
M.Tech.(Computer Science) Dissertation Series

Recognition of Largest Empty
Orthoconvex Polygon in a Point Set

A dissertation submitted in partial fulfillment of the requirements for the
M.Tech.(Computer Science) degree of the Indian Statistical Institute

By

Humayun Kabir

Roll No : CS0606

Under the supervision of

Prof. Subhas C. Nandy

Indian Statistical Institute
203, B.T. Road
Kolkata-700108

1

INDIAN STATISTICAL INSTITUTE
203, B.T.Road

Kolkata - 700108

Certificate of Approval

This is to certify that the dissertation thesis titled “Recognition of Largest
Empty Orthoconvex Polygon in a Point Set” submitted by Mr. Hu-
mayun Kabir, in partial fulfillment of the requirements for the M. Tech.(Computer
Science) degree of the Indian Statistical Institute, Kolkata, embodies the
work done under my supervision.

————————————–
Prof. Subhas C. Nandy
Advanced Computing and Microelectronics Unit
Indian Statistical Institute, Kolkata - 700108

2

Acknowledgment

I thank my guide, Prof. Subhas C. Nandy, for his constant support, en-
couragement and many valuable suggestions, without which this report would
not have been possible. I would also like to express my sincere gratitude to
Dr. Gautam K. Das for his kind help.

I take this opportunity to thank my classmates for their support and help
during my course work at ISI.

Humayun Kabir
M.Tech.(Computer Science),
Indian Statistical Institute, Kolkata - 700108

3

Contents

1 Introduction 5

2 Preliminaries 6
2.1 Algorithm . 8

3 Computation of edge-visible polygon 12
3.1 Creation of T . 12

4 Computation of M2 15
4.1 Computation of L polygons 16
4.2 Computation of MESP (pi, pj) 18

5 Conclusion 26

4

Chapter 1

Introduction

The objective of this report is to study the algorithm for computing the max-
imum area empty isothetic orthoconvex polygon (MEOP) among a set of
n points on a rectangular region in 2D. A polygon is said to be isothetic if
its sides are parallel to coordinate axes. An isothetic polygon is said to be
orthoconvex if the intersection of the polygon with a horizontal or a verti-
cal line is a single line segment. Orthoconvexity has importance in robotic
visibility, and VLSI. Datta and Ramkumar [1], proposed algorithms for rec-
ognizing largest empty orthoconvex polygon of some specified shapes among
a point set in 2D. These include (i) L-shape, (ii) cross-shape, (iii) point vis-
ible, and (iv) edge-visible polygons. The time complexity of these algorithms
are all O(n2). Another variant in this class of problems is recognizing the
largest empty staircase polygon among point and isothetic polygonal obsta-
cles, which can also be solved in O(n2) time and space complexity [2]. But
the problem of finding an maximum area orthoconvex polygon MEOP of ar-
bitrary shape is not studied yet. Here, we propose an algorithm to compute
an MEOP in O(n5) time and O(n3) space.

The thesis is organized as follows. In Chapter 2, we introduce some
preliminary concepts and the overview of the algorithm. The algorithm for
computing the maximum area edge-visible polygon is discussed in Chapter
3. The algorithm for finding the maximum area empty staircase polygon is
discussed in Chapter 4. Finally the conclusion of the work appears in Chapter
5.

5

Chapter 2

Preliminaries

In this chapter we will give the algorithm to compute the (MEOP). Before
giving the algorithm we will first define some useful terms here.

Let R be a rectangular region in 2D containing a set of n points P =
{p1, p2, . . . , pn}. The bottom left corner of R is assumed to be the origin, and
the bottom and left boundaries of R are the x−axis and y−axis respectively.
The coordinates of a point p are denoted as (x(p), y(p)). We assume that
the points in P are in general positions, i.e., for any two points pi and pj,
x(pi) 6= x(pj) and y(pi) 6= y(pj).

Definition 2.1 A curve is said to be isothetic if it consists of horizontal and
vertical line segments only.

Definition 2.2 An isothetic curve consisting of alternatively horizontal and
vertical line segments is said to be a monotonically rising stair (R-stair) if for
every pair of points α and β on the curve, x(α) ≤ x(β) implies y(α) ≤ y(β).

Definition 2.3 An isothetic curve consisting of alternatively horizontal and
vertical line segments is said to be a monotonically falling stair (F-stair) if for
every pair of points α and β on the curve, x(α) ≤ x(β) implies y(α) ≥ y(β).

