
Indian Statistical Institute

Master’s Thesis

Quantum Computing: How to estimate
error probability in logic synthesis

Author:

Priyanka Mukhopadhyay

Supervisor:

Prof. Susmita Sur-Kolay

A thesis submitted in fulfilment of the requirements

for the degree of Master of Technology

in

Computer Science

http://www.isical.ac.in
http://http://www.isical.ac.in/~ssk/
http://www.isical.ac.in/departments.php

INDIAN STATISTICAL INSTITUTE

Abstract

Master of Technology

Quantum Computing: How to estimate error probability in logic synthesis

by Priyanka Mukhopadhyay

The interest in quantum computing began because it showed the potential to solve many

classically intractable problems, as was evident from Shor’s discovery of an algorithm

to factor large numbers in polynomial time and Grover’s algorithm to find a single

object in an unassorted database. The main strength of quantum computers lay in the

phenomenon of superposition, which gives it enormous information storing capability as

compared to classical computers. But this does not come free of cost.

Real quantum systems are open systems which can couple in an unwanted manner to

an environment or control system and lose their intrinsic quantum nature through the

process of decoherence, quantum noise, and imprecise measurement, preparation and

control. Fortunately, it was discovered that under reasonable physical assumptions,

that is, if the worst error probability of any component is below a certain threshold, a

fault-tolerant quantum computation can be built.

Ideally, an error-correcting circuit must be placed after every encoded component for

error detection and recovery. But this entails a huge amount of physical resources, that

is, additional gates and ancilla qubits. So we trace the error propagation in quantum

circuits and place the error-correction sub-circuit only when the probability of errors

exceed a certain cut-off.

For encoding we have considered three quantum error correcting codes, namely Bacon-

Shor, Steane and Knill code. To calculate the error probability for different encoded

gates at various levels of concatenation, we have analysed and designed an error analysis

model for the physically realizable tile architecture that uses SWAP gates for movement

of qubits locally. We have also designed a model for error propagation in quantum

circuits and have tested it on benchmark circuits.

http://www.isical.ac.in

Acknowledgements

The two years M.Tech course at ISI, has been one of the most rewarding experiences in

my life. It would not have been so wonderful without some people, whom I would like

to acknowledge here.

Firstly, I am deeply grateful to my guide, Prof. Susmita Sur-Kolay, without whose active

support, this thesis would not have been possible. The long hours of discussion of ideas

and results, are some of the most fruitful and enjoyable moments that I have spent.

I thank Prof Niraj Jha, Chia-Chun and Amlan Chakrabarti of Princeton University,

for the hours of discussion and exchange of ideas. The benchmark circuits that I have

simulated my results on, were provided by them and I am grateful for that.

I thank Prof. G. Kar of PAMU, ISI, Kolkata for helping us with problems that we had.

I have been lucky enough to get some wonderful teachers in ISI. No words can express

my gratitude for all those things that I have learnt from them.

My parents and my brother have always been the main strength for me. And last but

not the least, I thank all my friends for all our hours of fun and enjoyment.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures vi

List of Tables viii

Abbreviations ix

1 Introduction 1

1.1 Quantum Computers . 2

1.2 Physical Limitations of Quantum Computers : Decoherence 3

1.2.1 Error Correction and Fault Tolerance 4

1.3 Motivation of Work and Scope . 6

1.4 Contribution of this Thesis . 6

1.5 Organization . 6

2 Preliminary Knowledge 7

2.1 Quantum Mechanics . 7

2.1.1 Qubits . 7

2.1.2 Bloch Sphere Representation . 8

2.1.3 Postulates of Quantum Mechanics 8

2.1.4 Indistinguishibility of non-orthogonal quantum states 10

2.1.5 No Cloning Theorem . 10

2.2 Introduction to Quantum Computing . 11

2.2.1 Quantum Gates . 11

2.2.1.1 One-qubit Gates . 12

2.2.1.2 Two-qubit Gates . 13

2.2.1.3 Three-qubit Gates . 15

2.2.2 Universal Quantum Gate Library 16

2.3 Physcial Machine Description (PMD) . 16

2.4 Quantum Error Correcting Code (QECC) 17

2.4.1 [9,1,3] Shor Code . 19

2.4.2 [7,1,3] Steane Code . 20

iii

Contents iv

2.4.3 [9,1,3] Bacon-Shor Code . 21

2.4.4 [4,2,2] Knill Code . 22

2.5 Fault Tolerance . 23

3 Overview and Synthesis 26

3.1 Fault Tolerant Quantum Logic Synthesis (FTQLS) 26

3.1.1 FTQLS flow . 26

3.1.2 Fault-Tolerant Set (FTS) of gates 27

3.2 Error Models . 28

3.3 Error Propagation . 29

3.4 Methodology: Estimating error probability in quantum circuits 30

3.4.1 Data Structure . 30

3.4.2 Methodology . 31

3.4.3 Time Complexity . 32

3.4.4 Comparison with previous works 32

4 Estimation of Gate Error Probability at Logical Level 34

4.1 Bacon Shor Code . 35

4.1.1 Encoded gates . 35

4.2 Steane Code . 36

4.2.1 Encoded Gates . 37

4.3 Knill Code . 38

4.3.1 Encoded Gates . 38

4.4 Calculating the error probability and delay of gates 38

4.4.1 Calculation of gate error probability at physical level 39

4.4.2 Calculation of gate probability and time at logical level 40

4.5 Error probability and delay of gates at physical level 42

4.5.1 QD . 42

4.5.2 SC . 45

4.5.3 LP . 48

4.5.4 NLP . 49

4.5.5 IT . 51

4.5.6 NA . 53

4.6 Error probability and delay of gates at logical level 54

4.6.1 Bacon Shor Code . 55

4.6.2 Steane Code . 59

4.6.3 Knill Code . 62

5 Results and Observations 66

5.1 Benchmark Circuits . 66

5.1.1 Circuit for Grover’s Search algorithm 67

5.2 Results . 69

5.3 Observations and Inference . 70

6 Conclusion 81

6.1 Future Scope . 82

Contents v

A Tile operations for CTL gates using the Bacon Shor code 83

A.1 Pauli Gates . 84

A.2 H . 84

A.3 SWAP . 86

A.4 CNOT . 89

A.5 S . 91

A.6 T . 94

B Tile operations for CTL gates using the Steane code 99

B.1 Pauli Gates . 100

B.2 H . 100

B.3 S . 101

B.4 hSWAP . 101

B.5 vSWAP . 104

B.6 hCNOT . 108

B.7 vCNOT . 113

B.8 T . 116

C Tile operations for CTL gates using the Knill code 120

C.1 Pauli Gates . 120

C.2 H . 121

C.3 SWAP . 121

C.4 CNOT . 123

C.5 S . 125

C.6 T . 128

Bibliography 132

List of Figures

2.1 Bloch sphere representation of a qubit . 8

2.2 Two qubit gates . 15

2.3 Three qubit gates . 15

2.4 Quantum encoding circuit for Shor [9,1,3] code 19

2.5 Quantum encoding circuit for Steane [7,1,3] code 21

2.6 Quantum encoding circuit for Bacon-Shor [9,1,3] code 22

2.7 Quantum encoding circuit for Knill [4,2,2] code 23

2.8 Fault-Tolerant implementation of a simple circuit 24

2.9 A two-level concatenated code . 24

3.1 FTQLS flow . 27

3.2 The source and the target of CNOT gate is interchanged if a change of
basis is performed with Hadamard rotations 30

3.3 Pictorial representation showing how a toy circuit is implemented 31

3.4 Flow diagram describing the proposed algorithm. (Square blocks indicate
input or output in file, while rounded blocks indicate procedures) 32

4.1 Qubit layout consisting of tiles that represent one logical qubit 34

4.2 Tile structure of the Bacon Shor code in a 7× 7 lattice 35

4.3 Fault tolerant transversal implementation of CNOT gate 36

4.4 Fault-tolerant (non-transversal) implementation of S and T gate 37

4.5 Tile structure of the Steane code in a 6× 8 lattice 37

4.6 Tile structure of the Knill code in a 5× 5 lattice 38

4.7 CNOT gate construction in QD and IT 40

4.8 SWAP gate construction in QD and IT 44

4.9 G gate construction in QD and SC . 45

4.10 ZENO gate construction in QD . 45

4.11 SWAP gate construction in NLP, NA and SC 47

4.12 CNOT gate construction from H gate and in SC, NA. 47

4.13 G gate construction in LP, NLP and NA 49

4.14 CZ gate construction in NLP and IT. 50

4.15 ZENO gate construction with SWAP gate 51

5.1 Circuit structure for Grover’s search algorithm 69

A.1 Encoded Pauli Gates for the Bacon Shor code 84

A.2 Encoded H gate for the Bacon Shor code 86

A.3 Encoded SWAP gate for the Bacon Shor code 88

A.4 Encoded CNOT gate for the Bacon Shor code 91

vi

List of Figures vii

A.5 Encoded S gate for the Bacon Shor code 94

A.6 Encoded T gate for the Bacon Shor code 98

B.1 Encoded Pauli Gates for the Steane code 100

B.2 Encoded H gate for the Steane code . 100

B.3 Encoded S gate for the Steane code . 101

B.4 Encoded hSWAP gate for the Steane code 104

B.5 Encoded vSWAP gate for the Steane code 108

B.6 Encoded hCNOT gate for the Steane code 112

B.7 Encoded vCNOT gate for the Steane code 115

B.8 Encoded T gate for the Steane code . 119

C.1 Encoded Pauli Gates for the Knill code 120

C.2 Encoded H gate for the Knill code . 121

C.3 Encoded SWAP gate for the Bacon Shor code 123

C.4 Encoded CNOT gate for the Steane code 125

C.5 Encoded S gate for the Steane code . 127

C.6 Encoded T gate for the Knill code . 131

List of Tables

2.1 Supported operations in different PMDs 17

2.2 Stabilizers for Shor’s 9-qubit code . 20

2.3 Stabilizers for Steane’s 7-qubit code . 21

2.4 Stabilizers for Bacon-Shor’s 9-qubit code 22

3.1 Conversion between one-qubit FTS and CTL 28

4.1 The probability of error of the worst gate at the physical level and the
probability of error occurring on an idle qubit for each PMD [61] 39

4.2 Gate time (in ns) (at physical level)[61] 39

4.3 Error probability and delay of Rz gate at the logical level (k as in Equa-
tion 3.1) . 55

4.4 Error probability and delay of Rx gate at the logical level (k as in Equa-
tion 3.1) . 56

4.5 Error probability and delay of Ry gate at the logical level (k as in Equa-
tion 3.1) . 56

5.1 Error probability and delay of FTS gates at physical level for each PMD . 70

5.2 Error probability and delay of FTS(1) gates at logical level for each QECC 71

5.3 Error probability and delay of FTS(2) gates at logical level for each QECC 72

5.4 Savings (in %) on EC blocks for 4-bit Adder circuit on IT, SC and NA . . 73

5.5 Savings (in %) on EC blocks for 4-bit Adder circuit on LP, NLP and QD 74

5.6 Savings (in %) on EC blocks for 8-bit Adder circuit on IT, SC and NA . . 75

5.7 Savings (in %) on EC blocks for 8-bit Adder circuit on LP, NLP and QD 76

5.8 Savings (in %) on EC blocks for Multiplier circuit on IT, SC and NA . . . 77

5.9 Savings (in %) on EC blocks for Multiplier circuit on LP, NLP and QD . 78

5.10 Comparative results considering Grover’s search circuit for IT, SC and NA 79

5.11 Comparative results considering Grover’s search circuit for LP, NLP and
QD . 80

A.1 Latency of CTL gates encoded with the Bacon Shor code 83

B.1 Latency of CTL gates encoded with the Bacon Shor code 99

C.1 Latency of CTL gates encoded with the Bacon Shor code 120

viii

Abbreviations

FT Fault Tolerant

EC Error Correction

QD Quantum Dot

SC Super Conductor

NA Neutral Atom

LP Linear Photonics

NLP Non Linear Photonics

IT Ion Trap

PMD Physical Machine Description

QECC Quantum Error Correcting Code

ix

Dedicated to my parents . . .

x

Chapter 1

Introduction

Computer science is undoubtedly one of the greatest intellectual triumphs of the 20th

century. Computers are ubiquitous - from medicine to agriculture, space to road traffic

control - they have tremendous impact in nearly every sphere of modern life.

The origins of computer science are lost in the depths of history. Alan Turing [1] pio-

neered the theoretical formulation of the modern incarnation of computer science. He

developed an abstract model of computation, Turing machine (named in his honour),

what is now known as a programmable computer. Few years after that, hardware de-

velopment took pace when in 1947, John Bardeen, Walter Brattain and Will Shockley

developed the transistor. Ever since then, computer hardware has grown in power at an

astonishing rate. In 1965 Gordon Moore codified in what is famously known as Moore’s

law, that computer power will double for constant cost roughly once every two years.

However, this dream run is expected to end because conventional approaches to the

fabrication of computer technology are beginning to run up against fundamental diffi-

culties in size. Quantum effects are beginning to interfere in the functioning of electronic

devices as they are made smaller and smaller.

One possible solution is to move to a different computing paradigm. One such paradigm

is provided by the theory of quantum computation, which is based on the idea of using

quantum mechanics to perform computations, instead of classical physics.

Since the landmark Nature paper in 2001 [26] describing a technology for scalable quan-

tum computation (part of the work for which Wineland received the Nobel prize in

physics in 2012), interest in practical computation has grown significantly. Recent

announcements by commercial effort D-Wave of a 128-quantum bit (qubit) adiabatic

system [54], although controversial in terms of its quantum properties, illustrate the

engineering progress that has been made.

1

Chapter 1. Introduction 2

1.1 Quantum Computers

It is tempting to say that a quantum computer is one whose operation is governed by the

laws of quantum mechanics. But quantum mechanics being a complete natural theory,

its laws govern the behaviour of all physical phenomena, even classical computers. So

this temptation must be resisted. What distinguishes quantum from classical computers

is that operation of the former is based on the two distinctively quantum-mechanical

effects of interference and entanglement that do not appear in classical physics. Thus

a quantum computer is an interference device of many entangled computation paths.

Just as an interference pattern can appear by preparing a particle in a superposition of

different geometric paths which are then combined to interfere, the output of a quantum

computer is obtained by preparing the quantum bits in a superposition of different

classical computation states which are also combined to interfere producing the final

computation answer.

A classically intractable problem is simulating quantum systems. A single spin - 1/2

particle, such as an electron trapped in a quantum dot, has a 2-D space of states, which

can be considered to describe the direction of its spin. A similar classical particle such

as a Heisenberg spin will also have a 2-D state space. However, n quantum particles

have a 2n - D state space, while n classical Heisenberg spins will only have a 2n - D

space of states. Thus quantum systems are difficult to simulate classically because they

generically utilize the full 2n - D Hilbert space as they evolve, requiring exponential

classical resources. This led Feynman [3] to conjecture that a quantum computer, which

used quantum mechanics intrinsically might be more powerful than a computer mired

in the classical world.

One of the most spectacular instances of the power of quantum computers to solve

classically intractable problems is Shor’s discovery of an algorithm to factor numbers

on quantum computer in polynomial time in the number of bits [5, 21]. This could

be used to break the RSA cryptosystem, which is one of the most widely deployed

public key cryptosystems. Another impressive algorithm is Grover’s algorithm [11],

which can find a single object in an unassorted database of N objects in O(
√
N) time

on a quantum computer, while the same task would require an exhaustive search on a

classical computer, taking O(N) time. It has been shown that O(
√
N) time is the best

possible speed for this task [18].

Chapter 1. Introduction 3

1.2 Physical Limitations of Quantum Computers : Deco-

herence

While the power of quantum superposition enables a lot of interesting computing, it

comes at a cost. In a quantum computer the physical systems that encode the individ-

ual logical bits must have no physical interactions with whatever that are not under the

complete control of the program. All other interactions, however irrelevant they might

be in a classical computer, introduce potentially catastrophic disruptions into the oper-

ations of a quantum computer. Such damaging encounters can include interactions with

the external environment, such as air molecules bouncing off the physical systems that

represent bits, or the absorption of minute amounts of ambient radiant thermal energy.

There can even be disruptive interactions between the computationally relevant features

of the physical systems that represent bits and other features of those same systems that

are associated with computationally irrelevant aspects of their internal structure. Such

destructive interactions between what matters for the computation and what does not,

result in decoherence, which is fatal to a quantum computer. Quantum decoherence is

the loss of coherence or ordering of the phase angles between the components of a system

in a quantum superposition. These problems serve as an obstacle towards the eventual

construction of a robust large scale quantum computer [6, 7, 9]. If left unchecked, these

problems turn a quantum computer into a classical information processing device, or

even worse, into a machine which can enact no computation at all.

For this reason, error rates for all quantum operations are higher than classical ones.

Error rates to do anything in any quantum computing technology in the lab right now

are in the range of 10−2 - 0.1 errors per operation. This includes having qubits wait

around, not doing anything. Realistic estimates for error rates in the foreseeable future

are said to be around 10−5 - 10−2 errors per operation. In contrast, CMOS transistor

error rates range from 10−20 to 10−15 errors per gate.

To avoid decoherence individual bits cannot in general be encoded in physical systems

of macroscopic size, because such systems (except under very special circumstances)

cannot be isolated from their own irrelevant internal properties. Such isolation can be

achieved if the bits are encoded in a small number of states of a system of atomic size,

where extra internal features do not matter, either because they do not exist, or because

they require unavailably high energies to come into play. Such atomic scale systems

must also be decoupled from their surroundings except for the completely controlled

interactions that are associated with the computation process itself.

