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Chapter 1

Introduction

Medical imaging is one of the powerful tool for gaining insight into the nor-
mal and pathological processes that affect health.Now a days the various imaging
modalities, such as microscopy,computer tomography, ultrasound ,medical reso-
nance imaging (MRI) and PET etc, are used in medical decision making processes
and in surgical actions.Therefore high quality of accuracy is needed in taking the
images .Clinical applications of a medical image require that image should be suf-
ficiently clear and free from artifacts.That is why we need some preprocessing
steps to remove the various image artifacts that comes due to imperfection in the
image acquisition process.

In this work, a class of preprocessing step ,will be addressed ,that deals with
a spurious smoothly varying image intensity, which is apparent in the images
obtained by different imaging modalities such as microscopy,CT,ultrasound and
above all in the magnetic resonance imaging.This spurious variation of intensity is
known as intensity inhomogeneity, intensity non-uniformity or bias field.Basically
I will address the intensity inhomogeneity in MRI s as the impact of this image
technique in neurological applications is impressive, due to less side effects and
flexibility in joining high-quality anatomical images with functional information.

1.1 Road-map of the report

In chapter 2, basic principle of MR Imaging is discussed .Here I have briefly cov-
ered the advantages and disadvantages of MRI s .Because of its usefulness for the
soft tissues, it is widely used for taking the image of human brain . In chapter 3,
intensity inhomogeneity ,its causes and the basic models of intensity inhomogene-
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ity in Medical Resonance Imaging are discussed .Also the various approaches of
intensity inhomogeneity correction are discussed. The summary of works done on
bias field correction till today, is briefly covered in this chapter .

In chapter 4, a correction strategy is discussed ,which is based on expecta-
tion maximization and log likelihood estimation .Where I have given the complete
mathematical setup of this approach and have highlighted the various issues such
as the tuning of parameters of the algorithm, related to the algorithm

In chapter 5, C-Means Clustering algorithm, that is used in the estimation
mean and variance of tissue classes, discussed .Both the Hard C-means and Fuzzy
C-Means algorithms are discussed in detail .As these are used in inhomogeneity
correction work for estimating mean and variance of tissue classes.

Chapter 6 consists of my core work ,where I have tried to tune the parameters
of this correction approach using the bench marked data sets, I have put the re-
sults of my various experiments in which I used various strategies for estimating
the parameters of the image and the bias field to optimize the performance of this
algorithm.Estimated parameters are used to correct the real life MR images.Some
examples of real MRI are also given iv this chapter.

Chapter 8 contains the Summary and Future scope of this work.And finally the
appendix contains some of the c-code used for the experiment purposes.
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Chapter 2

Basic Principle of MRI

Magnetic resonance imaging (MRI) is an imaging technique used primarily in
medical settings to produce high quality images of the inside of the human body.It
is based on the principle of Nuclear Magnetic Resonance.

2.1 Nuclear Magnetic Resonance

• All atoms consist of outer shells of negatively charged particles called elec-
trons buzzing around in diffuse clouds, and a dense central portion called the
nucleus.

• Some of these nuclei behave like small bar magnets and when placed in a
powerful magnetic field about half line up in the direction of the magnetic
field and about half line up in the opposite direction. The nuclei in opposing
directions will cancel each other out but a few out of a million will not.

• By providing energy in the form of radio waves these tiny magnets can be
caused to change orientation, to resonate absorbing energy at a resonance
frequency that depends directly on the strength of the magnetic field.

• The frequency of this precession is described by the Larmor frequency. w0 =
−γH0
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2.2 How would this work in the patient..

• When a patient is subject to a magnetic field (located straight down the center
of the tube the patient is placed into) the H atoms in his/her body will line up
in the direction of either his/her head or feet.

• The vast majority of the H+ will cancel each other out, but a couple out of a
million will not.

• When an RF pulse specific to only H is applied to a specific part of the body
being examined, the protons not cancelled out will absorb the energy required
to make them spin or precess in a different direction a specific frequency
called the Larmour frequency.

• The RF pulses are applied through a coil, designed for different parts of the
body and conform to the contour of the body.
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• By switching three small gradient magnets (18-27mT) on and off a variable
magnetic field is formed.

• The large magnet immerses the patient in a stable and very intense magnetic
field.

• By altering the gradient magnets, we can choose exactly which specific area
of the body we want to analyze in slices.

• When the RF pulse is turned off, the H protons begin to slowly return to their
natural alignment within the magnetic field and release their excess stored
energy.

• The released energy, gives off a signal that the coil now picks up and sends
to the computer system. The mathematical data is converted through the use
of a Fourier transform, into a picture that we can put on film.

2.3 Sample MRI Slices

2.4 Advantages

• It does not use ionizing radiation.

• Very low incidence of side effects.

• Ability to image any plane: axial, sagitall, coronally

• Ideal for orthopedic and neurological applications.
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2.5 Disadvantages

• Lower sensitivity then CT and X-Ray scans.

• Many people who can not be scanned by MRI because they have metal in
their body or are too big to be scanned or are claustrophobic.

• Make a tremendous amount of noise. The stronger the main field, the louder
the gradient noise.

• MRI scans require patients to hold still from 20 to 90 minutes or more. Very
slight movement can cause very distorted images that will have to be re-
peated.

• Orthopaedic hardware (screws, plates, artificial joints) in the area of a scan
can cause severe distortions on the images. The hardware causes a significant
alteration in the main magnetic field.

• MRI systems are very expensive to purchase.
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Chapter 3

Intensity Inhomogeneity

The images ,obtained by various medical image modalities such as Microscopy ,
CT ,Ultrasound and MRI, the intensity of same tissue varies with the location of
the tissue , within the image .Which is due to the spurious smoothly varying image
intensities , known as the intensity inhomogeneity or intensity non-uniformity or
bias field.

Though the intensity inhomogeneity is hardly noticeable by human, many im-
age analysis methods such as segmentation ,registration are highly sensitive to the
spurious variation of image intensity.

Intensity inhomogeneity in MRI arises from the imperfection of the image ac-
quisition process and manifest itself as a smooth intensity variation across the
image sources of intensity inhomogeneity in MRI are generally divided int two
groups:

• Sources in the first group are related to the properties of MRI device and in-
clude Static Field Inhomogeneity,Eddy Current driven by field gradient ,Ra-
dio Frequency transmission and reception inhomogeneity.

• Sources in the second group are related to imaged object itself ie to the shape
,position and orientation of the imaged object inside the magnet and the spe-
cific magnetic permeability and dielectric property of the subject .
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3.1 Models of intensity inhomogeneity

In its most simple form, the model assumes that intensity inhomogeneity is mul-
tiplicative or additive, i.e., the intensity inhomogeneity field multiplies or adds to
the image intensities.Most frequently, the multiplicative model has been used as it
is consistent with the inhomogeneous sensitivity of the reception coil.For model-
ing inhomogeneities that are due to induced currents and nonuniform excitation,
the multiplicative model is less appropriate.

In addition to intensity inhomogeneity,the MR image formation model should
incorporate noise,which can be approximated by a Gaussian distribution .In fact
there are two types of noise :

• Biological noise : Corresponds to the within tissue inhomogeneity.

• Scanner noise : Which arises from MR device imperfections.

Let u(x) be the inhomogeneity free image , b(x) be the intensity inhomogeneity
and n(x) represent the noise incurred.

Model 1 : v(x) = u(x)b(x) + n(x) (for scanner noise )

Model 2 : v(x) = (u(x) + n(x))b(x) (for biological noise)

Model 3 : log v(x) = log u(x) + n(x) (for log-transformed intensities)

In this dissertation work my aim is to estimate the bias field and to restore
the MR image. I have considered the model based on log transformed intensities
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, where the multiplicative inhomogeneity becomes the additive one . I have ne-
glected the noise n(x) and assumed that it is incorporated in the term u(x). Before
discussing the my approach let us first give the brief idea of all the inhomogeneity
correction methods.

3.2 Classification of correction methods

Intensity inhomogeneity correction methods are broadly classified into two cate-
gories :

• Prospective : Aims at calibration and improvement of the image acquisi-
tion process.

• Retrospective : Based on the information of acquired image and apriori
knowledge imaged object.

