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Abstract

Unit testing and verification constitutes an important step in the validation
life cycle of large and complex multi-function software code bases. Many
unit verification methods often suffer from the problem of false negatives,
when they analyse a function in isolation and look for errors. It often turns
out that some of the reported unit failures are infeasible, 1.e. the valuations
of the function input parameters that trigger the failure scenarios, though
feasible on the function in isolation, cannot occur in practice considering
the integrated code, in which the function-under-test is instantiated. To
address this problem, we present in this paper, an automated two-stage fail-
ure scenario classification and prioritization strategy that can filter out false
negatives and cluster them accordingly. In the first stage, we use Daikon
to identify input constraints on the function under test, by mining invari-
ants on the function boundary. Each invariant thus generated is assigned a
confidence by Daikon. In the second stage, we associate a confidence to
each failure scenario by analysing the invariants they are in conflict with,
and compute their respective confidence values. Failures with similar char-
acteristics are clustered together and assigned the same confidence value.
The confidence values enable us assign priorities to the failure scenarios
and help us prioritize the bug fixing activity. Experiments show that our
clustering and prioritization scheme works quite well in practice.
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Chapter 1

Introduction

Verification is a significant chunk of a design cycle that is lengthening.
Bugs are frequent on software. Software bugs are expensive. Failures at
unexpected time can cost lives and money. As society becomes increas-
ingly software-dependent, bugs also reduce our productivity and threaten
our safety and security. Decreasing these direct and indirect costs is desir-
able as well as a necessity.

Even though augmented with extensive documentation, software often
behaves in completely surprising ways [11]. The complexity of verification
lies in the complexity of the software itself. Documentations are expected
to include all possible details for ease of understanding and maintenance.
Important information is often hidden in a mass of irrelevant detail making
bugs hard to detect. Design mistakes are often discovered too late, making
it expensive or even impossible to correct them.

There are two basic approaches to validation- testing and formal veri-
fication. Software testing is done by running the executable (obtained by
compilation) on multiple inputs usually on the target platform. Testing is
a widespread validation approach in the software industry and has a lot of
benefits. Testing can be (partially) automated. It has been seen that it can
detect a lot of bugs. Formal verification proves or disproves the correctness
of intended algorithms underlying a system with respect to a certain for-
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mal specification or property, using formal methods of mathematics, hence
leaving no doubt on the correctness of verified software. Formal methods
can reveal errors that may not be detectable by million cycles of testing.
This aspect is especially valuable in security assurance, because security
attacks often exercise an application in unforeseen and untested ways.

A major drawback of testing on critical systems is that it is very costly
and time consuming. Testing is not exhaustive and can leave hidden errors.
These errors may show up later at unexpected times after deployment which
is highly undesirable. Model checking also has its own challenges. Com-
plex data types, pointers, finding good abstractions, generating complex
invariants are some of them which are not completely resolved. Check-
ing functional properties, exploiting modularity, and achieving scale with
respect to data and concurrency are issues that need to be addressed for
verifying large softwares.

Professional coding practices typically advocate the development of a
large complex software code base as a collection of functions and their
interaction. Each function typically consists of a set of parameters, ap-
propriate valuations of which determine the context in which the function
will be instantiated. The execution of the entire software is the organized
orchestration of the control and data flow induced by the top level code,
with inline function calls in between to fulfil the top level design objec-
tive. Such modular design styles not only facilitate development but also
diagnosis and debug.

Verifying correctness of a software code at a large scale has always been
a grand challenge. Traditional test methods typically run out of steam,
considering the fact that the number of test scenarios arising out of the
possible orchestrations of the different functions and their instantiations,
i1s beyond the limit of what they can achieve in reasonable time. Formal
verification methods, on the other hand, attempt at exhaustive verification
of abstractions of the underlying infinite software state space, with limits
on the amount of promise they can deliver. The complex state space arising
out of the possible interleaving and instantiations, typically give rise to an
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void main() {
|, f(int x, inty) {

if (m +n <5) { — |/

f(m, n); // point p / // point r
} " if (x +y > 10)
if (a+b>10) { assert false;
}e'l'se{

"f(a. b); // point g

Figure 1.1: Infeasible failure scenario

enormous state space, traversal of which is an infeasible proposition.

A popular practical approach often found to be successful in practice is
modular testing or verification. A modular approach essentially treats each
module in isolation and tries to come up with an exhaustive guarantee on its
functional correctness. Unit testers typically target some coverage criterion
and generate test scenarios to achieve a reasonable proportion of them in as
much time as they can. A number of unit bugs are expected to be revealed
as an outcome of this exercise, leading to possible refinements of the buggy
modules. Formal approaches for modular analysis essentially attempt to
analyse (either symbolically or explicitly) every possibility of the presence
of a bug inside the unit, and attempt to prove their presence, usually guided
by an assertion violation or reachability of error labels. This can possibly
lead to some quick unit level violations, which can be diagnosed and fixed.

While modular approaches are quick and scalable in finding unit bugs,
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they often suffer from the problem of false negatives. A failure scenario
reported by a unit tester may actually be infeasible, that is, the test data
that triggered the failure scenarios, although reasonable when looking at
the unit-under-test in 1solation, are outside of their boundaries when con-
sidering the integrated software code. Similarly, failure scenarios received
from a formal verifier analysing a unit in isolation, may actually be spu-
rious, considering the fact that the state pointed to may be unreachable in
the integrated code base, or the failure run may not actually occur. In both
the cases, these false negatives received from a unit level verifier, need to
be diagnosed and analysed for correctness. False alarms may lead to need-
less fixes, which has to be avoided. Figure 1.1 shows an infeasible failure
scenario. The function f(int X, int y) may report failure scenarios for unit
tests which drive input values such that the condition (x +y > 10) is met at
point . However, when put in the context of main, it is called at program
points p and q, where the input sets (m, n) and (a, b) have their value con-
straints. It is clearly evident that due to the guard conditions at the points
from which f is called, the error triggering condition can actually never
happen in practice. Therefore, this failure scenario is spurious and needs to
be filtered out.

To get around this problem, researchers have typically worked on en-
riching the unit level verifier with more knowledge about the environment.
It is acknowledged that an exhaustive scalable verification solution at the
integrated system level is not easy to achieve, and unit validation is a much
needed step before attempting to scale up to the system level. Researchers
have suggested enriching the unit verifier with as much knowledge about
the unit’s instantiating environment as possible to get around the false neg-
atives. On one extreme, several researchers have looked at the possibility
of unit verification, in universal environments, assuming all valuations and
combinations of the unit parameters in all scenarios. While this leads to
better theoretical guarantees, this is not a viable option, considering the
complexity of the underlying verification problems. On the other extreme,
several articles report the possibility of refinement style of reasoning, which
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may start with zero knowledge about the instantiating environment, and in-
crementally add as much revealed in the false verification steps. None of
these approaches have been reported to be successful at the large scale.

A viable alternative to get around the problem of false negatives, is to
possibly analyse and rule out the scenarios which exhibit call sequences /
valuations, which will never occur in the integrated code. While it is possi-
ble for the developer to actually achieve this in practice, the number of such
scenarios may be overwhelming and end up in a needlessly painstaking ex-
ercise. Moreover, in a distributed development environment, and a concur-
rent code base, it may actually be an infeasible proposition to achieve this
plan.

The motivation of our work is as follows. Each reported failure scenario
can be best analysed from the perspective of the information about the call-
ing environment that the scenario assumes. Failures which depict scenarios
that are in more conformance to the calling environment, should be exam-
ined with more priority, since they possibly depict true bugs. The ones,
which assume calling valuations that contradict common knowledge about
the function’s environment, have a greater chance to be spurious. Moreover,
many of the failures may actually relate to similar flows in the code, and
need not be separately examined. Intuitively, the infeasible failure scenar-
10s tend to cluster because they are relatively likely to relate to one specific
violated input constraint. Inspecting one failure scenario within the cluster
yields information about the others. For example, if the failure scenarios in
one cluster are perfectly correlated, then classifying one effectively classi-
fies them all. If one failure scenario is identified as infeasible, so are the
others and can be skipped. If one failure scenario relates to a true bug, so
may be the others and need to be examined.