Two things keep the situation from being hopeless. First, because the separation between

the discrete energy levels of a system on the atomic scale can be enormously larger than

Chapter 1. Introduction 4

the separation between the levels of a large system, the dynamical isolation of an atomic

system is easier to achieve. It can take a substantial kick to knock an atom out of its

state of lowest energy. The second reason for hope is the discovery that errors introduced

by extraneous interactions can actually be corrected if they occur at a sufficiently low

rate, that is, under reasonable physical assumptions, a fault-tolerant quantum computer

can be built.

1.2.1 Error Correction and Fault Tolerance

A central insight used in the theory of fault-tolerant quantum computation is that quan-

tum information can be encoded into quantum error-correcting codes. In classical com-

putation, error-correcting codes encode a message by adding enough redundancy such

that even if the encoded message is corrupted with noise, it is possible to decode or

recover the information in the original message. Somewhat analogously, quantum error-

correcting codes spread information across many physical qubits of a system and protect

the quantum information from undesired effects which cause a lot of quantum decoher-

ence.

However, there are some fundamental differences between classical and quantum infor-

mation that must be kept in mind while developing these codes. [51]

• No cloning: This forbids the implementation of repetition codes quantum me-

chanically.

• Continuous errors: Since a continuum of different errors can occur on a single

qubit, determining which particular error occured would require infinite precision

and hence infinite resources.

• Measurement destroys quantum information: In classical error-correction output

from the channel is observed and accordingly different error-correcting steps can be

applied. Observation or measurement in quantum mechanics generally irreversibly

destroys quantum states.

A simple two-stage process can be used to recover the correct quantum state.

1. Error-detection or Syndrome diagnosis: A measurement is performed which

tells which error, if any, occurred on the quantum state. The measurement result

is called the error syndrome. The syndrome contains only information about what

error has occurred and no information about the state being protected, because to

obtain the latter it is in general necessary to perturb the state.

Chapter 1. Introduction 5

2. Recovery: The value of the error syndrome tells what procedure to use to

recover the initial state.

An important result of quantum error correction is discretization of errors, that gives

us some relief against the continuous errors. This states that, to fight the continuum

of errors possible on a single qubit it is sufficient merely to win the war against a finite

set of errors, the four Pauli matrices (described in Chapter 2). Similar results hold for

higher dimensional quantum systems. This stands in remarkable contrast to the theory

of error correction for analog classical systems. Error correction in these systems is

extremely difficult because in principle there are an infinite number of different error

syndromes. Digital error-correction for classical information processing is much more

successful because it involves a finite number of error syndromes. Thus quantum error-

correction seems more similar to classical digital error-correction than it is to classical

analog error-correction.

Some of the popular quantum error correcting codes (QECCs) are Shor code, Steane

code and Knill code. These are described in Chapter 2.

Fault tolerant quantum computing aims at computing directly on encoded quantum

states in such a manner that decoding is never required. Fault tolerance of a proce-

dure is defined [51] to be the property that if only one component in the procedure

fails then the failure causes at most one error in each encoded block of qubits output

from the procedure. For example, the failure of a single component in a fault-tolerant

recovery procedure for quantum error-correction results in the recovery procedure being

performed correctly, up to an error on a single qubit of the output. ’Component’ means

any of the elementary operations used in the encoded gate, which might include noisy

gates, noisy measurements, noisy quantum wires and noisy state preparations. Analo-

gously, a procedure for measuring an observable on a set of encoded qubits is said to be

fault-tolerant if the failure of any single component in the procedure results in an error

in at most one qubit in each encoded block of qubits at the output of the procedure.

Furthermore, we require that if only one component fails then the measurement result

reported must have probability of error of O(p2), where p is the (maximum) probability

of a failure in any one of the components used to implement the measurement procedure.

Similarly, a procedure for preparing a fixed encoded sate is said to be fault-tolerant if,

given that a single component failed during the procedure, there is at most a single qubit

in error in each encoded block of qubits output from the procedure.

Chapter 1. Introduction 6

1.3 Motivation of Work and Scope

Ideally, quantum error correction must be carried out after every component. But that

entails a tremendous increase of resources. So we do an error analysis of quantum

circuits. Our aim is to reduce the resources by placing the error correction sub-circuit

judicially. For this, we trace the propagation of error probability in a quantum circuit

at the logical level. We build the tile structures of fault-tolerant gates encoded with

different QECCs. We propose a model to calculate the error probability of these gates

at the logical level and use these values in error tracing. When the probability of error

in the circuit crosses a certain threshold, we place an error correction sub-circuit.

1.4 Contribution of this Thesis

Our contributions can be summarized as follows:

• We have developed the tile structure of fault-tolerant gates, encoded with different

QECCs and designed a model to calculate the error probability of each such gate

at the physical level as well as at the logical level.

• We have built an algorithm to trace the propagation of error probability in a logical

quantum circuit.

• We have designed a methodology of fixing thresholds and applying quantum error

correcting sub-circuits, which results in significant reduction of resources.

• We have implemented our algorithm in C and developed a tool for calculating

error probability of gates at physical and logical level, tracing error probability in

a logical quantum circuit and placing error-correction sub-circuit selectively.

1.5 Organization

In Chapter 2 we give some background knowledge about quantum mechanics, quantum

computing, error correction and fault tolerance and then we proceed to describe our

methodology for tracing error probability in quantum circuits in Chapter 3. The model

for calculating error probability of the gates at physical and logical level has been detailed

in Chapter 4. Results have been given in Chapter 5 and we end with some concluding

remarks in Chapter 6.

Chapter 2

Preliminary Knowledge

Quantum computing is an interdesciplinary field, encompassing physics, mathematics

and computer science. The background knowledge which people from one field takes for

granted, may be unfamiliar to others. So in this chapter we provide a brief preliminary

knowledge of quantum mechanics, quantum computing, error correcting codes and fault

tolerance.

2.1 Quantum Mechanics

2.1.1 Qubits

The fundamental concept of classical computation and classical information is the bit,

which has can be in two states - 0 or 1. Analogously, the simplest quantum mechanical

system is the qubit, which has a 2-D state space and is represented by a unit state vector.

Let |0〉 and |1〉 form an orthonormal basis for that state space. Then an arbitrary state

vector in that state space can be written as :

|ψ〉 = a |0〉+ b |1〉 where a and b are complex numbers (2.1)

For |ψ〉 to be a unit vector, 〈ψ |ψ〉 = 1, where 〈α |β〉 represents inner product of two

vectors α and β. This impies |a|2 + |b|2 = 1. Similarly an n - qubit system has 2n

computational basis states and can have a state which is a linear combination of these

basis states. This gives rise to the continuum of quantum states.

This way a qubit differs from a classical bit, that is, it can exist in superposition of states.

Any linear combination
∑

i αi |ψi〉 is a superposition of the states |ψi〉 with amplitude

αi. The probability that the state of the qubit after measurement happens to be |ψi〉 is

7

Chapter 2. Preliminary Knowledge 8

|αi|2. The condition that the probabilities sum to 1 is expressed by the normalization

condition
∑

i |αi|2 = 1. Example of superposed states are |0〉±|1〉√
2

, which are often called

the Hadamard basis states.

There are multiple qubit states that cannot be written as product of single qubit states.

These are called entangled states. An important two qubit entangled state is the Bell

state or EPR pair, |00〉+|11〉√
2

2.1.2 Bloch Sphere Representation

An useful way of thinking about qubits is the geometric representation of Bloch sphere.

Since normalization conditions hold in equation(2.1), |a|2 + |b|2 = 1 and it maybe re-

written as:

|ψ〉 = eiγ(cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉) where θ, ϕ, γ ∈ R (2.2)

The factor eiγ can be ignored because it has no observable effects. Thus equation(2.2)

can be effectively written as:

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 (2.3)

The numbers θ and ϕ define a point on an unit 3-D sphere, called the Bloch sphere

(figure(2.1)). It offers an useful way of visualizing the state of a single qubit. But the

intuition is limited because there is no simple generalization of the Bloch sphere for

multiple qubits.

Figure 2.1: Bloch sphere representation of a qubit

2.1.3 Postulates of Quantum Mechanics

The postulates provide a connection between the physical world and the mathematical

formalism of quantum mechanics. These are stated as follows with brief explainations:

Chapter 2. Preliminary Knowledge 9

Postulate 1: Associated to any isolated physical system is a complex vector space with

inner product (that is, Hilbert space) known as the state space of the system. The

system is completely described by its state vector, which is a unit vector in the system’s

state space.

Postulate 2: The evolution of a closed quantum system is described by a unitary

transformation. That is, the state |ψ〉 of the system at time t1 is related to the state

|ψ′〉 of the system at time t2 by a unitary operator U which depends only on the times

t1 and t2, ∣∣ψ′〉 = U |ψ〉 (2.4)

Postulate 2′: The time evolution of the state of a closed quantum system is described

by the Schrödinger equation,

i~
d |ψ〉
dt

= H |ψ〉 where ~ is Planck’s constant (2.5)

H is a fixed Hermitian operator known as the Hamiltonian of the closed system. Since

the Hamiltonian is a Hermitian operator it has a spectral decomposition

H =
∑
E

E |E〉 〈E| with eigenvalues E and corresponding normalized eigenvectors |E〉

(2.6)

The states |E〉 are conventionally referred to as energy eigenstates, or stationary states

and E is the energy of the state |E〉.

For simplicity, let H is independent of time, then equation(2.5) can be solved as:

|ψ(t)〉 = e−iH(t−t0)/~ |ψ(t0)〉 = U |ψ(t0)〉 (2.7)

where U is a unitary operator.

Postulate 3: Quantum measurements are described by a collection {Mm} of mea-

surement operators. These are operators acting on the state space of the system being

measured. The index m refers to the measurement outcomes that may occur in the ex-

periment. If the state of the quantum system is |ψ〉 immediately before the measurement

then the probability that the result m occurs is given by :

p(m) = 〈ψ| |M †mMm| |ψ〉 (2.8)

and the state of the system after measurement is

Mm |ψ〉√
〈ψ| |M †mMm| |ψ〉

(2.9)

Chapter 2. Preliminary Knowledge 10

The measurement operators satisfy the completeness equation,

∑
m

M †mMm = I (2.10)

The completeness equation expresses the fact that probabilities sum to one:

1 =
∑
m

p(m) =
∑
m

〈ψ| |M †mMm| |ψ〉 (2.11)

2.1.4 Indistinguishibility of non-orthogonal quantum states

A proof by construction shows that no measurement distinguishing the orthogonal states

|ψ1〉 and |ψ2〉 is possible.

Let such a mesurement is possible. Let f(.) is a rule that determines the outcome of

the measurement. If the state |ψ1〉 (|ψ2〉) is prepared then the probability of measuring

j such that f(j) = 1(f(j) = 2) must be 1.

Defining Ei ≡
∑

j:f(j)=iM
†
jMj , these observations may be written as:

〈ψ1 |E1 |ψ1〉 = 1; 〈ψ2 |E2 |ψ2〉 = 1 (2.12)

Since
∑

iEi = I it follows that
∑

i 〈ψ1 |Ei |ψ1〉 = 1, and since 〈ψ1 |E1 |ψ1〉 = 1 we must

have 〈ψ1 |E2 |ψ1〉 = 0, and thus
√
E2 |ψ1〉 = 0.

Let we decompose |ψ2〉 = α |ψ1〉+ β |ϕ〉, where |ϕ〉 is orthonormal to |ψ1〉 , |α|2 + |β|2 =

1, and |β| < 1 since |ψ1〉 and |ψ2〉 are not orthogonal.

Then
√
E2 |ψ2〉 = β

√
E2 |ϕ〉, which implies a contradiction with (2.12), as

〈ψ2 |E2 |ψ2〉 = |β|2 〈ϕ |E2 |ϕ〉 ≤ |β|2 < 1

where the second inequality follows from the observation that

〈ϕ |E2 |ϕ〉 ≤
∑
i

〈ϕ |Ei |ϕ〉 = 〈ϕ |ϕ〉 = 1

2.1.5 No Cloning Theorem

The No Cloning theorem [4] states that it is impossible to make a copy of an arbitrary

quantum state. The proof is straightforward [19] :

Let we wish to have an operation that maps an arbitrary state |ψ〉 → |ψ〉 ⊗ |ψ〉.
Then arbitrary |φ〉 is mapped by |φ〉 → |φ〉 ⊗ |φ〉.

Chapter 2. Preliminary Knowledge 11

Because the transformation must be linear it follows that

|ψ〉+ |φ〉 → |ψ〉 ⊗ |ψ〉+ |φ〉 ⊗ |φ〉

However

|ψ〉 ⊗ |ψ〉+ |φ〉 ⊗ |φ〉 6= (|ψ〉+ |φ〉)⊗ (|ψ〉+ |φ〉)

So we have failed to copy |ψ〉+ |φ〉.
In general, if we pick an orthonormal basis, we can copy the basis states but we will not

have correctly copied superpositions of those basis states.

2.2 Introduction to Quantum Computing

Changes occuring to a quantum state can be described using the language of quantum

computation. From equation(2.7), all valid quantum operations are unitary. The evolu-

tion of an isolated quantum system with a finite number of states can be described by a

unitary matrix and thus is reversible. Reversibility is a necessary condition for qunatum

computing.

Quantum circuits can be represented by space-time diagrams. In these diagrams, time

usually progresses from left to right. The circuit comprises of a sequence of quantum

gates, either in series or parallel. An n - qubit gate or operation is represented by

a 2n × 2n unitary matrix. The net unitary transformation performed is computed by

composing the unitary matrices of the corresponding quantum gates. If several gates

act on the same subset of qubits, then they must be applied in series and their overall

effect is computed by the dot product. If adjacent gates within a quantum circuit act

on independent subset of qubits, then they can be applied in parallel and the net effect

is the tensor product of the unitary matrices.

2.2.1 Quantum Gates

In this subsection we present definitions and discuss properties of some fundamental one-

qubit, two-qubit and three-qubit operations and the corresponding quantum gates [58],

that are used to build quantum circuits for information processing. It must be borne

in mind, that due to no-cloning principle quantum circuits do not have any fanout or

feedback mechanism and thus can be represented by an acyclic graph.

Chapter 2. Preliminary Knowledge 12

2.2.1.1 One-qubit Gates

A one-qubit gate can be represented by a 2 × 2 unitary matrix. Some one-qubit gates

are listed below.

• Global Phase Gate: The global phase gate, P, is defined as:

P (θ) = eiθ İ (2.13)

where I denotes the identity matrix, which indicates that no operation is per-

formed.

Remark: The global phase gate is physically indistinguishable and hence is not

physically implemented. But it is useful to match circuit identities.

• Pauli Gates: The Pauli spin matrices for the x, y and z axes, corresponding to

the Pauli Gates X, Y and Z are respectively:

X =

(
0 1

1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0

0 −1

)
(2.14)

• Rotation Gates: From equation(2.7), evolution of a quantum operation depends

on the exponentiation of the Hermitian matrix. This leads to the definition of

rotation gates, which represent rotation around the different axes.

Rx(θ) =

(
cos(θ2) −i sin(θ2)

−i sin(θ2) cos(θ2)

)
Ry(θ) =

(
cos(θ2) sin(θ2)

sin(θ2) cos(θ2)

)
Rz(θ) =

(
e−i

θ
2 0

0 ei
θ
2

)
(2.15)

X, Y and Z can be regarded as special cases of Rx, Ry and Rz respectively with

rotation angles of π. The rotation gates can be defined in terms of the Pauli gates

as follows:

Rj(θ) = e
−iθA

2 = cos(
θ

2
)I − i sin(

θ

2
)A, j ∈ {x, y, z}, A ∈ {X,Y, Z} (2.16)

The periods of Rx, Ry and Rz are 4π.

Ri(θ) = Ri(θ ± 4π) = −Ri(θ ± 2π), i ∈ {x, y, z} (2.17)

• H Gate: The Hadamard or H gate is defined as follows:

H =
1√
2

(
1 1

1 −1

)
(2.18)

Chapter 2. Preliminary Knowledge 13

• S and T Gates: The S and T gates are defined as follows:

S =

(
1 0

0 −i

)
, T =

(
1 0

0 ei
π
4

)
(2.19)

S and T are special cases of Rz with rotation angles of π
2 and π

4 respectively. The

following relations hold true:

Z = S2; S = T 2 (2.20)

• Rxy and Asqu Gates: Along with single-axis rotation operators, some multi-

axis one-qubit rotation operators also exist.

Rxy(θ, φ) =

(
cos(θ2) −e−i(φ+

π
2
) sin(θ2)

ei(φ+
π
2
) sin(θ2) cos(θ2)

)
(2.21)

Asqu(φ1, θ, φ2) =

(
ei(

φ1+φ2
2

) cos(θ2) −e−i(
φ1−φ2

2
) sin(θ2)

ei(
φ1−φ2

2
) sin(θ2) e−i(

φ1+φ2
2

) cos(θ2)

)
(2.22)

2.2.1.2 Two-qubit Gates

The physical interactions available within different types of quantum systems can give

rise to different two-qubit operations and corresponding gates. These are described by

4× 4 unitary matrices.

One of the most useful operations for both classical and quantum computing are the

controlled operations. They act on two qubits - a control qubit and a target qubit.

Suppose U is an arbitrary single-qubit operation. For the controlled-U (CU) operation,

if the control qubit c is set, then U is applied to the target qubit t, else the target qubit

t is left alone. That is,

|c〉 |t〉 → |c〉U c |t〉 (2.23)

In matrix notation,

CU =


1 0 0 0

0 1 0 0

0 0 U00 U01

0 0 U10 U11

 (2.24)

Chapter 2. Preliminary Knowledge 14

• CNOT Gate: This is a specific type of CU gate with U = X. It is defined as:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (2.25)

In terms of the computational basis, the action of the CNOT is given by |c〉 |t〉 →
|c〉 |t⊗ c〉

• CP Gate: It leads to a relative phase rotation eiθ between the two qubits when

the control qubit is |1〉. In fact, it is symmetric with respect to both the qubits.

