
Indian Statistical Institute Kolkata

M.Tech (Computer Science) Dissertation

Modifications of Bos and Coster’s Heuristics in
search of a shorter addition chain for faster

exponentiation

A dissertation submitted in partial fulfillment of the requirements for the award of M.Tech.(Computer
Science) degree

Author:
Ayan Nandy
Roll No:MTC0916

Supervisor:
Prof. Palash Sarkar

Applied Statistics Unit

Acknowledgements

At the end of this course, it is my pleasure to thank everyone who has helped me along the way.

First of all, I want to express my sincere gratitude to my supervisor, Prof. Palash Sarkar for giving
me interesting problems. It was a memorable learning experience. For his patience, for all his advice and
encouragement and for the way he helped me to think about problems with a broader perspective, I will
always be grateful.

I would like to thank all the professors at the Indian Statistical Institute Kolkata who have made my
educational life exciting and helped me to gain a better outlook on computer science. I would like to
express my gratitude to Prof. K.C. Gupta, Somindu, Shashank and Sanjay for interesting discussions.
Without the precious suggestions from Somindu, it would have been considerably difficult to finish this
report.

I would like to thank everybody at Indian Statistical Institute Kolkata for providing a wonderful atmo-
sphere for pursuing my studies. I thank all my classmates, seniors and juniors who have made the academic
and non-academic experience very delightful. I would specially thank Shyam for his encouragement and
valuable support before the semester examinations, my seniors Saurabh and Kaushik, classmates Simanta
and Nibedita for their priceless support in helping me with the assignments and Sourav, Somabrata and
my junior Amit for all the fun we could fit in between the days of hard work.

My most important acknowledgement goes to my family and friends who have filled my life with hap-
piness. My deepest gratitudes are with my parents who have always encouraged me to pursue my passions
and supported me in all weathers withstanding all their limitations and keeping aside all their priorities
all along their lives. I also thank my sister Arpita, brother Arijit and friends Bunty, Kutu, Taniya, Biltu
and Deba for their unending support, care and concerns.

1

Contents

1 Introduction 4

2 Basic Methods 5

2.1 Binary Method . 5

2.2 m-ary method . 6

2.3 Window Method . 6

2.4 Double-Base Number System . 7

3 Some algorithms for finding an addition chain 9

3.1 Brauer’s Algorithm . 9

3.2 Yao’s Algorithm . 9

3.3 The Makesequence algorithm by Bos and Coster . 10

3.3.1 Approximation . 10

3.3.2 Division . 11

3.3.3 Halving . 11

3.3.4 Lucas . 11

3.4 Fast Exponentiation using Data Compression . 12

3.4.1 The Lempel Ziv theory of Data Compression . 12

3.4.2 Using the LZ compression method for fast exponentiation 13

4 Modifications of the Bos and Coster Algorithm 15

4.1 Pure DBNS . 15

4.1.1 The Window Method . 15

4.1.2 The Modified Makesequence . 16

4.2 One thirding . 18

4.2.1 Case I: Express every element in terms of the smallest 19

2

4.2.2 Case II: Express larger elements in terms of the third largest element 21

4.2.3 Case III: Express larger elements in terms of the third largest element and every
other element in terms of the smallest . 23

4.3 Ternary representation of the exponent . 24

4.3.1 Ternary I . 25

4.3.2 Ternary II . 26

5 Conclusion 28

5.1 Comparison between Brauer’s, modified Brauer’s and Yao’s algorithms 28

5.2 Comparison of the efficiency of our modifications of Bos and Coster algorithm with the
original algorithm . 29

5.2.1 Pure DBNS . 29

5.2.2 One thirding . 29

5.2.3 Ternary representation . 30

5.3 Scope for future work . 30

A Appendix 32

3

Chapter 1

Introduction

The basic question that necessitates a study of addition chains is: What is the fewest number of multiplica-
tions necessary to compute gr, given that the only operation permitted is multiplying two already-computed
powers? This is equivalent to the question: What is the length of the shortest addition chain for r?

An addition chain for r is a list of positive integers a1 = 1, a2, . . . , a` = r, such that, for each i > 1,
there is some j and k with 1 ≤ j ≤ k < i and ai = aj + ak.

A short addition chain for r gives a fast algorithm for computing gr : compute ga1 , ga2 , . . . , ga`−1 , gr.
Let `(r) be the length of the shortest addition chain for r. The exact value of `(r) is known only for

relatively small values of r. It is known that, for large r, `(r) = log r + (1+o(1)) log r
log log r

The lower bound was shown in [Erdos60] using a counting argument and the upper bound is given by
the m-ary method discussed in 2.1. In 2, few basic methods and the double base number system used for
fast exponentiation are discussed. In 3, outline of few algorithms for finding an addition chain containing a
number n has been provided. 4 constitutes the three different algorithms we have designed as modifications
to the Makesequence algorithm of Bos and Coster [BosCoster90]. In 5, in the first part we discuss the
results obtained from running the C programs for Brauer’s and Yao’s algorithm for various n and k. In
the later part we compare our algorithms with the original Bos and Coster method with respect to a test
example.

4

Chapter 2

Basic Methods

2.1 Binary Method

This method is also known as the “square and multiply” method. The basic idea is to compute gr using
the binary expansion of r.

Let r = Σ`
i=0ci2

i

Then the following algorithm will compute gr :

a← 1

for d = ` to 0 by −1

a← a ∗ a

if cd = 1 then a← a ∗ g

return a.

At each step of the for loop, a is equal to gs, where the binary representation of s is a prefix of the
binary representation of r. Squaring a has the effect of doubling s, and multiplying by g puts a 1 in the
last digit, if the corresponding bit ci is 1. [Knuth81] gives a right-to-left version of the algorithm, which
has the advantage of not needing to know ` ahead of time.

This algorithm takes 2blog rc multiplies in worst case, and 3blog rc
2 on average. Since blog rc is a lower

bound for the number of multiplies needed to do a single exponentiation in a general group, this method
is often good enough.

5

2.2 m-ary method

Let r = Σ`
i=0cim

i

The m-ary method computes gr using this representation:

Compute g2, g3, . . . , gm−1

a← 1

for d = ` to 0 by −1

a← am

a← agcd

return a

2.3 Window Method

The 2k-ary method may be thought of as taking k-bit windows in the binary representation of r, calculating
the powers in the windows one by one, squaring them k times to shift them over, and then multiplying
by the power in the next window. This leads to several different generalizations. One obvious generaliza-
tion is that there is no reason to force the windows to be next to each other. Strings of zeros do not need
to be calculated, and may be skipped. Moreover, only odd powers of g need to be computed in the first step.

For example the binary representation of r = 26235947428953663183191 is given by

101100011100100000011101001010011101010000001011110000011111001

100101010111.