Retrospective methods are relatively general as only a few assumptions about the
acquisition process are usually made. These methods mainly rely on the infor-
mation of the acquired images in which useful anatomical information and in-
formation on the intensity inhomogeneity are integrated. A priori knowledge on
spatial and/or intensity probability distribution of the imaged anatomy is used by
some methods to facilitate extraction of information on intensity inhomogeneity.
In contrast to the prospective methods, which can correct only the intensity in-
homogeneity induced by an MR scanner, retrospective methods can also remove
patient dependent inhomogeneity . The retrospective methods are further classi-
fied into :

• Filtering : Homomorphic Filtering

• Surface fitting : Intensity Based,Gradient Based

• Segmentation : ML, MAP Based,EM iterative scheme

• Histogram based : High-Frequency Maximization,Information Minimization

• Others
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Filtering methods assume that intensity inhomogeneity is a low-frequency arti-
fact that can be separated from the high-frequency signal of the imaged anatomical
structures by low-pass filtering. Surface Fitting Methods fit a parametric surface
to a set of image features that contain information on intensity inhomogeneity.
The resulting surface, which is usually polynomial or spline based, represents the
multiplicative inhomogeneity field that is used to correct the input image.

In segmentation based intensity inhomogeneity correction methods the two
procedures ,bias correction and segmentation, are merged so that they benefit from
each other, simultaneously yielding better segmentation and inhomogeneity cor-
rection

Histogram based methods operate directly on image intensity histograms and
need little or no initialization and/or a priori knowledge on the intensity probability
distribution of the imaged structures. This makes these methods fully automatic
and highly general so that they can usually be applied to various images with or
without pathology.

3.3 ML, MAP based intensity inhomogeneity correction method

This method uses maximum-likelihood (ML)or the maximum a posteriori proba-
bility (MAP) criterion to estimate the image intensity probability distribution.The
models parameters are estimated by the expectation-maximization (EM) algo-
rithm, iterating between classification and intensity inhomogeneity correction.For
each tissue class in the brain MRI Gaussian distribution is taken .

I have used the above approach and basically followed the papers Adaptive
Segmentation of MRI Data 1 and Estimating the Bias Field of MR Images2

and estimated the various parameters of tissue classes of brain MR image .
Various algorithms are experimented for selecting the mean , variance ,and

prior probabilities appropriately .Firstly I did my experiment on the simulated data
and then applied the same algorithm with estimated parameters to real MRIs. I also
tried to justify my results with physical explanations. In the next chapter I have
covered the mathematical setup of the above two papers.

1W. M.Wells, III, W. E. L. Grimson, R. Kikins, and F. A. Jolezs, Adaptive segmentation of MRI data, IEEE Trans.
Med. Imag., vol. 15, no.8, pp. 429-442, Aug. 1996.

2R. Guillemaud and M. Brady, Estimating the bias field ofMRimages,IEEE Trans. Med Imag., vol. 16, no. 3, pp.
238-251, Jun. 1997.
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Chapter 4

Estimation of Intensity Inhomogeneity

In this chapter, I will discuss the Wells it al. and Régis Guillemaud and Mica-
hael Brady techniques that use the maximum likelihood approach and EM algo-
rithm to estimate the bias field .I experimented with these algorithms and standard-
ize the parameters and found better correction with these estimated parameters.I
will first discuss the basics of the algorithm :

As the goal is to estimate the multiplicative inhomogeneity ,Consider the inho-
mogeneity model based on the log transformed intensity .Now the inhomogeneity
becomes additive in the transformed domain. Ignoring the noise N(Y ),that can be
removed by prefiltering .

Yi = ln(Xi) (4.1)

where Xi is the observed MRI signal intensity at the ith pixel.Yi is the logarithm
of pixel intensity Xi.Let β(Yi) denote the bias at ith pixel. Let n ne the total no of
pixels.

Choose the set of classes ( say: white matter ,gray matter,air cerebro-spinal
fluid etc). Associate the jth tissue class with the Gaussian distribution on inten-
sities Γj with mean µj and variance ψj .ie

p(Yi|Γj) = Gψj(Yi − µj) (4.2)

Modifying Eq. (4.2) we get,

p(Yi|Γj, βi) = Gψj(Yi − µj − βi) (4.3)
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Let p(Γj) represent the prior probability of tissue class Γj.Using the defnition
of conditional probability , we may write

p(Yi,Γj|βi) = p(Yi|Γj, βi)p(Γj) (4.4)

So conditional probability of intensity alone can be obtained by computing a
marginal over tissue class

p(Yi|βi) =
∑
Γj

p(Yi,Γj|βi) =
∑
Γj

p(Yi|Γj, βi)p(Γj) (4.5)

We assume the statistical independence of pixel intensities , so we can write
the probability density of intire image as

p(Y |β) =
∏
i

p(Yi, βi) (4.6)

As the bias field varies slowly spatially.We can model it by a zero-mean Gaus-
sian prior probability density

p(β) = Gψβ(β) (4.7)

Next, Bayes’ rule is used to obtain the posterior probability of the bias field,
given the observed intensity data

p(β|Y ) = p(Y |β)
p(β)

p(Y )
(4.8)

where p(Y ) is an unimportant normalizing constant .
Having obtained the posterior probability on the bias field , we now use a maximum-
a-posteriori(MAP) principle to formulate the estimate of bias field as the value of
β having the largest posterior probability

β̂ = arg max
β

p(β|Y ) (4.9)

A necessary condition for a maximum of posterior probability of β is that its
gradient with respect to β be zero.We will use the equivalent zero gradient condi-
tion on the logarithm of the posterior probability[

∂

∂βi
ln p(β|Y )

]
β=β̂

= 0 ∀ i (4.10)
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Using eq. (4.6) and eq. (4.8) we get[
∂

∂βi

(∑
j

ln p(Yj|βj) + ln p(β)

)]
β=β̂

= 0 ∀ i (4.11)

Sinse only the ith term of the sum depends on βi, we have (after differentiating
the logarithms) [

∂
∂βi
p(Yi|βi)
p(Yi|βi)

+

∂
∂βi
p(β)

p(β)

]
β=β̂

= 0 ∀ i (4.12)

Using eq. (4.3) and eq. (4.5) , the above can be written as
∑
Γj
p(Γj)

∂
∂βi
Gψj(Yi − µj − βi)∑

Γj
p(Γj)Gψj(Yi − µj − βi)

+

∂
∂βi
p(β)

p(β)


β=β̂

= 0 ∀ i (4.13)

Differentiating the Guassian expression in the first term yields
∑
Γj
p(Γj)Gψj(Yi − µj − βi)

[
ψ−1
j (Yi − µj − βi)

]
∑
Γj
p(Γj)Gψj(Yi − µj − βi)

+

∂
∂βi
p(β)

p(β)


β=β̂

= 0 ∀ i

(4.14)
The expression may be more compactly written as[∑

j

Wij

[
ψ−1
j (Yi − µj − βi)

]
+

∂
∂βi
p(β)

p(β)

]
β=β̂

= 0 ∀ i (4.15)

Wij represents the probability that bias corrected pixel i belongs to tissue class
j.

Wij ≡
p(Γj)Gψj(Yi − µj − βi)∑

Γj
p(Γj)Gψj(Yi − µj − βi)

(4.16)

Equation (4.15) may be re expressed as[∑
j

Wijψ
−1
j (Yi − µj)−

∑
j

Wijψ
−1
j βi +

∂
∂βi
p(β)

p(β)

]
β=β̂

= 0 ∀ i (4.17)
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or as [
Ri −Ψ−1

i βi +

∂
∂βi
p(β)

p(β)

]
β=β̂

= 0 ∀ i (4.18)

where Ri is known as mean residual :

Ri ≡
∑
j

Wijψ
−1
j (Yi − µj) (4.19)

and
Ψ−1
i ≡

∑
j

Wijψ
−1
j (4.20)

Differentiating the last term in eq. (4.18) gives

Ri −Ψ−1
i β̂i − ψ−1

β β̂i = 0 (4.21)

Finally the zero gradient condition for the bias field estimator may be concisely
written as

β̂ = HR (4.22)

Where the linear operator H is defined by

H ≡
[
Ψ−1 + ψ−1

β

]
(4.23)

Finally, the EM algorithm is applied to (4.16) and (4.22) . Initially,the bias
field is assumed to be zero everywhere. The equation (4.16) calculates the pos-
terior tissue class probabilities Wij (Expectation step).Using euation (4.19) we
calculate Ri and then using eq. (4.22) we can find the bias field βi.(Maximization
step).

