
M.Tech.(Computer Science) Dissertation Series

Channel Assignment in Cellular Mobile
Networks Using a Heuristic Algorithm

A dissertation submitted in partial fulfilment of the requirements
for the M.Tech.(Computer Science) degree of the Indian Statistical

Institute

By

Kalikinkar Mandal

Roll No : CS0706

Under the supervision of

Prof. Bhabani P. Sinha

Indian Statistical Institute

203, B.T. Road

Kolkata-700108

Certificate
This is to certify that the Dissertation titled “Channel Assignment in Cellular Mobile
Networks Using a Heuristic Algorithm”, done at Advanced Computing Microelectron-
ics Unit, Indian Statistical Institute, Kolkata, is a bonafide work done by Kalikinkar Mandal,
as a partial fulfillment for the award of the degree of Master of Technology in Computer Sci-
ence under my guidance.

Prof. Bhabani P. Sinha
Date:

Countersigned
(External Examiner)
Date:

1

Acknowledgement
I am grateful to Prof. Bhabani P. Sinha, ACM Unit, Indian Statistical Institute, Kolkata,
for providing me the opportunity to work at ACM Unit under his guidance. It was pleasure
working under his supervision. He always available with new ideas and suggestions during
the difficult phase of the study.

I would like to express my gratitude to all faculty members of ACM Unit and friends for
their encouragement and help during the course of this dissertation.

Kalikinkar Mandal(cs0706)
M.Tech(CS), 2nd Year

ISI, Kolkata

2

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Preliminaries . 2

1.2.1 Model of the cellular network: . 2
1.2.2 Definition . 3

2 Related Work 4
2.1 Lower bounds on bandwidth . 4

2.1.1 Homogeneous demand on hexagonal cellular network 4
2.1.2 Non-homogeneous demand on hexagonal cellular network 4
2.1.3 Non-hexagonl cellular network . 5

2.2 Channel Assignment Technique . 5
2.2.1 Homogeneous demand . 5
2.2.2 Non-homogeneous demand . 6

3 Channel Assignment Algorithm 8
3.1 Construction of Simpler Network . 10

3.1.1 Example . 10
3.2 Definitions: . 11
3.3 Distance Matrix . 12
3.4 Assignment Scheme . 13
3.5 Algorithms . 16

3.5.1 Node Finding Algorithms . 16
3.5.2 Assignment Algorithm . 19
3.5.3 Frequency Reuse Algorithm . 21
3.5.4 Weight Finding Algorithm . 23
3.5.5 Iteration finding Algorithms: . 24

4 Simulation Results 32
4.1 Simulation Result for Problem 6: . 32
4.2 Comparison Of Results . 35

3

4.3 Conclusion . 36

4

Abstract

Our proposed technique deals with the channel assignment problem in a hexagonal cellular
network with two-band buffering, where the channel interference does not extend beyond
two cells. Here we introduced notion of simpler sub-network. We present an algorithm for
solving the channel assignment problem. The proposed algorithm provides a near-optimal
assignment for two benchmark problems and an optimal solution for remaining six bench-
mark problems but the computation time is less than 50 milisecond for all the problems
on HPxw8400 Workstation compared to 10-20 second time taken by the algorithm in Coa-
lesced cap approach (on an unloaded DEC Alpha station 200 4/233) for obtaining optimal
solutions.

Index Terms− Simpler sub-network, benchmark problems, cellular networks, channel
assignment, bandwidth.

Chapter 1

Introduction

1.1 Introduction

In recent years, the number of mobile users has grown up rapidly, while the communication
bandwidth for providing services to them has remained more or less unchanged. Hence, the
problem of using the radio spectrum efficiently to satisfy the customer demands has become
a critical research issue. The geographical area under the service domain of a mobile cellular
network is divided into a number of cells. Structure of each cell is considered as hexagonal
in shape. Whenever a mobile cellular network is designed, each cell is assigned a set of
frequency channels to provide services to the individual calls of that cell.

The Channel Assignment Problem is the task of assigning frequency channel to
the cells satisfying some frequency separation constraints to avoid channel interference and
using as small bandwidth as possible. we consider here the static model of CAP, where the
demands of cells are known a priori.

For a network, the available radio spectrum is divided into non-overlapping frequency
bands. We assume that the frequency bands are of equal length and are numbered as 0, 1, 2,
..., from the lower end. Each such frequency band is called as a channel. The terms channel
assignment and frequency assignment will be used interchangeably in our discussion. The
highest numbered channel required in an assignment problem is termed as bandwidth. Three
types of interference [1] are generally taken into consideration in the form of constraints:

1. co-site channel constraint: any pair of channels assigned to the same cell must be
separated by a certain number.

2. adjacent channel constraint: adjacent channels are not allowed to be assigned to
certain pairs of cells simultaneously.

3. co-channel constraint: same channel is not allowed to be assigned to certain pairs
of cells simultaneously.

1

We consider the Channel Assignment Problem in a hexagonal cellular network with 2-
band buffering, where the interference does not extend beyond two cells. For various relative
values of s0, s1, and s2, the minimum frequency separations required to avoid interference
for calls in the same cell, or in cells at distances one and two respectively.

The channel assignment problem is equivalent to a generalized graph-coloring problem,
which is a well-known NP-complete problem. An exact search for the optimal solution is
impractical for large-scale system due to its exponentially growing computation time. As a
result, most of the investigations on this problem are based on heuristic approaches.

In this work we present a channel assignment algorithm for assigning channels to the
different nodes to meet the total demand on each node in sucessive phases. In each phase we
would first try to do the assignment only on linear chains of nodes such that any two nodes in
two different chains are separated by a distance of at least two. However, if it is not possible
to find such chains, we would then do the assignment with lines or triangles or quadrilateral
superimposed on a chain as shown in Figure 3.1-4. The basic motivation behind this approach
of sucessive multiphase assignments is to break the total assignments into assignments on
simpler network structures (sparse chains or chains with few lines or chains with triangles
or chains with quadrilateral(s)) on them with homogeneous demand on each node (only a
portion demand on each node being met in every phase) and such an assignment can be
done very quickly. The solution by this approach is near-optimal, requiring at most 5-6%
more channels than the optimal solution. For all the philadelphia benchmark problems, but
the execution time is significantly reduced. For example our proposed algorithm takes less
than 50 milisecond execution time on HPxw8400 Workstation compared to 10-20 sec. time
taken by the algorithm given in [2] for obtaining optimal solutions.

1.2 Preliminaries

In this section first we describe the general model of CAP for any arbitrary cellular network.
Then we give some definition.

1.2.1 Model of the cellular network:

We consider here general model of CAP which is described in [3]. This model is described
by the following components:

1. The number of distinct cells, say, n, with cell numbers as 0,1,, n-1.

2. A demand vector D = (di) (0 ≤ i ≤ n-1) where di represents the number of channels
required for cell i.

3. A frequency separation matrix C = (cij), where cij represents the minimum frequency
separation requirment between a call in cell i and a call in cell j,(0 ≤ i, j ≤ n-1).

2

4. A frequency assignment matrix Φ = (φij), where φij represents the frequency assigned
to call j in cell i 0 ≤ i ≤ n-1, 0 ≤ j ≤ di-1. The assigned frequencies φij’s are assumed
to be evenly spaced and can be represented integers ≥ 0.

5. A set of frequency separation constraints specified by the frequency separation matrix:
|φik − φjl| ≥ cij for all i, j, k, l(except when i = j, k = l).

The goal of the channel assignment problem is to assign frequencies to the cells satisfying
the frequency separation constraints as specified above, in such a manner that the system
bandwidth becomes optimal.

1.2.2 Definition

Definition 1 The cellular graph is a graph where each cell of the cellular network is rep-
resented by a node and two node have an edge between them if the corresponding cells are
adjacent to each other.
Definition 2 The cellular network is said to belong to a k-band buffering system if it is
assumed that the interference does not extend beyond k cells from the call originating cell.
Definition 3 Suppose G = (V,E) is a cellular graph. A subgraph G′ = (V ′, E ′) of the graph
G = (V,E) is defined to be distance k-clique, if every pair of nodes in G′ is connected in G
be a path of length at most k.

3

Chapter 2

Related Work

In this chapter we mention some techniques to solve the channel assignment problem and
give brief descriptions of the methods.
Since CAP is an NP-complete problem, researchers have tried to solve the problem by an
approximation algorithms using neural networks, simulated annealing, tabu search [4] etc.
Several authors proposed a number of techniques using genetic algorithms [5], introducing
the concept of critical block [3], coalesced CAP Approach [2] etc.

