
Dominance Constrained Drawing

of Complete Binary Trees and Directed Acyclic Graphs

on a 2-D Planar Grid

Lisa Priyanka,

CS0613

2006 – 2008

July 9, 2008

Contents

1 Introduction 1

1.1 VLSI Placement and Graph Drawing . 1

1.1.1 Types of graph drawings . 2

1.2 Scope of the work . 3

1.3 Organization of the thesis . 4

2 Problem Definitions 5

3 Previous Works 7

4 Embedding Complete Binary Trees on a 2-D Grid 9

4.1 Placement of Complete Binary Tree under dominance constraints 9

4.2 Analysis of Square bound . 13

4.3 Time Complexity . 16

4.4 Correctness and Optimality of the Algorithm 17

4.4.1 Correctness of the Algorithm . 17

4.4.2 Optimality of the obtained placement 20

4.5 Analysis of the dilation for the grid drawing 21

5 Edge Mapping 23

5.1 Congestion Analysis . 23

5.2 The Edge-Mapping Algorithm . 26

6 Offline Improvement of Placement Area 31

6.1 Algorithm for improvement . 31

7 Extension to DAGs 35

7.1 Need for modification . 35

7.2 Placement of DAG vertices . 36

iii

iv CONTENTS

8 Implementation 43

8.1 Implementation of Algorithm 1 for Complete Binary tree 43

8.2 Implementation of Algorithm 2 for Edge mapping 45

8.3 Implementation of Algorithm 3 for DAGs 47

9 Experimental Results 51

9.1 Square bound for complete binary tree . 51

9.2 Execution time for Algorithm 1 . 51

9.3 Maximum Congestion obtained by edge-mapping 54

9.4 Maximum dilation for the placements . 56

9.5 Comparison of Algorithm 1 with its Improvement 57

9.6 Results from Extension to DAGs . 58

10 Comaprison with Previous Works 61

11 Conclusion 63

Diss/08/01/212

Key Words: Graph drawings, Dominance drawings, Timing Skew,
VLSI Placement

Chapter 1

Introduction

1.1 VLSI Placement and Graph Drawing

In synchronous VLSI chips, signal from a single clock is fed to a number of modules.

The clock routing scheme used determines the clock arrival time for different modules. In

general, all functional units do not receive the clock signals simultaneously. The maximum

difference in the clock arrival times at two components is called clock skew. The problem

of timing skew between the clock and signal arrival is to be managed, to prevent increase

in delay. H-tree [7, 8] layout, example for 4 modules in Figure 1.1, is commonly used but

we advocate an alternate method: to route the signal wires and the clock wires together

in parallel so that the skew between the clock and the signal vanishes, effectively. Figure

1.2 gives a schematic representation of the timing skew.

Having the clock wires routed parallel to the signal wires, the clock arrival time is

matched with that of the signal. Due to inherent dependence among the modules, the

(1,5) (5,5)

(1,1) (5,1)

P24

P4

P2P1

P3

P1234
P13

P1, P2, P3 ,P4=module points

P13, P24, P1234=tapping points

Figure 1.1: H-tree over 4 module points

1

2 CHAPTER 1. INTRODUCTION

M1 M2

D1 D2

Q1 Q2

CLK CLK’

tskew

CLK

CLK’

time

Voltage

Figure 1.2: The time skew effect in VLSI chips

signal wires must obey the data dependence and so, must the clock wires. As the signal

net is specific to the component for which it is being routed, while clock wire feeds all

the modules, the clock routing is done separately. To still have parallel clock and signal

wires, the data dependence forces some constraints into the VLSI placement phase. It is

required that gates or modules must be placed in a way that their signal arrival times are

greater than of those, from which they receive their input signals. We wish to analyze the

area requirement for the placement of gates under these precedence constraints.

These placement constraints are covered by dominance constraints. Dominance draw-

ing is a type of graph drawing where a given directed graph is drawn under dominance

constraints. We shall formally define dominance constraints later in chapter 2, for the

moment we give a brief introduction of graph drawing and its various objectives.

In graph drawing the vertices and edges of the input graph are mapped onto another

graph to satisfy some constraints. Wide varieties of graph drawings have been described

in the literature.

1.1.1 Types of graph drawings

Polyline drawing : Each edge is a polygonal chain (Figure 1.3(a)).

Straight-line drawing : Each edge is a straight-line segment (Figure 1.3(b)).

Orthogonal drawing : Each edge is a chain of horizontal and vertical segments (Figure

1.3(c)).

Grid drawing : Polyline drawing such that vertices, crossings and bends have integer

coordinates.

1.2. SCOPE OF THE WORK 3

Figure 1.3: Types of drawings; (a) Polyline drawing of K3,3; (b) Straight-line drawing of

K3,3; (c) Orthogonal drawing of K3,3; (d) Planar Upward drawing of an acyclic digraph

Upward drawing : Drawing of a digraph where each edge is monotonically nondecreas-

ing in the vertical direction (see Figure 1.3(d)).

Dominance drawing : Upward drawing of an acyclic digraph such that there exists a

directed path from vertex u to vertex v; if and only if x(u) ≤ x(v) and y(u) ≤ y(v),

where x(.) and y(.) denote the coordinates of a vertex.

hv-drawing : Upward orthogonal straight-line drawing of a binary tree such that the

drawings of the subtrees of each node are separated by a horizontal or vertical line.

Bend : In a polyline drawing, point where two segments part of the same edge meet

(Figure 1.3(a)).

Crossing : Point where two edges intersect (Figure 1.3(b)).

Most of the works done earlier in domain of graph drawing achieve almost planar drawings,

i.e. with a limited number of edge crossings. This is to ensure effective visualization of

the drawing and address the problem of constructing geometric representations of graphs,

a major aspect of the emerging field of information visualization. Graph drawings have

a wide variety of applications in various fields such as Software Engineering, Databases,

VLSI Routing, and Biology.

1.2 Scope of the work

Our intention is to use the graph drawing, more specifically dominance drawing, to analyze

the area requirement for the placement of gates under the dominance constraints. As the

problem comes from the domain of VLSI, we allow non-planarity into our drawings. In

fact, the crossings would be taken care by a change of layer in VLSI chips. The aim of

the work is to design an algorithm that finds the least area required for the dominance

drawings of complete binary trees and directed acyclic graphs.

4 CHAPTER 1. INTRODUCTION

1.3 Organization of the thesis

In chapter 2, we define the terms useful for our work. Chapter 3 contains a brief overview

of some related previous works. In chapter 4, we explain our proposed algorithm for

minimal area dominance constrained drawing of a complete binary tree, in chapter 6 we

suggest an improvement over this algorithm and verify the area-efficiency obtained by the

former. Chapters 5 and 7 discuss algorithms for minimizing edge congestion during edge

mapping and for the dominance constrained placement of DAGs, respectively. The next

chapters 8 and 9, discuss the implementations issues for the proposed algorithms and the

obtained experimental results, respectively. Then we provide a comparison of the work

with the results of the previous ones, briefly. Last chapter 11 concludes the thesis after

briefing about the achievements made and the pending issues to be taken up in future.

Chapter 2

Problem Definitions

We study a variant of one of the graph drawing problems and discuss some solutions in

this dissertation thesis. We consider a 2-dimensional grid as our host graph, on which the

vertices and edges of a guest graph are mapped to satisfy the following constraints :

Let G′ be the grid graph, with the grid points in the plane as the vertices of G′ and

line segments joining these grid points as the edges of G′. For a guest graph G, which

is either a directed acyclic graph or a tree with directed edges from parent to the child

vertices, let Z: G → G′ denote an assignment of vertices of G onto the grid points. An

assignment Z(v) = (Zx(v), Zy(v)) for v ∈ V (G) comprises the x- and the y- coordinate of

the grid point corresponding to v.

Definition 1 Positive assignment: An assignment Z is defined to be a positive assignment

if all the assigned grid points are in the positive quadrant of the rectangular coordinate

system.

Definition 2 Dominance constraints: An assignment Z of the binary tree to the grid

points is said to satisfy the dominance constraints if for each edge e = (u, v) ∈ E(G)

directed from vertex u to vertex v

1. Zx(u) ≤ Zx(v) and Zy(u) < Zy(v);

2. e is mapped onto a nondecreasing vertical monotone path along the grid lines, directed

from Z(u) to Z(v).

In this definition of dominance constraints we have modified the condition on y-

coordinate of the assignment from one present in the popular definition of dominance

drawing as given in Chapter 1. This modification is required for our purpose since it must

5

6 CHAPTER 2. PROBLEM DEFINITIONS

be ensured that clock signal arrival time for a gate must be strictly greater than that for

its predecessor gates in the digraph capturing the circuit. Having such a constraint on the

placement of VLSI modules, imply placement based on precedence relations (created by

data dapendence) among the modules. As said earlier, we wish to have the clock arrival

time equal to the signal arrival time, so data dependence among the modules is used. This

would help in doing away with the clock skew.

In general graph drawings the objective is to do either or some of the following: min-

imize the area of the drawing, minimize the bends, minimize the crossings, etc. For

studying the area of the drawing, length and width of the drawing is measured, and area

is the product of the length and the width. We shall be discussing the drawings for

complete binary trees and directed acyclic graphs. Under the dominance constraints, the

minimum length of the drawing for an N - node complete binary tree is equal to the height

of the tree O(logN), which gives a width of O(N), hence an area of O(NlogN). To min-

imize the area, we consider the case where the length is equal to the width, i.e. we try

to minimize the dimension of the square that contains the grid points assigned under Z.

We consider the square bound for a Z, defined below, as a yardstick for area of the drawing.

Definition 3 Square bound: For a positive assignment Z satisfying the dominance con-

straint, the minimum integer s satisfying the relation (Zx(v), Zy(v)) ≤ (s, s) ∀ v ∈ V , is

the square bound of Z and the area of Z is given by s2.

Among other objectives, especially with applications in the domain of VLSI routing, is

to minimize the congestion and sometimes to minimize the dilation of the drawings too.

We define these terms for a grid drawing below.

Definition 4 Congestion: For mapping of edges of the guest graph G on the edges of the

host graph G′, the number of times an edge e′ ∈ G′, is used for some edge e = (u, v) ∈ G

is termed as congestion of the edge e′.

Definition 5 Dilation: For a given assignment Z, the manhattan distance between the

vertices u′ = Z(u) ∈ G′ and v′ = Z(v) ∈ G′ for an edge e = (u, v) ∈ G, is the dilation

associated with edge e.

Here we mention that we shall also study the congestion and dilation of our drawing,

and try to map the edges so as to minimize the congestion as permitted under our main

objective to minimize the area.

Chapter 3

Previous Works

Of different works published for many kinds of graph drawings, upward drawings are clos-

est to the dominance drawings, which is the prime focus of the work presented in this

dissertation thesis. In [2], the authors develop a linear time algorithm for an area optimal,

i.e O(N) area, upward tree drawings. They obtain a planar polyline grid drawing for a

bounded degree rooted tree with N - nodes. They also cite [5] which proves a lower bound

of Ω(NlogN) on area for a strictly upward planar tree drawings, if the left to right oredr

of the siblings in the tree is preserved.

Another paper [4] studies the upward planar drawings for single source acyclic digraphs.

It presents an efficient algorithm based on Thomassen’s [6] graph theoretic charaterization

for single source digraphs that admits an upward planar drawing.

A different work [3] on layouts of complete binary trees on an a by b grid, obtains

an area efficient layout, i.e a layout with small expansion ratio (ratio of number of grid

points to the number of tree points). It studies embedding of a guest graph (binary tree)

G, into a host graph (grid with k layers, k=1 or 2) H to obtain an area efficient layout

with minimum node-congestion. Node-congestion for a host vertex v ∈ H is the number

of edges of G that have been mapped on the host graph H through the vertex v.

Some earlier works on VLSI graph layouts [9], find lower bound on area using crossing

number and wire area arguments. A lower bound of Ω(NlogN) has been found for non-

planar graph layouts of planar graphs under this consideration.

7

8 CHAPTER 3. PREVIOUS WORKS

Chapter 4

Embedding Complete Binary

Trees on a 2-D Grid

4.1 Placement of Complete Binary Tree under domi-

nance constraints

We first solve the problem of minimizing the square bound for dominance grid drawing of

a complete binary tree and later extend the algorithm for dominance drawing of directed

acyclic graphs.

The proposed method uses a greedy incremental approach starting with the root vertex

of the tree G, and traversing it in a breadth first manner. All vertices of G occurring at

level l − 1 are assigned to the respective grid points, prior to moving to the next level

l. During each set of assignments of the vertices at a level of G, the proposed method

uses a set of rules to ensure minimizing the square bound of the grid drawing. A formal

description of the proposed algorithm and the functions used by it are given below.