The abobe scheme is iterative one .I found that the β stablizes whithin 12 iter-
ations .

4.1 Issues

There are various issues related to these algorithms :

• This method requires that MR intensity distribution should be modeled as
a guassian mixure .Is it appropriate to model each tissue class as Gaussian
distribution?
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• How many tissue classes should be taken ? What is the impact of the number
of tissue classes in the performence of the algorithm ?

• What algorithm should one use to get the better sigmentation of the tissue
classes ?If we are modeling them by guassian distribution , How to choose
their mean ,variance ?

• The algorithms needs the prior probability of tissue class . How to choose
the prior probability of tissue classes to get the better performence ?

• Bias field is assumed to be guassian in this algo.How to choose the mean and
variance of bias ?

For settling down the above issues I have experimented with the values of the
paramenter needed and the various algorithms to work out the segmentation like
issues. In the next chapter . I will provide the details of my experiment and its
performence . In my experiment I noticed that if we take the number of tissue
classes nearby 7 , we get the better result and increasing the number of tissue
classes does not improve the result much ,which is quite true as there are 6 types
of tissues in the brain , including the backgroud it becomes 7. For estimating
the prior probability , mean and variance I observed that K-Means Clustering
Algorithm gives the good result , as the k-mean clustering algorithm provides the
natural clustering of the similar tisse class ,and with the knowledge of the number
of pixels in a class , we can easily calculate the prior probabilities of the tissue
class by the same algorithm.If we use the uniform prior probability , results are
not at par with the results when the prior probabilities are calculated by above
algorithm and which is quite natural.
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Chapter 5

C-Means Clustering Algorithm

5.1 Hard C-Means

In clustering we intend to find out the mutual grouping existing in the data set
.There are several ways to of formulating the defnition of natural grouping . THe
process of clustering usually have the following steps :

1. Defining a measure of similarity or dissimilarity between the points .

2. Formulating an objective function .

3. Write an algorithm for obtaining the clusters satisfying (2)

Usually dissimilarity is measured by distance function . Usually we consider
metrices for calculating distances .Similarity between two variables, sometimes
is measured by the angle between the vectors corresponding to the variables.

5.1.1 Minimum within cluster distance criterion

Let X = {X1, X2, X3, ....., Xt} be the given data sets,
where Xk = (Xk1, Xk2, Xk3, ...., Xkn) ∈ Rn. Let the number of clusters c be
known.A family {Aj : 1 ≤ j ≤ c} is a c-partition of X iff,

• ∪ci=1Ai = X

• Ai ∩ Aj = φ , 1 ≤ i 6= j ≤ c

• φ ⊆ Aj ⊂ X , 1 ≤ j ≤ c
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Let A= {P (A1, A2, ...Ac) : P (A1, A2, ...Ac) is a partition of X } . Let for a
partition P (A1, A2, ...Ac),

Yi =

( ∑
X∈Ai

X

)
#(Ai)

(5.1)

Let the objective function (loss function) is defined as

L(P (A1, A2, ..., Ac)) =
c∑
i=1

∑
X∈Ai

(‖X − Yi‖)2 (5.2)

We would like to find P (A0
1, A

0
2, ...., A

0
c) ∈ A , such that

L(P (A0
1, A

0
2, ...., A

0
c)) ≤ L(P (A1, A2, ..., Ac)) ∀ P (A1, A2, ..., Ac) ∈ A (5.3)

We have suboptimal algorithm in literature for implementing this criterion .One
such well known algorithm is C-Means Algorithm . There are several version of
C-Mean Algorithm available in literature . One such version is given below .

5.1.2 C-means algorithm

1. Choose a partiton P (A11, A12, .., A1c) of X into c classes.
swhere X = {X1, X2, X3, ....., Xt} ⊂ Rn and c is number of classes.

2. A21 = A22 = A23 = ....... = A2c = φ

3. Let Yi = mean of A1i , i = 1, 2, 3, ..., c

4. For j = 1, 2, 3, .., t. Put Xj into A2i if d(Xj, Yi) ≤ d(Xj, Y
′
i ) for all i′ 6= i

(Resolve ties arbitrarily )

5. If A1i = A2i∀i .Stop the algorithm, with the output as A11, A12, ......, A1c

Otherwise rename A2i as A1i for all i = 1, 2, 3, ..c. and Go to step (2).
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Note :

• In order to create A11, A12, ..., A1c many authors considered c points say
Z1, Z2, ..., Zc ∈ X ,( called seed points ) ,and put all those Xis belonging
to X in A1i if the distance of Xi with Zi are minimum .

• The algorithm usually converges.

• It is not necessary true that two different initial partitions ( or two different
set of seed points) give rise to the same final clustering .

• Usually the user decide the number of iteration in advance .

5.2 Fuzzy C-Mean

The objective of Fuzzy C-Mean algorithm is to partition a given data set into a
certain number of natural and homogeneous sets where the element of each sets
are similar as much as possible and dissimilar from those of other sets .
Let X = {X1, X2, X3, ....., Xt} be the given data sets,
where Xk = (Xk1, Xk2, Xk3, ...., Xkn) ∈ Rn.

5.2.1 Hard C-Partition

A family {Aj : 1 ≤ j ≤ c} is a hard c-partition of X iff,

• ∪ci=1Ai = X

• Ai ∩ Aj = φ , 1 ≤ i 6= j ≤ c

• φ ⊆ Aj ⊂ X , 1 ≤ j ≤ c

Let µjk be the menbership Xk to cluster to cluster Aj, j = 1, 2, .., c and
k = 1, 2, ..., t. For hard partitioning µjk ∈ {0, 1} ,Let Vct be the set set of c × t
matrices 2 ≤ c < t. Hard C-Partition for X is the set

Mc = {U ∈ Vct : µjk ∈ {0, 1}∀j, k and
c∑

j=1

µjk = 1,∀k, 0 <
t∑

k=1

µjk < t}
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5.2.2 Fuzzy C-Partition

It is the set

Mc = {U ∈ Vct : µjk ∈ [0, 1]∀j, k and
c∑

j=1

µjk = 1,∀k, 0 <
t∑

k=1

µjk < t}

e.g.

U =

[
0.91 0.42 0.67
0.09 0.58 0.33

]
5.2.3 Fuzzy C-Mean Algorithm

The objective of fuzzy c-mean algorithm is based on least squired error criterion .

Let Jm : Mfc ×Rcn → R+ be defined as

Jm(U, V ) =
t∑

k=1

c∑
j=1

(µjk)
m(djk)

2 (5.4)

where , U ∈Mfc Mfc is a set of c× t matrices. V = (v1, v2, v3, ..., vc) ∈ Rcn

with vj ∈ Rn is the cluster center .(djk)2 = (‖ Xk− vj ‖)2 and weight component
m ∈ {0,∞}. Since each term of Jm is proportional to the (djk)

2, Jm is a squire
error clustering criterion and an infinite family of fuzzy clustering algorithm , one
for each m ∈ (0,∞) is obtained via necessary conditions for solution of

min
Mfc×Rcn

[Jm(U, V )] (5.5)

Theorem 5.2.1. Fix, m ∈ {0,∞} , Lets X have at least c < t distinct points and
define ∀k the sets ,

Ik = {j : 1 ≤ j ≤ c, djk = 0}
Îk = {1, 2, ..., c} − Ik

Then (U, V ) ∈Mfc ×Rcn may be globally minimal for Jm only if ,

Ik = φ⇒ µjk =
1

c∑
j′=1

[
djk
dj′k

] 2
m−1

(5.6)

25



or
Ik 6= φ⇒ µjk = 0 ∀j ∈ Îk and

∑
j∈Ik

µjk = 1 (5.7)

and

vj =

t∑
k=1

(µjk)
mXk

m∑
k=1

(µjk)m
∀j (5.8)

Analysis : Eq. (5.6) is derived by fixing , v ∈ Rcn and applying the La-
grange multiplier to the variables µjk. Eq. (5.7) is the alternate necessary form
for membership of Xk, when there exist j so that djk = 0.This is called singular-
ity and whenever it occurs , Xk must have no membership in any cluster , where
djk > 0.Membership of Xk in cluster j ,where djk = 0, arbitrary up to column
constraint.Singularity ie Xk = vj hardly occurs in practice .

