Efficient Window-Based Elliptic curve Scalar Multiplication using Double base

Number Representation

Ravi Pankaj
mtc0520

Professor Rana Barua

STATISTICAL

R
Y = e)

. o J'“Ii.lll""‘" j.l e
Farslqum sgiam
[UNITY IN CIVERSITY]

Indian Statistical Institute,
Kolkata, 700 108

CERTIFICATE

This is to certify that the thesis entitled “Efficient Window-Based
Elliptic curve scalar Multiplication using Double base Representation” is
submitted in partial fulfillment of the requirement for the award of the
degree of the Masters in Technology in Computer science at Indian

Statistical Institute, Kolkata.

It is a faithful record of bona fide research work carried out by Mr.
Ravi Pankaj (mtc0521) under my supervision and guidance. It is further
certified that no part of thesis has been submitted to any other University or

Institute for the award of any Degree or Diploma.

(Professor Rana Barua)
Supervisor

Countersigned
External Examiner

Date: of July, 2007.

Acknowledgements
With great pleasure and sense of obligation | express my heartfelt
gratitude to my guide and supervisor Prof. Rana Barua of Stat-Math unit,
Indian Statistical Institute, Kolkata. | am highly indebted to him for his
invaluable guidance and ever ready support. His persisting encouragement,
perpetual motivation, everlasting patience and excellent expertise in
discussions, during progress of Project Work, have benefited to an extent,

which is beyond expression.

The chain of my gratitude would be definitely incomplete without
expressing my gratitude to all my batch mates, for their support and
encouragement throughout the entire M.Tech course. Lastly | sincerely
thank all my friends and well wishers who helped me directly or indirectly

towards the completion of this work.

Ravi Pankaj,

mtc0521,

Indian Statistical Institute,
Kolkata 700 108.

M.Tech. (Computer Science) Dissertation Series

Efficient Window-Based Elliptic curve Scalar Multiplication using

Double base Number Representation

a dissertation submitted in partial fulfillment of the
requirements for the M. Tech. (Computer Science)

degree of the Indian Statistical Institute

By
Ravi Pankaj
mtc0520

under the supervision of

Professor Rana Barua

e] 1

f=rlqum sgiam
[UNITY IN CIVERSITY]

INDIAN STATISTICAL INSTITUTE
203, Barrackpore Trunk Road
Kolkata- 700 108

Abstract

Exponentiation is the most basic operation in the implementation of all discrete logarithm
based cryptosystems. It translates to scalar multiplication, where the underlying group is
additive in nature. Window based methods are very efficient methods to compute
exponentiation. Double-base number system (DBNS) is a non standard number
representation scheme with many interesting and useful properties. In this work we have
proposed method for scalar multiplication where scalar (integer) is represented in DBNS
format. We have adopted new way to represent the scalar in DBNS format. For that we
have new algorithm to have representation in DBNS. This algorithm is faster than the
previous conversion algorithms. The proposed method is more efficient than its single
base counter part as well as straight double base part.

Synopsis of dissertation titled “Efficient window-based elliptic curve Scalar
Multiplication using Double base number representation”

Submitted by- Ravi Pankaj (MTC0520)
Under Supervision of Prof. Rana Barua

1 Introduction

Elliptic curve cryptography (ECC) has occupied the centre stage of public key
cryptography research because of its relatively small key-length and enhanced theoretical
robustness. The reason behind these is the fact that there is no known algorithm to solve
elliptic curve discrete logarithm problem (ECDLP) even in sub exponential time. Hence
it is believed that a 160-bit ECC key can provide the same level of security as an 80-bit
symmetric — key for block ciphers or a 1024-bit RSA modulus. This is a major device
with limited hardware resources as smart cards, cell phones or PDAs. The efficiency of

an ECC implementation depends largely on the scalar multiplication computed. It is the
computation of the point mP = zim:lP, for a given point P on the curve and an integer m.

Enormous efforts have been devoted to accelerate and secure this operation.

Among the various methods proposed for efficient and secure implementation of
exponentiation, the window-based methods occupy a special place. In the present work
we propose a new window-based scalar multiplication algorithm where the scalar is
represented in double-base number system (DBNS). DBNS is a humber representation
scheme, which uses 2 radii to represent integers. In this work we use 2 and 3 as radii. In
this work we show that the terms of DBNS representation can be grouped together in
small windows to reduce the number of addition further.

We use 2 and 3 as the base of the DBNS representation. That is because, in ECC, we
have efficient formulas to compute doubling and tripling of elliptic curve points. Thus
the exponent is represented as a sum of terms of the form+ 2°3". In this work we have
proposed algorithms to convert an integer in to a suitable DBNS representation. Though
we use greedy algorithm, but it will be used for those integer which falls in a window.

That will decrease search time up to great extent. We store some pre computed points

which can be used while calculation of [n] P. Finally for our representation of n we

have proposed algorithm to compute [n] P.

2 Methodology

Our goal is that for given an integer k and an elliptic curve point P, we have to compute
kP. Efficiency of the scalar multiplication depends largely upon efficiency of the
algorithms used for group arithmetic and representation of the scalar. we have proposed
an efficient and secure scalar multiplication algorithm based on double-base chains. We
use new window method to find double-base representation.

The whole task is divided in two parts: i) finding a representation of n, using windows of

2 and 3 and ii) computing scalar multiplication using the obtained representation.

2.1 Finding representation of n
Let max,, max, be the maximum powers of 2 and 3 to occur in the DBNS

representation. The selection of bounds of max, ,max, and the dimension of windows
effects the DBNS representation greatly, so appropriate selection of max,, max, and

window size is needed. Thus the task is divided into two parts: i) finding appropriate
maximum bounds and ii) finding appropriate window dimension.
Finding appropriate maximum bounds
We can find the suitable bounds of binary and ternary exponents. The method is
heuristic, but the bounds are significantly much less and work better.
Window selection
After getting the maximum bounds for binary and ternary exponents, the window is
selected in such a way that each window should be of same length. For that we break

entire range (bounds) in p parts. Each part will be called a window. Let w,, and w, are

the window length of base 2 and 3.