Definition 2.4 A polygon is said to be isothetic if its sides are parallel to
coordinate axes. An isothetic polygon is a region bounded by a closed isothetic
curve.

Definition 2.5 An isothetic polygon Π is said to be orthoconvex if for any
horizontal or vertical line l, the intersection of Π with l is a line segment of
length greater than or equal to 0.

6

An orthoconvex polygon is empty if it does not contain any point of P
in its interior. Our objective is to identify the largest empty orthoconvex
polygon in R.

Definition 2.6 An empty orthoconvex polygon Π is said to be maximal empty
orthoconvex polygon (MEOP) if it does not contained in any other empty
orthoconvex polygon Π′.

Figure 2.1: MEOP

The (MEOP) is bounded by two R-stairs, namely Rtl and Rbr, and by
two F-stairs, namely Ftr and Fbl (Figure 2.1). The rising stair Rtl spans from
the left boundary to the top boundary of R. The rising stair Rbr spans from
the bottom boundary to the right boundary of R. The falling stair Ftr spans
from the top boundary to the right boundary of R. The falling stair Fbl

spans from the left boundary to the bottom boundary of R. Each concave
vertex of these stairs must coincide with a point of P . Any of these stairs
can become a degenerate stair and can coincide with a corner point of R.

Definition 2.7 Let R′ be a rectangular region with a and b as its opposite
corner points and let R′ contains a point set P ′ and a, b 6∈ P ′. A maximal
empty staircase polygon (MESP (a, b)) among the points in P ′ is a MEOP
bounded by either two R-stairs or two F-stairs from from a to b depending
on whether a and b are the bottom-left and top-right (resp. bottom-right and
top-left) corner points of R′. Its each concave corner of the stairs coincides
with a point of P ′.

7

If the (MESP (a, b)) is bounded by two R-stairs then it is called a R-
staircase polygon and if it is bounded by two F-stairs then it is called a
F-staircase polygon.

Definition 2.8 Let R′ be a rectangular region containing a point set P ′ and
a horizontal or a vertical line segment [a, b] and a, b 6∈ P ′. A maximal empty
edge-visible polygon with the base [a, b] among the points in P ′ is an MEOP
having an edge [a, b] such that each point on its boundary is visible from the
edge [a, b]. In such a polygon the edge farthest from [a, b] coincides with the
boundary of the region.

We now present an algorithm for computing the maximum area MEOP .

2.1 Algorithm

Definition 2.9 A point pi ∈ P is said to be the bottom-pivot of an MEOP
if it lies on Fbl of that MEOP and it is the closest to the bottom boundary
of R among all such points on Fbl. Similarly, a point pj is said to be the
top-pivot of an MEOP if it lies on Ftr of that MEOP and it is the closest to
the top boundary of R among all such points on Ftr.

We will consider each pair of points pi, pj ∈ P , and identify the maximum
area MEOP with pi and pj as the bottom-pivot and top-pivot respectively;
the corresponding MEOP is denoted by MEOP (pi, pj). We will use Hi and
Vi to denote a horizontal and vertical line passing through pi. Let us denote
by Pi (resp. P ′

i) the set of points to the left (resp. right) of Vi. Let S denote
the vertical slab bounded by Vi and Vj, and Pij denote the set of points
inside the vertical slab S. The projections of a point pk ∈ Pij on Vi and Vj

are denoted by qk and q′k respectively. The projections of pk ∈ Pij on Hi and
Hj are denoted by rk and r′k respectively. For a pair of points (pi, pj), the
following three cases may produce an MEOP :
(i) x(pi) < x(pj) and y(pi) < y(pj),
(ii) x(pi) > x(pj) and y(pi) < y(pj), and
(iii) x(pi) < x(pj) and y(pi) > y(pj).

