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1. IxTRODUCTION

This paper studies the weak convorgence of measures over a givon sepac-
able motric space X. A sequenco {1} of measures on X ia said to converge weakly
to a measuro g if Jgd/l.—bjgd/l for each bounded continuous function g on X,

Tho following problems are discussed: (i) whether this notion of convergence
arises from a topology on the space of measures, and if g0, {ii) whethor the corres-
ponding topology is motrizablo or metrizable as a complote motric space. These
problems are studicd on fil, the spaco of finite signed measures; on 1+, the space of
finito measures; and on £, tho spreo of probability measures.

‘The main conclusions of the paper may be summarized as follows :

(i) Wesk convorgonce in 8l does correspond to a certain topology on Ml
reforred to as the weak topology on fl.

(ii) In this topology, M* (and also M, is a closed sct and is metrizable as
a separable metric apace.

(iii) * (and also A1) is metrizablo aa a complete motri space if the basic
space is complete.

(iv) S ia metrizable if and only if the weak and norm topologics on £l are
identical.

In the particular case when X is the reel line, the above resulta for f], reduce
to the well known results of P. Levy (seo for instance Gnedenko and Kolmogorov,
1949).

2. PRELIMINARY NOTIONS

Bofore we proceed, we discuss some profiminary notions. The entire paper
will centre round convergence -rather than topology. Consequently, we rely heavily
on the machinery of Moore-Smith convergence of nets or directed sots (Kelley, 1955).
A dircoted st i a pair (L, >) such that > directs L. A net is a pair (S, >)
where 8 is a function and > dirccts the domain L of S. The range of the
fi is usunlly a topological space. It is also writton as (S, : neL, >}; when no
confusion 8 likely to arisc, we simply say tho not {S.)}. Wo assume as known the
theory of limite in tho senso of Moors-Smith as applied to nets. I[a net {S,} tends
to S, wo writo h':n 8, =S. Hero of courso it is to be notod that tho notation n—«

nm

is a pure symbolism. Whon L ia the sot of integors > 0 and > is tho usual ordering,
tho above dofinitions reduca to the clossical notion of limits of soquonces. Nets are
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important in tho sonso that thoy will deseribe the tapological structurs of a space
complotely (Kobloy, 1055).

Let B bo a Banach space and B* its adjoint spaco. B*® is tho space of all
real-valued bounded linenr functionals on B, In B® wo can introduce a topology
by dofining at any A B¢, the ncighbourhood sysiem aa the family of sota
(X (Agi Ty, -o.Xns 6)) for all possiblo choicea uf ¢ *- 0, intogor n and points z,, ... x,¢ B.
Here N(Ag 2y...Za, €)= {\1A€B%, |A(2) —Ao(x) |<efori=1,2,.n). It is ensy
to verily that thoso sots sutisfy tho Hauxdorl postulates for neighbourhoods. The
topology derived from this ncighbourhood system ia enlled tho weak topology on B*
A not {A,} in B® convergoes to A in B® in this fopology if and only if Aa(@)-A(R)
for all ze B. W esay that \, convorges wenkly to A and write A, == A in symbols.

It is obvious that theso remnrks apply not only to B* but to ijs subscts as
well. Tho consergence and topology will thon be the corrcsponding relativized
notions.

Suppose now X is a motrio space. For any finite measure x on X } gdp is

a bounded lincar functional on the Banach spnecs C(X) of boundod renl-valued con-
tinuous functions on X and consoquontly tho apace of finito measures on X ean bo
considercd as a subset of the adjoint spaco of C(X). \We discuss in this paper the
weak topology of this subset. The precise definition will bo given at the snd of thia
soction.

Nolation and Terminology. Throughout most of tho rest of the paper, X
denotes a soparablo metrio space with distance function d. @ and & aro respectivoly
tho classes of open and closod subsots of X. & denotes tho smallest o-fiold containing
g. Sotsin 8 will be colled the Bore} sets of X. A signed measuro is a finite, real-
valued and countably additive set function on 8. A isa gativo signed
measuro. A probability measure s a measuro m with m(X) = 1. Al is tho spaco of all
signed mensurcs on S; A1+ 38 tho spaco of nll monsures on 3; and 4, is the space of
all probability moasures on 8; M1, CACA. For gesfl, [¢] is its total variation and
¢+ and ¢~ ara its positivo and negative ports. |¢], ¢* and ¢~ are all in M* and
¢ =¢+ —¢, [8|=¢*+¢~. (Nolation and terminology as in Halmos, 1950).