We present in this work, an automated framework for failure scenario
classification and prioritization. Our proposed methodology has two steps
as explained below.

e In the first stage, we use Daikon [7] to identify input constraints on
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the function under test, by mining invariants on the function bound-
ary. Each invariant thus generated is assigned a confidence by Daikon.

e In the second stage, we associate a confidence to each failure sce-
nario by analysing the invariants they are in conflict with, and their
respective confidence values.

Failures with similar characteristics are clustered together and assigned the
same confidence value. The idea behind this clustering is that, failures con-
flicting with the same invariants might be manifestations of similar errors.
The confidence values enable us assign priorities to the failure scenarios
and help us prioritize the bug fixing activity. This work is inspired by
a similar work on ranking and classifying unit level failure scenarios for
hardware logic code bugs, in [13].

We performed an empirical evaluation of this framework on replace,
a program written in C which is a part of Siemens Benchmark Suite [10].
Results demonstrate that our proposed method works quite well in practice.

1.1 Motivation and Objective

The problem in this thesis can be articulated with the help of Figure 1.1. S
represents the software in which the module to be tested resides. f is the
function which we want to verify.

It would be easy to verify function f in isolation. But, this approach of-
ten suffers from the problem of false negatives. A failure scenario reported
by a unit tester may actually be infeasible, that is, the test data that trig-
gered the failure scenarios, although reasonable when looking at f in isola-
tion, are outside of their boundaries when considering the context of main.
Similarly, failure scenarios received by formally verifying or analysing a
unit in isolation, may actually be spurious, considering the fact that the
state pointed to may be unreachable in the context. In both the cases, these
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Figure 1.2: Framework

false negatives received from a unit level verifier, need to be diagnosed and
analysed for correctness. False alarms may lead to needless fixes, which
has to be avoided.

The main challenge in this problem is to determine which scenario can
be created by the context, and verify whether a given unit level failure sce-
nario can at all be simulated in the software. In this example we would like
to know can f at all be called when condition (z + y > 10) holds. A vi-
able alternative to get around the problem of false negatives, is to manually
analyse and rule out the scenarios which exhibit call sequences / valuations,
which will never occur in the integrated code.

While it is possible for the developer to actually achieve this in prac-
tice, the number of such scenarios may be overwhelming and end up in a
needlessly painstaking exercise. Moreover, in a distributed development
environment, and a concurrent code base, it may actually be an infeasible
proposition to achieve this plan. If we try to solve the problem using static

10



analysis of program to derive the feasibility or infeasibility of a scenario
we are faced with scalability issues of the method. The motivation of this
problem is to reduce the manual effort spent in ruling out infeasible scenar-
108.

The objective of this thesis is to use dynamic invariants to aid the exist-
ing approaches to verifying a function. Instead of using formal verification
or test suite as a singular technology for verification problem described
above, this thesis aims to use bug scenarios on f rather than on S to improve
coverage of relevant behaviour of f and restricts the attention of the verifi-
cation engineer to those bug scenarios on f that are more likely to occur in
S. Specifically this thesis addresses the following broad objectives.

1. Applications are usually built by assembling various robust reusable
software components together. Within a system S, a robust code
module f written for general use can be used. It may be later cus-
tomized for specific purpose by making small changes. If we check f
in isolation a lot of errors may pop up due to the customization of our
module which takes care of only those cases of inputs possible in our
scenario. These scenarios may be limited by the system S as input
to f. These spurious errors need to be ignored over errors that may
be introduced due to the removal/addition of control flow paths that
are required/not-required. It is not feasible for a verification engineer
to examine all failure scenarios and determine their correctness. The
objective of this work is to extract knowledge of the environment of
f in the form of dynamic invariants and use these to filter out failure
scenarios in terms of their likelihood of being real.

2. Software debugging is done in various contexts. Software evolu-
tion is an ongoing process. Our methodology can be useful in pro-
gram evolution. Usually components are modified or cleaned for ef-
ficiency, portability or readability. In such a case there might ex-
ist a very bug prone module f in a system S. Whenever any minor
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changes are made to the system, it is required that the robustness of f
be rechecked. We would like to see if the changes in S can lead to a
scenario where function f does not work fine.

3. Given a set of failure scenarios on a function f, when ranking failure
scenarios on their occurrence in real scenarios, we would also like
to minimize the scenarios to be actually examined by the developer
manually. We would not like a developer to examine the manifesta-
tion of a single error more than ones. We would like to save such an
effort and try to give error scenarios which point out more bugs in
less number of examinations done by a developer.

1.1.1 A toy example

The problem in this thesis can be illustrated with the help of a very simple
example listed below. Program S represents the software in which the mod-
ule to be tested resides. int div_by_f (int c, int f) is the function which we
want to verify. Bug scenarios on int div_by_f (int c, int f) are given, derived
either through unit testing or formal verification of int div_by _f (int c, int f)..
It is expected to compute some non-zero function of ¢ and f and return a
value. When return value 1s 0, it can be considered as an erroneous return
where the function does not adhere to the requirement.

//Program S
//Targeted module div_by_f( int c, int f)

int gcd(int u, int v) {
int t;
if(v==0) v = u;
while (v) {
t = u;
u=v;
v=t%v,;

}

u=u<0?—-u: u; /x abs(u) */

return u == 0 ? 1: u;
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int div_by_f( int c, int f){
int i=0,result;

if (¢ >0){

1 = c + 20xf;
printf ("%d” ,i);
}
if (i%f != 0)
return 0;//error
if (f== 0)
return 0;//error
result = i/f;
if (result < 0)
return 0;//error

return result;

}

int main(int argc ,charx argv[]){

int

S

v

X

s,t,a,v;
canf ("%d %d %d”,&s.,&t,&a) ;
= ged(s,t);

= div_by_f(s, v);

assert(x);

switch (a)

{

case 1:
x = div_by_f(t, v);
break ;

case 2:
x = div_by_f(s, v);
break;

case 3:

x = div_by_f(s+t, v);
break ;
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case 4:
x = div_by_f(s*t, vxv);
break ;

}

assert(x);
return O;

}
Simple Example

Unit testing isolates each part of the program and shows that the individual
parts are correct. If we verify the function div_by _f() in isolation, a unit
tester may give a lot of error scenarios. For example, it can give scenarios
corresponding to the following evaluations when a call to div_by_f() is made

unit—-under-test:div_by_f ()
1. (c=11,£f=2)

2. (c=-189, £f=9)

3. (c=10, £=0)

As a unit tester has no knowledge of the conditions under which a call
to div_by_f() can be made, it might give a lot of scenarios which are not
feasible at all. For example, scenario 1 is never possible in the current
context of the function being called as the environment forces the condition
c¢%f == 0 as f is always a factor of c. Scenario 2 on the other hand, is
possible in the given context of the function. For evaluation s = —189,¢ =
153, a = 2, fis called with given parameters ¢ = —189, f = 9 in the failure
scenario and hence this failure is real. Also scenario 3 is never possible
in the current context of the function being called as the environment also
forces the condition f >= 1 as fis always, a gcd of two numbers or product
of two gcds, across all calls.

Thus, when presenting these scenarios to a developer for debugging, we
would like to remove scenarios which are not possible. Our objective is to

14



classify spurious and real errors among all the error scenarios presented by
testing a unit-under-test.