In Case (i), the vertical lines Vi and Vj split the point set P into three
parts, Pi, Pij and P ′

j (Figure 2.2). Let Vi hit the top and bottom boundaries
of R at ti and bi respectively. Also let Vj hits the top and bottom boundaries
of R at tj and bj respectively. Then the portion of the MEOP inside the

8

Figure 2.2: MEOP (Case (i))

vertical slab S is the MESP (bi, tj) and we denote it by M2(pi, pj). The two
stairs of M2(pi, pj) are parts of the rising stairs Rbr and Rtl of MEOP (pi, pj)
respectively. If Rtl hits Vi at qα (corresponding to a point pα ∈ Pij), then
the portion of the MEOP to the left of Vi, denoted by M1(qα), is a max-
imal empty edge-visible polygon with base [pi, qα] among the points in Pi.
Similarly, if Rbr hits Vj at q′β (corresponding to a point pβ ∈ Pij) then the
portion of MEOP to the right of Vj is a maximal empty edge-visible polygon
with base [pj, q

′
β] among the points in P ′

j , we denote it by M3(q
′
β). Here two

cases may arise: Case (i-a): the rectangle with pi and pj at its diagonally
opposite corners is non-empty (Figure 2.2 (a)), and Case (i-b): the rectangle
with pi and pj at its diagonally opposite corners is empty (Fig 2.2 (b)). The
processing of Case (i-b) for computing M2(pi, pj) is slightly different from
that of Case (i-a).

In Case (ii), Vj is to the left of Vi (Figure 2.3). Here the portion of
MEOP (pi, pj) inside the vertical slab S, M2(pi, pj) is equal to MESP (pi, pj).
The two stairs of M2(pi, pj) are the parts of falling stairs Fbl and Ftr of
MEOP (pi, pj) respectively. If Fbl hits Vj at q′α (corresponding to a point
pα ∈ Pij), then the portion of MEOP (pi, pj) to the left of Vj is an edge visible
polygon with base [q′α, tj], among the points in P ′

j (P ′
j is the set of points to

the left of Vj), we denote it by M1(q
′
α). If Ftr hits Vi at qβ (corresponding to

a point pβ ∈ Pij), then the portion of MEOP (pi, pj) to the right of Vi is an
edge visible polygon with base [qβ, bi] among the points in Pi (Pi is the set
of points to the right of Vi), we denote it by M3(qβ).

9

Figure 2.3: MEOP (Case (ii))

In Case (iii), here two cases may arise.
Case (iiia) : The rectangle with pi and pj at its diagonally opposite

corners does not contain any point from P (Figure 2.4). Here the following
two MEOPs’ are generated depending on the change of role of these two
points as pi and pj. In the former case, we calculate M2(pi, pj), M1(qα), and
M3(q

′
β) in the same way as that are calculated in Case (ib) (see Fig 2.4(a)).

In the latter case, we rename pi as pj and pj as pi (see Figure 2.4(b)), and
use Case (ii) to calculate MEOP (pi, pj).

Case (iiib) : the rectangle with pi and pj at its diagonally opposite corners
is non-empty, i.e., it contains some points from P inside it, then we rename pi

as pj and pj as pi (Figure 2.5), and use Case (ii) to calculate MEOP (pi, pj).
After fixing pi as the bottom pivot, and pj as the top pivot, we need to

choose M2(pi, pj), M1(qk), and M3(ql) for some points pk and pl in Pij such
that the sum of areas of these three polygons is maximum among all such
polygons. We will describe the algorithm for Case (ia) only. The case (ib)
is the concatenation of two edge visible polygons, two L polygons and the
rectangle with diagonally opposite corners pi and pj. Case (ii) and Case
(iii) can be handled using a similar method. The method of computation for
M1(.) and M3(.) are same. So, for Case (ia), only the methods of computing
the desired M1(.) and M2(., .) are explained in the subsequent chapters.

10

Figure 2.4: MEOP (Case (iiia))

Figure 2.5: MEOP (Case (iiib))

11

Chapter 3

Computation of edge-visible
polygon

In this chapter we will explain the method of calculating the maximum empty
edge-visible polygon among points in Pi.

Let us consider a point pi ∈ P . Let Q = {pk|x(pk) > x(pi) and y(pk) >
y(pi)}. Q includes the top-right corner of R, and |Q| = m + 1, i.e., Q
contains m + 1 points. Let the projections of the points of Q on Vi are
denoted by q0, q1, . . . , qm. We create an array EV L(pi) whose elements are
the maximum empty edge visible polygons M1(qk) with [pi, qk] as the base,
for all k = 0, 1, 2, . . . m.

We use a vertical line sweep among the points in Pi starting from the
position of Vi to create a binary tree T (Figure 3.1). Each node v of the
tree is represented as a 4-tuple (I, xval, yval, ∆). I is the base of both the
edge-visible polygons attached to v. (xval, yval) is the point where the node
v is generated, and ∆ contains the area of the edge-visible upto the node v,
with base I of the root of the tree T .