2.1 Lower bounds on bandwidth

2.1.1 Homogeneous demand on hexagonal cellular network

Consider a hexagonal cellular network with 2-band buffering system. Let ω be the demand
of each node. Since we have considered 2-band buffering system, there are three parameters
s0, s1, s2, which are to avoid three types of interferences. Lower bounds on the required
bandwidth for the cellular network with homogenious demand ω is defined in terms of s0, s1

and s2 [6].

2.1.2 Non-homogeneous demand on hexagonal cellular network

We assume that the calls in the same cell should be separated by at least s0 and the calls
in the cells those are distance one apart should be separated by at least s1 and those are
distance two apart should be separated by at least s2.

Bandwidth Bounds:
Given a distance-2 clique G with non-homogeneous demand vector D = (di), it is necessary
to know the lower bounds on the minimum number of frequency needed to its assignment to
check optimality of the solution. Let d = max1≤i≤7(di). Then, a trivial lower bound on the
bandwidth is s0(d − 1) [3]. This lower bound is not always tight for all values of s0, s1, s2

4

and D. The tight lower bound can be calculated in the following way:
Lemma A lower bound on minimum bandwidth [3] for G with demand vector D = (di),
where d = max1≤i≤7(di) is:

1. max((d−1)s0, (
∑

1≤i≤7 di−1)s2 +(s0−s2)(d4−2)+2(s1−s2)) for s1 ≤ s0 ≤ (2s1−s2)
and

2. max((d− 1)s0, (
∑

1≤i≤7 di − 1)s2 + 2(s1 − s2)(d4 − 2) + 2(s1 − s2)) for s0 ≥ (2s1 − s2).

Let W = (ωi) be the demand vector, where ωi is the channel required for the node i. Let
ω = max1≤i≤n(ωi). Then the trivial lower bound on bandwidth is (ω − 1)s0 [3]. This lower
bound is not always tight for all values of s0, s1 and s2 and W for 2-band buffering system.

2.1.3 Non-hexagonl cellular network

Lower bound for the non-hexagonal cellular network can be found by reconstituting a subset
of the network in a hierarchical way [2].

2.2 Channel Assignment Technique

2.2.1 Homogeneous demand

Genetic algorithm approach: Using the elitist model of genetic algorithm(EGA) we can
solve Channel Assignment Problem(CAP). For hexagonal cellular networks with homoge-
neous demand of ω channels per cell, this approach essentially selects a small subset of
cells of the network, on which we apply the EGA to find its assignment and next repeat
the assignment for the whole network. For ω = 1, this approach improves the bandwidth
requirement by 25% at best over that in [5].

Cellular graph is a graph where each cell of the cellular network is represented by a node
and two nodes have an edge between them if the corresponding cells are adjacent to each
other. cellular graph simply represents the topology of the cellular structure, without any
regard to the demand per cell, and is different from the CAP graph mentioned above. The
cellular graph is of hexagonal structure with two-band buffering, i.e., the interference extends
only up to two cells from the call originating cell.

GA for channel assignment technique:
Let Q be the set of all finite length string or chromosome. Each element of the string is
an (rs), where is the cell number at which a call is generated and s is the call number to
this cell r. A collection of M(finite) such strings or chromosomes is called a population. A
simple genetic algorithm is composed of three basic operators: 1) reproduction or selection,
2) crossover,(we have taken here PMX) and 3) mutation. We will repeat the above three

5

steps up to certain number of times with some crossover probability(cp=0.95) and mutation
probability (here we start with 0.5) [5]. Fitness function is bandwidth required for a string.
The computation time for problem 3 and 7 are 0.5-1.0 sec. For problem 1 2-5 sec, problem
4 6-12 sec, problem 5 2-7 sec, problem 8 6-17 sec. For problems 2 and 6, computation time
for the optimal assignment varied between 12 80 h for different runs on DEC Alpha station.

2.2.2 Non-homogeneous demand

Homogeneous demands can also be used to solve the channel assignment problem with non-
homogeneous demand vector W = (ωi). Given a network with nonhomogeneous demand
vector W = (ωi) with ωi being the demand for cell i. The trivial minimum bandwidth
requirement is given by (ω− 1)s0 [3]. we may obtain a solution to the problem with nonho-
mogeneous demand vector W = (ωi) where ω = max(ωi) keeping the bandwidth requirement
very close to the optimal one.

Critical block approach:
Let there be n nodes in the cellular graph of k-band buffering with a demand vectorW = (ωi),
1 ≤ i ≤ n.
Given a cellular graph G with a demand vector W , and the set of all possible distance k-
cliques {Gj}, each with minimum bandwidth Bj, the critical block is that distance k-cliques,
whose minimum bandwidth requirement is maximum for all Bj’s.
For a network with a given demand vector and frequency separation constraints, we present
an algorithm for finding its critical block. A novel idea of partitioning (through a linear
integer programming (IP) formulation) the critical block into several smaller sub-networks
with homogeneous demands has been introduced which provides an elegant way of assigning
frequencies to the critical block with a very small execution time [3]. This idea of partitioning
is then extended for assigning frequencies to the rest of the network. The proposed algorithm
gives an optimal solution for all the eight benchmark instances, with minimum number of
frequency channels. The running time of all the eight benchmarks except problems 2 and
6 takes a few seconds on an unloaded Sun Ultra 60 workstation. For the problems 2 and 6
algorithm needs around 60 seconds and 72 seconds of running time, respectively on the same
workstation.

Coalesced CAP approach:
An elegant technique for solving the channel assignment problem which can be applied even
to a cellular network with no regular hexagonal structure. This technique first maps a given
problem P to a modified problem P ′ on a small subset of cells of the network, offering a
much reduced search space. This helps solving the problem P ′ by applying approximate
algorithms more efficiently [2]. This solution to P ′ is then used to derive the solution to the
original problem P , based on the solution obtained for P ′, two possible situations may arise:
1) the solution to P derived from the solution to P ′ results in zero call blocking, i.e., it is an

6

admissible solution for P or
2) if all requirements for P are not satisfied by the solution to P ′, resulting in call blocking.
An algorithm which is a modified version of the forced assignment with rearrangement(FAR)
operation reported in [11]. Application of this Modified FAR operation to well-known bench-
marks always generates optimal results for all of them. The running time of this algorithm is
around 10 and 20 seconds on an unloaded DEC Alpha station 200 4/233, for the benchmark
problems 2 and 6, respectively to get optimal solution.

7

Chapter 3

Channel Assignment Algorithm

Introduction

In this chapter, we present our proposed channel assignment algorithm for assigning channels
to different nodes to meet the total demand on each node, in sucessive phases. First we
break up the total demand of the network (which is non-homogeneous in general) in terms
of homogeneous demands on different simpler network structure of the original network. The
simpler network structures are sparse chains or perturbed chains having few lines or triangles
or quadrilateral(s) superimposed on some nodes of such chains as shown in the Figure 3.1-
4. This process of finding this sparse chains or sparse perturbed chains will be done by a
node-finding algorithm. After that the actual assignment of frequencies with homogeneous
demands taken together on appropriate simpler sub-networks of the given network is done
by frequency assignment algorithm. We find the homogeneous demand on each such sub-
network by a weight finding algorithm. Finally all these homogeneous assignment of the
appropriate sub-networks of the given network together constitute the non-homogeneous
assignment of the original netwok.

In critical block approach [3] the assignment is first done over the critical block. But
here our approach is to break the whole network into several small sub-networks with almost
linear (chain) structure having homogeneous demand of the nodes. Then we do the assign-
ment of this sub-networks sucessively producing a very fast result with non-optimal solutions.

8

Figure 3.1: Sparse chain

Figure 3.2: Chain with lines

Figure 3.3: Triangle superimposed on a chain

Figure 3.4: Quadrilateral superimposed on a chain
9

3.1 Construction of Simpler Network

We construct a sub-networks by choosing some nodes. We choose the nodes from the net-
work based on the demand vector and some minimum bandwidth. The construction of the
network is done in two stages. In the first stage, we try to find linear chain. If it is not
possible to find linear chain then we find a chain with lines or triangle or quadrilateral i.e.,
linear chain with some perturbation. Then in the second stage, we find another linear chain
if possible. Before that we introduce the notion of forward node, backward node, distance
matrix and some definitions related to this.

