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Abstract

The art gallery problem is a well-studied visibility problem in com-
putational geometry. It originates from a real-world problem of guard-
ing an art gallery with the minimum number of guards who together
can observe the whole gallery. In the computational geometry version
of the problem the layout of the art gallery is represented by a simple
polygon and each guard is represented by a point in the polygon. A set
S of points is said to guard a polygon if, for every point p in the poly-
gon, there is some q ∈ S such that the line segment between p and q
does not leave the polygon. Finding the smallest cardinality of guard-
ing set of simple polygon is known to be NP-hard. Many researcher
approached for an approximation algorithm. Subhir K. Ghosh [ref-
erence 1] proposed log(n)-factor approximation algorithm for simple
polygon in O(n4) in 2010. It is also known that There exist a constant
ε ≥ 0 such that an approximation ratio of 1 + ε can not guaranteed
by any polynomial time approximation algorithm unless P = NP. In a
recent paper, B. J. Nilsson [2013] proposed a 30-factor approximation
algorithm for monotone polygon. L. Gewali [1992] proposed an O(n)
time algorithm for covering a horizontally convex orthogonal polygon
with minimum number of orthogonal star-shaped polygons. In this
thesis, we are dealing with the art gallery problem for uni-monotone
and special case of monotone polygon. For simple uni-monotone, we
are assuming that there is some fixed guards G already placed inside
the polygon P. If G covers the whole polygon then can we partition
it to k-sets such that each set individually covers P. If we get such a
partition, G is said to be fault tolerant at level k. In case the preplaced
guard can not partition in to k-sets, find the smallest number of extra
guards that is to be added to G such that it can be partitioned into
k-sets which individually covers P. For orthogonal uni-monotone poly-
gon, we are showing O(nlogn) time algorithm for optimal guarding.
For monotone polygon, If we are considering only upper chain(lower
chain) to form a graph based on visibility region of convex pieces in-
side the polygon then this graph is not chordal. We are also showing
sub case of monotone polygon for optimal guarding. Our result can
be used in the geometrical application where there is requirement to
maintaining fault tolerant. For example, In ad-hoc network there is
need to maintain fault tolerant at some level so by modifying the
definition of coverage of point, our result may be used.
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Chapter 1

Introduction

The original art gallery problem was introduced by Victor Klee in 1973 in
a discussion with Vasek Chvatal. This first problem asked for the follow-
ing question: How many guards situated in the vertices of a gallery with
n walls are always enough and sometimes necessary to see all points inside
this gallery restricted to the shape of a simple polygon?. Two years later,
Chvatal [reference 7] solved it, demonstrating that

⌊
n
3

⌋
guards cover all possi-

ble galleries. This was the beginning of art gallery problem variation studies;
changing gallery shape, changing guard situation and mobility, etc.. A set S
of points is said to guard a polygon if, for every point p in the polygon, there
is some q ∈ S such that the line segment between p and q does not leave the
polygon. We call this set S a guarding set. The optimization problem is thus
defined as finding a Guard set of smallest possible cardinality. Many varia-
tion of this problem is studied but the most popular variations are namely
vertex guarding, edge guarding and point guarding. Vertex guarding deals
with the case when guards are restricted to place on vertices of the polygon.
Edge guarding deals with the case when guards are restricted to place on
boundary of polygon. Point guarding deals with the case when guards can
be placed any where inside the polygon. Point guarding of simple polygon
can be formulated in to Set Cover problem which is known to be NP-complete
and can not be approximated to a constant approximation factor unless P
= NP [reference 1]. Subir K. Ghosh proposed O(logn)-approximation algo-
rithms with running time O(n4) for simple polygons. Later Justin Iwerk and
Joseph S.B. Mitchell [reference 8] in 2012 proposed sufficient guard in term of
reflex and convex vertices. Let G(r, c) be the function for the guard number
in terms of r ≥ 0, of reflex vertices and c ≥ 3, of convex vertices of simple
polygon P (n = r + c),
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G(r, c) =


1, if r = 0
r, if r ≤

⌊
c
2

⌋⌊
n
3

⌋
, if

⌊
c
2

⌋
< r < 5c− 12

2c− r, if r ≥ 5c− 12

(1.1)

The terrain guarding problem can be divided in two problems, a discrete
version and a continuous version. The discrete version focuses on guarding
only the vertices of the terrain (or some discrete set of chosen points). Wher-
ever the continuous version focuses guarding on entire terrain. Guarding a
terrain is also NP-hard. Erik Krohn and James King [reference 2] gave a
proof of that. Ben-Moshe [reference 3] proposed the first constant factor ap-
proximation. Later J. King’s paper [reference 4] provides a 5-approximation
to the terrain guarding problem. Erik Krohn and B. J. Nillson has proved
its vertex guarding of monotone polygon to be NP-Hard in [reference 5]. But
its point guarding does not immediately follow from that claim. The same
authors Erik Krohn and B. J. Nillson has proved its point guarding to be
NP-Hard [reference 6]. Erik Krohn and B. J. Nillson also gave constant factor
30-approximation algorithm for point guarding monotone polygons. Gewali
et al.[reference 9] and Lingas et al.[reference 10] separately proposed linear
time algorithm for guarding monotone orthogonal polygons with star shaped
polygons. In this thesis, our primary focus on guarding different variation of
uni-monotone polygon and sub case of monotone polygon. We also taking
care of guarding with preplaced guard set and partitioning the guard set in to
k-sets such that each set individually covers whole polygon. We have shown
this approach may be useful in Ad-hoc networking. In Chapter 2, we have
shown preliminaries things which is required to work on guarding problem.
In chapter 3, we have shown different variation of guarding for uni-monotone
polygon. In chapter 4, we have shown different variation of guarding for
monotone polygon. In chapter 5, we have concluded the paper and proposed
a few further direction of research.
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Chapter 2

Preliminaries

2.1 Monotone Polygons and Terrains

Below we introduce some common definition on polygon and Terrain.