As we get the maximum bounds of exponents of binary and ternary radii, and valid
window size, we need to represent n in double- base number system. We have proposed
a new way to achieve this task. For correctness of our representation we proved 3

propositions.

We represent n in (DBNS) according to our format is :
n=(2"3")"*M _, +(2"3%)" M, +.....+ M,
where 0<M_,M_,,...,M; <2"3"% Hereall M;’s fall in a particular window.

We now use greedy algorithm to find the DBNS representation of M, ’s.

2.2 Calculation of complexities

We will calculate the complexity of average number of inverse, square and multiplication
applied in calculating scalar multiplication. Suppose on average there are t number of

terms needed to represent M, ’s in a given window. Writing n according to Horner’s rule.
n=2"3"(..(2%3%“(M_)+M ,)+..)+M,

As we can see that for calculating nP, there will (o —1)w, doublings, (o —1)w, triplings
and pt—1 addition needed. Let there are d,,t; ,ad; no. of inverses, d,, ,t, ,ad, no. of

multiplications and d,,t, ,ad; no. of square needed in doubling, tripling and addition

respectively. Then for calculating nP the total number of inverses, multiplication, square

and addition required are:
Average number of inverses = (o —D{w,d, + w,t; }+ (ot —1)(ad,)
Average number of Squares= (o —D{w,d, +w,t . }+ (ot —1)(ad,)
Average number of multiplication= (o —1){w,d +w;t_}+ (ot -1)(ad,) .
Here we assume that there are t terms on an average present in M ;'s, which cause and
addition overhead of pt -1 additions. If we store all values of M ;'s which ranges
from 1t02"3" —1 inatable sayT", then we can save computation for calculating M ;P
. Now the probability of having non-zero M is(2"3" -1)/2"3" Thus we need the
following costs:
Average no. of inverses = (p —D{w,d, + w,t,}+ ((2"3™ -1)/2"3")(ad,)
Average no. of squares = (p —1){w,d, +w,t }+ ((2"3"™ —-1)/2"3")(ad,)
Average no. of Multiplication = (p —1{w,d,, +w,t, }+((2"23" -1)/2"3")(ad,)

We have static storage table T ™where all the value of m = 2°3",

0<b<w,, 0<t<w, such that T"(b,t) =2"3". We will also need to calculate M iP.

We can use the static table T™ to calculate M ;P and store in a table sayT,, .

2.3 Finding Scalar multiplication [N]P

We use the following steps:

1. Torepresent n we calculate M ;'s first.
2. Now we find out[M;]P. We need the DBNS representation of M ;’s which can be

obtained by greedy algorithm using. In the greedy algorithm we use the table T™ for

quick representation. Once we get the representation we can calculate [M;]P by
looking at the precomputed points stored inT . .

3. Now to compute [n] P, we use the value [M;]P by using w-doubling and w-tripling.

3 Conclusion and Future Scope

The DBNS representation computed by conversion algorithms reported in literature is not
suitable for our window based method. Hence we have proposed a new algorithm to
convert a given integer to a suitable DBNS format. In Earlier proposed method the
conversion scheme searching space is more for finding best approximation to the integer
n .Also the maximum bounds of exponents of binary and ternary has been chosen
suitably which are much reasonable. Hence the search space becomes smaller. The
selection of length of window has also been made reasonably, which satisfy our validity
criteria. Our conversion scheme is fast, as our searching task for the nearest DBNS integer
is being done in a particular window, which is relatively small. The format obtained so
far allow us to have less space to store some precomputed points which increase speed of
calculation. The proposed algorithms can be extended to multi-base number system
(MBNS)

Contents

Chapter 1 INrOQUCTIONeeieiie ettt sre e e sre e 7
Chapter 2 Elliptic Curve Cryptography in a Public-Key Cryptosystem..........ccccocevvenens 9
2.1 Elliptic Curves over Real NUMDEFS.........ccov i 9
2.2 Elliptic Curves Modulo @ Primecccvieiieiicie e 12
2.3 Discrete Logarithm Problem ... 13
2.4 EIGamal Public-key Cryptosystem in Zp* ... 14
2.5 The Elliptic Curve Discrete Logarithm Problem............c.cccooeiiiiiiiiiiciee, 15
Chapter 3 Point Arithmetic on EIlPtic CUIVES.........ccoveiiiiiiiiieeeee e 16
K20 A =0T o Y [1 o o SRR 166
3.1.1 Fields of CharacteristiCc P> 3. ... 166
3.1.2 Fields of charaCteriStiC tWO.ccouerieririerieie e 199

3.2 New Point ArithmetiC RESUILS.........ccoiiiiiiieeee e 20
Chapter 4 Scalar Multiplication Using Double-Base Number System 22
4.1 Double-Base NUMDBDEE SYSTEIMccooiiiiiiiccieee e 22
4.2 Proposed Window-based method for scalar multiplication...............c.cc.coo.e.... 24
4.2.1 Finding representation OF M. 24

4.3 Calculation of COMPIEXITIEScccecviiiiiiiie i 288
4.4 Finding Scalar multiplication [NTP ...cccocoooviieee e 299
Chapter 5 Discussion and CONCIUSIONcciiiiiiiieiie e 36
BIDHOGIaPNY ... 377

Chapter 1

Introduction

Elliptic curve cryptography (ECC) has occupied the centre stage of public key
cryptography research because of its relatively small key-length and enhanced theoretical
robustness. The reason behind these is the fact that there is no known algorithm to solve
elliptic curve discrete logarithm problem (ECDLP) even in sub exponential time. Hence
it is believed that a 160-bit ECC key can provide the same level of security as an 80-bit
symmetric — key for block ciphers or a 1024-bit RSA modulus. This is a major device
with limited hardware resources as smart cards, cell phones or PDAs. The efficiency of

an ECC implementation depends largely on the scalar multiplication computed. It is the
computation of the point mP = ZLP, for a given point P on the curve and an integer m.

