
Studies on Interval Digraphs
M.Tech. Dissertation Report

a dissertation submitted in partial fulfillment
of the requirements for the M.Tech.(Computer

Science) degree of the
Indian Statistical Institute

Sumanta Datta
M.Tech. Computer Science

Roll No. - CS0808

Prof. Sandip Das, Advisor

Copyright © 2010 Sumanta Datta
M.Tech. Computer Science
Roll No. - CS0808.

iii

I certify that I have read this dissertation and that in my opinion it is fully
adequate, in scope and in quality, as a dissertation for the degree of Master

of Technology in Computer Science.

Dr. Sandip Das
(Principal Advisor)

I certify that I have read this dissertation and that in my opinion it is fully
adequate, in scope and in quality, as a dissertation for the degree of Master

of Technology in Computer Science.

External Examiner

Abstract

The intersection digraph of a family of ordered pairs of sets {(Sv, Tv) : v ∈ V}
is the digraph D(V, E) such that uv ∈ E if and only if Su ∩ Tv 6= ∅. Interval
digraph are those intersection digraphs for which the subsets are intervals
on the real line. We study the characterization of interval digraphs in terms
of zeros partition property Sen et.al. (1) , (2) of its adjacency matrix and
in terms of ferrers digraphs in Sen et.al. (1). The important problem of
characterizing interval digraphs by its forbidden subgraphs is still open.
Algorithm for recognizing interval digraphs was given in Müller (3). We
propose an efficient algorithm for recognizing interval digraphs based our
approach to characterize the class of all interval digraph using forbidden
subgraphs.

Acknowledgments

I would like to thank Prof. Sandip Das for suggesting this problem to me
and also his support at all times made this dissertation possible. I got in-
valuable help and encouragement from Dr. Malay Sen at the later stage.
The entire present work is an outcome of his previous works in the field of
Interval Digraphs.

Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Basic definitions and Notation 1
1.2 Intersection Graphs . 1
1.3 Interval Graphs . 2
1.4 Interval Digraphs/Bigraphs 3
1.5 Ferrers Digraphs . 4

2 Ferrers Digraphs 5

3 Interval Digraph/Bigraph 9

4 Interval Digraph Recognition Algorithm 13
4.1 A Greedy Recognition Algorithm 13

A Interval Digraph Recognition Algorithm: C Implementation 17
A.1 Source Code . 17

Bibliography 25

Chapter 1

Introduction

1.1 Basic definitions and Notation

Simple graphs are undirected graphs without loops and multiple edges,
and denoted by: G = (V, E) where V = V(G) is the vertex-set of G and
E = E(G) is the edge-set of G. v(G) =| V(G) | is the number of vertices in
G (order), e(G) =| E(G) | is the number of edges in G (size).

Digraphs are denoted by D = (V, E). We use A(D) for the adjacency
matrix of a digraph D. The complement D̄ of a digraph D has adjacency
matrix obtained by converting 0’s to 1’s and 1’s to 0’s in A(D). N+(v)
and N−(v) denote the successor set (out-neighbors) and predecessor set
(in-neighbors) of a vertex v in a digraph.

For a bipartite graph with source vertex set X and sink vertex set Y, the
biadjacency matrix is the submatrix of the adjacency matrix consisting of the
rows for X and columns for Y.

1.2 Intersection Graphs

An intersection representation of a graph G is a family of sets {Sv : v ∈
V(G)}, such that there is an edge between u, v if and only if Su ∩ Sv 6= ∅. If
{Sv} is an intersection representation of G, then G is the intersection graph
of {Sv}. When {Sv} is allowed to be an arbitrary family of sets, the class
of graphs obtained as intersection graphs is simply all undirected graphs,
Marczewski (4).

The problem of characterizing the intersection graphs of families of sets
having some specific topological or other pattern is often very interesting
and frequently has applications to the real world.

2 Introduction

1.3 Interval Graphs

A graph is an interval graph if it is the intersection graph of a family of
intervals on a linearly ordered set (like the real line).

Several characterizations are known for interval graphs. Property B in
Theorem 1.1 is due to Gilmore and Hoffman (5), and property C is due to
Fulkerson and Gross (6).

A 0, 1-matrix is said to have the consecutive ones property (for rows) if its
columns can be permuted so that the ones in each row appear consecu-
tively. The incidence matrix between the vertices and maximal complete
subgraphs of a graph G is called clique matrix M.

Theorem 1.1 (Gilmore and Hoffman (5),Fulkerson and Gross (6)) The fol-
lowing equivalent conditions on a graph G characterize the interval graphs.
A. G has an interval representation.
B. G contains no chordless 4-cycle 1 and its complement Ḡ is a comparability
graph2.
C. The clique matrix M has consecutive 1’s property. �

A recognition algorithm for interval graphs was obtained using the
above consecutive 1’s property of the clique matix. The algorithm is a two-
step process. First, verify that G is chordal and, if so, enumerate its maximal
cliques. This can be excuted in time proportional to | V | + | E | and will
produce at most n =| V | maximal cliques. Second, test whether or not the
cliques can be ordered so that those which cantain vertex v occur consecu-
tively for every v ∈ V. Booth and Leuker (7) have shown that this step can
also be executed in linear time. Thus we have the following Theorem.

Theorem 1.2 (Booth and Leuker (7)) Interval graphs can be recognized in lin-
ear time. �

However, the earliest characterization of interval graphs was obtained
by Lerkerkerker and Boland (8). Their result embodies the notion that an
interval graph cannot branch into more than two directions, nor can it circle
back onto itself.