3.1 Creation of T
For a point pk ∈ Pij, we compute the maximum empty edge visible polygon
with base [pi, qk] as follows.

The root r of the tree T corresponds to the interval I = [pi, qk], its xval

is set to x(pi), yval is set to 0, and ∆ is also set to 0. A vertical line starts
sweeping from x = x(pi) towards left. When it hits a point p = (x(p), y(p)) ∈

12

Figure 3.1: M1 computation

Pi, the leaf nodes in T are searched. If y(p) lies in the interval [i1, i2] of a node
v = ([i1, i2], xval, yval, ∆), then we compute ∆′ = ∆ + (xval − x(p)) ∗ (i2 − i1).
Then we create two children of v, namely vleft = ([i1, y(p)], x(p), y(p), ∆′)
and vright = ([y(p), i2], x(p), y(p), ∆′). The sweep continues until the left
boundary of R is reached.

We traverse the tree T , and find the maximum value of ∆ among the
leaves in the tree T , call it ∆mk, then M1(qk) = ∆mk is the maximum area
empty edge-visible polygon with base [pi, qk].

For each, k = 0, 1, 2, . . . m, we calculate M1(qk) and put it in the array
EV L(pi). The algorithm to compute M1(qk) is given below.

Algorithm 3.1 M1(qk)

1. Declare a structure, treeNode as,
typedef struct treenode
{
int I1;
int I2;
int xVal;
int yVal;
float Delta;
struct treenode *lChild;

13

struct treenode *rChild;
}treeNode;
2. Find the set, P1 = {pk|x(pk) < x(pi)} and nopP1 = |P1| and sort P1 in
decreasing x-coordinates.
3. Create the root of the tree, where
root→ I1=y(pi);
root→I2=y(qk);
root→xVal=x(pi);
root→yVal=0;
root→lChild=NULL;
root→rChild=NULL;
4. For l = 1, . . . , nopP1, do for each pl ∈ P1

search the leaves of the tree, if for some leaf v, v(I1) < y(pl) < v(I2), then
calculate
Delta′ = v(Delta) + (v(xV al)− x(pl)) ∗ (v(I2)− v(I1));
and create two chilren of v, where left child has I1 = v(I1),I2=y(pl), xVal =
x(pl), yVal = y(pl), and Delta = Delta′ and right child has I1 = y(pl),I2=v(I2),
xVal = x(pl), yVal = y(pl), and Delta = Delta′

5. Then traverse the tree to find the max-value of Delta among leaves and
assign it to M1(qk).

Lemma 3.1 The computation of M1(qk) can be done in O(n2) time.

Proof 3.1 The construction of the tree takes O(n2) and then searching for
the maximum area node takes O(n), in the worst case. So to compute M1(qk),
will take O(n2) time.

Similarly, for each pj ∈ P , we create an array EV R(pj). Let Q′ =
{pk|x(pk) < x(pj) and y(pk) < y(pj)}. Let |Q′| = m′+1, and let q′0, q

′
1, q

′
2, . . . , q

′
m′

be the projections of the points of Q′ on the vertical line Vj. Then |EV R(pj)| =
m′ + 1, and the k-th element of EV R(pj) contains the largest empty edge-
visible polygon M3(q

′
k) with base [pj, q

′
k] among the points in P ′

j .
Lemma 3.1 states that, EV L(pi) and EV R(pj) for any i, j = 1, 2, . . . , n,

can be calculated in O(n3) time.

14

Chapter 4

Computation of M2

For a pair of points pi, pj ∈ P , satisfying x(pi) < x(pj) and y(pi) < y(pj),
we will explain in this chapter how to calculate the MESP (bi, tj) among the
points in Pij, where bi is the point where Vi hits the bottom boundary of R,
and tj is the point where Vj hits the top boundary of R, we call it M2(pi, pj).

First we will define two important terms.

Definition 4.1 Let a and b be two points in 2D, with x(a) < x(b) and
y(a) < y(b). Then an L path(a, b) is a rectilinear path from the point a to
the point b with exactly one corner at (x(a), y(b)). (Figure 4.1)

Definition 4.2 The largest empty staircase polygon whose upper stair is the
L path(a, b) and the lower stair is a rising stair from a to b is denoted as
L polygon[a, b]. (Figure 4.1)

Here we consider processing of a pair of points pi, pj ∈ P , satisfying
x(pi) < x(pj) and y(pi) < y(pj). Let P ′

ij be the set of points inside the
rectangle with pi and pj as its diagonally opposite corners. Then P ′

ij ⊆ Pij.
Let |P ′

ij| = m. This M2(pi, pj) can be split into three parts: the L polygons
inside the slab S below Hi, the L polygons inside the slab S above Hj, and
the empty staircase polygon MESP (pi, pj). Our objective is to choose the
staircase polygon such that the sum of its area along with the area of the
corresponding L polygons in S and and the edge-visible polygons to the left
of Vi and to the right of Vj is maximum.