Enormous efforts have been devoted to accelerate and secure this operation.

Among the various methods proposed for efficient and secure implementation of
exponentiation, the window-based methods occupy a special place. For exponentiation of
a group element in general exponentiations, the window based methods are the fastest.
These methods require precomputations and may not be suitable for devices, where

memory resources are very low.

The computation of scalar multiplication is also target of adversaries, who use side-
channel information to attack cryptosystems. These attacks, instead of attacking the
underlying hard problem of a cryptographic protocol, recreate vital information of the
cryptosystem, by sampling and measuring side channel information like computation
time, the power consumption or the electromagnetic radiation traces. These informations

can reveal vital information to the attacker in a straight forward implementation. Many

proposal have been made in literature to prevent the attacker from obtaining any
substantial data from the side-channel to endanger the security of a cryptosystem.

In the present work we propose a new window-based scalar multiplication algorithm
where the scalar is represented in double-base number system (DBNS). DBNS is a
number representation scheme, which uses 2 radii to represent integers. In this work we
use 2 and 3 as radii. For scalar multiplication, inherent sparseness of this representation
scheme leads to fewer point addition than the double-and-add methods. In this work we
show that the terms of DBNS representation can be grouped together in small windows to
reduce the number of addition further.

We use 2 and 3 as the base of the DBNS representation. That is because, in ECC, we

have efficient formulas to compute doubling and tripling of elliptic curve points. Thus

the exponent is represented as a sum of terms of the form+ 2°3". In this work we have
proposed algorithms to convert an integer in to a suitable DBNS representation. Though
we use greedy algorithm, but it will be used for those integer which falls in a window.
That will decrease search time up to great extent. We store some pre computed points
which can be used while calculation of [n] P. We have proposed how to store those
points efficiently. Finally for our representation of n we have proposed algorithm to

compute [n] P. In general other bases may also be used.

Chapter 2

Elliptic Curve Cryptography in a Public-Key
Cryptosystem

2.1Elliptic Curves over Real Numbers

Elliptic curve over real number is defined as the set E of solutions (x, y)e RxR to

the equation

y>=x®+ax+b (1.1)

Where a,b R are constants such that4a® + 27b* = 0. There is a special point O

called the point at infinity.

The condition 4a®+27b% %0 is necessary and sufficient to ensure that the

equation has three distinct roots. Such elliptic curves are known as non-singular

elliptic curves. If 4a® +27b® =0 then the corresponding elliptic curve is called a

singular elliptic curve.

We define a binary operation over a non-singular elliptic curve E which makes E
into an abelian group. This operation is usually denoted by addition. The point at
infinity, O, will the identity element, so P+O = O+P =P forall Pe E.

There are three cases arise when we add two points P, Qe E, where P= (X, Y,)

andQ =(X2, yz)-

1. X #X,
2. X =Xyandy, =-y,

3. Xx=x,and y, =Y,

For case 1, we define a line L through P and Q. L intersects E in the two points P and
Q, and it is easy to see that L will intersect E in one further point, which we call R".If we
reflect R’in the z-axis, then we get a point which we name R. We define P+Q = R. We

can find out the formula to compute R. We can write the equation of as y=Ax+v,
where the slope of L is

A y2_yl

X, =X

and

L=Y, A =Y, = AX.

In order to find the intersection points of E and L, we substitutey = Ax+ v in to the

equation for E, we get the following:

(Ax+0)? =x>+ax+Dh,

Which is the same as

X} = x* +(@a-2)x+b-0v*=0 (1.2)

The roots of the above equation give the x-co-ordinate of the intersection points of E

and L. Since we have already two points P and Q .Hence X, and x,are the roots of

equation (1.2).

10

The equation (1.2) is cubic in x and two of its roots namely x, and x,are real then

third of its roots must be real, say X,.The sum of the three roots must be the negative of

the coefficient of the quadratic term, or A°.There for
X, =A% =X — X,.

X, IS the x-co-ordinate of the point R’. We will denote the y-co-ordinate of R" by-y,,
so the, so the y-co-ordinate of R will be y,. Now the slope of line L can be determine by
any two points on L. If we use the points (x,,y,)and (x;,—y,) to compute the slope 4,
we get

l:_yS_yl
X3 =Xy

or,

Ya = A(X = X3) =Y.

Thus we have formula for P+Q in case 1: ifx, # x,, then(x,, y,) + (X,,¥,) = (X3, ¥3) ,

where

X, =A% =X, — X,,
Y3 = A(X —X%3)—y,;, and

l:yZ_yl
X; =X,

Case 2. wherex, =X, and Yy, =-Yy, issimple: we define (x,y)+(x,—y)=0 for
all(x,y) e E .There for(x, y) and (X, -y) are inverses with respect to the elliptic curve

addition operation.

11

Case 3. In this case we are adding a point P =(x,y) to itself. We assume thaty, =0,

for then we would be in case 2. Here we compute slope with the help of calculus. The

slope of L can be computed using implicit differentiation of the equation of E:

ZyQ =3x*+a
dx
Substituting x = x;, y = y,, we have the slope of the tangent

3’ +a
2y,

The rest of analysis in this case is the same as in case 1.The formula obtained is identical,

A

except that A is computed differently.
There are some properties of the addition operation as defined above are:
addition is closed on the set E

addition is commutative,

O is an identity with respect to addition, and

N

Every point on E has an inverse with respect to addition.

It is quite messy to prove that (E +) is associative by algebraic methods, and hence it

is an abelian group.

2.2 Elliptic Curves Modulo a Prime
Let p>3 be prime. The elliptic curve y* = x° +ax+b over Z is the set of

solution (x,y) € Z, x Z , to the congruence

y? =x* +ax+Db(mod p), (1.3)

12

where a,b e Z | are constants such that 4a’® +27b* # 0(mod p) ,together with a special

point O called the point at infinity.

