=  ))(1(}){1( 32 sss adttwdw  

   Average number of multiplication= ))(1(}){1( 32 mmm adttwdw . 

Here we assume that there are t terms on an average present in 'jM s, which cause and 

addition overhead of 1t  additions.  If we store all values of sM j '  which ranges 

from 1 to 132 32 ww
 in a table say mT , then we can save computation for calculating PM j  

. Now the probability of having non-zero jM  is 3232 32/)132(
wwww

.Thus we need the 

following costs: 

        Average no. of inverses = ))(32/)132((}){1( 3232

32 i

wwww

ii adtwdw  

        Average no. of squares = ))(32/)132((}){1( 3232

32 s

wwww

ss adtwdw  

        Average no. of Multiplication = ))(32/)132((}){1( 3232

32 m

wwww

mm adtwdw  

We have static storage table  mT where all the value of tbm 32 , 



32 0,0 wtwb  such that tbm tbT 32),( .  We will also need to calculate PM j . 

We can use the static table mT  to calculate PM j and store in a table say prT . 

2.3 Finding Scalar multiplication Pn][   

We use the following steps: 

1. To represent n we calculate 'jM s first. 

2.  Now we find out PM j ][ . We need the DBNS representation of jM ’s which can be 

obtained by greedy algorithm using. In the greedy algorithm we use the table mT  for 

quick representation. Once we get the representation we can calculate PM j ][  by 

looking at the precomputed points stored in prT .    

3. Now to compute [n] P, we use the value PM j ][  by using w-doubling and w-tripling. 

3 Conclusion and Future Scope 

The DBNS representation computed by conversion algorithms reported in literature is not 

suitable for our window based method. Hence we have proposed a new algorithm to 

convert a given integer to a suitable DBNS format. In Earlier proposed method  the 

conversion scheme searching space is more for finding best approximation to the integer 

n .Also the maximum bounds of exponents of binary and ternary has been chosen 

suitably which are much reasonable. Hence the search space becomes smaller. The 

selection of length of window has also been made reasonably, which satisfy our validity 

criteria. Our conversion scheme is fast, as our searching task for the nearest DBNS integer 

is being done in a particular window, which is relatively small. The format obtained so 

far allow us to have less space to store some precomputed points which increase speed of 

calculation. The proposed algorithms can be extended to multi-base number system 

(MBNS)  
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Chapter 1 

 Introduction 

 

 

 

Elliptic curve cryptography (ECC) has occupied the centre stage of public key 

cryptography research because of its relatively small key-length and enhanced theoretical 

robustness. The reason behind these is the fact that there is no known algorithm to solve 

elliptic curve discrete logarithm problem (ECDLP) even in sub exponential time. Hence 

it is believed that a 160-bit ECC key can provide the same level of security as an 80-bit 

symmetric – key for block ciphers or a 1024-bit RSA modulus. This is a major device 

with limited hardware resources as smart cards, cell phones or PDAs.  The efficiency of 

an ECC implementation depends largely on the scalar multiplication computed. It is the 

computation of the point 
m

i
PmP

1
, for a given point P on the curve and an integer m.  

Enormous efforts have been devoted to accelerate and secure this operation. 

 

      Among the various methods proposed for efficient and secure implementation of 

exponentiation, the window-based methods occupy a special place. For exponentiation of 

a group element in general exponentiations, the window based methods are the fastest. 

These methods require precomputations and may not be suitable for devices, where 

memory resources are very low. 

 

       The computation of scalar multiplication is also target of adversaries, who use side-

channel information to attack cryptosystems. These attacks, instead of attacking the 

underlying hard problem of a cryptographic protocol, recreate vital information of the 

cryptosystem, by sampling and measuring side channel information like computation 

time, the power consumption or the electromagnetic radiation traces. These informations 

can reveal vital information to the attacker in a straight forward implementation. Many 
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proposal have been made in literature to prevent the attacker from obtaining any 

substantial data from the side-channel to endanger the security of a cryptosystem. 

       In the present work we propose a new window-based scalar multiplication algorithm 

where the scalar is represented in double-base number system (DBNS). DBNS is a 

number representation scheme, which uses 2 radii to represent integers. In this work we 

use 2 and 3 as radii. For scalar multiplication, inherent sparseness of this representation 

scheme leads to fewer point addition than the double-and-add methods. In this work we 

show that the terms of DBNS representation can be grouped together in small windows to 

reduce the number of addition further. 

 We use 2 and 3 as the base of the DBNS representation. That is because, in ECC, we 

have efficient formulas to compute doubling and tripling of elliptic curve points.  Thus 

the exponent is represented as a sum of terms of the form tb32 . In this work we have 

proposed algorithms to convert an integer in to a suitable DBNS representation. Though 

we use greedy algorithm, but it will be used for those integer which falls in a window. 