1G is a chordal graph
2A transitive orientation of a graph G is an orientation F such the whenever xy and yz are

edges in F, also there is an edge xz in G that is oriented from x to z in F.A simple graph G
is a comparability graph if it has a transitive orientation.

Interval Digraphs/Bigraphs 3

Theorem 1.3 (Lekerkerker and Boland (8)) An undirected graph G is an in-
terval graph if and only if the following two conditions are satisfied:
A. G is a chordal graph, and
B. any three vertices of G can be ordered in such a way that every path from the
first vertex to the third vertex passes through a neighbor of the second vertex. �

Three vertices which fail to satisfy B are called astroidal triple. They
would have to be pairwise nonadjacent, but any two of them would have
to be connected by a path which avoids neighborhood of the remaining
vertex. Thus, G is an interval graph if and only if G is chordal and con-
tains no astroidal triple. Lerkerkerker and Boland (8) also determined all
the minimal forbidden induced subgraphs for the class of interval graphs.

Theorem 1.4 (Lekerkerker and Boland (8)) The minimal forbidden induced sub-
graphs for the class of interval digraphs are: bipartite claw, n-net for every n ≥ 2,
umbrella, n-tent for every n ≥ 3, and Cn for every n ≥ 4 (cf. Fig. 1.1). �

Figure 1.1: Minimal forbidden induced subgraphs for the class of interval
graphs

1.4 Interval Digraphs/Bigraphs

Beineke and Zamfirescu (9) introduced the analogous concept of intersec-
tion digraph, under the name “connection digraph“. Let {Sv, Tv} be a col-
lection of ordered pairs of sets indexed by a set V; we call Sv the source
set and Tv the terminal set for v. The intersection digraph of this collection
is the digraph with vertex set V having edge from u to v if and only if
Su ∩ Tv 6= ∅. The pairs of sets form an intersection representation.

Harary, Kabell, and McMorris (10) defined an equivalent intersection
model for bipartite graphs. Treating the partite sets as source vertices and
sink vertices, we represent each vertex by one set and take the intersection

4 Introduction

graph, but we ignore intersection between source sets or between sink sets
to obtain a bipartite graph. Intersection digraphs correspond to intersection
bigraphs by splitting each vertex v into a source copy xv represented by Sv
and a sink copy yv represented by Tv, and optionally deleting source or sink
vertices when the corresponding set in the representation is empty.

When source sets and sink sets are all intervals, we obtain an interval di-
graph or interval bigraph. Interval digraphs were characterized by Sen et.al.
in (1) and (2). We discuss them in Chapter 3.

A recognition algorithm for interval bigraphs (interval digraphs) was
given by Müller (3) based on dynamic programming approach. This algo-
rithm recursively constructs a bipartite interval representation of a graph
from bipartite interval representation of proper subgraphs. However, the
overall running time of the algorithm is O(nm6(n + m)logn).

We propose a greedy algorithm for interval digraphs based on the char-
acterization by Sen et.al. (1) and obtain a running time of O(n4). The algo-
rithm is discussed in Chapter 4.

The problem of characterizing the whole class of interval digraphs by
forbidden induced subgraphs is still open.

1.5 Ferrers Digraphs

Ferrers digraph was introduced independently by Guttman (11) and Riguet
(12). A digraph is a Ferrers Digraph if its successor sets (or its predecessor
sets) form a chain under inclusion.

The Ferrers dimension of D is defined to be the minimum number of Fer-
rers digraphs whose intersection is D. The digraphs of Ferrers dimension
2 have been characterized by Cogis (13) and Doignon, Ducamp, and Fal-
magne (14) in different contexts. This characterization yields a polynomial
algorithm for testing whether a digraph has Ferrers dimension at most 2.
These topics are discussed in Chapter 2.

In Sen et.al. (1) digraph D is characterized as interval digraph if and
only if it is the intersection of two Ferrers digraphs whose union is com-
plete digraph, thus the Ferrers dimension of interval digraphs is at most 2.
However, it was shown that not every digraph of Ferrers dimension 2 is an
interval digraph. Details are in Chapter 3.

Chapter 2

Ferrers Digraphs

Riguet (12) introduced Ferrers digraphs as “Ferrers relations” and proved
the equivalence of A, B, C, D below. Doignon, Ducamp, and Falmagne (14)
called them biorders and proved E.

In an arbitrary matrix, we define a stair to be a walk from the upper
left corner to the lower right corner that moves rightward or downward
between rows and between columns, crossing each row and column once.
The understair consists of the positions below or to the left of the stair, and
the overstair consists of the positions above or to the right of it.

Theorem 2.1 (Riguet (12), Doignon et.al. (14)) For a digraph D, the following
conditions are equivalent.
A. A(D) has no 2 by 2 submatrix that is a permutation matrix.1

B. The successor sets of D are linearly ordered by inclusion.
C. The predecessor sets of D are linearly ordered by inclusion.
D. The rows and columns of A(D) can be permuted independently so that some

stair in the resulting matrix separates the 0’s from the 1’s.
E. (Biorder representation) There exists two real-valued functions f,g on V(D)

such that uv ε E(D) if and only if f (u) > g(u).

Proof: B ⇔ A ⇔ C. The successor sets fail to form an inclusion chain
if and only if there exists u, v such that x ∈ N+(u) − N+(v) and y ∈
N+(v)−N+(u), which holds if and only if rows u, v and columns x, y form
the forbidden submatrix. The analogous argument applies for predecessor
sets.

B, C ⇒ D. It suffices to permute the rows and the columns so that every
entry below or leftward of a 1 is a 1. Place the rows in increasing order of

1We call such a forbidden submatrix an obstruction.