The addition operation on E is defined as follows (where all arithmetic operations are

performed inZ). Suppose

P= (X1’ Y1)
and
Q=(X,Y1)
are points on E. If X, =x, andy, =-y,, then P+Q = O: otherwise P+Q = (X;,Y;),
where
X ~ A~ X =X,
Y3 =A% —X%3) =Y,
and
/1: (yZ_yl)(Xz_Xl)_l, |f PiQ
(Bx’ +a)2y,) if P=Q
Finally, define
P+O =0+P =P
forall PcE.

The same formula can be used to define addition as we defined on the elliptic over

reals. The pair (E, +) still forms an abelian group.

13

2.3 Discrete Logarithm Problem

Let (G, .), be a multiplicative group and an element« € G having order n, and an

element g e <a> .Then we define Discrete Logarithm Problem as to find the unique

integer a,0 <a <n-1, such that

We will denote this integer a by log, 5.
The utility of the Discrete Logarithm problem in cryptographic setting is that

finding discrete logarithm is (probably) difficult, but the inverse operation of

exponentiation can be computed efficiently by using the square-multiply method

2.4 EIGamal Public-key Cryptosystem in Zp*

Let p be a prime such that the Discrete Logarithm problem in (Z p*,~) is infeasible,

and leta € Z,", be a primitive element. Let P=Z7 ", C=Z "xZ ", and define

K ={(p,a,aB): B =ca(mod p)}

The value p, @ and g are the public key, and a is private key.

For K = (p,,a, f),and a (secret) random numberk € Z,, , define encryption function
ex (X,K) = (¥, ¥>),

where

ylzakmod p

14

and
y, = XA mod p.

fory,,y, Zp*, define decryption function

de (Y1, Y,) = Y, (y,") ™ mod p.

A necessary condition for the EIGamal Cryptosystem to be secure is that the Discrete

Logarithm problem in Z p* is infeasible. This generally regarded as being the case if p is

carefully chosen and « is a primitive element modulo p. In particular, there is no known

polynomial-time algorithm for this version of the Discrete Logarithm problem.

2.5 The Elliptic Curve Discrete Logarithm Problem

Let E be the curve over some finite field, F,. Let n denotes the order of the group

E(F,) and let P denotes an element of E(F,).The elliptic curve discrete logarithm

problem (ECDLP) on E is, givenQ e (P) , find the integer, m, such that

Q=[m]P.

15

Chapter 3

Point Arithmetic on Elliptic Curves

The basic building blocks of an elliptic cryptosystem over F, are computation of the

form

Q=[k]JP=P+P+----+P

k times

where P is curve point, and k is an arbitrary integer in the range 1<k <ord(P). The

strength of the cryptosystem lies in the fact that given the curve, the point P (be it fixed
or arbitrary) and [k] P, it is hard to recover k, which is elliptic curve discrete logarithm
problem (ECDLP).

3.1 Point Addition

Depending on the characteristic of the underlying field the formulae for the group
law take on different forms. We analyse the computational complexity of these formulae

separately for characteristic p > 3, and for characteristic two.

3.1.1 Fields of Characteristic p > 3.

Affine Coordinates.
The point addition on an elliptic curve

E:Y?=X?+ax+b

16

with a,be F,, q=p", p a prime greater than three. Let P, =(x,,y;) and P, =(X,,Y,)
be points in E(F,) given in affine coordinates, and where some convention is used to

represent the point at infinity, O. Assume P,,P, # O and P, # —P,, conditions that are all

easily checked. The sum P, = (x,,Y,) = P, + P, can be computed as follows.

If P=P,,
ﬂ,= yZ_yl
X, =X
Xy = A =X — Xy,
Vs =(X —X3)A -y,
If P, =P,
/1_3x12+a
2y,
X, = A — 2%,

Y; = (Xl _Xs)i_ Yi-

WhenP, #P,, the computation requires one field inversion and three field
multiplications. We will denote this computational cost by 11+3M, where | and M denote,
respectively, the cost of field inversion and multiplication. Squaring is counted as regular
multiplications. When P, = P,, the cost of the point doubling is | + 4M. we neglect the

cost of field addition, as well as the cost of multiplication by small constants.

Projective coordinates:
In the case where field inversions are significantly more expensive than multiplications,

it is efficient to implement projective coordinates. A projective point (X, Y, Z) on the

curve satisfies the homogeneous Weierstrass equation

17

Y?Z = X®+axz? +bz?,
and when Z =0, it corresponds to the affine point (X/Z, Y/Z). There are other projective

representations. We will prefer a weighted projective representation which is also referred

as jacobian representation. A triplet (X, Y, Z) corresponds to the affine coordinates
(X/1Z%,Y1Z®% wheneverZ = 0. This equivalent to using a weighted projective curve
equation of the form

Y?=X®+aXZ* +bz°®
The point at infinity O is represented by any triplet (y°,7°,0), »eF, .

Conversion from affine to projective coordinates is trivial, while conversion in other
direction costs 11 + 4M. Inversion is costless operation however it increases the number
of multiplications, so the appropriateness of using projective coordinates is strongly
determined by the ration I: M.

Let P =(X,Y,;,Z,) and P, =(X,,Y,,Z,) , and their sum be P, =(X,,Y;,Z;) in
projective coordinates. We assume that P,, P, # Oand that P, # +P,.According to IEEE

P1363 draft standard, the total cost for general point addition comes out to be 16M and
the point doubling computation costs 10M. This can be reduced to 8M when a=-3 The

following table gives the summaries

Table 1 :Cost of point addition, characteristic p>3

Operation Coordinates
Affine Projective
General addition 11 +3M 16M
Doubling(arbitrary a) 11 +4M 10M
Doubling(a=-3) 11 +4M 8M

18

3.1.2 Fields of characteristic two.

Affine Coordinates.