Proof. First fix V ∈ Rcn and define

gm(U) = Jm(U, V ) (5.9)

for any U ∈Mfc, so we have to find

min
U∈Mfc

[gm(U)] = min
U∈Mfc

[
t∑

k=1

c∑
j=1

(µjk)
m(djk)

2

]
(5.10)

subject to
c∑

j=1

µjk = 1 (5.11)

and

0 <
t∑

k=1

µjk < t (5.12)

If we avoid the constraint (5.12) , the columns of U are independent .For each
column k of U let

gmk(µk) =
c∑

j=1

(µjk)
m(djk)

2 (5.13)
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Let its Lagrangian be

Fk(λ, µk) =
c∑

j=1

(µjk)
m(djk)

2 − λ(
c∑

j=1

µjk − 1) (5.14)

For minimise Fk , we have

∂

∂λ
Fk(λ, µk) = 0⇒

c∑
j=1

µjk − 1 = 0 (5.15)

and
∂

∂µk
Fk(λ, µk) = 0 (5.16)

this means
m(µjk)

m−1(djk)
2 − λ = 0 (5.17)

or

µjk =

[
λ

m(djk)2

] 1
m−1

(5.18)

Using Eq. (5.15)
c∑

j′=1

µj′k = 1

or
c∑

j′=1

(
λ

m
)

1
m−1

[
1

(dj′k)2

] 1
m−1

= 1

or

(
λ

m
)

1
m−1

c∑
j′=1

[
1

(dj′k)2

] 1
m−1

= 1

Thus

(
λ

m
)

1
m−1 =

1
c∑

j′=1

[
1

(dj′k)2

] 1
m−1

(5.19)
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Putting the value in Eq. (5.19), we get

µjk =
1

c∑
j′=1

[
djk

(dj′k)2

] 2
m−1

(5.20)

Algorithm :

1. Fix c, 2 ≤ c < t and fix m ∈ (0,∞) .Initialize U 0 ∈Mfc and l = 0.

2. l = l + 1 .Calculate the c-fuzzy cluster centers {vlj} using Eq. (5.8).

3. Update U l using Eq. (5.6) and Eq. (5.7).

4. Compare U l with U l−1 in a convenient matrix norm ie if ‖ U l − U l−1 ‖< ε

then stop ,otherwise return to step 2.

Fuzzy C-mean algorithm has the number of parameters ie : c,m, U 0, ‖ . ‖, ε
As m −→ 1 fuzzy c-mean converges to hard c-mean solution.Conversely as
m −→ ∞ , it is easy to see that µjk −→ (1

c)∀j, k so vj −→ µ, the centroid
of X ∀j.In general the larger m is , the fuzzier are the membership assign-
ment and as m tends to 1 fuzzy c-mean solution becomes the hard.Weighting
component m ,thus controls the extent of membership sharing between fuzzy
clusters inX .
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Chapter 6

Performence Analysis

6.1 Benchmark Data Sets

Here I have used the benchmark data sets where the ground truth is available
.Using that I estimated the various parameters used in the algorithm.In the next
section, these estimated parameters are used for correcting the real life magnetic
resonance brain images.As in many natural processes, random variation conforms
to the normal distribution,I will be using the normal distribution for the various tis-
sue classes present in the brain MRI.The various parameters used in the algorithms
are:

• Number of tissue classes in the brain MRI

• Prior probability of the tissue classes.

• Mean and Variance of the tissue classes.

• Mean and the variance of the intensity inhomogeneity.

As there are three types of MRIs, T1,T2,PD.I will be standardizing the above
parameters for all the three types of MRIs. The various option for the above pa-
rameter are as under :
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No. of Tis-
sue Classes

Prior Prob. of tissue class Mean and Vari-
ance

MRI
type

6 Uniform prior probability Using C-Mean Al-
gorithms

T1

7 Prior Prob. Using C-Mean Using fuzzy
C-Mean

T2

more than 7 Background Uniform Prior Probabil-
ity and other classes using C-mean

Manual Choice PD

6.1.1 Standardizaion of number of tissue classes

Tissue classes visible in MRI scans include white and gray matter, cerebrospinal
fluid (csf),menings (the protective membranes surrounding the brain),skull,muscle,fat,skin
or air(see figure 6.1.1 ).Pathology introduces the addition classes of edema,tumer,hemorrhage,
or other abnormality.

Figure 6.1: An Annotated Gradient Echo MR Slice (Air,CSF,Cranium are dark in this Image )

I have noticed that if we take number of tissue classes 8 or more , result of the
above algorithm(in term of error in the biased corrected image) is almost same .
While if we take the number of tissue class = 6 , results is slightly degraded .

Now in my further experiments, I will fix the number of tissue classes as 12 ,
using this much tissue classes , I will try to tune the prior probability of the various
tissue classes present .
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(a) bias free image (b) 40 % biased image

Figure 6.2: synthesized bias free and biased image

Figure 6.3: 20% biased mri brain image

31



(a) corrected image (b) bias image

Figure 6.4: Corrected Image and its Bias Image where I have taken 10 number of tissue
classes,actual image is biased by 40 %, I have choosen the other parameters using the c-mean
clustering alghorithms and I have have taken bias image distribution to be Gaussian with zero
mean and unit variance

Error in bias correction : 23.911566%
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(a) corrected image (b) bias image

Figure 6.5: Corrected Image and its Bias Image where I have taken 8 number of tissue
classes,actual image is biased by 40 %, I have choosen the other parameters using the c-mean
clustering alghorithms and I have have taken bias image distribution to be Gaussian with zero
mean and unit variance

Error in bias correction : 23.911566%
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(a) corrected image (b) bias image

Figure 6.6: Corrected Image and its Bias Image where I have taken 6 number of tissue
classes,actual image is biased by 40 %, I have chosen the other parameters using the c-mean
clustering algorithms, and I have have taken bias image distribution to be Gaussian with zero mean
and unit variance

Error in bias correction : 26.439083%
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Now in my further experiments, I will fix the number of tissue classes as 12 ,
using this much tissue classes , I will try to tune the prior probability of the various
tissue classes present .

6.1.2 Choice of prior probability of tissue classes

There are three option for choosing the prior probability

• Uniform prior probability

• Prior probability using C-Mean clustering algorithm

– After the C-Mean algorithm is converged , We count the number of pix-
els belonging to a class.

– Dividing the number of pixels in a class by total number of pixels in the
image , we get the prior probability.

• Background some fixed prior probability and tissue class prior probability
using c-mean

(a) bias free image (b) 40 % biased image

Figure 6.7: PD MRI,where the slice thickness is 3

I have noticed through my experiment that the various option for choosing the
prior probability does not effect the performance of the algorithm any more .As
one can see in the following table that we got the same percentage error in the
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(a) bias free image (b) 40 % biased image

Figure 6.8: Bias corrected Image and corresponding bias

bias corrected image for both the cases one for uniform prior probability for all
the classes and other when prior probability is measured by c-mean algorithm.

As the different choice of prior probability does not affect the performance . So
henceforth we take the uniform prior probability and the number of tissue classes
equal to 12.
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Error in bias correction : 14.285212%

Error in bias correction : 14.285212%
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6.1.3 Mean and Variance of tissue classes

Main difficulty with this algorithm is ” how to choose the mean and variance
of the tissue classes ? ”.There are the various ways to choose the mean and hence
variance of the tissue classes .I experimented with the following three algorithms
of selecting means and variance.