Definition (Simple Monotone Polygon) A polygon P in the plane is called
monotone with respect to a straight line l, if every line orthogonal to l inter-
sects P at most twice.

Definition (X-Monotone Polygon) A monotone polygon with respect to x-
axis is called x-monotone polygon.

Definition (Y-Monotone Polygon) A monotone polygon with respect to y-
axis is called y-monotone polygon.

Definition (Orthogonal Polygon) A orthogonal polygon is a polygon all of
whose edges meet at right angles. Thus the interior angle at each vertex is
either 90◦ or 270◦.

Definition (Orthogonal Monotone Polygon) A orthogonal polygon P is said
to be orthogonal monotone with respect to given line l if any line perpendicular
to l makes either empty or single line segment inside P.

Definition (1.5D Terrain) Usually when we use terrain we generally use
a special version of it which is 1.5D terrain. It is an x-monotone chain T
consisting of a set of points p1(x1, y1), p2(x2, y2) ,· · · , pn (xn, yn) where (pi,
pi+1) are connected by a line segment, i = 1, 2,,· · · , n-1 and the line joining
p1 and pn does not intersect the chain.

Definition (Visibility Polygon) Given a polygon P and an interior point q,
the visibility polygon of a point q is said to be the area inside the polygon P
such that for any point p in this area, there is line segment joining p and q
does not intersect the boundary of polygon P.
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2.2 Some definition and results on Graph &

Approximation Algorithm

Definition (Graph) A graph is an ordered pair G = (V, E) comprising a
set V of vertices or nodes together with a set E of edges or lines, which are
2-element subsets of V.

Definition The complement graph G = (V,E) of a graph G = (V, E) is
defined by E = {xy : x, y ∈ V and x 6= y and xy /∈ E}.

Definition Let G = (V, E) be a graph.

• A graph G′ = (V ′, E ′) is a sub graph of G if V ′ ⊆ V and E ′ ⊆ E.

• A sub graph G′ = (V ′, E ′) is an induced sub graph of G if
E ′ = {uv : uv ∈ E and u, v ∈ V ′}. We also say that G′ is induced by
V ′ and usually write G(V ′) for G′.

• A graph property P is hereditary if the property P holds for every in-
duced sub graph of G whenever it holds for G.

Definition Let G = (V, E) be a graph.

• V ′ ⊆ V is an independent set or stable set in G (or empty sub graph of
G) if for all u, v ∈ V ′, uv /∈ E.

• V ′ ⊆ V is a clique in G (or complete sub graph) if for all u, v ∈ V ′, u 6=
v, uv ∈ E.

• A stable set (clique) S in G is maximal if there is no stable set (clique)
S ′ 6= S in G with S ⊂ S ′.

• A stable set (clique) S is maximum if |S| is the maximum possible size
of a stable set (clique) in G.

Definition Let G = (V, E) be a graph.

• α(G) = max {|V ′| : V ′ ⊆ V and V’ is an independent set in G}

• ω(G) = max {|V ′| : V ′ ⊆ V and V’ is a clique in G}

• χ(G) = min {k : ∃ a partition of V in to k disjoint independent sets}
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• κ(G) = min {k : ∃ a partition of V in to k disjoint cliques}

Note 1: for every graph G, ω(G) ≤ χ(G) and α(G) ≤ κ(G). χ(G) of-
ten called the chromatic number of G, since a partition V1, V2, .........., Vk
of V in to independent sets Vi, i = 1, 2, ......, k, is exactly a coloring
of G such that no two adjacent vertices have the same color.
Note 2: for every graph G, α(G) = ω(G) and χ(G) = κ(G). It is well
known that determining each of the parameters α(G), ω(G), χ(G), κ(G)
is an NP-complete problem.

There is some classes of graph for which above parameters can be found
optimally.

1. Chordal Graph

2. Interval Graph

3. Perfect Graph

Definition (Perfect Elimination Order) A perfect elimination order v1, v2,· · · ,
vn such that Pred(vi) is a clique for all i = 1, 2,· · · , n.

There is algorithm for finding perfect elimination order of graph G if one
exist.

Algorithm 1: PerfectEliminationOrder

Input: Graph G.
Output: Perfect elimination order of vertices of G if one exists.
begin1

for i = n,· · · , 1 do2

Let Gi be graph induced by V - {vi+1, · · · , vn}.3

Test whether Gi has simplicial vertex v.4

if NO then5

stop. // Gi has no perfect elimination order.6

else7

vi = v;8

v1, v2, · · · , vn is a perfect elimination order.9

end10
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Lemma 2.2.1 Let v1, v2, · · · , vn be a perfect elimination order. Then C =
Pred(vi) ∪ {vi} is not a maximal clique if and only if there exists a successor
vj of vi such that vi is the last predecessor of vj and indeg(vj) = indeg(vi) +
1.