So there is no need to distinguish between the control and target qubit.

CP =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiθ

 (2.26)

• CZ Gate: It is a special type of CP gate with θ = π.

CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 (2.27)

• iSWAP Gate: iSWAP or iSW is not a controlled operation. It is also symmetric.

iSW (θ) =


1 0 0 0

0 cos(θ) −i sin(θ) 0

0 −i sin(θ) cos(θ) 0

0 0 0 1

 (2.28)

• ZENO Gate: ZENO is a special kind of iSW with θ = π
2 .

ZENO =


1 0 0 0

0 0 −i 0

0 −i 0 0

0 0 0 1

 (2.29)

Chapter 2. Preliminary Knowledge 15

• SWAP Gate: This is a symmetric gate and is defined as follows.

SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (2.30)

• Geometric (G) Gate: This symmetric gate applies a geometric phase to two

qubits.

G(θ) =


1 0 0 0

0 eiθ 0 0

0 0 eiθ 0

0 0 0 1

 (2.31)

 CU CNOT CP CZ

iSW ZENO SWAP G

CU CZ

ZENOiSW() G()

CP()Θ

Θ Θ

Figure 2.2: Two qubit gates

2.2.1.3 Three-qubit Gates

Three-qubit reversible gates provide a higher abstraction level for circuit description.

Because interactions among more than two qubits are difficult to implement, the three-

qubit gates must be decomposed into two-qubit and one-qubit gates. Some commonly

used three-qubit gates are Toffoli, Fredkin and Peres gates (Figure 2.3).

FREDKINTOFFOLI PERES

Figure 2.3: Three qubit gates

Chapter 2. Preliminary Knowledge 16

2.2.2 Universal Quantum Gate Library

A small set of gates (e.g. AND, OR, NOT) can be used to compute an arbitrary classical

function and are thus called universal for classical computation. A similar universality

result is true for quantum computation, where a set of gates is said to be universal

for quantum computation if any unitary operation may be approximated to arbitrary

accuracy by a quantum circuit involving only those gates [51]. Since the number of

possible quantum gates is uncountable, whereas number of finite sequences of elements

from a finite set is a countable set, exact realization of all unitary operations is not

possible. The Solovay-Kitaev theorem states that efficient approximations of an

arbitrary unitary with elements from a finite set is possible. Specifically, it implies that

an arbitrary single qubit gate may be approximated to an accuracy ε using O(logc(1/ε))

gates from any discrete set [36].

A number of universal gate sets have been introduced in literature like NCT (NOT,

CNOT, Toffoli). But the most popular universal gate set with provable fault tolerant

implementation is the CTL gate set. The Clifford gate library includes H, S, X and

Z gates for one-qubit circuits. For multiple-qubit circuits CNOT gate is included. To

make the gate set universal the T gate has been added.

2.3 Physcial Machine Description (PMD)

Physical realization of quantum computers not only requires a robust physical represen-

tation of qubits, but also the enabling of their time evolutionas desired. In quantum

mechanics, the time evolution of a closed quantum system is described by a unitary

operator determined by its Hamiltonians (Equation 2.5). Since different quantum sys-

tems have different Hamiltonians, they also have different Physical Machine Descriptions

(PMD) [58]. To perform a quantum operation, one must be able to control the Hamil-

tonians of the system. However, an operation may be easily performed in one system

but with difficulty in another. Hence, one PMD may be more suitsble for implementing

a quantum logic gate than another.

We have considered the PMDs of the following six promising quantum systems.

1. Quantum Dot (QD): Here, a qubit is represented by the spin states of two

electrons ina double electrostatically defined quantum dot, whcih has two potential

wells with a tunneling barrier between them. [43]

Chapter 2. Preliminary Knowledge 17

2. Neutral Atom (NA): This is a system of trapped neutral atoms that can be

isolated from the environment and whose simple quantum-level structure can be

exploited. [39, 52, 55]

3. Linear Photonics (LP): In this quantum system, a probabilistic two-photon

gate is teleported into a quantum circuit with high probability. [25, 32, 42, 44]

4. Non-Linear Photonics (NLP): This quantum system is based on weak cross-

Kerr non-linearities. [29, 38]

5. Super-Conducting (SC): In this system, charged carriers are used to represent

qubits. [30, 35, 47, 48, 50, 53]. At low temperatures in certain metals, two electrons

can bind together to form a Cooper pair. Such a pair can be confined within an

electrostatic box and used to represent quantum information.

6. Ion Trap (IT): This quantum system is based on a 2-D lattice of confined ions,

each of which represents a physical qubit that can be moved within the lattice to

accomodate local interactions. [28, 34]

The primitive quantum operations realized in each of the six PMDs is shown in Table 2.1.

Since for a particular PMD, the non-primitive gates have a higher cost than the primitive

ones, it will be useful if after chosing a particular PMD, the non-primitive gates of a

quantum circuit is realized with the primitive ones.

Table 2.1: Supported operations in different PMDs

PMD One-qubit operation Two-qubit operation

QD Rx, Rz, X, Z, S, T CZ
NA Rxy CZ
LP Rx, Ry, Rz, X, Y, Z, S, T,H CNOT,CZ, SWAP,ZENO
NLP Asqu,Rx, Ry, Rz, H CNOT
SC Rx, Ry, Rz iSWAP,CP
IT Rxy, Rz G

2.4 Quantum Error Correcting Code (QECC)

Noise is one of the important banes of information processing, be it classical or quantum.

Quantum systems, as already discussed in Chapter 1 are more prone to errors due to

decoherence. In classical computing, this problem is countered with the help of error

correcting codes. Such codes are also possible in the quantum domain but we have to

be careful about some aspects like no-cloning, continuum of errors and measurements,

destroying information (Chapter 1). In this section we introduce three very popular

Chapter 2. Preliminary Knowledge 18

quantum error correcting codes (QECCs) that we have used intensively throughout or

work.

Let us consider the properties of more general codes [19]. A code to encode k qubits in n

qubits will have 2k basis codewords corresponding to the basis of the original states. For

linear codes, any linear combination of these basis codewords is also a valid codeword,

corresponding to the same linear combination of the unencoded basis states. The space

T of valid codewords (the coding space) is therefore a Hilbert space in its own right,

a subspace of the full 2n − D Hilbert space. One convenient basis to use is the set of

tensor products of X,Y, Z and I. The weight of an operator of this form is the number

of qubits on which it differs from the identity. The set of all these tensor products with

a possible overall factor of ±1,±i forms tne Pauli group under multiplication. For n

qubits, we denote this group by Gn. Thus:

G1 ≡ {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ} (2.32)

We note that since X2 = Y 2 = Z2 = I, every element in G1 square to ±I. Also

X,Y and Z on the same qubit anti-commute, while they commute on different qubits.

Therefore, any two elements of G1 either commute or they anti-commute. X,Y and Z

are all Hermitian but of course (iI)† = −iI, so elements of G1 can be either Hermitian

or anti- Hermitian. In either case, if A ∈ G1, A
† ∈ G1 also. Similarly, X,Y and Z are

all unitary, so every element of G1 is unitary.

We begin by describing a wide class of error-correcting codes, called the stabilizer codes,

sometimes known as additive quantum codes, whose construction is analogous to classical

linear codes.

Stabilizer Codes: [19, 51] Let S is a subgroup of Gn and define VS to be the state

of n qubit states which are fixed by every element of S. VS is the vector space sta-

bilized by S, and S is said to be the stabilizer of the space VS , since every element

of VS is stable under the action of elements in S. For example, consider the case

with n = 3 qubits and S ≡ {I, Z1Z2, Z2Z3, Z3Z1}. The subspace fixed by Z1Z2 is

spanned by |000〉 , |001〉 , |110〉 and |111〉, and the subspace fixed by Z2Z3 is spanned

by |000〉 , |100〉 , |011〉 and |111〉. Similarly considering the subspaces spanned by all the

operator in S, we find |000〉 and |111〉 are common elements and thus VS must be the

subspace spanned by the states |000〉 and |111〉.

Calderbank-Shor-Steane (CSS) Code: CSS codes [10, 13, 14, 51](named after the

initials of the inventors) are an important subclass of stabilizer codes. Let C1 and C2 are

[n, k1] and [n, k2] classical linear codes such that C2 ⊂ C1 and C1 and C⊥2 both correct t

errors. We define an [n, k1−k2] quantum code CSS(C1, C2) capable of correcting errors

Chapter 2. Preliminary Knowledge 19

on t qubits, the CSS code of C1 over C2, via the following construction. Let x ∈ C1 is

any codeword in the code C1. Then we define the quantum state |x+ C2〉 by

|x+ C2〉 ≡
1√
|C2|

∑
y∈C2

|x+ y〉 (2.33)

where + is bitwise addition modulo 2.

In the following subsections we describe three important QECCs and corresponding logic

level implementation.

2.4.1 [9,1,3] Shor Code

The [9,1,3] Shor Code [8, 19, 51] is a stabilizer code that can protect against the effects

of an arbitrary error on a single qubit. The stabilizers for Shor code has been given

in Table 2.2. It is a combination of three qubit phase flip and bit flip codes. First a

qubit is encoded using the phase flip code: |0〉 → |+ + +〉 , |1〉 → |− − −〉. Next, each

of these qubits is encoded using the three qubit bit flip code: |+〉 → (|000〉+|111〉)√
2

, |+〉 →
(|000〉+|111〉)√

2
. The result is a nine qubit code, with codewords given by:

|0〉 → |0L〉 ≡
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

2
√

2

|1〉 → |1L〉 ≡
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

2
√

2
(2.34)

Figure 2.4: Quantum encoding circuit for Shor [9,1,3] code

Let a bit flip occurs on the first qubit. We compare the first two qubits by measuring

the eigenvalue of Z1Z2. If qubits are same then eigenvalue is +1, else it is −1. In this

case the outcome should be −1. We conclude that a bit flip occurred on the first or

second qubit. Next we compare the second and third qubit by measuring the eigenvalue

of Z2Z3. We find it is +1, so it could not have been the second qubit which flipped. We

conclude that the first qubit must have flipped, and recover from the error by flipping

Chapter 2. Preliminary Knowledge 20

M1 Z Z I I I I I I I
M2 Z I Z I I I I I I
M3 I I I Z Z I I I I
M4 I I I Z I Z I I I
M5 I I I I I I Z Z I
M6 I I I I I I Z I Z
M7 X X X X X X I I I
M8 X X X I I I X X X

Table 2.2: Stabilizers for Shor’s 9-qubit code

the first qubit again back to its original state, i.e. applying a X operator. In a similar

way we can detect and recover from the effects of bit flip errors on any of the nine qubits

in the code.

In a similar way phase flip errors are detected and recovered. Let a phase flip changes

the sign of the first block of qubits: (|000〉 + |111〉) → (|000〉 − |111〉) and vice versa.

Syndrome measurement begins by comparing the sign of the first and second blocks of

three qubits, and then the sign of the second and third block of qubits, i.e. measuring

the eigenvalue of observables X1X2X3X4X5X6 and X4X5X6X7X8X9. In this case, the

first two blocks differ in sign and we conclude that either the first or second block has

changed sign. The last two blocks are same in sign and we confirm that it is the first

block that has changed sign. We recover from this by flipping the sign of the erroneous

block, in this case, applying a Z1Z2Z3 operator.

Let both bit and phase flips occur on the first qubit, i.e. the operator Z1X1 is applied

to that qubit. Then it is easy to see that the procedure for detecting a bit flip error

will detect a bit flip on the first qubit, and correct it, and the procedure for detecting a

phase flip error will detect a phase flip on the first block of three qubits, and correct it.

Thus, the Shor code also enables the correction of combined bit and phase flip errors on

a single qubit.

2.4.2 [7,1,3] Steane Code

The Steane code (C) [13, 19, 23, 51], known after its inventor, is an example of CSS code

were C1 ≡ C and C2 ≡ C⊥. It is based on the classical [7,4,3] Hamming code, which is

self-dual. The stabilizers of Steane code have been listed in Table 2.3. Therefore, the

Chapter 2. Preliminary Knowledge 21

logical states |0L〉 and |1L〉 can be written as follows:

|0〉 → |0L〉 ≡
1√
8

(|0000000〉+ |1111000〉+ |1100110〉+ |1010101〉

+ |0011110〉+ |0101101〉+ |0110011〉+ |1001011〉)

|1〉 → |1L〉 ≡
1√
8

(|1111111〉+ |0000111〉+ |0011001〉+ |0101010〉

+ |1100001〉+ |1010010〉+ |1001100〉+ |0110100〉) (2.35)

The encoded |0L〉 state is the superposition of the even codewords in the Hamming code

and the encoded |1L〉 state is the superposition of the odd codewords in the Hamming

codeword. The quantum encoding circuit for Steane code has been shown in Figure 2.5

g1 I I I X X X X
g2 I X X I I X X
g3 X I X I X I X
g4 I I I Z Z Z Z
g5 I Z Z I I Z Z
g6 Z I Z I Z I Z

Table 2.3: Stabilizers for Steane’s 7-qubit code

α

0

0

0

0

0

0 HH

H

H

Figure 2.5: Quantum encoding circuit for Steane [7,1,3] code

2.4.3 [9,1,3] Bacon-Shor Code

The Shor and Steane code described above, are subspace codes, that is, quantum in-

formation is encoded into a subspace of the Hilbert space of many quantum systems.

However, a more general approach to perform quantum error correction is to use quan-

tum error correcting subsystems. While every quantum error correcting subsystem can

be turned into a subspace code, subsystems codes differ significantly in how quantum

error correction is performed on the encoded quantum information. Of particular signif-

icance is that quantum error correcting subsystems can significantly reduce the number

of stabilizer measurements needed during their quantum error recovery routine. This,

in turn, can lead to significantly improved thresholds for fault-tolerant quantum com-

putation.

Chapter 2. Preliminary Knowledge 22

The [9,1,3] Bacon-Shor code [40] is the subsystem version of the class of codes arising

from generalizing Shor’s code. In the latter, a bit flip error-correcting code is concate-

nated with a phase flip error-correcting code or vice versa. The order of these concate-

nations present an asymmetry in the recovery routing for these codes. If, for example,

a bit flip code is used on the lowest level, then the recovery procedure for the bit flip

code must be enacted for every lowest level code, whereas the phase flip code recovery

routine needs only be enacted on the next level of the code. In Bacon-Shor code this

asymmetry between the bit flips and the phase flips in the recovery routine is removed.

This simplifies the recovery routine but maintains the protection of the Shor code.

The stabilizers can be better viewed as a 3× 3 array, as shown in Table 2.4

g1 =
X X X
X X X
I I I

g2 =
I I I
X X X
X X X

g3 =
Z Z I
Z Z I
Z Z I

g4 =
I Z Z
I Z Z
I Z Z

Table 2.4: Stabilizers for Bacon-Shor’s 9-qubit code

+

+

+

+

+

+

0

0

0

(a) Encoding |0〉 state

+

+

+

0

0

0

0

0

0

(b) Encoding |+〉 state

Figure 2.6: Quantum encoding circuit for Bacon-Shor [9,1,3] code

2.4.4 [4,2,2] Knill Code

In the original scheme, Knill [37] concatenated two error-detecting codes C4 and C6

which alternate. We follow the simpler version, using only the C4 code as in [33], which

has a higher error threshold. More details can be found in [59]. It encodes two qubits

and can simultaneously detect any single qubit X error and any single qubit Z error.

This code has a stabilizer group generated by XXXX and ZZZZ

Chapter 2. Preliminary Knowledge 23

+

+

0

0

(a) Encoding |0〉 state

+

0

0

+

(b) Encoding |+〉 state

Figure 2.7: Quantum encoding circuit for Knill [4,2,2] code

2.5 Fault Tolerance

The analogue question of protecting classical computation from errors was already stud-

ied by von Neumann in 1956 [2], when he showed that classical computation can be

made robust to noise with constant error probability per gate. This was done by using

computation on redundant information, encoded by a repetition code.

The existence of QECCs is not itself sufficient to ensure the possibility of quantum com-

putation in presence of noise. Even if error correction is performed frequently in between

the computational steps to prevent accumulation of errors, additional problems occur

when dealing with noisy computations that did not exist in case of noisy transmission.

• The error correction itself can introduce errors on the encoded qubits.

• The encoded gates can cause errors to propagate.

One must therefore be able to compute on encoded states by using procedures and error

corrections which do not allow the errors to propagate too much. Such procedures which

limit the propagation of errors are called fault tolerant.

Fortunately, it was discovered that under specific reasonable physical assumptions, a

fault-tolerant quantum computation can be built. In particular, a set of threshold the-

orems for fault tolerant computation have been established. These theorems prove (or

give a heuristic proof) that if decoherence, quantum noise and lack of control were all

small enough in comparison to the ability to control the quantum system (below some

threshold or thresholds), then the noisy imprecise bare devices could be efficiently put

together in a fashion which decreased the failure probability of a quantum computer to

any desired level.

Chapter 2. Preliminary Knowledge 24

Shor [15] showed how to design fault-tolerant procedures for a universal set of quantum

gates. In order to use these fault-tolerant constructions so as to improve the reliability

of the quantum circuit, one would first encode the qubits in the original circuit by using

a QECC and apply quantum error correction and recovery after every fault-tolerant

computation (Figure 2.8). Shor showed the resulting quantum circuit performs desired

computation reliably when the error rate, or fault probability at each time step, per

qubit or gate decays polylogarithmically with the size of the quantum circuit. The

result is a major improvement on the performance of quantum circuits without error

corrections, in which the error probability is required to decay as one over the size of

the circuit in order for the computation to succeed [18]. But the assumption that the

error probability decays polylogarithmically with the size of the computer, is physically

unrealistic.