The proposed algorithm consists of the following phases:

1. Determine the region, on 2-D plane, to be assigned to a level in the drawing, so as

to minimize the square bound.

2. Place the nodes of a level in the region determined above.

3. Map the tree edges along the grid edges so as to minimize the maximum congestion.

Phases 1 and 2 are implemented for each level of the tree, and phase 3 is implemented

after complete assignment of the nodes of the complete binary tree.

9

10 CHAPTER 4. EMBEDDING COMPLETE BINARY TREES ON A 2-D GRID

The root vertex of G is assigned to the grid point having coordinate (0, 0). Then,

Z(root) = (0, 0). The assignments of the successor vertices therefore must have Zx ≥

0, Zy > 0. In general, at any level of the tree G, the dominance constraints indicate that

if the lowest row assigned for a vertex of a level of G is y′, then all the vertices at next

level can only be placed in rows y ≥ y′ + 1. The lowest row at which a vertex at level

l of G can be assigned is y = l. Formal description of the algorithm for constructing a

dominance constrained drawing is as follows:

Algorithm 1: Constructing Dominance Constrained Drawing Z

Input: A complete binary tree G, its maximum level lmax, and a grid

Output: Z and s, the minimum square bound of the drawing

M1. (* Assign root vertex of G to origin of grid *)

Z(root) := (0, 0), l := 1, forward(l) := 0, s := 0

M2. Repeat while l ≤ lmax

find region(forward(l), Nl , s)

(* Determine region on the grid for assignment of vertex set Nl of

G at level l, where s is current value of the square bound *)

assign current(prev assgn, s); l := l + 1

(* Place level l vertices of G in the region determined for level l *)

M3. Print s

M4. Edge mapper(G, Z, lmax, s)

Phase 1 is implemented by find region module in Algorithm 1. It determines the region

required for nodes of a level l, by doing the following:

1. Calculates the number of unassigned nodes in the level l , after the forwarded unused

points (with ordinate ≥ l) within the square bound achieved for the previous level

l−1 are used. Starts with the square bound of the previous level as the initial square

bound of the current level l.

2. Increments the square bound of the current level l and includes the grid points, with

ordinate equal or greater than y = l and on the new boundary line in the region for

level l. Step 2 is repeated until as many grid points as there are nodes in the level l

have been included in the region for level l.

This function first uses the unused grid points, if any, given by forward(l). Such grid

points, if it exists, must lie on the periphery of the square bound s, i.e. along the lines

x = s or y = s. If all the vertices are not placed, the square bound is increased by one,

and the grid points on the new boundary line are included in the region. The final region

on the grid that find region (Phase 1) reserves for each level is in general L- shaped, as

4.1. PLACEMENT OF COMPLETE BINARY TREE UNDER DOMINANCE CONSTRAINTS11

shown in Fig. 4.1. In the figure, the shaded L- shaped portion is the reserved region for

the level l − 1, and we call it the parent region. The unshaded L- shaped portion denotes

the reserved region for the current level l. Also, the placemnt of nodes from level l − 1

into the parent region is completed before reserving a potential region on the grid for the

current level.

B’

A’

B

A

D
C

y=s(l-1)

y=l

y=l-1

 x=
s(l-2)

 x=
s(l-1)

x=0

x=s(l),
y=s(l)

last col. for
child from B’(variable)

Figure 4.1: Abstract description of subregions in the parent and current level regions

Function 1: Finding Potential Region for Vertices at Level L

find region(forward(l),s,Nl)

(* Use the unused forward(l) grid points within region bounded by s *)

F1. Nl := Nl − forward(l)

F2. if Nl := 0 then count := Nl ; Return

F3. s := s + 1 (* Increase the square bound *)

F4. Count grid points, k, on the new boundary line with ordinate values ≥ l

F5. if k (in Step F4) < Nl then

Nl = Nl − k;

(* Use the counted points *)

go to Step F3

else forward(l + 1) := k − Nl; Return

Phase 2 is implemented by the function assign current. This function assigns integer

coordinates to the nodes of the current level l, after confirming that the dominance con-

straints are satisfied. As the constraints are checked here, this function forms the crux of

the algorithm. It aims at assigning grid points included in the region for level l so that the

square bound remains minimum and the constraints are never overlooked. To achieve this,

it divides the region allotted to the previous level l − 1 into subregions A′ and B′, where

A′ consists of grid points with abscissa greater than s(l − 2), the square bound achieved

up to level l − 2, and B′ consists of the remaining grid points. Also the current level l, is

divided into subregions A, B, C and D such that

12 CHAPTER 4. EMBEDDING COMPLETE BINARY TREES ON A 2-D GRID

subregion A has grid points with s(l − 1) ≤ x ≤ s(l), l ≤ y ≤ s(l − 1);

subregion B has grid points 0 ≤ x ≤ s(l − 2), s(l − 1) ≤ y ≤ s(l);

subregion C has grid points s(l − 2) < x ≤ s(l − 1), s(l − 1) ≤ y ≤ s(l); and,

subregion D has grid points s(l − 1) < x ≤ s(l), s(l − 1) ≤ y ≤ s(l).

It places the nodes under the constraints by following the rules:

1. The grid points with lowest ordinate value are assigned first.

2. For columns containing previous level nodes, the children of nodes in a column is

preferred for placement in the grid points on the same column.

3. For columns not containing previous level nodes but having them in the immediate

previous row the grid points are assigned to the children of nodes in the previous

row, preferably.

Function 2: Assignment of Vertices at a Level to Grid Points

assign current(prev assgn,s)

Input: Previous level assignment, square bound

Output: Drawing of all vertices at level l

A1. For grid points on rows with previous level vertices on them (subregion A),

place children of vertices in the previous row(preferably

from the farthest column that has a vertex with unassigned child).

A2. For grid points on columns with previous level vertices on them and with ≤ s(l − 2)

(subregion B), place children of vertices in the same column (preferably

from the nearest row that a vertex with unassigned child).

A3. For all grid points that are not yet assigned (subregion C and D), place

children of vertices in the previous columns.

A4. Return

The search for an appropriate child vertex that should be assigned to a grid point during

steps A1 and A2 of the function assign current involves a simple table look-up into an

array of children of vertices, of level l − 1, for each row and column. For convenience, we

term this search method as Direct Search. During step A3, the search for an appropriate

unassigned child may in addition to Direct Search may require, scanning through arrays

associated with many previous columns. So, we term this search method as Lin Scan (for

linear scan).

4.2. ANALYSIS OF SQUARE BOUND 13

In Step A1 the assignment from previous row is preferred from farthest column to

permit completion of the assignment in the region determined in phase 1 as proved in

Theorem 1 (discussed later). This is not a restriction on the assignment and small vari-

ations in assignment is possible by appropriately changes. We shall show the variations in

assignment later with the experimental results.

After the placement of vertices, the Edge mapper function discussed later in chapter 5,

completes the dominance drawing by mapping the tree edges on the grid edges. A scheme

used to map the edges along the grid lines that ensures a vertical monotone edge mapping

is that the mapped edges traverse rightwards and upwards, only.

Rectangular windows drawn for each edge e = (u, v), with Z(u), Z(v) as bottom-left,

top-right corners respectively, are overlapping. Therefore the drawing obtained as a result

of this algorithm is non-planar.

To explain the working of the Algorithm 1, we take as an example a full, complete

binary tree of height lmax = 5. Refer figure 4.2. As a result of find region the grid points

are reserved for the vertices of the current level, and then the assignment is completed as

per rules of assign current .

4.2 Analysis of Square bound

Let s(l) be the square bound of the complete binary tree of height l, ∆s(l) the increment

over s(l − 1) to get s(l), then

∆s(l) = s(l) − s(l − 1) (4.1)

Let countk(l) be the count of new grid points found after kth iteration of increasing s(l−1)

by 1, then

count0(l) = count∆s(l−1)(l − 1) + 1 (4.2)

countk+1(l) = countk(l) + 2 for k ≥ 0

As an increment by 1 in the square bound increases both the number of columns and the

number of rows by 1, there is an increment of 2 in countk . This is because corresponding

to each point on the previous boundary there is a grid point on the new boundary line

x = s and y = s, which has either the same x- or the same y- coordinate, except for

(s − 1, s − 1) which has two points (s, s − 1) and (s − 1, s) and one more grid point (s, s)

which has no corresponding point on previous boundary line.

14 CHAPTER 4. EMBEDDING COMPLETE BINARY TREES ON A 2-D GRID

(a) l = 0

(b) l = 1

(c) l = 2

(d) l = 3

(e) l = 4

(f) l = 5

Figure 4.2: Illustration of Algorithm 1 on complete binary tree with lmax = 5.

4.2. ANALYSIS OF SQUARE BOUND 15

1

2 3

4 5 6 7

8 10 12 14 15

9 11 13 28 17 30 31

18 22 26 29 20 24 25

19 23 27 16 21

R2
R3

R1

forward(l)

R2 (y >s(l-1))

R3 (x >s(l-1))

Properties:

R1 (x & y >s(l-1))y=l

 y=
s(l-1)

delta s(l)

delta s(l) x=
s(l-1)

Figure 4.3: Subregions R1,R2 and R3 within a region allotted to a level

The first increment in s(l − 1) requires an increment by 1 over count∆s(l−1)(l− 1) due

to a shift of 1 in the lowest row. Over ∆s(l) increments, count∆s(l)(l) is given by (using

equation 4.2)

count∆s(l)(l) = count0(l) + 2 ∗ (∆s(l) − 1) (4.3)

and the total number of new grid points counted is,

∆s(l) ∗ count0(l) + ∆s(l) − 1 (4.4)

Let forward(l) denote the number of grid points that are unused by level l − 1 and

forwarded to the next level. Let rem(l) be the number of vertices at level l which are not

placed after having used forward(l), rem(l) is given by

rem(l) = Nl − forward(l) (4.5)

Also, in each iteration of find region function, at least count0(l) many grid points are

counted, this implies that,

∆s(l) ≤ ⌈rem(l)/count0(l)⌉ for l > 0, (4.6)

rem(0) = 1, count0(0) = 1

Graphically, the region allotted to a level by find region function consists of the following

three regions (Fig. 4.3):

R1 = {(x, y)|s(l − 1) < x ≤ s(l), l ≤ y ≤ s(l − 1)},

R2 = {(x, y)|0 ≤ x ≤ s(l − 1), s(l − 1) < y ≤ s(l)},

R3 = {(x, y)|s(l − 1) < x ≤ s(l), s(l − 1) < y ≤ s(l)}

16 CHAPTER 4. EMBEDDING COMPLETE BINARY TREES ON A 2-D GRID

and the grid points forwarded from previous level l− 1. R1 is same as subregion A of Fig.

4.1, R2 is the union of subregions B and C, and R3 is same as subregion D. The number

of grid points from the three regions R1, R2, R3 are:

from R1: ∆s(l) ∗ (s(l − 1) − l + 1)

from R2: ∆s(l) ∗ (s(l − 1) + 1)

from R3: ∆s(l) ∗ ∆s(l)

total = ∆s(l) ∗ 2 ∗ s(l − 1) + 2 − l + ∆s(l) (4.7)

From equation(4.7), we get

forward(l + 1) = forward(l) + ∆s(l) ∗ 2 ∗ s(l − 1) + 2 − l + ∆s(l) − Nl (4.8)

To minimize the square bound at each level, we need forward(l + 1) ≥ 0. Using the

values of forward(l), s(l − 1) that is known after find region is executed for level l − 1,

and applying forward(l + 1) ≥ 0 in equation (4.8), we get

⌈2(l+1)/2⌉ ≤ s(l) ≪ ⌈2(l+2)/2⌉ and,

∆s(l) = 2(l+1)/2 − 2l/2 (approx.) (4.9)

This gives the order of the square bound achieved by the proposed algorithm. If lmax be

the last level in the given Complete Binary tree, the square bound for level lmax gives the

square bound for the Complete Binary tree with N = 2 ∗ 2lmax − 1 vertices.

∆s(lmax) = O(2lmax/2)

s(lmax) = Σlmax
l=0 ∆s(l) ≥ 2(lmax+1)/2 − 1

= (N + 1)1/2 − 1

s(lmax) = O(2lmax/2)

(sq. bound) s = O(N1/2) (4.10)

Thus, the minimum square bound obtained is O(N1/2), where N is the total number of

vertices in the binary tree G. Hence, the upper bound on the square bound s, achieved

by the algorithm, is O(N1/2).

4.3 Time Complexity

Steps M1 and M3 of Algorithm 1 takes O(1) time. Step M2 is repeated for levels

l = 1 to lmax(= logN). Function find region requires ∆s(l) constant time iterations.