Proof Assume there exists such a successor vj. Since vi is vj’s last prede-
cessor, all predecessors of vj are either vi or a predecessor of vi,so Pred(vi)
⊆ Pred(vi) ∪ {vi} = C. By indeg(vj) = indeg(vi) + 1, equality holds, so vj
is adjacent to all vertices in C, and C ∪ {vj} is a bigger clique.
For the other direction, assume C is not maximal. Let j be the minimal such
that vj /∈ C and C ∪ {vj} is a clique.Vertex vj is adjacent to vi, but it is not
a predecessor, otherwise it would be in C. So vj is a successor of vi, which
implies C ⊆ pred(vj) and indeg(vj) ≥ indeg(vi) + 1.
We claim that vi is the last predecessor of vj. Assume it is not, so vj has a
predecessor vk with i < k < j. Then vk is adjacent to all of C, and C U {vk}
is a clique, contradicting the minimality of j. Therefore, any predecessor of vj
is either vi or a predecessor of vi, so pred(vj) ⊆ C and indeg(vj) ≤ indeg(vi)
+ 1. This proves the claim. �

There is linear time algorithm for finding all maximal cliques of chordal
graph.
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Algorithm 2: AllMaximalClique

Input: Chordal Graph G.
Output: All maximal cliques.
begin1

for j = 1, 2,· · · , n do2

find all predecessors of vj3

store indeg(vj) and which vertex is the last predecessor of vj4

for i = 1, 2,· · · , n do5

find all successors of vi6

for each successor vj of vi do7

if if (vi is the last predecessor of vj and8

indeg(vj)=indeg(vi)+1) then
discard pred(vi) ∪ {vi} //it is not a maximum clique9

if pred(vi) ∪ {vi} has not been discarded then10

output it as one maximal clique of the graph.11

end12

Note: This algorithm takes O(deg(v) + 1 ) time per vertex, and hence
has linear time.

Definition (simplicial vertex) A simplicial vertex of a graph G is a vertex
such that the neighbours of v form a clique in G.

Definition (Chordal Graph) A graph G is a chordal graph if it does not
contain an induced k-cycle for k ≥ 4.

Definition (Comparability Graph) A graph that has an acyclic transitive
orientation is called a comparability graph.

Definition (Interval Graph) A graph G is an interval graph if and only if
G is a chordal graph and G is a comparability graph.

Definition (Alternative)(Interval Graph) A graph G is an interval graph iff
there exists a linear order of its maximal cliques such that for each vertex v,
all maximal cliques containing v are consecutive.

Remark Some result about Interval graph G

• Interval graph can be recognized in O(n) time.
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• Largest clique can be computed in O(nlog(n)) time.

• Minimum clique cover can be computed in O(nlog(n)) time.

• Maximum Independent set can be computed in O(nlog(n)) time.

Definition (Perfect Graph) A graph G is perfect if ω(G) = χ(G) and ω(H)
= χ(H) for every induced sub graph H of G.

Theorem 2.2.2 The graph G has perfect elimination order if and only if
graph G is chordal.

Definition (Approximation Algorithm) An α-approximation algorithm is a
polynomial-time algorithm which always produces a solution of value within
α times the value of an optimal solution.
That is, for any instance of the problem,

Zalgo / Zopt ≤ α, (for a minimization problem)
where Zalgo is the cost of the algorithm output,
Zopt is the cost of an optimal solution.

α is called the approximation guarantee (or factor) of the algorithm.
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Chapter 3

Guarding Uni-Monotone
Polygon

3.1 Simple Uni-Monotone Polygon

Definition (Simple Uni-Monotone Polygon) A simple monotone polygon
with respect to line l is called uni-monotone if one of its chain is l-monotone
chain and other is the line l.

Lemma 3.1.1 If we rotate two lines with respect to a point in same direction
then the angle of intersection between lines remain same.

Proof Let us assume two intersecting line l1 and l2 have slope θ1 and θ2
respectively and without loss of generality θ1 < θ2. Now after rotating θ angle
both lines in anti clock wise direction, slope becomes θ′1 and θ′2 respectively,
so θ′1 < θ′2 and θ′1 = θ1 + θ, θ′2 = θ2 + θ.
Let us take after rotation angle between line l1 and l2 be θ′. so θ′ = θ′2 - θ′1
= θ2 - θ1. �

Lemma 3.1.2 Every uni-monotone polygon with respect to line l can be con-
verted in to uni-monotone polygon with respect to x-axis.

Proof Since rotation of lines in same direction does not change the angle
of intersection among all rotating lines. Rotate whole polygon with angle θ,
where θ is the angle of intersection between line l and x-axis. After rotation,
all the internal angles are same, so structure of polygon does not change.
Thus rotating polygon again uni-monotone polygon with respect to x-axis.
�
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Theorem 3.1.3 Minimum number of guards required to cover all the edges
of uni-monotone polygon is equal to minimum number of guards required to
cover whole uni-monotone polygon.

Proof Let us take uni-monotone polygon P, G be the guard set with smallest
possible cardinality to cover all the edges and G′ be another guard set with
smallest possible cardinality to cover whole polygon P. Now we have to show
that |G| = |G′|.
(i) |G| ≤ |G′|
Since G′ cover whole polygon P, so G′ also cover all the edges of P (∵ P is
bounded by edges).
(ii) |G′| ≤ |G|
Let us assume that guard set G are not sufficient to cover whole polygon P,
then ∃ non empty region R inside the polygon P which is not seen by guard
set G.
Let us take a point p ∈ R and make a vertical line l passing through p. Since
P is uni-monotone, so line l must intersect the polygon P exactly two point
(say A and B). Since ∃ guard g ∈ G can see both point A and B, so g can
see any point on line l inside the P i.e. guard g can see p.
Similarly ∀ p ∈ R, ∃ guard g ∈ G such that g can see point p. Since all point
p ∈ R can be seen by guard set, so R is empty. This is contradiction to our
assumption.
From (i) and (ii),
|G| = |G′|. �

Observation Minimum number of guards required to see the edges of P is
not equal to minimum number of guards required to see the vertices of P.