15

Figure 4.1: L polygon[a, b]

4.1 Computation of L polygons

We have |P ′
ij| = m. Let r1, r2, . . . , rm be the projections of the points in P ′

ij

on the horizontal line Hi in the increasing order of their x-coordinates. Let
rm+1 be the intersection point of Hi and Vj.

The maximal empty L polygons below Hi are calculated using a horizon-
tal line sweep (Figure 4.2). The horizontal line sweep among the points in
Pij starts from the floor of R and ends at Hi, and computes the maximum
empty L polygons LB(rk) for k = 1, 2, . . . ,m + 1. The upper stair of LB(rk)
is an L path with pi at the corner of its L path, and its lower stair is a rising
staircase path from bi to rk.

Let r0 be the intersection point of Vi and Hj. Let rk for k = 1, 2, . . . ,m
be the projections of the points in Pij on Hj in decreasing order of their
x-coordinates. The maximal empty L polygons above Hj, namely LA(rk),
for k = 0, 1, 2, . . . ,m, are calculated using a horizontal line sweep starting
from the top boundary of R up to Hj.

Lemma 4.1 The computaion of LB and LA takes O(n) time.

Algorithm 4.1 L polygons LB
1. Find the set PLB = {p|y(p) < y(pi)} sort them in increasing x-coordinates
and nopP lb = |PLB|.
2. Take the projection of points in P ′

ij on Hi and sort them in increasing

16

Figure 4.2: LB computation

x-cordinates. Let these be rk, k = 1, 2, . . . ,m + 1
3. k=1;
(a)For l = 1, 2, . . . , nopP lb, pl ∈ PLB do
if (l==1){
while (x(rk) < x(pl))
{
LB(rk) = (x(rk)− x(pi)) ∗ y(pl);
k=k+1;
}
temp = (x(pl)− x(pi)) ∗ y(pl)
lastused=l;
}
else {
if(y(pl) > y(plastused){
while (x(rk) < x(pl))
{
temp1 = (x(rk)− x(pi)) ∗ (y(rk)− y(pl));
LB(rk) = temp + temp1;
k=k+1;
}
temp1 = (x(pl)− x(pi)) ∗ (y(pl)− y(plastused));
temp = (x(pl)− x(pi)) ∗ y(pl)

17

lastused=l;
}
}
}

(b) while(k ≤ m + 1)
temp1 = (x(rk)− x(pi)) ∗ (y(rk)− y(plastused));
LB(rk) = temp + temp1;

4.2 Computation of MESP (pi, pj)

We now describe the last phase of our algorithm, where we compute the
maximal empty staircase polygon MESP (pi, pj) including the area of the
corresponding L polygons and the appropriate edge-visible polygons such
that the total area of MEOP (pi, pj) is maximum.

Let us first describe the method of computing MESP (pi, pj) without
considering the L polygons and the edge-visible polygons. It will be bounded
by two R-stairs, namely, the lower stair and the upper stair. Then we describe
the changes needed in the procedure to calculate the MEOP (pi, pj).

For any MESP , if the lower stair is fixed, the upper stair becomes unique.
So to compute MESP , we have to find an appropriate lower stair such that
the corresponding polygon is empty and its area is maximum, i.e., our task
has boiled down to find an appropriate lower stair.

Let G = (V, E) be a directed acyclic graph with vertices V = {pk|pk ∈
P ′′

ij} where P ′′
ij = P ′

ij ∪ {pi, pj}. An edge ekl = (pk, pl) exists from pk to
pl if x(pk) < x(pl) and y(pk) < y(pl). Thus, the edge set E = {ekl =
(pk, pl)|pk, pl ∈ P ′′

ij, x(pk) < x(pl) and y(pk) < y(pl)}. The indegree of a node
pk is denoted by in(pk) and the outdegree is denoted by out(pk). In the graph
G with P ′′

ij, we have in(pi) = 0 and out(pj) = 0.
Any directed path from pi to pj in G is called a complete path. Every

complete path in G corresponds to the lower stair of a MESP .
The graph G for the points in Figure 4.3 (a) is shown in the Figure 4.3

(b). Also the MESP in the Figure 4.3 (c) corresponds to the complete path
pi → p1 → p2 → pj in the graph of Figure 4.3 (b).