A natural question that arises is "How do we at all know the kind of con-
ditions imposed by the environment?” Until and unless these conditions are
specified by the developer we may not know them. Even if they are spec-
ified in a documentation, constant updation to a software may result in vi-
olation of such conditions. "How do we know the most current situation?”
To get around this problem, researchers have typically worked on enriching
the unit level verification problem with more knowledge about the environ-
ment. It is acknowledged that the verification problem at the integrated
system level is not easy to achieve, and hence, researchers have suggested
enriching the unit verified with as much knowledge about the unit’s instan-
tiating environment as possible to get around the false negatives. On one
extreme, several researchers have looked at the possibility of unit verifica-
tion, in universal environments, assuming all valuations and combinations
of the unit parameters in all scenarios. While this leads to better theoret-
ical guarantees, this is not a viable option, considering the complexity of
the underlying verification problems. On the other extreme, several articles
report the possibility of assume guarantee style of reasoning, which may
start with zero knowledge about the instantiating environment, and incre-
mentally add as much revealed in the false verification steps. None of these
approaches have been reported to be successful at the large scale. In this
thesis we try to answer these questions with the help of dynamic invariants.

How will formal verification work? Formal verification proves or dis-
proves the correctness of intended algorithms underlying a system with re-
spect to a certain formal specification or property, using formal methods.
For small programs it is doable but for large software it is not feasible. In
reality programs are run on a computer with bounded memory. But even
with bounded memory,complexity of verification in practice is too high for
a finite-state model-checker to verify within a reasonable amount of time.

15



That is formal methods do not scale to our requirements.

Will static invariants serve our purpose? Static invariants are derived
using the analysis performed without actually executing programs. Analy-
sis is performed directly on the source code. We could use static invariants
to rule out certain failure scenarios. A failure scenario contradicting even
a single invariant is definitely a spurious failure and hence can be ruled out
completely, and need not be considered at all by the developer and the need
of ranking does not come into picture. Our methodology uses invariants to
determine whether a failure scenario is feasible or not. It does not seem to
restrict its use to dynamic invariants. It definitely allows the use of static
invariants in its framework. But static invariants have their own limitations.
The issues that arise in static invariants is that, scalability of existing ap-
proaches to static invariant generation is severely limited due to the high
computation cost of the underlying symbolic reasoning techniques [8] and
cannot mine invariants from complex data structure representations. These
limitations encourage the use of dynamic invariants which do not suffer
from scalability issues. A failure scenario that contradicts an invariant with
high confidence is likely to be false.

1.2 Summary of Contributions

Concretely our objective can be stated as below.

Problem We are given < S, f,T'C' > consisting of
e S is the software in which the targeted module lies.

e fis the targeted module which belongs to the software S.

16



e TC is the set of bug scenarios or failure scenarios on module f. TC
contains n number of bug scenarios.Each such scenario gives a faulty
execution of f.

We would like to-

e Classify and rank the bug scenarios among the test cases to be pre-
sented to the developer for correction in decreasing order of confi-
dence, rank or belief in the scenario.

We study the problem of ranking failure scenarios on a module of a soft-
ware. Concretely, the contributions of this work are as follows-

1. Our ranking method focuses on a specified module f which is to be
targeted and ranks failure scenarios so that higher ranked failure sce-
narios are more likely to be true in the given software. This method
combines dynamic invariants mined on the software with buggy test
scenarios for the original module.

2. We also classify failure scenarios into different groups depending on
the type of environment they provide to the module being tested.

So we present a ranking and clustering methodology based on the dynamic
behavior of the system at certain program points. This behaviour is charac-
terised by invariants, that hold at a point and, their confidence measures.

Organisation The thesis is organised as follows-

Chapter 1 This is the introductory chapter which discusses the objective
and motivation of the problem addressed in the dissertation.

Chapter 2 This chapter presents background literature in the area of this
research.

17



Chapter 3 This chapter presents a detailed methodology for invariant guided
bug prioritization.

Chapter 4 This chapter presents certain applications and possible future
work regarding invariant guided bug prioritization.

Chapter 5 This chapter give details of the various tools used to implement
our framework.

Chapter 6 This chapter presents a case study on replace which is a part of
Siemens Benchmark Suite.

Chapter 7 This chapter summarizes our contributions and scope for future
work.

18



Chapter 2

Background and Related
Work

The primary aim of this chapter is to provide some background concepts
that are necessary for developing the foundations of the thesis. The goal
of verification in general is to assure that software fully satisfies all the ex-
pected requirements. There are two fundamental approaches to verification.
First is dynamic verification, also known as Test or Experimentation. This
1s good for finding bugs. In simple words testing is executing a system in
order to identify any gaps, errors. Second is static verification, also known
as Analysis.

2.1 Static analysis approaches

Static program analysis is the analysis of computer software that is per-
formed without actually executing programs (analysis performed on exe-
cuting programs is known as dynamic analysis). In most cases the analysis
is performed on some version of the source code and in the other cases
some form of the object code. The term is usually applied to the analysis
performed by an automated tool. Static analysis can be applied to formally
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verify properties of a given program.

Static analysis, which automates the abstraction of the program execu-
tion, always terminates. Some of the implementation techniques of formal
static analysis include Model checking, Data-flow analysis, Abstract inter-
pretation, Assertions, Symbolic execution.

Model checking considers systems that have finite state or may be re-
duced to finite state by abstraction [3]. Specifications are expressed in tem-
poral logic, and the system is modeled as a state transition graph. An effi-
cient search procedure is used to determine whether or not the state transi-
tion graph satisfies the specifications.

Data-flow analysis is a technique for gathering information about the
possible set of values calculated at various points in a computer program
[4]. A program’s control flow graph (CFG) is used to determine those parts
of a program to which a particular value assigned to a variable might propa-
gate. The information gathered is often used by compilers when optimizing
a program.

Abstract interpretation models the effect that every statement has on
the state of an abstract machine (i.e., it executes’ the software based on
the mathematical properties of each statement and declaration) [5]. This
abstract machine over-approximates the behaviours of the system: the ab-
stract system is thus made simpler to analyze, at the expense of incomplete-
ness. Not every property true of the original system is true of the abstract
system. If properly done, abstract interpretation is sound. In other words,
every property true of the abstract system can be mapped to a true property
of the original system.

Use of assertions in program code was first suggested by Hoare logic
[9]. There is tool support for some programming languages e.g., the SPARK
programming language which is a subset of Ada and, the Java Modeling
Language JML using ESC/Java and ESC/Java2, Frama-c WP (weakest
precondition) plugin for the C language extended with ACSL (ANSI/ISO
C Specification Language).

Symbolic reference is used to derive mathematical expressions repre-
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senting the value of mutated variables at particular points in the code [12].
Instead of executing a program on a set of sample inputs, a program is
”symbolically” executed for a set of classes of inputs. That is, each sym-
bolic execution result may be equivalent to a large number of normal test
cases.

2.1.1 CEGAR

Many approaches have been considered for formal verification, all of them
being approximations of the program semantics (formally defining the pos-
sible executions in all possible environments) formalized by abstract inter-
pretation theory.

Deductive methods produce formal mathematical correctness proofs us-
ing theorem provers or proof assistants and need human interaction to pro-
vide inductive arguments (which hardly scales up for large programs which
are modified over long periods of times) and help in proofs (such as proof
hints or strategies);

Model checking exhaustively explores finitary models of program exe-
cutions, which can be subject to combinatorial explosion, requires the hu-
man production of models (or may not terminate in case of automatic re-
finement of the model). An alternative is to explore partially the model but
this is then debugging, not verification.

Static analysis techniques which automates the abstraction of the pro-
gram execution, always terminates but can be subject to false alarms (that
is warnings that the specification may not be satisfied although no actual
execution of the program can violate this specification)

The state explosion problem remains a major hurdle in applying model
checking to large industrial designs [2]. Abstraction is certainly the most
important technique for handling this problem.