That will decrease search time up to great extent.  We store some pre computed points 

which can be used while calculation of [n] P.  We have proposed how to store those 

points efficiently. Finally for our representation of n we have proposed algorithm to 

compute [n] P.  In general other bases may also be used. 
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Chapter 2  

Elliptic Curve Cryptography in a Public-Key 

Cryptosystem

 

2.1 Elliptic Curves over Real Numbers 

 

Elliptic curve over real number is defined as the set E of solutions (x, y) RR  to 

the equation 

                        

                                                   baxxy 32                                                 (1.1) 

 

Where Rba,  are constants such that 0274 23 ba .  There is a special point  

called the point at infinity. 

 

     The condition 0274 23 ba  is necessary and sufficient to ensure that the 

equation has three distinct roots. Such elliptic curves are known as non-singular 

elliptic curves. If 0274 23 ba  then the corresponding elliptic curve is called a 

singular elliptic curve. 

 

We define a binary operation over a non-singular elliptic curve E which makes E  

into an abelian group. This operation is usually denoted by addition. The point at 

infinity, O, will the identity element, so P+O = O+P = P for all P E. 

 

     There are three cases arise when we add two points P, Q E, where P ),( 11 yx  

and ),( 22 yxQ . 
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             1.     21 xx  

             2.    21 xx  and 21 yy  

             3.     21 xx  and 21 yy  

 

      For  case 1, we define a line L through P and Q. L intersects E in the two points P and 

Q, and it is easy to see that L will intersect E in one further point, which we call R .If we 

reflect R in the z-axis, then we get a point which we name R. We define P+Q = R. We 

can find out the formula to compute R. We can write the equation of  as   xy ,   

where the slope of L is  

 

12

12

xx

yy
, 

and  

2211 xyxy . 

 

In order to find the intersection points of E and L, we substitute xy  in to the 

equation for E, we get the following: 

 

 

baxxx 32)( , 

 

Which is the same as   

 

                      0)2( 2223 bxaxx                                                     (1.2) 

 

     The roots of the above equation give the x-co-ordinate of the intersection points of E   

and L. Since we have already two points P and Q .Hence 1x  and 2x are the roots of 

equation (1.2). 
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        The equation (1.2) is cubic in x and two of its roots namely 1x  and 2x are real then 

third of its roots must be real, say 3x .The sum of the three roots must be the negative of 

the coefficient of the quadratic term, or 2 .There for 

 

21

2

3 xxx . 

 

3x  is the x-co-ordinate of the point R . We will denote the y-co-ordinate of R  by 3y , 

so the, so the y-co-ordinate of R will be 3y . Now the slope of line L can be determine by 

any two points on L. If we use the points ),( 11 yx and ),( 33 yx  to compute the slope , 

we get 

13

13

xx

yy
 

 

or, 

1313 )( yxxy . 

 

Thus we have formula for P+Q in case 1:  if 21 xx , then ),(),(),( 332211 yxyxyx , 

where  

 

22

12

1313

21

2

3

,)(

,

xx

yy

yxxy

xxx

 and 

    Case 2.  where 21 xx   and  21 yy   is simple: we define Oyxyx ),(),(   for 

all Eyx ),(  .There for(x, y) and (x, -y) are inverses with respect to the elliptic curve 

addition operation. 
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    Case 3. In this case we are adding a point ),( yxP   to itself. We assume that 01y , 

for then we would be in case 2. Here we compute slope with the help of calculus. The 

slope of L can be computed using implicit differentiation of the equation of E:  

 

.32 2 ax
dx

dy
y  

Substituting 11, yyxx , we have the slope of the tangent  

.
2

3

1

2

1

y

ax
 

The rest of analysis in this case is the same as in case 1.The formula obtained is identical, 

except that  is computed differently. 

 

There are some properties of the addition operation as defined above are: 

 

        1.  addition is closed on the set E 

        2.  addition is commutative, 

        3.  O is an identity with respect to addition, and 

        4.  Every point on E has an inverse with respect to addition. 

 

      It is quite messy to prove that (E +) is associative by algebraic methods, and hence it 

is an abelian group. 

 

2.2 Elliptic Curves Modulo a Prime  

             Let p>3 be prime. The elliptic curve baxxy 32
 over pZ is the set of 

solution pp ZZyx ),( to the congruence 

 

                                                ),(mod22 pbaxxy                                              (1.3)  
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where pZba,  are constants such that )(mod0274 22 pba ,together with a special 

point O called  the point at infinity. 

 

The addition operation on E is defined as follows (where all arithmetic operations are 

performed in pZ ): Suppose 

 

),( 11 yxP  

and  

),( 11 yxQ  

are points on E. If  12 xx  and 12 yy , then P+Q = O: otherwise P+Q = ( ),, 33 yx  

where 

 

1313

21

2

3

)( yxxy

xxx
 

 

and  

 

QPifyax

QPifxxyy

,)2)(3(

,))((

1

1

2

1

1

1212
         

 

Finally, define  

P+O = O+P =P 

 

for all EP . 