Consider the cellular graph given below. Take the node v. Node v has adjacent nodes
a, b, c, d, e and f i.e node v has six neighbours. Let N(v) be the neighbours of the node v,
where

N(v) = {a, b, c, d, e, f}.
Now we partition the set N(v) into two disjoint subsets as described below.
Let v be the origin. Let vX be the x-axis and vY be the y-axis. The nodes which are
belonging to the angle range 900-2700, put those node(s) into the backward neighbor set and
the node(s) which belongs to the range 2710-890, put those node(s) into the forward neighbor
set.
We denote the forward neighbor of v as Nf (v) and backward neighbor of v as Nb(v).
Nf (v) = {b, c, d}.
Nb(v) = {a, f, e}.

3.1.1 Example

Consider the graph given below.

10

In the above network the forward neighbor and backward neighbor of node 4 are:
Nf (4) = {2, 5}
Nb(4) = {1, 3, 6}

In the above figure suppose there are imaginary axes x-axis and y-axis at each node to cal-
culate forward neighbor and backward neighbor.
In the above network forward and backward neighbor of the nodes 3, 8, 18 are given below:
Nf (3) = {4, 10} and Nb(3) = {2, 9}
Nf (8) = {2, 9, 16} and Nb(8) = {1, 7, 15}
Nf (18) = {15, 19} and Nb(18) = {14}
Similarly one can find the forward and backward neighbor of all the nodes in the network.
Notations:
Let D be the demand vector and let N be the number of nodes in the network.
Let ω =(ω1, ω2, ..., ωα) be the weight vector. We will detremine α later.
We denote Nb[i][j] is the j th backward neighbor node of node i. Similarly Nf [i][j] is the j
th forward neighbor node of node i.
We denote Nodesf [], the set of nodes is found using f frequency channels.

3.2 Definitions:

Chain: Let v1, v2, ..., vn be the sequence of nodes. The chain formed by these nodes are
defined as v1e1v2e2...en−1vn where ei = edge between vi and vi+1.

11

In this context the terms chain and path will be used interchangeably in our discussions.

Distance between two nodes: Let v1 and v2 be two nodes in the network. We denote
d(v1, v2) is the distance between the node v1 to v2 and is defined as length of the shortest
path from v1 to v2.

Triangle: We call a chain contains a triangle if there exists a node v and two other nodes
v1 and v2 which are different from v such that d(v, vi) = 1 for i = 1, 2 and d(v1, v2) = 1.
Where d(v, u) is the distance between the node u and v.

Weight Vector: Let V = {v1, v2, ..., vn} be the set of nodes. Let A = {a1, a2, ..., an}
be the assignment on the nodes. We denote ω = (ωi) as a weight vector and ωi is how many
times we take the same set V of nodes and the assignment A.

Sparse chain: Let C1 be a chain formed by the nodes v1, v2, ..., vn and C2 be the chain
formed by the nodes u1, u2, ..., um. We call C1 and C2 are sparse chain if for any node vi
from C1 and for any node uj from C2, d(vi, uj) ≥ 2 for 1 ≤ i ≤ n, 1 ≤ j ≤ m. The distance
between the chains C1 and C2 are at least two.

Quadrilateral: We call a chain contains a quadrilateral if there exists a node v and three
other nodes v1 , v2 and v3 which are different from v such that d(v, vi) = 1 for i = 1, 2, 3 and
d(v1, v3) = 2. Where d(v, u) is the distance between the node u and v.

3.3 Distance Matrix

Distance matrix stores the information redarding the distance between two any nodes in the
network. We require the distance between two nodes, when we assign the frequency channel
to the sub-networks.
Consider the 21-node cellular network.

12

Let Dmatrix be the distance matrix of the above network of order 21 × 21. For the node i
and node j, (i, j)-th entry of Dmatrix is distance between the node i and node j.
The distance matrix corresponding to the above network is defined as:

Dmatrix =



0 1 2 3 4 2 1 1 2 3 4 5 3 2 2 2 3 4 3 3 4
1 0 1 2 3 3 2 1 1 2 3 4 4 3 2 2 2 3 3 3 3
2 1 0 1 2 4 3 2 1 1 2 3 5 4 3 2 2 2 3 3 3
3 2 1 0 1 5 4 3 2 1 1 2 6 5 4 3 2 2 4 3 3
4 3 2 1 0 6 5 4 3 2 1 1 7 6 5 4 3 2 5 4 3
2 3 4 5 6 0 1 2 3 4 5 6 1 1 2 3 4 5 3 4 5
1 2 3 4 5 1 0 1 2 3 4 5 2 1 1 2 3 4 2 3 4
1 1 2 3 4 2 1 0 1 2 3 4 3 2 1 1 2 3 2 2 3
2 1 1 2 3 3 2 1 0 1 2 3 4 3 2 1 1 2 2 2 2
3 2 1 1 2 4 3 2 1 0 1 2 5 4 3 2 1 1 3 2 2
4 3 2 1 1 5 4 3 2 1 0 1 6 5 4 3 2 1 4 3 2
5 4 3 2 1 6 5 4 3 2 1 0 7 6 5 4 3 2 5 4 3
3 4 5 6 7 1 2 3 4 5 6 7 0 1 2 3 4 5 3 4 5
2 3 4 5 6 1 1 2 3 4 5 6 1 0 1 2 3 4 2 3 4
2 2 3 4 5 2 1 1 2 3 4 5 2 1 0 1 2 3 1 2 3
2 2 2 3 4 3 2 1 1 2 3 4 3 2 1 0 1 2 1 1 2
3 2 2 2 3 4 3 2 1 1 2 3 4 3 2 1 0 1 2 1 1
4 3 2 2 2 5 4 3 2 1 1 2 5 4 3 2 1 0 3 2 1
3 3 3 4 5 3 2 2 2 3 4 5 3 2 1 1 2 3 0 1 2
3 3 3 3 4 4 3 2 2 2 3 4 4 3 2 1 1 2 1 0 1
4 3 3 3 3 5 4 3 2 2 2 3 5 4 3 2 1 1 2 1 0



.

3.4 Assignment Scheme

We have shown frequency assignment scheme for a sequence of nodes. The chain formed by
these sequence of nodes does not contains a triangle.

Scheme 1: Suppose we have a sequence of nodes v1, v2, ..., vn−1, vn form a linear chain.
Given s0 channels. Can we assign frequency channel to these nodes.
If s0 is odd with s0 ≥ 5 then s0 = 2k + 1, k ≥ 2. s1 = 2 and s2 = 1

node# v0 v1 v2 ... vi−1 vi vi+1 ... v2k−1 v2k ...
channel# 0 k + 1 1 ... k + d i−1

2
e b i

2
c k + d i+1

2
e ... k 0 ...

This is the frequency assignment of the nodes. For any three node vi−1, vi and vi+1, the
channel difference between vi and vi+1 is k + d i+1

2
e − b i

2
c which is equal to k+1 when i is

even and channel difference between vi and vi−1 is k + d i−1
2
e − b i

2
c which is equal to k when

i is even. When i is odd then first difference is k and second difference is k + 1. So there is

13

no channel interference.

If s0 is even then s0 = 2k

node# v0 v1 v2 ... v2i−1 v2i v2i+1 ... v2k−2 v2k−1 v2k ...
channel# 0 k 1 ... 2k − i+ 1 i 2k − i ... k − 1 k + 1 0 ...

Similarly for any three nodes v2i−1, v2i and v2i+1, the channel difference between the
node v2i−1, v2i is 2k − 2i + 1 and channel difference between the node v2i+1, v2i is 2k − 2i.
Maximum value of i is k − 1, so the minimum difference is equal to 2k − 2(k − 1) = 2 = s1.
Hence there is no interference.

For example take s0 = 5, s1 = 2 and s2 = 1. In Fig.1.1, we see using s0 frequency channel,
we can assign frequency to the nodes on a linear chain of length at least s0.

In Fig.1.1 each node has a label of the form {x} where frequency channel x assigned to that
node.

Take s0 = 7, s1 = 2 and s2 = 1.

In the above Fig.1.2 we have assigned frequency to the nodes on a linear chain of length at
least s0.
So using s0 frequency channel we can find an frequency assignment of the nodes on a linear

14

chain of length at least s0. This is not true for all values of s0, s1, s2.

Cosider a chain with triangle. Take s0 = 5, s1 = 2 and s2 = 1.

In Fig.1.3, each node has a label of the form {x} where frequency channel x assigned to that
node. Here number of frequency channel required to assign frequencies on the nodes is equal
to s0 + 1.
So when a chain contains a triangle then we require s0 +1 frequency channel, this is not true
for all values of s0, s1, s2.

Cosider a chain with triangle. Take s0 = 5, s1 = 2 and s2 = 1.

A chain having a quadrilateral superimposed on it shown in Fig.1.3. The assignment on the
nodes is shown in Fig.1.3. Number of frequency channel required to assign frequencies on
the nodes is equal to s0 + 2.