This technique computes an upper approximation of the original pro-
gram. Thus, when a specification is true in the abstract model, it will also
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be true in the concrete design. However, if the specification is false in the
abstract model, the counterexample may be the result of some behavior in
the approximation which is not present in the original model. When this
happens, it is necessary to refine the abstraction so that the behavior which
caused the erroneous counterexample is eliminated. In CEGAR informa-
tion from the erroneous counterexample is used to refine the abstraction.
This technique is useful in keeping the size of the abstraction small and
hence manageable.

2.2 Dynamic program analysis

Dynamic program analysis is the analysis of computer software that is per-
formed by executing programs on a real or virtual processor. For dynamic
program analysis to be effective, the target program must be executed with
sufficient test inputs to produce interesting behavior. Use of software test-
ing techniques such as code coverage helps ensure that an adequate slice of
the program’s set of possible behaviors has been observed. Also, care must
be taken to minimize the effect that instrumentation has on the execution
(including temporal properties) of the target program. Inadequate testing
can lead to catastrophic failures

There has been a lot of work on techniques combining static and dy-
namic analysis. A good example would be a tool named DART, for auto-
matically testing software. DART (Directed Automated Random Testing)
takes the best of both approaches (precision of dynamic analysis AND ef-
ficiency of static analysis) It combines three main techniques:

1. automated extraction of the interface of a program with its external
environment using static source-code parsing;

2. automatic generation of a test driver for this interface that performs
random testing to simulate the most general environment the program
can operate in; and
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3. dynamic analysis of how the program behaves under random testing
and automatic generation of new test inputs to direct systematically
the execution along alternative program paths.

Together, these three techniques constitute Directed Automated Random
Testing, or DART for short. The main strength of DART is thus that testing
can be performed completely automatically on any program that compiles
there is no need to write any test driver or harness code. During testing,
DART detects standard errors such as program crashes, assertion violations,
and non-termination.

2.3 Invariants

A program invariant is a property that is true at a particular program point or
points, such as might be found in an assert statement, a formal specification,
or a representation invariant. Examples include y = 4 x x + 3; x > abs(y);
array a contains no duplicates;n = n : child : parent(for all nodes n);
size(keys) = size(contents);. Invariants explicate data structures and al-
gorithms and are helpful for programming tasks from design to mainte-
nance. Despite their advantages, invariants are usually missing from pro-
grams. An alternative to expecting programmers to fully annotate code with
invariants is to automatically infer likely invariants from the program itself.
Invariants are valuable in many aspects of program development, including
design, coding, verification, testing, optimization, and maintenance. They
also enhance programmers’ understanding of data structures, algorithms,
and program operation. Invariants can be used in numerous ways. They
can be used for documentation as they characterize certain aspects of pro-
gram execution, and refine documentation as automatically determined in-
variants can give the most recent information. Assumptions and assertions
can be cross checked with determined invariants. When a programmer has
knowledge of invariants, bugs inserted due to their violation can be avoided.
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Invariant detection recovers a hidden part of the design space: the in-
variants that the programmer had in mind. This can be done either statically
or dynamically. Static analysis examines the program text and reasons over
the possible executions and runtime states. The most common static anal-
ysis is dataflow analysis, with abstract interpretation as its theoretical un-
derpinning. The results of a conservative, sound analysis are guaranteed
to be true for all possible executions. Static analysis has a number of lim-
itations. It cannot report true but undecidable properties or properties of
the program context. Static analysis of programs using language features
such as pointers remains beyond the state of the art because the difficulty of
representing the heap forces precision-losing approximations and produces
weak results. Dynamic analysis, which runs the program, examines the ex-
ecutions, and reports properties over those executions, does not suffer these
drawbacks and so complements static analysis

2.4 Daikon

Daikon is an implementation of dynamic detection of likely invariants [7];
that is, the Daikon invariant detector reports likely program invariants.

Dynamic invariant detection runs a program, observes the values that
the program computes, and then reports properties that were true over the
observed executions. Dynamic invariant detection is a machine learning
technique that can be applied to arbitrary data. Daikon can detect invariants
in C, C++, Java, and Perl programs, and in record-structured data sources.

Dynamic analysis, runs the program, examines the executions, and re-
ports properties over those executions. Dynamic invariant detection occurs
in three steps: the program is instrumented to write data trace files, the
instrumented program is run over a test suite, and then the invariant detec-
tor reads the data traces, generates potential invariants, and checks them,
reporting appropriate ones.
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2.5 Test Case Prioritization

Test case prioritization techniques schedule test cases in an execution order
according to some criterion. The purpose of prioritization is to increase the
likelihood that if the test cases are used for regression testing in the given
order, they will more closely meet some objective than they would if they
were executed in some other order. Test case prioritization can address a
wide variety of objectives, including increasing the rate of fault detection,
the rate of detection of high-risk faults, the likelihood of revealing regres-
sion errors related to specific code changes earlier in the regression testing
process, their coverage of coverable code in the system, their confidence
in the reliability of the system under test at a faster rate. In practice, and
depending upon the choice of objective, the test case prioritization problem
may be intractable: for certain objectives, an efficient solution to the prob-
lem would provide an efficient solution to the knapsack problem. Thus,
test case prioritization techniques are typically heuristics with the goal to
optimize rate of fault detection. Various heuristics have already been ex-
plored for a specific objective function [14]. Some of them are randomized
ordering, prioritizing in order of coverage of branches, prioritizing in or-
der of coverage of branches not yet covered, prioritizing in order of total
probability of exposing faults, prioritizing in order of total probability of
exposing faults adjusted to consider effects of previous tests prioritizing in
order of coverage of statements, prioritizing in order of coverage of state-
ments not yet covered. Many more have been suggested in [6].

We have introduced some work on techniques combining static and dy-
namic analysis. In this work, we present a technique that combines unit
testing or model checking of a functional unit with use of dynamic invari-
ants. A goal of this work is to suggest, a means to rank and cluster a bunch
of failure scenarios on a function that need to be examined by developers.
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Chapter 3
Detailed Methodology

In this section, we elaborate on the different steps of our method. Large
software consist of smaller functional units. These functional units interact
among themselves by getting inputs and providing outputs among them-
selves. Although verification of these huge software is not scalable it can
be robust for smaller functional units. Our work gives a method to have
some advantage of verification of smaller functional unit, in its verification
in a huge software, without compromising hugely on the robustness.

When verifying a module it may either be done by testing or formally
verifying the module. While testing a module it may be modeled as a closed
system by assuming inputs from the environment as being generated non
deterministically by the system itself. Testing a component in a free en-
vironment gives a good coverage for the individual component although
it might not be exhaustive. Formal verification on the other hand will be
exhaustive and give all possible errors if the technique is applicable to the
targeted module.

A function being verified may be called from different functions with
widely different parameters. When verifying the function the conditions
imposed by these different functions may not be known. This may result
in hundreds of failure scenarios on the same function which might be too
many to be examined by a programmer. Many of these failure scenarios
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may be fictitious. That is, the test data that triggered the failure scenarios,
although reasonable when looking at the function in isolation, is actually
outside of its input boundaries when considering the whole system. In other
words, the unit validation process may have generated many infeasible sce-
narios. Bugs may be cases where the given module cannot handle a certain
kind of environment which is feasible in the software. We want to help
catch this unhandled environment as early as possible. So we need a way to
rank the failure scenarios. We rank them on the confidence of occurrence
of the certain kind of environment in the software.

Also if one failure scenario from this unhandled environment is taken
care of, it might lead to elimination of other failure scenarios arising in the
same environment. Thus bugs providing a similar kind of environment to a
module are grouped into a single bug family. Analysing one will take care
of the rest. Thus clustering might reduce the number of failure scenarios to
be examined by the programmer.

Our objective is to rank failure scenarios produced on a module such
that higher ranked ones are more likely to be real. We present the failure
scenarios to the designer in decreasing order of ranks.

Contribution of this work is a ranking and clustering methodology based
on dynamic invariants and confidence measures. We rank them in a way
such that higher ranked ones more likely to be real, with the aim to facili-
tate faster recognition of true errors, and reducing some manual effort.