Steps A1 and A2 of assign current takes constant time for each grid point (provided

4.4. CORRECTNESS AND OPTIMALITY OF THE ALGORITHM 17

proper update of index on prev assign array is done), Step A3 requires O(s(l − 1)) to

traverse through all the previously assigned columns, for each grid point. Each step of

the assign current places O(∆s(l) ∗ s(l − 1)) vertices in the worst case. Therefore, the

worst case time complexity for the execution of the proposed Algorithm 1 on lmax levels

of the complete binary tree is, O(N3/2).

4.4 Correctness and Optimality of the Algorithm

4.4.1 Correctness of the Algorithm

Theorem 1 Direct Search and Lin Scan are sufficient to determine an assignment for all

the vertices in a level of a complete binary tree within the region allotted by find region.

Proof (by induction) The region allotted to a level contains

1. some grid points that are forwarded from region bounded by previous square bound

(on its periphery).

2. And the grid points from region allotted to the level by find region which is an

L- shaped region in general, and bounded by the lines x = s(l); y = s(l); y = l; x =

0; x = s(l − 1); y = s(l − 1).

Divide the region into following subregions (same as in Section 4.1).

A: s(l − 1) ≤ x ≤ s(l), l < y ≤ s(l − 1)

B: 0 ≤ x ≤ s(l − 2), s(l − 1) ≤ y ≤ s(l)

C: s(l − 2) < x ≤ s(l), s(l − 1) ≤ y ≤ s(l)

D: s(l − 1) < x ≤ s(l), s(l − 1) < y ≤ s(l)

Step A1 of assign current assigns grid points from subregion A, Step A2 of as-

sign current assigns the grid points from subregion B, Step A3 of assign current

assigns grid points from subregions C and D.

Base case: A Complete Binary tree with lmax = 4. From the example (in Figure 4.2), it

is clear that Direct Search and Lin Scan are sufficient for embedding vertices up to level

l = 4.

Induction Hypothesis:

We assume that all vertices up to level l − 1, are successfully placed using Direct Search

and Lin Scan in region allotted to levels up to level l − 1. The lowest row occupied by

a vertex of level l − 1 is y = l − 1, and width of the region for this level is ∆s(l − 1) ≈

18 CHAPTER 4. EMBEDDING COMPLETE BINARY TREES ON A 2-D GRID

(21/2 − 1) ∗ 2(l−1)/2, using the approximate values given by equation 4.10 in section 4.2.

Induction Step:

For lth level, the lowest row occupied by its vertices is y = l, and width of the region

allotted to it is ∆s(l) ≈ (21/2 − 1) ∗ 2l/2.

We divide the region occupied by the previous level also, into subregions:

A′ : s(l − 2) ≤ x ≤ s(l − 1), l − 1 ≤ y ≤ s(l − 1)

B′ : 0 ≤ x ≤ s(l − 2), l − 1 < y ≤ s(l − 1)

So the row-width (i.e the number of columns in A′) of subregion A′ is ∆s(l − 1), im-

plying that each row in A′ has almost 2 ∗∆s(l− 1) number of children. The row-width of

subregion A is ∆s(l) (< 2∗∆s(l−1)), therefore each row in subregion A can be completely

assigned with the children of vertices placed in the previous row of subregion A′.

Similarly, the column-width (i.e the number of rows in B′) of subregion B′ is ∆s(l−1),

while that of subregion B is ∆s(l), or one more than ∆s(l), therefore each column in

subregion B can be completely assigned with the children of vertices in the same column

of subregion B′.

Note that the column-width of subregion B can be one more than ∆s(l) due to the

forwarded grid points from the previous level. Since 2 ∗ ∆s(l − 1) − ∆s(l) > 1 for l > 4,

the columns in subregion B are completely assigned using child vertices from the same

columns for all levels higher than l = 4.

The number of child vertices (from subregion A′) that are not assigned after assigning

all required grid points of subregion A is given by:

2∗ ∆s(l − 1) ∗ (s(l − 1) − l + 1) − ∆s(l) ∗ (s(l − 1) − l)

= ∆s(l) ∗ ((s(l − 1) − l) ∗ (21/2 − 1) + 21/2) (4.11)

and, number of child vertices (from subregion B′) that are not assigned after assigning all

required grid points of subregion B is given by:

2 ∗∆s(l − 1) ∗ (s(l − 2) + 1) − ∆s(l) ∗ (s(l − 2) + 1)

= ∆s(l) ∗ (s(l − 2) + 1) ∗ (21/2 − 1) (4.12)

This is true even after taking variation of one in column-width of subregion B into account,

for all l > 4.

4.4. CORRECTNESS AND OPTIMALITY OF THE ALGORITHM 19

To assign grid points in subregion C, all the unassigned child vertices from subregion B′

are used at first. Next, if some unassigned grid points are left in subregion C, unassigned

child vertices from same column (that contains the grid point) of subregion A′ is used.

This can be safely done due to the following.

1. The number of columns in subregion C that can be completely assigned using unas-

signed children from subregion B′ is

number of unassigned child vertices from subregion B′ (equation 4.12)

column width of subregion C (≈ ∆s(l))

≥ (2(l−1)/2 + 1) ∗ (21/2 − 1) >
∆s(l − 1)

21/2
(4.13)

2. The number of child vertices from subregion A′ that share the completely assigned

columns of subregion C (equation 4.13) is given by

2∗ ∆s(l − 1)/21/2 ∗ (s(l − 1) − l + 1)

= ∆s(l) ∗ (s(l − 1) − l + 1) (4.14)

> ∆s(l) ∗ (s(l − 1) − l) (4.15)

(i.e, > number of grid points in subregion A)

3. From equation 4.15 it can be said that if the assignment of grid points in subregion

A preferably takes unassigned children of vertices in farthest column of subregion A′

(starting from column x = s(l−2)+1), the children of vertices in the nearer columns

can be used for assignment of grid points on the remaining unassigned columns (after

having used all child vertices from subregion B′) of subregion C.

Therefore to ensure that all the grid points in the subregion C are assigned, the assign-

ment of grid points in subregion A preferably takes unassigned children of vertices in

farthest column of subregion A′. For the same reason, the assignment of grid points in

subregion B preferably takes unassigned children of vertices in nearest row of subregion B′.

Now, the assignment of grid points in subregion D can be completed using all the

unassigned child vertices without any preference (this is because every grid point (x, y) of

this subregion has both x > Zx(v), y > Zy(v) for all vertices v of previous level).

Therefore the Steps A1, A2, A3 are sufficient to completely assign all the grid points

in the region determined by the find region function for level l.

20 CHAPTER 4. EMBEDDING COMPLETE BINARY TREES ON A 2-D GRID

4.4.2 Optimality of the obtained placement

Theorem 2 The grid drawing of the complete binary tree obtained by the proposed algo-

rithm satisfies dominance constraints and has minimum square bound.

Proof (By Contradiction)

Assumption : Let us assume that the square bound obtained by the proposed algorithm

is sub-optimal. This implies that there exist some unused grid points within the square

bound obtained, which when used could further minimize the square bound.

The proposed algorithm starts assigning vertices of level l from row y = l. After

Algorithm 1 completes the assignment of all vertices, the unused grid points within the

square bound s(l) for the level l, are of two types:

Type 1 : present above row y = l, and

Type 2 : present below row y = l .

(All grid points on y = l lying within s(l), are completely used i.e all points such that

0 ≤ x ≤ s(l); y = l are used up.)

Type 1 unused grid points occur either on x = s(l) or on y = s(l). These grid points

could be used for some level l vertices without violating the dominance constraints, but

it does not minimize the square bound. Usage of Type 1 points rather vacates an equal

number of points within s(l). Type 2 unused points lie on rows y = k; for k = 0 to l − 1.

Observation 1 The unused points on row y = k have abscissa value in the range s(k) +

1 ≤ x ≤ s(l).

For levels l = 0 to 2, the vertices are placed on the row y = 0 to 2, respectively, therefore

usage of the unused points on rows y = k (k = 0 to 2) by vertices of level k increases the

square bound of these levels and vacates equal number of grid points on the row y = k.

Each vertex from levels 3 to l−1 is either a child or a grandchild of some vertex of level 2.

Thus, it cannot be placed on the unused grid points on the rows y = 0 to 2. Same holds

for placing a level l vertex below row y = l. Hence, no level l vertex can be placed on row

y = k; for k ≤ l − 1.

This implies that unused points on row y = k can be assigned only to vertices of levels

less than or equal to k. When a level k vertex is assigned to an unused grid point on

y = k, the square bound of the level k increases beyond the achieved square bound s(k)

4.5. ANALYSIS OF THE DILATION FOR THE GRID DRAWING 21

(due to the above Observation).

If the unused grid points on row y = k are used to assign a vertex from level j; for j < k,

then the square bound of level j would become higher than s(j). Moving any vertex of

level j to row y = k vacates used grid points, therefore it does not minimize the percentage

of unused points, too. Also, the new place for the jth level vertex prevents its child vertex

to be placed on rows y ≤ k, which may increase the square bound of the next levels too.

Thus, neither the usage of Type 1 nor the usage of Type 2 unused grid points obtains a

lower square bound than s(l), while keeping minimum square bounds for all intermediate

levels.

Therefore the square bound achieved by the proposed algorithm is optimal if all levels

must also be placed within their minimum square bounds.

4.5 Analysis of the dilation for the grid drawing

Once the placement of the nodes of the tree is determined, the dilation of the tree edges

over the grid edges for the embedding gets fixed. To measure the dilation for tree edges

that connects a node form level l − 1 to its child in level l, we use the subdivisions made

in the function assign current .

For assignment of grid points in A and B the children of nodes from the previous row

in A′ and same column in B′, respectively, are used. The fraction of the children from

nodes in a row of A′ (column of B′) that are assigned to some grid point in the next row

of A (same column of B) is given by

f ′ = ∆s(l)/(2 ∗ ∆s(l − 1)) = 2−1/2 (approx.) (4.16)

hence the fraction of all children from a single row of A′ (column of B′) that is not assigned

to a grid point in A (B) is

f = 1 − f ′ = 1 − 2−1/2 (4.17)

Preferring placement of a child of node in A′ from the farthest column, the dilation for

tree edges connecting a node in A′ with its child in A is bounded above by

∆s(l) + f ∗ ∆s(l − 1) + 1 (4.18)

For tree edges connecting a node in B to its child assigned to some grid point in B′, the

dilation occurs only due to the vertical distance between the edge-vertices. The dilation

for such edges, preferring placement of a child of node in nearest rows, is bounded above

22 CHAPTER 4. EMBEDDING COMPLETE BINARY TREES ON A 2-D GRID

by

∆s(l) + f ′ ∗ ∆s(l − 1) (4.19)

The scheme of placement used by assign current, causes maximum distance separation

for tree edges that connects a vertex placed in A′ or B′ to a vertex placed in C or D.

These edges may in worst case have to pass through the regions allotted to both the

levels l − 1 and l. The maximum dilation for a tree edge originating in subdivision B′

occurs when it has to terminate in subdivision C or early in columns of D. For a tree

edge originating in A′, the worst case occurs for one connecting a node in A′ to a node in D.

The maximum dilation for a tree edge originating in B′ is bounded above by

s(l − 2) + ∆s(l) + ∆s(l − 1) (4.20)

and for a tree edge originating in A′ the maximum dilation is bounded above by

s(l) − l + 1 + ∆s(l) + f ∗ ∆s(l − 1). (4.21)

Hence the maximum dilation for the placement attained is bounded above by

max { s(l − 2) + ∆s(l) + ∆s(l − 1), s(l) − l + 1 + ∆s(l) + f ∗ ∆s(l − 1)}

= O(N1/2) (4.22)

Chapter 5

Edge Mapping

5.1 Congestion Analysis

Here we are going to find the maximum value for congestion that is present for any possible

edge mapping along grid edges. To analyze the congestion, we divide the mapping into

essential mapping, and non-essential mapping. Essential mapping of edges are those for

which no alternate paths along the grid edges would be shortest and non-decreasing. The

mapping of the edges must be non-decreasing so that the routing of edges do not undo

the property achieved by dominance constraint. Keeping the path shortest imply a detour

free path.

Non-essential mapping of edges is the one for which some alternate non-decreasing

paths of same length exists.