Now the idea is if we find such a chain in the network then the above kind of assignment is
possible. Our aim is we try to find such a linear chain and do the assignment. If it is not
possible to find such chain then we find chain with triangle or chain with two consecutive
triangle.

15

3.5 Algorithms

In this section we present five type of algorithms. The algorithms are given in the following
manner:
1) find a set of node using frequency channel f
2) assign frequency channel to these nodes
3) if frequency reuse is possible in the network then find the nodes and its assignments
4) find the weight at the i-th step
4) iteration for f
5) modify the demand vector according to the set of nodes and its weights.

3.5.1 Node Finding Algorithms

In this section we select a set of nodes to construct the simpler network. We take an amount
of bandwidth, say f and choose the nodes by the below algorithm. Our nodes selection
method is like that:
1) while we are taking bandwidth s0, we find a set of nodes such that the path or chain
formed by these nodes of length at least s0, the path does not contain any triangle.
2) while we are using bandwidth s0 + 1, we select a set of nodes such that the chain formed
by these nodes of length at least s0, the path does not contain two consecutive triangle or a
quadrilateral.

We are starting to find nodes from maximum demand node. Note that if we have more
than one maximum then we take that one whose sum of the neighboring node demand is
maximum. Each time we find nodes from maximum demand node.
Algorithm : Find Nodes Using f Frequency
Input: Max Demand Node , maximum demand node and number of frequency channel f .
Output: a sequence of nodes and n, number of nodes.

begin
Step 1: if (Nf (Max Demand Node) == null)

call procedure : Backward Search(Max Demand Node , f)
Let n1 be the number of nodes and Nodesb[] be the sequence of nodes returned by the
procedure Backward Search.

Step 2: if (Nb(Max Demand Node) == null)

call procedure : Forward Search(Max Demand Node , f)
Let n2 be the number of nodes and Nodesf [] be the sequence of nodes returned by
the procedure Forward Search.

16

Step 3: if (Nb(Max Demand Node) 6= null & Nb(Max Demand Node) 6= null)

3.1 let maxf and smaxf be the maximum and second maximum of the forward neighbor
of Max Demand Node , maxb and smaxb be the maximum and second maximum of
the backward neighbor of Max Demand Node.

3.2 if (maxb ≥ maxf)

3.2.1 call procedure : Backward Search(Max Demand Node , f)

3.2.2 if the node corresponding to the value maxf (let the node be Nmax) and first two
nodes selected by the procedure Backward Search form a triangle then take the
node corresponding to the value maxf . Call the procedure Forward Search(
Nmax , f)

3.3 else

3.3.1 call procedure Forward Search(Max Demand Node , f)

3.3.2 choose the backward neighbor node in such a way such that the first two nodes
selected by Forward Search and this node does not form a triangle while we are
using frequency f = s0. Call the procedure Backward Search.

3.4 Let n1 be the number of nodes and Nodesb[] be the sequence of nodes returned by
the procedure Backward Search. Let n2 be the number of nodes and Nodesf [] be
the sequence of nodes returned by the procedure Forward Search. n = n1 + n2, total
number of nodes, and Nodesb[] ∪Nodesf [] are the sequence of nodes.

end
Remark: If f = s0 + 1, then in the neighborhood of maximum demand node we choose the
nodes in such a way that the chain formed by the nodes does not contain two consecutive
triangles or a quadrilateral. Again if f = s0 + 2 then we don’t need to follow this strategy,
we just simply take the maximum demand node.

Algorithm : Backward Search
Input: f , number of frequency and Max Demand Node maximum demand node.
Output: Nodesb[] contains sequence of nodes and n number of nodes in the set Nodesb[].

begin
Step 1: Set i = 0 and Nodesb[i] = Max Demand Node.

Step 2: if (f = s0)
while(Nb[Nodesb[i]][1] 6= null)
{

17

2.1 Find the first maximum and second maximum demand nodes of backward neighbor of
Nodesb[i].

2.2 i = i+ 1.

2.3 Put the maximum demand node into the array Nodesb[], provided the chain formed by
the nodes does not contains a triangle. Otherwise put second maximum demand node.
If any node has three neighbor and first maximum and second maximum are iequal
and maximum demand of both backward neighbor of maximum and second maximum
demand node are same then take third maximum demand node of Nodesb[i-1].

}

Step 3: if (f = s0 + 1)
while(Nb[Nodesb[i]][1] 6= null)
{

3.1 Find the first maximum and second maximum demand nodes of backward neighbor of
Nodesb[i].

3.2 i = i+ 1.

3.3 Put the maximum demand node into the array Nodesb[], provided the path formed
by the nodes does not contains a quadrilateral or two consecutive triangle. Otherwise
put the second maximum demand node.

}

Step 4: if (f > s0 + 1)
while (Nb[Nodesb[i]][1] 6= null)
{

4.1 Find the first maximum and second maximum demand nodes of backward neighbor of
Nodesb[i].

4.2 i = i+ 1.

4.3 Put the maximum demand node into the array Nodesb[].

}

Step 5: return the set of nodes Nodesb[] and (i+ 1) is the number of nodes.
end

18

Algorithm : Forward Search
This algorithm is same as Backward search. Instead of backward neighbor Nb(v) of v we
take here forward neighbor of Nf (v) of v.

Example 1: In the above network, each node has a label of the form [x], where x is the
demand of that node. Node 11 is the maximum demand node and Nf (11) = null so we call
the procedure Backward Search. Nodes selected by Find Nodes Using f Frequency are
{11, 10, 9, 8, 7, 6, 13, 12}.

3.5.2 Assignment Algorithm

Once we find the set of nodes, the following algorithm is used to assign the channels to the
nodes.
Algorithm: Assignment On The Nodes
Input: Set of nodes Nodesf [] and n is the number of nodes and f minimum bandwidth.
Frequency separation constraints s0, s1, s2.
Output: A conflict free assignment of the set of nodes. assignment[i] is the frequency
assignment on the i th node.
begin
Step 1:
if (f = s0 and s0 = 2k + 1)
{

for i = 0 to n− 1

assignment[i] = b i
2
c, if i is even and s0 is odd

assignment[i] = b s0
2
c+ d i

2
e, if i is odd

}

if (f = s0 and s0 = 2k)
{

19

for i = 0 to n
2

assignment[2i] = i

assignment[2i+1] = 2k − i

}

Step 2:
else
{

2.1 Take first three nodes from the array Nodesf [] , check do they form triangle or not.

2.2 Set i = 0 and assignment[i] = 0. Find an appropriate frequency assignment of the
first three nodes. Frequency assignment should be admissible.

2.3 For i ≥ 3 follow the following assignment rule:

2.3.1 Take the node Nodesf [i], take the frequency j, find all nodes where the frequency
j is used. If all these nodes are 3 distance(k + 1 distance for k-band buffering
system , here k = 2) apart from node Nodesf [i] then goto the next step. If
all nodes are not three distance apart then then reject the frequency j, try with
another one (0 ≤ j ≤ f − 1).

2.3.2 Find all the neighboring node(s) of Nodesf [i], where the frequency is assigned.
Let p be the number of nodes and freql (0 ≤ l ≤ p− 1) is assigned on the l th
node. If | j - freql | ≥ s1 and | j - freql | % (f − 1) 6= 0 for all l then goto the
next step. Otherwise try with another frequency.

2.3.3 Find all node(s) which are distance two apart from the node Nodesf [i] where
the frequency is assigned. Let p1 be the number of nodes and freql1 (0 ≤ l1 ≤
p1 − 1) is assigned on the l1 th node. If | j - freql1 | ≥ s2 for all l1, then assign
the frequency j on node Nodesf [i]. Otherwise try with another frequency. If
assignment of a node is done then assign the frequency to the next node.

}
end
Remark: In the above algorithm in step 2.2 while we are using frequency f = s0 or more,
different types of frequency assignment is possible. We take such an assignment that we can
assign frequency on the maximum number of nodes and nodes selected by the procedure
Find Nodes Using f Frequency in the network. When s1 = 2s2, we don’t take step 2.3.3.

20

Example 2: In Example 1 the nodes selected by Find Nodes Using f Frequency are {11,
10, 9, 8, 7, 6, 13, 12}. One possible confilct free assignment is shown in the above figure.
Here we have used f = s0 frequency channels. 0-th frequency channel is assigned to the node
11, 2-nd frequency channel is assigned to the node 10, 4-th frequency channel is assigned
to the node 9, 1-st frequency channel is assigned to the node 8, 3-rd frequency channel is
assigned to the node 7. Then at the node 6, 13 and 12 we are reusing 0-th, 2-nd and 4-th
frequency channels respectively, since we have considered the network is a 2-band buffering
system. {0, 3, 1, 4, 2, 0, 3, 1} this is also one possible confilct free assignment.