Figure 3.1: Counter Example For Vertex and Edge Guarding

3.1.1 Transformation of Guarding problem in to Graph

We need to define projection of edge in uni-monotone polygon P with respect
to x-axis.
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Definition Projection of edge e on x-axis is the intersection of V(e) and the
line x-axis. where V(e) is the set of points of P such that each point p ∈ V(e)
can see edge e.

Lemma 3.1.4 Projection of each edge e form single interval on x-axis.

Proof Let us assume projection of edge e does not form single interval on
x-axis then there are two cases:
case (i): Projection of edge e does not form interval on x-axis i.e. there is
no point p on x-axis such that p can see edge e. Since P is uni-monotone
so ∃ vertical line l of x-axis which intersect edge e at point A and x-axis at
point p. p can see point A. Let us take C and D are end points of edge e.
Now 4pCA and 4pAD are formed, so p can see CA and AD. Thus p can
see whole edge e. This is contradiction to our assumption.
case (ii): Let us assume projection of edge e form more than one interval on
x-axis i.e. ∃ two interval (a1, b1), (a2, b2) on x-axis this implies that no point
p between b1 and a2 can see whole edge e. Let us take a point p between b1
and a2. Since b1 and a2 both can see C so b1, a2 and C form a triangle, so
p can see C. Similarly p can see D. since pCD form a triangle so p can see
whole edge e. This is contradiction.
In both cases we found contradiction. Thus projection of each edge e form
single interval on x-axis. 2

Transformation:

Let us take simple uni-monotone polygon P with (V, E) where V is the set
of vertices and E is the set of edges in P with respect to x-axis. Consider
the sequence of convex pieces of upper chain C1, C2, · · · , Ck arranged in
order, where each piece consist of at least two vertices among which first and
last vertices are reflex except C1 and Ck. Last vertex of first convex piece
and first vertex of last convex piece must be reflex. ∪i=k

i=1Ci consist of all the
vertices of the P. For each convex piece we define interval by common portion
of intervals of projection of all edges of convex piece on x-axis. Thus there
are k number of intervals [ai, bi] where i = 1, 2,· · · , k.
Now define graph G = (V ′, E ′) where V ′ contains vertices corresponding
to each interval and edge between two vertices u, v ∈ V ′ if corresponding
intervals overlaps each other.

16



3.1.2 Guarding The Region of Polygon With Mini-
mum Guards

Lemma 3.1.5 If the vertices of graph G are arranged in order to left end
of corresponding interval on x-axis then this order of vertices are perfect
elimination order.

Proof Let us assume vertices order based on left end point of corresponding
interval does not follow perfect elimination order. This means that there
exist vertex vi such that pred(vi) ∪ {vi} does not form clique. i.e. there exist
vertex vj and vk ∈ pred(vi) such that (vj, vk) /∈ E ′. Since (vj, vi) and (vk,
vi) ∈ E ′ so interval corresponding vj and vk must overlap on the vertical line
l passing through the left end point of interval corresponding to vi. Thus
vj and vk must overlap on line l i.e. there is an edge (vj, vk) ∈ E ′. This is
contradiction to our assumption so vertices order based on left end point of
corresponding interval are the perfect elimination order. �

Note: Above graph G = (V ′, E ′) is chordal.

Lemma 3.1.6 Graph G is comparability graph.

Proof Let us assume u and v are two vertices that are not adjacent in G
i.e. adjacent in G. As each vertex represent interval so two intervals Iu, Iv
of these vertices do not intersect. There are now two possibilities Either Iu
is to the left of Iv, or Iu is to the right of Iv. This naturally imposes edge
direction for G. For a pair u, v /∈ E(G), direct the edge as u→v if Iu is to
the left of Iv and as v→u otherwise.
(Transitive Orientation) Let us assume graph G does not have transitive
orientation then there exist three vertices u, v, w such that (u,v) and (v,
w) are edges of G but (u,w) is not an edge of G. This implies edge (u,w)
belong from edge set in G. since interval corresponding v in G in the middle
of interval corresponding u and w so there must be overlap between interval
corresponding either u and v (or) v and w. This is contradiction to our
assumption. Thus G have transitive orientation.
(Acyclic Orientation) Let us assume graph G has cycle then there exist some
vertices of G are in cycle order v1, v2,· · · , vn where v1 = vn. since there is
edge ( vn−1, v1) so interval corresponding vn−1 is to left of v1 and by transitive
property, there should be edge (v1, vn−1) i.e. v1 is to left of vn−1. This is
contradiction, Hence graph G have acyclic orientation. Thus G have acyclic
and transitive orientation so this is comparability graph. �

Theorem 3.1.7 Graph G is interval graph.
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Proof Since graph G is chordal and G is comparability graph so this is
interval graph. �

Theorem 3.1.8 Finding the minimum number of guard required to cover
uni-monotone polygon P have taken O(n + klog(k)) time, where n is the
number of vertices of P and k is the number of intervals.

Proof Since transformation of polygon in to interval graph will take O(n)
time where n is number of vertices. After transformation, finding the min-
imum clique cover of interval graph will take O(klog(k)) time, where k is
number of intervals. so finding the minimum number of guards have taken
O(n+ klog(k)) time. �

3.1.3 Guarding With Some Fixed Preplaced Guards

Let us take simple uni-monotone polygon P and some fixed guard locations
L where guards are already placed inside P. Now following operation can
be done in O(n + klogk) time, where k is number of intervals of convex
pieces on x-axis. Whether r fixed preplaced guards are sufficient for point
guarding of P. Can we partition of guarding set in to m sets such that each
set individually cover P. In case, if there is no partition of guarding set in to
m sets then find the minimum number of extra guards.