6 Ferrers Digraphs

out-degree and the columns in decreasing order of in-degree, breaking ties
arbitrarily. If Ars = 1, then the inclusion orders yield vs ∈ N+(ui) for all
i ≥ r and ur ∈ N−(vj) for all j ≤ s, as desired.

D ⇒ E. Consider such a permutation of A(D). The stair takes 2n
moves, crossing row u after its last 1 and column v above its first 1. Let
f (v) = r if row v is crossed on step r, and let g(v) = r if column v is crossed
on step r. Now f (u) > g(v) corresponds to crossing row u after column v,
meaning that row u is below the stair in column v, which holds if and only
if uv ∈ E(D).

E⇒ A. If D has a biorder representation f , g and rows u, v and columns
x, y of A(D) form a permutation matrix with Au,x = Av,y = 1, then f (u) >
g(x) and f (v) > g(y), but f (u) ≤ g(y) and f (v) ≤ g(x). Summing yields
two contradictory inequalities. �

Cogis (13) defined a graph H(D) whose vertices correspond to the 0’s
of the adjacency matrix, with two such vertices joined by an edge if the
correponding 0’s belong to an obstruction. In the following Theorem Cogis
charaterize the digraph of Ferrers dimension at most 2.

Theorem 2.2 (Cogis (13), Doignon et.al. (14)) A digraph D has Ferrers dimen-
sion at most 2 if and only if H(D) is bipartite. �

This equivalence yields a short proof of the permutation characteriza-
tion of Ferrers dimension 2, because we can omit the more difficult step of
showing that H(D) bipartite implies the other conditions.

Theorem 2.3 (Sen et.al. (1), Cogis (13), Doignon et.al. (14)) The following con-
ditions are equivalent:
A. D has Ferrers dimension at most 2.
B. The rows and columns of A(D) can be (independently) permuted so that no 0
has a 1 both below it and to its right.
C. The graph H(D) is bipartite.

Proof: A ⇒ B. Let F1, F2 be two Ferrers digraphs whose intersection is D,
with adjacency matrices A1, A2. Let u1, . . . , un be the row ordering of A1
that with some column ordering, puts the 0’s of A1 in the lower left and
its 1’s in the upper right. Let w1, . . . , wn be the column ordering of A2 that,
with some row ordering, puts the 0’s of A2 in the upper right and its 1’s in
the lower left. Put the rows of A(D) in the order u1, . . . , un and its columns
in the order w1, . . . , wn. We denote the matrix position corresponding to

7

vertex pair uiwj as Muiwj , where M is any of A1, A2, A(D). If A(D)uiwj = 0,
then D = F1 ∩ F2 implies (A1)uiwj = 0 or (A2)uiwj = 0. If (A1)uiwj = 0, then
(A1)urwj = 0 for all r > i, and hence A(D)urwj = 0 for r > i, even though
this column may be in a different position in A1 and A(D). Similarly, if
(A2)uiwj = 0, then the remainder of the row in A(D) is 0.

B⇒ C. Permute the rows and columns of A(D) so that no 0 has a 1 both
to its right and below. Let R be the set of 0’s having a 1 somewhere below
them, and let C be the set of 0’s having a 1 somewhere to the right. For any
2 by 2 submatrix forming a couple, the 0’s must be an R in the upper right
and a C in the lower left; these are the only edges in H(D). Therefore H is
bipartite, with the 0’s having no 1 to the right or below generating isolated
points.

C ⇒ A. By Theorem 2.2, see Cogis (13) or Doignon, Ducamp, and Fal-
magne (14). �

The graph H(D) may be disconnected and may have isolated vertices
for 0’s belonging to no obstruction. Deleting the isolated vertices yields a
graph Hb(D) called the bare graph associated with D.

Let D be a digraph with Ferrers dimension 2, so H(D) is bipartite. Let I
denote the set of isolated vertices in H(D). Let (R, C) denote a bicoloration
of H(D), where a bicoloration of a graph is an ordered pair of (possibly
empty) stable sets whose union is the vertex set. let H1, . . . , Hp denote the
components of Hb, with (Ri, Ci) denoting a bicloration of Hi.

In proving his result, Cogis obtained a bicoloration (R, C) of Hb(D)
such that R ∪ I and C ∪ I are Ferrers digraphs; this is called a satisfactory bi-
coloration. It yields the complement D̄ as the union of two Ferrers digraphs,
not necessarily edge-disjoint.

Chapter 3

Interval Digraph/Bigraph

A 0, 1-matrix has a zero-partition if its 0’s admit a partition into sets C and
R such that every entry to the right of an R is an R and every entry be-
low a C is a C. A 0, 1-matrix has the partitionable zeros property if its rows
and columns can be permuted independently to obtain a matrix having a
zero-partition. The interval digraphs are those whose adjacency matrices
have the partitionable zeros property (see Sen et.al. (1)). The addition of
rows or columns of 0’s doesnot affect this property, so the same statement
characterizes biadjacency matrices of interval bigraphs.

Another characterization of interval digraphs is given by Sen et.al. (2)
which is a specialization of a characterization of circular-arc digraphs. Given
a stair in a matrix, let Vi be the maximal set o consecutive positions in row
i, begining immediately to the right of the stair, such that every position in
Vi has a 1. Similarly, let Wj be the maximal set of consecutive positions in
column j, begining immediately below the stair, such that evey position in
Wj has a 1. We say that a matrix has the stair-linear ones property if and only
if its rows and columns can be permuted independently to admit a stair
such that every 1 in the matrix is covered by the union of the Vi’s and Wj’s.
We have the following Theorem.