• Manual Assignment

• Using C-Mean Algorithm

– Random initialization

– Manual initialization

• Using Fuzzy C-Mean Algorithm

I fixed the number of tissue classes equal to 12 and have taken the prior prob-
ability of tissue classes to be uniform . Through my experiment , I found that
choosing mean and variance by C-Means Clustering algorithm gives the better re-
sult than that of by choosing fuzzy c-mean algorithm. In the first case where I have
assigned the value of mean and variance of tissue classes manually ,sometimes I
get good result and sometimes not. In the C-Means Approach , we can choose the
initial means in two ways - one can assign the initial means by random pixel values
or manually assign the initial means by observing the data properly . I observed
that manual initialization of initial means gives the better results .
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6.1.4 Result for C-mean Approach

(a) Bias free Image (Ground
Truth)

(b) 40 % biased image (c) Bias Corrected Image (d) Bias field of Image

(e) Various parameters

Figure 6.9: Bias corrected Image and corresponding bias ,where the C-mean Algorithm is used to
estimate mean and variance of tissue class ,and variance of bias is 1 .
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6.1.5 Result for Fuzzy C-mean Approach

(a) Bias free Image (Ground
Truth)

(b) 40 % biased image (c) Bias Corrected Image (d) Bias field of Image

(e) Various parameters

Figure 6.10: Bias corrected Image and corresponding bias ,where the Fuzzy C-mean Algorithm is
used to estimate mean and variance of tissue class ,and variance of bias is 1 .
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Now ,C-mean Approach will be used to get the mean and the variance of tissue
class.Taking the uniform prior probability and the number of tissue classes equal
to 12 ,variance of the bias field will be standardized .

6.1.6 Estimating Variance of Bias

It is observed that the when the number of tissue classes is equal to 10 or more
, unit variance of intensity inhomogeneity gives the proper error estimation .On
the other hand when the number of tissue classes is less that 10 ,it is fit to take
the variance of intensity inhomogeneity equal to 2.Following table gives the clear
insight into the problem :

Table 6.1: table, showing the error estimates where I have taken a 20% biased mri and used uniform
prior probability and calculated mean and variance using C-Mean Clustering algorithm

Number of
Tissue Classes

Error in Estimation
(Variance of Bias
Field=1)

Error in Estima-
tion (Variance of Bias
Field=2)

Error in Estima-
tion(Variance of Bias
Field=3)

4 24.885973 24.825037 24.962784
6 23.768612 22.825037 23.843464
8 20.772009 21.267250 22.127800
10 20.772009 21.267250 22.127800
12 20.772009 21.267250 22.127800
14 20.772009 21.267250 22.127800
23 20.772009 21.267250 22.127800

As we see that variance of bias field in between 1 and 2 is appropriate .
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Variance of bias field=1

(a) ground truth (b) 20% biased image

(c) corrected image (no of tissue
classes=4,error=24.885973)

(d) corrected image (no of tissue
classes=6,error=23.768612)

(e) corrected image (no of tissue
classes=8,error=20.772009)

(f) corrected image (no. of tissue
classes=10,error=20.772009)

(g) corrected image (no of tissue
classes=12,error=20.772009)

(h) corrected image (no of tissue
classes=23,error=20.772009)

Figure 6.11: Bias corrected images where variance of bias field =1
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6.1.7 Result for various modalities

Medical resonance imaging technique is capable of taking three types of images :
T1, T2, PD.Above correction strategy works for all the three modes of this imaging
technique.For PD MRI s the above standardized parameters works better than that
of T2, and T1 MRI s.For T2 MRI s the above standardized parameters works better
than that of T1 MRI s.

PD MRI, Error :20.996656 %

(a) ground truth (b) 40% biased image (c) bias corrected (d) bias
T1 MRI, Error :27.048025%

(e) ground truth (f) 40% biased image (g) bias corrected (h) bias
T2 ,MRI, Error :17.510017 %

(i) ground truth (j) 40% biased image (k) bias corrected (l) bias

Figure 6.12: Bias corrected images for different modalities
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6.2 Real Life Data Set

(a) real mri image (b) bias field (c) bias corrected mri

(d) real mri image (e) bias field (f) bias corrected mri

(g) real mri image (h) bias field (i) bias corrected mri

Figure 6.13: Bias corrected real mris images
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(a) real mri image (b) bias field (c) bias corrected mri

(d) real mri image (e) bias field (f) bias corrected mri

(g) real mri image (h) bias field (i) bias corrected mri

Figure 6.14: Bias corrected real mr images
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(a) real mri image (b) bias field (c) bias corrected mri

(d) real mri image (e) bias field (f) bias corrected mri

(g) real mri image (h) bias field (i) bias corrected mri

Figure 6.15: Bias corrected reals imagess
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Chapter 7

Summary and Future Work

7.1 Summary

The algorithm used in this work works well for the brain MRIs , provided we
choose the parameters properly . After all the experiment , it can be concluded
that if we take number of tissue classes in between 12 to 20 , prior probability of
tissue classes to be uniform , calculate the mean and variance of the tissue classes
using C-mean clustering algorithm and take the variance of bias field in between
1-2 , the above algorithm works well and removes the intensity inhomogeneity of
mri image to a satisfactory level.

7.2 Future Work

Problem of Intensity Inhomogeneity Correction is still alive.We have put some
efforts to standardize the parameters of two existing algorithms ,still we are getting
20% of error in the bias correction .There is a scope to modify these algorithms
further to have better error correction.One can study the brain anatomy and can
work out the proper distribution of tissue classes present in the brain MR images .

47



Appendices

48



Appendix A

C-Code

A.1 bias.c

/ / s h a s h a n k s i n g h
/ / R o l l No MTC0721
/ / I S I K o l k a t a

/ / Th i s program on ly a c c e p t t h e ”PGM” images
/ / and o u t p u t s i n t h e PGM f o r m a t

/ / compi l e t h i s by ” c99 b i a s . c −l n −Duniformpp ”
/ / Use t h e a p p r o p r i a t e p r e p r o s e s s o r d i r e c t i v e d u r i n g c o m p i l a t i o n
/ / r e s u l t a n t images a r e c r e a t e d i n t h e c u r r e c t d i r e c t o r y

# i n c l u d e<s t d i o . h>
# i n c l u d e<s t d l i b . h>
# i n c l u d e<math . h>
# i n c l u d e<s t r i n g . h>

# d e f i n e MAX 700
# d e f i n e M 330
# d e f i n e p i 3 .1415
# d e f i n e WS( x ) ( x== ’ ’ | | x== ’\n ’ | | x== ’\ t ’ | | x== ’\ r ’ ) / / w h i t e s p a c e s
# d e f i n e e p s l n .0001

i n t p i x e l [MAX] [MAX] ; / / p i x e l r e a d from pgm b r a i n image
i n t row , co l , maxval , nc ; / / nc=no of c l a s s e s i n t h e b r a i n mri image
i n t c [MAX] [MAX] ; / / c l a s s l e v e l
/ / i n t b e t a [MAX] [MAX] ;
long do ub l e a [MAX] [MAX] ,w[MAX] [MAX] [M] ,R[MAX] [MAX] , b e t a [MAX] [MAX] ;

/ / a ( i , j ) −> l o g ( p i x e l )
/ / b e t a ( i , j ) −> b i a s o f image
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/ / w( i , j , k ) −> prob t h a t p i x e l ( i , j ) b e l o n g s t o c l a s s k
/ / R −> r e s i d u a l

l ong d oub l e m[M] , v [M] , P [M] , prev m [M] ;
/ / m( i ) −> mean of c l a s s i
/ / v ( i ) −> v a r i a n c e o f c l a s s i
/ / P ( i ) −> p r i o r p r o b a b i l i t y o f c l a s s i
/ / v b e t a −> v a r i a n c e o f b i a s

f l o a t v b e t a ; / / v a r i a n c e o f b i a s f i e l d

vo id remcomment ( FILE ∗ ∗ ) ;

/ / u s i n g c−mean c a l c u l a t e s t h e mean and v a r i a n c e
vo id c a l c u l a t e c l a s s l e v e l v a r i a n c e ( ) ;
l ong d oub l e d i s t ( l ong d oub l e , l ong d ou b l e ) ;
/ / g u a s s i a n d i s t r i b u t i o n
long d oub l e gpdf ( l ong d oub l e , l ong d ou b l e , l ong d ou b l e ) ;

/ / f u n c t i o n c a l c u l a t e s t h e b i a s f i e l d
vo id f i n d b i a s ( ) ;
vo id enhance pgm ( ) ;

/ / s t o p p i n g c r i t e r i o n o f c−mean a l g o
i n t c h e c k m e a n s t a b l i s a t i o n ( ) ;
i n t main ( )
{

i n t i , j , k , i t e r a t i o n , z e r o =0;
c h a r MagicChar [M] , temp , image [ 4 0 ] , imagetmp [ 4 0 ] ;