 

   The same formula can be used to define addition as we defined on the elliptic over 

reals. The pair (E, +) still forms an abelian group. 
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2.3 Discrete Logarithm Problem 

      

         Let (G, . ), be a multiplicative group and an element G  having order n, and an 

element .Then we define Discrete Logarithm  Problem as to find the unique 

integer a, 10 na , such that 

a   . 

 

We will denote this integer a by log .  

          The utility of the Discrete Logarithm problem in cryptographic setting is that 

finding discrete logarithm is (probably) difficult, but the inverse operation of 

exponentiation can be computed efficiently by using the square-multiply method 

 

2.4 ElGamal Public-key Cryptosystem in 
*

pZ  

 

     Let p be a prime such that the Discrete Logarithm problem in ),(
*

pZ is infeasible, 

and let
*

pZ , be a primitive element. Let ,
*

pZ ,
**

pp ZZC and define 

 

)}(mod:),,,{( pap a
 

The value p,  and are the public key, and a is private key. 

 

For ),,,,( ap and a (secret) random number 1pZk , define encryption function 

 

),,(),( 21 yykxe  

 

where  

 

py k mod1  
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and  

 

.mod2 pxy k  

 

for
*

21, pZyy , define decryption function 

 

.mod)(),( 1

1221 pyyyyd
a

 

 

A necessary condition for the ElGamal Cryptosystem to be secure is that the Discrete 

Logarithm problem in 
*

pZ  is infeasible. This generally regarded as being the case if p is 

carefully chosen and  is a primitive element modulo p. In particular, there is no known 

polynomial-time algorithm for this version of the Discrete Logarithm problem. 

 

2.5 The Elliptic Curve Discrete Logarithm Problem 

      

     Let E be the curve over some finite field, qF . Let n denotes the order of the group 

)( qFE  and let P denotes an element of )( qFE .The elliptic curve discrete logarithm 

problem (ECDLP) on E is, given PQ , find the integer, m, such that  

 

Q = [m] P. 

 

 

 

 

 

 

 



 16 

 Chapter 3  

Point Arithmetic on Elliptic Curves 

 

The basic building blocks of an elliptic cryptosystem over qF  are computation of the 

form 

 

  
timesk

PPPPkQ ][  

 

 where P is curve point, and k is an arbitrary integer in the range )(1 Pordk . The 

strength of the cryptosystem lies in the fact that given the curve, the point P (be it fixed 

or arbitrary) and [k] P, it is hard to recover k, which is elliptic curve discrete logarithm 

problem (ECDLP). 

 

3.1 Point Addition 

       Depending on the characteristic of the underlying field the formulae for the group 

law take on different forms. We analyse the computational complexity of these formulae 

separately for characteristic p > 3, and for characteristic two. 

 

 3.1.1 Fields of Characteristic p > 3. 

 Affine Coordinates. 

       The point addition on an elliptic curve 

 

baxXYE 32:  
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with n

q pqFba ,, , p a prime greater than three. Let ),( 111 yxP and ),( 222 yxP  

be points in )( qFE  given in affine coordinates, and where some convention is used to 

represent the point at infinity, O. Assume OPP 21 ,  and 21 PP , conditions that are all 

easily checked. The sum 21333 ),( PPyxP can be computed as follows. 

  

    If 21 PP , 

1313

21

2

3

12

12

)(

,

yxxy

xxx

xx

yy

 

 

 

 

If 21 PP  

1313

1

2

3

1

2

1

)(

,2

,
2

3

yxxy

xx

y

ax

 

 

 

When ,21 PP  the computation requires one field inversion and three field 

multiplications. We will denote this computational cost by 1I+3M, where I and M denote, 

respectively, the cost of field inversion and multiplication. Squaring is counted as regular 

multiplications. When 21 PP , the cost of the point doubling is I + 4M. we neglect the 

cost of field addition, as well as the cost of multiplication by small constants. 

 

Projective coordinates: 

 In the case where field inversions are significantly more expensive than multiplications, 

it is efficient to implement projective coordinates. A projective point (X, Y, Z) on the 

curve satisfies the homogeneous Weierstrass equation 
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,3232 bZaXZXZY  

and when 0Z , it corresponds to the affine point (X/Z, Y/Z). There are other projective 

representations. We will prefer a weighted projective representation which is also referred 

as jacobian representation. A triplet (X, Y, Z) corresponds to the affine coordinates 

)/,/( 32 ZYZX whenever 0Z . This equivalent to using a weighted projective curve 

equation of the form  

6432 bZaXZXY  

The point at infinity O is represented by any triplet
*32 ),0,,( qF . 