Theorem 3.1 (Sen et.al. (1), (2); West (15)) For a digraph D, the following con-
ditions are equivalent.
A. D is an interval digraph.
B. D̄ is the edge-disjoint union of two Ferrers digraphs.
C. A(D) has the partitionable zeros property.
D. A(D) has the stair-linear ones property.

Proof: A ⇒ B. Let Sv = [a(v), b(v)] and Tv = [c(v), d(v)] in an interval

10 Interval Digraph/Bigraph

representation of D. When uv ∈ E(D̄), we have Su ∩ Tv = ∅. We put
uv ∈ E(D1) is b(u) < c(v) and uv ∈ E(D2) if d(v) < a(u); this expresses D̄
as the edge-disjoint union of D1 and D2. Each satisfies the biorder charac-
terization of ferrers digraphs.

B ⇒ C. Suppose D̄ is the edge-disjoint union of Ferrers digraphs
D1, D2. By the biorder characterization of Ferrers digraphs, there exist func-
tions a,b,c,d such that (b(u) < c(v) ⇔ uv ∈ E(D1)) and d(v) < a(u) ⇔
uv ∈ E(D2)). Place the rows of A(D) in increasing order of a(u), and place
the columns in increasing order of c(v). Let R and C be the set of 0’s in A(D)
corresponding to the edges of D1 and D2, respectively; this partitions the
0’s. Since b(u) < c(v) when uv ∈ E(D1), the column ordering guarantees
that evry position to the right of an R is in R. Similarly, since d(v) < a(u)
when uv ∈ E(D2), the row ordering guarantees that evry position below a
C is in C.

C ⇒ D(2). Permute the rows and columns of A(D) to exhibit a zero-
partition. Let S be the set of positions that contain an R or lie somewhere
above R. By the definition of zero-partition, S is an overstair that contains
no C. Every) in the overstair is an R, and hence te positions to its right are
all 0. Every 0 in the understair is in C, so the positions below it are 0. Hence
the 1’s are covered as required for the stair-linear ones property.

D ⇒ A. Consider a permutation and stair exhibiting the stair-linear
ones property. Let u1, . . . , un be the vertex ordering by rows, and let v1, . . . , vn
be the ordering by columns. We produce an interval representation. Let
a(ui) = r if the stair crosses row i on move r, and let c(vj) = r if the stair
crosses cloumn j on move r. let b(ui) = a(ui) when Vi is empty, and oth-
erwise let b(ui) = c(vj), where j is the column of the rightmost position
in Vi. Similarly, let d(vj) = c(vj) when Wj is empty, and otherwise let
d(vj) = a(ui), where i is the row of the lowest position in Wj. Now let
Su = [a(u), b(u)] and Tv = [c(v), d(v)]. If position (i, j) is in the overstair,
then Su ∩ Tv 6= ∅ if and only if j is small enough that (i, j) ∈ Vi. Similarly,
if (i, j) is in the understair, then Su ∩ Tv 6= ∅ if and only if i is samll enough
that (i, j) ∈Wj. Thus Su ∩ Tv 6= ∅ if and only if uv ∈ E(D). �

The above Theorem implies that Ferrers dimension at most 2 is a neces-
sary condition for an interval digraph. But it is not a suffient condition.

Theorem 3.2 (Sen et.al. (1)) The interval digraphs are properly contained in the
set of digraphs with Ferrers dimension at most 2.

Proof: Any permutation of A(D) that satisfies condition C of Theorem 3.1
also satisfies condition B of Theorem 2.3, so inclusion holds. For proper

11

containment, we show that the digraph D below, of Ferrers dimension 2, is
not an interval digraph.

D =



1 1 1 0 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 1 0
0 1 1 1 1 1 1
0 1 1 1 1 0 1
0 0 1 1 0 0 0
0 0 0 1 1 0 1


We claim that there is no way to permute the rows and columns of A(D)

so as to satisfy condition C of Theorem 3.1. First, note that 0’s of any ob-
struction must receive different labels; i.e., they cannot be both R or both
C. Therefore, when we consider the bipartite H(D), the partite sets of each
component must be all R’s or all C’s. For this D, H(D) consists of one
nontrivial component and one isolated vertex corresponding to D6,6. Leav-
ing the assignment of this label unspecified, the two possibilities we must
consider for the nontrivial component yield the assignments below.

1 1 1 R R R R
1 1 1 1 1 R R
1 1 1 1 1 1 R
C 1 1 1 1 1 1
C 1 1 1 1 C 1
C C 1 1 R 0 R
C C C 1 1 C 1


or



1 1 1 C C C C
1 1 1 1 1 C C
1 1 1 1 1 1 C
R 1 1 1 1 1 1
R 1 1 1 1 R 1
R R 1 1 C 0 C
R R R 1 1 R 1


Next we obtain a forbidden configuration that appears in each of these as-
signments. Let a, b, c, d be rows and A, B, C, D be the columns satisfying the
following properties:
(1) R appears in positions (a, D), (b, D), (b, C), and the rest of rows a, b is 1.
(2) C appears in positions (d, A), (d, B), (c, B), and the rest of columns A, B
is 1.
(3) Row c has at least two R’s, and column C has at least two C’s.

We claim that no ordering of rows and columns of a labeled matrix con-
taining rows a, b, c, d and columns A, B, C, D as specified can have only R’s
to the right of each R and only C’s below each C. Suppose there is such an
ordering. Row a forces column D to be right-most, and then row b forces
column C to be next to it. Similarly, column A forces row d at the bottom,
and then column B forces row c immediately above it. But no the next to

12 Interval Digraph/Bigraph

last diagonal position must be both R and C, since c has at least two R’s
and C has at least two C’s.