3.5.3 Frequency Reuse Algorithm

When the frequency assignment on the set of nodes return by the algorithm Find Nodes Using f Frequency
is done, next we find a set of nodes(if possible) in the network where we can reuse the fre-
quency channels and find its assignments. It is not always possible that we can find a set
of nodes(where frequency reuse is possible), this selection of nodes depends on the previous
selection of nodes.
Algorithm: Frequency Reuse
Input: The nodes Nodesf [] return by the algorithm Forward Search or Backward Search
and the frequency assignmentassignment[] on that nodes returned the algorithmAssignment On the Nodes
and n number of nodes. Frequency separation constraints s0, s1, s2.
Output: Node(s) reuseNodesf [] and their conflict free frequency assignment.
begin

Step 1: Take the middle most node from the set Nodef [] and v be that node. Find
all nodes which are d distance apart from the node v. When f = s0, we take d = 2 and
when f > s0 we take d = 1. Let Ad be the set of nodes which are d distance apart from the
node v.
Step 2: For each node v1 in the set Ad do the following:

Take the frequency j and check can we assign the frequency j on the node v1 (0 ≤
j ≤ f − 1). If the frequency j is not possible to assign on the node v1 then try with

21

another frequency.

If frequency assignment is not possible on v1 then goto the next node in Ad.

end

Remark: In the above algorithm in step 1 we took d = 2 because if we take the nodes
which are one distance apart from the node v then they may form a triangle there. But we
know that while we are using frequency f = s0 then the path formed by the nodes does not
contain any triangle. Thus to reduce the number of checking (the checking is whether jth

frequency assignment on ith node is valid or not), we have taken d = 2.

Example 3: In Example 2 we have seen, {0, 2, 4, 1, 3, 0, 2, 4} is the frequency assignment
on the nodes {11, 10, 9, 8, 7, 6, 13, 12}. Now using Frequency Reuse algorithm we found
the nodes {18, 19, 20} where we can reuse the frequencies if possible. And {4, 2, 0} are the
frequency assignments. {18, 19, 20} these nodes form a chain. The first chain formed by the
nodes {11, 10, 9, 8, 7, 6, 13, 12}. The distance between first and second chain is two. This
chains are called sparse chains.

At the end of Frequency Reuse algorithm we have constructed the simpler sub-network
with its node assignments. In the above network the sub-network is formed by {11, 10, 9, 8,
7, 6, 13, 12, 4, 2, 0} nodes.
Analysis: For some demand vector D, {11, 10, 17, 9, 8, 15, 14, 13, 12} be the set of nodes
returned by the algorithm Find Nodes Using f Frequency when f = s0. If we assign 0-th
frequency channel at node 11, 2-nd frequency channel at node 10 and 4-th frequency channel
at node 17 then we can not assign any frequency channel to the node 9. Rest of the frequency
assignment on the nodes are shown in Fig.1. Hence we do not prefer this type of assignment.

22

If we assign 0-th frequency channel at node 11, 3-rd frequency channel at node 10 and 1-st
frequency channel at node 17 then {0, 3, 1, 5, 2, 0, 3, 1, 4} is the frequency assignment on
the linear chain. Now applying algorithm Frequency Reuse, we can assign the frequency
channel 4 to the nodes 0 and 19. So we take such an assignment that we can assign frequency
channel to the maximum number of nodes.

3.5.4 Weight Finding Algorithm

Once we have found the set of nodes and its assignments, we should find the weight cor-
responding to the set of nodes i.e. how many times we take the same set of nodes and its
assignments. Using the below algorithm we find the weight(ωi) at ith step.

Algoithm : Find Weight At ith Stage
Input: Nodes[] , the set of nodes returned by the algorithm Find Nodes Using f Frequency
and n is number of nodes. Demand vector at i th step.
Output: weight(ωi), is the weight at the i th step.

begin
Step 1:

23

for(i = 0 ; i < n− 1 ; i+ +)
{

1.1 Let d1 and d2 are the first maximum and second maximum demand respectively of the
neighbors of Nodes[i].
If any node has only one neighbor then put d2 = 0.

1.2 Calculate d = d1 − d2 , and W [i]= d.

}

Step 2: Find the minimum number in the array W [] other than zero and let it be Nmin.

Step 3: return (Nmin+1) is the weight at the i th step.
end

Example 4: In Example 1 the nodes selected by Find Nodes Using f Frequency are {11,
10, 9, 8, 7, 6, 13, 12}. For each node in the set we find maximum and second maximum
of the backward neighbor of that node and calculate their absolute difference. The absolute
difference set is {28, 10, 15, 10, 5, 5, 20}. Now 5 is the minimum number in this set. So the
weight(ωi

(s0)) = 5 + 1 = 6. weight is weight corresponding to the set of nodes.

3.5.5 Iteration finding Algorithms:

Upto this stage we have done the followings:

1. found a set of nodes using f frequency channel.

2. assiged the frequencies to the nodes.

3. checked the further frequency reuse is possible or not.

4. found wight i.e., once we have found a set of nodes and their assignments then how
many times we can repeat the assignment on the same set of nodes.

Let V be the set of nodes of the simple sub-network. Let v1 and v2 be two nodes where the
maximum and minimum frequency channel is assigned. If the demand is more than one then
the channel assignment in the second round and onwards, starting from node v1 again and
following the same order as it was in first round.
In the first step what could be the minimum value of f . Minimum value of f = s0 for
avoiding co-site channel interferences.

24

One trivial question is that how many times we can choose f = s0 . Similarly how many
times we can choose f = s0 + 1 and so on.
Using the algorithm Iteration For s0 we find how any times we take f = s0.

Must Node: Must node is a node in the network, while we are constructing a linear
chain in the node-finding algorithm, the first node chosen by the node-finding algorithm the
chain contains a triangle.

In the above figure node 11 is the maximum demand node. We have choosen the paths from
node 11. At node 17 first form the triangle. If a triangle is in the chain of length s0 then
minimum bandwidth s0 +1. We take f = s0 until demand of node 17 and node 11 are equal.
If we do not take these two nodes together then one node demand will be more that another.
So we need one more iteration to assign the frequency to maximum demand node for that
we have to use minimum s0 frequency channel. When demand of node 11 and 17 are equal
then we have to use frequency channel f = s0 + 1. And each step we have to include node
17.

Algorithm: Iteration For s0

Input: Demand vectorD, must nodemust node and maximum demand nodeMax Demand Node.
Output: α1, number of times f = s0.
begin
Step 1: Find the maximum demand node in the neighbor ofmust node. IfMax Demand Node
belonging to the neighbor of must node, do not take that node. Let nmax be the maximum
demand node and dmax be its demand.
Step 2: Calculate difference between must node demand and dmax i.e diff = dmax - D[
must node]. Again calculate difference between maximum demand (corresponding to max-
imum demand node) and dmax i.e k = D[Max Demand Node] - dmax.
Step 3: Calculate T =diff

2
+ int(k

2
)× 2 , where int(x) is the integer part of x.

Step 4: Return T .
end

25

After α1 iteration the structure of the demand vector is shown in the above figure. At this
stage we are using f = s0 + 1. When we are choosing the nodes, if node 4 is include then
node 11, 4, 17, 9 formed two consecutive triangle. Then we have to take f = s0 + 2. Then
by below algorithm we find how many times we take f = s0 + 1.
Algorithm: Iteration For (f2)
Input: Demand vector D′ after α1 iteration and must node must node.
Output: α2, how many times f = s0 + 1.

begin
Step 1: Find first maximum and second maximum demand node in the neighbor of must
node such that these three nodes forms a triangle. Let these three nodes be v1, v2, v3.
Step 2: Let w1, w2,...wk be the neighboring nodes of the triangle. Let dmax = max1≤i≤kD

′[wi].
Step 3: Let d′max = min1≤i≤3D

′[vi].

Step 4: Return int(d
′
max−dmax

2
) + 1.

end

After α1+α2 iteration the structure of the network is shown in the above figure. We take
the frequency f = s0 + 1 until the demand of maximum demand node becomes zero.