The number of vertices in G, |V | can be O(n) in the worst case and the
number of edges in G, |E| can be O(n2) in the worst case.

18

Figure 4.3: MESP

Among the complete paths we are to find the complete path which corre-
sponds to the MESP having maximum-area. So it is very natural to think
that if we can assign weights to the edges of the graph G, then our job
will be to find the maximum-weight complete path among all the complete
paths in G. But we show that such an assignment of weight to the edges
of G is not possible. In Figure 4.4, two lower stairs R1 and R2 are consid-
ered which pass through the points pk and pj. Considering R1 in the lower
stair, the weight of the edge (pk, pj) should be Area(L polygon(k1, pj)) and
considering R2 in the lower stair, the weight of the edge (pk, pj) should be
Area(L polygon(km, pj)). But in an weighted graph, an edge can not assume
two different weights.

To overcome the above difficulty, we introduce the concept of footprints
obtained from the point in P ′

ij and define a new weighted directed graph,
called the staircase graph using the footprints as vertices. In this graph
every edge between two nodes will correspond to a unique L polygon, the

19

Figure 4.4: Motivation of footprints

weight of the edge will be the area of the L polygon and staircase polygon is
the concatenation of an appropriate set of L polygons.

Definition 4.3 Let pl and pk be two points in P ′′
ij such that x(pk) < x(pl)

and y(pk) < y(pl), i.e., (pk, pl) ∈ E. Then the point (x(pk), y(pl)) is called
the footprint of pl contributed by pk, and is denoted by lk. The footprint of
pi (the bottom-left corner point) is pi itself.

The set of footprints of a point pl is denoted as FP (pl). The number of
footprints of a point pl ∈ P ′′

ij\{pi} is |FP (pl)| = in(pl), where in(pl) is the
indegree of pl.

The set of footprints for the example of Figure 4.3 (a), is shown in the
Figure 4.6. Now we define the staircase graph below.

Definition 4.4 The staircase graph SG = (V ′, E ′) for a given digraph G =
(V, E) is a weighted digraph with nodes V ′ = ∪pl∈P ′′

ij
FP (pl) = {the set of

footprints of all the points in P ′′
ij}. A footprint km ∈ FP (xk) has a directed

edge to a footprint ln ∈ FP (xl), if (pk, pl) ∈ E (i.e., (pk, pl) is an L path),
and the upper stair of the L polygon[km, pl] meets the line Y = y(pl) at the
footprint ln. The weight of the edge (km, ln) ∈ E ′, denoted as w(km, ln), is
equal to the area of the L polygon[km, pl].

20

Figure 4.5: SG Edge

The graph SG is acyclic. In the Figure 4.5 (b), we have shown that there
will be an edge between the footprints mk and jl, and the edge with its weight
is shown in the Figure 4.5 (c). The staircase graph without the edge weights
for the example of Figure 4.3 (a), is shown in the Figure 4.7.

Lemma 4.2 The number of vertices in the graph SG, |V ′| = |E|, and num-
ber of edges in the graph SG, |E ′| = O(n|E|).

Proof 4.1 Every footprint corresponds to an edge in G, so |V ′| = |E|. The
total number of outgoing edges of kl in the graph SG is equal to out(pk).
Again, the total number of footprints of a point pk is equal to in(pk). Thus,
the total number of edges |E ′| = ∑

in(pk) ∗ out(pk) which, in the worst case,
is O(n|E|).

Every directed path from pi to any footprint of pj wil give a MESP . If
km and ln are on some path from pi to some jl (∈ FP (pj)), then the lower
stair of the corresponding MESP will pass through the points pk and pl and
the upper stair of the MESP will pass through the points pm and pn. So
a directed path from pi to a footprint of pj in SG will determine both the
upper stair and the lower stair of the corresponding MESP . The sum of
edge-weights along the directed path will be the area of the corresponding
MESP . The maximum-weight path is a path from pi to some jl (∈ FP (pj))

21

Figure 4.6: Footprints

whose weight is maximum among all such paths. The largest MESP from
pi to pj can be found by determining the max-weight path in the digraph
SG.