Consider the potential assignments of R and C in A(D). For the as-
signment on the left, choose a, b, c, d to be rows 3, 1, 6, 7, respectively, and
A, B, C, D to be columns 3, 1, 6, 7, respectively. For the assignment on the
right, choose a, b, c, d to be rows 4, 5, 6, 1, respectively, and A, B, C, D to be
columns 4, 5, 6, 1, respectively. In each case, these choices satisfy the re-
quirement for the forbidden configuration. �

From previous chapter, we know that satisfactory bicoloration of H(D)
is equivalent to Ferrers dimension 2. But for interval digraphs we need
more. Hence Theorem 3.1 impies that D is an interval digraph if and only
if Hb(D) has a satisfactory bicoloration such that I can be distributed to R
and C to from two disjoint Ferrers digraphs.

Chapter 4

Interval Digraph Recognition
Algorithm

As mentioned in the introduction, a recognition algorithm for interval di-
graphs (interval bigraphs) was given by Müller (3) based on dynamic pro-
gramming approach. The overall running time of the algorithm is O(nm6(n +
m)logn).

4.1 A Greedy Recognition Algorithm

Here we propose a greedy algorithm for interval digraphs based on the
characterization given by Sen et.al. (1). If D is an interval digraph, we
obtain a (R, C) coloring of the adjacency matrix A(D) such that some per-
mutation of A(D) satisfies the partitionable zeros property, i.e. every entry
to the right of an R is an R and every entry below a C is a C (this is same as
obtaining the (R, C) bicoloration of the H(D)). Otherwise, we decide that
such an R, C coloring is not possible. In our algorithm we incrementally
color the 0’s of A(D) whenever it is possible to do so; otherwise if there
exists no such 0, we make a random color choice. Once a color is assigned
to a 0 in A(D), we call it to be Fixed.

To determine the color of a 0 in the position Ai,j, we consider all the
2× 2 sub-matrices of A(D) with Ai,j as one of its elements. We use rules
R1, R2, R3, described below, to fix the color of 0 at Ai,j. Here, the colors
mentioned in the 2× 2 sub-matrices are already Fixed. We get rule R1, due
to the fact that H(D) is bipartite. Rule R2, R3 is derived from the result
that D is interval digraph if and only if A(D) has the partitionable zeros
property.

14 Interval Digraph Recognition Algorithm

Rule (R1). (
R 1
1 0

)
→

(
R 1
1 C

)
(4.1a)(

C 1
1 0

)
→

(
C 1
1 R

)
(4.1b)

Rule (R2). (
R 1
0 R

)
→

(
R 1
R R

)
(4.2a)(

C 1
0 C

)
→

(
C 1
C C

)
(4.2b)

Rule (R3). (
R 1
C 0

)
→

(
R 1
C C

)
(4.3a)(

C 1
R 0

)
→

(
C 1
R R

)
(4.3b)

The above rules are applicable for any row or column permuation of the
above 2× 2 sub-matrices.

Algorithm: INTERVAL-DIGRAPH-RECOG(A(D))

Step 1: While traversing row-wise from A0,0 assign a random color to the
first zero (i.e. not assigned any color, either R or C) of the A(D) matrix. Let
it be Ai,j. Then we apply the rules R1, R2, R3 to all the 2× 2 sub-matrices
containing Ai,j, to find the 0’s in A(D) which can be colored. We call them
Tentative elements and put them in Queue.

Step 2: If the Queue is not empty, Dequeue one element and use the rules
R1, R2, R3 to check for conflicts. If no conflict occurs, fix its color; upon fix-
ing its color, we again apply the rules R1, R2, R3 and similary Enqueue only
the new elements (not already existing in the Queue). Loop again.
If conflict occurs, then D is not interval digraph.Stop.
If Queue is empty, go to Step 1.

Step 3: D is an interval graph. �

Claim 4.1 (Correctness of Recognition algorithm) D is an interval digraph if
and only if INTERVAL-DIGRAPH-RECOG returns a R, C coloring of A(D).

A Greedy Recognition Algorithm 15

Proof:
only if. If INTERVAL-DIGRAPH-RECOG returns a R, C coloring of A(D),
then from equivalence C ⇔ A in Theorem 3.1 it obvious that D is an inter-
val digraph.
if. This is the difficult part of the proof. We need to show that if D is an in-
terval digraph then INTERVAL-DIGRAPH-RECOG will return a proper
R, C coloring of A(D). We can try to prove the contrapositive, i.e.

Subclaim: If INTERVAL-DIGRAPH-RECOG fail to return a R, C coloring
of A(D), then D is not an interval digraph. �

If we prove this statement, then we are done. However, this means
we have to give an algorithmic approach to the still open forbidden sub-
matrices problem for the interval digraphs class. �

It is easy to see that our rules R1, R2, R3 are exhaustive set of rules, as
any other configuration of 2× 2 sub-matrices donot force a 0 to take any
particular color. So, we won’t miss any conflicting configuration which
might arise during the coloring process.

However, if the algorithm stops due to a conflict, it might be possible
that some different random choice of color would have avoided this present
conflict. Hence, our subclaim seems hard to prove.

4.1.1 Analysis

A(D) consists of O(n2) number of 0’s. For each 0 in the matrix A(D) we
consider 2× 2 sub-matrices to fix its color and after that again apply the
rules R1, R2, R3 on O(n2) 0’s. As there are fixed number of rules, overall rule
checking takes constant amount of time. Thus it takes O(n2)× (2×O(n2))
overall time, i.e. O(n4).