[Gordon98] showed that the optimal choice for the m-ary method for this 75-bit number is m = 8,
which takes 102 multiplications. For the window method, with windows of length up to 4, the number of
multiplies is only 93; 8 multiplies to compute the odd powers up to 15, 71 squaring, and 14 multiplies for
the intermediate values:

1011︸ ︷︷ ︸
11

000 111︸︷︷︸
7

00 1︸︷︷︸
1

000000 111︸︷︷︸
7

0 1001︸ ︷︷ ︸
9

0 1001︸ ︷︷ ︸
9

1101︸ ︷︷ ︸
13

0 1︸︷︷︸
1

000000 1011︸ ︷︷ ︸
11

11︸︷︷︸
3

00000 1111︸ ︷︷ ︸
15

1001︸ ︷︷ ︸
9

1001︸ ︷︷ ︸
9

0 101︸︷︷︸
5

0 111︸︷︷︸
7

[BosCoster90] suggested using larger windows. Instead of constructing a table of all odd numbers less
than m, they use an addition sequence to compute all the intermediate values needed for this particular
exponentiation. An addition sequence is essentially a sequence of integers consisting of all the window
elements (47, 117, 343, 499, 933, 5689 in the following example) such that it is an addition chain for the

6

largest window element (5689 in this example). Using large windows can reduce the number of multiplies
to 89:

1011000111001︸ ︷︷ ︸
5689

000000 1110100101︸ ︷︷ ︸
933

00 1110101︸ ︷︷ ︸
117

000000 101111︸ ︷︷ ︸
47

00000 111110011︸ ︷︷ ︸
499

00 101010111︸ ︷︷ ︸
343

They use 62 squaring, 5 multiplications of intermediate values, and 22 multiplications to compute the
addition sequence 1; 2; 4; 8; 10; 11; 18; 36; 47; 55; 91; 109; 117; 226; 343; 434; 489; 499; 933;1422; 2844;
5688; 5689.

The Window method is the first part of the Bos and Coster’s algorithm that reduces the computation
of an addition chain for n to the computation of an addition sequence that contains a given set of numbers
which are much smaller than n. An overview of the second part producing the addition sequence consisting
of the Window elements is given in 3.3.

2.4 Double-Base Number System

The Double-Base Number System (DBNS) was initially introduced by Dimitrov and Cooklev [Dimitrov95]
and later used in the context of elliptic curve cryptography [Imbert2005]. With this system, an integer k
is represented as

k = Σ`
i=1ci2

ai3bi

with ci ∈ {1,−1}

To find an expansion representing k, we can use a greedy-type algorithm whose principle is to find at
each step the best approximation of a certain integer k initially in terms of a 2,3-integer, i.e. an integer of
the form 2a3b from a suitable table as explained by Doche et al [Doche2009] which we refer here and in
4.1.2 as DKS table. Then the difference is computed and the process is reapplied.

Algorithm for a double-base chain computing k

Input: k ≥ 0

Output: k = Σ`
i=1si2

ai3bi with (ai,bi) decreasing.

while k 6=0 do
s = 1
Find the best default approximation of k of the form z = 2a3b with a ≤ amax

and b ≤ bmax from DKS table

7

Print(s,a,b)
amax = a; bmax = b
if k < z then s = −s
k = |k − z|

end while

Example: Applying this approach for n = 542788, we find that

542788 = 2837 − 2337 + 2433 − 2.32–2

In [Imbert2005], Dimitrov et al. show that for any integer n, this greedy approach returns a DBNS
expansion of n having at most O(logn

log logn) terms. However, in general this system is not well suited for
scalar multiplications. Indeed, if it is impossible to order the terms in the expansion such that their powers
of 2 and 3 are simultaneously decreasing, as it is the case in Example 1, it seems impossible to obtain [n]P
without using too many doublings or triplings and without extra temporary variables.

This observation leads to the concept of Double-Base Chain (DBC), introduced in [Imbert2005], where
Dimitrov et al. explicitly look for expansions such that a` ≥ a`−1 ≥ . . . ≥ a1 and b` ≥ b`−1 ≥ . . . ≥ b1.
This guarantees that exactly a` doublings and b` triplings are needed to compute [n]P. it is easy to modify
the greedy algorithm to return a DBC.

8

Chapter 3

Some algorithms for finding an addition
chain

3.1 Brauer’s Algorithm

Brauer’s chain Bk(n) is an addition chain containing n which is parametrized by a positive number k and
defined recursively as follows:

Bk(n) =

{
1, 2, . . . , 2k − 1 n < 2k

Bk(q), 2q, 4q, 8q, . . . , 2
kq, n n ≥ 2k, q = b n

2k
c

To eliminate repetition, avoid even numbers (other than 2) less than 2k and allow flexibility in the
exponents to reduce the length of the chain, we get the following popular chain defined recursively for
k ≥ 2 and n ≥ 2k as follows:

Tk(n) =


1, 2, 3, 5, 7, 9, . . . , 2k − 1, n if n < 2k+1 and n is even
Tk(n/2), n if n ≥ 2k+1 and n is even

Tk(n− (n mod 2dlogne−k)), n if n < 22k and n is odd
Tk(n− (n mod 2k)), n if n ≥ 22k and n is odd

Strauss generalized Brauer’s algorithm to compute a product xn1
1 x

n2
2 . . . x

np
p , i.e., to obtain the vector

(n1, n2,. . . ,np) by additions starting from the unit vectors. Strauss’s algorithm writes (n1, n2,. . . , np) in
radix 2k, where each coefficient is a vector (r1, r2,. . . , rp) with r1, r2,. . . , rp ∈ {1, 2, . . . , 2k − 1}

3.2 Yao’s Algorithm

Yao’s Algorithm finds an addition chain containing n where the chain is parametrized by a positive number
k. Initially n is written in radix 2k as Σj

i=0ci2
ik with cj 6= 0.

9

Define d(z) as the sum of 2ik over all i such that ci= z.

Yao’s chain begins with 1,2,4,8,. . . .,2blognc; adds various 2ik to obtain d(z) for each z ∈ {0, 1, . . . , 2k−1}
such that d(z) is non-zero; then obtains zd(z) for each z and finally obtains

n = d(1) + 2d(2) + 3d(3) + ...+ (2k − 1)d(2k − 1)

3.3 The Makesequence algorithm by Bos and Coster

Bos and Coster describe a routine that makes an addition sequence of a set of numbers. It starts with a
Protosequence consisting of 1,2 and the requested numbers, i.e., the Window elements sent by the Window
Method explained in 2.3. It then transforms this to another one using a heuristic algorithm. In each step,
the Protosequence is reduced to a simpler one, having smaller numbers.