26

Algorithm: Iteration For (f3)
Input: Demand vector D′′ after α2 iteration and must node must node.
Output: α3, how many times f = s0 + 2.
begin
Step 1: Return int(D′′[must node]

2
).

end

According to our initial strategy we will find a set of nodes using frequency f and frequency
assignment on the nodes. Once we find the set of nodes and its frequency assignments then
we can find how many times we repeat this assignments on the nodes. By weight finding
algorithm, we can find the weight corresponding to the particular set of nodes. We have
solved the problem how many times we use frequency f = fj(1 ≤ j ≤ 3), fj = s0 + j − 1.
By the algorithm Iteration For (fj), we can find number of times we use frequency f .
Let αj be the number of times we use frequency f = fj. Let ni

fj be the number nodes
selected at i-th step and Vi

(fj) be the node set.
Vi

(fj) = {Vi(fj)(k1), Vi
(fj)(k2), ..., Vi

(fj)(kni
fj)}.

For a particular i and j, ωi
fj be the weight at the i-th step corresponding to the node set Vi

(fj).

Algorithm: Preprocessing
Input: Demand vector D, distance matrix Dmatrix and forward and backward neighbor of
each node. Frequency separation constraints s0, s1, s2.
Output: A set of nodes Vi

(fj) and their frequency assignments Ai
(fj), 1 ≤ i ≤ αj for

1 ≤ j ≤ 3. Vi
(fj)(kfj

) is the kfj
th node selected at i-th step while we are using frquency

f = fj and Ai
(fj)(kfj

) is the frequency assignment on that node (1 ≤ kfj
≤ ni

(fj)).
begin

Step 1: if (s1 = s2)
{

1. while (D[Max Demand Node] 6= 0) {

1.1 Set f = s0.

1.2 call the procedure Find Nodes Using f Frequency.

1.2.1 let Vi
(s0) be the set of nodes and ni

f be the number of nodes.

1.2.2 call the procedure Assignment On the Nodes and Ai
(f) be the frequency assign-

ment on the nodes.

1.2.3 call the procedure Frequency Reuse, let Ri
(f) be the set of nodes, RAi

(f) be the
corresponding assignment of the nodes and mi

(f) be the number of nodes.

27

1.2.4 call the procedure Find Weight At ith Stage to find weight. Let ωi
f be the

weight.

1.2.5 decrease the demands by 1 ωi
f times, for all nodes in the set Vi

(f)∪Ri
(f).

}

}
Step 2: if (s2 ≤ s1 ≤ 2s2 or s1 ≥ 2s2) {

1. call the procedure Find Nodes Using f Frequency with f = s0.

1.1 let V1
(s0) be the set of nodes and n1

s0 be the number of nodes.

1.2 call the procedure Assignment On the Nodes and A1
(s0) be the frequency as-

signment on the nodes.

1.3 call the procedure Frequency Reuse, let R1
(s0) be the set of nodes, RA1

(s0) be
the corresponding assignment of the nodes and m1

(s0) be the number of nodes.

1.4 call the procedure Find Weight At ith Stage to find weight. Let ω1
1 be the

weight.

1.5 decrease the demands by 1 ω1
0 times, for all nodes in the set V1

(s0)∪R1
(s0).

2. call the procedure Iteration For (f1) , let α1 be the number of times f1 = s0.

3. For i = 2 to α1+1 do the following:

3.1 call the procedure Find Nodes Using f Frequency, let ni
f1 be the number of

nodes and Vi
(f1) be the set of nodes.

3.2 do the frequency assignment by the algorithm Assignment On the Nodes and
Ai

(f1) be the frequency assignment on the nodes.

3.3 call the procedure Frequency Reuse, let Ri
(f1) be the set of nodes, RAi

(f1) be the
corresponding assignment of the nodes and mi

(f1). be the number of nodes.

3.4 call the procedure Find Weight At ith Stage, let ωi
1 be the weight.

3.5 decrease the demands by 1 ωi
f1 times, for all the nodes in the set Vi

(f1)∪Ri
(f1).

4. call the procedure Iteration For (f2), let α2 be the number of times f2 = s0 + 1.

5. For i = 1 to α2 do the following

5.1 call the procedure Find Nodes Using f Frequency, let ni
f2 be the number of

nodes and Vi
(f2) be the set of nodes.

5.2 do the frequency assignment by the algorithm Assignment On the Nodes and
Ai

(f2) be the frequency assignment on the nodes.

28

5.3 call the procedure Frequency Reuse, let Ri
(f2) be the set of nodes, RAi

(f2) be the
corresponding assignment of the nodes and mi

(f2) be the number of nodes.

5.4 call the procedure Find Weight At ith Stage, let ωi
2 be the weight.

5.5 decrease the demands by 1 ωi
2 times, for all the nodes in the set Vi

(f2)∪ Ri
(f2).

6. call the procedure Iteration For (f3), let α3 be the number of times f3 = s0 + 2.

7. For i = 1 to α3 do the following

7.1 call the procedure Find Nodes Using f Frequency, let ni
f3 be the number of

nodes and Vi
(f3) be the set of nodes.

7.2 do the frequency assignment by the algorithm Assignment On the Nodes and
Ai

(f3) be the frequency assignment on the nodes.

7.3 call the procedure Frequency Reuse, let Ri
(f3) be the set of nodes, RAi

(f3) be the
corresponding assignment of the nodes and mi

(f3) be the number of nodes.

7.4 call the procedure Find Weight At ith Stage, let omegai
3 be the weight.

7.5 decrease the demands by 1 ωi
f3 times, for all the nodes in the set Vi

(f3)∪ Ri
(f3).

8. return total number of iteration 1 +
∑

1≤j≤3 αj

}
end

Once we have done proeprocessing then these results are available:
1) the set of nodes Ai

(fj)∪Ri
(fj) and number of nodes ni

fj +mi
fj for 1 ≤ j ≤ 3;

2) their frequency assignments Ai
(fj)∪RAi(fj);

3) weight vector ω.
Now we will do the final assignment of the nodes. In this stage we take the nodes in this
manner: the nodes which we have found in preprocessing stage at the last step we take those
set of nodes in the first stage and we find is there any other node(s) where the frequency
assignment is possible. So we start with maximum value of f that we have used at prepro-
cessing stage and then we decrease the value of f by 1 until f = s0.

After 1 +
∑

1≤j≤3 αj iterations, if there is any node with non-zero demand, we call that
nodes are isolated node set(INS).
Algorithm: Final Assignment On Nodes
Input: Vi

(fj) set of nodes, Ai
(fj) (1 ≤ j ≤ 3)are the assignments on the nodes and ni

fj

number of nodes in each set i, 1 ≤ i ≤ α 1 ≤ j ≤ 3. Weight vector ω and total number of
iteration α. D initial demand vector.

29

Output: FSi
(fj) set of nodes and ηi

fj number of nodes. FAi
(fj) be the corresponding as-

signment on the nodes (1 ≤ i ≤ α 1 ≤ j ≤ 3). INSj1
f isolated nodes and INAj1

f their
assignments, ξj1

f be the number of nodes (1 ≤ j1 ≤ dmax).
begin
Step 1: For each j (3 ≥ j ≥ 1) do the following:

1. For each i = αj to 1, do the following:

1.1 call the procedure Frequency Reuse with input Vi
(fj), Ai

(fj) and f = fj.

1.2 let RSi
fj be the set of nodes and RSAi

fj be their assignments. βi
fj be the number

of nodes.

1.3 FSi
(fj) = Vi

(fj)∪RSifj .is

1.4 FAi
(fj) = Ai

(fj)∪RSAifj and ηi
fj = ni

fj +βi
fj .

1.5 decrease the demand by 1 ωi
fj times, for all the nodes in the set FSi

(fj).

Step 2: repeat the steps from 1.1 to 1.5 for the set of nodes V1
(s0) with weight ω1

s0 .
Step 3: If D[i] 6= 0 ∀i, then take non-zero demand nodes.

1. find maximum demand among all non-zero demand nodes and let dmax be the maximum
demand.

2. for j = 1 to dmax do the following:

2.1 let INSj1
f be the nodes. Check the chain formed by the nodes contains any

triangle or not.

2.2 if chain formed by the nodes contains any triangle then use frequency f = s0. If
the chain contains two consecutive triangle or a quadrilateral then use frequency
f = s0 + 1.

2.3 call the procedure Assignment On The Nodes with input INSj1
f . Let INAj1

f

be the assignments.

2.4 call the procedure Frequency Reuse with input INSj1
f , INAj1

f and f . Let
Sj1

f be the nodes and Aj1
f be their assignments returned by the algorithm

Frequency Reuse.Let ξj1
f be the number of nodes.