FT prepare

0

0

FT prepare FT error

correct

FT error

correct

FT error

FT error

FT error

FT error

correct

correct

correct

correct

FT H

FT

CNOT

FT measure

FT measure

0

0

7

7

Figure 2.8: Fault-Tolerant implementation of a simple circuit

Concatenated codes : Construction based on concatenated codes [51] can be used to

reduce the effective error rate achieved by the computation even further. The idea is to

recursively apply the scheme discussed above for simulating a circuit using an encoded

circuit, constructing a hierarchy of quantum circuits C0, C1, C2, . . . In the first stage of

this construction, each qubit in the original circuit is encoded in a quantum code whose

qubits are themselves encoded in a quantum code, whose own qubits are encoded yet

again, and so forth ad infinitum.

First

level

encoding

Second

level
encoding

Second

Second

level

level

encoding

encoding

Figure 2.9: A two-level concatenated code

Different variants of the threshold result for probabilistic noise were independently dis-

covered by Knill, Laflamme and Zurek, [12, 22], who used Steane’s 7-qubit code and

Chapter 2. Preliminary Knowledge 25

Kitaev [20], who used toric code. All of these works are based on the same idea of ap-

plying one scheme recursively to get a hierarchical structure and achieve approximately

the same estimated threshold value of 10−6. These also work under the assumption that

intermediate measurements are allowed and classical computation can be performed in-

finitely fast. This makes the problem easier, because under this assumption parts of the

computation can be assumed error-free. The proof of Aharonov and Ben-Or [17, 45]

does not require intermediate measurements and classical operations during quantum

computation.

However, the main drawback in these models is that error correction must be done

after every gate periodically. This imposes a considerable overhead of resources. So we

propose a methodology whereby, the placement of error-correction circuit after every

gate or time step can be avoided. These have been detailed in the next chapter.

Chapter 3

Overview and Synthesis

Different PMDs support various primitive operations and thus a given quantum cir-

cuit can have different implementations reducing cost or number of operations. For

the encoded circuit, the tile architecture for various QECCs differ and accordingly the

probability of failure of an encoded quantum gate differ with QECC used and PMD con-

sidered. We start this chapter by describing briefly the FTQLS tool that shows PMD

dependency of a circuit implementation and then we give an overview of the methodology

used for estimating probability of error in a given quantum circuit.

3.1 Fault Tolerant Quantum Logic Synthesis (FTQLS)

The goal of FTQLS is to synthesize efficiently a PMD specific optimum circuit with FT

gates. We first discuss the flow of FTQLS before proceeding to discuss about the FT

gates the algorithm considers.

3.1.1 FTQLS flow

The input to FTQLS [60] is an unoptimized quantum circuit realized using a set of

commonly used gates and its output is an optimized FT quantum circuit that only

comprises primitive quantum operations supported by the given PMD. FTQLS operates

in three domains: (1) behaviour domain, (2) technology domain and (3) FT domain.

We describe each of these domains briefly.

1. Behaviour domain: No PMD information is contained in this domain and thus

the synthesized circuits may not be implementable on a quantum machine.

26

Chapter 3. Overview and Synthesis 27

2. Technology domain: Using the PMD type and optimized gate library [58], all

the gates in the behaviour domain are decomposed into primitive operations for a

specific PMD. This is also called Technology Mapping.

3. FT domain: Using quantum compilers, non-FT circuits are converted into FT

circuits within a reasonable CPU time. A quantum compiler converts an arbitrary

unitary gate into a cascade of FT gates. For FT synthesis, two tools based on

SKA [36] and STA [56] were integrated into FTQLS. Since these two tools can

only compile one-qubit gates, initially the non-FT two-qubit gates are converted

into FT two-qubit gates. Then all the non-FT one-qubit gates are compiled to FT

cascades.

At each domain optimizations are performed according to the rules given in [58, 60].

Input circuit

(OPT−1)

Optimization

circuit

Optimized

Technology

mapping

(OPT−2)

Optimization

Optimized

circuit

STASKA

compiler

Quantum

FT circuit

(OPT−3)

Optimization

Optimized

FT circuit

Output

Threshold and

FT algorithm

FT table

Technology

domain

Behavior

domain

Fault−tolerant

domain

PMD type

Optimized

gate library

Figure 3.1: FTQLS flow

3.1.2 Fault-Tolerant Set (FTS) of gates

Every gate does not have a fault-tolerant (FT) implementation. The implementations

of the QECCs described in the previous chapter - Shor, Steane, Bacon-Shor and Knill

code are based on the Clifford-plus-T library (CTL) [57], described in Chapter 2. Unfor-

tunately, not every quantum system directly supports the CTL (Table 2.1). This makes

the implementation of FT circuits with CTL inefficient. Therefore, in [60] the authors

extended the CTL library to a larger set of gates, the fault-tolerant set (FTS), to bridge

the gap between CTL and FTS. All the operations in FTS are primitive to each PMD

and thus can be efficiently implemented.

Chapter 3. Overview and Synthesis 28

Table 3.1: Conversion between one-qubit FTS and CTL

k Rz Rx Ry
1 T HTH SHTHS†

2 S HSH HZ
3 ZT † HZT †H SHZT †HS†

4 Z X ZX
5 ZT HZTH SHZTHS†

6 S† HS†H ZH
7 T † HT †H SHT †HS†

FTS for one qubit gates is defined as follows:

FTS(1) = {RA(k.
π

4
), H}, A ∈ {x, y, z}, k ∈ {0, 1, . . . 7} (3.1)

The elements of FTS can be trivially obtained from CTL (Table 3.1).

In the case of two-qubit gates, CZ (supported in QD, SC, NA and LP systems), G(π2)

and G(3π2) (supported in the IT system) are FT because:

CZ = [I ⊗H]ĊNOT [̇I ⊗H] (3.2)

G(
π

2
) = [S ⊗ SH]ĊNOT [̇I ⊗H] (3.3)

G(
3π

2
) = [I ⊗H]ĊNOT [̇S† ⊗HS†] (3.4)

In addition, since SWAP and ZENO (a special case of iSWAP) gates can be constructed

from CNOT and some FT one-qubit gates [58], they are also FT. Thus, the two-qubit

FTS is defined as follows:

FTS(2) = {CNOT,CZ,G(
π

2
), G(

3π

2
), SWAP,ZENO} (3.5)

3.2 Error Models

In all quantum computing technologies, errors are abstracted into 3 different sources

[49]:

1. Gate errors: Depending on the physical technology, gates could involve complex

sequences of applications of electrical and/or magnetic fields, current, and/or EMI

radiation applied to one or more co-located qubits. These gate processes can

introduce errors from apparatus imprecision or tunneling effects between qubits.

The abstraction of this error type is that each qubit involved in a gate has some

Chapter 3. Overview and Synthesis 29

probability of an error being introduced immediately after the gate is finished.

Additionally, multi-qubit gates can propagate existing errors from one qubit to

another.

2. Movement/communication errors: Qubit communication can involve either

physical movement of coherent particles or gate-like operations to transfer state

across fixed physical resources. In the former case, kinetic motion of particles can

introduce motional heating and even particle loss. The abstraction often used is

some amount of distance moved and it introduces a single qubit error with some

probability.

3. Memory/idle errors: Even when a qubit is sitting stationary, interaction with

the environment, either through coupling with stray EMI fields or contact with

stray particles, can cause errors. Since there is no physical action the qubit is

performing, memory errors are abstracted to a probability of error per unit of

time it is stationary.

While estimating probability of error in a given quantum logical circuit we consider only

the gate error.

3.3 Error Propagation

Before we proceed to describe the methodology, it would be helpful if we discuss briefly

about how gate error propagates in a quantum circuit. For single qubit gates, the error

can only propagate on that qubit the gate is working on.

For multi-qubit gates, the error can propagate in two ways. Since we are working with

circuits that are output from FTQLS, it will have maximum two-qubit gates. So we

describe error propagation in two-qubit gates. Let us consider the CNOT gate. It is

obvious that if a bit flip occurs in one qubit, and that qubit is then used as the sourse

qubit of CNOT, then the bit flip will propagate forward to the target qubit. Now, if

we perform a rotation of basis with a Hadamard gate on both qubits, then the source

and the target of the CNOT gate are interchanged. Since this change of basis also

interchanges a bit flip error with a phase flip error, we infer that if a phase flip occurs

in one qubit, and that qubit is then used as the target qubit of a CNOT gate, then the

error will propagate ”backward” to the source qubit.

Chapter 3. Overview and Synthesis 30

H

H

H

H

Figure 3.2: The source and the target of CNOT gate is interchanged if a change of
basis is performed with Hadamard rotations

3.4 Methodology: Estimating error probability in quan-

tum circuits

Our aim, as already stated, is to estimate the error probability in a quantum circuit, so

that placing syndrome detection and error correction circuit after every component, can

be avoided, thus saving some resources. The input to our algorithm is a file containing

the quantum circuit in QASM format. QASM is a simple text-format language for

describing acyclic quantum circuits composed from single as well as multiple qubut

gates. The circuit given to us is at logical level, that is it is encoded and the user

specifies the number of levels of encoding. We calculate offline the error probability

for the different quantum gates at the logical level, encoded at that specific level of

encoding. We describe the calculation of gate error probability at the logical level in the

next chapter.

3.4.1 Data Structure

The data structure for representing a quantum circuit is a bidirectional graph.

We have an array of structures where each qubit is represented by a structure which

must have the following fields:

• Name of the qubit as given in the input file.

• Pointer to the first gate operating on that qubit.

• The error probability on that qubit.

Each qubit structure points to a link list, where each node represents a gate and it must

have the following fields:

• Type of the gate, that is, X, Y, CNOT, etc.

Chapter 3. Overview and Synthesis 31

• Number of qubit lines it is operating on, that is whether single or double-qubit

gate.

• Name of the qubit lines it is operating on.

• Forward pointers to the gate (gates for two-qubit gate) operating just after its

time slice.

• Backward pointers to gate (gates for two-qubit gate) operating just before its time

slice.

• Initial error probability on the qubits it is operating on.

• Error probability on the qubits after its operation is over.

A pictorial representation of this implementation on a toy circuit has been shown in

Figure 3.3.

X

Hb

a

c

X

H

a

b

c

CNOT

NULL

NULL

NULL

Figure 3.3: Pictorial representation showing how a toy circuit is implemented

3.4.2 Methodology

In our analysis we have made no difference between a bit flip error and a phase flip error.

We follow these rules for error probability estimation.

• For single qubits, we propagate the error forward, that is we add the existing

error probability on the qubit with the gate error probability and update the error

probability on the qubit.

• For multi-qubit gate we propagate the maximum of the error probabilities in the

input qubits to all the output qubits. That is, we add the maximum of the input

error probabilities with the gate error probability and update the error probability

on all the outgoing qubits.

• While adding error probabilities, if the value exceeds 1, we update the error prob-

ability as 1.

Chapter 3. Overview and Synthesis 32

• With the help of the information stored in the structures we can trace the critical

path, that is the path propagating the maximum error probability. This might be

of interest in other applications.

• We fix a threshold error probability and place the error correcting subcircuit only

when the error probability after a gate exceeds the threshold. After an error

correcting block is placed, the error probability on the qubit is updated to the

error probability of the error correcting block.

A flow diagram of the proposed algorithm has been shown in Figure 3.4, for better

understanding. Square blocks in the diagram indicate input or output in file, while

rounded blocks indicate procedures.

Input

logical quantum
circuit in
QASM format

error probability
PMD specific

and delay of
primitive gates

error probability
and delay of
FTS gates at
physical level
for each PMD

Input Calculate Calculate

for each QECC
logical level
FTS gates at
and delay of
error probability

Calculate

error probability
in logical

level of encoding
Input

threshold
Input

Output
error probability

and critical path
after each gate

Output
circuit with
EC blocks
at speicific
locations

Decide

quantum circuit

where to put

EC blocks

Output
error probability
and delay of
FTS gates at
physical and
logical level

Figure 3.4: Flow diagram describing the proposed algorithm. (Square blocks indicate
input or output in file, while rounded blocks indicate procedures)

3.4.3 Time Complexity

Since no-cloning theory holds in quantum computing, a quantum circuit has no fan-out

or feedback. It is an acyclic graph. Also, the calculation of error probabilities of the

gates both at the physical and logical level, is done offline. So doing an error tracing in

the quantum logical circuit requires a single pass of the whole circuit. Thus the time

complexity of the proposed algorithm is O(n), where n is the size of the circuit, in terms

of number of gates.

3.4.4 Comparison with previous works

In [61] the authors have developed the tile structures for the three QECCs we have

considered and have done calculation of number of operations and time required by each

encoded gate. They have used these values to calculate the resources required by popular

quantum algorithms. However our work is markedly different from them because:

Chapter 3. Overview and Synthesis 33

• We have developed the tile structures independently of them.

• We have calculated the error probability of the gates at the physical and logical

level, which they have not considered at all.

• We have proposed an algorithm to trace the error probability in a given quantum

logical circuit. We do not estimate its resources.

• We have devised a methodology to reduce the number of error correcting sub-

circuits for fault-tolerant implementation, thus reducing the resources considerably.

The method of tracing errors in quantum circuits that has been developed in [49] has

some similarity with our method. But there are a number of disparities between these

two methods.

• We have considered error probabilities. In [49] a metric for error has been taken,

but the physical significance of that value is not clear as details are not given.

• We have done a detailed error analysis of the gates at the physical and logical

level, which is missing in [49].

• Our way of calculating error probabilities is more involved and much more rigorous

than in [49].

Chapter 4

Estimation of Gate Error

Probability at Logical Level

We model the qubit layout after the micro-architecture of Svore et al [41] and Spedalieri

et al [46]. They have considered a 2-D nearest neighbour lattice architecture using logical

noisy SWAP gates as the basic qubit transport mechanism. Clearly, any viable layout

for stationary qubits has to be in a 2-D plane so that classical control fields can access

the qubits from the third dimension. In a concatenated architecture, after first level of

encoding each physical qubit is replaced by a 2-D block or cell or tile, that forms the

logical qubit. After the second level of encoding each such cell is replaced by a 2-D

block of such logical qubit cells, and so on. A high level picture of the architectural

organization is shown in Figure 4.1.

Sea of

lower level

qubits

Tile 1 Tile 2 Tile 3

Tile 6Tile 5Tile 4

Sea of Sea of

Sea ofSea ofSea of

lower level lower level

lower levellower levellower level

qubits qubits

qubitsqubitsqubits

CLASSICAL CONTROL

C
L

A
S

S
IC

A
L

 C
O

N
T

R
O

L

Figure 4.1: Qubit layout consisting of tiles that represent one logical qubit

34

Chapter 4. Estimation of Gate Error Probability at Logical Level 35

In the next three sections we consider one-by-one each of Bacon Shor, Steane and Knill

code and we describe the physical layout of the tiles and the different encoded gate

operations. This is important for estimating the error probability of encoded operations.

In section 4.4 we describe our methodology for calculating the error probability of gates

at the physical and logical level. In section 4.5 and 4.6 we formulate the error probability

at physical and logical level respectively for gates in the FTS set.

In all the diagrams, data qubits are represented by d1, d2, etc., and ancilla qubits are

noted as a1, a2, etc.The dummy qubits used to prepare and measure the ancilla as well

as for qubit transport are represented by O.

4.1 Bacon Shor Code

For implementing Bacon Shor code, we use the implementation in [46] which consists of

embedding the nine data (physical) qubits corresponding to one logical qubit, in a 7× 7

array of physical qubits (Figure 4.2).

d1 d2 d3

d6d5d4

d7 d8 d9

Figure 4.2: Tile structure of the Bacon Shor code in a 7× 7 lattice

4.1.1 Encoded gates

The simplest FT operation is the application of physical gates transversally across the

codewords, meaning that the jth gate is applied to the jth qubits of the codewords, for

every j. The advantage of transversal implementation is that since two or more qubits

Chapter 4. Estimation of Gate Error Probability at Logical Level 36

within the same block do not interact, so there is no possibility of error propagation to

other qubits in the same block. This makes the implementation fault-tolerant.

As already stated the Bacon Shor code belongs to the family of CSS codes, a fam-

ily of codes with transversal implementation of most gates, including the CNOT gate.

Transversal CNOT gate at level m can be obtained by applying nine CNOT gates to

the corresponding control and target qubits at level m − 1. Figure 4.3 shows a FT

implementation of the CNOT gate. Thus we only need to move the data qubits so that

the corresponding qubits of the two neighbouring blocks are next to each other, and

then apply a single-qubit CNOT between each pair. To do this, we first move all the

data qubits in one block up one row (or left one column), while the data qubits on

the other block start moving laterally (or vertically) towards the first block. Then we

keep moving the data qubits towards each other, interleaving the rows (columns) until

the corresponding data qubits are next top each other. Gates that can be performed

transversally also include the single qubit Pauli gates. The H gate is transversal modulo

a π rotation of the 3× 3 array. The encoded SWAP gate can be implemented simply by

moving the data qubits of adjacent blocks towards each other.

d1

d2

d3

d8

d7

d9

q1

q2

q3

q7

q8

q9

Figure 4.3: Fault tolerant transversal implementation of CNOT gate

But not all FT gates have transversal implementation for a given code, for e.g. the S and

T gates in this case. The S gate can be implemented using the circuit in Figure 4.4(a).