0

0 1 0

0 1 2 1 0

0 1 2 1 2 1 0

Figure 3.2: Two Partition Guarding

In following algorithm, clique region are the intersection visibility region
of convex pieces associated with maximal clique interval.
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Algorithm 3: Guard Uni-monotone Polygon

Input: Uni-monotone Polygon P and fixed pre-placed guard locations
L, partition size m

Output: Yes/No
Initialization: CR = φ, I = φ, C = φ, LR = φ, CR = φ, GR = φ1

I = Find intervals of convex pieces on x-axis of polygon P2

C = Find smallest number of maximal clique intervals which covers I3

for each c in C do4

Find clique region R for maximal clique interval c5

CR = CR ∪ {R}6

for each R in CR do7

LR = List of visibility region of convex pieces associated with8

clique region R

Return Yes, if each clique region R in CR have atleast m guard9

location from L.
Find the clique regions having less than m guard location from L (say10

GR).
for each R in GR do11

LR = List of visibility regions of convex pieces associated with12

clique region R
if each region in LR have atleast m guard location from L then13

continue;14

else15

Return No16

Return Yes17
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Algorithm 4: Find Extra Guard

Input: Uni-monotone Polygon P, Guard Locations L, GR, partition
size m

Output: Minimum number of extra guard
Initialization: MinExtraGuard = 01

for each R in GR do2

L′ = φ, minmax = 0;3

for each R1 in LR do4

if at least m guard location in R1 then5

continue;6

else7

temp = min guard location required in region R1 to be m8

guards.
if minmax ≤ temp then9

minmax = temp;10

L′ = Add minmax number of guard locations in R11

L = L ∪ L′12

MinExtraGuard += minmax13

Return MinExtraGuard14
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Algorithm 5: Guard Partition

Input: Uni-monotone Polygon P, Guard Locations L, CR, partition
size m

Output: Partition of size m
Initialization: P = {S1, S2, · · · , Sm} where Si = φ1

begin2

for each R in CR do3

for each R1 in LR do4

Mi = unmarked ∀i = 1, 2, · · · ,m5

Gm = guards in region R1 which have already assign to6

some Si.
G′m = guards in region R1 which are not assigned to any Si.7

for each g in Gm do8

mark Mi if g in Si9

for i = 1 to m do10

if Mi is unmarked then11

pick a guard from G′m and assign to set Si.12

Return P13

end14

Lemma 3.1.9 Visibility region of each convex piece have at least m guards
iff ∃ a partition of guarding set in to m sets such that each set individually
covers whole uni-monotone polygon P.

Proof Let R = visibility region of each convex piece have at least m guards
and S = ∃ a partition of guarding set in to m sets such that each set indi-
vidually covers whole uni-monotone polygon P.
(i) R → S
Let us assume there is no partition of guarding set in to m sets such that
each set individually covers P i.e. ∀ partition P = {S1, S2, · · · , Sm}. without
loss of generality, Let P1 = {S1, S2, · · · , Sn} where Sj, j = 1, 2, · · · , n does
not cover P.
P2 = {Sn+1, Sn+2, · · · , Sm} where Sk, k = n+ 1, n+ 2, · · · ,m cover P.
P = P1 ∪ P2 and P1 6= φ
If Sj does not cover P then ∃ convex pieces Cj = {C1, C2, · · · , Cl} where
V (Ci) i = 1, 2, · · · , l does not cover by Sj.
Now, claim that ∃ r in {1, 2, 3, · · · , n} such that ∀ t 6= r, St has at most one
guard from atleast one V (Ci) where Ci ∈ Cr.
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Let us assume our above claim is false i.e. ∀ r in {1, 2, 3, · · · , n} such that
for each Ci ∈ Cr ∃ t 6= r, St has more than one guard from V (Ci). For each
Ci ∈ Cr pick one guard from St which belongs from V (Ci) and put in Sr. So
∃ partition of guarding set in to m set such that each set individually covers
P. This is contradiction to our assumption. By claim, ∃ r in {1, 2, 3, · · · , n}
such that Sr does not cover whole P and ∃ convex piece Ci ∈ Cr whose
visibility region V (Ci) does not cover by Sr. Since there is no St, t 6= r has
more than one guard from V (Ci), so V (Ci) contains at most m − 1 guards.
Thus for each partition of guarding set in to m set ∃ convex piece Ci such
that V (Ci) contains at most m− 1 guards. By contrapositive, R → S.
(ii) S → R
Let us assume ∃ convex piece Cl such that V (Cl) have at most m−1 guards.
Since any guarding set must have atleast one guard from V (Cl), so there are
m − 1 guarding set are possible i.e. there is no partition of guarding set in
to m sets such that each set individually cover P. By contrapositive, S → R.
From (i) and (ii),
Visibility region of each convex piece have at least m guards iff ∃ a partition
of guarding set in to m sets such that each set individually covers whole
uni-monotone polygon P.

3.2 Orthogonal Uni-Monotone Polygon

Definition (Orthogonal Uni-Monotone Polygon) A orthogonal monotone poly-
gon with respect to line l is called uni-monotone if one of its chain is l-
orthogonal monotone chain and other is the line l.