The point addition on an elliptic curve

E:Y24 XY =X%+a,X? +a,

with a,,a,€F,, q=2", a;#0. Let P =(x,Yy,)and P,=(X,,y,) be points in
affine coordinates, where some convention is used to represent the point at infinity O.

Assume P,,P, #0 and P, # —P,. The sum P, =(X,,Y,) = P, + P, is computed as follows.

If P =P,
/1: yl+y2’
X, + X,
Xy = A2+ A+ X +X, +a,,
Ya=(X +X3)A+ X3+ Y-
If PL=P,
i:ﬁ+xl,
Xl

X, = A +A+a,,
Ys :(X1+X3M’+X3+Y1'

In either case, the computation requires on field inversion, two field multiplications, and
in squaring, or 11 + 2M +1S. In the case of characteristic two, the cost of squaring
operation, denoted by S, is much lower than that of general multiplication. Therefore,
squarings are counted separately, and in fact, we will later on neglect their cost

completely.

19

Projective coordinates.
As in the case of characteristic p >3, we will use weighted projective coordinates where

a projective point(X,Y,Z), Z =0, maps to affine point (X /Z?,Y/Z%). This

corresponds to using weighted projective curve equation of the form

Y?+XYZ =X®+aX?Z% +a,Z".
Conversion from projective to affine coordinates costs, in this case 11 +3M+1S.
According to IEEE [P1363] draft standard, the total cost for general point addition comes
out to be 15M + 5S. This is reduced to 14M + 4S when a, =0.The point doubling
computation costs 5M +5S. Since squaring is much faster than general multiplication in

characteristic two, point doubling in projective coordinates is close to three times as fast

as general point addition.

Table 2: Cost of point addition, characteristic two

Operation Coordinates
Affine Projective
General addition (a, # 0) 11 +2M+1S 15M+5S
General addition (a, = 0) 11 +2M+1S 14M + 4S
Doubling 11 +2M+1S S5M +5S

3.2 New Point Arithmetic Results
There are several efficient algorithms to compute Addition (ADD), Doubling (DBL),

Tripling (TPL), w-Doubling (w-DBL), Doubling and addition (DA), Tripling and
Addition(TA), Mixed-addition(mADD), window-Doubling(w-DBL), window-Tripling
(w-TPI) in affine and jocobian coordinates. The complexity of their calculations will be
used in our proposed work. Some of them are listed below with appropriate references.

20

Table 3: Cost of various Elliptic Curve group operations.

Operations Output | For E(F,.) For E(F,)
proposed | Cost proposed | Cost
DBL(P) 2P - i1+ 2[m] - 6[s]+ 4[m]
ADD(P,Q) P+Q i1+ 2[m] [A] 4[s]+12[m]
mADD(P,Q) - - 3[s]+8m]
w-DBL(P) | 2"P [5] | dil+ (4w-2)[m] [7] 4w[m] + (4w + 2)[s]
DA(P,Q) 2p+Q | 81 | 1i]+9[m] - _
TPL(P) 3P [6] i+ 7[m] 5] 10[m] + 6[s]
w-TPL 3"P - - [8] (4w + 2)[m]+ Q1w —1)[s]
TA(P,Q) 3P+Q [6] 2[i]1+9[m] - _

The costs for curves over binary fields (E(F,,)) are in affine coordinates. Those for

curves over prime fields (E(F,)) are in Jcobian coordinates.

21

Chapter 4

Scalar Multiplication Using Double-Base Number

System

All elliptic curve discrete logarithm problems (ECDLP) based cryptographic primitives,
like encryption, decryption, Signature generation and verification; need the operation of
scalar multiplication. Given an integer k and an elliptic curve point P, it is the operation
of computing kP. Efficiency of the scalar multiplication depends largely upon efficiency
of the algorithms used for group arithmetic and representation of the scalar. In this
chapter, we propose an efficient and secure scalar multiplication algorithm based on

double-base chains. We use new window method to find double-base representation.

4.1 Double-Base number System

The Double-base number system (DBNS)[9] is a representation scheme in which every

positive integer k is represented as the sum or difference of {2, 3}-integers (i.e., numbers

of the form 2°3") as
k=> 523" withs, e{-1,1},and b;,t; >0
i=1

This number representation is highly redundant and most of these representations are
useless. Suitably chosen representation gives better result. So we are interested in a
special representation with restricted exponents. The most important theoretical result

about the double-base number system is the following theorem which is proved in [10]

Theorem 1. Every positive integer k can be represented as the sum of at most

O logk {2, 3}-integers.
log log k

22

Table 4: number of double-base representation of small numbers

N |[B={2 3}
10 5
20 12
50 72
100 402
150 1296
200 3096
300 11820

We can see that for small number such a large number of double-base representations
exist. Several methods have been proposed to get suitable representation of n .one of
them is greedy algorithm, but the searching space for best approximation is too large. A
modification of the greedy algorithm is also being in practice, in which the search space
for best approximation is reduced to the size of the window. The liberty to choose
exponents of 2 and 3 in particular window gives a short representation of a number n.
The main advantage of doing this is keeping window size small our search for best
approximation becomes fast. But instead of using modified greedy algorithm for finding
a double-base representation we have proposed new method to find out the DBNS

representation. Here is greedy algorithm.

Algorithml. Greedy Algorithm for conversion into DBNS

Input: k a positive integer; max,, maxs, >0, the largest allowed binary, ternary exponents
and the array T[0...maxy; 0...... maxs)
Output: The sequence (s; ,bi t)io such that k = D" 5,2°3" ,
1. s«1

2. while k>0 do

3. for(b=0 to max,,t=0 to maxs)
z = T[b,t], the best approximation of k
print(s,b,t)
max, « b, maxz «t,

4
5
6. if(k<2z)then
7
8

S< —§
k «|k-2

23

4.2 Proposed Window-based method for scalar multiplication

This section is divided in two parts: i) finding a representation of n, using windows of

2 and 3 and ii) computing scalar multiplication using the obtained representation.