It uses an ancilla in the state |+i〉 = |0〉+i|1〉√
2

as a resource to generate the required gate.

A FT version of the T gate cannot be constructed transversally. A FT construction of

the T gate has been shown in Figure 4.4(b).

A detailed pictorial representation for the implementation of the different encoded gates

at the tile level for the Bacon Shor code has been given in Appendix A.

4.2 Steane Code

For implementing Steane code, we use the tile structure in [41], designed to minimize the

amount of SWAP operations used during error-correction routines, and thus preserve a

Chapter 4. Estimation of Gate Error Probability at Logical Level 37

Φ

+i +i

ΦS

Z

(a) S gate

Φ

ΦT+T

Z

S

(b) T gate

Figure 4.4: Fault-tolerant (non-transversal) implementation of S and T gate

high error threshold. The tile, representing one logical qubit consists of a 6×8 lattice of

physical qubits (Figure 4.5), in which are embedded the seven data (physical) qubits.

d5

d4

d6

d2

d3

d1 d7

Figure 4.5: Tile structure of the Steane code in a 6× 8 lattice

4.2.1 Encoded Gates

Just like the Bacon Shor code, the Steane code belongs to the family of CSS codes and

has fault-tolerant transversal implementation for the Pauli gates, H and CNOT gates.

But unlike the Bacon Shor code, it has also fault-tolerant implementation for the S

gate. This can be done by applying the operation ZS to each qubit in a logical block.

Fault-tolerant implementation of the T gate can be done by the circuit in Figure 4.4(b).

A detailed pictorial representation for the implementation of the different encoded gates

at the tile level for the Steane code has been given in Appendix B.

Chapter 4. Estimation of Gate Error Probability at Logical Level 38

4.3 Knill Code

For implementing Knill code, we followed [61] and design a 2-D 5×5 lattice architecture

of physical qubits to represent a logical qubit of the Knill or C4 code. Embedded within

this tile are the four data (physical)qubits. We initialize the tile as the structure in

Figure 4.6.

d1 d3

d4d2

Figure 4.6: Tile structure of the Knill code in a 5× 5 lattice

4.3.1 Encoded Gates

Just like the Bacon Shor code, the Knill code has fault-tolerant transversal implemen-

tation for the Pauli gates, H and CNOT gates. Fault-tolerant implementation of the T

gate can be done by the circuits in Figure 4.4.

A detailed pictorial representation for the implementation of the different encoded gates

at the tile level for the Steane code has been given in Appendix C.

Having discussed about the tile structures of the different encoded gates, we now explain

our method of calculating the error probability of the gates at the physical level and at

the logical level.

4.4 Calculating the error probability and delay of gates

To calculate the error probability of logical gates, we must first calculate the error

probability of the gates at the physical level. The minimum a priori knowledge that we

require is the error probability of the primitive gates for each PMD at the physical level

and the error probability of an idle qubit. But to the best of our knowledge, no such

information is available. In [61] a table summarizing the error probability after applying

the worst gate and the probability of a bit flip per nanosecond on an idle qubit, has

been given (Table 4.1). Also, the operation set that the authors have considered include

Chapter 4. Estimation of Gate Error Probability at Logical Level 39

the following: Pauli gates, H, S, T, CNOT, SWAP, measurement gates and the state

preparation. Since we have no other information, we assume that the probability of error

of the primitive gates at the physical level for each PMD is the value given in this table

for primitive control. So in a way our results are pessimistic, but it must be noted that

the analysis can be applied with change of input, once the correct information regarding

primitive gate errors at physical level is obtained.

Table 4.1: The probability of error of the worst gate at the physical level and the
probability of error occurring on an idle qubit for each PMD [61]

Technology Probability of Gate error Memory error (per ns)

QD 9.89× 10−1 3.47× 10−2

NA 8.12× 10−3 0.00
LP 1.01× 10−1 9.80× 10−4

NLP 5.20× 10−3 9.80× 10−5
SC 1.00× 10−5 1.00× 10−5

IT 3.19× 10−9 2.52× 10−12

The idle/memory error probability for a single qubit is defined as in [49].

1− pidle = (1− p)t (4.1)

where pidle is the total idle error probability for that time, p is the probability of idle

error per unit time and t is the total time the qubit is lying idle. So to calculate the

memory error we must also keep track of the time required for each gate. A table for

the time required by different gates for each PMD has been given in [61]. We use these

values (Table 4.2).

Table 4.2: Gate time (in ns) (at physical level)[61]

Technology CNOT SWAP H MX MZ X Y Z S T
QD 27 81 12 100 112 10 11 1 1 1
NA 2533 7599 781 80457 80000 457 457 915 915 915
LP 10 10 1 2 1 1 1 1 1 1

NLP 12 36 1 51 50 1 1 1 1 1 1
SC 26 13 16 10 26 10 10 1 1 1
IT 120000 10000 6000 106000 100000 5000 5000 3000 2000 1000

We describe our method of calculating the error probabilities first at the physical level

and then at the logical level.

4.4.1 Calculation of gate error probability at physical level

We assume that the gate error probability of the primitive gates for each PMD is given

and we have already mentioned the source we have considered. Thus given a particular

PMD, our methodology for calculating the physical error of gates is as follows:

Chapter 4. Estimation of Gate Error Probability at Logical Level 40

• For the primitive gates of that PMD (Table 2.1), the error probability is taken

from the input.

• The non-primitive gates of that PMD are realized with the primitive gates of that

PMD. These implementations have been given in [58] and we give them later in

section 4.5. So these non-primitive gates are just like a black box within which the

components are made of primitive gates.

• We consider such a non-primitive gate erroneous if any of the primitive components

is at error. Thus the probability of error for non-primitive gates is calculated as

the probability that any one of its constituent gates fail.

For example, consider the CNOT gate, which is a non-primitive gate in QD. It can be

realized with the primitive gates of QD, as shown in Figure 4.7(a).

Let g0 is the gate error probability at the physical level, that is 0th level of encoding,

gn is the gate error at the nth level of encoding, gkA is the error probability of gate A

at kth level of encoding. Similarly let t0 is the gate delay at the physical level, that is

0th level of encoding, tn is the gate delay at the nth level of encoding, tAk is the delay of

gate A at kth level of encoding.

Thus the error probability of CNOT in QD at physical level is:

g0 = 1− (1− g0Rz)
2(1− g0Rx)2(1− g0CZ) (4.2)

The time at physical level is given in Table 4.2.

R (/2)π
Z

R (/2)π
X X

R (3 /2)π
Z

R (3 /2)πZ

(a) QD

P(/2)π
R (/2)π

Z

R (/2)π
Z

G(− /2)π
Y

R (− /2)π πR (/2)
Y

(b) IT

Figure 4.7: CNOT gate construction in QD and IT

4.4.2 Calculation of gate probability and time at logical level

For calculating the error probability at different levels of encoding, we have to consider

the tile structures of encoded gates for Bacon Shor, Steane and Knill code, shown re-

spectively in Appendix A , Appendix B and Appendix C. To the best of our knowledge,

Chapter 4. Estimation of Gate Error Probability at Logical Level 41

the tile structures are possible for the gates in the CTL library or any gate which can

be obtained in a compound way from one or more operations in the CTL library. Thus

our analysis only applies to gates which can be implemented int this tile architecture.

Since the QECCs we have considered are single error correcting, we say that a logical

qubit is faulty if at least two of its constituent data (physical) qubits is erroneous.

Our methodology for calculating the error probability at logical level for a particular

encoded gate, given a specific QECC, is as follows:

• We first calculate error probability of encoded CTL gates. For the first level of

encoding, from the tile structures of that gate for that QECC, we find out the

number of distinct physical gates it uses. By distinct, we mean the gates must be

located at distinct locations.

• We find out the gates which cause a single error per logical block. Let this gate

set be S.

• Then the probability of getting at least two errors per logical block is:

Pr(at least two errors per logical block) = 1

− Pr(no gates fail)

− Pr(exactly one gate in S fails)

• For higher levels of encoding, we consider the failure probability of gates at the

next lower level, giving a recursive formula.

• For the non-CTL gates, but which can be implemented with a sequence of CTL

gates, we have found after similar analysis, that the error probability at a particular

level of encoding, say n is approximately equal to the probability that any one of

the constituent CTL gates at nth level of encoding fails.

For example, consider a CNOT gate, encoded with the Bacon Shor code, as shown in

Appendix A (Figure A.4). We can see that the logical CNOT at nth level requires 54

distinct SWAP and 9 distinct CNOT operations at (n− 1)th level. Of these 36 SWAPs

and 9 CNOT s are there such that failure of any one of them causes a single error. Thus

the probability of error at the nth level of encoding is:

gn = 1− (1− gn−1CNOT)9(1− gn−1SWAP)54 −
(

36

1

)
gn−1SWAP (1− gn−1SWAP)53(1− gn−1CNOT)9

−
(

9

1

)
gn−1CNOT (1− gn−1CNOT)8(1− gn−1SWAP)54 (4.3)

Chapter 4. Estimation of Gate Error Probability at Logical Level 42

The delay is simply the sum of the delay required for each constituent operations at the

tile level. In this case, for CNOT, delay at nth level of encoding can be formulated as :

tn = 8tn−1SWAP + tn−1 (4.4)

This methodology will be more clear as we formulate the error probabilities of each gate

for each PMD, considering each of the three QECC in the next sections. Let w and t

is the worst gate error probability and gate delay for the particular PMD, taken from

Table 4.1 and Table 4.2 respectively. We assume that the error probability and delay of

gates A and A† is same.

4.5 Error probability and delay of gates at physical level

The error probability at physical level for each gate only depends on the PMD and not

on the QECC (since encoding has not been done yet). Thus we first formulate the error

probability of the gates in the FTS set (given in Chapter 3) at the physical level. The

primitive gates for each PMD has been given in Table 2.1. We enlist the gates in FTS

set here for convenience of the reader:

FTS(1) = {RA(k.
π

4
), H}, A ∈ {x, y, z}, k ∈ {0, 1, . . . 7}

FTS(2) = {CNOT,CZ,G(
π

2
), G(

3π

2
), SWAP,ZENO}

4.5.1 QD

The primitive gates in QD are Rx, Rz, X, Z, S, T.. We enlist the error probabilities of

the different gates.

Rx,Ry,Rz

Since Rx and Rz are primitive gates, the error probability for the physical gate is g0 = w

for each of them. Ry can be expressed in terms of the other two gates in the following

way:

Ry(θ) = −Rz(
π

2
).Rx(θ).Rz(

3π

2
) (4.5)

Thus for Ry the error probability at physical level is :

g0 = 1− (1− g0Rz)
2(1− g0Rx) (4.6)

Chapter 4. Estimation of Gate Error Probability at Logical Level 43

We assume that the delay at physical level forRx, Ry and Rz is the same as forX,Y and Z

respectively and is given in Table 4.2. Thus in this case, for each gate t0 = t.

X,Y,Z

X,Y and Z are special cases of Rx, Ry and Rz respectively. So we can say that X and

Z are available to us as primitive gates in this PMD. Thus the physical error probability

for each of these gates is g0 = w. The Y gate can be realized in terms of X and Z as:

Y = iZX (4.7)

Thus for Y gate the error probability at physical level is:

g0 = 1− (1− g0X)(1− g0Z) (4.8)

The delay at physical level is given in Table 4.2.

H

In QD, H can be realized in terms of the primitive gates using the following circuit

identity:

H = P (
π

2
)Rz(

π

2
)Rx(

π

2
)Rz(

π

2
) (4.9)

Keeping in mind that the global phase gate is not physically implementable, the error

probability of H at the physical level is:

g0 = 1− (1− g0Rz)
2(1− g0Rx) (4.10)

The delay at physical level is given in Table 4.2.

S

S is a primitive gate for PMD and thus the error probability at physical level is g0 = w.

The delay at physical level is given in Table 4.2.

T

T is a primitive gate for PMD and thus the error probability at physical level is g0 = w.

The delay at physical level is given in Table 4.2.

SWAP

The SWAP gate, being a non-primitive gate, can be realized with primitive gates using

the circuit shown in Figure 4.8(a).

Chapter 4. Estimation of Gate Error Probability at Logical Level 44

Thus, by previous logic, the error probability at physical level is:

g0 = 1− (1− g0Rz)
4(1− g0Rx)6(1− g0CZ)3 (4.11)

The delay at physical level is given in Table 4.2.

P()π R (/2)π
Z

R (/2)π
Z

R (/2)
X

π

R (/2)
X

π

R (/2)
X

πR (3 /2)π
X

R (3 /2)π
X

R (3 /2)π
X

R (3 /2)π
Z

R (3 /2)π
ZZ Z Z

(a) QD

πP(/2)

R (3 /2)π
Z

R (3 /2)π
Z

R (3 /2)π
X G(− /2)π G(− /2)π G(− /2)π

R (/2)π
Y

R (3 /2)π
Y

R (3 /2)π
X

R (/2)
X

π R (/2)π
Y

(b) IT

Figure 4.8: SWAP gate construction in QD and IT

The delay at physical level is given in Table 4.2.

CNOT

It has already been discussed in subsection 4.4.1.

CZ

The CZ gate, being a primitive gate, the error probability at the physical level is g0 = w.

Using Table 4.2 and Figure 4.12(b) delay for CZ at the physical level can be calculated

as follows:

t0CZ = t0CNOT − 2t0Rz − 2t0Rx (4.12)

G

The G gate, being a non-primitive gate, can be realized with primitive gates using the

circuit shown in Figure 4.9(a). Thus, by previous logic, the error probability at physical

level is:

g0 = 1− (1− g0H)2(1− g0CZ)2(1− g0Rx) (4.13)

Chapter 4. Estimation of Gate Error Probability at Logical Level 45

Using Table 4.2 and Figure 4.9(a) delay for G at the physical level can be calculated as

follows:

t0G = 2t0CZ + 2t0H + t0Rx (4.14)

P(/2)θ

R ()θX HH Z Z

(a) QD

θP() R ()θ
Z

R ()θ
Z CP(−2)θ

(b) SC

Figure 4.9: G gate construction in QD and SC

ZENO

The ZENO gate, being a non-primitive gate, can be realized with primitive gates using

the circuit shown in Figure 4.10. Thus, by previous logic, the error probability at

physical level is:

g0 = 1− (1− g0CZ)4(1− g0Rz)
2(1− g0Rx)6 (4.15)

Using Table 4.2, Figure 4.10 and keeping in mind parallel operation is possible in quan-

tum technology, delay for ZENO at the physical level can be calculated as follows:

t0ZENO = 4t0CZ + t0Rz + 4t0Rx (4.16)

P(/2)π

R (/2)
X

π

R (/2)
X

π

R (3 /2)π
X

R (3 /2)π
X

R (/2)
X

π

R (3 /2)π
Z

R (3 /2)π
X

R (3 /2)π
ZZ Z Z Z

Figure 4.10: ZENO gate construction in QD

4.5.2 SC

The primitive gates in SC are Rx, Ry, Rz, iSWAP,CP.. We enlist the error probabilities

of the different gates. The error probability of CP at the physical level is g0 = w.

Rx,Ry,Rz

Since Rx, Ry and Rz are primitive gates, the error probability for the physical gate is

g0 = w for each of them.

Chapter 4. Estimation of Gate Error Probability at Logical Level 46

We assume that the delay at physical level forRx, Ry and Rz is the same as forX,Y and Z

respectively and is given in Table 4.2. Thus in this case, for each gate t0 = t.

X,Y,Z

X,Y and Z are special cases of Rx, Ry and Rz respectively. So we can say that X, Y and

Z are available to us as primitive gates in this PMD. Thus the physical error probability

for each of these gates is g0 = w. The delay at physical level is given in Table 4.2.

H

In SC, H can be realized in terms of the primitive gates as in QD and the error proba-

bility formula at physical level is Equation 4.10. The delay at physical level is given in

Table 4.2.

S

S is a special case of Rz since Rz(
π
2) = S and thus this can be treated as primitive gate

in SC. So the error probability at physical level is g0 = w. The delay at physical level is

given in Table 4.2.

T

T is a special case of Rz since Rz(
π
4) = T and thus this can be treated as primitive gate

in SC. So the error probability at physical level is g0 = w. The delay at physical level is

given in Table 4.2.

CZ

The CZ gate, being a special case of CP gate, is primitive gate, and thus the error

probability at the physical level is g0 = w. delay can be calculated like in Equation 4.12

SWAP

The SWAP gate, being a non-primitive gate, can be realized with primitive gates using

the circuit shown is Figure 4.11(c).

Thus, by previous logic, the error probability at physical level is:

g0 = 1− (1− g0Rz)
2(1− g0iSW)(1− g0CZ) (4.17)

The delay at physical level is given in Table 4.2.

CNOT

The CNOT gate, being a non-primitive gate, can be realized with primitive gates using

the circuit shown in Figure 4.12(a).

Chapter 4. Estimation of Gate Error Probability at Logical Level 47

(a) NLP

R (− /2)πY

R (− /2)πY

R (/2)π
Y

R (/2)π
Y

R (− /2)πY R (/2)π
YZ Z Z

(b) NA

πP(/2)
Z

R (/2)π

Z
R (/2)π iSW(/2)πZ

(c) SC

Figure 4.11: SWAP gate construction in NLP, NA and SC

Thus, by previous logic, the error probability at physical level is:

g0 = 1− (1− g0H)2(1− g0CZ) (4.18)

The delay at physical level is given in Table 4.2.

yR (− /2)π R (/2)y πZ

(a) from H gate

H HZ

(b) SC, NA

Figure 4.12: CNOT gate construction from H gate and in SC, NA.