      Conversion from affine to projective coordinates is trivial, while conversion in other 

direction costs 1I + 4M. Inversion is costless operation however it increases the number 

of multiplications, so the appropriateness of using projective coordinates is strongly 

determined by the ration I: M. 

Let ),,( 1111 ZYXP  and ),,( 2222 ZYXP  , and their sum be ),,( 3333 ZYXP  in 

projective coordinates. We assume that OPP 21 , and that 21 PP .According to IEEE 

P1363 draft standard, the total cost for general point addition comes out to be 16M and 

the point doubling computation costs 10M.  This can be reduced to 8M when 3a  The 

following table gives the summaries  

 

Table 1 :Cost of point addition, characteristic p>3 

 

Operation Coordinates 

Affine Projective 

General addition 1I +3M 16M 

Doubling(arbitrary a) 1I +4M 10M 

Doubling(a=-3) 1I +4M 8M 
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3.1.2 Fields of characteristic two. 

      

Affine Coordinates.  

     

The point addition on an elliptic curve  

 

6

2

2

32: aXaXXYYE  

                             

with   .0,2,, 662 aqFaa n

q
 Let ),( 111 yxP and ),( 222 yxP   be points in 

affine coordinates, where some convention  is used to represent the point at infinity O. 

Assume OPP 21 ,  and 21 PP . The sum 21333 ),( PPyxP is computed as follows.                                                     

If    ,21 PP             

13313

221

2

3

21

21

)(

,

,

yxxxy

axxx

xx

yy

 

 

If 21 PP  

13313

2

2

3

1

1

1

)(

,

,

yxxxy

ax

x
x

y

 

                                                  

 

In either case, the computation requires on field inversion, two field multiplications, and 

in squaring, or 1I + 2M +1S. In the case of characteristic two, the cost of squaring 

operation, denoted by S, is much lower than that of general multiplication. Therefore, 

squarings are counted separately, and in fact, we will later on neglect their cost 

completely. 
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Projective coordinates. 

 As in the case of characteristic p >3, we will use weighted projective coordinates where 

a projective point ),,( ZYX , 0Z , maps to affine point )/,/( 32 ZYZX . This 

corresponds to using weighted projective curve equation of the form 

 

.6

6

2232 ZaZaXXXYZY  

Conversion from projective to affine coordinates costs, in this case 1I +3M+1S. 

According to IEEE [P1363] draft standard, the total cost for general point addition comes 

out to be 15M + 5S. This is reduced to 14M + 4S when 02a .The point doubling 

computation costs 5M +5S. Since squaring is much faster than general multiplication in 

characteristic two, point doubling in projective coordinates is close to three times as fast 

as general point addition.  

 

Table 2: Cost of point addition, characteristic two 

 

Operation Coordinates 

Affine Projective 

General addition )0( 2a  1I +2M+1S 15M+5S 

General addition ( )02a  1I +2M+1S 14M + 4S 

Doubling 1I +2M+1S 5M +5S 

 

3.2 New Point Arithmetic Results 

There are several efficient algorithms to compute Addition (ADD), Doubling (DBL), 

Tripling (TPL), w-Doubling (w-DBL), Doubling and addition (DA), Tripling and 

Addition(TA), Mixed-addition(mADD), window-Doubling(w-DBL), window-Tripling 

(w-TPl) in affine and jocobian coordinates. The complexity of their calculations will be 

used in our proposed work. Some of them are listed below with appropriate references.         
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 Table 3: Cost of various Elliptic Curve group operations.  

 

Operations Output For  )(
2mFE  For )( pFE  

proposed Cost proposed Cost 

),(

)(

),(

)(

),(

),(

)(

QPTA

TPLw

PTPL

QPDA

PDBLw

QPmADD

QPADD

PDBL

 

QP

P

P

QP

P

QP

P

w

w

3

3

3

2

2

2

 

- 

- 

- 

 

[5] 

[6] 

[6] 

 

- 

[6] 

 

    

][9][2

][7][1

][9][1

])[24(][1

][2][1

][2][1

mi

mi

mi

mwi

mi

mi

 

- 

- 

[4] 

 

[7] 

- 

[8] 

 

[8] 

- 

 

])[111(])[24(

][6][10

])[24(][4

]8][3

][12][4

][4][6

swmw

sm

swmw

ms

ms

ms

 

 

The costs for curves over binary fields ))((
2mFE  are in affine coordinates. Those for 

curves over prime fields ))(( pFE  are in Jcobian coordinates. 
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 Chapter 4 

Scalar Multiplication Using Double-Base Number 

System  

 

 All elliptic curve discrete logarithm problems (ECDLP) based cryptographic primitives, 

like encryption, decryption, Signature generation and verification; need the operation of 

scalar multiplication. Given an integer k and an elliptic curve point P, it is the operation 

of computing kP. Efficiency of the scalar multiplication depends largely upon efficiency 

of the algorithms used for group arithmetic and representation of the scalar. In this 

chapter, we propose an efficient and secure scalar multiplication algorithm based on 

double-base chains. We use new window method to find double-base representation. 