Definition (Top edge) A horizontal edge in upper chain such that both end
point are convex vertices of P. It is denoted as ht.

Definition (Bottom edge) A horizontal edge in upper chain such that both
end point are reflex vertices of P. It is denoted as hb.

3.2.1 Guarding The Region of Polygon With Mini-
mum Star Shape Polygon

Definition (Star shaped polygon) A polygon P is star shaped if it contains
an interior point r such that for all point p of P ∃ a rectangle R aligned with
edges of P such that R contains line segment rp.

Definition (Orthogonally visible point) A point p is orthogonally visible from
a guard g if and only if both p and g are contained in within a rectangle (with
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a non zero area whose sides are aligned with edges of the polygon) that lies
entirely within the polygon.

Lemma 3.2.1 Each maximal star shaped polygon S of orthogonal uni-monotone
polygon P contains exactly one top edge ht of P.

Proof Let us assume ∃ a maximal star shape polygon S of P does not have
exactly one ht. There are two cases arises:
case (i): S has no ht i.e. S must be in form of either up stair or down stair
star shape polygon. In case of up stair star shape polygon, there must be
atleast one ht which will be after last vertex in S. Let us take S ′ = S ∪ in-
clude part of P from last vertex of S to ht. Since S ′ form star shape polygon.
This is contradiction to maximality of S, Similarly for down stair star shape
polygon.
case (ii): S has more than one ht. let us take ht1 , ht2 are top edges of P
inside S, so ∃ point p ∈ S such that there is possible to make rectangles R1

with ht1 and R2 with ht2 having point p i.e. R1 ∩ R2 6= φ. Since ht1 and
ht2 are not adjacent so any rectangles form with ht1 and ht2 do not intersect
each other i.e. R1 ∩ R2 = φ. This is contradiction.
In both cases, we found contradiction. Thus Each maximal star shape poly-
gon S of orthogonal uni-monotone polygon P contains exactly one top edge
ht. �

Theorem 3.2.2 Finding the minimum number of guards to cover orthogonal
uni-monotone polygon P such that each point p ∈ P is orthogonally visible
point from at least one guard can be computed in O(n) time.

Proof Let us compute minimum number of star shape polygon which cover
whole P. Since each maximal star shape polygon of P contains exactly one
ht, so minimum number of star shape polygon of P is equal to number of ht
in P. This can be computed in O(n) time. For each star shape polygon S,
one guard is enough for all p ∈ S to orthogonal visibility so number of ht
are minimum number of guards required to cover whole P with orthogonal
visibility. �

3.2.2 Guarding The Vertices of Polygon With Mini-
mum Guards

Lemma 3.2.3 Visibility region of Any guard g(gx, gy) inside orthogonal uni-
monotone polygon P is subset of visibility region of guard g′ at gx on x-axis.
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Proof Let us assume V(g) * V(g′) i.e. ∃ point p ∈ V(g) and p /∈ V(g′).
Since g′ below g so there must be an edge e of P below gp which intersect
line segment g′p at point q. Now draw vertical line l passing through q and
it intersect at s on x-axis. Since gp is completely inside the P so there must
be boundary of P above gp so line l intersect on boundary at point r. Thus
line l make two line segment qs and qr. This is contradiction of P being
orthogonal uni-monotone polygon. �

Theorem 3.2.4 Finding the minimum number of guards required to cover
all the vertices of orthogonal uni-monotone polygon P can be computed in
O(nlogn) time.

Proof Let us first compute projection of each vertices on x-axis that form
intervals. Now we generate interval graph of these intervals and compute
minimum clique cover in O(nlogn) time. Since generating graph will take
O(n) time, so overall computation time O(nlogn).

3.2.3 Guarding The Region of Polygon With Mini-
mum Guards

Lemma 3.2.5 Let V(g) and V(g′) be the visibility region of guards g(gx, gy)
and g′(g′x, g′y) in orthogonal uni- monotone polygon P respectively. If gx ≥
g′x then V L

l (g) ⊆ V L
l (g′) where l is the vertical line passing through g′x and

V L
l (g) is the part of V(g) which is left of line l.

Proof Let us assume V L
l (g) * V L

l (g′) i.e. there exist point p ∈ V L
l (g)

which can not be seen by guard g′. So line segment gp is possible and g′p
is not possible. This implies there is edge of P below gp such that g′p is
not possible. There exist a point q below gp such that vertical line passing
through q divides in to two line segment inside the polygon. This is the
contradiction of orthogonal uni-monotone polygon.

Approach for Placing Guards

Let us take orthogonal uni-monotone polygon P where lower chain is x-axis.
We are placing guards on x-axis such that each guard must hold the following
property:
P1: Placement of ith guard gi(gix , giy) ensure that left part of P from line
l must be visible by guard set {g1,2 , · · · , gi} where l is vertical line passing
through gix .
P2: ∀ ε > 0 if gi is shifted right with ε-distance then property P1 should not
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hold.

There are some notation which are used in following algorithm.
gl : Latest placed guard location
pg : The point where next guard is expected to be placed up to current vis-
iting vertex.
el : Latest edge either top edge or bottom edge.
θ : Either this angle measure minimum angle from gl to all reflex vertices up
to next top edge with x-axis if el is bottom edge or measure maximum angle
from p to all reflex vertices up to next bottom edge with x-axis if el is top
edge.
p : Intersection point of top edge and line passing through gl with angle θ.