4.2.1 Finding representation of n

As DBNS is two dimensional representations, the windows are two dimensional too. Let

max ,, max , be the maximum powers of 2 and 3 to occur in the DBNS representation.
For example, for 160 bit-integer the maximum value of max, and maxz can be 160 and
103 respectively. But looking at greedy algorithm this will give large search space. The
selection of bounds of max, ,max, and the dimension of windows effects the DBNS
representation greatly, so appropriate selection of max,, max, and window size is

needed. Thus the task is divided into two parts: i) finding appropriate maximum bounds

and ii) finding appropriate window dimension.

Finding appropriate maximum bounds
As we have seen in greedy algorithm the searching depends largely on the maximum
bounds max, and max3.We can find the suitable bounds of binary and ternary

exponents. The method is heuristic, but the bounds are significantly much less and

work better. Let n an r-bit integer, then maximum value of n will be 2" —1. So,

|2max23max3 _2 2r+l ’
Assuming 2" —1~ 2" or, taking logarithm both side
max ,+max,log,3>r+1 (3.1)
The smallest value of max, and max, which satisfy equation (3.1) will give the bounds

of binary and ternary exponents.

24

Window selection

After getting the maximum bounds for binary and ternary exponents, the window is
selected in such a way that each window should be of same length. For that we break
entire range (bounds) in p parts. Each part will be called a window. Let w,, and w, are

the window length of base 2 and 3.

max , = pw, (3.2)
Max , = oW, (3.3)

Substituting equation (3.2) and (3.3) in equation (3.1), we get
pw, +w,log,3)>r+1 (3.4)
The equation (3.1) suggests that given a number of r-bit size, we can approximate the
value of max, and maxs. With the help of equation (3.2) or (3.3) we can find number of
partitions for different value of w, and ws. Equation (3.4) is validity criteria for the
values of windows. Thus we can find pairs of valid window values which satisfy (3.4).
For different value of w;, and w3 we have find out the number of partitions. For r = 160
bit there is a table which shows the number of partitions for different number w;, and ws.

Now we finally move on, how the number n will be represented with proposed window
double base number system.

Let w, and w3 be the window size for binary and ternary exponents.

Preposition 1: Let m be a number such that 1<m <2"3% and the best approximation

of mbe2°3", where 0<b<w, ,0 <t <w, then k:‘m—ZbS“<m
Proof: Case 1: Ifb=1t=0 then|m—]j <m.

Case2: Letk = ‘m—2b3t‘ >m. Takek’ =|m—1 <m, then 2°3" will not be the

integer to m, a contradiction.

25

Preposition 2: Let w, and w; be the window size and m be a positive integer such that
0<m<2"™3"™ can be represented as Z,— S; "3 where s; €{-1,0,1} and

0<b; <w,, 0<t;

< W,

Proof: Case 1: Ifm=0 ,put j=1and s.=0 .

]

Case 2: If 1<m<2"3" then by Preposition 1, there exists an integer 2°3"
such that

k:‘m—2b3t‘<m—1,where 0<b<w,, 0<t<w,
Puts=1,if (m-2"3")>0 elses=-1,if(n—2"3") <0. Since k has

been decreased, we apply the same procedure on k till k becomes 0.

Preposition 3: Every integer 0<n<2”3? can uniquely be represented as
n=€%3"% "M + €3 "M
o<M_,,M_,,....M, <2"3%,

p-11 P

pog Feeeens + M, such that

Proof: We first show that this kind of representation exists.

Letn=M ,(2"3")""+R, ,, whereO<R_, <(2"3")”*. M, should be strictly
less than 2"3" ie. 0<M , <2"3" , otherwise n>(2"3")”. Similarly
R=M_,(2"%3%)"?+R _,, where 0<R ,<(2"%3")"?

and 0<M , < 2"23%
R, =M,(2"3")' +R,, where 0<R, <(2"3")
and 0<M, <2"3%,
R, =M,, where 0<M, <2"3%,

Thus we get the desired representation.

Now we show that the is unique representation of n.

26

Let n=(2"3"%)"*M +(2"3")" M, +...... +M, and
n=(2"3")""M/ +(2"3%)"*M’ , +...... +M/ be two different representations
of n .i.e. there exist at least one M, = M/ for some 0<i< p-1. Thus,
(2"3%)" (M, — M’) +(2"3%)"*(M __, —M’) +...+(My —Mg) =0
This shows that 2"23" is the root of equation

M, =M/ X7+ (M, =M)X 2+ (Mg —Mg) =0 (3.5)

-
Let f be the degree of polynomial
M, =M/ X7+ (M, =ML X724+ (Mg — Mg

p-1

i.e. (M, —M/)=0 forall i > f. The integral roots of the above equation (3.5) are in the
form of + some factor of (M, - M) if(M,-M/) =0, but
-2"3% < (M, -M;)<2"3"%, so 2"3"can not be the root of equation (3.5). If
(M, =M/) =0, then equation (3.5) reduces to

M, M/)X72 (M, —M’)X ... (M, = M) =0 (3.6)

P
Applying same method as above, we will get M; =Mj for all0< j< p-1. Hence

proved.

Preposition 3 gives a suitable representation of n. It suggests that finding the

representation of M M M, in window size w, and ws in double base is

p-11 p-21""

sufficient to represent n. Now finding the representation of M, ’s in double base number

system in the window size w;, and ws is easy. We can apply greedy algorithm which has
been given in Algorithm 1. Just we need to search the best approximation in a window w;
and ws. The only change that we need to make is to change max; to w, and maxs to ws,
and the static storage space is changed to T [0...wy,; 0......ws]. Finding double base
representation in window (which relatively very small compare to maximum bound)

becomes faster and static table size will be much smaller.