We givo below somo lommas. Theso aro known and proofs are sketchod
here only for tho enko of complotencss.

F. Lomma 2.1: For any tico @y, ¢y 6 M the following are equival

8 S=¢:on 8 ()= 0nF {(0)g=¢,0n9

Proof: The relations {8) == (b} and (a) == (c) are evidont. Since closod
sota aro complomonta of open sots and X is both opon and clesed, (b) &= (0). It thus
remains to show that (b) ==>(a). We obsorve that Xe and & is closed undeor finito
unions and intersections. tlonce the class &, of finite disjoint unions of proper
differences of scts of & is a field. Sinco @, aud &, nro finite and additive and agres on
& thoy ngreo on ., Consoquently thoy "ngreo on tho minimal o-fiold over 3, io.,
on- 8.
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Givon X, C(X) is tho spaco of rcal-valued bounded continuous functions on
X and U(X) C C(X) is the subsct of all bounded uniformly continuous functions on
X. Ingenernl, tho sct U(.X) depends on the choico of tho motrie € of X while C{X) docs
not. Both C(X) and U(X) aro Banach spaces under tho norm ||, ||, whoro ||/ =
uu}‘: Ff(x)). U(X) is a subspaco of C(X).
o

Lemma 2.2: If A and B are closed subscts of X such that the minimum distance
between A and B, denoled by (A, B), is > 0, then there i3 a g cU(X) such that
0 glx) € lfor all xz€ X, g(x) =0for ze Bandg{x) = 1 for zc A.

Proof: If (z,C) donotes the minimum distanco of any point ze X from
a closed subset C, the function

(z, B)

) = e e A

satisfies tho conditions statod.
Lemma 2.3: ¢ =0ifandonlyif £9d¢ = 0 for all geU(X).

Proof : The ‘only if* part is obvious. For the if" part, let A be any closed
set and let B, = {z Hz A) » %} B, isclosed and (4, B,) > % > 0. Let g,eU(X)
be,obtained from femma 2.2 by setting 8= 8,. Then, from [gdé* = [ g,dg~
wo deduce that ¢=(d) € ¢HX—B,) and ¢*4) < $~(X-B,). XSinco .\'—:B,LA,

it follows that ¢*(d) = g-(d). Since A is an arbitrary closed sot, it follows from
lemma 2.1 that ¢* =g~ on 8, i.c.,, ¢ = 0. This completes the proof.

If X is & compact metric space, it is known that C{X) is a sepnrablo Banach
spaco (Kelloy, 1056 p. 243). . If X is compnet and A a bounded lincer functional on
C(X), then a famoua theorcm of Ricsz states that theto exists a gefl such that
Alh) =)j"lul¢ forall e C(X) and || \ || = [$|(X). ¢is \mi:iuo in virtuo of lemma 2.3,

IfAisa gative linear functional, i.e., A(A) > 0 whenever A(2) > 0 for all zeX,
then A is bounded and the ¢ occuring in tho representation is in A1+ (for these facts,
seo Halmos, 1950, Ch. X).

Convergence in M: Given s net {3,} in M and a ¢ in M, wo say that &,
convergea weakly to ¢ (¢, == ¢) if E.n; j[ gdg, = ‘{ 9d¢ for all ge C(X), Identifying

£ 28 vsual as a subact of 1ho adjoint spree C*(X) of C(X), this is scen to bo the
woak convergenco in C*(.X) rolativized to fil. In futuro, the topology discussed on f1
and jts subsots will bo tho relativized weak topology.
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3. CoNVERGENCE IN Al*

Lomma 3.1:  If {p} isa ned in ¢ and pef1*, then the following statements are
mulually equivalent :

(8) pa==p
(b) lim [gdp, = [gdu for all geU(X)
"o X 4
(o) limin€ s, (@) 2> p{G) for alt Geg and p (X) — u(X)
—0
(d) lLim snp 1, (C) € 4C) for all Ce&F and g, (X) > 4(X)
n—m

() lim g (d) = pld) for overy Ae8 with p-null boundary,
—n

This is known. For a proof sce Billingsley (1936).