This thesis presents the findings of our research on developing method-
ologies for aiding verification of a targeted module in large softwares and
demostrate our methodologies on a test case. This chapter presents in detail
our major contributions. A short summary is as below-

Methodology Our process involves following steps as summarised by the
diagram in Figure 3.1.

1. Invariant Mining with beliefs: Mine invariants over the interface of
f from simulation traces on S. Invariants capture conditions on input
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Figure 3.1: Process Outline

scenarios fed to f by S, and thus give the details of the environment
for f provided by S. Each invariant has an associated confidence of
its correctness.

2. Failure scenario Ranking: Failure scenario which contradict invari-
ants of high confidence are given lower ranks.

This work focuses on using dynamic invariants from execution traces for
the purpose of ranking. A dynamic detector of program invariants exam-
ines variable values captured during execution over execution traces and
reports properties and relationships that hold over those values. We use a
random input generator or given test suite to generate execution traces on
S. These traces are used as input to a dynamic invariant detector Daikon to
get invariants on inputs of f. S interacts with f by passing variables as input
to f. And so by mining invariants on this interface we get the summary of
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environment provided by S to f. We propose to use this summary to classify
failure scenarios of unit test on f into ones which have a high likelihood of
being true and filter out the ones which are likely to be fictitious. Also, we
wish to create failure groups that provide a similar environment to f during
their course.

3.1 Illustration on the toy example

We consider the simple example in Chapter 1 to illustrate our approach.We
want to verify the function int div_by_f( int c, int f). It is expected to com-
pute some non-zero function of ¢ and f and return a value. When return
value 1s O, it is considered as an erroneous return where the function does
not adhere to the requirement. Unit testing isolates each part of the program
and shows that the individual parts are correct. If we verify the function
div_by _f() in isolation, a unit tester may give a lot of error scenarios. For
example, it can give scenarios corresponding to the following evaluation
when a call to div_by _f() is made

unit-under-test:div_by_f ()
1. (c=11,£f=2)

2. (c=-189, £=9)

3. (c=10, £=0)

As a unit tester has no knowledge of the conditions under which a call
to div_by_f() can be made, it might give a lot of scenarios which are not
feasible at all. For example scenario 1 is never possible in the current con-
text of the function being called as the environment forces the condition
c¢%f == 0. For non trivial software we cannot find such conditions with
definiteness. Our objective is to classify spurious and real error among all
the error scenarios presented by a unit tester. We employ dynamic invari-
ants to rule out some of the scenarios. We use the associated confidence of
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each dynamic invariant to compute the rank of a failure scenario. The two
steps summarised earlier are given as applied to the example.

1 //Program S
2 //Targeted module div_by_f( int c, int f)

3 int gcd(int u, int v) {

4 int t;

5 if(v ==0) v = u;

6 while (v) {

7 t = u;

8 u=v;

9 v=t%v,

10 }

11 u=u<O0?—-u: u; /x abs(u) x/
12

13 return u == 0 ? 1: u;

14 }

15

16 int div_by_f( int c, int f){
17 int i=0,result;

18

19 if (¢ >0){

20 i =c¢c + 20xf;

21 printf ("%d” ,i);

22 }

23 if (i%f != 0)

24 return 0;//error
25 if (f== 0)

26 return 0;//error
27 result = i/f;

28 if(result < 0)

29 return 0;//error
30

31 return result;

32 }

33

34 int main(int argc ,charx argv[]){
35

36 int s,t,a,v;

37

38 scanf ("%d %d %d”,&s,&t,&a);
39

40 v = gcd(s,t);

41

42 x = div_by_f(s, v);
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43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

assert(x);

switch (a)

{

case 1:
x = div_by_f(t, v);
break;

case 2:
x = div_by_f(s, v);
break;

case 3:
x = div_by_f(s+t, v);
break ;

case 4:
x = div_by_f(sx*xt, vxv);
break ;

}

assert(x);
return O;

}
Simple Example

3.1.1 Invariant Mining with beliefs

A program invariant is a property that is true at a particular program point
or points. Despite their advantages, invariants are usually missing from
programs. An alternative to expecting programmers to fully annotate code
with invariants is to automatically infer likely invariants from the program
itself. Invariant detection recovers a hidden part of the design space: the in-
variants that the programmer had in mind. This can be done either statically
or dynamically. Static analysis examines the program text and reasons over
the possible executions and runtime states. Static approaches are not scal-
able and hence not used widely in practice. Daikon [7] is an invariant miner.
A dynamic invariant detector runs a program, observes the values that the
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program computes, and then reports properties that were true over the ob-
served executions. It does not suffer from the scalability drawbacks faced
by static analysis and so complements static analysis. Invariants over the
interface of div_by_f() from simulation traces on S are mined using daikon.
Invariants capture conditions on input scenarios fed to div_by _f() by S, and
thus give the details of the environment for div_by _f() provided by S. Each
invariant has an associated belief. Dynamic invariants are mined on the ex-
ample on inputs c, f of function div_by _f(int c, int f) which are as given in
Figure 4.2.

1

2 ..div_by_f () :::ENTER

3

4 £ >=1 confidence = 0.9
5

6 ¢ % f£f==0 confidence = 0.7
7 ==== _ _

Figure 3.2: Invariants on Simple example

3.1.2 Failure scenario Ranking

Failure scenario which contradict invariants of high confidence are given
lower beliefs. These scenarios are then sorted on the basis of given beliefs
to give a ranked list of failure scenarios. A scenario having highest belief
has the highest rank and should be examined first. We consider each bug
scenarios for div_by _f (int ¢, int f) and consider which invariants it contra-
dicts. We assume the invariants generated by dynamic invariant miner are
independent and propose a simple measure to compute the belief. Thus,
belief assigned are:

Scenario 1 (c=11,f=2)
When div_by_f() is called it contradicts the invariant ¢ % f == 0
and thus has a low belief. we want to associate a belief to this failure
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scenario based on what we know of the environment. If this failure
has to be true, then the high confidence invariant (reported with con-
fidence 0.7) from Daikon has to be false. Hence, the belief of this
scenario to be actually real is calculated to be 0.3 using the following
expression-

(1 — confidence(c % f == 0))

Scenario 2 (c=-189,f=9)
When div_by () is called it contradicts none of the invariants and so
1s likely to be real. We give a belief of 1.0 to scenarios that do not
contradict any of the invariants.

Scenario 3 (c=10,f=0)
When div_by_f() is called it contradicts the invariant ¢ % f == 0and
f >= 1. This failure can be true only when both the invariants are
false. We thus combine the likelihood of both invariants to be false
in the expression below and see that this failure has a low belief. In
this case the belief evaluates to .03 using the following expression-

(1 — confidence(c % f == 0)(1 — confidence(f >= 1)))

Thus, when presenting these scenarios to a developer for debugging, these
scenarios will be presented in the sorted order of beliefs.

unit—-under-test:div_by_f ()
Ranked bugs

2. (c=-189, f=9) belief = 1.0 rank = 3
1. (c=11, £=2) belief = 0.3 rank = 2
3. (c=10, £=0) belief = 0.03 rank =1
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3.2 Flow of Detailed Methodology

This section gives the detailed methodology of our approach. The problem
that we attempt to solve as mentioned earlier is:
Problem We are given < S, f,T'C' > consisting of:

e S is software in which the targeted module lies.

e fis the targeted module which belongs to the software S.

e TC is the set of bug scenarios on module f. TC contains n number of
bug scenarios. Each such scenario gives a faulty execution of f.

Our objective is to:

e (Classify and rank the bug scenarios among the test cases to be pre-
sented to the developer for correction in decreasing order of rank or
belief in the scenario.

We present a ranking and clustering methodology based on dynamic invari-
ants and confidence measures as illustrated in the figure.