A Protosequence is written as 1, 2,. . . ,f2, f1,f . The prefix proto means first and hence the Proto-
sequence is the initial sequence delivered by the Window Method which is not necessarily an addition
sequence, i.e, there might be a Window element which can not be expressed as the sum of two other
Window elements.. Initially the Makesequence is a copy of the Protosequence. The algorithm inserts some
numbers in the Makesequence by one of the four methods described below and at each step a Window
element f leaves the Protosequence. When only 1 and 2 are left in the Protosequence, the Makesequence
takes the shape of an addition chain containing of all the Window elements. Since the Makesequence
delivers all the Window elements, a simple double and add scheme will lead us to an addition chain for
the large integer we started with using the Window Method. The Makesequence algorithm is less costlier
than the 2k-ary method since here we need not have a lookup table with the 2k−1 − 1 exponents.

3.3.1 Approximation

There are two elements a and b in the sequence with a + b = f − ε , where ε is positive and small; insert
a+ ε in the Makesequence. Since a+ ε and b add up to f , we delete f from the Protosequence.

Condition: 0 ≤ f − (fi + fj) = ε; fi ≤ fj where i, j ∈ N.

Insert: fi + ε

Example: 49 67 85 117
ε =1 [117-(49+67)]

Insert: 50

Result: 49 50 67 85 (117)

10

3.3.2 Division

f is divisible by a small prime p; put f
p ,

2f
p , . . . , f in the sequence and delete f from the Protosequence.

This operation is equivalent to finding an addition chain 1,2,. . . , p, multiplying each element with f
p and

inserting the resulting numbers in the Makesequence.

Condition: p= 3,5,7 or 17. f is divisible by p.

Insert: f
p ,

2f
p , . . .

Example: 17 48

Insert: 16,32

Result: 16 17 32 (48)

3.3.3 Halving

Take a small number s that occurs earlier in the sequence, and put f − s, f−s2 , f−s4 , . . . to a certain point
in the sequence.

Condition: f
f1
≥ 2u; b f2u c = k.

Insert: d = f − k2u, f − d = k2u, k2u−1, . . . , 2k, k.

Example: 14 382; f
f1

= 27.2;u = 4; k = 23; d = 14.

Insert: 23 46 92 184 368

Result: 14 23 46 92 184 368 (382)

3.3.4 Lucas

A Lucas sequence is an integer sequence that satisfies the recurrence relation un+1 = un + un−1. In the
given sequence, put a Lucas sequence that has f as last element.

Condition: f and fi are the elements of a Lucas series (i.e., fi = u0 and f = uk,≥ 3)

Insert: u1, u2, . . . , uk−1.

11

Example: 4 23

Insert: 5 9 14

Result: 4 5 9 14 (23)

Bos and Coster [BosCoster90] didn’t mention in his heuristics how to search for a Lucas sequence among
the window elements or how to ensure that we are selcting the best Lucas sequence.

After applying one of those insertions, the process is repeated until the sequence contains only the
numbers 1 and 2. Let P denote the set of all the numbers apart from 1,2 which were present in the
Protosequence. Any number in P can be expressed as a sum of two numbers taken from P ∪ I, where I
is the set of inserted numbers. Then {1, 2}∪P ∪I consists of all the numbers of the required addition chain.

To summarize, given a positive integer n to calculate xn for some x, we do the following:

1. Express n in binary representation

2. Use the Window method as explained in 2.3 to get a Protosequence

3. The Makesequence routine reduces the Protosequence at each step and inserts new numbers in the
sequence being made until the Protosequence has only 1 and 2 in it.

4. We get an addition chain a1 = 1, a2 = 2, . . . , a` = n, such that, for all i > 1, there is some j and k
with 1 ≤ j ≤ k < i and ai = aj + ak.

5. Since for all i > 1, there is some j and k with 1 ≤ j ≤ k < i and ai = aj + ak, for all i > 1, there is
some j and k with 1 ≤ j ≤ k < i and xai = xajxak .

6. In `− 1 steps xn can be calculated from x.

3.4 Fast Exponentiation using Data Compression

The exponentiation algorithm of [Yacovi99] uses the entropy of the source of the exponent to improve on

existing exponentiation algorithms when the entropy is smaller than `(S)
1+w(S) where w(S) is the Hamming

weight of the exponent, and `(S) is its length.

3.4.1 The Lempel Ziv theory of Data Compression

Let A∗ denote the set of all finite-length sequences over a finite alphabet A. Let `(S) denote the length of
S ∈ A∗ and let An = {S ∈ A∗|`(S) = n}, n ≥ 0. The null sequence χ is in A∗ .

Let S(i, j) denote a substring of S that starts at location i and ends at location j. Let Sπi denote
S(1, `(S)− i), i = 0, 1, . . . , `(S). The vocabulary, v(S), of S is the subset of A∗ formed by all the substrings

12

of S. When a sequence S is extended by concatenation with one of its words, say W = S(i, j), the result-
ing sequence R = SW can be viewed as being obtained from S through a copying procedure. The same
recursive copying procedure could be applied to generate an extension R = SQ of S which is much longer
than warranted by any word in v(S). The only provision is that Q be an element of v(SQπ).

We use the denotation S ⇒ R if R = SQ can be obtained from S by application of the above copying
procedure, where at the end of the copying process we use “one- symbol innovation” (any symbol from
A, not subject to the copying procedure). This process is called reproduction, while a single-step copying
without innovation is called production and is denoted S → R. If R cannot be obtained from S by pro-
duction we write S 6→ R.

For an m-step production process of a sequence S and let S(1, hi), i = 1, 2, . . . ,m, h1 = 1, hm = `(S),
be the m states of the process. The parsing of S into H(S) = S(1, h1)S(h1 + 1, h2), . . . , S(hm−1 + 1, hm)
is called the production history of S, and the m words Hi(S) = S(hi−1 + 1, hi), i = 1, 2, . . . ,m, where
h0 = 0, are called the components of H(S). A component Hi(S) and the corresponding reproduction step
S(1, hi−1) ⇒ S(1, hi) are called exhaustive if S(1, hi−1) 6→ S(1, hi); a history is called exhaustive if each
of its components, with the possible exception of the last one, is such. Every nonnull sequence S has a
unique exhaustive history (denoted E(S)).

Let cH(S) denote the number of components in a history H(S) of S. The production complexity of
S is defined as c(S) = min{cH(S)}, where minimization is over all histories of S. Let cE(S) denote the
production complexity of the exhaustive history of S.