Following algorithm holds above both property.

gl pg

gl

Figure 3.3: Guarding Orthogonal Uni-Monotone Polygon
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Algorithm 6: GuardingOrthogonalUnimonotonePolygon

Input: A orthogonal uni-monotone polygon P.
Output: Minimum Guarding set G.
Initialization: gl = φ, pg = φ, p = φ, el = φ, θ = 90◦1

begin2

Add each vertex in queue Q and u = delete(Q);3

// it return vertex which has lowest x-coordinates. In case of tie4

return lowest x-coordinates having lowest(highest) y-coordinates
depends on el.
while Q is not empty do5

v = delete(Q);6

if pg == φ then7

ProcX(u, v);8

else9

ProcY(u,v);10

u = v;11

if pg 6= φ then12

HandleGuard(v, el);13

end14
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ProcX(u, v) begin1

if edge uv is ht and p == φ then2

HandleGuard(v, el);3

else4

if edge uv is hb and p 6= φ then5

q = intersection point of x-axis and line passing through p6

with angle θ;
if qx ≤ vx then7

HandleGuard(v, el);8

else9

pg = q;10

else11

if v is reflex then12

if el is ht and p 6= φ then13

θ1 = angle between line pv and x-axis.14

if θ ≤ θ1 then15

θ = θ1;16

if el is hb and g 6= φ then17

θ1 = angle between line glv and x-axis.18

if (θ ≥ θ1 then19

θ = θ1;20

end21
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ProcY(u, v) begin1

if edge uv is ht then2

if ux ≤ pgx ≤ vx then3

HandleGuard(pg, el);4

if pgx ≥ vx and p == φ then5

HandleGuard(v, el);6

else7

if uv is hb then8

if p 6= φ then9

q = intersection point of x-axis and line passing through10

p with angle θ
if ux ≤ pgx ≤ vx then11

if qx ≤ pgx then12

HandleGuard(q, el);13

else14

HandleGuard(pg, el);15

else16

if qx ≤ pgx then17

if qx ≤ vx then18

HandleGuard(q, el);19

else20

pg = q;21

end22

HandleGuard(r, e) begin1

Place guard on x-axis at rx.2

gl = r, pg = φ, p = φ3

if e is ht then4

θ = 0◦5

if e is hb then6

θ = 90◦7

end8
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Note: This algorithm will take O(nlogn) time.

Lemma 3.2.6 Guarding set G on x-axis of orthogonal uni-monotone polygon
which satisfy properties P1 and P2 is unique.

Proof Let us assume there are two guarding set G and G′ which are not
equal i.e. ∃ g ∈ G and g′ ∈ G′ be the first ith guard on x-axis in G and
G′ which are not equal. Without loss of generality, let us take gx < g′x, By
property P2 if g is shifted right then it will loss property P1. Since g′ also
hold property P1 so right shifting of guard g must hold property P1. This is
contradiction to our assumption. �

Lemma 3.2.7 If guarding set G and G′ on x-axis of orthogonal uni-monotone
polygon where G satisfy property P1 but not P2 and G′ satisfy both properties
then |G| ≥ |G′|.

Proof Let us take guard set G′ = {g1, g2, · · · , gn} such that g1x < g2x <
· · · < gnx . Since G′ holds both properties so atleast one guard from G before
g1 otherwise G violate the property P1.
Now my claim is that at least one guard g ∈ G must be between gi to gi+1

where i = 1, 2,· · · , n-1. Let us assume this is not true i.e. ∃ i such that
there is no guard g ∈ G in between gi to gi+1. Let gr ∈ G be the right most
guard in G before gi and gl ∈ G be the left most guard in G after gi+1. let
us take vertical line l1 passing through gi and l2 passing through gl. Now,
shifting guard gi+1 towards right at gl. All point of p ∈ P between l1 and l2
either seen by gr or gl. If p is seen by gr then it must be seen by gi. If p is
seen by gl then it must be seen by gi+1. Thus all left part of polygon from
line l2 is seen by guards {g1, g2, · · · , gi+1} i.e. gi+1 does not hold P2. This
is contradiction to our assumption. Thus there are atleast one guard g ∈ G
must be between gi to gi+1 where i = 1, 2,· · · , n-1 i.e. |G| ≥ n this implies
|G| ≥ |G′|. �

Theorem 3.2.8 Cardinality of any guarding set on x-axis of orthogonal uni-
monotone polygon P which satisfy properties P1 and P2 is equal to cardinality
of optimal guarding of P.

Proof Let us assume G be optimal guarding of P and G′ be guarding on
x-axis of P which satisfy both properties. we have to show that |G| = |G′|.
case (i): |G| ≤ |G′|.
Since G is optimal guarding set so any other guarding set must have atleast
|G| number of guards. Thus |G| ≤ |G′|.
case (ii): |G| ≥ |G′|.
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Let us first vertical shifting of each guard of G on x-axis. This shifting does
not reduce the visibility of any guard (By lemma 3.2.3).
Now claim is that Guard set G must hold property P1.
Let us assume G = {g1, g2, · · · , gn} such that g1x < g2x < · · · < gnx does
not hold property P1 i.e. ∃ i such that {g1, g2, · · · , gi} can not see PL

l (gi)
where PL

l (gi) is left part of polygon P from vertical line l passing through
gi. The unseen part of PL

l (gi) by guards {g1, g2, · · · , gi} can not be seen by
{gi+1, gi+2, · · · , gn} (By lemma 3.2.5). This is contradiction of guarding set
G. Thus G hold the property P1.
If G hold property P2 then G = G′(By lemma 3.2.6) i.e. |G| = |G′| .
If G does not hold property P2 then |G| ≥ |G′| (By lemma 3.2.7).
Thus |G| ≥ |G′|.
From case(i) and case (ii),
|G| = |G|′. �
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Chapter 4

Guarding Monotone Polygon

4.1 Guarding Simple Monotone Polygon

Art Gallery problem was for vertex guarding was not known to be NP Hard
for Monotone polygon until E.Krohn and B.J. Nillson[2] proved it to be NP
Hard. NP hardness of the interior guarding does not immediately follow from
that claim. However, Erik Krohn and B.J. Nillson[7] gave the NP Hardness
proof of its interior guarding.