FILE ∗ i n f p , ∗ o u t f p , ∗ bfp ,∗ c f p ;
i n t f l a g 1 , f l a g 2 =0 , i t e r , l en , f tmp ;

p r i n t f ( ”\ n\ t E n t e r t h e name of b i a s e d mri image : ” ) ;
s c a n f (”% s ” , image ) ;

/ / open ing of MRI Image i n PGM f o r m a t
i n f p = fopen ( image , ” r ” ) ;

i f ( ! i n f p )
{

p r i n t f ( ”\ n E r r o r i n openn ing t h e i n p u t image f i l e ! ! \ n ” ) ;
e x i t ( 1 ) ;

}
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f s c a n f ( i n f p ,”% s ” , MagicChar ) ;
remcomment(& i n f p ) ;
f s c a n f ( i n f p ,”%d” ,& row ) ;
remcomment(& i n f p ) ;
f s c a n f ( i n f p ,”%d” ,& c o l ) ;
remcomment(& i n f p ) ;
f s c a n f ( i n f p ,”%d” ,& maxval ) ;

p r i n t f ( ”\ n\ tMagic c h a r = %s ,
row= %d , c o l=%d , maxval=%d\n\n ” , MagicChar , row , co l , maxval ) ;

i f ( ( s t r c mp ( MagicChar , ” P5 ” ) ) )
{

p r i n t f ( ”\ n I n p u t Image i n n o t i n PGM Format ! ! \ n ” ) ;
e x i t ( 1 ) ;

}

p r i n t f ( ”\ t E n t e r t h e no of i t e r a t i o n : ” ) ;
s c a n f (”%d” ,& i t e r a t i o n ) ;

p r i n t f ( ”\ n\ t E n t e r t h e v a r i a n c e o f b i a s f i e l d : ” ) ;
s c a n f (”% f ” ,& v b e t a ) ;

p r i n t f ( ”\ n ” ) ;

/ / Reading image i n t o p i x e l
f o r ( i =0 ; i<row ; i ++)

f o r ( j =0 ; j<c o l ; j ++)
{

f s c a n f ( i n f p ,”% c ” ,& temp ) ;
p i x e l [ i ] [ j ] = ( u n s i g n e d c h a r ) temp ;

a [ i ] [ j ]= l o g l ( ( l ong dou b l e ) p i x e l [ i ] [ j ] + . 0 0 0 0 0 1 ) ;

/ / p r i n t f (”% f \ t , ” , ( d oub l e ) a [ i ] [ j ] ) ;
}

f c l o s e ( i n f p ) ;

nc = 3 0 ; / / no o f c l a s s

# i f n d e f f i n e r i n i m e a n / / use i t i f no o f t i s s u e c l a s s e s > 20
# i f n d e f r a n d i n i m e a n
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/ / i n i t i a l i s a t i o n o f mean
p r i n t f ( ”\ t E n t e r t h e no of t i s s u e c l a s s (12< nc < 1 8 ) : ” ) ;
s c a n f (”%d” ,& nc ) ;
f o r ( i =0 ; i<nc ; i ++){

m[ i ]= i−i ∗ . 5 ;
/ / m[ i ]= i ;

prev m [ i ] = 0 ;
}
# e n d i f
# e n d i f

# i f d e f r a n d i n i m e a n
/ / random i n i t i a l i s a t i o n o f mean
p r i n t f ( ”\ t E n t e r t h e no of t i s s u e c l a s s ( nc < 5 0 ) : ” ) ;
s c a n f (”%d” ,& nc ) ;
s r a n d ( g e t p i d ( ) ) ;
f o r ( i =0 ; i<nc ; i ++)

m[ i ]= a [ r and ()% row ] [ r and ()% c o l ] ;
# e n d i f

# i f d e f f i n e r i n i m e a n / / use i t i f no o f t i s s u e c l a s s e s > 20
p r i n t f ( ”\ t E n t e r t h e no of t i s s u e c l a s s (30< nc < 5 0 ) : ” ) ;
s c a n f (”%d” ,& nc ) ;
f o r ( i =0 ; i<nc ; i ++)

m[ i ]= i−i ∗ . 8 5 ;

# e n d i f

f o r ( i =0 ; i<nc ; i ++)
p r i n t f ( ”\ t mean[%d ]\ t :% f \n ” , i , ( d ou b l e )m[ i ] ) ;

//=====================================================================
f l a g 1 =1; i t e r =0 ;
w h i l e ( f l a g 1 && ( i t e r < 5 0 ) )
{

c a l c u l a t e c l a s s l e v e l v a r i a n c e ( ) ;
f l a g 1 = c h e c k m e a n s t a b l i s a t i o n ( ) ;
i t e r ++;

}
p r i n t f ( ”\ n\ tNo of i t e r a t i o n f o r mean c o n v e r g e n c e : %d\n ” , i t e r ) ;
p r i n t f ( ”\ n\ t A c t u a l no o f t i s s u e c l a s s i n mri ( nc ) : %d\n ” , nc ) ;

//======================================================================
/ / p r i n t i n g o f c l u s t e r e d image
# i f d e f cimage
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s t r c p y ( imagetmp , image ) ;
l e n = s t r l e n ( imagetmp ) ;
imagetmp [ len −4]= ’ ’ ;
imagetmp [ len −3]= ’c ’ ;
imagetmp [ len −2]= ’ l ’ ;
imagetmp [ len −1]= ’ s ’ ;
imagetmp [ l e n ]= ’ t ’ ;
imagetmp [ l e n +1]= ’\0 ’ ;

s t r c a t ( imagetmp , ” . pgm ” ) ;

c f p = fopen ( imagetmp , ”w ” ) ;

f p r i n t f ( cfp ,”% s %d %d %d\n ” , ” P5 ” , row , co l , maxval ) ;

f o r ( i =0 ; i<row ; i ++)
f o r ( j =0 ; j<c o l ; j ++){

f tmp =( f l o a t ) c [ i ] [ j ] ∗ 2 5 5 / ( nc−1);
f p r i n t f ( cfp ,”% c ” , ( u n s i g n e d i n t ) f tmp ) ;
/ / p r i n t f (”%d , ” , f tmp ) ;

}
f c l o s e ( c f p ) ;
# e n d i f

//========================================================================

# i f d e f un i fo rmpp
/ / a s s i g n i n g un i fo rm p r i o r p r o b a b i l i t y
f o r ( i =0 ; i<nc ; i ++)

P [ i ] = ( f l o a t ) 1 / nc ;
# e n d i f

p r i n t f ( ”\ n\ t ==========================================================\n ” ) ;
p r i n t f ( ”\ t P r i o r Prob \ t \ t Mean \ t \ t \ t V a r i a n c e ” ) ;
p r i n t f ( ”\ n\ t ==========================================================\n ” ) ;
f o r ( i =0 ; i<nc ; i ++){

/ / P [ i ] = ( long do ub l e ) 1 / nc ;
p r i n t f ( ”\ t%f \ t \ t%f \ t \ t %f \n ” , ( d ou b l e ) P [ i ] , ( dou b l e )m[ i ] , ( dou b l e ) v [ i ] ) ;

}
p r i n t f ( ”\ t ==========================================================\n ” ) ;
p r i n t f ( ”\ n ” ) ;

f o r ( i =0 ; i< i t e r a t i o n ; i ++)
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f i n d b i a s ( ) ;

l e n = s t r l e n ( image ) ;
image [ len −4]= ’ ’ ;
image [ len −3]= ’b ’ ;
image [ len −2]= ’ i ’ ;
image [ len −1]= ’a ’ ;
image [ l e n ]= ’ s ’ ;
image [ l e n +1]= ’\0 ’ ;

s t r c a t ( image , ” . pgm ” ) ;

o u t f p = fopen ( image , ”w” ) ;

f p r i n t f ( o u t f p ,”% s %d %d %d\n ” , ” P5 ” , row , co l , maxval ) ;

f o r ( i =0 ; i<row ; i ++)
f o r ( j =0 ; j<c o l ; j ++)
{

i f ( b e t a [ i ] [ j ] > 0){
f p r i n t f ( o u t f p ,”%d ” , ( u n s i g n e d i n t ) n e a r b y i n t ( b e t a [ i ] [ j ] ) ) ;
/ / p r i n t f (”% f \ t ” , n e a r b y i n t ( b e t a [ i ] [ j ] ) ) ;
p i x e l [ i ] [ j ] = ( i n t ) n e a r b y i n t ( p i x e l [ i ] [ j ] / b e t a [ i ] [ j ] ) ;