 

4.1 Double-Base number System 

 

The Double-base number system (DBNS)[9] is a representation scheme in which every 

positive integer k is represented as the sum or difference of {2, 3}-integers (i.e., numbers 

of the form tb32 ) as  

m

i

tb

i
iisk

1

32  , with }1,1{is , and 0, ii tb          

This number representation is highly redundant and most of these representations are 

useless. Suitably chosen representation gives better result. So we are interested in a 

special representation with restricted exponents. The most important theoretical result 

about the double-base number system is the following theorem which is proved in [10] 

 

 

Theorem 1. Every positive integer k can be represented as the sum of at most 

k

k
O

loglog

log
{2, 3}-integers. 
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Table 4: number of double-base representation of small numbers  

 

                               

 

 

 

 

 

 

 

 

 

We can see that for small number such a large number of double-base representations 

exist.    Several methods have been proposed to get suitable representation of n .one of 

them is greedy algorithm, but the searching space for best approximation is too large. A 

modification of the greedy algorithm is also being in practice, in which the search space 

for best approximation is reduced to the size of the window. The liberty to choose 

exponents of 2 and 3 in particular window gives a short representation of a number n. 

The main advantage of doing this is keeping window size small our search for best 

approximation becomes fast. But instead of using modified greedy algorithm for finding 

a double-base representation we have proposed new method to find out the DBNS 

representation. Here is greedy algorithm. 

 

Algorithm1. Greedy Algorithm for conversion into DBNS 

Input: k a positive integer; max2, max3, >0, the largest allowed binary, ternary exponents 

           and the array T[0…max2; 0……max3] 

Output: The sequence (si ,bi,,ti)i>0 such that  
m

i

tb

i
iisk

1
32 ,  

1. s 1 

2. while k >o do 
3.    for(b=0 to max2,t=0 to max3) 

         z = T[b,t], the best approximation of k 

   4.      print(s,b,t) 

   5.      max2 b, max3 t, 

   6.      if(k < z) then 

   7.         s s  

   8.      zkk  

 

N B = {2, 3} 

10 

20 

50 

100 

150 

200 

300 

5 

12 

72 

402 

1296 

3096 

11820 
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4.2 Proposed Window–based method for scalar multiplication 

        

    This section is divided in two parts: i) finding a representation of n, using windows of 

2 and 3 and ii) computing scalar multiplication using the obtained representation. 

 4.2.1 Finding representation of n 

           

 As DBNS is two dimensional representations, the windows are two dimensional too. Let   

32 max,max  be the maximum powers of 2 and 3 to occur in the DBNS representation. 

For example, for 160 bit-integer the maximum value of max2 and max3 can be 160 and 

103 respectively. But looking at greedy algorithm this will give large search space. The 

selection of bounds of 32 max,max  and the dimension of windows effects the DBNS 

representation greatly, so appropriate selection of 32 max,max   and window size is 

needed. Thus the task is divided into two parts: i) finding appropriate maximum bounds 

and ii) finding appropriate window dimension. 

   

Finding appropriate maximum bounds 

As we have seen in greedy algorithm the searching depends largely on the maximum 

bounds max2, and max3.We can find the suitable bounds of binary and ternary 

exponents.  The method is heuristic, but the bounds are significantly much less and 

work better. Let n an r-bit integer, then maximum value of n will be 12 1r . So, 

 

1maxmax
232 32 r

 , 

Assuming 11 212 rr  or, taking logarithm both side  

                                                      13logmaxmax 232 r                                 (3.1) 

The smallest value of 32 maxmax and  which satisfy equation (3.1) will give the bounds 

of binary and ternary exponents.  
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Window selection 

 After getting the maximum bounds for binary and ternary exponents, the window is 

selected in such a way that each window should be of same length. For that we break 

entire range (bounds) in  parts. Each part will be called a window. Let 32 , wandw are 

the window length of base 2 and 3. 

 

                                                        22max w                                                       (3.2) 

                                                          33max w                                                        (3.3) 

Substituting equation (3.2) and (3.3) in equation (3.1), we get 

                                                  1)3log( 232 rww                                            (3.4) 

The equation (3.1) suggests that given a number of r-bit size, we can approximate the 

value of max2 and max3. With the help of equation (3.2) or (3.3) we can find number of 

partitions for different value of w2 and w3. Equation (3.4) is validity criteria for the 

values of windows. Thus we can find pairs of valid window values which satisfy (3.4). 

For different value of w2 and w3 we have find out the number of partitions. For r = 160 

bit there is a table which shows the number of partitions for different number w2 and w3. 

 

Now we finally move on, how the number n will be represented with proposed window 

double base number system. 

 Let w2 and w3 be the window size for binary and ternary exponents. 