The various steps involved, as summarised in Figure 3.3, are-

3.2.1 Invariant Miner

We use Daikon [7] a dynamic invariant detector to mine dynamic invari-
ants. A dynamic invariant miner examines variable values captured during
execution over execution traces and reports properties and relationships that
hold over those values. In our case we use Daikon to mine invariants on the
inputs of the function f to be tested. S interacts with f by passing variables
as input to f. And so by mining invariants on this interface we get the sum-
mary of environment provided by S to f. We use a random input generator
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Figure 3.3: Framework

to generate execution traces on S. These traces are used as input to the dy-
namic invariant detector Daikon to get invariants on inputs of f. Let there
be m invariants mined.

3.2.2 Confidence

Daikon sets the confidence of each invariant it produces in its output [7].
Each type of invariant has its own rules for determining confidence. For
example, consider the invariant @ < b whose confidence computation is
1 — 1/2numsamples \which indicates the likelihood that the observations of
a and b did not occur by chance. If there were 3 samples, and a < b
on all of them, then the confidence would be 7/8 = .875. If there were 6
samples, and a < b on only 5 on them, the confidence would be 0. If there

were 9 samples, and @ < b on all of them, then the confidence would be
1 — 1/29= .998.
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3.2.3 Constraint analyzer

For each failure scenario we need to examine m invariants to rank it. We
identify all the invariants a failure scenario dissatisfies among these m in-
variants. A failure scenario dissatisfying a huge set of invariants should be
ranked lower as opposed to a failure scenario which is in agreement with
all the invariants. The idea behind this is that invariants serve as our eye-
sight to the environment provided by the software. If a failure scenario is
not in agreement with this environment then it is possibly a false failure
scenario which is not feasible. The additional issue to be addressed when
using dynamic invariants instead of static is, although dynamic invariants
hold across all the traces from which they are mined, a dynamic invariant
may not hold across an execution which is not yet seen. To address this
issue, we use the confidence measure Daikon associates with each dynamic
invariant, to compute the rank of a failure scenario.

3.2.4 Scenario Ranker

For each scenario there is a set of invariants contradicted by it. We initialize
the belief of the scenario by 1. For each invariant in the set of invariants
contradicted we multiply the belief by one minus the confidence of that
invariant. We adopt such a method under the following reasoning. A failure
scenario on f contradicting a set of invariants is a true failure iff there exists
a scenario in S which witnesses the failure scenario on f. Such a scenario
in S allows the values taken by the scenario on f. As the failure scenario on
f contradicts the given set of invariants, so does the scenario. Thus, when
the function f is called (or where the invariants are mined) all the invariants
the failure scenario contradicts are false simultaneously. As the invariants
do not hold at this point in the scenario, these all should be false invariants.

If an invariant 1 is true with confidence c, we say that, it is false, or
its negation might hold at some point, with confidence 1 — c¢. That is
con fidence(i not true) = 1 — confidence(i) Next we want a confidence
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on 71&& i given confidence on i1 and confidence on i,. If these invariants
are independent we can easily multiply their beliefs.

Data: Ul = unsatisfied invariants set for a failure scenario

Result: Belief of the failure scenario

belief = 1;

for each i in Ul do

| belief = belief*(1 - confidence of invariant 1);
end
Algorithm 1: Compute belief of the failure scenario

This way, beliefs are computed for each scenario. The scenarios are then
sorted in decreasing order of beliefs.
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Chapter 4

Applications

In this chapter we present the various contexts where this thesis might prove
helpful in making some improvements. Before that we develop on the
methodology itself in the earlier chapters by adding a way to group fail-
ure scenarios before ranking them. Thus, we present two applications of
the idea in bug prioritization and localization.

4.1 Clustering and prioritization

We develop on the methodology presented in Chapter 3 by adding a way to
group failure scenarios before ranking them. Given a set of failure scenarios
on a function f, when ranking them on their occurrence in reality, we would
also like to minimize the scenarios to be actually examined by the developer
manually. We would not like a developer to examine the manifestation of
a single error more than once. We would like to present all such scenarios
in a group to be examined at once as these may be related. We would like
to save manual effort and try to give error scenarios which point out more
bugs in less number of examinations done by a developer.
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Clustering For each failure scenario we need to examine m invariants to
rank it. We could also use the same idea to group or classify the failure
scenarios into groups. A modified framework is presented in Figure 4.1.
All failure scenarios dissatisfying the same set of invariants are put in the
same group, thus forming clusters of the failures. The idea behind this
clustering is that if we take care of one failure scenario from this group, the
other failure scenarios might be taken care of in the process. That is, they
might be manifestations of the same error or may be related. These may
have arisen due to a certain environment, in which our unit-under-test was
incapable of functioning correctly. Once these conditions or environment
18 taken care of, the whole cluster of errors will vanish.

Prioritizing For each cluster there is a set of invariants contradicted by
the failure secnarios in it. We initialize the belief of the cluster by 1. For
each invariant in the set of invariants contradicted we multiply the belief
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by one minus the confidence of that invariant as done by Scenario Ranker.
We adopt the same method under the same reasoning. We just can do the
calculations once for finding the belief for the cluster instead of for every
failure scenario.

Data: Ul = unsatisfied invariants set for a cluster
Result: Belief of the cluster
belief = 1;
for each i in Ul do
| belief = belief*(1 - confidence of invariant 1);
end
Algorithm 2: Compute belief of the cluster

Also something to notice is, a failure scenario cluster cl in disagreement
with 71, a superset of invariants with which c2 conflicts say /2, will have a
lower confidence. This makes sense as it may be possible that the invariants
in /1 — 12 have no significance in the error in c1, and that failure scenarios
in c1 are a manifestation of the same error as c2.

Clustering and prioritization There are 2" possible clusters on the basis
of whether a failure scenario satisfies or dissatisfies a given invariant. For
each failure scenario we need to examine m invariants to classify it into
such a group, thus requiring O(m) time for each failure scenario. For n
failure scenarios we need O(mn) time. We examine the invariants with
higher confidence first. As the invariants are examined one by one for a
given failure scenario its belief decreases. Therefore, if we can use a cut off
belief, then we need not examine the other invariants for failure scenario
having a belief already below the cut off, we can simply drop the failure
scenario if its belief falls below cutoff at any time.
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4.2 Localization

Software is far from being bug-free. Manual debugging is laborious and
expensive specially in large software. Bug localization is to find a set of
source code locations that are likely buggy through automatic analysis. In
general we are given a set of failing executions, and a set of passing execu-
tions. For the failing executions we would like to know the location of bug
that caused the failure. This task is known as bug localization [16], which
is defined as a classification problem: given n source code entities and a
bug report, classify the bug report as belonging to one of the n entities.
The classifier returns a ranked list of possibly-relevant entities, along with
a relevancy score for each entity in the list. An entity is considered relevant
if it indeed needs to be modified to resolve the bug report, and irrelevant
otherwise.

We create a very simple example to illustrate how our approach can be
used for bug localization as in the code listed below. Consider we want to
verify the function greater().

Unit testing isolates each part of the program and shows that the indi-
vidual parts are correct. We could use a unit tester such as CUTE or KLEE.
It might give a lot of scenarios where error label is reachable. We have
already suggested a way to classify spurious and real error among all the
error scenarios presented by a unit tester.