Definition (Visibility region of convex piece) Set of point p ∈ P such that p
can see whole convex piece.

4.1.1 Transformation of Guarding Problem in to Graph

Let us take simple monotone polygon P contains upper chain U(V, E) where
V is finite set of vertices and E is finite set of edges in upper chain. Consider
the sequence of convex pieces of upper chain C1, C2,· · · , Ck arranged in order,
where each piece consist of at least two vertices among which first and last
vertices are reflex except C1 and Ck. Last vertex of first convex piece C1 and
first vertex of last convex piece Ck must be reflex. ∪i=k

i=1Ci consist of all the
vertices of the U. For each convex piece we would find visibility region V(Ci)
where i = 1, 2,· · · , k inside P.
Now define graph G = (V ′, E ′) where V ′ contains vertices corresponding to
each convex piece and edge between two vertices u, v ∈ V ′ if intersection of
visibility region of corresponding convex pieces are non empty.

Approach

Since interior guarding of monotone polygon is NP hard, so our intention is
to reduce approximation factor. If graph G belongs to chordal graph then we
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would able to say 2-approximation factor for interior guarding. This will be
huge reduction from 30-approximation factor. My main focus is to identify
whether G belongs to such a graph class in which minimum clique cover can
be found in polynomial time.

Observation Graph G is not chordal graph.

(1,4)

(2,3)

1
2 3

4

Figure 4.1: Counter Example of Chordal Graph

4.1.2 Guarding Restricted Simple Monotone Polygon

Let us consider simple monotone polygon P such that it holds following two
properties:
P1: for each pair of continuous convex pieces of upper chain (lower chain) ∃
a point p ∈ P from where both convex pieces can be seen.
P2: for each pair of non continuous convex pieces of same upper chain (lower
chain) @ a point p ∈ P from where both convex pieces can be seen.

Lemma 4.1.1 Any guard inside restricted simple monotone polygon P can
see at most two continuous convex piece of the same chain.
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Proof Let us assume ∃ guard g inside P can see more than 2 continuous
convex pieces of same chain i.e. ∃ a point p from where two non continuous
pieces can be seen. This is contradiction to hold property P2 by P. �

Approach

Let us take restricted simple monotone polygon P and assume there are m
convex pieces C1, C2,· · · , Cm in upper chain and n convex pieces C ′1, C

′
2,· · · ,

C ′n in lower chain. Now we will find visibility regions V (C1), V (C2),· · · ,
V (Cm) and V (C1)∩ V (C2), V (C2)∩ V (C3),· · · , V (Cm−1)∩ V (Cm) for upper
chain and V (C ′1), V (C ′2),· · · , V (C ′n) and V (C ′1)∩ V (C ′2), V (C ′2)∩ V (C ′3),· · · ,
V (C ′n−1) ∩ V (C ′n) for lower chain. we will make linked list where nodes
contains V (Ci) named as left and V (Ci)∩V (Ci+1) named as common where
i = 1, 2,· · · , m-1 for upper chain. Similarly for lower chain.

Figure 4.2: Restricted Monotone Polygon
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Algorithm 7: Minimum Guarding Set

Input: Linked list of upper chain and lower chain.
Output: Guarding Set G
Initialization: G = φ1

begin2

while L1 6= φ and L2 6= φ do3

if L1 → common ∩ L2 → common 6= φ then4

Place a guard g in this non empty region5

G = G ∪ {g}6

L1 = L1 → next→ next7

L2 = L2 → next→ next8

else9

if L1 → common is left of L2 → common then10

Place a guard g in L1 → common region11

G = G ∪ {g}12

L1 = L1 → next→ next13

if L1 → common ∩ L2 → left 6= φ then14

L2 = L2 → next15

else16

if L2 → common is left of L1 → common then17

Place a guard g in L2 → common region18

G = G ∪ {g}19

L2 = L2 → next→ next20

if L2 → common ∩ L1 → left 6= φ then21

L1 = L1 → next22

while L1 6= φ do23

Place a guard g in L1 → common24

G = G ∪ {g}25

if L1 → next→ next == φ then26

L1 = L1 → next27

else28

L1 = L1 → next→ next29

while L2 6= φ do30

Place a guard g in L2 → common31

G = G ∪ {g}32

if L2 → next→ next == φ then33

L2 = L2 → next34

else35

L2 = L2 → next→ next36

end37
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Chapter 5

Conclusion and Further Work

In this thesis, some special cases of art gallery problem for uni-monotone and
monotone polygon have been studied. We have given the algorithm for find-
ing the partition of guarding set of size m such that each set in partition cover
whole simple uni-monotone polygon if exists. For orthogonal uni-monotone
polygon, an O(nlogn) time algorithm for finding optimal guarding. We have
given optimal guarding algorithm for special case of monotone polygon. In
case of simple monotone polygon, if upper chain (lower chain) transform in to
graph based on visibility region of convex pieces then it is not chordal graph.
Here there is challenge to find such graph classes in which it belongs and
polynomial time minimum clique cover algorithm exist. As we found that
graph theoretic orientation of art gallery problem may give better result.
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