}
e l s e
{

f p r i n t f ( o u t f p ,”%d ” , ( u n s i g n e d i n t ) z e r o ) ;
/ / p r i n t f (”% f \ t ” , ( d ou b l e ) z e r o ) ;

}

}

f c l o s e ( o u t f p ) ;

/ / e n h a n c i n g t h e p i x e l [ ] [ ]
enhance pgm ( ) ;

l e n = s t r l e n ( image ) ;
image [ len −4]= ’ ’ ;
image [ len −3]= ’c ’ ;
image [ len −2]= ’o ’ ;
image [ len −1]= ’ r ’ ;
image [ l e n ]= ’ r ’ ;
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image [ l e n +1]= ’ e ’ ;
image [ l e n +2]= ’ c ’ ;
image [ l e n +3]= ’ t ’ ;
image [ l e n +4]= ’ e ’ ;
image [ l e n +5]= ’ d ’ ;
image [ l e n +6]= ’\0 ’ ;

s t r c a t ( image , ” . pgm ” ) ;

b fp = fopen ( image , ”w ” ) ;
f p r i n t f ( bfp ,”% s %d %d %d\n ” , ” P5 ” , row , co l , maxval ) ;
f o r ( i =0 ; i<row ; i ++)

f o r ( j =0 ; j<c o l ; j ++)
f p r i n t f ( bfp ,”% c ” , p i x e l [ i ] [ j ] ) ;

f c l o s e ( b fp ) ;

r e t u r n 0 ;

}

/ / f o r removing comment i n PGM f i l e
vo id remcomment ( FILE ∗∗ fp )
{

c h a r ch , b u f f [ 1 0 0 ] ;
w h i l e ( 1 )
{

ch= f g e t c (∗ fp ) ;
w h i l e (WS( ch ) )

ch= f g e t c (∗ fp ) ;
i f ( ch == ’# ’)

f g e t s ( bu f f , 1 0 0 ,∗ fp ) ;
e l s e b r e a k ;

}
u n g e t c ( ch ,∗ fp ) ;

}

/ / c a l c u l a t i n g d i s t a n c e between 2 number
long d oub l e d i s t ( l ong d oub l e x , l ong d ou b l e y )
{

l ong d oub l e tmp ;
tmp=x−y ;
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i f ( tmp > 0)
r e t u r n tmp ;

e l s e
r e t u r n −tmp ;

}

/ / f o r c a l c u l a t i n g c l a s s l e v e l and mean and v a r i a n c e o f each c l a s s
vo id c a l c u l a t e c l a s s l e v e l v a r i a n c e ( )
{

i n t i , j , k , l , no [M] ;
long d oub l e dd [M] , min , sum1 [M] , sum2 [M] ;

/ / i n i t i a l i s a t t i o n
f o r ( k =0; k<nc ; k ++){

sum1 [ k ]= sum2 [ k ] = 0 ;
no [ k ] = 0 ;
dd [ k ] = 0 ;

}

/ / a s s i g n c l a s s l a b e l s
f o r ( i =0 ; i<row ; i ++)

f o r ( j =0 ; j<c o l ; j ++)
{

f o r ( k =0; k<nc ; k ++)
dd [ k ]= d i s t ( a [ i ] [ j ] ,m[ k ] ) ;

min=dd [ 0 ] ; l =0 ;
f o r ( k =1; k<nc ; k ++)
{

i f ( min > dd [ k ] )
{

min=dd [ k ] ;
l =k ;

}
}

c [ i ] [ j ]= l ; / / c l a s s l a b e l
/ / p r i n t f (”%d\ t ” , l ) ;

}

/ / m o d i f i e d mean and v a r i a n c e
f o r ( i =0 ; i<row ; i ++)

f o r ( j =0 ; j<c o l ; j ++)
{
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sum1 [ c [ i ] [ j ] ] += a [ i ] [ j ] ;
no [ c [ i ] [ j ] ] + + ;

}

/ / mean and p r i o r p r o b a b i l i t y c a l c u l a t i o n
f o r ( k =0; k<nc ; k ++){

m[ k ]= sum1 [ k ] / no [ k ] ;
P [ k ] = ( long d ou b l e ) no [ k ] / ( row∗ c o l ) ;

}

f o r ( i =0 ; i<row ; i ++)
f o r ( j =0 ; j<c o l ; j ++)

sum2 [ c [ i ] [ j ] ] +=( a [ i ] [ j ]−m[ c [ i ] [ j ] ] ) ∗ ( a [ i ] [ j ]−m[ c [ i ] [ j ] ] ) ;

/ / v a r i a n c e c a l c u l a t i o n
f o r ( k =0; k<nc ; k ++)

v [ k ]= sum2 [ k ] / ( no [ k ]−1) ;

i =0 ; j =0 ;
w h i l e ( i<nc )
{

i f ( no [ i ]== 0)
i ++;

e l s e
{

m[ j ]=m[ i ] ;
v [ j ]= v [ i ] ;
P [ j ]=P [ i ] ;
i ++;
j ++;

}
}
nc= j ;

}

l ong d oub l e gpdf ( l ong d oub l e x , l ong d ou b l e mean , l ong d ou b l e v a r )
{

r e t u r n e x p l ( − ( ( ( x−mean ) ∗ ( x−mean ) ) / ( 2 ∗ v a r ) ) ) / ( s q r t (2∗ p i ∗ v a r ) ) ;
}

vo id f i n d b i a s ( )
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{
i n t i , j , k ;
l ong d oub l e sm1 , sm2 , tmp ;

f o r ( i =0 ; i<row ; i ++)
f o r ( j =0 ; j<c o l ; j ++)
{

R[ i ] [ j ] = 0 ;
sm1 =0 , tmp =0;
f o r ( k =0; k<nc ; k ++)

sm1 += P [ k ]∗ gpdf ( a [ i ] [ j ]−m[ k]− b e t a [ i ] [ j ] ,m[ k ] , v [ k ] ) ;

f o r ( k =0; k<nc ; k ++){
tmp=P [ k ]∗ gpdf ( a [ i ] [ j ]−m[ k]− b e t a [ i ] [ j ] ,m[ k ] , v [ k ] ) ;
w[ i ] [ j ] [ k ]= tmp / ( sm1 ) ;
R[ i ] [ j ] +=w[ i ] [ j ] [ k ] ∗ ( a [ i ] [ j ]−m[ k ] ) / v [ k ] ;

}

/ / p r i n t f (”% f \ t ” , ( d ou b l e )R[ i ] [ j ] ) ;
}

f o r ( i =0 ; i<row ; i ++)
f o r ( j =0 ; j<c o l ; j ++)
{

sm2 =0;
f o r ( k =0; k<nc ; k ++)

sm2 +=w[ i ] [ j ] [ k ] / v [ k ] ;

sm2=sm2 + ( ( long d ou b l e ) 1 / v b e t a ) ;
/ / p r i n t f (”% f \ t ” , ( d ou b l e ) ( R[ i ] [ j ] ) ) ;

b e t a [ i ] [ j ] = ( R[ i ] [ j ] / sm2 ) ;

}
}

vo id enhance pgm ( )
{

i n t i , j , k ;
i n t aa , bb , cc ;
f l o a t tmp ;
FILE ∗ fp ;
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aa= p i x e l [ 0 ] [ 0 ] ;
bb= p i x e l [ 0 ] [ 0 ] ;

f o r ( i =0 ; i<row ; i ++)
f o r ( j =0 ; j<c o l ; j ++)
{

i f ( aa > p i x e l [ i ] [ j ] )
aa= p i x e l [ i ] [ j ] ;

i f ( bb < p i x e l [ i ] [ j ] )
bb= p i x e l [ i ] [ j ] ;