Program S
Targeted module greater(s,t)

int local_1(int s,int t){
return 0;}

int local_2(int s,int t){
return 0;}

// Expected to evaluate and return s>t
int greater(int s,int t){
// point r:implementation error
return s>=t;
//logical error allows equal values
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}
int main(int argc ,charx argv[]){
int s,t,seed,range;

range = 100;
seed = atoi(argv[1]);

srand (seed) ;

S
t

rand ()%range ;
rand ()%range ;

//locationl :
if (s==t){
printf (”s=t");
}

else
{ //point p:no error
local_1(s,t);
if (greater(s,t))
printf (7s>t”);
else
{ //point qg:no error
local_1(s,t);
if (! greater(s,t))
printf (7s<t”);

}

//location?2:
// point e:error
local_2(s,t);
if (greater(s,t)) //erroneous for s==t
printf (7s>t”);
return 0;

Simple Example 2
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4.2.1 Our Method

Dynamic invariants mined on the example on relevant function inputs are as
given in Figure 4.2. We consider two alternative locations where a function
call to greater() needs to be examined in different contexts. It is expected
to perform a check if s > ¢ and return the boolean evaluation. Given two
locations in the software S and a bug report in the form of a set of failing
executions, we want to classify these failing executions as belonging to one
of the two locations.

locations from where greater() is called:
1. locationl:
2. location2:

We consider a failure scenario evaluation s = 4,f = 4 and examine from
which location a failure of this kind is possible.

1 ==
2 ..local_1():::ENTER <---constraints for case 1

3

4 s !l=t confidence = 0.9 <---invariant contradicted
5 s >= 0 confidence = 0.9

6 t >= 0 confidence = 0.9

7

8 ..local_2():::ENTER <-—--constraints for case 2

9

10 s >= 0 confidence = 0.7

11 t >= 0 confidence = 0.9

Figure 4.2: Invariants on Application example

location 1 greater() is called with inputs constraints specified under side
heading ..local_1() ::: ENTER. This failure scenario contradicts
the invariant s! = ¢ and thus has a low belief. In this case (1 —
confidence(s! = t)), which is 0.1
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location 2 greater() is called with inputs constraints specified under side
heading ..local 2() ::: ENTER. In this case the failure scenario
does not contradict any of the invariants listed and has a belief of 1.0

Order in which locations will be examined
for cause of failure:

location local belief of failure
1. location2: 1.0
2. locationl: 0.1

As the scenario has a higher belief in location 2, the scenario has possibly
generated from this location. Thus, when listing the possible locations for
the origin of this error, location 2 is listed above location 1.
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Chapter 5

Implementation

5.1 System Architecture

The architecture of our approach mainly includes the following compo-
nents: invariant mining, confidence measure, clustering and ranking. Our
implementation takes a software S, a targeted module f, which lies in the
software and a set of available test cases for the software. It outputs a report
which contains multiple clusters of failure scenarios or bugs in the targeted
module f, ranked in decreasing order based on their likeliness of occurrence
in the software life cycle.

5.2 Failure Extraction

To produce the likely bug scenarios of the module f, we use CREST, a con-
colic unit testing engine in C. Crest [1] is an open source Concolic Testing
Engine for C, a reimplementation of CUTE (Concolic Unit Testing En-
gine) [15]. It uses CIL (C Intermediate Language written in Ocaml) to
insert instrumentation code into the given program and perform symbolic
execution in parallel with concrete execution to explore all feasible pro-
gram paths. It uses Yices (an SMT solver) to solve symbolic constraints
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and generate inputs which enable CREST to infiltrate into new paths. At
present it supports only linear and integer arithmetic and has no support for
pointers/dereferences and bitwise operators.

For testing with CREST we need to include crest.h in the target pro-
gram and use CREST _type(x) to mark symbolic variables, where type can
be int, short, char, unsigned_int, unsigned_char or unsigned short. Then
crestc is to be run with the target source code to enable CREST to perform
instrumentation. After this run_crest will run the program executable with a
search strategy. CREST provides 5 search strategies: dfs depth first search,
cfg nearest uncovered branch first, random-negated branch randomly se-
lected, uniform_random and random_input. By default CREST produced
one input file and one coverage file which contain the last input and branch
coverage information. We tweaked the source code of CREST in our work
to make CREST output all input combinations and coverage information
for each run in a separate file.

5.3 Invariant Mining

Now we need to estimate the environment provided by the software S to the
specified module f. In other words, in this step we figure out the boundary
value conditions of the arguments passed to f by the software while run-
ning over the available test cases. We implement this step using the kvasir
front-end of Daikon. Daikon [7] is a dynamic invariant detector which re-
ports likely program invariants in C, C + +, Java, and Perl programs, and in
record-structured data sources. It is easy to extend Daikon to other appli-
cations. Dynamic invariant detection runs a program, observes the values
that the program computes, and then reports properties that were true over
the observed executions. Dynamic invariant detection is a machine learn-
ing technique that can be applied to arbitrary data. It is to be noted that
the invariants proposed by Daikon are justified by execution trace of the
program. It generates only those invariants whose confidence is above the
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threshold value set and outputs the confidence associated with each invari-
ant so produced. We use the program invariants produced by Daikon to
cluster the test cases first based on which invariant conditions conflict a
particular failure scenario. Examples of invariants include being constant
(x = a), non-zero (x # 0), being in a range (a < = < b), linear relation-
ships (y = ax+10), ordering (z < y), functions from a library (z = fn(y)),
containment (x € y), sortedness (z is sorted), and many more. Several
considerations determine the set of variables over which the core Daikon
inference engine operates when it infers the invariants for a given execu-
tion trace of a program. First, the set of variables must be large enough to
enable the inference of meaningful invariants whose enforcement can meet
our objective. Second, the set must be small enough to make the inference
task computationally tractable. Finally, the values in the variables must be
defined in all possible executions (and not just the observed executions).

For each test case available we first run the kvasir front-end tool (also
known as instrumenter or tracer) on the software S which results in pro-
duction of separate .dtrace and .decls files for each test case. Before using
kvasir, the software has to be compiled with the gdwar f — 2 flag enabled to
produce DW ARF — 2 format debugging information along with the pro-
gram. A .dtrace file contains information about a particular execution of
the program, the values of the program variables at each program point. A
.decls file consists of the information about what variables and functions
exist in a program, along with information grouping the variables into ab-
stract types.

Next we use java daikon.Datkon to produce a single .inv file which
contains all invariants found over all the execution traces in binary format.
There are numerous control, optimization and debugging options available
with Daikon that have been used to produce suitable invariants for our pur-
pose. The confidence threshold was set to 0 so that we can work with all
kinds of invariants. For our program, we focused on only the targeted unit
module and mined invariants over the program points corresponding to the
same.
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In this step we used a simple shell script to run kvasir over the available
test cases of software S and run daikon.Daikon over all the traces in a
single step along with numerous control and optimization options. We use
the .znv file thus produced in our next steps.

5.4 Confidence Measure

The confidences reported by Daikon depend on the kind of invariant in-
volved. Each type of invariant has its own rules for determining confidence.
The details of each invariant along with its confidence is stored in .znv file
produced by Daikon.

5.5 Clustering of Failure scenarios

Now we have n failure scenarios which embody a set of possible bug sce-
narios for the target module f, where f does not follow some given specifica-
tions or violates some runtime conformations (for example, Segmentation
fault, buffer overflow error, stack smashing error, divide by zero error, etc.)
and m invariants, each assigned a confidence as per the measure discussed
previously. For each failure scenario we prepare the set of invariants which
it conflicts with. Now we group all such failure scenarios which conflict
with the same set of invariants into a cluster. The underlying theory of
the approach is that the failure scenarios, which conflict with the same set
of invariants, simulate the same kind of environment which is more likely
to produce a program failure. Hence grouping them into the same family,
we might be able to infuse more diversity into the failure scenarios, also
leading to faster and more efficient bug detection for the programmer.

To implement this step we have made the use of Daikon’s library through
a code snippet written in Java. In this code, we used Daikon as an API for
our purpose. We parsed the .2nv file, which contains a PptM ap object in
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serialized form, produced by the previous step to extract all invariants and
all information about them for evaluation of confidence.