The tree edges which are mapped under essential mapping, contribute to essential con-

gestion. This happens for a tree edge that connects vertices assigned to two grid points

in the same column. Such an edge needs to be mapped vertically from the source to the

target vertex. Now, the assignment of all grid points in subregion B has been done so that

the child vertex lie in the same column as its parent. This gives that at least ∆s(l) edges

corresponding to vertices assigned in a column of subregion B have to be mapped along

the grid edges of that column, vertically. The lowest grid edge in a column, i.e one that

connects a grid point from region allotted to level l − 1 to one from the region allotted

to level l, is used by all the tree edges that require to be mapped vertically. Hence the

maximum congestion that occurs due to essential mapping of edges is ∆s(l).

Therefore, the contribution of essential mapping towards the maximum value of con-

23

24 CHAPTER 5. EDGE MAPPING

gestion is

= ∆s(l) = 2l/2(21/2 − 1) = O(N1/2) (5.1)

For a tree edge e = (u, v) directed from u to v, such that their mapping on the grid,

given by Z(u) and Z(v) respectively, are in different columns, we define a bounding rect-

angle for the pair (u, v) as a rectangle formed with Z(u) as the bottom-left corner and

Z(v) as the top-right corner. A non-decreasing detour-free path for the edge e = (u, v)

will lie within the bounding rectangle for (u, v).

The assign current module uses a grid point from a different column than one con-

taining the parent vertex, during assignments into the subregions A, C and D. Of these

the grid points in rows of A have been assigned a child vertex of a vertex placed in the

immediate previous row in A′, therefore the edges for these parent-child vertex pair have

a choice in selecting the location of its vertical grid edge, to move from the lower row to

the next one. The sub-path of the edge map lying before and after the vertical edge is

essentially horizontal, again contributing to essential congestion in the horizontal direction.

Despite a choice, the congestion contribution of mapping edges for vertices assigned to

subregion A is essential in nature. Again, the grid edge that connects the rightmost grid

point from A′ to the leftmost grid point from A in the same row is used by ∆s(l) edges,

half of which is for edges corresponding to a vertex in the same row, on an average, and

other half for those in the next row.

The bounding rectangles for parent-child vertex pairs of which the parent is in B′ or

A′ and child is in C or D, have possibility of many different monotone paths. Some of

these rectangles are overlapping which imply that of many different paths possible there

are some which require passing through a region required by paths for other parent-child

pairs. Inorder to minimize the congestion we want to select such paths for different tree

edges so that the number of overlaps on a single grid edge is minimized. We are in search

of an edge mapping algorithm for our scheme of placement that does an optimal selection

of the paths for the tree edges and thereby minimizes the congestion.

For average analysis of the congestion that could occur by a good selection of the paths

for the tree edges we do the following theoretical study.

From earlier sections, Sec. 4.5, we know that about f ∗ 2 ∗∆s(l−1) child vertices from

level l−1, of those in each row of A′ or a single column of B′, are not placed in the imme-

diate next row orin the same column, respectively. The bounding rectangles corresponding

to these parent-child pairs are overlapping. The maximum number of overlaps among the

5.1. CONGESTION ANALYSIS 25

bounding rectangles with their bottom-left corner in subregion B′, is given by

(s(l − 2) + 1) ∗ f ∗ 2 ∗ ∆s(l − 1)

= (s(l − 2) + 1) ∗ (21/2 − 1) ∗ ∆s(l) (5.2)

similarly, the maximum number of overlapping bounding rectangles with their bottom-left

corner in the subregion A′ is given by,

(s(l − 1) − l + 2) ∗ f ∗ 2 ∗ ∆s(l − 1)

= (s(l − 1) − l + 2) ∗ (21/2 − 1) ∗ ∆s(l) (5.3)

There can also be some overlap among bounding rectangles of some edges originating in

A′ and B′. This happens when children of a vertex in B′ are assigned in D or assigned in

C on a column that has nodes with unassigned children in A′ after complete assignment

of subregion A.To understand it, refer to Figure 5.1.

Figure 5.1: Overlap between bounding rectangles originating in B’ and A’

In the figure the shaded region is the f ′ fractional part of A′ or B′ that has nodes

with its children assigned to A and B respectively. P denotes subpart of C on or beyond

column x = s(l− 2)+ f ′ ∗∆s(l− 1) and of D that has been assigned a child of node in B′.

Q is that subpart of A′ such that the bounding rectangles originating in A′ overlaps with

one terminating in P . The number of columns in P is obtained using number of columns

beyond x = s(l − 2) required to place the children from B′ and number of columns in

shaded part of A′. Using equation 4.13 and 4.16, we obtain the number of columns in P is

≥ (1− f)∗∆s(l−1)+(21/2−1). The columns shared by P with columns in subregion A′,

are the ones present in Q, therefore the bounding rectangles terminating in P or originating

in Q are overlapping.The maximum number of such overlaps among bounding rectangles

is given by,

∆s(l) ∗ (∆s(l − 1) ∗ (1 − 2−1/2) + 21/2 − 1)

26 CHAPTER 5. EDGE MAPPING

+2 ∗ (s(l − 1) − l + 2) ∗ (∆s(l − 1) ∗ (1 − 2−1/2) + 21/2 − 1)

= (∆s(l) + 2 ∗ (s(l − 1) − l + 2)) ∗ (∆s(l − 1) ∗ (1 − 2−1/2) + 21/2 − 1) (5.4)

For the rectangle with largest number of overlaps of bounding rectangles, either the

height or the width is ≤ ∆s(l) + ∆s(l − 1). If the height or width is less than ∆s(l) +

∆s(l − 1), all the tree edges corresponding to the overlapping bounding rectangles may

not mandatorily pass through this rectangular region. But otherwise, each such tree edge

needs to cross the heavily used rectangular region. So, it would take its path through one

of the ∆s(l) + ∆s(l − 1) rows or columns in the rectangle. On an average, a single grid

edge on a row (column) of such a rectangle would be used for

(s(l − 2) + 1) ∗ (21/2 − 1) ∗ ∆s(l)

∆s(l) + ∆s(l − 1)
or,

(s(l − 1) − l + 2) ∗ (21/2 − 1) ∗ ∆s(l)

∆s(l) + ∆s(l − 1)
or,

(∆s(l) + 2 ∗ (s(l − 1) − l + 2)) ∗ (∆s(l − 1) ∗ (1 − 2−1/2) + 21/2 − 1)

∆s(l − 1)

= O(N1/2) (5.5)

times.

The essential congestion given by equation 5.1 gives a lower bound on the value of

maximum congestion. The equation 5.5, gives a theoretical lower bound on the maximum

congestion caused by the non-essential edge mapping. However, such a uniform distri-

bution of tree edges over the grid edges might not be possible without a detour. So, we

have obtained a lower bound of O(N1/2) on the maximum value of the congestion for the

dominance constrained placement of complete binary trees given by Algorithm 1.

Our aim in the next section will be to achieve a scheme for edge mapping that minimizes

the maximum congestion.

5.2 The Edge-Mapping Algorithm

Inorder to complete the drawing, we need to map the tree edges along the grid edges. This

we call as the edge-mapping. During edge-mapping we need to ensure that no detours ex-

ist, else the delay through the path would increase. For this we follow the grid edges in

a non-decreasing manner both vertically and horizontally, so we map the tree edges over

the grid edges in rightwards and upwards direction.

5.2. THE EDGE-MAPPING ALGORITHM 27

Presence of dilation in the drawing indicate that a single tree edge would be mapped

over a set of continous grid edges. As described earlier, the placement of the vertices over

the planar grid is a non-planar drawing, therefore a single grid edge may be used for a

number of tree edges. The overlap of tree edges implies a number of tracks in the channel

of the VLSI chip, this forces an increase in the channel width. Increment in the channel

width itself leads to an increase in the area of the VLSI chip. Therefore, during the edge

mapping phase we also try to minimize the congestion.

Though it is difficult to develop an edge mapping algorithm that optimally selects the

path for each tree edge so as to evenly distribute the congestion, we propose an edge-

mapping algorithm that does a local search for each tree edge to follow a direction that

keeps the congestion low. It achieves the edge-mapping without altering the area achieved

in the placement. Later on we would want to study the effect of imposing a bound on the

congestion, on the area requirement for the placement. We may even choose a minimum

detour path to satisfy a bounded congestion edge mapping.

In this section we discuss the edge mapping algorithm followed by us in Edge mapper.

A grid edge g can be recognized by its starting grid point st pt(g) and its end grid

point e pt(g). Of the four grid edges intersecting at any grid point, detour free path per-

mits selection of only two: one moving upwards and other rightwards only. As we intend

to keep the congestion low we store the number of times a grid edge g has been used

in an associated variable congestion(g). Also the maximum value of congestion(g), over

all used grid edges g, is stored in variable max cong. We start the mapping of a tree

edge e = (u, v) directed from u to v, from the grid point Z(u) as the source src pt. The

mapping of the tree edge is complete when the tree edge e reaches the destination grid

point Z(v), we call it dest pt. The current status for the tree edge e is known by the end

point e pt(g) of the last grid edge followed by e. If e pt(g) of the last grid edge followed

by the tree edge is not equal to the dest pt, e pt(g) becomes the next source point src pt

for the path of the tree edge.

At any src pt, the direction of the path that the tree edge should take is to be decided.

Before choosing the direction of the path for the tree edge, we need to determine if there

exists some option for the edge direction or not. This is done by testing if the current

status src pt of the tree edge lies on the final row or the final column of the bounding

rectangle. When this is true, the rest of the path to be taken by the tree edge becomes

fixed. If the new src pt and the dest pt lies on the same column the rest of the path must

be strictly upwards.

28 CHAPTER 5. EDGE MAPPING

Algorithm 2: Maps Tree Edges onto Grid Edges

Edge mapper(G, Z, lmax, s)

Input: Z, the dominance constrained drawing after the placement phase

Output: Completed dominance drawing with mapped tree edges

E1 Initialize congestion value for all grid edges to zero, and max cong: = 0

E2 for each level l of complete binary tree do

for each tree edge e terminating at vertex vof the level l do

a. Let u be the parent vertex for v, then

src pt: = Zx(u), Zy(u) ; dest pt: = Zx(v), Zy(v)

b. Let st pt(g), e pt(g) denote the start grid point and the end grid

point of the grid edge g

if src pt(x) = dest pt(x) then

choose vertical edge g′ with st pt(g′) equal to src pt

congestion(g′): = congestion(g′) + 1

else if src pt(y) = dest pt(y) then

choose horizontal edge g′ with st pt(g′) equal to src pt

congestion(g′): = congestion(g′) + 1

else

choose the edge g′ with st pt(g′) equal to src pt and smaller

congestion(g′) value, prefer horizontal edge if edges in both

directions have same congestion value

c. src pt: = e pt(g′)

Update the pathcode(e)

if congestion(g′) > max cong then

max cong: = congestion(g′)

end if

Repeat from Step E2 b. until src pt = e pt

end for

end for

E3 for graph edge e using a grid edge g with congestion(g) = max cong do

Rip reroute(e, pathcode(e))

end for

Similarly, if the new src pt lies on the same row as the dest pt the rest of the path

must be strictly rightwards. The choice for the direction of the path stays for other status

values (src pt) of the path.

Selection of a direction for the path, is done to ensure that it minimizes the usage of a

5.2. THE EDGE-MAPPING ALGORITHM 29

grid edge that is already used for a higher number of tree edges. The tree edges that are

mapped earlier than others would mostly find a low congestion value for both horizontal

and vertical grid edge starting at the src pt. In such cases when both of the possible

grid edge that could be taken are equally congested, preference is given to the horizontal

edge. This is done since many of the tree edges would be having essential mapping in

the vertical direction. The path taken by the tree edge e is maintained with the tree

edge as a pathcode(e). For every selection of the direction the pathcode(e) is updated.

The pathcode(e) is a binay string with: 0 specfying horizontal direction and 1 the vertical

direction. The length of the pathcode(e) is equal to the value of the dilation present in

the tree edge e.

FUNCTION 1 : Finds an Alternate Low Congested Path

Rip reroute(e, pathcode(e))

Input: tree edge e with its pathcode(e)

Output: A new pathcode(e) for e with lower max. congestion

R1 Follow the grid edges g in pathcode(e) and decrement congestion(g)

R2 Use Step E2 in Algorithm 2 to update new pathcode(e)

(* max cong is unaltered *)

R3 If congestion(g) for all grid edges in new pathcode(e) < max cong then

decrement max cong value

pathcode(e): = new pathcode(e)

else Follow grid edges g in pathcode(e) to increment congestion(g)

end if

R4 Return pathcode(e)

As another atempt in minimizing the congestion, we remove the mapped tree edge

that has been moved through a highly congested grid edge and re-route it through some

other path along the grid edges. This path may be a new one with grid edges that have a

lower congestion value than the maximum congestion, or remain the same if no alternate

path can bypass a highly congested grid edge. Re-routing, done by Rip reroute, uses

the same strategy as the initial routing. The initial routing has been done in absence of

many tree edges, therefore the path taken by the early mapped tree edges uses the first

least congested direction. Due to this many options for the path, that the tree edge could

take, have not been tested. We would like to try some of these options for the already

mapped edges to check if the maximum congestion value could be decreased. Re-routing

is an attempt to minimize the maximum value of the congestion by re-mapping some of

the tree edges. The tree edges that have been mapped early, may later on end having used

most congested grid edges. So we search for an alternate path for such tree edges, after

all the tree edges have been mapped.