Lempel and Ziv [LempelZiv76] showed that

1. ∀S, c(S) = cE(S)

2. ∀S ∈ An, c(S) < n
(1−εn) logn where εn = 21+log logαn

logn , α = |A|

3. for an ergodic α-symbol source with normalized entropy h (0 ≤ h ≤ 1), c(S) ≤ hn
logn

3.4.2 Using the LZ compression method for fast exponentiation

Given the exponent S, the computation of any exponentiation xS proceeds as follows assuming that S(1, 1)
is the least significant bit of S (S is used to denote both integer and sequence):

Build a binary tree where each path from the root to any node corresponds to some segment of the
exponent S(i, j), and the node contains the result of xS(i,j). The root contains 1 = x0 (0 corresponds to
the string χ). Proceed inductively as follows. Suppose that the component S(i, j) was already processed;
i.e., the tree already contains a path from the root to some leaf which corresponds to this component,
and the leaf contains the result of xS(i,j). Traverse the partial tree from the root according to the new
(so far unscanned) bits of S(j + 1, . . .) until a leaf is reached. Proceed with S having one more symbol.
The new component contains now exactly one new untraversed symbol. Extend the tree according to the

13

new symbol, and mark the new branch with this symbol. Compute the value of the new leaf. This simple
construction (without the exponentiation) is the heart of the LZ algorithm. Ziv and Lempel proved that
this construction creates the exhaustive history of S, H(S) = S(1, h1)S(h1 + 1, h2) . . . S(hm−1 + 1, hm),
where each path from the root to any node corresponds to one of the components of H(S), and hence the
number of nodes in the tree is c(S).

For depth i we need to do one squaring (to compute X2i = (X2i−1
)2), and whenever the new bit is 1

we need to multiply that value by the value of the father. For random exponents we can expect that to
happen in half the cases for a total cost of c(S)

2 , and in general, for exponent of length `(S) and expected

Hamming weight w(S), the expected number of cases where the new symbol is 1, is c(S)w(S)`(S) . Thus the

total expected complexity C(S) is computed as a function of `(S), c(S) and w(S). Yacovi [Yacovi99] found
the following asymptomatic upper bound

C(S) = `(S) + σ(S)h
`(S)

log `(S)
+ o(

`(S)

log `(S)
)

where σ(S) = 1 + w(S)
`(S)

Yacov improved on a straightforward LZ compression, by taking advantage of leading zeros. Leading
zeros are not accounted for in the binary tree, thus reducing the tree size.

14

Chapter 4

Modifications of the Bos and Coster
Algorithm

The algorithm for smaller addition chains by Bos and Coster [BosCoster90] consists of two parts, the
Window Method and the Makesequence Algorithm. The Window Method is explained in 2.3, while the
Makesequence Algorithm is explained in 3.3. In this Chapter, we describe the three different methods
we have tried as modifications of the Bos and Coster Algorithm. In the first algorithm we modify the
Makesequence part by employing the Double Base Number System as explained in 2.4. The second
modification employs a method of one-thirding which has some similarities with the halving scheme of the
Makesequence Algorithm. The third modification is based on expressing the exponent in ternary number
system. Our algorithms build an addition chain where a number may not be a sum of two other numbers or
double another number in the chain but it is a triple of some number. In elliptic curves over characteristic
3 fields, the point triple is fast in comparison to the point double where our algorithms will be useful.

4.1 Pure DBNS

In this section we assume that original schemes of the Bos and Coster’s Makesequence Algorithm like
Approximation, Division, Halving and Lucas or modification like one-thirding (as explained in 4.2) will
not be employed and hence we termed it pure DBNS. Our algorithm consists of two parts, the Window
method and the Makesequence. The window method is same as the one explained by Bos and Coster
[BosCoster90], whereas the modified Makesequence employs the DKS table, as explained in 2.4 instead
of Approximation, Division etc.

4.1.1 The Window Method

The Window method, as explained in 2.3, is utilized to form an addition chain for a large number where
it identifies a set of windows (binary strings) and forwards the window elements to the next stage of
Makesequence to make a sequence. Here the number is expressed in binary form and windows or sub-
strings from this binary string are identified in such a way that all the non-zero elements of the string are
covered by these windows. The advantage of this method lies in the fact that once we have a chain for
these windows representing integers much smaller than the given target, simple double and add operations
will lead us to our target.

15

1. Express the number n in binary form and define the binary string as s.

2. Define a parameter k and a set A. User can specify the value of k on the basis of the value of n,A = ∅.

3. while the length of s is greater than k
Define sub = sub-string of k characters of s from the left
Delete the zeroes, if any, in the right end of sub.
A = A ∪ {sub}.
Redefine s by deleting from it sub and the zeroes that follow it.

end while.

4. Delete the tail of zeroes from s.

5. A = A ∪ s

An Illustrative example

Let n = 26235947428953663183191 and k = 13
The binary representation of n is

s = 10110001110010000001110101010011101010000001011110000011111001100101010111

.

The first window is the substring of s as identified below
101100011100100000011101001010011101010000001011110000011111001100101010111

The first sub-string is sub = 1011000111001 which is inserted in A.
Therefore, A is updated to {1011000111001} and s is truncated to
11101001010011101010000001011110000011111001100101010111.

After 5 iterations, A = {1011000111001︸ ︷︷ ︸
5689

, 1110100101︸ ︷︷ ︸
933

, 1110101︸ ︷︷ ︸
117

, 101111︸ ︷︷ ︸
47

, 111110011︸ ︷︷ ︸
499

} and s = 101010111︸ ︷︷ ︸
343

,

i.e., the length of s is less than 13.

Hence, the final output of the Window Method is
A = {1011000111001︸ ︷︷ ︸

5689

, 1110100101︸ ︷︷ ︸
933

, 1110101︸ ︷︷ ︸
117

, 101111︸ ︷︷ ︸
47

, 111110011︸ ︷︷ ︸
499

, 101010111︸ ︷︷ ︸
343

}

4.1.2 The Modified Makesequence

The Window Method delivers us a protosequence consisting of numbers which are the window elements.
The protosequence is not necessarily an addition sequence, i.e, there can be elements which can not be
expressed as sum of two other elements. A Makesequence, as the name suggests, bridges the gap by

16

inserting new numbers to make the sequence. While Bos and Coster [BosCoster90] used methods like
Approximation, Division etc. to make the sequence, here we employ the DKS table to get a DBNS
representation of the numbers in the sequence we receive after working upon the Window Method and
then make the sequence by inserting in it the required numbers. For illustrating the algorithm, we use the
same example introduced in 4.1.1.

1. Arrange all the elements of A in ascending order. Add 1 and 2 to the sequence and get a Protosequence
P in which we need to introduce more numbers to get the required addition chain.