G

The G gate, being a non-primitive gate, can be realized with primitive gates using the

circuit shown in Figure 4.9(b). Thus, by previous logic, the error probability at physical

level is:

g0 = 1− (1− g0CP)(1− g0Rz)
2 (4.19)

Delay can be calculated in this case because we do not know the delay for CP. Anyway,

it does not matter, since this gate does not come in the picture when calculating the

memory error probability for any gate.

ZENO

The ZENO gate, is a special case of iSW and thus can be treated as a primitive gate.

Hence the error probability at physical level is g0 = w. Again, we do not know the

delay at the physical level. Since this gate also does not come into the picture while

calculating the memory error probability of any gate, thus we can safely put this aside

for the time being.

Chapter 4. Estimation of Gate Error Probability at Logical Level 48

4.5.3 LP

The primitive gates in SC are Rx, Ry, Rz, X, Y, Z, S, T,H,CNOT,CZ, SWAP,ZENO.

We enlist the error probabilities of the different gates. The error probability of CP at

the physical level is g0 = w.

Rx,Ry,Rz,X,Y,Z,S,T,H

Since all these are primitive gates, the error probability for the physical level is g0 = w

for each of them.

We assume that the delay at physical level forRx, Ry and Rz is the same as forX,Y and Z

respectively and is given in Table 4.2. Thus in this case, for each gate t0 = t.

CZ

The CZ gate, being a primitive gate, the error probability at the physical level is g0 = w.

Delay can be calculated like in Equation 4.12

SWAP

The SWAP gate, being a primitive gate, the error probability at the physical level is

g0 = w. The delay at physical level is given in Table 4.2.

CNOT

The CNOT gate, being a primitive gate, the error probability at the physical level is

g0 = w. The delay at physical level is given in Table 4.2.

G

The G gate, being a non-primitive gate, can be realized with primitive gates using the

circuit shown in Figure 4.13(a). Thus, by previous logic, the error probability at physical

level is:

g0 = 1− (1− g0CNOT)2(1− g0Rz) (4.20)

Delay can be calculated using the following equation:

t0 = 2t0CNOT + t0Rz (4.21)

ZENO

The ZENO gate, being a primitive gate, the error probability at physical level is g0 = w.

Again, we do not know the delay at the physical level. Since this gate does not come

Chapter 4. Estimation of Gate Error Probability at Logical Level 49

R ()θZ

P(/2)θ

(a) LP, NLP

P(/2)θ

R (−)θXR (− /2)πY R (/2)π
YZ Z

(b) NA

Figure 4.13: G gate construction in LP, NLP and NA

into the picture while calculating the memory error probability of any gate, thus we can

safely put this aside for the time being.

4.5.4 NLP

The primitive gates in SC are Rx, Ry, Rz, H,CNOT . We enlist the error probabilities

of the different gates. The error probability of CP at the physical level is g0 = w.

Rx,Ry,Rz,X,Y,Z,H

Since all of them are primitive gates, the error probability at the physical level is g0 = w

for each of them.

We assume that the delay at physical level forRx, Ry and Rz is the same as forX,Y and Z

respectively and is given in Table 4.2. Thus in this case, for each gate t0 = t.

S

S is a special case of Rz since Rz(
π
2) = S and thus this can be treated as primitive gate

in NLP. So the error probability at physical level is g0 = w. The delay at physical level

is given in Table 4.2.

T

T is a special case of Rz since Rz(
π
4) = T and thus this can be treated as primitive gate

in NLP. So the error probability at physical level is g0 = w. The delay at physical level

is given in Table 4.2.

CZ

The realization of CZ with the help of the primitive gates in NLP is shown in Fig-

ure 4.14(a)

Chapter 4. Estimation of Gate Error Probability at Logical Level 50

Thus the error probability at the physical level is:

g0 = 1− (1− g0H)2(1− g0CNOT) (4.22)

The delay at the physical level can be calculated using the following equation:

t0 = 2t0H + t0CNOT (4.23)

H H

(a) NLP

P(/2)π
R (/2)π

Z

R (/2)π
Z

G(− /2)π

(b) IT

Figure 4.14: CZ gate construction in NLP and IT.

SWAP

The SWAP gate, being a non-primitive gate, can be realized with primitive gates using

the circuit shown in Figure 4.11(a)

Thus, by previous logic, the error probability at physical level is:

g0 = 1− (1− g0CNOT)3 (4.24)

The delay at physical level is given in Table 4.2.

CNOT

The CNOT gate, being a primitive gate, the error probability at the physical level is

given by g0 = w.

The delay at physical level is given in Table 4.2.

G

The G gate, being a non-primitive gate, can be realized with primitive gates using the

circuit shown in Figure 4.13(a). The error probability at physical level is given by

Equation 4.20. The delay at the physical level is given by Equation 4.21.

ZENO

The ZENO gate can be realized as in Figure 4.15.

Chapter 4. Estimation of Gate Error Probability at Logical Level 51

Thus the error probability at the physical level is:

g0 = 1− (1− g0Rz)
2(1− g0CZ)(1− g0SWAP) (4.25)

The delay can be calculated as:

t0 = t0Rz + t0CNOT + t0SWAP (4.26)

In our analysis we have used the non-primitive SWAP gate, but it must be borne in

mind that it can be realized with the primitive gates, as already shown.

πP(− /2) R (− /2)π
Z

R (− /2)π
Z

Z

Figure 4.15: ZENO gate construction with SWAP gate

4.5.5 IT

The primitive gates in IT are Rxy, Rz, G. We enlist the error probabilities of the different

gates.

Rx,Ry,Rz,X,Y,Z

Rx and Ry are special cases of Rxy. Thus Rx, Ry and Rz, and hence X,Y, Z can be con-

sidered to have primitive implementations. Hence the error probability at the physical

level is g0 = w for each of them.

We assume that the delay at physical level forRx, Ry and Rz is the same as forX,Y and Z

respectively and is given in Table 4.2. Thus in this case, for each gate t0 = t.

S

S is a special case of Rz since Rz(
π
2) = S and thus this can be treated as primitive gate

in NLP. So the error probability at physical level is g0 = w. The delay at physical level

is given in Table 4.2.

T

T is a special case of Rz since Rz(
π
4) = T and thus this can be treated as primitive gate

in NLP. So the error probability at physical level is g0 = w. The delay at physical level

is given in Table 4.2.

Chapter 4. Estimation of Gate Error Probability at Logical Level 52

H

In IT, H can be realized in terms of the primitive gates as in QD and the error proba-

bility formula at physical level is Equation 4.10. The delay at physical level is given in

Table 4.2.

CNOT

The CNOT gate, being a non-primitive gate, can be realized with primitive gates using

the circuit shown in Figure 4.7(b). The error probability at physical level is given by:

g0 = 1− (1− g0Rz)
2(1− g0Ry)

2(1− g0G) (4.27)

The delay at the physical level is given in Table 4.2.

G

The G gate, being a primitive gate, the probability of error at the physical level is given

by g0 = w. The delay at the physical level can be calculated using the circuit in fig..

t0 = t0CNOT − 2t0Ry − t0Rz (4.28)

CZ

The CZ gate, being a non-primitive gate, can be realized with primitive gates using the

circuit shown in Figure 4.14(b). The error probability at physical level is given by:

g0 = 1− (1− g0Rz)
2(1− g0G) (4.29)

The delay at the physical level is given by:

t0 = t0G + t0Rz (4.30)

SWAP

The SWAP gate, being a non-primitive gate, can be realized with primitive gates using

the circuit shown in Figure 4.8(b). The error probability at physical level is given by:

g0 = 1− (1− g0Rx)3(1− g0Ry)
3(1− g0Rz)

2(1− g0G)3 (4.31)

The delay at the physical level is given in Table 4.2.

ZENO

Chapter 4. Estimation of Gate Error Probability at Logical Level 53

The ZENO gate, being a non-primitive gate, can be realized with primitive gate using

the circuit shown in Figure 4.15. Thus the error probability at the physical level is given

by Equation 4.25

The delay for the physical gate is given by Equation 4.26

4.5.6 NA

The primitive gates in NA are Rxy, CZ. We enlist the error probabilities of the different

gates.

Rx,Ry,Rz,X,Y,Z

Rx and Ry are special cases of Rxy. Rz can be realized by cascading two Rxy gates.

Thus the error probability of Rx, Ry and hence X,Y at the physical level is g0 = w for

each gate. For Rz and Z the error probability at the physical level is g0 = 1− (1−w)2.

We assume that the delay at physical level forRx, Ry and Rz is the same as forX,Y and Z

respectively and is given in Table 4.2. Thus in this case, for each gate t0 = t.

S

S is a special case of Rz since Rz(
π
2) = S and thus this can be treated as primitive gate

in NLP. So the error probability at physical level is g0 = w. The delay at physical level

is given in Table 4.2.

T

T is a special case of Rz since Rz(
π
4) = T and thus this can be treated as primitive gate

in NLP. So the error probability at physical level is g0 = w. The delay at physical level

is given in Table 4.2.

H

In IT, H can be realized in terms of the primitive gates as in QD and the error proba-

bility formula at physical level is Equation 4.10. The delay at physical level is given in

Table 4.2.

CNOT

The CNOT gate, being a non-primitive gate, can be realized with primitive gates using

the circuit shown in Figure 4.12(a). The error probability at physical level is given by:

g0 = 1− (1− g0Ry)
2(1− g0CZ) (4.32)

Chapter 4. Estimation of Gate Error Probability at Logical Level 54

The delay at the physical level is given in Table 4.2.

CZ

The CZ gate, primitive gate, the error probability at physical level is given by g0 = w.

The delay at the physical level is given by:

t0 = t0CNOT − 2t0Ry (4.33)

SWAP

The SWAP gate, being a non-primitive gate, can be realized with primitive gates using

the circuit shown in Figure 4.11(b). The error probability at physical level is given by:

g0 = 1− (1− g0Ry)
6(1− g0CZ)3 (4.34)

The delay at the physical level is given in Table 4.2.

G

The G gate, being a non-primitive gate, can be realized with primitive gates using the

circuit shown in Figure 4.13(b). Thus, by previous logic, the error probability at physical

level is:

g0 = 1− (1− g0CZ)2(1− g0Rx)(1− g0Ry)
2 (4.35)

Delay can be calculated using the following equation:

t0 = 2t0CZ + 2t0Ry + t0Rx (4.36)

ZENO

The ZENO gate, being a non-primitive gate, can be realized with primitive gate using

the circuit shown in Figure 4.15. Thus the error probability at the physical level is given

by Equation 4.25

The delay for the physical gate is given by Equation 4.26

4.6 Error probability and delay of gates at logical level

The error probability at the logical level depends on the QECC used and not on the

PMD. Hence we deduce the error probability of the encoded gates for the three different

QECCs considered.

Chapter 4. Estimation of Gate Error Probability at Logical Level 55

Table 4.3: Error probability and delay of Rz gate at the logical level (k as in Equa-
tion 3.1)

k Rz gnRz tnRz
1 T gnT tnT
2 S gnS tnS
3 ZT † 1− (1− gnZ)(1− gnT) tnT + tnZ
4 Z gnZ tnZ
5 ZT 1− (1− gnZ)(1− gnT) tnT + tnZ
6 S† gnS tnS
7 T † gnT tnT

4.6.1 Bacon Shor Code

The tile structure for Bacon Shor code for the various CTL library gates has been given

in Appendix A. Using this code, we formulate the error probabilities and the time for

each gate operation for each PMD.

X,Y,Z

From the tiles shown in Appendix A (Figure A.1), we can see that for the logical encoding

of each of these gates we need 9 distinct gates of respective type. Thus a logical gate is

at error if more than 2 gates at the next lower level is at error. So for each of X, Y and

Z, the error probability at the logical level at nth level of encoding is:

gn = 1− (1− gn−1)9 −
(

9

1

)
gn−1(1− gn−1)8 (4.37)

The delay for these gates at the logical level is:

tn = tn−1 (4.38)

Rx,Ry,Rz

To calculate the error probability for the rotation gates at different levels of encoding we

use Table 3.1 to express them in terms of the CTL library. Using the logic as discussed

earlier, the error probabilities and delay for the rotation gates at the logical level have

been calculated and listed in Table 4.3, Table 4.4 and Table 4.5.

Since all of the remaining gates SWAP is used we start with the error probability of the

SWAP gate.

SWAP

Chapter 4. Estimation of Gate Error Probability at Logical Level 56

Table 4.4: Error probability and delay of Rx gate at the logical level (k as in Equa-
tion 3.1)

k Rx gnRx tnRx
1 HTH 1− (1− gnH)2(1− gnT) tnT + 2tnH
2 HSH 1− (1− gnH)2(1− gnS) tnS + 2tnH
3 HZT †H 1− (1− gnH)2(1− gnT)(1− gnZ) tnT + 2tnH + tnZ
4 X gnX tnX
5 HZTH 1− (1− gnH)2(1− gnT)(1− gnZ) tnT + 2tnH + tnZ
6 HS†H 1− (1− gnH)2(1− gnS) tnS + 2tnH
7 HT †H 1− (1− gnH)2(1− gnT) tnT + 2tnH

Table 4.5: Error probability and delay of Ry gate at the logical level (k as in Equa-
tion 3.1)

k Ry gnRy tnRy
1 SHTHS† 1− (1− gnH)2(1− gnT)(1− gnS)2 tnT + 2tnH + 2tnS
2 HZ 1− (1− gnH)(1− gnZ) tnH + tnZ
3 SHZT †HS† 1− (1− gnH)2(1− gnT)(1− gnZ)(1− gnS)2 tnT + 2tnH + 2tnS + tnZ
4 ZX 1− (1− gnX)(1− gnZ) tnX + tnZ
5 SHZTHS† 1− (1− gnH)2(1− gnT)(1− gnZ)(1− gnS)2 tnT + 2tnH + 2tnS + tnZ
6 ZH 1− (1− gnH)(1− gnZ) tnH + tnZ
7 SHT †HS† 1− (1− gnH)2(1− gnT)(1− gnS)2 tnT + 2tnH + 2tnS

The logical SWAP (Figure C.3 in Appendix A) requires 33 distinct SWAP operations

at the next lower level. Of these 12 SWAP operations are such that failure of any one of

them cause a single error. Thus the probability of error at the nth level of encoding is:

gn = 1− (1− gn−1)33 −
(

12

1

)
gn−1(1− gn−1)32 (4.39)

The delay is formulated as:

tn = 7tn−1 (4.40)

CNOT

It has already been discussed in subsection 4.4.2.

H

The logical H (Figure A.2 in Appendix A) requires 16 distinct SWAP gates and 9

distinct H gates at the next lower level. Also we can see that one of the qubits is idle

for 4 timestamps. Only the 9 H if fails, cause one error. Failure of all other gates cause

Chapter 4. Estimation of Gate Error Probability at Logical Level 57

at least two errors per block. Thus the probability of error at the logical level is:

gn = 1− (1− gn−1H)9(1− gn−1SWAP)16(1−MnH)

−
(

9

1

)
gn−1H (1− gn−1H)8(1− gn−1SWAP)16(1−MnH)

− MnH (1− gn−1H)9(1− gn−1SWAP)16 (4.41)

where Mn is the memory error probability at the nth level of encoding. Let m is the

memory error probability obtained from Table 4.1 for a particular PMD. Then the

memory error at different levels of encoding can be deduced to be the following:

M1H = 1− (1−m)4t where t = t0SWAP

MnH = 1− (1−m)9
n−1t − 9Mn−1H (1−m)8.9

n−2t where t = tn−1SWAP (4.42)

The delay is formulated as:

tn = tn−1 + 4tn−1SWAP (4.43)

S

The logical S (Figure A.5 in Appendix A) requires 42 distinct SWAP, 9 H and 9 CNOT.

Of these 21 SWAP, 9 H and 9 CNOT are such that their failure causes one error per

data block. Also, as can be seen from the figure, the data block of 9 qubits lies idle for

8 timestamps. So we have to take care of memory errors. Thus the error probability for

the encoded S gate can be formulated as:

gn = 1− [(1− gn−1H)9(1− gn−1CNOT)9(1− gn−1SWAP)42

+

(
21

1

)
gn−1SWAP (1− gn−1SWAP)41(1− gn−1H)9(1− gn−1CNOT)9

+

(
9

1

)
gn−1H (1− gn−1SWAP)42(1− gn−1H)8(1− gn−1CNOT)9

+

(
9

1

)
gn−1CNOT (1− gn−1SWAP)42(1− gn−1H)9(1− gn−1CNOT)8](1−MnS)

− MnS (1− gn−1SWAP)42(1− gn−1H)9(1− gn−1CNOT)9 (4.44)

The memory error Mn in this case is defined as:

M1S = 9[1− (1−m)8t0SWAP](1−m)64tn−1SWAP

MnS = 9[1− (1−Mn−1S)8tn−1SWAP](1−Mn−1S)64tn−1SWAP (4.45)

Chapter 4. Estimation of Gate Error Probability at Logical Level 58

The delay is formulated as:

tn = 8tn−1SWAP + 2(tn−1CNOT + tn−1H) (4.46)

T

The logical T (Figure A.6 in Appendix A) requires 42 distince SWAP, 18 CNOT, 9 H

and 9 measurement (Mz) gates. Of these 21 SWAP, 18 CNOT, 9 H and 9 Mz gates are

capable of causing one error per data block. Also the data block of 9 qubits lies idle

for 8 timestamps, giving rise to the possibility of memory error. We assume the error

probability of measurement gate is equal to the worst gate error probability for a specific

PMD.

gn = 1− [(1− gn−1SWAP)42(1− gn−1CNOT)18(1− gn−1H)9(1− gn−1Mz)
9

+

(
21

1

)
gn−1SWAP (1− gn−1SWAP)41(1− gn−1CNOT)18(1− gn−1H)9(1− gn−1Mz)

9

+

(
18

1

)
gn−1CNOT (1− gn−1SWAP)42(1− gn−1CNOT)17(1− gn−1H)9(1− gn−1Mz)

9

+

(
9

1

)
gn−1H (1− gn−1SWAP)42(1− gn−1CNOT)18(1− gn−1H)8(1− gn−1Mz)

9

+

(
9

1

)
gn−1SWAP (1− gn−1SWAP)42(1− gn−1CNOT)18(1− gn−1H)9(1− gn−1Mz)

8](1−MnS)

− MnS (1− gn−1SWAP)42(1− gn−1CNOT)18(1− gn−1H)9(1− gn−1Mz)
9 (4.47)

The memory error MnS is as defined in Equation 4.45.