30 CHAPTER 5. EDGE MAPPING

If an alternate path that decreases the use of highly congested grid edge, could be

found, the pathcode(e) and the congestion values are duly updated, otherwise the old

pathcode(e) is left unchanged. As a result we could decrease the maximum congestion

achieved or atleast the frequency of occurrence of the maximum congestion. This step

could be repeated a number of times, involving repeated scan for a low congestion path

for each tree edge. This would be not be cost-effective, (as the number of tree edges per

level that are actually re-mapped are only a few), hence we use Rip reroute only a few

times.

Chapter 6

Offline Improvement of

Placement Area

The proposed algorithm Algorithm 1 in section 4.1 minimizes the square bound for each

level in the complete binary tree. Due to this, there are many unused grid points with

ordinate value y ≥ k and lying between columns x = s(k) and x = s(l), for k < l. These

are unused during assignment of nodes in level k, as it would increase the square bound

s(k), for the level k. To minimize the square bound for placement of an N - node complete

binary tree, there is still the scope of using these unused grid points, without trying to

minimize the square bound at each level.

To achieve a global minimizaion of the square bound, we insert some additional steps,

into Algorithm 1.

6.1 Algorithm for improvement

Our approach is to first find the square bound s, required for the dominance drawing of

an N - node complete binary tree, by the repeated use of find region without any actual

assignments made. The final value of s gives an initial value for the square bound and is

the one achieved by Algorithm 1.

We do not store the square bounds found for the intermediate levels. Before we begin

with the assignments, the square bound s is reduced, so as to minimize the number of un-

used grid points enclosed within the square bound s. For this, we assume that maximum

number of nodes of a single level can be placed on a single row, in the found region. The

number of grid points on a single row of the found region is s + 1, so levels having less

31

32 CHAPTER 6. OFFLINE IMPROVEMENT OF PLACEMENT AREA

than s + 1 nodes would be completely assigned to grid points on a single row. If there are

some unused grid points left on the row corresponding to a level with < s + 1 nodes, they

cannot be used by the next level nodes.

Let k′ be the last level having < s + 1 nodes. So each level l up to level k′ occupies

a single row given by the row y = l. All usable grid points on the rows y ≤ k′ have been

reserved for assignment. The number of reserved grid points on these rows is more than

the number of grid points (on rows y ≤ k′) used in Algorithm 1. So if we continue to

use all usable grid points on the next rows too, without changing s, a number of unused

grid points will appear on the top rows, i.e rows nearer to y = s. If the number of unused

grid points on the non-boundary top rows (boundary row is y = s), is more than the

number of grid points reserved for use, on the column x = s, the square bound s can be

decremented. This is repeatedly done until there are not as many unused grid points on

the non-boundary top rows as there are used grid points on the boundary column x = s.

ALGORITHM: Improves on Algorithm 1 to get Global Minimum Area

Input: G, a complete binary tree with height lmax

Output: s, minimum square bound, Z

K1. (*Get the square bound s obtained in Algorithm 1*)

Z: = (0, 0); l: = 1; s: = 0; forward(l): = 0;

Repeat while l ≤ lmax

find region(s, forward(l))

l: = l + 1

K2. Calculate largest k′ such that 2k′

(# nodes in level k′) ≤ s + 1

N ′: = N − (2k′+1 − 1); (N , the number of nodes in G)

n rows: = ⌈N ′/(s + 1)⌉;

if (k′ + n rows < s) then

Count number of unused grid points, count, on rows (k′ + n rows) ≤ y < s

if count > number of points on column x = s with y ≤ k′ + n rows

s: = s − 1;

Repeat from step K2.

end if

end if

K3. assign(s, lmax, G)

This gives us the globally minimum square bound for the placement of the N - node

complete binary tree, with least number of unused grid points. Also, that these unused grid

points cannot be used at all under the dominance constraints. Here too, the assignments

are done level by level, with the lower rows being used before utilizing the higher rows.

6.1. ALGORITHM FOR IMPROVEMENT 33

Due to this the nodes of a level l, are placed above the region containing the nodes from

level l − 1, for all l. The method followed to complete the assignment of subregion B and

D, by assign current of Algorithm 1, is sufficient to completely assign all nodes of a

level in this scheme too. Therefore the function assign current needs no modification

except that only the steps pertaining to subregion B and D is applicable.

FUNCTION 1: Does the Assignment for the Vertices of the Tree

assign(s, lmax, G)

Input: improved square bound s, lmax and G

Output: Z, the completed assignment

L1. For levels l, with 2l ≤ s + 1,(i.e l ≤ k′) place all vertices on row y = l (with

one vertex on the same column as its parent and other to the right of all

columns containing a parent vertex using grid points from left to right).

Keep in unused, the count of unused points on row y = k′.

L2. For levels l, with 2l > s + 1

if l = k′ + 1 then

for columns x ≤ s − 2 ∗ unused, place both children on the same

column as their parent vertex.

for columns s − 2 ∗ unused > x ≤ s − unused, place one child vertex on

the same column as its parent, and remaining vertices of level l into the

columns x > s − unused.

else if l < lmax then

place all child vertices on the same column as their parent (preferably

children of nodes in the nearer rows).

else

place as many child vertices in the same column as their parent, till the

grid points have ordinates ≤ s and the remaining child vertices on the

columns x > (s + 1 − 2 ∗ unused) using Lin Scan (refer section 4.1)

end if

L3. Return

During assignment phase, the vertices in levels l ≤ k′ are placed in a single row y = l,

from left to right, placing a child node into the same column as its parent, if possible.

The number of unused grid points that are left on the row y = k′ after assignment of all

vertices from level k′, is stored as unused. For the next level l = k′ + 1, the child vertices

of nodes in the columns x ≤ s−2∗unused are placed in the same columns as their parent.

The child vertices of nodes in columns x > s − 2 ∗ unused are equally distributed on the

remaining (free) grid points on row y = k′ + 1, i.e one child vertex is placed in the same

column and the other in the columns not having any parent level node.

34 CHAPTER 6. OFFLINE IMPROVEMENT OF PLACEMENT AREA

For the higher levels l > k′ + 1, we place all the child vertices in the same column as

their children. These assignments would be on grid points within the square, formed by

the square bound s, for all levels except for the last level l = lmax. Hence we only place as

many vertices of level lmax as could be placed on available free grid points with ordinate

values ≤ s, in each column.

The number of grid points in each column, that is used for assignment, is not equal.

As we have been using more number of grid points from columns x ≤ s− 2 ∗ unused than

from the other columns to the right, there are unused grid points available on the columns

x > s − 2 ∗ unused). Throughout the assignments for levels l ≥ k′ + 1, the total number

of grid points that have been used in each column x ≤ s− 2 ∗unused, has been greater by

2l−k′

−1, from the number of grid points used in each of the remaining columns. Therefore,

the remaining unassigned vertices of level lmax can be placed into these unused grid points

using Lin Scan, described in section 4.1. Also, to be cautious that all remaining vertices

could be placed at some of these grid points under dominance constraints, we include the

preference of placing the child vertices of parent level nodes in the nearer rows (nearer

to the rows that are beng assigned) during their assignment to the same column as their

parent vertex.

Chapter 7

Extension to DAGs

7.1 Need for modification

In the previous sections, the algorithm for placing nodes in a complete binary tree, and

edge-mapping on the obtained drawing, both under the constraints of dominance drawing

have been discussed. We have obtained an area-efficient algorithm for the complete binary

tree, we would now like to analyze the square bound and area requirement for directed

acyclic graphs. Directed acyclic graphs differ from a complete binary tree but are a closer

depiction of the VLSI circuits.

The difference between the two graphs (complete binary tree and directed acyclic

graph), that effects the proposed method applicable to complete binary tree and requires

modifications is:

1. No bound on the indegree and outdegree.

2. Data dependence is not restricted to the immediate previous topological level.

Complete binary tree has a fixed indegree and outdegree of one and two respectively, this

gives the analysis for the square bound of the kind described in section 4.2. In absence of a

bound on degree, any vertex with in-degree > 1 and out-degree ≥ 1, can become a source

for pushing the square bound higher. This happens as the vertex having an indegree > 1

is a convergence point for its incoming edges. Due to the convergent edges that may be

present, the vertex becoming the point of convergence can only be placed on or after the

last column containing one of its predecessor vertices. Also, such a vertex must be placed

above any row containing its predecessor. As a result, many grid points on lower rows and

columns cannot be used, forcing the assignments to be denser along the right diagonal of

the square grid.

35

36 CHAPTER 7. EXTENSION TO DAGS

To recognize the data dependence in the directed acyclic graphs, topological order of

the vertices is considered. Topological order defines the levels in a DAG. Like for assign-

ment of a complete binary tree, the assignment of nodes in a DAG under the dominance

constraints, require that a level l node be placed on or above a row y = l. Again, in absence

of a restriction on out-degree of vertices, the number of vertices in different topological

levels varies, sometimes to very low and sometimes very high. A very less number of nodes

in a level may also lead to sparse usage of the grid points within the obtained square bound.

The data dependence is not limited to be from the immediate previous topological

level, rather the predecessors can be from any of the previous topological levels. Therefore

the region on the grid that contains the predecessors of nodes in a particular level, may

span whole of the square region defined by the assignments made before the assignments

for nodes of that level.

These differences with respect to the complete binary tree, causes us to modify our

algorithm for the dominance drawing of a directed acyclic graph.

7.2 Placement of DAG vertices

Let G denote a single source connected directed acyclic graph. The assignment Z(v) of a

vertex v ∈ G, must satisfy the dominance constraints defined earlier. According to which,

the y- coordinate Zy(v) of a node v must be strictly greater than that of its predecessor

nodes, and the x- coordinate Zx(v) must be equal or greater than that of its predecessors.

The proposed algorithm for the directed acyclic graph is also incremental, i.e assignments

to the vertices are made level after level.

We place the source vertex, src, (with indegree 0) at the origin. As G is single sourced,

the square bound for the level zero is s = 0. For assigning the vertices in the next level

l = 1, we need to have the grid points on the rows y ≥ 1. There are no unused grid points

in the achieved square bound that is usable in the new level, so the number of forwarded

grid points is zero, n forwardpt = 0.

The region on the grid that contains all the predecessors of a node in level l, is not

limited to the region containing nodes from level l − 1 only. The predecessors may be

from any of the levels preceding level l. As the edge connections may be random, it

is not possible to strictly define the predecessor region. Rather, we assume that any

assigned node from the previous levels that has some unassigned successor node can be

one of the predecessors for nodes in the current level l. Therefore, we keep all assigned

7.2. PLACEMENT OF DAG VERTICES 37

nodes with some unassigned successor into the array prev assgn to define the region for

predeccessor nodes. The array prev assgn is updated after assignments to all the nodes of

a level is complete: including new nodes just assigned and deleting nodes with all assigned

successors.

ALGORITHM 3: Finds Dominance Constrained Drawing for DAG

Input: topologically sorted DAG G, the number of topological levels lmax, a grid

Output: s, the minimum square bound for the drawing, Z

M1 (*Assign the src vertex to origin*)

Z(src): = (0, 0); l: = 1; s: = 0; n forwardpt: = 0; forward list: = NULL;

prev assign : = src; xmin: = 0; ymin: = 1;

M2 Repeat while l ≤ lmax

Nl: = Number of nodes in level l

build arr(prev assign, Xarr, Yarr)

if n forwardpt > 0 then

k: = f assign current(forward list, Xarr)

n forwardpt: = n forwardptk;

Nl: = Nl − k;

end if

if Nl > 0 then

find region(Nl, s)

d assign current(forward list, n forwardpt,Xarr,Yarr,s)

end if

Update prev assgn to include all assigned nodes with unassigned successors

xmin: = min{Zx(v): v ∈ prev assgn}

ymin: = l + 1

Update forward list and n forwardpt, adding unused grid points within

(s, s) and removing any grid point (x, y) with x < xmin or y < ymin

M3 Print s.

M4 (* Map edges to complete the drawing*)

The region that would contain the vertices from a level l, lies on and above the row

y = l, and on and to the right of column x = xmin. Here the value of xmin is defined by

the lowest column that contains a node in prev assgn. As there is no node u ∈ prev assgn

with Zx(u) < xmin, no assignments for vertices in the current and the forthcoming levels

shall be in columns to the left of column x = xmin.