 

Preposition 1: Let m be a number such that  32 321
ww

m  and the best approximation 

of m be tb32 , where 32 0,0 wtwb  then mmk tb32  

 Proof:  Case 1: If b = t =0 then mm 1 . 

              Case2: Let mmk tb32 . Take mmk 1 , then tb32  will not be the   

                          integer to m , a contradiction.      
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Preposition 2:  Let w2 and w3   be the window size and m be a positive integer such that 

32 320
ww

m  can be represented as 
j

tb

j
jjs 32   where }1,0,1{js  and 

32 0,0 wtwb jj    

Proof:  Case 1: If m = 0  , put  j = 1 and    js = 0  .     

             Case 2: If 32 321
ww

m   then by Preposition 1, there exists an integer tb32       

                          such that  

                         132 mmk tb , where 32 0,0 wtwb  

                          Put s = 1, if 0)32( tbm   else 1s , if 0)32( tbn . Since k has  

                          been decreased, we apply the same procedure on k  till  k  becomes 0. 

                                                                                                                            

Preposition 3: Every integer 32 320
ww

n  can uniquely be represented as 

.32,,,0

3232

32

3232

021

02

2

1

1

ww

wwww

MMM

thatsuchMMMn




 

Proof: We first show that this kind of representation exists. 

Let
1

1

1 )32( 32 RMn
ww , where 1

1 )32(0 32 ww
R . 1M  should be strictly 

less than 32 32
ww

 i.e. 32 320 1

ww
M  , otherwise )32( 32 ww

n . Similarly  

2

22

2

21 )32(0,)32( 3232 wwww
RwhereRMR  

and 32 320 2

ww
M  

  

  

)32(0,)32( 3232

11

1

12

wwww
RwhereRMR  

and  32 320 1

ww
M . 

 

.320, 32

001

ww
MwhereMR  

 Thus we get the desired representation. 

 Now we show that the is unique representation of n. 
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  Let 
02

2

1

1 )32()32( 3232 MMMn
wwww    and  

02

2

1

1 )32()32( 3232 MMMn
wwww     be two different representations 

of  n .i.e. there exist at least one ii MM  for some 10 i . Thus , 

0)()()32()()32( 0022

2

11

1 3232 MMMMMM
wwww   

This shows that 32 32
ww

 is the root of equation 

0)()()( 00

2

22

1

11 MMXMMXMM                         (3.5) 

 Let  f  be the degree of polynomial  

)()()( 00

2

22

1

11 MMXMMXMM   

i.e. 0)( ii MM  for all i > f. The integral roots of the above equation (3.5) are in the 

form of )( 00 MMoffactorsome  if 0)( 00 MM , but  

3232 32)(32 00

wwww
MM , so  32 32

ww
can not be the root of equation (3.5). If 

0)( ii MM , then equation (3.5) reduces to  

          0)()()( 11

3

22

2

11 MMXMMXMM                      (3.6) 

Applying same method as above, we will get jj MM  for all 10 j . Hence 

proved. 

 

Preposition 3 gives a suitable representation of n. It suggests that finding the 

representation of  021 ,, MMM   in window size w2 and w3 in double base is 

sufficient to represent n. Now finding the representation of iM ’s in double base number 

system in the window size w2 and w3 is easy. We can apply greedy algorithm which has 

been given in Algorithm 1. Just we need to search the best approximation in a window w2 

and w3. The only change that we need to make is to change max2 to w2 and max3 to w3, 

and the static storage space is changed to T [0…w2; 0……w3]. Finding double base 

representation in window (which relatively very small compare to maximum bound) 

becomes faster and static table size will be much smaller. 

 

 



 28 

4.3 Calculation of complexities  

 

We will calculate the complexity of average number of inverse, square and multiplication 

applied in calculating scalar multiplication. We have  partition of maximum bounds of 

each binary and ternary exponent. By preposition 3 we get that any integer n can have at 

most  terms in our proposed representation scheme. Suppose on average there are t 

number of terms needed to represent iM ’s in a given window.  

Then for   32 320
ww

n , 

021 )))(32((32 3222 MMMn
wwww   (Horner’s rule)                    (3.7)      

As we can see that for calculating nP, there will 2)1( w  doublings, 3)1( w  triplings 

and 1t  addition needed. 

Let there are  iii adtd ,,  no. of inverses, mmm adtd ,,  no. of multiplications and 

sss adtd ,,  no. of square needed in doubling, tripling and addition respectively. Then for 

calculating nP the total number of inverses, multiplication, square and addition required 

are:  

   Average number of inverses =   ))(1(}){1( 32 iii adttwdw  

   Average number of Squares=  ))(1(}){1( 32 sss adttwdw  

   Average number of multiplication= ))(1(}){1( 32 mmm adttwdw . 