2.5 INSj1
f = INSj1

f∪Sj1f .
2.6 INAj1

f = INAj1
f∪Aj1f .

end

Algorithm: Arrangement Of Frequencies
Input: { FSi(fj) }, { FAi(fj)} and ηi

fj (1 ≤ i ≤ α 1 ≤ j ≤ 3). INSj1
f isolated nodes,

30

INAj1
f their assignments (1 ≤ j1 ≤ dmax) and ξj1

f number of nodes.
Output: A conflict free assignment of the network and required bandwidth B.
begin
Step 1: Set B = 0.
Step 2: For each j (3 ≥ l ≥ 1) do the following:

For each i = αj to 1, do the following:

1 assign the frequency channel FAi
(fj)(t)+B to the node FSi

(fj)(t) until its demand
exceeds, for 0 ≤ t ≤ ηi

fj − 1.

2 repeat the above step ωi
fj times and each time change B = B + fj.

Step 3: For each j1 = 1 to dmax do the following:

1. assign the frequency channel INAj1
f (k)+B to the node INSj1

f (k) for 0 ≤ k ≤ ξi
f −1.

2. B = B + f .

Step 4: return B , number of frequency channel.
end

31

Chapter 4

Simulation Results

In this chapter we will take eight benchmark instances and show the results returned by our
work. We take one most difficult problem and explain it step by step. Finally we would do
the comparison between our approach and existing methods.

A set of benchmark problems has been defined on a hexagonal cellular network of 21 cells
[3], [2].
D1 8 25 8 8 8 15 18 52 77 28 13 15 31 15 36 57 25 8 10 13 8
D2 5 5 5 8 12 25 30 25 30 40 40 45 20 30 25 15 15 30 20 20 25

In the above table D1, D2 are two demand vectors of the hexagonal cellular network of
21 cells. Eight problems (problems 1-8) are in terms of the specific values of s0, s1, s2 and
for the two-band buffering system and the corresponding demand vector used for each of
them.

Problem 1 2 3 4 5 6 7 8
s0 5 5 7 7 5 5 7 7
s1 1 2 1 2 1 2 1 2
s2 1 1 1 1 1 1 1 1

Demand D1 D1 D1 D1 D2 D2 D2 D2

Problems 2 and 6 are most difficult ones. Now we describe the step by step solution to
the problem 6 and present the complete result with 269 frequency channels.

4.1 Simulation Result for Problem 6:

In problem 6 s0 = 5 , s1 = 2, s2 = 1 and D2 is the demand vector.
In Fig.1 each node has a label of the form [x], where x is the demand of that node. These

32

are the initial demand of each node. Now using above algorithms we show the results step
by step.

In the above network node 11 is the maximum demand node. {11, 10, 9, 8, 7, 6, 13, 12}
these nodes are found by the algorithm Find Nodes Using f Frequency with f = s0 = 5.
The frequency assignment on the selected nodes are shown in the below table. Algorithm
Frequency Reuse selects {18, 19, 20} these nodes along with their assignments. ω1 = 6 re-
turn by weight finding algorithm. Decrease the demands by ω1 to the selected set of nodes.

Fig.2 shows the structure of the network after one iteration. Similarly {11, 10, 9, 8, 7, 14, 13, 12}
these nodes are selected by the algorithm Find Nodes Using f Frequency with f = 5. Al-
gorithm Frequency Reuse select nodes {19, 20} along with their assignments. ω2 = 2.
Decrease the demands by ω2 to the selected set of nodes.

33

Fig.3 shows structure of the network after six iterations. Here f = 6, in this stage the path
formed by the nodes contains a triangle. Node 10, 17, 9 forms a triangle.

After four iterations, the above figure Fig.4 shows the demand of each node. Here f = 7.

Fig.5 shows the stracture of the network after seven iteration. These nodes {3, 9, 11, 17, 20}
are isolated nodes. We do the assignments until all nodes demand equal to zero.

In the above table each row represents the frequency assignment on the selected nodes and
ωi represent the weight at the i-th step.
Each rows the nodes are selected by the algorithms Find Nodes Using f Frequency and
Frequency Reuse. The assignment is done by the algorithms Assignment On The Nodes
and Frequency Reuse.

34

Table 4.1: Frequency Assignment Table at Preprocessing Stage
Nodes 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ωi

FA1
(s0) 0 2 4 1 3 0 1 3 1 3 0 6

FA2
(s0) 2 4 1 3 0 1 3 0 3 0 2

FA3
(s0) 3 0 2 4 1 3 0 1 1 3 0 2

FA4
(s0) 2 4 1 3 0 1 3 0 3 0 2

FA5
(s0) 1 3 0 2 3 0 4 4 1 1 2

FA6
(s0) 1 3 8 1 3 0 4 0 2 0 2

FA7
(s0) 1 3 0 2 3 0 4 1 3 4 1 2

FA8
(s0+1) 4 2 5 3 0 4 1 3 0 1 4 2

FA9
(s0+1) 5 4 1 2 5 3 0 3 0 1 4 2

FA10
(s0+1) 4 5 2 5 3 0 1 3 0 1 4 4

FA11
(s0+1) 0 2 4 1 3 5 3 0 5 1 2 4 2

FA12
(s0+1) 4 3 0 2 5 3 0 1 1 4 2

FA13
(s0+2) 1 2 1 6 4 0 6 2 0 3 1 5 2

FA14
(s0+2) 2 1 4 6 4 0 6 2 0 3 1 5 2

FA15
(s0+2) 1 3 6 1 3 0 4 0 4 5 2 6 0 2

FA16
(s0+2) 0 5 1 4 3 0 6 2 3 1 0 2

FA17
(s0+2) 0 4 6 5 2 0 4 0 3 0 2

FA18
(s0+2) 4 2 0 2 1 0 3 5 0 2

FA19
(s0+2) 5 0 6 2 0 4 0 2

FA20
(s0) 0 2 1 4 1 1

FA21
(4) 0 3 1 1

4.2 Comparison Of Results

In order to evaluate the performance of the algorithms for channel assignment problem, we
should compare the lower bounds and execution time of the algorithms. Problems 2 and 6 are
most difficult in literature. An efficient heuristic algorithm has been proposed in [7], which
also produced non-optimal result for problems 2 and 6 with 463 and 273 channels, respec-
tively. An efficient channel assignment algorithm has been proposed in [3], which produced
optimal solution for problems 2 and 6 with execution time 60 sec and 72 sec respectively on
an unloaded Sun Ultra 60 workstation. For problems 2 and 6, the number of the frequency
channel required by our algorithm is at most 5-6% more than the optimal solution and for
other six benchmark instances procuced optimal solutions. The exact number of channel
required by our algorithm for problems 2 and 6 are 440 and 269 respectively. The execution
time of our algorithm is at most 50 milisecond on an HPxw8400 workstation.

Problem 1 2 3 4 5 6 7 8
Time:(msec) 21 45 31 31 8 12 8 8

35

Table 4.2: Performance Comparison
Problem 1 2 3 4 5 6 7 8

Lower bounds 381 427 533 533 221 253 309 309
Our approach 381 440 533 533 221 269 309 309

(2003)[3] 381 427 533 533 221 253 309 309
(2001)[7] 381 463 533 533 221 273 309 309
(2001)[8] 381 427 533 533 221 254 309 309
(2000)[9] 381 433 533 533 - 260 - 309
(1998)[10] 381 427 533 533 221 253 309 309
(1998)[11] - - - - 221 268 - 309
(1997)[12] 381 - 533 533 221 - 309 309
(1997)[1] 381 436 533 533 - 268 - 309
(1996)[13] 381 - 533 533 - - - -
(1996)[14] 381 433 533 533 221 263 309 309
(1994)[15] 381 464 533 536 - 293 310
(1992)[16] 381 - 533 533 221 - 309 309
(1989)[17] 381 447 533 533 - 270 - 310

4.3 Conclusion

We have done the assignment of the network in few steps. First we break the whole network
into simpler sub-networks. Next we have assigned frequency channel to these sub-networks
with homogeneous demand. Finally all these homogeneous assignment of the appropriate
sub-networks of the given network together constitute the non-homogeneous assignment of
the original netwok.

The proposed algorithm is able to achive the near-optimal solution for the problems 2
and 6 and optimal solutions for the remaining of six benchmark instances with less than 50
milisecond. Hence this algorithm will be very useful to cope up with rapid fluctuation in
demands on the nodes of a network due to handoff or heavy traffic situations, which could
otherwise be different with the existing algorithms providing optimal solutions but requiring
large execution time(20-30 seconds). Thus, while the existing optimal algorithms can be
used for long-term channel assignment, our proposed algorithm may be used for short-term
assignment to satisfying the channel demand very quickly, altough in a near-optimal way.