The predecessor region (that contains all the nodes in prev assgn) is not divided into

subregions that was done for the complete binary tree. This is because the distribution of

38 CHAPTER 7. EXTENSION TO DAGS

the nodes that have successors in the current level is not as uniform as was for complete

binary tree. In addition to this, the successors of a node in prev assgn, belonging to the

current level, and having in-degree > 1, may not be put on the same column, unless all its

predecessors are placed on or before that column. Similarly, the successors with indegree

> 1 may not be put in the immediate next row. Algorithm 1 is modified here, and we

make lists of current level nodes that could be allocated to a grid point in column or row.

This is done by build arr function.

FUNCTION 1: Prepares List of Current level nodes for each Row/Column

build arr(prev assgn, Xarr, Y arr)

Input: prev assgn, list of assigned nodes from previous levels

Output: column-wise(Xarr) and row-wise(Yarr) lists of current level nodes

B1 for each column x = xmin to s do

for each node u ∈ prev assgn assigned in the column x do

Scan successors v of u and put one having all its predecessors assigned to

grid points in columns on or before column x into Xarr[x], along with

min y = max{Zy(pred(v))} + 1

end for

end for

B2 for each row y = ymin to s do

for each node u ∈ prev assgn assigned in the row y − 1 do

Scan successors v of u and put one having all its predecessors assigned to

grid points in rows on or before row y − 1 into Y arr[y]

end for

end for

B3 Return

The build arr function scans through the successors of the nodes in prev assgn array,

and those having all its predecessors placed but is itself unassigned, is put into Xarr or

Yarr. Xarr is a list with column-wise partitioning, one for each column from x = xmin

to x = s, that contains some node in prev assgn. Similarly, Yarr is a list with row-wise

partitioning, one for each row from y = l to y = s. Due to topological sorting of the

DAG, only the nodes of the current level, can have all its predecessors placed, therefore

the successors put into Xarr or Yarr belong to the current level. Also, the partition of

Xarr or the column which contains a node is the one corresponding to the column of a

predecessor having largest abscissa value for its assignment. A partition of Yarr contains

the nodes having all its predecessors placed below the corresponding row, and atleast one

predecessor placed in the immediate previous row.

7.2. PLACEMENT OF DAG VERTICES 39

It is to be noted that a node present in a partition of Xarr or Yarr corresponding to

column x = x′ or to row y = y′ respectively can be placed on any columns x ≥ x′ or any

rows y ≥ y′.

Before, finding out the potential region for assignment of vertices in the level l, the

usable (with abscissa ≥ xmin and ordinate ≥ l) forwarded grid points lying within the

last achieved square bound are tried out to assign as many nodes as permitted under the

constraints.

The forwarded grid points can exist deep into the square region defined by the achieved

square bound s. This is unlike the case of dominance drawing for a complete binary tree,

where they are located only on the final boundary of the achieved square bound.

The function f assign current does the assignment for the grid points in the for-

ward list. We still fill the grid points in the lowest row, if there is some node that could be

allocated to them under dominance constraints. The array Xarr is used for this purpose

as all the forwarded points lie on some column from x = xmin to x = s. But, here we

also require to check if the node that is allowed to be placed on the column containing

the forwarded grid point, does not violate the dominance constraint for the y-coordinates.

For this, we also keep an associated variable with each node, min y, that specifies the

minimum ordinate value that the grid point must satisfy. By the constraints, min y is the

lowest row y = y′, such that all the predecessor nodes are placed on rows y < y′.

FUNCTION 2 : Does Assignment into grid points of forward list

f assign current(forward list, Xarr)

Input: lists of forwarded grid points forward list, and column-wise nodes Xarr

Output: assigns into some forwarded points, returns number of points assigned

FA1 Sort forward list in ascending order w.r.t ordinate values,

followed by ascending order w.r.t abscissa values;

k: = 0;

FA2 for each grid point (x′, y′) in forward list do

assign (x′, y′) to an unassigned node from Xarr[i](i ≤ x′) with min y ≤ y′

(preferably from column i = x′)

if (x′, y′) is assigned then

k: = k + 1;

end if

end for

FA3 Return k;

40 CHAPTER 7. EXTENSION TO DAGS

The function find region is similar to the one described for a complete binary tree. It

finds the potential region for the placement of the yet unplaced nodes of the current level

l, by counting as many grid points as there are unassigned nodes in the level l. Unlike,

for complete binary tree, the potential region found may not be sufficient to place all the

nodes. This is an outcome of the random degrees and edge connections, as the nodes

may be pushed towards the higher columns and rows to satisfy the constraints for each

successorpredecessor pair. Yet, it is only during the assignment into this region that we

find the grid points that do not have any unassigned node left to be assigned to them.

FUNCTION 3: Finds Potential Region for the Topological Level l

find region(Nl, s)

Input: Nl, the number of vertices in level l

Output: s, the minimum square bound

F1 Repeat while Nl > 0

s: = s + 1;

Count (count) the grid points on the new boundary line with abscissa ≥ xmin

on and above row y = l

Nl: = Nl − count;

F2 (last x, last y): = coordinates of the last grid point counted in Step F1

Return

Therefore, we have another version of the assign current function called d assign current ,

that may have to dynamically decide the region to completely assign all nodes of the level,

in some cases.

In d assign current , we bring in some modifications to cater our needs for dominance

drawing of a directed acyclic graph.

Firstly, the current region is not sub-divided in the same fashion as was done in as-

sign current (for complete binary trees), as we cannot assure that all the grid points in

the region could be used. Rather here we assign the grid points in a row-wise fashion,

starting from the lowest row, to maximize usage of lower grid points that may help achiev-

ing less increments on s. Only for sake of convenience we divide the rows of the region

into

subregion A containing grid points with s(l − 1) < x < s(l), l ≤ y ≤ s(l − 1) (here,

s(l − 1) is the square bound achieved for level l − 1, and s(l) the currently known

square bound for level l), and

subregion B containing the grid points on higher rows, i.e points with xmin ≤ x ≤

7.2. PLACEMENT OF DAG VERTICES 41

s(l), s(l − 1) < y ≤ s(l).

The rows in subregion A being lower than rows having some predecessor nodes assigned,

the array Yarr is used to fill grid points in them. For grid points in the rows of subregion

B, ordinate value is not a constraint anymore, therefore only Xarr is used to select the

unassigned node to be placed.

FUNCTION 4: Completes Assignment for all Unassigned Nodes in Level l

d assign current(forward list, n forwardpt, Xarr, Y arr, s)

Input: forward list, lists of current level nodes Xarr, Y arr

Output: Completed dominance constrained placement for the level l

DA1 Prefer assignments in grid points on lowest row under the following rules

(as applicable):

i. For each grid point (x′, y′) on rows y = y′ of subregion A, assign an

unassigned node from Y arr[i](i ≤ y′), prefering one from Y arr[y′] with

highest out-degree.

if no unassigned node found then

go to Step DA2

end if

ii. For each grid point (x′, y′) on rows y = y′ of subregion B, assign an

unassigned node from Xarr[i](i ≤ x′), prefering one from Xarr[x′] with

highest out-degree.

if no unassigned node found then

go to Step DA2

end if

DA2 Include (x′, y′) in forward list, n forwardpt: = n forwardpt + 1;

if (last x, last y) = (s, s) then

s: = s + 1;

(last x, last y): = (s, ymin);

else

(last x, last y): = coordinates of the uncounted grid point next

to (last x, last y)

end if

go to Step DA1

Secondly, if any grid point cannot be assigned, due to lack of unassigned nodes that

could be placed there, a new grid point is included into the region. The new grid point

is one that is next to the last grid point, (last x, last y), previously counted into the re-

gion. Note that the grid points on a new boundary line (formed by x = s and y = s) are

counted in ascending order of their ordinate values if abscissa = s. And for points with

42 CHAPTER 7. EXTENSION TO DAGS

same ordinates they are counted in ascending order of abscissa values. If (last x, last y)

was the grid point (s, s), we would require incrementing s, to get the new grid point.

In case the new grid point is on a lower row than one that contains the grid point that

was being assigned, its assignment is done before other grid points.

Thirdly, a node with greater out-degree is preferably placed on a lower row or column.

This is done to increase the chance for its successors to be placed without requiring many

increments in the square bound. Without this clause, a predecessor node placed on a

higher row or later column, will have all its successors to be placed above its row or after

its column, which may push the square bound higher.

Chapter 8

Implementation

8.1 Implementation of Algorithm 1 for Complete Bi-

nary tree

The input is a full complete binary tree, i.e for an N - node tree, level l has 2l nodes (root

is considered to be at level l = 0). The input tree is considered to be labeled from the

root level to the leaf level, and at each level from left to right. Each vertex of the tree is

recognized by its label. Also, being full and complete, each non-leaf vertex has two chil-

dren. If the label of a vertex is i, the label of its left child is 2i and of its right child is 2i+1.

Information associated with each vertex v of the complete binary tree is :

1. its label

2. assignment Z(v) = (Zx(v), Zy(v))

3. assignments for its child nodes.

For this, we define a C-structure as follows:

struct vertex {

int key[3]; /* key[0] = Z_x(v), key[1] = Z_y(v),

key[2] = label(v) */

int child1_xy[2]; /* assignment for its left child node,

initially (-1,-1) */

int child2_xy[2]; /* assignment for its right child node,

initially (-1,-1) */

};

43

44 CHAPTER 8. IMPLEMENTATION

Initial value for the assignments of the left and right child is kept at (−1,−1) to indicate

that they are unassigned.

To choose assignments for nodes in a level, one has to know the assignments of their

parent nodes. All parent nodes exist in the previous level. With information about the

child assignment stored along with a node, an array of nodes in the parent level is kept

during iteration for each level.

struct vertex ** Xarr, ** Yarr, ** Yarr_x;

The size of the dynamic array is given by the number of nodes in the parent level.

The nodes in subregion A′ of the parent region on the grid, is stored in Yarr, and

the nodes in subregion B′ in Xarr. Yarr is used to assign grid points in subregion A,

Xarr is used for assigning into subregion B. Xarr and Yarr x (a copy of Yarr) is used

for assignment of subregions C and D. The preference for assigning a child node from

farther end of each row (form A′ to the next row in A) is obtained by sorting Yarr first

in increasing order of y- coordinates (i.e key[1] values of nodes). This partitions Yarr into

subgroups with same key[1] value, each subgroup represents a row in A′. Each subgroup

is then sorted in increasing order of x- coordinates (i.e key[0] values).

The preference for assigning a child node from nearer end of each column (from B′ to

the same column in B, or from A′ to same column in C, if required) is obtained by first

sorting Xarr/ Yarr x in increasing order of x- coordinates (i.e key[0] values). This divides

Xarr/ Yarr x into subgroups, each subgroup represents a column in B′ / A′ respectively.

Each subgroup is then sorted in decreasing order of y- coordinates (i.e key[1] values).

Sorting of the arrays is done using heapsort algorithm.

There is also a possibility of changing the order within subgroups of Xarr, Yarr x,

Yarr, this would change the preferences for the assignment into grid points from a row in

A, and from a column in B, C and D. For smaller values of level, a change of order within

the subgroups of Xarr, may not allow completion of assignment within the potential region

found for these levels. With a small adjustment : to stick with decreasing order within a

subgroup of Xarr for levels l < 5, all the 8 combinations of sorting orders within Xarr,

Yarr, Yarr x successfully completes the assignment within the minimum square bound

found by find region .

8.2. IMPLEMENTATION OF ALGORITHM 2 FOR EDGE MAPPING 45

Variations in placements created by altering combination of the sorting orders within

subgroups also result into different dilation and congestion values.

Each vertex of the host graph, a 2 -dimensional planar grid, is represented by a point

structure

struct point {

int x, y;

};

Finally, the dominance constrained assignments of the vertices of the input complete binary

tree, is stored into an array indexed by the label of the vertices in complete binary tree.