Appendix A

Interval Digraph Recognition
Algorithm: C Implementation

A.1 Source Code

1 # include<s t d i o . h>
2 # include<s t d l i b . h>
3 # include<errno . h>
4
5 typedef s t r u c t pos {
6 i n t x ;
7 i n t y ;
8 s t r u c t pos * nxt ;
9 } pos ;

10
11 pos *Q=NULL;
12 i n t rows =0 , c o l s =0;
13
14 void putQ (i n t i , i n t j) {
15 i f (Q!=NULL) {
16 pos *tmp=Q;
17 while (tmp−>nxt !=NULL)
18 tmp=tmp−>nxt ;
19 tmp−>nxt =(pos *) malloc (s i ze of (pos)) ;
20 tmp−>nxt−>x= i ;
21 tmp−>nxt−>y= j ;
22 tmp−>nxt−>nxt=NULL;
23 }
24 e lse {
25 Q=(pos *) malloc (s i ze of (pos)) ;
26 Q−>x= i ;
27 Q−>y= j ;

18 Interval Digraph Recognition Algorithm: C Implementation

28 Q−>nxt=NULL;
29 }
30 }
31
32 pos *remQ () {
33 pos *tmp=Q;
34 Q=Q−>nxt ;
35 tmp−>nxt=NULL;
36 return tmp ;
37 }
38
39 i n t checkQ (pos *tmp) {
40 pos * ptr=Q;
41 while (p t r !=NULL) {
42 i f (ptr−>x==tmp−>x && ptr−>y==tmp−>y)
43 return 1 ;
44 e lse
45 ptr=ptr−>nxt ;
46 }
47 return 0 ;
48 }
49
50 pos * check matr ix (char * *) ;
51 void apply ru les (char * * , pos *) ;
52 i n t c h e c k r u l e s (char * * , int , int , int , i n t) ;
53 i n t f i x c o l o r (char * * , int , i n t) ;
54
55 i n t main (i n t argc , char * argv []) {
56
57 FILE * fp ;
58 i f (argc ! = 2) {
59 p r i n t f (” s p e c i f y a s i n g l e m? . t x t f i l e \n”) ;
60 return 0 ;
61 }
62
63 i f ((fp=fopen (argv [1] , ” r ”)) ==NULL) {
64 perror (” fopen ”) ;
65 return −1;
66 }
67 i n t in =0;
68 i n t i =0 , j =0 ;
69 while ((in=getc (fp)) !=EOF) {
70 i f ((char) in== ’\n ’)
71 ++ i ;
72 e lse
73 i f ((char) in== ’ 1 ’ | | (char) in== ’ 0 ’)
74 ++ j ;
75 }
76

Source Code 19

77 rows= i ;
78 c o l s = j / i ;
79 p r i n t f (”rows:%d , c o l s :%d\n” , rows , c o l s) ;
80
81
82 / / a l l o c a t e a c o n t i g u o u s b l o c k o f memory f o r t h e ma t r ix
83 char *m=(char *) malloc (rows * c o l s * s i ze of (char)) ;
84 char * *M=(char * *) malloc (rows * s i ze of (char *)) ;
85
86 for (i =0 ; i<rows ;++ i)
87 * (M+ i) =m+ i * c o l s ;
88
89 / / c h a r M[rows] [c o l s] ;
90
91 / / i n i t i a l i z e t h e ma t r ix wi th 0 s
92 for (i =0 ; i<rows ;++ i)
93 for (j =0 ; j<c o l s ;++ j)
94 M[i] [j] = 0 ;
95
96 / / rewind (f p) ;
97 fseek (fp , 0 L , SEEK SET) ;
98
99 in =0;

100 i =0; j =0 ;
101 while ((in=getc (fp)) !=EOF) {
102 i f ((char) in== ’\n ’) {
103 ++ i ;
104 / / p r i n t f (”\n ”) ;
105 }
106 e lse {
107 i f ((char) in== ’ 1 ’ | | (char) in== ’ 0 ’) {
108 M[i] [j] = (char) in ;
109 j =(j +1)%c o l s ;
110 }
111 }
112 } / / end−o f−w h i l e
113
114 / / p r i n t t h e ma t r ix
115 for (i =0 ; i<rows ;++ i) {
116 for (j =0 ; j<c o l s ;++ j)
117 p r i n t f (”%c ” ,M[i] [j]) ;
118 p r i n t f (”\n”) ;
119 }
120
121 f c l o s e (fp) ;
122
123 pos *tmp=NULL;
124 while ((tmp=check matr ix (M)) !=NULL) {
125 p r i n t f (” enter c o l o r M[%d][%d] : ” , tmp−>x , tmp−>y) ;