2. Define P = 1, 2, fm, fm−1, . . . , f2, f1, f0, R = ∅, P ′ = ∅, i = 0

3. while i < m
g′ = 0
g = fi
h = 1
While g > 0

Find the best approximation of g from DKS table of the
form z = 2a3b with a ≥ 0 and b ≥ 0
Insert z in R
g′ = g′ + hz
if g < z, then h = −h
g = |g − z|, insert g in P ′

end while
i = i+ 1

end while

4. Mark all elements of R in DKS table

5. Find the shortest set of Manhattan paths in DKS table covering all the elements in R

6. Insert all the elements covered by these paths in P

7. Insert all elements from P ′ in P

8. Output P

An Illustrative example

The Window Method delivers us A = 47, 117, 343, 499, 933, 5689
Therefore, P = 1, 2, 47, 117, 343, 499, 933, 5689
Corresponding to f0 = 5689, we have z = 2336 = 5832

Since g = 5689 < z = 5832, we have h = −1

The new value of g is 5832 - 5689 = 143

For i = 0, i.e., f0, we get R = {1, 144, 5832} since 5689 = 5832 -144 + 1

17

For i = 6, we have R = {1, 3, 16, 27, 36, 48, 64, 144, 324, 432, 972, 5832} since
5689 = 5832 - 144 + 1
933 = 972 -36 -3
8 117 = 144 - 27
47 = 48 -1
499 = 432 + 64 + 3
343 = 324 + 16 + 3

Table 4.1: DKS table with elements of R marked
1 2 4 8 16 32 64
3 6 12 24 48 96
9 18 36 72 144 288
27 54 108 216 432 864
81 162 324 648 1296 2592
243 486 972 1944 3888 7776
729 1458 2916 5832 11664 23328

Table 4.2: DKS table with elements on shortest Manhattan paths marked
1 2 4 8 16 32 64
3 6 12 24 48 96
9 18 36 72 144 288
27 54 108 216 432 864
81 162 324 648 1296 2592
243 486 972 1944 3888 7776
729 1458 2916 5832 11664 23328

Elements to be inserted in P in step 6 are 1, 2, 3, 4, 8, 9, 12, 16, 27, 32, 36, 48, 64, 108, 144, 324, 432,
972, 2916 and 5832

Elements to be inserted in P in step 7 are 143, 39, 67 and 19

The desired sequence for the running example is the output P = 1, 2, 3, 4, 8, 9, 12, 16, 19, 27, 32, 36,
39, 47, 48, 64, 67, 108, 117, 143, 144, 324, 343, 432, 499, 933, 972, 2916, 5689, 5832

4.2 One thirding

Bos and Coster proposed a Halving routine as explained in 3.3.3. Since we have in mind elliptic curves
where the point triple is fast in comparison to the point double, we consider a one-thirding scheme, which
is similar to Halving.

Take a small number s that occurs earlier in the sequence, and put f−s, f−s3 , f−s9 , . . . to a certain point
in the sequence.

18

Condition: f
f1
≥ 3u; b f3u c = k.

Insert: d = f − k3u, f − d = k3u, k3u−1, . . . , 3k, k.

Example: 14 382; f
f1

= 27.2;u = 3; k = 14; d = 4.

Insert: 4 14 42 126 378

Result: 4 14 42 126 378 (382)

Here we consider three variants of the One-thirding algorithm. For each of them, the Window method
is identical to the one employed in 4.1.

4.2.1 Case I: Express every element in terms of the smallest

The Window Method sends us a sequence of numbers A which does not necessarily from an addition chain.
Define the Makesequence P to be A appended by 1 and 2, while the elements of A which can not be
expressed as a sum of two distinct elements or a double or a triple of another element forms the Protose-
quence Q. Like any Makesequence algorithm, our objective is simultaneously delete one element from Q
and insert few elements in P in each step until P is an addition chain.

The initial set of steps are to express every element of A in terms of the smallest element in it, i.e., for
each fi we get a k near the smallest element fr, such that tripling k for u times gives us an approximation
of fi which is a small number d away from fi. At each of these steps fi is deleted from the Protosequence
while k and d are inserted in Q if they can not be expressed as sum of two distinct numbers or as double or
triple of another number in the Makesequence P . If at the end of these steps Q is empty, P is the desired
final Makesequence, i.e., an addition chain in itself. If Q is non empty, all except it’s smallest element are
sent to P and the consecutive differences after having the original elements of Q arranged in ascending
order are kept in Q unless they can be expressed as sum of two distinct numbers or as double or triple of
another number in the Makesequence P . At the final step the Protosequence Q is empty and at the same
time the Makesequence P is an addition chain.

The Modified Makesequence

1. Arrange all the elements of A in ascending order.

2. Add 1 and 2 to the sequence and get a Protosequence P in which we need to introduce more numbers
to get the required addition chain.

3. Define P = 1, 2, fm, fm−1, . . . , f2, f1, f0, Q = elements in P which can not be expressed as sum of
two smaller elements or a triple of any single smaller element, i = 0, r = Number of elements in Q - 1.

19

4. While i < r
Update r and arrange elements of Q in descending order as
q0, q1, . . . , qr.
u = blog3(

qi
qr

)c, u1 = b qi3u c.
For u > 2, insert d = qi − u13u, qi − d = u13

u, u13
u−1, . . . , 3u1, u1 in

P and delete all of them as well as qi from Q.
Insert d and u1 in Q.
i = i+ 1

end while

5. If Q 6= ∅, arrange Q in ascending order, take the consecutive differences.

6. if any element in Q is a sum of two or three elements in P , and in case of three-sum insert the missing
sum of two to P .

7. Else send elements of Q except smallest one to P and send the consecutive differences to Q until
Q = ∅

8. Output P

An Illustrative example

Q = 47, 117, 343, 499, 933, 5689
r = 5

i = 0, qi = 5689, qr = 47

u = 4, u1 =70

d = qi − u13u = 19, qi − d = u13
u = 34.70 = 5670

Insert 19, 5670, 1890, 630, 210, 70 in P , remover 5689 from Q and insert 19 and 70 in Q
P = 1,2, 19, 47, 70, 117, 210, 343, 499, 630, 933, 1890, 5670, 5689
Q = 19, 47, 70, 117, 343, 499, 933

P = 1,2, 19, 47, 70, 117, 210, 343, 499, 630, 933, 1890, 5670, 5689, 34, 102, 306, 918, 15, 45, 135,
405, 94
Q = 15, 19, 34, 47, 70, 94, 117, 343

Iteration 1: Q = 4, 13, 23, 24, 226
Iteration 2: 226 = 15 + 94 + 117, Insert 4, 13, 23, 24, 109 (15+94) to P , Q = 4, 9, 10
Iteration 3: 9 = 1+4 + 4, 10 = 1+ 9, Insert 8 (4+4), 9, 10 into P , Q = ∅

P = 1, 2, 4, 8, 9, 10, 13, 15, 19, 23, 24, 34, 45, 47, 70, 94, 102, 109, 117, 135, 210, 343, 405, 499, 630,
918, 933, 1890, 5670, 5689

20

4.2.2 Case II: Express larger elements in terms of the third largest element

Here the Makesequence has two stages. The Stage I is similar to Case I. While in Case I all the elements
were being expressed in terms of the smallest element, in Stage I of Case II, the larger elements are ex-
pressed in terms of the third largest element.

In Stage II, we run the usual Bos and Coster heuristics to searching for missing elements in the chain.