Each element of the array keeps the assigned grid point and the label of the associated

vertex. The C-struct used for each element is

struct pos_array{

int x, y, label;

};

8.2 Implementation of Algorithm 2 for Edge mapping

The Algorithm 2 (i.e the Edge mapper module) for edge mapping keeps the congestion

information for each grid edge, inorder to minimize the overall maximum congestion. Each

grid point is a starting point for 2 edges, one is the vertical upward edge and the other

is the horizontal edge in rightward direction. We keep the information for both edges

associated with a single grid point, their common starting point. This is done through a

C-struct for a grid edge

struct Grid_edge{

point st_pt; /* the common starting grid point */

int v_cong, h_cong; / * congestion value for associated

vertical and horizontal edges */

};

A tree edge connects a node from level l−1 to a node in level l, therefore the path followed

by its mapping on the grid would traverse through the region for level l− 1 on the grid as

well as one for level l. Hence, for mapping a tree edge originating in level l−1, we keep all

grid edges in the region for level l − 1 (the parent region) and also those in the region for

level l (the child region). This is kept into a dynamic array of Grid edge type: P gridedge

stores those from parent region and C gridedge stores those from the child region.

struct Grid_edge ** P_gridedge, ** C_gridedge;

46 CHAPTER 8. IMPLEMENTATION

Figure 8.1: Ordering of grid points in parent and current level region

To map a tree edge e = (u, v) starting from a grid point src pt (= Z(u), initially), we

need to locate the element in the dynamic array that represents the grid edges associated

with src pt as its starting point. This may be required to be done from P gridedge while

the mapping is still in the parent region. Later on when the src pt is in the child region,

it is to be found from C gridedge. To be able to do so, the grid edges must be stored in

the following order: (refer Fig.8.1)

for P gridedge:

the grid edges associated with grid points in Preg1 given by s(l−1) ≤ x ≤ s(l), y = l−1

as st pt, are kept first in increasing order of their x- values.

This is followed by those with grid points in Preg2 given by s(l−2) ≤ x ≤ s(l−1), l−1 ≤

y < s(l − 2) as st pt, placed in increasing order of y- values followed by increasing

order of x- values.

And then the grid edges with grid points from Preg3 given by 0 ≤ x ≤ s(l−1), s(l−2) ≤

y ≤ s(l − 1) as st pt, placed in increasing order of y- values followed by increasing

order of x- values.

Similarly for C gridedge with l−1 replaced with l, and l−2 replaced with l−1, wherever

they occur, to define Creg1, Creg2 and Creg3.

The graph edges are stored using the C-struct given by

struct Graph_edge{

point src, dest;

int * dir_bit;

8.3. IMPLEMENTATION OF ALGORITHM 3 FOR DAGS 47

int max_con_used, feq_max_con;

};

For a tree edge e = (u, v) directed from u to v, src = Z(u) and dest = Z(v), pathcode(e)

mentioned in the edge mapping algorithm is implemented using int array dir bit, it stores

a binary string to depict the path used for mapping the tree edge (with 0 representing

horizontal grid edge from the src pt, 1 representing vertical edge from src pt). The binary

string has a number if bits equal to the dilation present for the (u, v) pair, so dir bit is

allocated this much memory . Dilation is calculated by

dilation = (dest(x) − src(x)) + (dest(y) − src(y))

As we wish to rip and re-route the tree edge, if it passes through a highly congested

grid edge (i.e when max con used = max cong), we store the maximum value of conges-

tion over all grid edges through which a graph edge passes. In case, max con used value

cannot be decreased, we wish to decrease the number of times the graph edge would

pass through grid edges with congestion value equal to max cong. So, we keep the fre-

quency, feq max con, for a graph edge having passed through a highly congested grid edge.

8.3 Implementation of Algorithm 3 for DAGs

Directed Acyclic graphs do not have a predefined connectivity as a full complete binary

tree. Rather DAGs with same number of nodes too can vary greatly in their structure.

Some having large degree of parallelism have a smaller value for its maximum topological

level. And some having denser structure (i.e very large number of edges) would have a

scarce number of nodes in each of its topological level, making the value for its maximum

topological level very close to the number of vertices in the DAG. Due to various possibil-

ities for the structure of a DAG, we randomly generate a simple, connected, digraph using

the library of datatypes in LEDA. The random digraph generated is then turned into an

acyclic digraph using the fuction Make Acyclic(graph &), available in LEDA, and is also

made single-sourced.

Input for the Algorithm 3 is a topologically sorted DAG, therefore we perform topo-

logical sorting of the obtained DAG, and label the vertices with their topological number.

We choose a modification of the data structure ajacency list for storing the topologi-

cally sorted and labeled DAG. It is stored as an array of Graph node type, where each

Graph node type element is represented by the following C-structure,

48 CHAPTER 8. IMPLEMENTATION

struct Graph_node{

int name, x, y;

int outdeg, indeg;

Graph_node ** child_v, **par_v;

};

Each vertex v keeps its topological number as its name, the coordinates for its assign-

ment Z(v) under dominance constraint, in x,y. Initially, Z(v) = (−1,−1), indicating v

is not yet placed. It also keeps the out-degree and indegree values, along with an array

of Graph node pointers, child v, that points to the Graph nodes representing successor

vertices of v. Similarly, it keeps an array of Graph node pointers, par v, that points to the

Graph nodes representing predecessor vertices of v.

The array representing DAG, is indexed by the name of the vertices, in their topological

order. Initialization of the array is done reading the output of topological sorting on the

DAG generated randomly by LEDA. The output is in a text file in the following format,

line 1 : #vertices in DAG, N

line 2 : #topological levels, lmax

line 3 : #n1 #n2 #nlmax

line 4 : vertex 0 details - name in-degree out-degree

... : vertex 1 details - name in-degree out-degree

... :

line N+3: vertex N-1 details - name in-degree out-degree

line N+4: edge details - soucrce name target name

... :

... :

... :

Line 3 gives the number of vertices in each topological level.

The arrays Xarr and Yarr defined for Algorithm 3 in Chapter 7, are kept as an array

of type X1, where each element of type X1 has a Graph node pointer to a vertex of the

currently being assigned level and the minimum value of abscissa or ordinate (as the case

may be, abscissa for Yarr and ordinate for Xarr) that its assignment should have.

struct X1{

Graph_node * node;

int min_xy;

};

struct X1 * Xarr, * Yarr;

8.3. IMPLEMENTATION OF ALGORITHM 3 FOR DAGS 49

Forwarded grid points are maintained as a linked list of type Grid pt, given by,

struct Grid_pt{

int x,y;

Grid_pt * next;

};

To sort the forwarded grid points as is done by f assign current for trying out the

assignments into them, we develop a variation of heapsort to work on the linked list. We

may even do this by copying the linked list into an array of point type, do the sorting

using heapsort and then copy the sorted order of points into a linked list representing the

forwarded points again.

50 CHAPTER 8. IMPLEMENTATION

Chapter 9

Experimental Results

9.1 Square bound for complete binary tree

For a full complete binary tree of height l, which is also the number of levels in the tree

(assumption root is at level 0), the number of vertices N is given by, 2l+1−1. The theoret-

ical value, refer section 4.2, for the square bound s(l) for a complete binary tree of height

l lies close to ⌈2(l+1)/2⌉ and is less than ⌈2(l+2)/2⌉. And for the number of increments,

∆s(l), required over the square bound s(l−1) achieved for a complete binary tree of height

l − 1 to get s(l), it is ⌈2l/2 ∗ (21/2 − 1)⌉.

Table 9.1 gives the comparison of the theoretical value of square bound s and the value

of the square bound achieved by implementation of Algorithm 1 in C language.

Note:

a. The ∆s(l) value differs by one from the theoretical value ⌈2l/2 ∗ (21/2 − 1)⌉, so ∆s(l) ≈

2l/2 ∗ (21/2 − 1).

b. The square bound s(l) ≥ ⌈2(l+1)/2⌉ but is certainly ≪ ⌈2(l+2)/2⌉.

9.2 Execution time for Algorithm 1

The Algorithm 1 discussed in Section 4.1 was implemented in C, using the data structures

mentioned in Section 8.1, and the execution time on Intel Core 2 Duo machine running

at 1.5 GHz with RAM size 1 GB for complete binary trees of the following height l is

summarized in the Table 9.2.

The graphical comparison of the CPU time with 1000 ∗ N3/2

(221−1)3/2 , is shown in Figure 9.1.

51

52 CHAPTER 9. EXPERIMENTAL RESULTS

Level l # vertices N ∆s(l) s(l) ⌈2l/2 ∗ (21/2 − 1)⌉ ⌈2(l+1)/2⌉ ⌈2(l+2)/2⌉

0 1 0 0 1 2 2

1 3 1 1 1 2 3

2 7 2 3 1 3 4

3 15 1 4 2 4 6

4 31 2 6 2 6 8

5 63 3 9 3 8 12

6 127 4 13 4 12 16

7 255 5 18 5 16 23

8 511 7 25 7 23 32

9 1023 10 35 10 32 46

10 2047 14 49 14 46 64

11 4095 19 68 19 64 91

12 8191 27 95 27 91 128

13 214 − 1 38 133 38 128 182

14 215 − 1 53 186 54 182 256

15 216 − 1 76 262 75 256 363

16 217 − 1 106 368 107 363 512

17 218 − 1 151 519 150 512 725

18 219 − 1 212 731 213 725 1024

19 220 − 1 301 1032 300 1024 1449

20 221 − 1 424 1456 425 1449 2048

21 222 − 1 601 2057 600 2048 2897

22 223 − 1 849 2906 849 2897 4096

23 224 − 1 1200 4106 1200 4096 5793

24 225 − 1 1697 5803 1697 5793 8192

Table 9.1: Comparison of Square bound

level l # vertices N CPU Time (sec)

0 1 0.002

1 3 0.002

2 7 0.002

3 15 0.002

4 31 0.002

5 63 0.002

6 127 0.007

7 255 0.003

8 511 0.004

9 1023 0.006

10 2047 0.014

11 4095 0.058

12 8191 0.1

13 214 − 1 0.265

14 215 − 1 0.591

15 216 − 1 1.560

16 217 − 1 4.662

17 218 − 1 14.269

18 219 − 1 57.302

19 220 − 1 525.779

20 221 − 1 773.902

Table 9.2: Execution Time on FC6 running at 1.5GHz

9.2. EXECUTION TIME FOR ALGORITHM 1 53

Figure 9.1: Execution Time compared with N3/2

54 CHAPTER 9. EXPERIMENTAL RESULTS

9.3 Maximum Congestion obtained by edge-mapping

As mentioned in the implementation section 8.1, we could have 8 different placements for

the complete binary tree, all fulfilling the dominance constraints. These are created by

changing the sorting order within the subgroups of Xarr, Yarr and Yarr x (which store

the nodes from B′, A′ and A′ respectively). We associate type numbers, given in Table

9.3, with each combination of sorting order.

Type Yarr Xarr Yarr x

I decreasing order of x- coord. decreasing order of y- coord. decreasing order of y- coord.

II increasing order of x- coord. decreasing order of y- coord. decreasing order of y- coord.

III decreasing order of x- coord. increasing order of y- coord. decreasing order of y- coord.

IV decreasing order of x- coord. decreasing order of y- coord. increasing order of y- coord.

V decreasing order of x- coord. increasing order of y- coord. increasing order of y- coord.

VI increasing order of x- coord. increasing order of y- coord. decreasing order of y- coord.

VII increasing order of x- coord. decreasing order of y- coord. increasing order of y- coord.

VIII increasing order of x- coord. increasing order of y- coord. increasing order of y- coord.

Table 9.3: Possible combinations of sorting order in Xarr, Yarr, Yarr x

The maximum value of the congestion obtained in these cases differ by a small amount,

all satisfying the lower bound on the maximum congestion calculated theoretically ≈ ∆s(l),

refer Section 5.1. Refer Table 9.4 and Figures 9.2, 9.3.