Algorithm 4.2 MESP
1. Take the points in P ′′

ij and give them order.
2. Declare a structure to represent the nodes of the graph G, as
typedef struct linknode
{
int index;
struct linknode *nextnode;
}nodeG;
3. Construct the graph G and represent it using adjacency list representation.
4. Declare a structure to represent the nodes of the graph SG, as
typedef struct linknodefp
{
int fpOf;
int contributedBy;
float weight;
struct linknodefp *nextnode1;
}nodeSG;

22

Figure 4.7: SG Graph

5. Traverse the graph G, to find the nodes of the graph SG.
6. Take the nodes of SG, and construct the graph SG and represent it using
adjacency list representation.
7. Traverse SG, to find the max-weight path from pi to a footprint of pj.

For the present problem only computing the maximum area staircase
polygon among the points is P ′′

ij will not be sufficient. Let MEOP (pi, pj)
contains a staircase polygon MESP (pi, pj), that has an edge (pi, qα) along
Vi then it includes an edge-visible polygon with base (pi, qα) to the left of
Vi. Similarly if the MESP has an edge (pj, q

′
α) along Vj then the MEOP

contains an edge-visible polygon with base (pj, q
′
α) to the right of Vj. Also if

MESP has an edge (pi, rβ) along Hi then the MEOP contains an L polygon

23

with base [pi, rβ] and if MESP has an edge (pj, r
′
β) along Hj then the MEOP

contains an L polygon with base [pj, r
′
β]. Thus in order to compute the

MEOP of maximum area, we need to modify the weight of some edges of
the graph SG as follows and then compute the maximum weighted path in
the graph SG.

For each foorprint qα on Vi (qα is the footprint of pα contributed by pi, i.e.,
αi = qα) of some point pα ∈ P ′

ij, change the weight of its each outgoing
edge e ∈ E ′ to w(e) + area(M1(pi, qα)).

For each edge e′ = (pi, γ) ∈ E ′, where γ is a footprint of some pk ∈ P ′
ij,

then change the weight of e′ to w(e′) + area(LB(pi, rk)), where rk is
the projection of pk on Hi.

For each pα′ ∈ P ′
ij, if there exists an edge e′′ from a footprint of pα′ to a

footprint of pj, then change its weight to w(e′′) + area(M3(pj, q
′
α′)),

where q′α′ is the projection of pα′ on Vj.

For each incoming edge e′ on rβ′ , change the weight of e′ to w(e′)+area(LA(pj, rβ′)),
where rβ′ is the projection of some point pβ ∈ P ′

ij on Hj (rβ′ is also the
footprint of pj contributed by pβ, i.e., jβ = rβ′).

To find the MEOP (pi, pj), we have to find the max-weight path in the mod-
ified digraph SG. The following theorem gives the required time complexity
and space complexity to find MEOP (pi, pj).

Theorem 4.1 The MEOP (pi, pj) can be find in O(n3) time using O(|E ′|)
space.

Proof 4.1 The construction time of graph SG is O(n|E|) and the max-
weight path finding in the acyclic graph SG takes O(|E ′|) = O(n|E|) time.
The time complexity to compute MEOP (pi, pj) will be the maximum among
the time complexities to calculate M1, LB and the max-path in MESP .
So the time complexity will be O(n|E|), which may be O(n3) in the worst
case. Again the space complexity will be O(|E ′|), because this is the maxi-
mum among the space complexities among the space complexities needed to
calculate M1, LB and the max-path in MESP .

Theorem 4.2 The largest MEOP among a set of n points can be computed
in O(n5) time using O(n3) space.

24

Proof 4.2 It follows from Theorem 4.1, and that we are considering every
pair of points pi and pj and there are O(n2) such pairs.

25

Chapter 5

Conclusion

We have given an algorithm for computing the largest empty orthoconvex
polygon among a set of n points in 2D. The algorithm is implemented in C
language. Though its worst case time complexity is O(n5), it runs very fast.

26

Bibliography

[1] A. Datta and G. D. S. Ramkumar, On some largest empty orthoconvex
polygons in a point set, Proc. FSTTCS, LNCS 472, pp. 270-285, 1990.

[2] S. C. Nandy and B. B. Bhattacharya, On finding an empty staircse
polygon of largest area (width) in a planar point-set Computational Ge-
ometry: Theory and Applications, vol. 26, pp. 143-171, 2003.

27