For each z¢ X, lot p, denoto the probability measure with total muss con-
centrated at tho point z.

Lemmn 3.2: X is homeomorphic fo the aet D = {p, : zeX}.

Proof: It ia enough to prove that z,—»z if and only if ps, = p,.

If x-r, x]'gdp,_ = y{r.) which tends tog(z) = ‘!gdp, for each geC(X). This

proves that ps, == p,. Conversely, supposo that p;, ==pz,. If z, does not converge

to z,, there is an open sot @ and & subset z,, such that xe@ and z,6X—G for all .

Take a continuous function g auch that 0 < g{x) < 1 for all 2, g{x;) = 0 and g{z} = |

for 2¢X—G. Then A‘[gllpzm = 1 whilo [ gdps, = 0. This contradicts the assumption
x

that pr, == pr, and henco we must have z, — x,. This completes the proof
of the lemma,

Lemmn 3.3: D is a sequentially closed subset of 1%,

Proof :  Let {x} bu sequencu of pointsin X such that pr,=>¢. We first
show that {z,} must have a convergent subsequenco. If not, (we can assumo in this
caso that all the x, are distinet) then S = {r,, z,....} is a closed subset of X, and so
is every subset of §. Since pr,==¢,4(C) > liv&aup pr{C) for each closed ret C.

LS

Henco ¢{S;) = | for-every infinito sot §, C 8, which is a contradiction.

‘Thus for nome z and somo subsequence {tn}, Zag—>2. In this caso ¢ = p,
which complotes the proof that D is soquentially closed. It may bo worthwhilo to
noto that in conscquenco of lemma 3.2, {r} itsolf — 2.

Lomma 3.4 : If X is atlally bounded melric space, then U(X)is a separable
Banach space.

Proof: Wo recall that if & metric apaco X is totally bounded, then its
completion is compact. Let X, bo tho completion. Any gel{X) can bo extended
to a geC(XN,) amil kinco X is dense in X, thin extension is unique and we have
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WEAK CONVERGENCE OF MEASURES ON SEPARABLE METRIC SPACES
also s,\’x})]g(z)] = :‘:-{3. |6=)]. In other words, tho Banach apaces U(X) and C(X)
aro isomorphic. Since X is & compnct metric space, C(X,) is soparablo. This shows
that U(X) is separable and eompletes the proof of the lemma.

We now prove our mwetrization theorom.

Theorem 3.1 : (Metrization of M*). M+ can be melrized na a separable
metric space if and only if X is a separable metric space.

Proof : We prove the ‘if* part first. Since X is a separable metrio space,
it can, as a consoquence of tho celobrated theorem of Urysohn, be tapologically im-
bedded in a countable product of unit intervals. Consequently thers exists & totally
bounded metrization of X which wo will now impose on X. Tt follows from Lemma

3.4 that U(X)1s separable. Let {g,, g, ...} bo a countable dense subsct of U(X) with
q(x) =1 for all =z

Lot R bo the countable product of the roal lines and dofine the map 7 of
A+ into R as follows. For each mefit, T(m)=([gdm, | gdm,...). We now
x

show that 7' naps fit* homeomorphically into R.

Firstly, T is one-one. For, if T(m) = T(n), then ; gdm = j;g,dn for all
7. Since {g,, g4, ...} is donse in U(X), this implies that ;gdm = {gdn for all geU(X).
It now follows from Lemma 2.3 that m = a.

Socondly, T is continuous. For, if for a net {m,}, m, = m, then ; y,dm.—oxj'
gdm as n— for all . This implies however that T{m,)->T{m).

Lastly, 7-! is continuous, For, lot {m,} be a net in M* and let T(m,)
—T(m), ie., :j'ﬂ,dm,,-» [ gdm for all r. Wo will show that m, =23 m. Sinceg, =1,
I

wo have m,(X)— m(X), and honco m(X) < ¢ for all n aftor some n,, where ¢ is a
constant. We then have, for any r, and = following n,

|[ odm.— [ gim | < 2etg—gi+ |[ gdme~ [ g,dm|
X X xr X

and consequently, 1:"_‘"_:'!’” gdm,— I gdm l < 2g—g,
X x

which can bo made < any ¢ for some r (sinco tho set {g,,...} is dense in U(X)).
This proves that [gdm,— ;gllm for onch geU(X), i.e, m, = m.