Theoretical

level l N1/2
minm

≈ ∆s(l) Type I Type II Type III Type IV Type V TypeVI Type VII Type VIII

1 1.732 1 1 1 1 1 1 1 1 1

2 2.646 2 2 2 2 2 2 2 2 2

3 3.873 1 2 2 2 2 2 2 2 2

4 5.568 2 3 3 3 3 3 3 3 3

5 7.937 3 4 4 4 4 4 4 4 4

6 11.269 4 6 6 6 6 6 6 6 6

7 15.269 5 8 8 8 8 8 8 8 8

8 22.605 7 12 12 11 12 11 10 11 10

9 31.984 10 18 16 15 17 15 15 16 15

10 45.244 14 26 21 27 27 28 27 22 28

11 63.992 19 37 31 36 39 38 36 31 36

12 90.504 27 53 48 54 55 54 50 48 54

13 127.996 38 79 69 71 78 68 72 69 72

14 181.017 53 114 102 107 111 107 105 102 105

15 255.998 76 162 135 159 168 160 135 160

Table 9.4: Maximum Congestion values for edge mapping over the different placements

9.3. MAXIMUM CONGESTION OBTAINED BY EDGE-MAPPING 55

Figure 9.2: Comparison of maximum congestion (for Type I) values with N1/2

Figure 9.3: Maximum Congestion for all Types of Placements compared with N1/2

56 CHAPTER 9. EXPERIMENTAL RESULTS

9.4 Maximum dilation for the placements

Maximum dilation values differ from one placement order to another. The dilation analysis

for the placement, refer Section 4.5 equation 4.22, gives an upper bound on maximum

dilation. In Table 9.5 this upper bound is tabulated under column heading Th. maxm,

along with experimentally attained values. In Figure 9.4 the graphical comparison is

shown.

level l N1/2
Th. maxm Type I Type II Type III Type IV Type V Type VI Type VII Type VIII

1 1.732 2.293 2 2 2 2 2 2 2 2

2 2.646 4.586 3 3 3 3 3 3 3 3

3 3.873 3.293 2 2 2 2 2 2 2 2

4 5.568 5.586 6 6 6 6 6 6 6 6

5 7.937 8.879 8 8 8 8 7 7 8 6

6 11.269 13.172 13 11 13 11 11 11 11 10

7 15.969 18.465 16 16 16 16 16 16 13 13

8 22.605 27.051 27 24 27 24 22 24 24 20

9 31.984 39.93 40 35 40 35 35 35 33 30

10 45.244 58.102 55 52 55 52 52 52 46 46

11 63.992 82.567 81 74 81 81 81 74 68 68

12 90.504 118.911 115 106 115 112 106 106 106 106

13 127.996 170.134 173 156 173 168 168 156 150 150

14 181.017 241.529 247 225 247 236 236 225 218 218

15 255.998 346.268 349 322 349 341 341 322 308 308

Table 9.5: Maximum Dilation values for different Types of Placement

Note:

a. All placement orders, Type I to VIII satisfy the lower bound on maximum congestion.

Also, they achieve maximum congestion of order O(N1/2) (eg. 0.6∗N1/2 for Type I),

which is an optimal in presence of essential congestion. So, Edge mapper module

optimally minimizes the maximum congestion for area-efficient dominance drawing

of complete binary tree.

b. Following Types of placement achieves same maximum dilation values:

i. Type I and Type III

ii. Type II andType VI

iii. Type IV and Type V

iv. Type VII and Type VIII

c. Type II andType VII attains least value for maximum congestion of all Types. Of which

Type VII also achieves the least maximum dilation value. So, Type VII is the best

placement order.

9.5. COMPARISON OF ALGORITHM 1 WITH ITS IMPROVEMENT 57

Figure 9.4: Comparison of maximum dilation for different placements with N1/2

9.5 Comparison of Algorithm 1 with its Improvement

Here we compare the square bounds, shown in table 9.6, achieved by the Algorithm 1

with that achieved by implementation f the Improvement mentioned in section 6. We

also find utilization ratio, the ratio between the number of nodes in the tree and the num-

ber of grid points falling within the square area defined by the square bound. Figure 9.5

gives the comparison between the utilization ratio for Algorithm 1 with that of its offline

improvement.

Note:

a. The utilization ratio increases with the number of vertices N in the complete binary

tree. This indicates an optimal usage of the area on grid for the placement of

complete binary tree under domimnance constraints.

b. Algorithm 1, though does not intend to achieve a global minimum square bound for

an N - node complete binary tree, it does not incur a heavy loss in the utilization

ratio. In fact, the global minimum square bound achieved by its offline improvement

58 CHAPTER 9. EXPERIMENTAL RESULTS

level l # vertices N s(l) <Improvement> s(l) <Algo. 1> Util. ratio <Impr.> Util. ratio <Algo. 1>

0 1 0 0 1 1

1 3 1 1 0.75 0.75

2 7 3 3 0.438 0.438

3 15 4 4 0.6 0.6

4 31 6 6 0.633 0.633

5 63 9 9 0.63 0.63

6 127 12 13 0.751 0.648

7 255 17 18 0.787 0.706

8 511 24 25 0.818 0.756

9 1023 34 35 0.835 0.789

10 2047 47 49 0.888 0.819

11 4095 66 68 0.912 0.86

12 8191 93 95 0.927 0.889

13 214 − 1 131 133 0.94 0.912

14 215 − 1 184 186 0.957 0.937

15 216 − 1 259 262 0.969 0.947

16 217 − 1 365 368 0.978 0.963

17 218 − 1 516 519 0.981 0.969

18 219 − 1 728 731 0.987 0.978

19 220 − 1 1028 1032 0.99 0.983

20 221 − 1 1452 1456 0.993 0.988

21 222 − 1 2053 2057 0.994 0.99

22 223 − 1 2901 2906 0.996 0.993

23 224 − 1 4101 4106 0.997 0.995

24 225 − 1 5798 5803 0.998 0.996

Table 9.6: Comparison of Algorithm 1 with its Improvement

is approximately equal to one achieved by itself.

9.6 Results from Extension to DAGs

The Algorithm 3 mentioned in the chapter 7, was also implemented in C-language, and

tested on a number of randomly generated single source connected directed acyclic graphs.

The structure for DAGs can vary even for same number of vertices, we give the obtained

square bound for a number of DAGs in Table 9.7.

Note:

a. The number of topological levels lmax present in the DAG (obtained by topological

sorting) determines the lower bound on the square bound. This follows straight

from the dominance constraint on the y- coordinates of the successor vertices, once

its predecessor is assigned.

The dominance drawings for the randomly generated DAGs, as shown in the Table

9.7, obtains a square bound nearly equal to lmax. This may not be true in general.

9.6. RESULTS FROM EXTENSION TO DAGS 59

Figure 9.5: Utilization ratio for Algorithm 1 and its improvement

b. The region on the grid that consists the assigned vertices of a DAG, is not evenly used.

More often, the utilization of the grid points along the right diagonal is greater.

Also, the lower rows and lower columns (defined by low value for k in x = k or

y = k) become disqualified for placement of the vertices in forthcoming levels of

the DAG, very soon. So, the area used for the dominance drawing of DAGs on a

2-dimensional grid is in general under utilized. Perhaps, the congestion during edge

mapping would be lower.

60 CHAPTER 9. EXPERIMENTAL RESULTS

vertices N # edges # topological levels Square bound s

25 79 22 21

25 35 10 10

25 36 8 8

30 61 30 23

35 56 15 16

35 67 16 20

35 595 35 34

35 49 17 16

35 61 24 23

40 77 21 20

40 84 17 16

40 79 27 26

50 470 48 47

50 477 47 46

50 76 17 16

51 80 18 19

51 78 17 17

51 85 11 12

51 95 20 20

101 164 28 30

101 185 35 35

101 188 32 33

101 211 41 44

201 364 60 62

Table 9.7: Square bound for randomly generated DAGs with given N

Chapter 10

Comaprison with Previous

Works

Before coparing our work with the previousy conducted ones, it is importatnt to note

that the dominance constraints as defined by us, is more restrictive in both x- and y-

coordinates. Though a strictly upward drawing has a similar constraint on y- coordinate,

there is no constraint put on x- coordinate. As we do not preserve the left to right order

of siblings during the placement, and also allow non-planarity into our drawings, we have

obtained a lower area O(N) than the lower bound of Ω(NlogN) specified in [5].

The paper [2] also achieves an O(N) area for planar upward tree drawings. Their

drawing is a polyline grid drawing. For an orthogonal grid drawing they have obtained

O(NloglogN) lower bound on area in the same paper. Our drawing has been an orthog-

onal grid drawing and we have obtained a lower area for a more restricted problem. But,

our solution is non-planar and we have not included the calculation for bends into the

area, i.e bends have not been assigned separate grid points.

Having permitted a non-planar drawing for our purpose, we successfully construct

dominance drawings for all acyclic digraphs, while [4] proves inexistence of planar upward

drawings for some single source DAGs that do not satify Thomassen’s criteria.

The utilization ratio (reciprocal of expansion ratio), for our drawings show that we

have obtained better area than achieved in [3]. The area efficiency in our case, is on

the cost of congestion and crossings. for the same reason we have a lower area than the

Ω(NlogN) lower bound for non-planar graph layouts of planar graphs in VLSI [9].

61

62 CHAPTER 10. COMAPRISON WITH PREVIOUS WORKS

Chapter 11

Conclusion

As mentioned earlier, dominance constrained placement of the modules on the VLSI chips,

enables the clock wires to be routed in parallel to the signal wires. As said before, we had

modified the usual definition of dominance drawing to become more restrictive in having

the y- coordinates of the successors to be strictly greater than that of its predecessors.

The purpose behind this was to ensure that the clock arrival times for predecessors always

precede the clock arrival times for the successors. This implementation of the data de-

pendence into the placements would imply ‘no time skew’ between the dependent modules.

During the period for dissertation work, an analysis of the area requirement for place-

ment of the modules, assuming a complete binary tree represents the data dependence

among the modules, has been conducted. Along with this, the dilation and congestion

analysis for the edge mapping has also been presented. Our main objective throughout

had been to minimize the area, or the square bound for the dominance constrained place-

ment. To achieve minimum area under these constraints on placement, we developed a

new polynmial time algorithm.

The proposed algorithm achieves an area-efficient, O(N), dominance constrained draw-

ing for an N - node complete binary tree, in O(N3/2) time. The square bound s, maximum

dilation and the maximum congestion attained by or present in the resulting drawing has

been of order O(N1/2). To minimize the area of the dominance constrained placement, we

have concentrated mainly on the area minimization during placement. But in VLSI chips,

congestion and bends also contribute to increase the VLSI chip area. Higher congestion

would increase the channel width during the VLSI routing phase, and bends would in-

crease the number of vias, thereby affecting the overall area.

As a secondary objective to minimize congestion, we have proposed an edge mapping

63

64 CHAPTER 11. CONCLUSION

algorithm that minimizes the maximum congestion as much possible for the obtained mini-

mal area dominance constrained placement. Later on, we would want to study the problem

of dominance constrained drawing with bounded congestion, to calculate its effects on the

placement area, i.e on the square bound. Having such additional constraint, we would have

to solve the problem of minimal area placement and bounded congestion edge mapping

(or routing) in tandem. We would also make an analysis of the area requirement of our

drawing with bends analysis.

As the VLSI modules are more generally covered by directed acyclic graphs, we have

exteneded our proposed algorithm for minimal area dominance constrained drawing to

DAGs. The trivial lower bound on the square bound for the dominance constrained draw-

ing of DAGs was attained for some of the random DAGs on which we tested our algorithm.

Yet, it is difficult to conclude definitely on the area requirement for DAGs at this moment.

This requires more thorough study. We would like to collect a pool of DAGs, with different

kinds of connectivity, and test our algorithm on both dense and sparsely connected ones.

Perhaps, with some more time to spend, we would be in a position to say more about the

area requirement for dominance constrained placement for DAGs.

Bibliography

[1] Ashim Garg and Adrian Rusu,“Area-efficient planar straight-line drawings of outerplanar

graphs”, Discrete Applied Mathematics, Vol. 155, No. 9, pp. 1116—1140, 2007.

[2] A. Garg, M. T. Goodrich and R. Tamassia, “Planar Upward Tree Drawings With Optimal

Area,” International Journal of Computational Geometry & Applications, 1995.

[3] C. O. Shields, Jr. I. H. Sudborough,“Area Efficient Layouts of Binary Trees on One, Two

Layers,” Parallel and Distributed Computing and Systems, 2001.

[4] M. D. Hutton and A. Lubiw, “Upward Planar Drawing of Single Source Acyclic Digraphs,”

In Proc. 2nd ACM–SIAM Symposium Discrete Algorithms, pages 203—211, 1991.

[5] P. Crescenzi, G. Di Battista and A. Piperno, “A note on Optimal area algorithms for upward

drawings of binary trees,” Computational Geometry Theory Applications, 2: 187—200, 1992.

[6] C. Thomassen, “Planar acyclic oriented graphs,” Order 5, pp. 349—361, 1989.

[7] A. L. Fisher and H. T. Kung, “Synchronizing large systolic arrays,” Proceedings of SPIE,

pages 44—52, May 1982.

[8] S. Dhar, M. A. Franklin and D.F. Wong, “Reduction of clock delays in vlsi structures,” Pro-

ceedings of IEEE International Conference on Computer Design, pages 778—783, October

1994.

[9] F. T. Leighton “New Lower bound techniquea for VLSI,” Mathematical Systems Theory,

17: 47—70, 1984.

[10] “Handbook of Computational Geometry,” J. -R. Sack and J. Urrutia, Elsevier 2000.

[11] “Algorithms for VLSI Physical Design Automation,” 3rd Edition, Naveed Sherwani.

[12] “Introduction to Algorithms,” 2nd Edition, T. H Coreman, C. E. Leiserson, R. L. Rivest and

C. Stein,Prentice Hall of India, 2004.

65