Stage I:

1. Arrange all the elements of A in ascending order.

2. Add 1 and 2 to the sequence and get a Protosequence P in which we need to introduce more numbers
to get the required addition chain.

3. Define P = 1, 2, fm, fm−1, . . . , f2, f1, f0, Q = elements in P which can not be expressed as sum of
two smaller elements, i = 0, r = Number of elements in Q

4. Update r and arrange elements of Q in descending order as q0, q1, ..., qr

5. while i < 2
u = blog3(

qi
q2

)c, u1 = bqi3uc
Insert d = qi − u13u, qi − d = u13

u, u13
u−1, .., 3u1, u1 in P

Delete all of them as well as qi from Q.
Insert d and u1 in Q.
i = i+ 1

end while

6. If Q 6= ∅, arrange elements in Q in ascending order, take the consecutive differences

7. if any element in Q is a sum of two or three elements in P , and in case of three-sum insert the missing
sum of two to P

8. A = A ∪ P

Stage II:

1. Arrange all the elements of A in ascending order. Add 1 and 2 to the sequence and get a Protosequence
P in which we need to introduce more numbers to get the required addition chain.

2. Define P = 1, 2, fm, fm−1, . . . , f2, f1, f0 , Q = elements in P which can not be expressed as sum of
two smaller elements P0 = ∅, sA = 0, sD = 0, sH = 0, sL = 0, NA, ND, NH , NL

3. while Q 6= ∅

21

4. Lucas

while sL ≤ NL

Arrange elements of Q in descending order as q0, q1, . . . , qr
for j=1 to r

for i=0 to j − 1
If qi − qj is in P0, delete qi from Q
If j < r, j = j + 1, sL = sL + 1
If i < r − 1, i = i+ 1, sL = sL + 1

end while

5. Approximation

while sA ≤ NA

q = 0, i = 1, j = 2, p = m+ 2
for p > 4m/5, p = p− 1, sA = sA + 1

while fq < fi + fj
for j < m/2, j = j + 1, sA = sA + 1

for i < j, i = i+ 1, sA = sA + 1
end while

If fq − (fi + fj) = fp, Insert fj + fp in P , delete fq from Q
If q < 3m

5
q = q + 1
If fq is in Q, i = q + 1, j = q + 2, p = m+ 2

end while
P0 = P0 ∪ P , P = Q ∪ {1, 2}

6. Division

while sD ≤ ND

m = (length of P) – 2 , P = 1, 2, fm, fm−1, . . . , f2, f1, f0
for prime = 3,5,9 or 17

If f0 is divisible by prime, insert f0
prime ,

2f0
prime , . . . ,

(prime−1)f0
prime in P

Delete f0
prime ,

2f0
prime , . . . ,

(prime−1)f0
prime , f0 from Q

P0 = P0 ∪ P , sD = sD + 1
end while

7. Halving

while sH ≤ NH

Arrange elements of Q in descending order as q0, q1, . . . , qr
u = blog(q0qr)c, u1 = b q02u c

22

Insert d = q0 − u12u, q0 − d = u12
u, u12

u−1, . . . , 2u1, u1 in P and
delete all them as well as q0 from Q
If d and u1 were not in P before the insertion, insert them in Q.
sH = sH + 1
P0 = P0 ∪ P
P = Q ∪ {1, 2}

end while

8. end while

9. Output P0

4.2.3 Case III: Express larger elements in terms of the third largest element and every
other element in terms of the smallest

Here the Makesequence employs two stages of one-thirding. In Stage I, the larger elements are expressed
in terms of the third largest element. In Stage II, the remaining elements are expressed in terms of the
smallest element.

Stage I:

1. Arrange all the elements of A in ascending order.

2. Add 1 and 2 to the sequence and get a Protosequence P in which we need to introduce more numbers
to get the required addition chain.

3. Define P = 1, 2, fm, fm−1, . . . , f2, f1, f0, Q = elements in P which can not be expressed as sum of
two smaller elements, i = 0, r = Number of elements in Q, P ′ = ∅

4. Update r and arrange elements of Q in descending order as q0, q1, ..., qr

while i < 2 and Q 6= ∅
u = blog3(

qi
q2

)c, u1 = b qi3u c
Insert d = qi − u13u, qi − d = u13

u, u13
u−1, . . . , 3u1, u1 in P ′

i = i+ 1
end while

5. p = minimum element of P ′

6. A = A− P ′ ∪ {p}

Stage II:

1. Arrange all the elements of A in ascending order.

23

2. Add 1 and 2 to the sequence and get a Protosequence P in which we need to introduce more numbers
to get the required addition chain.

3. Define P = 1, 2, fm, fm−1, . . . , f2, f1, f0, Q = elements in P which can not be expressed as sum of
two smaller elements, i = 0, r = Number of elements in Q

4. while i < r and Q 6= ∅
Update r and arrange elements of Q in descending order as
q0, q1, . . . , qr
u = blog3(

qi
qr

)c, u1 = b qi3u c
Insert d = qi − u13u, qi − d = u13

u, u13
u−1, . . . , 3u1, u1

in P and delete all of them as well as qi from Q
i = i+ 1

end while

5. Output P ∪ P ′

4.3 Ternary representation of the exponent

The ternary method employs a similar but different window algorithm. We consider two variants of the
Makesequence, but the Window methods for both the algorithms are same. Among the two variants of
Makesequence algorithms are employed here, the first Variant uses the usual Bos and Coster Makesequence
heuristic. For the 2nd Variant, we proceed by representing larger elements in terms of smaller elements as
the prefixes of the former.

The Window Method:

1. Express the number n in ternary form and define the ternary string as s.

2. Define a parameter k and a set A. User can specify the value of k on the basis of the value of n,A = ∅
.

3. while the length of s is greater than k
Define sub = sub-string of k characters of s from the left.
Delete the zeroes, if any, in the right end of sub.
A = A ∪ {sub}
Redefine s by deleting from it sub and the zeroes that follow it.

end while

4. Delete the tail of zeroes from s.

5. A = A ∪ s

An Illustrative example

24

n = 26235947428953663183191,
s = 222122022210002222222102021012102021220022011022.

k = 4

222122022210002222222102021012102021220022011022

A = {2221}
s = 22022210002222222102021012102021220022011022

A = { 22︸︷︷︸
8

, 121︸︷︷︸
16

, 221︸︷︷︸
25

, 1022︸ ︷︷ ︸
35

, 2021︸ ︷︷ ︸
61

, 2201︸ ︷︷ ︸
73

, 2202︸ ︷︷ ︸
74

, 2221︸ ︷︷ ︸
79

, 2222︸ ︷︷ ︸
80

}

4.3.1 Ternary I

Ternary I receives the window elements from the Window method described above. It employs three of the
Bos and Coster Makesequence routines, namely Approximation, Division and Lucas. The Halfing routine
is substituted by the one-thirding routine.