The delay is formulated as:

tn = 9tn−1SWAP + 3tn−1CNOT + 2tn−1H + tM (4.48)

tM is the time required for measurement. The value has been given in Table 4.2.

CZ

The FT implementation of CZ is given by:

CZ = [I ⊗H] · CNOT · [I ⊗H] (4.49)

Using the logic already explained before, the error probability of CNOT at logical level

is:

gn = 1− (1− gnH)(1− gnCNOT) (4.50)

Chapter 4. Estimation of Gate Error Probability at Logical Level 59

The delay is formulated as:

tn = 2tnH + tnCNOT (4.51)

G

In the FTS set we have G(π2) and G(3π2). The FT implementatin of these two gates is

as follows:

G(
π

2
) = [S ⊗ SH] · CNOT · [I ⊗H]

G(
3π

2
) = [I ⊗H] · CNOT · [S† ⊗HS†] (4.52)

Thus, the error probability of these two gates at the logical level is:

gn = 1− (1− gnS)2(1− gnH)(1− gnCNOT) (4.53)

The delay is formulated as:

tn = 2(tnH + tnS) + tnCNOT (4.54)

ZENO

Since Rz(−π
2) = S†, so from fig.. the error probability of ZENO at logical level is:

gn = 1− (1− gnS)2(1− gnSWAP)(1− gnCZ) (4.55)

The delay is formulated as:

tn = 2tnS) + tnSWAP + tnCZ (4.56)

For the remaining two QECCs the analyses of the rotation gates, CZ, G and ZENO

remains same. So we give the analyses for the remaining ones.

4.6.2 Steane Code

The tile structure for Steane code for the various CTL library gates has been given in

Appendix B. Using this code, we formulate the error probabilities and the time for each

gate operation for each PMD.

X,Y,Z,H

Chapter 4. Estimation of Gate Error Probability at Logical Level 60

From the tiles shown in Appendix B (Figure B.1 and Figure B.2), we can see that for

the logical encoding of each of these gates we need 7 distinct gates of respective type.

Thus a logical gate is at error if more than 2 gates at the next lower level is at error.

So for each of X, Y, Z and H, the error probability at the logical level at nth level of

encoding is:

gn = 1− (1− gn−1)7 −
(

7

1

)
gn−1(1− gn−1)6 (4.57)

The delay for these gates at the logical level is:

tn = tn−1 (4.58)

S

Unlike Bacon Shor, the S gate has a transversal implementation in Steane code, as has

been shown in Figure B.3 of Appendix B. Thus the error probability at the logical level

is:

gn = 1− (1− gn−1)7(1− gn−1z)7 −
(

7

1

)
gn−1(1− gn−1)6(1− gn−1z)7

−
(

7

1

)
gn−1z(1− gn−1)7(1− gn−1z)6 (4.59)

The delay at the logical level is:

tn = tn−1 + tn−1Z (4.60)

SWAP

The tile structure of the Steane code is asymmetrical, thus it has slightly different

complexities for SWAP and CNOT gates, depending on the alignment of the adjacent

tiles. Accordingle there exists horizontal and vertical SWAP (hSWAP and vSWAP),

horizontal and vertical CNOT (hCNOT and vCNOT). In our analyses we found that

with increasing levels of encding the difference in error probabilities and time of the

horizontal and vertical gates is very small. So we take the worst of the two in our

analyses. For hSWAP we need 26 distinct SWAP and 8 such gates exist that causes 1

error per data block (Figure B.4 in Appendix B). Also, for each block, each qubit is idle

for 1 timestamp. Thus, the error probability at the logical level is:

gn = 1− [(1− gn−1)26 + 8gn−1(1− gn−1)25](1−MnSWAP)−MnSWAP (1− gn−1)26(4.61)

Chapter 4. Estimation of Gate Error Probability at Logical Level 61

The memory error is given by:

M0SWAP = m

MnSWAP = 7[1− (1−Mn−1SWAP)tn−1SWAP](1−Mn−1SWAP)6tn−1SWAP (4.62)

The delay at the logical level is:

tn = 9tn−1 (4.63)

CNOT

We give the analysis of the vertical CNOT (vCNOT). From Figure B.7 in Appendix B,

we see that it requires 43 distinct SWAP and 7 CNOT. Of these, 26 SWAPs and the 7

CNOTs are capable of causing one error per block. Also, each qubit in the block is idle

for 2 timestamps. Thus, the error probability at the logical level is given by:

gn = 1− [(1− gn−1SWAP)43(1− gn−1)7

+

(
26

1

)
gn−1SWAP (1− gn−1SWAP)42(1− gn−1)7

+

(
7

1

)
gn−1(1− gn−1SWAP)43(1− gn−1)6](1−MnCNOT)

− MnCNOT (1− gn−1SWAP)43(1− gn−1)7 (4.64)

The memory error is given by:

M0CNOT = m

MnCNOT = 7[1− (1−Mn−1CNOT)2tn−1CNOT](1−Mn−1CNOT)12tn−1CNOT (4.65)

The delay at the logical level is:

tn = tn−1 + 10tn−1SWAP (4.66)

T

From Figure B.8 in Appendix B, we find that for encoding the T gate we require 40

distinct SWAP, 7 CNOT, 7 X, 7 S and 7 Mz. Of these 22 SWAP, 7 CNOT, 7 X, 7 S

and 7 Mz are capable of causing 1 error per block. Each data qubit per block lies idle

Chapter 4. Estimation of Gate Error Probability at Logical Level 62

for 9 time stamps. Thus, the error probability at logical level is:

gn = 1− [(1− gn−1SWAP)40(1− gn−1CNOT)7(1− gn−1X)7(1− gn−1S)7(1− gn−1Mz)
7

+

(
22

1

)
gn−1SWAP (1− gn−1SWAP)39(1− gn−1CNOT)7(1− gn−1X)7(1− gn−1S)7(1− gn−1Mz)

7

+

(
7

1

)
gn−1CNOT (1− gn−1SWAP)40(1− gn−1CNOT)6(1− gn−1X)7(1− gn−1S)7(1− gn−1Mz)

7

+

(
7

1

)
gn−1Mz(1− gn−1SWAP)40(1− gn−1CNOT)7(1− gn−1X)7(1− gn−1S)7(1− gn−1Mz)

6

+

(
7

1

)
gn−1X (1− gn−1SWAP)40(1− gn−1CNOT)7(1− gn−1X)6(1− gn−1S)7(1− gn−1Mz)

7

+

(
7

1

)
gn−1S (1− gn−1SWAP)40(1− gn−1CNOT)7(1− gn−1X)7(1− gn−1S)6(1− gn−1Mz)

7](1−MnT)

− MnT (1− gn−1SWAP)40(1− gn−1CNOT)7(1− gn−1X)7(1− gn−1S)7(1− gn−1Mz)
7 (4.67)

The memory error is given by:

M0T = m

MnT = 7[1− (1−Mn−1T)9tn−1T](1−Mn−1T)54tn−1T (4.68)

The delay at the logical level is:

tn = 10tn−1SWAP + tn−1CNOT + tn−1X + tn−1S + tM (4.69)

tM is the time required for measurement. The value has been given in Table 4.2.

4.6.3 Knill Code

The tile structure for Knill code for the various CTL library gates has been given in

Appendix C. Using this code, we formulate the error probabilities and the time for each

gate operation for each PMD.

X,Y,Z

From the tiles shown in Figure C.1 of Appendix C, we can see that for the logical

encoding of each of X and Z we need 2 distinct gates of respective types. Thus the error

probability at logical level is:

gn = 1− (1− gn−1)2 −
(

2

1

)
gn−1(1− gn−1) (4.70)

Chapter 4. Estimation of Gate Error Probability at Logical Level 63

The delay at the logical level is:

tn = tn−1 (4.71)

Y gate uses one each of X, Y and Z gates for encoding. Thus, the error probability at

logical level is:

gn = 1− (1− gn−1)(1− gn−1X)(1− gn−1Z)− gn−1(1− gn−1X)(1− gn−1Z)

− gn−1X (1− gn−1)(1− gn−1Z)− gn−1Z (1− gn−1X)(1− gn−1) (4.72)

The delay at the logical level is:

tn = tn−1 + tn−1X + tn−1Z (4.73)

H

As can be seen from Figure C.2 in Appendix C, the logical H gate uses 4 distinct H

gates at the next lower level, the failure of any one of which causes one error per block.

Thus, the error probability at the logical level is:

gn = 1− (1− gn−1)4 −
(

4

1

)
gn−1(1− gn−1)3 (4.74)

The delay at the logical level is:

tn = tn−1 (4.75)

SWAP

The logical SWAP (Figure C.3 in Appendix C) uses 40 distinct SWAPS, out of which

32 are such that the failure of any one causes one error per block. Also, the four qubits

per block lie idle for 2 timestamps. Thus the error probability at the logical level is:

gn = 1− [(1− gn−1)40 +

(
32

1

)
gn−1(1− gn−1)39](1−MnSWAP)

− MnSWAP (1− gn−1)40 (4.76)

The memory error probability is given by:

M0SWAP = m

MnSWAP = 4[1− (1−Mn−1SWAP)2tn−1SWAP](1−Mn−1SWAP)6tn−1SWAP (4.77)

Chapter 4. Estimation of Gate Error Probability at Logical Level 64

The delay at the logical level is:

tn = 7tn−1 (4.78)

CNOT

The logical CNOT (Figure C.4 in Appendix C) requires 24 distinct SWAP and 4 distinct

CNOT at the next lower level, out of which failure of 22 SWAPs and 4 CNOT s cause

one error per block. Thus, the error probability at the logical level is:

gn = 1− (1− gn−1SWAP)24(1− gn−1)4 −
(

4

1

)
gn−1(1− gn−1SWAP)24(1− gn−1)3

−
(

22

1

)
gn−1SWAP (1− gn−1SWAP)23(1− gn−1)4 (4.79)

The delay at the logical level is:

tn = tn−1 + 3tn−1SWAP (4.80)

S

The encoded S gate (Figure C.5 in Appendix C) uses 20 distinct SWAP, 4 CNOT and

4 H, out of which there are 16 CNOT, 4 CNOT and 4 H, such that the failure of any

one of them causes one error per block. Also, the four qubits per block sit idle for 6

timestamps. Thus, the error probability at the logical level is given by:

gn = 1− [(1− gn−1SWAP)20(1− gn−1CNOT)4(1− gn−1H)4

+

(
16

1

)
gn−1SWAP (1− gn−1SWAP)19(1− gn−1CNOT)4(1− gn−1H)4

+

(
4

1

)
gn−1CNOT (1− gn−1SWAP)20(1− gn−1CNOT)3(1− gn−1H)4

+

(
4

1

)
gn−1H (1− gn−1SWAP)20(1− gn−1CNOT)4(1− gn−1H)3](1−MnS)

− MnS (1− gn−1SWAP)20(1− gn−1CNOT)4(1− gn−1H)4 (4.81)

The memory error is given by:

M0S = m

MnS = 4[1− (1−Mn−1S)6tn−1SWAP](1−Mn−1S)18tn−1SWAP (4.82)

Chapter 4. Estimation of Gate Error Probability at Logical Level 65

The delay at the logical level is:

tn = 2tn−1H + 6tn−1SWAP + 2tn−1CNOT (4.83)

T

The encoded T (Figure C.6 in Appendix C) gate uses 24 distinct SWAP, 8 CNOT, 4

H, 4 Mz, out of which there are 20 SWAP, 8 CNOT, 4 H and 4 Mz such that failure of

any one of them causes one error per block. Also, the four qubits per block lie idle for

6 timestamps. Thus, the error probability at the logical level is:

gn = 1− [(1− gn−1SWAP)24(1− gn−1CNOT)8(1− gn−1H)4(1− gn−1Mz)
4

+

(
20

1

)
gn−1SWAP (1− gn−1SWAP)23(1− gn−1CNOT)8(1− gn−1H)4(1− gn−1Mz)

4

+

(
8

1

)
gn−1CNOT (1− gn−1SWAP)24(1− gn−1CNOT)7(1− gn−1H)4(1− gn−1Mz)

4

+

(
4

1

)
gn−1H (1− gn−1SWAP)24(1− gn−1CNOT)8(1− gn−1H)3(1− gn−1Mz)

4

+

(
4

1

)
gn−1Mz(1− gn−1SWAP)24(1− gn−1CNOT)8(1− gn−1H)4(1− gn−1Mz)

3](1−MnT)

− MnT (1− gn−1SWAP)24(1− gn−1CNOT)8(1− gn−1H)4(1− gn−1Mz)
4 (4.84)

The memory error is given by:

M0T = m

MnT = 4[1− (1−Mn−1T)6tn−1SWAP](1−Mn−1T)18tn−1SWAP (4.85)

The delay at the logical level is:

tn = 2tn−1H + 7tn−1SWAP + 3tn−1CNOT + tM (4.86)

tM is the time required for measurement. The value has been given in Table 4.2.

Chapter 5

Results and Observations

We have considered few benchmark circuits and applied our error probability tracing

algorithm. We have implemented our algorithm in C, developing a tool that takes as

input the error probability of gates at the physical level, the quantum circuit in QASM

format, the number of levels of encoding and the threshold value. The tool outputs the

gate error probabilities at the physical and logical level for each PMD and per QECC.

With the help of these values the tool calculates and prints the error probabilities after

each component in the quantum circuit and depending on the threshold considered it

places the EC blocks at specific locations. We have obtained significant reduction in the

number of error correction (EC) blocks, thus reducing considerable resources. We begin

this chapter by briefly discussing about the benchmark circuits we have considered and

then we tabulate our results and enlist our observations and inferences.

5.1 Benchmark Circuits

We have considered three arithmetic circuits - 4-bit adder, 8-bit adder, multiplier circuit

and circuit for Grover’s search algorithm.

Since Shor’s algorithm can break the RSA cryptosystem, building quantum circuits for

Shor’s algorithm has gained much attention. An important part of Shor’s algorithm is

to find the order r of a modulo N . The order r of a mod N is the least positive integer

such that ar mod N ≡ 1.A systematic way to build the modular exponentiation circuit

is to hierarchically decompose it into a controlled modulo multiplier , controlled modulo

adder, modular adder and full adder. [62]

66

Chapter 5. Results and Observations 67

The quantum adder is the fundamental module of many circuits, including circuit for

Shor’s algorithm. In quantum adders, the addition of two registers is written as:

|a, b〉 → |a, a+ b〉 (5.1)

Many different types of adders have been presented in literature [31], [27], [16].

The quantum multiplier of two input variables can be written as

|b, a, 0〉 → |b, a, a · b〉 (5.2)

It can be implemented by cascading several quantum adders because:

a · b = (20a)b0 + (21a)b1 + . . .+ (2n−1a)bn−1 (5.3)

where b = bn−1bn−2 . . . b1b0

5.1.1 Circuit for Grover’s Search algorithm

Grover’s search [11] is perhaps the second most important algorithm after Shor’s algo-

rithm. It is used in many quantum algorithms. Consider a function:

fa(x) = 0, x 6= a

fa(x) = 1, x = a (5.4)

(5.5)

where is x is an n-bit integer and fa is a black box routine, which outputs 1 if x = a, else

it outputs 0. On a classical computer, we can do no better than applying fa repeatedly

to different random numbers until we find a. We must try N/2 times, where N = 2n,

for a 50% chance of success. On the other hand, in quantum computing, Grover’s search

algorithm can find a with a probability p by calling fa no more than π
4

√
N times [11],

[51].

The circuit structure is shown in Figure 5.1 [62]. The upper line is an n-qubit quantum

register while the lower one is a 1-qubit quantum register. It contains r iterations of

a sub-module, that has three parts: oracle function (fa) routine, Hn block, and the

diffusion operator D. The oracle function changes the state of the bottom register if the

state of the upper integer equals a special integer.

We give an example of a QASM file format that we have used. Below is given a small

Grover’s circuit, having two data qubits and one ancilla qubit and it is searching the

Chapter 5. Results and Observations 68

state |11〉 .

.qubit3

qubitq0

qubitq1

qubitq2

.begin

H q0

H q1

H q2

T q0

T q1

H q2

CNOT q2 q1

T q1

CNOT q0 q2

CNOT q0 q1

T q1

T q2

CNOT q0 q2

CNOT q2 q1

T q1

T q2

CNOT q0 q1

H q2

H q0

H q1

X q0

X q1

CZ q0 q1

X q0

X q1

H q0

H q1

(5.6)

Chapter 5. Results and Observations 69

Hn HnHn

o
ra

c
le

D HnHn

o
ra

c
le

D HnHn

o
ra

c
le

Dq q ... q
0 1 n−1

q (0)
n X H

r = 1r = 0

Figure 5.1: Circuit structure for Grover’s search algorithm

5.2 Results

We have applied our error probability analysis on the above-mentioned four benchmarks

circuits: 4-bit adder, 8-bit adder, multiplier and circuit for Grover’s algorithm. We have

calculated the number of EC blocks required by our algorithm and compared it with the

original number of EC blocks required, had they been placed after each component.