27

4.3 Calculation of complexities

We will calculate the complexity of average number of inverse, square and multiplication

applied in calculating scalar multiplication. We have p partition of maximum bounds of

each binary and ternary exponent. By preposition 3 we get that any integer n can have at

most p terms in our proposed representation scheme. Suppose on average there are t

number of terms needed to represent M, ’s in a given window.
Then for 0<n<2™37,

n=2%3"%(..(2"3%(M ,)+M__)+..)+M, (Horner’s rule) (3.7)
As we can see that for calculating nP, there will (o —1)w, doublings, (p —1)w;, triplings
and pt —1 addition needed.
Let there are d;,t, ,ad, no. of inverses, d,,t, ,ad, no. of multiplications and

d,,t, ,ad, no. of square needed in doubling, tripling and addition respectively. Then for

calculating nP the total number of inverses, multiplication, square and addition required

are:
Average number of inverses = (o —D{w,d, + w,t; }+ (ot —1)(ad,)
Average number of Squares= (o —D{w,d, +w,t . }+ (ot —1)(ad,)
Average number of multiplication= (o —1){w,d, +w;t_}+ (ot -1)(ad,) .
Here we assume that there are t terms on an average present in M ;'s, which cause and
addition overhead of pt-1 additions. If we store all values of M ;'s which ranges
from 1t02"3" —1 inatable sayT"™, then we can save computation for calculating M ;P
. Now the probability of having non-zero M is(2"3" —1)/2"3" Thus we need the
following costs:
Average no. of inverses = (p —D{w,d, + w,t,}+ ((2"3™ -1)/2"3")(ad,)
Average no. of squares = (p —1){w,d, +w,t }+ ((2"3" —-1)/2"3")(ad,)

Average no. of Multiplication = (p —1{w,d,, +w,t, }+((2"23" -1)/2"3")(ad,)

28

4.4 Finding Scalar multiplication [Nn]P

After finding the representation of n in the form of equation (3.7), we will choose some
dimension of window. We have static storage table T ™where all the value of m = 2°3",

0<b<w,, 0<t<w, such that T"(b,t)=2"3". Cleary the size of table will be
O(w>*ws). We will also need to calculateM ;P. We can use the static table T" to
calculate M ;Pand store in a table say T, . This table will be of same size as that of T™.

The entries of the table T will be likeT, (b,q) =[2°3']P, where P is a point on an

elliptic curve E (algorithm 2). Clearly we are storing more pre computed points, but it
will save the computation up to a great extent. The total storage size will be O(w;*ws3),
which is quite less, since we will have small window dimension compare to maximum
bounds of the exponents of binary and ternary. The computation of precomputed points in

T, may becomes higher, but it can be reduced if we use recursive computation, as :
[2°73'1P =[2[2°3']]IP and [2°3"']P =[3[2"3']]P. Algorithm 2 gives method to

formT .

Now we are approaching towards calculation of [n] P. In algorithm 5 we have the given
pseudo code to obtain this task. We use the following steps :

1. To represent n we calculate M ;'s first. Algorithm 3 tells how to calculate.
2. Now we find out[M ;]P. We need the DBNS representation of M ; ’s which can be

obtained by greedy algorithm using algorithm 1. In the greedy algorithm we use the
table T™ for quick representation. Once we get the representation we can calculate

[M;]P by looking at the precomputed points stored inT .. Pseudo code is given in

algorithm 4.

3. Now to compute [n] P, we use the value [M;]P by using w-doubling and w-tripling.

The pseudo code is given in algorithm 5

29

Algorithm2. Generating static table for precomputed points(T,,)

Input: dimension of window w2, w3 for 2 and 3 respectively and a point P on an elliptic

Curve E.

Output: Anarray T, (i,],) suchthat T, (i, j) =[2'3']P where 0<i<w,, 0< j<w,

1. 7,[00]=P

2. 1«0

3. j«0

4. while j<w, do

5 T,0j+0=3T,[il
6. j«—j+1

7. 1«0

8. j«0

9. while j<w,+1do

10. while i <w, do
11. To i +1 J1=2[T, i, j]]
12. l<i+1

13. j«j+1

14. return T,

30

Algorithm 3. To find M ;'s

Input: the integer number n such that 0 < n < (2"3")” for a given window length
w,,w, for 2 and 3 respectively and number of partition p
Output: asequence of (M ") jso such that n= SMM (2"23")*"1 where

0<M; <2"3% forall 0< j<p-1

1. j<«1
2. R<n
3 X «(2"3%)"*
4. while j< pdo

R
5. M p-1 <« \‘YJ

6. R<«R-M, X

7. X « X
2"23"
8. R« R
9. j<«—j+1
10. Alp-j]<« Mpfj
11. return A.

Algorithm4. Calculation of [m] P

Input: an integer m such that0 <m < 2"3% , a point P on an elliptic curve Eand T,
Output: [m] P

1. A<«Algorithm 3(m,w,,w,)
2. L < length(A)
3. P <~ O(point at infinity on elliptic curve E)
4. i<1

5. while i<Ldo
6 (si,b;, ;) « Ali]

7 P« P+sT,(b,t;)
8 I <i+1

9. return P

31

Algorithm5. Calculation of [n] P

Input: an integer n such that 0<n<(2"3")”, a point P on an elliptic curve E, no. of
partition p and T, .

Output: [n]P

1. A<«Algorithm 3(n,w,,w,, p)

2. P <« O(point at infinity on elliptic curve E)
3. 0«1

4. while i<(p-1)do

5. Q< Algorithm4 (Ab-1,w,,w,,P,T,,)
6. P«<P+Q

7. P« [3"]P

8. P« [2"]P
9. i<—i+1
10. returnP

32

Table 5: Average number of terms in a given window and partition for different
values of w; ,ws.