20 Interval Digraph Recognition Algorithm: C Implementation

126 scanf (” %c ” ,&(M[tmp−>x] [tmp−>y])) ;
127 / / p r i n t f (”%c\n ” ,M[tmp−>x] [tmp−>y]) ;
128
129 apply ru les (M, tmp) ;
130 f r e e (tmp) ;
131 while (Q!=NULL) {
132 tmp=remQ () ;
133 i f (f i x c o l o r (M, tmp−>x , tmp−>y)) {
134 / / no e r r o r , c a r r y on
135 apply ru les (M, tmp) ;
136 }
137 e lse {
138 / / c o n f l i c t i n g c o l o r . . . no t an i n t e r v a l d i g r a p h . . e x i t
139 p r i n t f (” c o n f l i c t . . . (% d,%d) !\n” , tmp−>x , tmp−>y) ;
140 return −1;
141 }
142 f r e e (tmp) ;
143
144 for (i =0 ; i<rows ;++ i) {
145 for (j =0 ; j<c o l s ;++ j)
146 p r i n t f (”%c ” ,M[i] [j]) ;
147 p r i n t f (”\n”) ;
148 }
149 }
150 }
151
152 p r i n t f (” f i n a l c o l o r i n g :\n\n”) ;
153 for (i =0 ; i<rows ;++ i) {
154 for (j =0 ; j<c o l s ;++ j)
155 p r i n t f (”%c ” ,M[i] [j]) ;
156 p r i n t f (”\n”) ;
157 }
158
159 return 0 ;
160 }
161
162 pos * check matr ix (char * *M) {
163 i n t i =0 , j =0 ;
164 for (; i<rows ;++ i) {
165 for (j =0 ; j<c o l s ;++ j)
166 i f (M[i] [j]== ’ 0 ’) {
167 pos *tmp=(pos *) malloc (s i ze of (pos)) ;
168 tmp−>x= i ;
169 tmp−>y= j ;
170 tmp−>nxt=NULL;
171 return tmp ;
172 }
173 }
174 return NULL;

Source Code 21

175 }
176
177 void apply ru les (char * *M, pos *tmp) {
178 i n t i =0 , j =0 ;
179 for (; i<rows ;++ i)
180 for (j =0 ; j<c o l s ;++ j)
181 i f (M[i] [j]== ’ 0 ’) {
182 i f (c h e c k r u l e s (M, tmp−>x , tmp−>y , i , j)) {
183 i f (checkQ (tmp))
184 continue ;
185 e lse {
186 putQ (i , j) ;
187 p r i n t f (”(%d,%d) \n” , i , j) ;
188 }
189 }
190 }
191 }
192
193 i n t c h e c k r u l e s (char * *M, i n t x1 , i n t y1 , i n t x2 , i n t y2) {
194
195 i f (M[x1] [y1]== ’R ’) {
196 / / r u l e 1 a
197 i f (M[x1] [y2]== ’ 1 ’ && M[x2] [y1]== ’ 1 ’)
198 return 1 ;
199
200 / / r u l e 2 a
201 i f (x1==x2) {
202 i n t i =0 ;
203 for (; i<rows ;++ i)
204 i f (M[i] [y1]== ’ 1 ’ && M[i] [y2]== ’R ’)
205 return 1 ;
206 }
207 i f (y1==y2) {
208 i n t j =0 ;
209 for (; j<c o l s ;++ j)
210 i f (M[x1] [j]== ’ 1 ’ && M[x2] [j]== ’R ’)
211 return 1 ;
212 }
213
214 / / r u l e 3 a
215 i f (M[x1] [y2]== ’C ’ && M[x2] [y1]== ’ 1 ’)
216 return 1 ;
217 i f (M[x1] [y2]== ’ 1 ’ && M[x2] [y1]== ’C ’)
218 return 1 ;
219
220 / / r u l e 3b
221 i f (x1==x2) {
222 i n t i =0 ;
223 for (; i<rows ;++ i)

22 Interval Digraph Recognition Algorithm: C Implementation

224 i f (M[i] [y1]== ’C ’ && M[i] [y2]== ’ 1 ’)
225 return 1 ;
226 }
227 i f (y1==y2) {
228 i n t j =0 ;
229 for (; j<c o l s ;++ j)
230 i f (M[x1] [j]== ’C ’ && M[x2] [j]== ’ 1 ’)
231 return 1 ;
232 }
233 }
234 e lse {
235 / / r u l e 1 a
236 i f (M[x1] [y2]== ’ 1 ’ && M[x2] [y1]== ’ 1 ’)
237 return 1 ;
238
239 / / r u l e 2 a
240 i f (x1==x2) {
241 i n t i =0 ;
242 for (; i<rows ;++ i)
243 i f (M[i] [y1]== ’ 1 ’ && M[i] [y2]== ’C ’)
244 return 1 ;
245 }
246 i f (y1==y2) {
247 i n t j =0 ;
248 for (; j<c o l s ;++ j)
249 i f (M[x1] [j]== ’ 1 ’ && M[x2] [j]== ’C ’)
250 return 1 ;
251 }
252
253 / / r u l e 3 a
254 i f (M[x1] [y2]== ’R ’ && M[x2] [y1]== ’ 1 ’)
255 return 1 ;
256 i f (M[x1] [y2]== ’ 1 ’ && M[x2] [y1]== ’R ’)
257 return 1 ;
258
259 / / r u l e 3b
260 i f (x1==x2) {
261 i n t i =0 ;
262 for (; i<rows ;++ i)
263 i f (M[i] [y1]== ’R ’ && M[i] [y2]== ’ 1 ’)
264 return 1 ;
265 }
266 i f (y1==y2) {
267 i n t j =0 ;
268 for (; j<c o l s ;++ j)
269 i f (M[x1] [j]== ’R ’ && M[x2] [j]== ’ 1 ’)
270 return 1 ;
271 }
272 }