1. Arrange all the elements of A in ascending order. Add 1 and 2 to the sequence and get a Protosequence
P in which we need to introduce more numbers to get the required addition chain.

2. Define P = 1, 2, fm, fm−1, . . . , f2, f1, f0 , Q = elements in P which can not be expressed as sum of
two smaller elements P0 = ∅, sA = 0, sD = 0, sT = 0, sL = 0, NA, ND, NT , NL

3. while Q 6= ∅

4. Lucas

while sL ≤ NL

Arrange elements of Q in descending order as q0, q1, . . . , qr
for j=1 to r

for i=0 to j − 1
If qi − qj is in P0, delete qi from Q
If j < r, j = j + 1, sL = sL + 1
If i < r − 1, i = i+ 1, sL = sL + 1

end while

5. Approximation

while sA ≤ NA

q = 0, i = 1, j = 2, p = m+ 2
for p > 4m/5, p = p− 1, sA = sA + 1

while fq < fi + fj

25

for j < m/2, j = j + 1, sA = sA + 1
for i < j, i = i+ 1, sA = sA + 1

end while
If fq − (fi + fj) = fp, Insert fj + fp in P , delete fq from Q
If q < 3m

5
q = q + 1
If fq is in Q, i = q + 1, j = q + 2, p = m+ 2

end while

6. P0 = P0 ∪ P , P = Q ∪ {1, 2}

7. Division

while sD ≤ ND

m = (length of P) – 2 , P = 1, 2, fm, fm−1, . . . , f2, f1, f0
for prime = 3,5,9 or 17

If f0 is divisible by prime, insert f0
prime ,

2f0
prime , . . . ,

(prime−1)f0
prime in P

Delete f0
prime ,

2f0
prime , . . . ,

(prime−1)f0
prime , f0 from Q

P0 = P0 ∪ P , sD = sD + 1
end while

8. One thirding

while sT ≤ NT

Arrange elements of Q in descending order as q0, q1, . . . , qr
u = blog3(

q0
qr

)c, u1 = b q03u c
Insert d = q0 − u13u, q0 − d = u13

u, u13
u−1, . . . , 3u1, u1 in P

and delete all them as well as q0 from Q.
If d and u1 were not in P before the insertion, insert them in Q.
sT = sT + 1
P0 = P0 ∪ P
P = Q ∪ {1, 2}

end while

9. end while

4.3.2 Ternary II

In this variant of the Ternary Method, the set of window A sent by the Window Method are partitioned
according to the window length, Ai being the partition containing windows of size i. Starting from windows
of largest length, we search for the largest window which is a prefix of the former and store the leftover
part of the former window in a suitable partition if that has size greater than the minimum window size
imin, else it is sent to a pool P . Once we have tested all the windows, Bi are defined by elements formed
by suitable triplings of elements from various Aj where i > j since we required these tripled elements to
conjure up to the elements originally sent by the Window Method.

26

1. Partition the elements of A in sets Ai where i is the length of the string that expresses an element
in Ai in ternary representation. A = ∪imax

i=imin
Ai where imin ≤ i ≤ imax.

2. P = ∅

3. for i = imax to imin + 1 by -1

4. for j = i− 1 to imin by -1

5. For all elements x ∈ Ai with prefix y ∈ Aj truncate y from x to get z and send z to Ai−j if i−j > imin,
else send z to P . Any substring of zeroes in the left end of z is deleted before it is sent to P .

6. If imin > 1, P can be non-null. If x1 is the largest element in P , the output is {1, 2, . . . , x1} ∪
(∪imax

i=imin
Ai) ∪ (∪imax

i=imin
Bi) where the Bi are formed by the triplings and additions of various elements

in Ai to add up to the elements in A.

An illustrative example

The Window Method sent A = { 22︸︷︷︸
8

, 121︸︷︷︸
16

, 221︸︷︷︸
25

, 1022︸ ︷︷ ︸
35

, 2021︸ ︷︷ ︸
61

, 2201︸ ︷︷ ︸
73

, 2202︸ ︷︷ ︸
74

, 2221︸ ︷︷ ︸
79

, 2222︸ ︷︷ ︸
80

}

Here, imax = 4, imin = 2, and the initial partitions are A2 = {22}, A3 = {121, 221},
A4 = {2221, 2202, 2222, 2021, 2201, 1022}

At the end of the iterations we get P = {1, 2} and hence x1 = 2
We also get A2 = {22,21}, A3 = {121,221}, A4 = {2221,2202,2222,2021,2201,1022} B2 = {10,20}, B3 =
{100, 200, 220}, B4 = {1000,2000,2200}

Hence the Output Makesequence is 1︸︷︷︸
1

, 2︸︷︷︸
2

, 10︸︷︷︸
3

, 20︸︷︷︸
6

, 21︸︷︷︸
7

, 22︸︷︷︸
8

, 100︸︷︷︸
9

, 200︸︷︷︸
18

,

220︸︷︷︸
24

, 121︸︷︷︸
16

, 221︸︷︷︸
25

, 1000︸ ︷︷ ︸
27

, 1022︸ ︷︷ ︸
35

, 2000︸ ︷︷ ︸
54

, 2200︸ ︷︷ ︸
72

, 2201︸ ︷︷ ︸
73

, 2202︸ ︷︷ ︸
74

, 2221︸ ︷︷ ︸
79

, 2021︸ ︷︷ ︸
61

, 2222︸ ︷︷ ︸
80

27

Chapter 5

Conclusion

The dissertation work had two components. Initially we analyzed the Brauer’s algorithm, modified Brauer’s
algorithm and Yao’s algorithm whose results are available in 5.1. At a later stage we incorporated three
modifications of the Bos and Coster algorithm and compared their efficiency with the original model taking
a large exponent used by Bos and Coster [3] as a test case. We present this comparative study in 5.2.

5.1 Comparison between Brauer’s, modified Brauer’s and Yao’s algo-
rithms

The Brauer’s algorithm, modified Brauer’s algorithm and Yao’s algorithm has been coded in C language.
The results obtained for various n and k are shown in the Table 1 of the Appendix. From n = 1000 to n
= 2100000000 we studied the length of the Brauer’s chain, Modified Brauer’s chain and Yao’s chain for k
=2, 3, 4 and 5.

Some interesting results:

1. For the Modified Brauer’s Chain, the length is minimum for k = 2 when n ≤10000000.For a value of
n somewhere between 10000000 and 10500000, the optimum value of k changes from 2 to 3.

2. For smaller values of n, the ratio of the length of Brauer’s chain to the length of Modified Brauer’s
chain is high. As n increases, this ratio decreases considerably.

3. For smaller n and larger k, the Yao’s chain is smaller than the Brauer’s chain. For larger n, the
Brauer’s chain is smaller than the Yao’s chain.

4. The Modified Brauer’s Chain is consistently smaller than the Brauer’s as well as the Yao’s chain
though the gap is small with the Yao’s chain for smaller n and larger k.