Here we assume that there are t terms on an average present in 'jM s, which cause and 

addition overhead of 1t  additions.  If we store all values of sM j '  which ranges 

from 1 to 132 32 ww
 in a table say mT , then we can save computation for calculating PM j  

. Now the probability of having non-zero jM  is 3232 32/)132(
wwww

.Thus we need the 

following costs: 

        Average no. of inverses = ))(32/)132((}){1( 3232

32 i

wwww

ii adtwdw  

        Average no. of squares = ))(32/)132((}){1( 3232

32 s

wwww

ss adtwdw  

        Average no. of Multiplication = ))(32/)132((}){1( 3232

32 m

wwww

mm adtwdw  
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4.4 Finding Scalar multiplication Pn][   

 

 After finding the representation of n in the form of equation (3.7), we will choose some 

dimension   of window. We have static storage table  mT where all the value of tbm 32 , 

32 0,0 wtwb  such that tbm tbT 32),( .  Cleary the size of table will be 

O(w2*w3). We will also need to calculate PM j . We can use the static table mT  to 

calculate PM j and store in a table say prT . This table will be of same size as that of mT . 

The entries of the table prT  will be like PqbT tb

pr ]32[),( , where P is a point on an 

elliptic curve E (algorithm 2). Clearly we are storing more pre computed points, but it 

will save the computation up to a great extent.  The total storage size will  be O(w2*w3), 

which is quite less, since we will have small window dimension compare to maximum 

bounds of the exponents of binary and ternary. The computation of precomputed points in 

prT  may becomes higher, but it can be reduced if we use recursive computation, as : 

PP tbtb ]]32[2[]32[ 1
 and PP tbtb ]]32[3[]32[ 1

. Algorithm 2 gives method to 

form prT . 

 

Now we are approaching towards calculation of [n] P.  In algorithm 5 we have the given 

pseudo code to obtain this task. We use the following steps : 

1. To represent n we calculate 'jM s first. Algorithm 3 tells how to calculate. 

2.  Now we find out PM j ][ . We need the DBNS representation of jM ’s which can be 

obtained by greedy algorithm using algorithm 1. In the greedy algorithm we use the 

table mT  for quick representation. Once we get the representation we can calculate 

PM j ][  by looking at the precomputed points stored in prT .    Pseudo code is given in 

algorithm 4. 

3. Now to compute [n] P, we use the value PM j ][  by using w-doubling and w-tripling. 

The pseudo code is given in algorithm 5 
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Algorithm2. Generating  static table  for precomputed  points( prT ) 

Input: dimension of window w2, w3 for 2 and 3 respectively and a point P on an elliptic  

             Curve E. 

Output: An array prT ( i, j, )  such that PjiT ji

pr ]32[),(  where 32 0,0 wjwi  

1.  PTpr ]0,0[   

2.   0i  

3.  0j  

4.   while 3wj  do 

5         ]],[[3]1,[ jiTjiT prpr  

6.           1jj  

7.  0i  

8. 0j  

9.     while 13wj  do 

10.         while 2wi   do 

11.               ]],[[2],1[ jiTjiT prpr  

12.                 1ii  

13.       1jj  

14. return prT  
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Algorithm 3. To find 'jM s 

Input: the integer number n such that )32(0 32 ww
n  for a given window length    

           32 , ww  for 2 and 3 respectively and number of partition  

Output:   a sequence of ( 'jM ) j>0 such that jww

j jMn )32( 32
1

1
, where 

32 320
ww

jM  for all 10 j  

  

1.  1j  

2.  nR  

3  
1)32( 32 ww

X  

4.  while j do 

5.        
X

R
M 1  

6.        XMRR j'  

7.        
32 32

ww

X
X  

8.         'RR  

9.          1jj  

10.       jMjA ][  

11.   return A. 

 

 

 

Algorithm4. Calculation of [m] P 

Input:   an integer m such that 32 320
ww

m , a point P on an elliptic curve E and prT  

Output: [m] P  

  

 1. A Algorithm 3( ),, 32 wwm  

 2.  )(AlengthL  

 3. (OP point at infinity on elliptic curve E) 

 4.  1i  

 5.  while Li do  

 6.         ][),,( iAtbs iii  

 7.          ),( jipri tbTsPP  

 8.           1ii  

 9.  return P 
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Algorithm5. Calculation of [n] P 

Input:  an integer n such that  )32(0 32 ww
n , a point P on an elliptic curve E, no. of    

            partition   and prT . 

Output: [n]P 

  

 1.  A Algorithm  3( ),,, 32 wwn  

 2.  OP (point at infinity on elliptic curve E) 

 3.  1i  

 4.   while )1(i do 

 5.      Q Algorithm 4 ( ),,,,1 32 prTPwwA  

 6.        QPP   

 7.        PP
w

]3[ 3  

 8.        PP
w

]2[ 2  

 9.        1ii  

10.   return P 
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Table 5: Average number of terms in a given window and partition for different      

    values   of  w2 ,w3. 