Source Code 23

273 return 0 ;
274 }
275
276 i n t f i x c o l o r (char * *M, i n t x , i n t y) {
277 i n t i =0 , j =0 ;
278 i n t c l r f l g =0; / / R : 1 , C : 2
279 for (; i<rows ;++ i)
280 for (j =0 ; j<c o l s ;++ j) {
281 i f (x != i) {
282 i f (y != j) {
283 / / r u l e 1
284 i f (M[x] [j]== ’ 1 ’ && M[i] [y]== ’ 1 ’) {
285 i f (M[i] [j]== ’R ’) {
286 i f (c l r f l g ==0 | | c l r f l g ==2) {
287 c l r f l g =2;
288 continue ;
289 }
290 i f (c l r f l g ==1)
291 return 0 ;
292 }
293 i f (M[i] [j]== ’C ’) {
294 i f (c l r f l g ==0 | | c l r f l g ==1) {
295 c l r f l g =1;
296 continue ;
297 }
298 i f (c l r f l g ==2)
299 return 0 ;
300 }
301 }
302 / / r u l e 2
303 i f (M[x] [j]== ’R ’ && M[i] [y]== ’R ’ && M[i] [j]== ’ 1 ’) {
304 i f (c l r f l g ==0 | | c l r f l g ==1) {
305 c l r f l g =1;
306 continue ;
307 }
308 i f (c l r f l g ==2)
309 return 0 ;
310 }
311 i f (M[x] [j]== ’C ’ && M[i] [y]== ’C ’ && M[i] [j]== ’ 1 ’) {
312 i f (c l r f l g ==0 | | c l r f l g ==2) {
313 c l r f l g =2;
314 continue ;
315 }
316 i f (c l r f l g ==1)
317 return 0 ;
318 }
319 / / r u l e 3
320 i f (M[x] [j]== ’ 1 ’) {
321 i f (M[i] [y]== ’C ’ && M[i] [j]== ’R ’) {

24 Interval Digraph Recognition Algorithm: C Implementation

322 i f (c l r f l g ==0 | | c l r f l g ==2) {
323 c l r f l g =2;
324 continue ;
325 }
326 i f (c l r f l g ==1)
327 return 0 ;
328 }
329 i f (M[i] [y]== ’R ’ && M[i] [j]== ’C ’) {
330 i f (c l r f l g ==0 | | c l r f l g ==1) {
331 c l r f l g =1;
332 continue ;
333 }
334 i f (c l r f l g ==2)
335 return 0 ;
336 }
337 }
338 i f (M[i] [y]== ’ 1 ’) {
339 i f (M[x] [j]== ’C ’ && M[i] [j]== ’R ’) {
340 i f (c l r f l g ==0 | | c l r f l g ==2) {
341 c l r f l g =2;
342 continue ;
343 }
344 i f (c l r f l g ==1)
345 return 0 ;
346 }
347 i f (M[x] [j]== ’R ’ && M[i] [j]== ’C ’) {
348 i f (c l r f l g ==0 | | c l r f l g ==1) {
349 c l r f l g =1;
350 continue ;
351 }
352 i f (c l r f l g ==2)
353 return 0 ;
354 }
355 }
356 }
357 }
358 }
359 i f (c l r f l g ==1)
360 M[x] [y]= ’R ’ ;
361 i f (c l r f l g ==2)
362 M[x] [y]= ’C ’ ;
363 return 1 ;
364 }

Bibliography

[1] M. Sen, S. Das, A. Roy, and D. West, “Interval digraphs: an analogue
of interval graphs,” J. Graph Theory, vol. 13, pp. 189–202, 1989.

[2] M. Sen, S. Das, and D. West, “Circular-arc digraphs: a characteriza-
tion,” J. Graph Theory, vol. 13, pp. 581–592, 1989.

[3] H. Muller, “Recognizing interval digraphs and interval bigraphs in
polynomial time,” Discrete Applied Math., vol. 78, pp. 189–205, 1997.

[4] E. Marczewski, “Sur deux propriétés des classes d’ensembles,” Fund.
Math, vol. 33, pp. 303–307, 1945.

[5] P. Gilmore and A. Hoffman, “A characterization of comparability
graphs and of interval graphs,” Canad. J.Math., vol. 16, pp. 539–548,
1964.

[6] D. Fulkerson and O. Gross, “Incidence matrices and interval graphs,”
Pac. J.Math., vol. 15, pp. 835–855, 1965.

[7] K. Booth and L. G.S., “Testing for te consecutive ones property, inter-
val graphs, and graph planarity using pq-tree algorithms,” J.Comput.
Syst.Sci., vol. 13, pp. 335–379, 1976.

[8] C. Lekerkerker and J. Boland, “Representation of a finite graph by a
set of intervals on the real line,” Fund. Math., vol. 51, pp. 45–64, 1962.

[9] L. Beineke and C. Zamfirescu, “Connection digraphs and second order
line graphs,” Discrete Math., vol. 39, pp. 237–254, 1982.

[10] F. Harary, J. Kabell, and F. McMorris, “Bipartite intersection graphs,”
Comm. Math. Univ. Carolinae, vol. 23, pp. 739–745, 1982.

[11] L. Guttman, “A basis for scaling quantitave data,” Am Sociol. Rev.,
vol. 9, pp. 139–150, 1944.

26 Bibliography

[12] Riguet, “Les relations des ferrers,” C.R. Acad. Sci. Paris, vol. 232, 1951.

[13] O. Cogis, “A charcterization of digraphs with ferrers dimension 2,”
Rap. Rech. 19, G.R. CNRS 22 Paris, 1979.

[14] J. Doignon, A. Ducamp, and J. Falmagne, “On realizable biorders and
the biorder dimension of a relation,” J. Math. Psychol., vol. 28, pp. 73–
109, 1984.

[15] D. West, “Short proofs for interval digraphs,” Discrete Math., vol. 178,
pp. 287–292, 1998.

	Abstract
	Acknowledgments
	Introduction
	Basic definitions and Notation
	Intersection Graphs
	Interval Graphs
	Interval Digraphs/Bigraphs
	Ferrers Digraphs

	Ferrers Digraphs
	Interval Digraph/Bigraph
	Interval Digraph Recognition Algorithm
	A Greedy Recognition Algorithm

	Interval Digraph Recognition Algorithm: C Implementation
	Source Code

	Bibliography