36

Table 4.3: Complete Channel Assignment for Problem 2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 58 1 3 0 1 5 0 6 57 5 2 3 62 218 4 2 61 1 72 0
9 65 8 10 7 8 12 7 13 64 12 9 10 69 223 11 9 68 8 79 7
16 72 15 17 14 15 19 14 20 71 19 16 17 76 238 18 16 75 15 86 14
23 79 22 24 21 22 26 21 27 78 26 23 24 83 243 25 23 82 22 93 21
30 86 29 31 28 29 33 28 34 85 33 30 31 90 256 32 30 89 29 100 28
37 93 36 38 35 36 40 35 41 92 40 37 38 97 261 39 37 96 36 107 35
44 100 43 45 42 43 47 42 48 99 47 44 45 104 269 46 44 101 43 113 42
51 107 50 52 49 50 54 49 55 106 54 51 52 111 274 53 51 108 50 120 49

117 57 59 56 62 118 59 56 60 117 277 60 116 57 127
124 64 66 63 69 125 66 63 67 124 282 67 123 64 134
131 71 73 70 76 132 73 70 74 128 290 74 130 141
138 78 80 77 83 139 80 77 81 135 295 81 137 148
145 85 87 84 90 144 87 84 88 142 297 88 146 155
152 92 94 91 97 151 91 95 149 302 95 153
159 99 101 98 104 158 98 102 156 310 102 160
166 108 105 111 165 109 315 109 167
170 115 112 114 171 112 317 116 221
176 122 119 121 177 119 322 123 226
182 126 128 183 126 330 130 241
188 133 135 189 133 335 137 246
194 140 142 195 140 337 144 259
200 147 149 201 147 342 151 264
206 154 156 207 154 350 158 276
212 161 163 213 161 355 165 281
436 168 174 249 168 357 172 296

174 180 254 174 362 178 301
180 186 268 180 370 184 316
186 192 273 186 375 190 321
192 198 192 377 196
198 204 198 382 202
204 210 204 390 208
210 216 395 214
216 219 397 229
221 224 402 234
236 227 407 249
241 232 412 254
259 239 267
264 244 272
280 247 288
285 252 293
300 257 308
305 262 313
320 270 328
325 275 333
340 278 348
345 283 353
360 286 368
365 291 373
380 298 388
385 303 393
400 306 410
405 311 415

318 418
323 423
326 428
331 433
338 437
343
346
351
358
363
366
371
378
383
386
391
398
403
408
413
416
421
426
431
439

37

Table 4.4: Complete Channel Assignment for Problem 6
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

119 94 153 221 155 43 0 2 4 1 3 0 1 3 30 72 64 61 43 0 2
125 100 160 228 162 48 5 7 9 6 8 5 6 8 35 77 69 66 48 5 7
142 130 167 235 169 61 10 12 14 11 13 10 11 13 50 90 84 81 61 10 12
148 136 174 242 176 66 15 17 19 16 18 15 16 18 55 96 89 86 66 15 17
164 150 195 249 183 71 20 22 24 21 23 20 21 23 70 102 151 91 105 20 22

255 190 76 25 27 29 26 28 25 26 28 75 108 158 97 111 25 27
261 197 94 40 32 34 31 33 30 31 33 83 114 165 103 131 40 32

204 100 45 37 39 36 38 35 36 38 88 120 172 109 137 45 37
211 105 63 42 44 41 43 40 41 53 93 138 179 115 150 94 42
218 111 68 47 49 46 48 45 46 58 99 144 186 121 157 100 47
237 118 73 52 54 51 53 50 51 81 117 155 193 127 164 118 52
244 124 78 57 59 56 58 55 56 86 123 162 200 133 171 124 57

131 103 65 67 71 63 60 64 91 141 169 207 139 184 142 70
137 109 80 74 76 68 65 69 97 147 176 214 145 191 148 75
150 129 85 79 95 73 70 74 115 152 197 220 154 199 153 106
157 135 106 87 101 78 75 79 121 159 161 211 160 112
165 145 112 92 107 83 80 84 127 166 168 218 167 130
172 154 126 98 113 88 85 89 133 173 175 228 174 136
184 161 132 104 119 93 90 102 143 194 182 234 195 224
191 168 178 110 125 99 96 108 149 201 189 241 202 231
200 175 185 116 131 105 102 170 208 196 237
207 180 206 122 137 111 108 177 215 203 244
214 187 213 128 143 117 114 182 223 210 251
222 196 240 134 149 123 120 189 230 217 258
229 203 247 140 156 129 126 198 236 240 266

210 146 163 135 132 205 247
217 181 170 141 138 212 254
227 188 177 147 144 219 260
238 209 184 152 150 225 268
245 216 191 159 157 232

198 166 164
205 173 171
212 180 178
219 187 185
225 194 192
232 201 199
238 208 206
245 215 213
252 223 220
263 230 227

234
241
248
257
262

38

Bibliography

[1] C. W. Sung and W. S. Wong, “Sequential packing algorithm for channel assignment
under cochannel and adjacent channel interference constraint,” IEEE Transactions on
Vehicular Technology, vol. 46, pp. 676–685, 1997.

[2] B. P. S. S. C. Ghosh and N. Das, “Coalesced cap:an improved technique for frequency
assignment in cellular networks,,” IEEE Trans. Veh. Technol., vol. vol. 55, no. 2, pp.
640–653, March. 2006.

[3] ——, “A new approach to efficient channel assignment for hexagonal cellular networks,”
Int. J. Foundations Comp. Sci., vol. vol.14, pp. 439–463, June 2003.

[4] D. Kunz, “Channel assignment for cellular radio using neural networks,” IEEE Trans-
actions on Vehicular Technology, vol. 40, pp. 188–193, 1991.

[5] B. P. S. S. C. Ghosh and N. Das, “Channel assignment using genetic algorithm based
on geometric symmetry,,” IEEE Trans. Veh. Technol., vol. vol. 52, no. 4, pp. 860–875,
Jul. 2003.

[6] ——, “Optimal channel assignment in cellular networks with non-homogeneous de-
mands,,” Technical Report CCSD/ACMU/03-2001.

[7] G. Chakraborty, “An efficient heuristic algorithm for channel assignment problem in
cellular radio networks,” Vehicular Technology, IEEE Transactions on, vol. 50, no. 6,
pp. 1528–1539, Nov 2001.

[8] R. Battiti, A. Bertossi, and D. Cavallaro, “A randomized saturation degree heuristic
for channel assignment in cellular radio networks,” IEEE Transactions on Vehicular
Technology, vol. 50, pp. 364–374, 2001.

[9] D.-W. Tcha, J.-H. Kwon, T.-J. Choi, and S.-H. Oh, “Perturbation-minimizing frequency
assignment in a changing tdma/fdma cellular environment,” IEEE Transactions on
Vehicular Technology, vol. 49, no. 4, pp. 390–396, Mar. 2000.

39

[10] D. Beckmann and U. Killat, “A new strategy for the application of genetic algorithms to
the channel-assignment problem,” IEEE Transactions on Vehicular Technology, vol. 48,
no. 4, pp. 1261–1269, Jul. 1999.

[11] C. Y. Ngo and V. O. K. Li, “Fixed channel assignment in cellular radio networks using
a modified genetic algorithm,” IEEE Transactions on Vehicular Technology, vol. 47, pp.
163–171, 1998.

[12] J.-S. Kim, S. Park, P. Dowd, and N. Nasrabadi, “Cellular radio channel assignment
using a modified hopfield network,” IEEE transactions on vehicular technology, vol. 46,
no. 4, pp. 957–967, 1996.

[13] P. W. D. J. S. Kim, S. H. Park and N. M. Nasrabadi, “Channel assignment in cellular
radio using genetic algorithm,” Wireless Personal Commun., vol. vol.3, no. 3, pp. 273–
286, Aug. 1996.

[14] W.Wang and C. K. Rushforth, “An adaptive local-search algorithm for the channel-
assignment problem,” IEEE Trans. Vehicular Technology, vol. vol. 45, no. 3, pp. 495–
466, Aug. 1996.

[15] T.-M. ko, “A frequency selective insertion strategy for fixed channel assignment,” in
Proc. 5th IEEE Int. Symp., pp. 311–314, Sept. 1994.

[16] N. Funabiki and Y. Takefuji, “A neural network parallel algorithm for channel assign-
ment in cellular radio network,” IEEE Trans. Vehicular Technology, vol. 41, pp. 430–437,
Nov. 1992.

[17] R. J. K. N. Sivarajan and J. Ketchum, “Channel assignment in cellular radio,” Proc.
39th IEEE Vehicular Technology Conf., pp. 846–850, May 1989.

40