28

5.2 Comparison of the efficiency of our modifications of Bos and Coster
algorithm with the original algorithm

The test case we worked with was the exponent 10110001110010000001110100101

0011101010000001011110000011111001100101010111.
The length of the addition chain for this number using Bos and Coster Algorithm is 89, of which length
of sequence that computes intermediates was 22, number of squaring needed was 62 and the number of
multiplies for intermediates was 5 . Following are the analysis and the results for the different algorithms
we devised.

5.2.1 Pure DBNS

The window elements in DKS double base representation are

5689 = 5832 - 144 + 1
933 = 972 - 36 - 3
117 = 144 – 27
47 = 48 – 1
499 = 432 + 64 + 3
343 = 324 + 16 + 3

This requires a make-sequence 1, 2, 3, 4, 8, 9, 16, 18, 27, 36, 48, 47, 32, 64, 67, 19, 144, 81, 162, 243,
324, 432, 499, 343, 972, 2916, 5832, 5833, 5689 of length 28, which is worse by 6 from the original algorithm
by Bos and Coster

5.2.2 One thirding

Express every other element in terms of the smallest

Example: 1, 2, 4, 8, 16, 24, 48, 47, 49, 94, 86, 87, 188, 141, 117, 282, 351, 343, 484, 500, 499, 564, 613,
846, 933, 1692, 5076, 5689

The length of this chain is 27, which is worse by 5 from the original algorithm by Bos and Coster

Express larger elements in terms of the third largest element

Example: 1, 2, 3, 4, 8, 16, 32, 48, 47, 31, 78, 70, 117, 141, 234, 265, 343, 311, 933, 1198, 530, 499, 1497,
4491, 5689

The length of this chain is 24.

29

Combination of the earlier two strategies

Example: 1, 2, 3, 4, 6, 7, 8, 24, 48, 47, 94, 91, 87, 16, 75, 76, 70, 117, 141, 423, 499, 846, 933, 2799, 5598, 5689

The length of this chain is 25.

5.2.3 Ternary representation

For the given number, we give the decimal, binary and ternary representations.

Decimal: 26235947428953663183191

Binary: 10110001110010000001110100101001110101

0000001011110000011111001100101010111

Ternary: 222122022210002222222102021012102021220022011022

A window representation of the ternary number is
222122022210002222222102021012102021220022011022

11=4, 22=8, 11022=116, 2021=61, 202122=557, 121=16, 2221=79,

2222=80, 222122=719

The make-sequence chain is 1, 3, 4, 7, 8, 9, 18, 27, 54, 12, 36, 61, 79, 108, 116, 183, 237, 549, 557, 711,
719 which has length 20.

For this representation, we need 42 triplings, 20 additions and 9 intermediate additions , i.e., 71 oper-
ations which is an improvement from Bos and Coster’s methods which required 89 operations.

5.3 Scope for future work

The superiority of the heuristics suggested in this work requires conclusive establishment by extensive
experiments performed on randomly chosen values of n. It can also be an interesting study to find out if
the use of DBNS along with the four original routines of the Makesequence algorithm proposed by Bos
and Coster [BosCoster90] should provide improvement over the Bos and Coster Algorithm.

30

Bibliography

[Erdos60] P. Erdos, Remarks on number theory. III. On addition chains, Acta Arith. (1960), 77–81.

[Knuth81] D. E. Knuth, “Seminumerical Algorithms,” 2nd ed., “The Art of Computer Programming,”Vol. 2,
Addison-Wesley, Reading, MA, 1981.

[BosCoster90] J. Bos and M. Coster, Addition chain heuristics, Advances in Cryptology—Proceedings of
Crypto ’89, Vol. 435, pp. 400–407, Springer-Verlag, Berlin/New York, 1990.

[Dimitrov95] V. S. Dimitrov and T. Cooklev. Hybrid Algorithm for the Computation of the Matrix Polynomial
I +A+ ...+AN−1. IEEE Trans. on Circuits and Systems, 42(7):377–380, 1995.

[Imbert2005] V. S. Dimitrov, L. Imbert, and P. K. Mishra. Efficient and Secure Elliptic Curve Point Multipli-
cation Using Double-Base Chains, Advances in Cryptology – Asiacrypt 2005, volume 3788 of Lecture
Notes in Comput. Sci., pages 59–78. Springer.

[Bernstein2011] Daniel J. Bernstein, Pippenger’s exponentiation algorithm, URL:
http://cr.yp.to/papers/pippenger.pdf

[LempelZiv76] A. Lempel and J. Ziv, On the complexity of finite sequences, IEEE Trans. Inform. Theory,
IT-22, (1976)

[Yacovi99] Yacov Yacobi, Fast Exponentiation Using Data Compression, SIAM Journal on Computing, Vol-
ume 28 , Issue 2 (April 1999), Pages: 700 - 703

[Doche2009] Christophe Doche, David R. Kohel and Francesco Sica, Double-Base Number System for Multi-
Scalar Multiplications, Proceeding EUROCRYPT ’09 Proceedings of the 28th Annual International
Conference on Advances in Cryptology: the Theory and Applications of Cryptographic Techniques

[Gordon98] Daniel M.Gordon, “A Survey of Fast Exponentiation Methods”, Journal of Algorithms 27, pp.129-
146, 1998.

[Imai2011] Vorapong Suppakitpaisarn, Masato Edahiro and Hiroshi Imai, “Fast Elliptic Curve Cryptography
Using Optimal Double-Base Chains”, URL: http://eprint.iacr.org/2011/030

31

Appendix A

Appendix

Table A.1: Comparison of the length of the Brauer’s chain, Modified Brauer’s chain and Yao’s chain for
various n and k

n k Brauer’s Modified Brauer’s Yao’s

1000 3 21 13 21
1000 4 24 15 24
1000 5 36 22 22
1000 2 14 13 16
2000 2 17 14 17
2000 3 18 14 21
2000 4 24 16 22
2000 5 42 23 28
10000 2 20 17 20
10000 3 22 17 23
10000 4 29 20 23
10000 5 42 26 30
100000 2 26 20 24
100000 3 26 20 26
100000 4 34 23 33
100000 5 48 30 30
1000000 2 29 24 27
1000000 3 30 24 32
1000000 4 34 26 32
1000000 5 48 33 38
10000000 2 35 29 32
10000000 3 34 29 37
10000000 4 39 31 38
10000000 5 54 37 45
100000000 2 41 34 39
100000000 3 38 33 46
100000000 4 44 35 46
100000000 5 60 41 56
1000000000 2 44 38 42
1000000000 3 42 36 50
1000000000 4 49 38 56
1000000000 5 60 45 62
2100000000 2 47 41 NAN
2100000000 3 46 38 NAN
2100000000 4 49 40 NAN
2100000000 5 66 46 NAN

32