}

f o r ( i =0 ; i<row ; i ++)
f o r ( j =0 ; j<c o l ; j ++){

tmp = ( ( f l o a t ) 2 5 5 / ( bb−aa ) ) ∗ ( p i x e l [ i ] [ j ]−aa ) ;
p i x e l [ i ] [ j ] = ( i n t ) tmp ;

}

}

i n t c h e c k m e a n s t a b l i s a t i o n ( )
{

i n t i , f l a g ;
l ong d oub l e aaa ;
f l a g =0;
f o r ( i =0 ; i<nc ; i ++)
{

aaa =m[ i ]− prev m [ i ] ;
i f ( ( aaa > 0 && aaa > e p s l n ) | | ( aaa < 0 && (− aaa ) > e p s l n ) )

f l a g =1;

prev m [ i ]=m[ i ] ;
}
r e t u r n f l a g ;

}
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A.2 error.c

/ / s h a s h a n k s i n g h
/ / R o l l No MTC0721

/ / Th i s w i l l c a l c u l a t e t h e e r r o r i n t h e c o r r e c t e d image
/ / and t h e a c t u a l image ( i f a v a i l a b l e )

# i n c l u d e<s t d i o . h>
# i n c l u d e<s t d l i b . h>
# i n c l u d e<math . h>
# i n c l u d e<s t r i n g . h>

# d e f i n e MAX 1000
# d e f i n e M 50
# d e f i n e e p s l n 20
# d e f i n e WS( x ) ( x== ’ ’ | | x== ’\n ’ | | x== ’\ t ’ | | x== ’\ r ’ )

i n t a [MAX] [MAX] , b [MAX] [MAX] ; / / a −> a c t u a l p i x e l , b−> c o r r e c t e d p i x e l
i n t row1 , co l1 , maxval1 , row2 , co l2 , maxval2 ;
c h a r MagicChar1 [M] , MagicChar2 [M] ;

vo id remcomment ( FILE ∗ ∗ ) ;
vo id APE ( ) ;
vo id e r r o r i m a g e ( ) ;
i n t main ( )
{

i n t i , j , k ;
c h a r image1 [M] , image2 [M] ;
c h a r tmp1 , tmp2 ;

FILE ∗ fp1 ,∗ fp2 ;

p r i n t f ( ”\ n\ t E n t e r t h e name of b i a s f r e e image : ” ) ;
s c a n f (”% s ” , image1 ) ;
p r i n t f ( ”\ n\ t E n t e r t h e name of b i a s c o r r e c t e d image : ” ) ;
s c a n f (”% s ” , image2 ) ;

/ / image1 =” b0 . pgm ” ; image2 =” b i a s f r e e . pgm ” ;

/ / open ing of MRI Image i n PGM f o r m a t
fp1 = fopen ( image1 , ” r ” ) ;
fp2 = fopen ( image2 , ” r ” ) ;
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i f ( ! fp1 )
{

p r i n t f ( ”\ n E r r o r i n openn ing t h e
i n p u t image f i l e : %s ! ! \ n ” , image1 ) ;

e x i t ( 1 ) ;
}
i f ( ! fp2 )
{

p r i n t f ( ”\ n E r r o r i n openn ing t h e
i n p u t image f i l e : %s ! ! \ n ” , image2 ) ;

e x i t ( 1 ) ;
}

f s c a n f ( fp1 ,”% s ” , MagicChar1 ) ;
f s c a n f ( fp2 ,”% s ” , MagicChar2 ) ;

remcomment(& fp1 ) ;
remcomment(& fp2 ) ;

f s c a n f ( fp1 ,”%d” ,& row1 ) ;
f s c a n f ( fp2 ,”%d” ,& row2 ) ;

remcomment(& fp1 ) ;
remcomment(& fp2 ) ;

f s c a n f ( fp1 ,”%d” ,& c o l 1 ) ;
f s c a n f ( fp2 ,”%d” ,& c o l 2 ) ;

remcomment(& fp1 ) ;
remcomment(& fp2 ) ;

f s c a n f ( fp1 ,”%d” ,& maxval1 ) ;
f s c a n f ( fp2 ,”%d” ,& maxval2 ) ;

i f ( ( s t r c mp ( MagicChar1 , ” P5 ” ) ) | | ( s t r c mp ( MagicChar1 , ” P5 ” ) ) )
{

p r i n t f ( ”\ n I n p u t Image i n n o t i n PGM Format ! ! \ n ” ) ;
e x i t ( 1 ) ;

}

i f ( ( s t r c mp ( MagicChar1 , MagicChar2 ) ) | | ( row1 != row2 )
| | ( c o l 1 != c o l 2 ) | | ( maxval1 != maxval2 ) )

{
p r i n t f ( ” The two image a r e n o t o f t h e same t y p e ! ! \ n ” ) ;
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p r i n t f ( ” A b o r t i n g . . . . . . . . \ n ” ) ;
e x i t ( 1 ) ;

}

p r i n t f ( ”\ n\ tMagic c h a r = %s , row= %d , c o l=%d
, maxval=%d\n\n ” , MagicChar1 , row1 , co l1 , maxval1 ) ;

/ / Reading image i n t o p i x e l
f o r ( i =0 ; i<row1 ; i ++)

f o r ( j =0 ; j<c o l 1 ; j ++)
{

f s c a n f ( fp1 ,”% c ” ,& tmp1 ) ;
f s c a n f ( fp2 ,”% c ” ,& tmp2 ) ;

a [ i ] [ j ] = ( u n s i g n e d c h a r ) tmp1 ;
b [ i ] [ j ] = ( u n s i g n e d c h a r ) tmp2 ;

}

f c l o s e ( fp1 ) ;
f c l o s e ( fp2 ) ;

/ / a b s o l u t e p e r c e n t a g e e r r o r
APE ( ) ;

/ / e r r o r image
e r r o r i m a g e ( ) ;

r e t u r n 0 ;

}

/ / f o r removing comment i n PGM f i l e
vo id remcomment ( FILE ∗∗ fp )
{

c h a r ch , b u f f [ 1 0 0 ] ;
w h i l e ( 1 )
{

ch= f g e t c (∗ fp ) ;
w h i l e (WS( ch ) )

ch= f g e t c (∗ fp ) ;
i f ( ch == ’# ’)

f g e t s ( bu f f , 1 0 0 ,∗ fp ) ;
e l s e b r e a k ;

}
u n g e t c ( ch ,∗ fp ) ;
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}

vo id APE ( )
{

i n t i , j , k ;
i n t d i f f , a c t ;
f l o a t e r r ;

d i f f =0 ;
a c t =0 ;
f o r ( i =0 ; i<row1 ; i ++)

f o r ( j =0 ; j<c o l 1 ; j ++){
d i f f += ( a [ i ] [ j ]−b [ i ] [ j ] ) ∗ ( a [ i ] [ j ]−b [ i ] [ j ] ) ;
a c t +=a [ i ] [ j ]∗ a [ i ] [ j ] ;
/ / p r i n t f ( ” d i f f =%d \ t a c t=%d\ t ” , d i f f , a c t ) ;
/ / p r i n t f ( ” a=%d , b=%d\n ” , a [ i ] [ j ] , b [ i ] [ j ] ) ;

}

e r r = s q r t f ( ( f l o a t ) d i f f )∗1 0 0 / s q r t f ( ( f l o a t ) a c t ) ;

p r i n t f ( ”\ n\ t E r r o r :% f \n ” , e r r ) ;

}

vo id e r r o r i m a g e ( )
{

i n t i , j , k ;
i n t z e r o =0 , tmp ;
FILE ∗ o u t f p ;

o u t f p = fopen ( ” e r r o r i m a g e . pgm ” , ”w” ) ;

f p r i n t f ( o u t f p ,”% s %d %d %d\n ” , ” P5 ” , row1 , co l1 , maxval1 ) ;

f o r ( i =0 ; i<row1 ; i ++)
f o r ( j =0 ; j<c o l 1 ; j ++)
{

tmp=a [ i ] [ j ]−b [ i ] [ j ] ;
/ / p r i n t f (”%d \n ” , abs ( tmp ) ) ;
f p r i n t f ( o u t f p ,”% c ” , ( ( abs ( tmp ) <=e p s l n ) ? maxval1 : 0 ) ) ;

}

f c l o s e ( o u t f p ) ;

}
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