Tho proof that fil* is a soparable metric space is now complete, since R is a
separablo motric spaco and M+ is shown to bo homoomorphic to a subset of it.
For tho ‘only if” part, wo obsorve that X is homeomorphio to D = {p, : X}

and D ia o soparablo motris space whenover M* isso. Consoguently X itself is scpar-
able. This complotos tho proof.

19
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Theorem 3.2: Let X be o separable metric space and EC X dense in X, Then
the act of all measures in 1% which vanish oulside finite aubsets of £ is dense in f1*

Proof: 1t is obviously enough to prove that tho set of all moasures in s+
which vanish outside finito subsots of X is donse in fi*, Wo can offoct 8 further
simplification by obsorving that any sefl* which vanishes outside somo eountablo sot
of X is the weak limit of & soqueuce {#,} of mensures each of which vanishes outside
some finito subsct of X. We will thereforo prove that tho eot of all measurcs in M+
which vanizh outside countable subsets of X, is donso in &1+,

Chuose and fix gefilt, Sinco X is soparablo we can, for each integer n, write
X asU 4, where A YA,y = gfor j# k&, A, ¢S for oach jand diametor (4,,) -’-ll-
for all j. Lot x, e, bo arbitrary. Dofine uefl* as tho measure with masses
(A ) at tho points z,. Let g eU(X) bo arbitrary and put
@y = inf g{x}, f = supglz).
xedy rtdgy

Sinco g is uniformly continuous and sinco diawmeter (d,)— 0 88 n— oo uniformly
in j, B —@,;—0 as n— oo uniformly inj. Now

I[ g~ | ad/tl = | >f 4y OO ‘ < sup (f,~a,) =0
£ H 7 !

asn—»co. Sinco geU(X) is arbitrary, this proves thatp,=> g and completes the
theorem,

Noxt wo establish a theorem needed for the investigation of thoe topological
completencss of ft*. Tho theorem can be discussed in situations moro general tian
tho present ono (see for instance Kolmogorov and Prohorov, 1954.)

Theorom 3.3 : Let X bea compac! metric space. Then K C Ml is conditionally
asequentially compact if and only if

aup |8 (X} <.
[-17.¢

Proof : Since X is a compact metric spaco, f1 can bo regarded (in viow of the
Riesz theorem) as tho adjoint spaco of C(X) and weak convergence in §fl as weak con-
vergence in tho adjoint spaco. Sinco C(X) is scparablo, Theorom 3.3 is now scon to
bo a corollary of tho theorom of Banach (Banach, 1032) which states that a subset of
the adjoint spaco of a sepnrablo Banach apaco is conditionally sequentially compact if
and only if it is norm-bounded.

Theorom 3.4: IPhen X is compact, M* can be meirized as a separable and
complete melric space, 4, is compact if and oaly if X is compact.

Proof :  Sinee X is compnct C(X} is acparablo. Lot {g,, 5. ...} with gy =1
bo a denso subsot of C{X) and consider the map 7" defined in tho proof of thearom
3.1 which imbeds M1+ into R, Wo first show that T(f1*) is a closod subsot of R.
In fact Jot T(m,)— E whero § = (2,, &,, ...} is & point of R and [m} & net in M+,

20
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Thus &, = lim '{g,:lm. Sinco g, = 1 and {g,, ¢y ...} i8 dewso in C(X), it follown, on
"R
using tho argument given in tho proof of Theorem 3.1, that lim { gdwn, exists for cach
=& I

geC(X). If the limit is writton as A(g), thea A is & non-negative lincar functional
on C(X) nnd honco for somo mcsl*, Alg) = j’xg«lm for all geC(X). This shows that

T{m) = £ and complotes tho proof that T(M*) is closed in R, Sinco R itself is a
separablo and completo metric space, any closed subsot of it is likewixe a separable
and coraplete motric spnce. 1lence tho first part of the theorem,

For tho sccond part of tho theorem, we noté that if X ia compnet, then by
virtuo of Theorems 3.1 and 3.3 fit, is a compnct metric spnce. Conversely, if fil,isa
compact metric spaco, X also is a compact metric apace sinco it i (via Lemmas
3.2 and 3.3) homeomorphio to a closed. and henco compact, subsct of M. This
complotes the proof of the theorem.