 

  

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2w  3w  Average no. terms\ no. of partitions 

0 

0 

0 

0 

1 

1 

1 

1 

2 

2 

2 

2 

3 

3 

3 

3 

4 

4 

4 

4 

5 

5 

5 

5 

0 

1 

2 

3 

0 

1 

2 

3 

0 

1 

2 

3 

0 

1 

2 

3 

0 

1 

2 

3 

0 

1 

2 

3 

 

0.000000 

1.000000 

1.777778 

2.481482 

0.500000 

1.166667 

1.722222 

2.240741 

1.000000 

1.416667 

1.888889 

2.268518 

1.375000 

1.708333 

2.097222 

2.458333 

1.750000 

1.979167 

2.333333 

2.668982 

2.093750 

2.218750 

2.552083 

2.878472 

 

 

102 

51 

34 

161 

63 

39 

28 

81 

45 

32 

24 

54 

36 

27 

21 

41 

29 

23 

19 

33 

25 

20 

17 
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Table 7: Cost of elliptic curve scalar multiplication for 160-bit integer using affine 

coordinates ( mF
2

-cost ) taking ( )1)(1 32 ww  number of storage points. 8]/[][ mi  

   

W2 W3 # storage Inverse [I] Multiplication [M] M  
4 

3 

3 

5 

 

2 

3 

2 

3 

15 

16 

12 

24 

118.666665 

130.625000 

133.625000 

111.934029 

721.33333 

721.25000 

735.25000 

719.86804 

1670.67[m] 

1766.25[m] 

1804.25[m] 

1615.34[m] 

 

Table 8: Cost of elliptic curve scalar multiplication for 160-bit integer using affine 

coordinates ( mF
2

-cost) taking 132 32 ww
number of storage points. 8]/[][ mi  

 

W2 W3 # storage Inverse [I] Multiplication [M] M  
4 

3 

3 

5 

 

2 

2 

3 

3 

143 

71 

215 

863 

87.8472 

103.6388 

99.9074 

79.9814 

659.6944 

625.2777 

659.8148 

655.9629 

1362.47[m] 

1504.48[m] 

1459.07[m] 

1295.81[m] 

Table 9: Cost of elliptic curve scalar multiplication for 160-bit integer using Jacobian 

coordinates ( mF
2

-cost) taking ( )1)(1 32 ww  number of storage points. 

80]/[][ ms  

 

W2 W3 # storage Square[S] Multiplication [M] M  
4 

3 

3 

5 

 

2 

2 

3 

3 

15 

11 

15 

71 

774.000 

790.875 

711.8750 

719.8020 

1235.3332 

1303.0000 

1285.0000 

1215.4721 

1854.57[m] 

1935.69[m] 

1854.50[m] 

1791.31[m] 
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Table 10: Cost of elliptic curve scalar multiplication for 160-bit integer using 

Jacobian coordinates ( mF
2

-cost) taking 132 32 ww
 number of storage points. 

80]/[][ ms  

 

 

W2 W3 # storage Square [S] Multiplication [M] M  
4 

3 

3 

5 

 

2 

2 

3 

3 

143 

71 

215 

863 

681.5416 

700.9166 

619.7222 

623.9445 

988.7777 

1063.1110 

1039.2592 

959..8518 

1534.01[m] 

1623.84[m] 

1535.07[m] 

1459.00[m] 

 

 

 

 

Comparison: 

 
In earlier proposed method [8] using double- chains the cost of complexity for computing 

scalar multiplication for 160- bit integer is   1863[m] . The coordinate used here is 

affine. The table7 shows our better result for the same coordinate system. We store very 

less number of precomputed points. Also the searching space for the best approximation 

to the given scalar is more in the earlier proposed method, where as the same task has 

been done in less amount of time ,because of  suitably chosen maximum bound, and 

window size.  
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  Chapter 5 

 Discussion and Conclusion 
 

In the present work, we have presented a window based method for computing ECC 

scalar multiplication using double-base number system DBNS representation of the 

scalar. The DBNS representation computed by conversion algorithms reported in 

literature is not suitable for our window based method. Hence we have proposed a new 

algorithm to convert a given integer to a suitable DBNS format. In Earlier proposed 

method [11] the conversion scheme searching space is more for finding best 

approximation to the integer n .Also the maximum bounds of exponents of binary and 

ternary has been chosen suitably which are much reasonable. Hence the search space 

becomes smaller. The selection of length of window has also been made reasonably, 

which satisfy our validity criteria. Our conversion scheme is fast, as our searching task 

for the nearest DBNS integer is being done in a particular window, which is relatively 

small. The format obtained so far allow us to have less space to store some precomputed 

points which increase speed of calculation. The proposed algorithms can be extended to 

multi-base number system (MBNS)  
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