A ‘ Average no. terms\ no. of partitions

W,
0 0 0.000000 0
0 1 1.000000 102
0 2 1.777778 51
0 3 2.481482 34
1 0 0.500000 161
1 1 1.166667 63
1 2 1.722222 39
1 3 2.240741 28
2 0 1.000000 81
2 1 1.416667 45
2 2 1.888889 32
2 3 2.268518 24
3 0 1.375000 54
3 1 1.708333 36
3 2 2.097222 27
3 3 2.458333 21
4 0 1.750000 41
4 1 1.979167 29
4 2 2.333333 23
4 3 2.668982 19
5 0 2.093750 33
5 1 2.218750 25
5 2 2.552083 20
5 3 2.878472 17

33

Table 7: Cost of elliptic curve scalar multiplication for 160-bit integer using affine
coordinates (F,, -cost) taking (w, +1)(w, +1) number of storage points. [i]/[m] =8

W, | Wj3 | #storage Inverse [1] Multiplication [M] ~M
4 2 15 118.666665 721.33333 1670.67[m]
3 3 16 130.625000 721.25000 1766.25[m]
3 2 12 133.625000 735.25000 1804.25[m]
5 3 24 111.934029 719.86804 1615.34[m]

Table 8: Cost of elliptic curve scalar multiplication for 160-bit integer using affine

coordinates (F,, -cost) taking 2"3" —1number of storage points. [i]/[m] =8

W, | W; | #storage Inverse [1] Multiplication [M] ~M
4 2 143 87.8472 659.6944 1362.47[m]
3 2 71 103.6388 625.2777 1504.48[m]
3 3 215 99.9074 659.8148 1459.07[m]
5 3 863 79.9814 655.9629 1295.81[m]

Table 9: Cost of elliptic curve scalar multiplication for 160-bit integer using Jacobian

coordinates (F,, -cost) taking (w, +1)(w, +1) number of storage points.

[s]/[m]=0-8

W, | W; | #storage Square[S] Multiplication [M] ~M
4 2 15 774.000 1235.3332 1854.57[m]
3 2 11 790.875 1303.0000 1935.69[m]
3 3 15 711.8750 1285.0000 1854.50[m]
5 3 71 719.8020 1215.4721 1791.31[m]

34

Table 10: Cost of elliptic curve scalar multiplication for 160-bit integer using
Jacobian coordinates (F,, -cost) taking 2":3" —1 number of storage points.

[s]/[m]=0-8

W, | W3 | #storage Square [S] Multiplication [M] ~M
4 2 143 681.5416 988.7777 1534.01[m]
3 2 71 700.9166 1063.1110 1623.84[m]
3 3 215 619.7222 1039.2592 1535.07[m]
5 3 863 623.9445 959..8518 1459.00[m]

Comparison:

In earlier proposed method [8] using double- chains the cost of complexity for computing
scalar multiplication for 160- bit integer is
affine. The table7 shows our better result for the same coordinate system. We store very
less number of precomputed points. Also the searching space for the best approximation
to the given scalar is more in the earlier proposed method, where as the same task has

been done in less amount of time ,because of suitably chosen maximum bound, and

window size.

35

~ 1863[m] . The coordinate used here is

Chapter 5

Discussion and Conclusion

In the present work, we have presented a window based method for computing ECC
scalar multiplication using double-base number system DBNS representation of the
scalar. The DBNS representation computed by conversion algorithms reported in
literature is not suitable for our window based method. Hence we have proposed a new
algorithm to convert a given integer to a suitable DBNS format. In Earlier proposed
method [11] the conversion scheme searching space is more for finding best
approximation to the integer n .Also the maximum bounds of exponents of binary and
ternary has been chosen suitably which are much reasonable. Hence the search space
becomes smaller. The selection of length of window has also been made reasonably,
which satisfy our validity criteria. Our conversion scheme is fast, as our searching task
for the nearest DBNS integer is being done in a particular window, which is relatively
small. The format obtained so far allow us to have less space to store some precomputed
points which increase speed of calculation. The proposed algorithms can be extended to
multi-base number system (MBNS)

36

Bibliography

1. Douglas R. Stinson. Cryptography theory and practice .CRC press 2002

2. Andreas Enge, Elliptic curve and their application to cryptography an
Introduction. Kluwer Academic Publishers 2001.

3. |.F. Blake, G. Seroussi, N.P. Smart, Elliptic curves in cryptography, Cambridge
University press, 1999.

4. H. Cohen, A. Miyaji, and T.Ono. Efficient Elliptic Curve Exponentation Using
Mixed coordinates, In ASTACRYPT’98, LNCS 1514, pp. 51-65, Springer-Verlag,
1998.

5. R.Dahab and J.Lopez, An Improvement of Guajardo-Paar Method for
Multiplication on non supersingular elliptic Curves. Inproceedings of The XVIII
International Conference of the Chiliean Computer Science Society (SCCC’98),
IEEE CS Press, November 12-14, Antofagasta, Chile, pp.91-95, 1998.

6. M.Ciet, K. Lauter, M.Joye and P.L. Montgomary Trading inversion for
multiplications in elliptic curve cryptography In Design, codes and cryptography,
32(2):189-206,2006.

7. K.ltoh, M.Takenaka, N. Torii, S. Temna, and Y. Kurihara. Fast implementation of
public —key cryptography on a DSP TMS320C6201. In C. K. Koc and C.Paar,
editers, Cryptographic hardware and Embedded Systems —-CHES ’99,
Volumel717 of lecture notes in computer science, pages 61-72. Springer-Verlag ,
1999.

37

8. V.Dimitrov, L. Imbert, and P.K.Mishra, Efficient and Secure Elliptic Curve Point
Multiplication Using Double Base Chain. In B. Roy Ed., Asiacrypt 2005, volume
3788 of lecture notes in computer science, Pages 59-79. Springer-Verlag, 2005

9. V.S. Dimitrov,G.A. Julient, and W.C.Miller. Theory and applications of the
double-base number system. IEEE Transaction on computers 48(10): 1098-1106,

Oct. 1999.

10. V.S. Dimitrov, G.A.Jullian, W.C Miller. An algorithm for modular exponentiation,
information Processing Letters, 66(3):155-159, may 1998.

11 P.K.Mishra, Window based Elliptic curve Scalar Multiplication Using Double

Base Number Representation.

[P1363] IEEE P1363/D3 (Draft version 3). Standard specification for public key crypto
graphy. May 1998.

38