Tho implication from Theorem 3.4 that A1, is sequentially compact whenever
X is compact is proved by a different method in Wald’s book on decision functions
(Wald, 1050).

1¥e now provo a theorem on the topological completeness of M+, We recall
that & metric space is cnlled topologically pleto if it is h phic to & com-
pleto metrio space. We shall requiro the following theorem {Vaidyanathaswamy, 1947).
A metrio spaco i topologieally completo if and only if it ia & G, in somo complete
metric spnco, in which caso it is n G, in every complete metric apaco into which it
can bo topologically embedded.

Theorem 3.6: Suppose that X is separable. Then fit* is topologically complete
if and only if X is 0.

Proof : Tho 'if” part isproved first. As in the proof of Theorem 3.1, we assume
that X is tolally bounded and henco that X,. its completion, is compact. Sinco
X is topologically complete, Xis a G, in X, Let fll} denoto tho rpace of measures
on X, and fily = {m :meM}, m(X;—X)=0}. Then M, and M* are homeomorphic.
Sinco M} is a scparablo and topologically completo metrie spaco (Theorem 3.4),
it is onough to show that i), is a @, in M}. Sinco X is n @, in X, X = 0 G,

each 0 being open in X, and G, 56,3 .... Heneo fil, = r.] {m : m(X,—@,) = 0}
= 00 { m: m(X,—0,) <;-} It remnina to show that, for each & and r{>0),
{m: m(X,—C) < }} is opon. Tho comploment of thix set is{m (X, —G)» :}
which is closed becanso tho relations i, (.\',—0,)}:—. m,==pm imply that m{X; = G,)
> “T—:l:lp m(X,—=G,) » ;l- This completes the proof of the *if* part.

Tor the ‘only if” part, wo noto that the topologieal completeneas of M+ implies
that of D which is a closed subset of fMl* (Lemma 3.3). Since X, in view of Lemma
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3.2 i3 homeomorphio te D, it fullows thot X is topologically complete. Thie proves
the theorom.

Remark |: Sinco f1, is o closod subset of M* it follows that i, is
topologically completo if and only if X is so.

Remark 2: The abovo result and Theorem 3.1 applicd to @1, form tho genor-
slizations of the reanlts of 1%, Levy for probability menaures on the real lino.

4. Uoxveroexck 1x fil

In this section, wo study the conditions under which #l iy motrizable. Dofin.
ing for cach gesfl. 18] = |$](X), wo soo that || || is a norm for M. M i1 & Banach
spacs uneer that norm and g, —gn—0 as n—0 il and only if {$(4)—3{4)] > 0
ns n—= uniformly for all Ae8. Tho topology of this Banach space will Lo refcrred
to as the norm topology for fl.

Thoorem 4.1 :  Suppose that X is separvable. Then, the weak topology on M
is metrizable if and only if the norm and weak topologies on @\ are identical.

Proof :  Evidently if the weak topology coincites with the norm tophlogy, it
is metrizablo, Yo have thereforo to show the converse, i.c., we must show that if the
wenk topology on Sl is metrizablo, then every set Ve, s = (¢ : [d—gd "< A} {for
$eefll and A > 0) is weakly open.  Sinco weakly open subsets remain so under transla-
tion in A1 and under gealar multiplication, it is enough to show that for some A, 0
is nn interior point (in the weak topology) of Vo,x.

Let d bo tho distance function motrizing the weak topology on fland Jot
S.= {¢ 1 d(0, $) < %} Wo nusort that for rome n, augl![‘ﬁ], < 0. If not, for each
$15a
n we can find e 8., such that | g, )> n. This however is n contradiction since
¢.==>0 and hence limsup 1,1l < oo by the Banach~ Steinhaus theorem (Banach.
Lol
1932, p. §0). Thus for some n = n,, sup g]| < 0. Defining A = sup || we ace
£1Sa 9rSny

that 06Sn,C Vo.s. This shows that 0 is an interior point of Vo, in tho weak topology
and completes tho proof of the theorom.

In concluxion, the writer wishesto thank Dr. V. K. Balachandran of the Indian
Statistical Institute for several useful di ions during the preparation of the paper.
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