5.6 Ranking

At this step we finally have a set of families of failures, each having a
single or multiple failure scenarios. Now the developer will want to know
whether all such families are equally likely to occur in the software life
cycle. To address this issue we aim to rank or prioritize these families
and produce a more organized summary to the developer. As all failure
scenarios of a family contradict the same set of invariants, we can choose a
single member of each family for our evaluation. To cater to our needs we
initially assign a rank 1 to each cluster. Then for each invariant, in the set of
invariants contradicted, we multiply the rank by one minus the confidence
of that invariant. The effect of this being that if a class of failures conflicts
with a low confidence invariant then its rank is increased as its likeliness of
occurrence is more. Again if it conflicts with a high confidence invariant
then it is less likely to pose a problem in the software life cycle, hence its
rank is reduced. Finally after this process we have a set of bug families of
the target module f, prioritized on the basis of their chances of interfering
with normal execution of the software S.

For the purpose of clustering and ranking we designed a simple Java
program which takes the failure scenarios and invariants as inputs along
with their confidences and produces the set of clusters arranged in decreas-
ing order of relevance.
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Chapter 6

Evaluation

We now report our experience in using our method for clustering and rank-
ing failure scenarios on the replace program written in C from the Siemens
Benchmark Suite.

6.1 Experience with replace

We describe our experience with the replace program, the largest program
of the Siemens Benchmark Suite. The Siemens Researchers [10] produced
a test pool which ensures that each exercisable coverage unit was covered
by at least 30 different test cases where two test cases are considered differ-
ent if the simple control paths that they exercise differ. They provide 5542
test cases for the replace program, 1 base version of the program and 31
faulty versions, each differing from the base version at some points. For
our purpose we used a single version of the program and checked for run-
time violations of all the functions available in the program. Henceforth we
report the application of our approach to this benchmark.
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6.1.1 Testing with CREST

Firstly we need to generate the failure scenarios over a unit level function
in the program. The replace program searches for the occurrence of a given
string in a file and replaces it by another given string and displays the result
to standard output. We tested the function dodash() in the replace program
and found that it contains some stack smashing errors for particular com-
bination of inputs. The function dodash() has 5 parameters: two integer
pointers, two strings and one character. For testing with CREST we de-
clare all these variables as symbolic using C REST type(x) where type is
the variable data type. We fix the length of two strings at 5 for this setup
as CREST cannot symbolically create strings of arbitrary lengths. We also
need to include " crest.h” to enable crests features.

main ()

{
char delim;
char src[5];
int 1i;
char dest|[5];
int j;

CREST_char (
CREST_char (
CREST_char (
CREST_char (src
CREST_char (
CREST_char (
CREST_int (i) ;
CREST_char (dest [0]
CREST_char (dest[1]
CREST_char (dest [2]
CREST_char (dest [3]



CREST_char (dest[4]);
CREST_int (J);
CREST_int (maxset) ;
dodash (delim, src, &i, dest, &7j, maxset);

}

We compile the code using CREST using the crestc (crests compiler).
crestc replace.c o replace

Then we run run_crest over the executable file thus produced.

run_crest . /replace 1000 df s

Here 1000 refers to the maximum number of iterations that CREST must
use during path exploration using the depth first search strategy (specified
here by dfs flag). CREST by default produces a single input and cover-
age file with the information about the last iteration only. We edited the
source code of CREST to make it produce an "inputs” and " coverages”
file which contain all inputs and branch coverage information produced
during each iteration of CREST. In 34 of these iterations the program pro-
duced stack smashing errors and the program was terminated. We extracted
these 34 set of inputs from the inputs file and use them as failure scenarios
for our work. We use these inputs for our methodology as failure scenarios
with n=34.

6.1.2 Invariant Mining

Now after we have the failure scenarios, we need to mine invariants over the
function dodash() with the help of Daikon. We use the test cases provided
by the Siemens benchmark suite to train Daikon. Out of the 5542 test cases
for the replace program we use the first 94 test cases.

Kvasir We used the kvasir front end tool to produce .decls and .dtrace
files for each run of the program. we had to make use of pointer type dis-
ambiguation to enable Daikon to produce proper invariants. For invariant
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mining in Daikon and Kvasir, it is necessary to specify whether pointers
refer to arrays or to single values and optionally also specify the type of
pointer. For example, in the following sample code snippet,

volid sort (int =*arr,int +*x,char m,char =*str) { }
//definition of sort

int my_arr[10];
int p=5;

char m=a;

char s[]=string

sort (my_arr, &p, &m, s) ; //use of sort

Here arr is an array of integers but x is a pointer to an integer, m is a pointer
to a character but str is a string. So we must explicitly specify during
invariant detection what each such pointer corresponds to. We must specify
them in a separate file before using Kvasir. Kvasir has a — — disambig
option which allows it to read such a file and use it while evaluating and
producing meaningful invariants.

Daikon Next we used Daikon to mine invariants on all these trace and
declaration files combined. We used the following options along with
Daikon to enhance the quality of invariants:

conf_limat O this sets the confidence threshold to 0. So basically Daikon
reports back all kinds of invariants found.

ppt — select — pattern = "dodash 7 this makes Daikon report only the
invariants found over the program points corresponding to our target func-
tion dodash()

con fig_option datkon.Daikon.print_sample_totals = true this option
makes Daikon print the total number of all kinds of samples(variable val-
ues) found during its operation.
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java datkon.Daikon — —conf_limit 0 — —ppt — select — pattern =
"dodash x” — —con fig_option

daikon.Daikon.print_sample totals = true—oinv_files/replace.inv.gz
kvasir_output /replace_x .dtrace

The result of this is a replace.inv.gz file which contains all invariants found
at the entry and exit points of the function dodash() over all executions
in serialized format. Hence the process of invariant mining is completed.
While assigning confidences to the invariants and filtering, it is to be noted
that not all invariants found are useful for relative ranking and clustering.
The invariants which do not conflict any failure scenarios are assigned a
confidence of 1. These invariants are not useful for the stage and hence are
not used. The invariants which conflict all failure scenarios are also not rel-
evant to our work and are not used. This helps improve the performance of
our ranking methodology. After the filtering process, we found 4 invariants
to be useful out of the 15 reported by Daikon. We use this set of invariants
for our methodology with m=4.

6.1.3 Confidence Measure and filtering

Number of calls made to the function dodash() are 152 in 94 test cases.
The confidences found for each invariant is shown in the table below.

nv no. invariant ¢ | unique  values | confidence
on invariant
un(inv c)
2 delim==93 |1 1.0
7 j[0] =0 42 0.0
8 maxset == 100 | 1 1.0
14 i[0] !=j[0] 152 1.0
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6.1.4 Failure scenario Clustering and Ranking

There were 5 different clusters formed as a result of our clustering process.
The order in which these would be presented to a developer is as shown in
the table below.

cluster invariant con- | size of cluster/(no | belief | rank
no./ order | tradicted by the | of failure scenarios)
cluster/(inv no.)

1. 2,7, 14 4 0.0 |
2. 2 3 0.0 1
3. 8 11 0.0 |
4. 2,8 5 0.0 1
S. 2,7,8,14 11 0.0 1

We see that the beliefs of all the clusters thus formed are 0. Therefore, it
is very likely that the failure scenarios in this case are all spurious. Seem-
ingly the confidences assigned by Daikon are not useful in this case to rank
the clusters. The only advantage we get here is we present clustered fail-
ure scenarios, and developer can examine failure scenarios within a cluster
together as they may be related to each other, and might help reduce debug-
ging effort.
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Chapter 7

Conclusion and Future
Work

In this work, we have presented a methodology to rank and prioritize bug
scenarios on a unit module in a software. Our framework, given a set of
failure scenarios, uses invariants to classify these bugs into bug families.
Our technique combines unit testing or model checking of a functional unit
with use of dynamic invariants. Our experience with real-life case study
(replace program, the largest program of the Siemens Benchmark Suite)
demonstrates the utility of our method.

For our purpose we implemented our own confidence measure over the
available invariants based on the number of failure scenarios with which
they conflict. We have assumed the invariants to be independent through-
out. For future work, we may try to evaluate confidences of combined
invariants without assuming independence to get better results.
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