For convenience, we enlist the assumptions we made in our methodology:

• Only gate errors and no memory or communication errors have been taken into

account while tracing error probabilities in quantum logic circuits.

• No difference between bit flip and phase flip errors have been made.

• State preparation and EC blocks have 0 probability.

• Error probability of primitive gate for a particular PMD at physical level is same.

We tabulate the results in eight tables from Table 5.4, to Table 5.11. In all the tables,

we have used certain symbols: Th stands for threshold considered, Concat denotes the

level of encoding, Orig. denotes the original number of EC blocks, % save denotes the

saving our algorithm has in terms of EC blocks. In the columns of Th, the number of

EC blocks obtained by our algorithm has been enlisted. BS, S and K respectively denote

Bacon Shor, Steane and Knill codes.

For convenience of the readers, we are tabulating the error probability of the gates in

FTS library at the physical and logical level in Table 5.1, Table 5.2 and Table 5.3. It

has been assumed that all the primitive gates specific to a particular PMD has error

probability w at physical level and this value is given as input(Table 4.1). All other

error probabilities at physical level are derived as functions of w. It must be noted that

the error probabilities at logical level for Rz, Rx and Ry have already been tabulated in

Chapter 5. Results and Observations 70

Table 5.1: Error probability and delay of FTS gates at physical level for each PMD

Gates QD SC LP NLP IT NA
Rx w w w w w w
Ry 1− (1− w)3 w w w w w
Rz w w w w w w
X w w w w w w
Y 1− (1− w)2 w w w w w
Z w w w w w w
H 1− (1− w)3 1− (1− w)3 w w 1− (1− w)3 1− (1− w)3

S w w w w w w
T w w w w w w

SWAP 1− (1− w)13 1− (1− w)4 w 1− (1− w)3 1− (1− w)11 1− (1− w)9

CNOT 1− (1− w)5 1− (1− w)7 w w 1− (1− w)5 1− (1− w)3

CZ w w w 1− (1− w)3 1− (1− w)3 w
G 1− (1− w)9 1− (1− w)3 1− (1− w)3 1− (1− w)3 w 1− (1− w)5

ZENO 1− (1− w)12 w w 1− (1− w)8 1− (1− w)16 1− (1− w)12

Table 4.3, Table 4.4 and Table 4.5 respectively. The notations are as defined before in

Chapter 4.

5.3 Observations and Inference

From the results we have obtained, we make certain interesting observations and have

deduced certain interferences:

• The number of EC blocks obtained by using our algorithm is significantly less than

that required if we would have placed EC block after every circuit component.

Thus considerable reduction in resources can be obtained.

• Clearly, not every PMD is equally efficient from the aspect of component error

probability. PMD s like QD score much less in this regard, while IT and SC are

preferred ones.

• Even with same PMD, number of EC blocks required also depends upon the QECC

used.

• We observe that usually with increasing level of concatenation, number of EC is

reduced, but then increasing the concatenation level itself increases the number of

circuit components. So there is a trade-off between these two.

• With increasing concatenation level, memory error increases considerably, so the

decrease in error probability with increased concatenation is not as rapid as ex-

pected.

Chapter 5. Results and Observations 71

Table 5.2: Error probability and delay of FTS(1) gates at logical level for each QECC

Gates Bacon Shor Steane Knill

X 1 − (1 − gn−1X)9 −(
9
1

)
gn−1X (1− gn−1X)8

1 − (1 − gn−1X)7 −(
7
1

)
gn−1X (1− gn−1X)6

1 − (1 − gn−1X)2 −(
2
1

)
gn−1X (1− gn−1X)

Y 1 − (1 − gn−1Y)9 −(
9
1

)
gn−1Y (1− gn−1Y)8

1 − (1 − gn−1Y)7 −(
7
1

)
gn−1Y (1− gn−1Y)6

1 − (1 − gn−1Y)(1 −
gn−1X)(1 − gn−1Z) −
gn−1Y (1 − gn−1X)(1 −
gn−1Z) − gn−1X (1 −
gn−1Y)(1 − gn−1Z) −
gn−1Z (1−gn−1X)(1−gn−1Y)

Z 1 − (1 − gn−1Z)
9 −(

9
1

)
gn−1Z (1− gn−1Z)

8
1 − (1 − gn−1Z)

7 −(
7
1

)
gn−1Z (1− gn−1Z)

6
1 − (1 − gn−1Z)

2 −(
2
1

)
gn−1Z (1− gn−1Z)

H 1 − (1 − gn−1H)9(1 −
gn−1SWAP)

16(1 − MnH) −(
9
1

)
gn−1H (1 − gn−1H)8(1 −

gn−1SWAP)
16(1 − MnH) −

MnH (1 − gn−1H)9(1 −
gn−1SWAP)

16

1 − (1 − gn−1H)7 −(
7
1

)
gn−1H (1− gn−1H)6

1 − (1 − gn−1H)4 −(
4
1

)
gn−1H (1− gn−1H)3

S 1 − [(1 − gn−1H)9(1 −
gn−1CNOT)

9(1 −
gn−1SWAP)

42 +(
21
1

)
gn−1SWAP (1 −

gn−1SWAP)
41(1 −

gn−1H)9(1 − gn−1CNOT)
9 +(

9
1

)
gn−1H (1 −

gn−1SWAP)
42(1 −

gn−1H)8(1 − gn−1CNOT)
9 +(

9
1

)
gn−1CNOT (1 −

gn−1SWAP)
42(1 −

gn−1H)9(1 −
gn−1CNOT)

8](1 − MnS) −
MnS (1 − gn−1SWAP)

42(1 −
gn−1H)9(1− gn−1CNOT)

9

1 − (1 − gn−1S)
7(1 −

gn−1Z)
7 −

(
7
1

)
gn−1S (1 −

gn−1S)
6(1− gn−1Z)

7

1 − [(1 − gn−1SWAP)
20(1 −

gn−1CNOT)
4(1 − gn−1H)4 +(

16
1

)
gn−1SWAP (1 −

gn−1SWAP)
19(1 −

gn−1CNOT)
4(1 − gn−1H)4 +(

4
1

)
gn−1CNOT (1 −

gn−1SWAP)
20(1 −

gn−1CNOT)
3(1 −

gn−1H)4 +
(
4
1

)
gn−1H (1 −

gn−1SWAP)
20(1 −

gn−1CNOT)
4(1 −

gn−1H)3](1 − MnS) −
MnS (1 − gn−1SWAP)

20(1 −
gn−1CNOT)

4(1− gn−1H)4

T 1 − [(1 − gn−1SWAP)
42(1 −

gn−1CNOT)
18(1 −

gn−1H)9(1 − gn−1Mz)
9 +(

21
1

)
gn−1SWAP (1 −

gn−1SWAP)
41(1 −

gn−1CNOT)
18(1 −

gn−1H)9(1 − gn−1Mz)
9 +(

18
1

)
gn−1CNOT (1 −

gn−1SWAP)
42(1 −

gn−1CNOT)
17(1 −

gn−1H)9(1 − gn−1Mz)
9 +(

9
1

)
gn−1H (1 −

gn−1SWAP)
42(1 −

gn−1CNOT)
18(1 −

gn−1H)8(1 − gn−1Mz)
9 +(

9
1

)
gn−1SWAP (1 −

gn−1SWAP)
42(1 −

gn−1CNOT)
18(1 −

gn−1H)9(1 − gn−1Mz)
8](1 −

MnS) − MnS (1 −
gn−1SWAP)

42(1 −
gn−1CNOT)

18(1 −
gn−1H)9(1− gn−1Mz)

9

1 − [(1 − gn−1SWAP)
40(1 −

gn−1CNOT)
7(1−gn−1X)7(1−

gn−1S)
7(1 − gn−1Mz)

7 +(
22
1

)
gn−1SWAP (1 −

gn−1SWAP)
39(1 −

gn−1CNOT)
7(1−gn−1X)7(1−

gn−1S)
7(1 − gn−1Mz)

7 +(
7
1

)
gn−1CNOT (1 −

gn−1SWAP)
40(1 −

gn−1CNOT)
6(1 −

gn−1X)7(1 − gn−1S)
7(1 −

gn−1Mz)
7 +

(
7
1

)
gn−1Mz (1 −

gn−1SWAP)
40(1 −

gn−1CNOT)
7(1 −

gn−1X)7(1 − gn−1S)
7(1 −

gn−1Mz)
6 +

(
7
1

)
gn−1X (1 −

gn−1SWAP)
40(1 −

gn−1CNOT)
7(1 −

gn−1X)6(1 − gn−1S)
7(1 −

gn−1Mz)
7 +

(
7
1

)
gn−1S (1 −

gn−1SWAP)
40(1 −

gn−1CNOT)
7(1 −

gn−1X)7(1 − gn−1S)
6(1 −

gn−1Mz)
7](1 − MnT) −

MnT (1 − gn−1SWAP)
40(1 −

gn−1CNOT)
7(1−gn−1X)7(1−

gn−1S)
7(1− gn−1Mz)

7

1 − [(1 − gn−1SWAP)
24(1 −

gn−1CNOT)
8(1 −

gn−1H)4(1 − gn−1Mz)
4 +(

20
1

)
gn−1SWAP (1 −

gn−1SWAP)
23(1 −

gn−1CNOT)
8(1−gn−1H)4(1−

gn−1Mz)
4+

(
8
1

)
gn−1CNOT (1−

gn−1SWAP)
24(1 −

gn−1CNOT)
7(1−gn−1H)4(1−

gn−1Mz)
4 +

(
4
1

)
gn−1H (1 −

gn−1SWAP)
24(1 −

gn−1CNOT)
8(1−gn−1H)3(1−

gn−1Mz)
4 +

(
4
1

)
gn−1Mz (1 −

gn−1SWAP)
24(1 −

gn−1CNOT)
8(1−gn−1H)4(1−

gn−1Mz)
3](1 − MnT) −

MnT (1 − gn−1SWAP)
24(1 −

gn−1CNOT)
8(1−gn−1H)4(1−

gn−1Mz)
4

Chapter 5. Results and Observations 72

Table 5.3: Error probability and delay of FTS(2) gates at logical level for each QECC

Gates Bacon Shor Steane Knill

SWAP 1 − (1 − gn−1SWAP)
33 −(

12
1

)
gn−1SWAP (1 −

gn−1SWAP)
32

1 − [(1 − gn−1SWAP)
26 +

8gn−1SWAP (1 −
gn−1SWAP)

25](1 −
MnSWAP) − MnSWAP (1 −
gn−1SWAP)

26

1 − [(1 − gn−1SWAP)
40 +(

32
1

)
gn−1SWAP (1 −

gn−1SWAP)
39](1 −

MnSWAP) − MnSWAP (1 −
gn−1SWAP)

40

CNOT 1 − (1 − gn−1CNOT)
9(1 −

gn−1SWAP)
54 −(

36
1

)
gn−1SWAP (1 −

gn−1SWAP)
53(1 −

gn−1CNOT)
9 −(

9
1

)
gn−1CNOT (1 −

gn−1CNOT)
8(1 −

gn−1SWAP)
54

1 − [(1 − gn−1SWAP)
43(1 −

gn−1CNOT)
7 +(

26
1

)
gn−1SWAP (1 −

gn−1SWAP)
42(1 −

gn−1CNOT)
7 +(

7
1

)
gn−1CNOT (1 −

gn−1SWAP)
43(1 −

gn−1CNOT)
6](1 −

MnCNOT) − MnCNOT (1 −
gn−1SWAP)

43(1 −
gn−1CNOT)

7

1 − (1 − gn−1SWAP)
24(1 −

gn−1CNOT)
4 −(

4
1

)
gn−1CNOT (1 −

gn−1SWAP)
24(1 −

gn−1CNOT)
3 −(

22
1

)
gn−1SWAP (1 −

gn−1SWAP)
23(1 −

gn−1CNOT)
4

CZ 1− (1− gnH)(1− gnCNOT) 1− (1− gnH)(1− gnCNOT) 1− (1− gnH)(1− gnCNOT)

G 1− (1− gnS)
2(1− gnH)(1−

gnCNOT)
1− (1− gnS)

2(1− gnH)(1−
gnCNOT)

1− (1− gnS)
2(1− gnH)(1−

gnCNOT)

ZENO 1 − (1 − gnS)
2(1 −

gnSWAP)(1− gnCZ)
1 − (1 − gnS)

2(1 −
gnSWAP)(1− gnCZ)

1 − (1 − gnS)
2(1 −

gnSWAP)(1− gnCZ)

Chapter 5. Results and Observations 73

Table 5.4: Savings (in %) on EC blocks for 4-bit Adder circuit on IT, SC and NA

PMD QECC Concat Orig. Th=0.7 % save Th=0.8 %save Th=0.9 % save

IT BS 1 190 0 100.000 0 100.000 0 100.000
2 1710 139 91.871 139 91.871 139 91.871
3 15390 139 90.097 139 90.097 139 90.097
4 138510 4 99.997 6 99.996 2 99.999
5 1246590 55 99.995 50 99.996 45 99.996

IT S 1 190 0 100.000 0 100.000 0 100.000
2 1330 42 96.842 42 96.842 41 96.917
3 9310 90 99.033 90 99.033 90 99.033
4 65170 90 99.862 90 99.862 90 99.862
5 456190 90 99.980 90 99.980 90 99.980

IT K 1 190 0 100.000 0 100.000 0 100.000
2 760 47 93.816 47 93.816 37 95.132
3 3040 139 95.428 139 95.428 139 95.428
4 12160 190 98.437 190 98.437 190 98.437
5 48640 190 99.609 190 99.609 190 99.609

SC BS 1 190 0 100.000 0 100.000 0 100.000
2 1710 139 91.871 139 91.871 139 91.871
3 15390 45 99.708 42 99.727 39 99.747
4 138510 190 99.863 190 99.863 190 99.863
5 1246590 190 99.985 190 99.985 190 99.985

SC S 1 190 0 100.000 0 100.000 0 100.000
2 1330 90 93.233 90 93.233 90 93.233
3 9310 90 99.033 90 99.033 90 99.033
4 65170 90 99.862 90 99.862 90 99.862
5 456190 90 99.980 90 99.980 90 99.980

SC K 1 190 0 100.000 0 100.000 0 100.000
2 760 139 81.711 139 81.711 139 81.711
3 3040 190 93.750 190 93.750 190 93.750
4 12160 190 98.437 190 98.437 190 98.437
5 48640 190 99.609 190 99.609 190 99.609

NA BS 1 190 190 00.000 190 00.000 190 00.000
2 1710 190 88.889 190 88.889 190 88.889
3 15390 190 98.765 190 98.765 190 98.765
4 138510 190 99.863 190 99.863 190 99.863
5 1246590 190 99.985 190 99.985 190 99.985

NA S 1 190 90 52.632 90 52.632 60 68.421
2 1330 90 93.233 90 93.233 90 93.233
3 9310 90 99.033 90 99.033 90 99.033
4 65170 90 99.862 90 99.862 90 99.862
5 456190 90 99.980 90 99.980 90 99.980

NA K 1 190 92 51.579 92 51.579 92 51.579
2 760 190 75.000 190 75.000 190 75.000
3 3040 190 93.750 190 93.750 190 93.750
4 12160 190 98.437 190 98.437 190 98.437
5 48640 190 99.609 190 99.609 190 99.609

Chapter 5. Results and Observations 74

Table 5.5: Savings (in %) on EC blocks for 4-bit Adder circuit on LP, NLP and QD

PMD QECC Concat Orig. Th=0.7 % save Th=0.8 %save Th=0.9 % save

LP BS 1 105 101 03.810 101 03.810 101 03.810
2 945 101 89.312 101 89.312 101 89.312
3 8505 105 98.765 105 98.765 105 98.765
4 76545 105 99.863 105 99.863 105 99.863
5 688905 105 99.985 105 99.985 105 99.985

LP S 1 105 98 06.667 98 06.667 98 06.667
2 735 101 86.258 101 86.258 101 86.258
3 5145 101 98.037 101 98.037 101 98.037
4 36015 101 99.720 101 99.720 101 99.720
5 252105 105 99.958 105 99.958 105 99.958

LP K 1 105 101 03.810 101 03.810 70 33.333
2 420 101 75.952 101 75.952 101 75.952
3 1680 101 93.988 101 93.988 101 93.988
4 6720 101 98.497 101 98.497 101 98.497
5 26880 101 99.624 101 99.624 101 99.624

NLP BS 1 105 44 58.095 43 59.048 46 56.191
2 945 101 89.312 101 89.312 101 89.312
3 8505 101 98.812 101 98.812 101 98.812
4 76545 101 99.868 101 99.868 101 99.868
5 688905 101 99.985 101 99.985 101 99.985

NLP S 1 105 27 74.286 23 78.095 22 79.048
2 735 98 86.667 98 86.667 98 86.667
3 5145 98 98.095 98 98.095 98 98.095
4 36015 98 99.728 98 99.728 98 99.728
5 252105 98 99.961 98 99.961 98 99.961

NLP K 1 105 25 76.190 21 80.000 19 81.905
2 420 101 75.952 70 83.333 70 83.333
3 1680 101 93.988 101 93.988 101 93.988
4 6720 101 98.497 101 98.497 101 98.497
5 26880 101 99.624 101 99.624 101 99.624

QD BS 1 190 190 00.000 190 00.000 190 00.000
2 1710 190 88.889 190 88.889 190 88.889
3 15390 190 98.765 190 98.765 190 98.765
4 138510 190 99.863 190 99.863 190 99.863
5 1246590 190 99.985 190 99.985 190 99.985

QD S 1 190 190 00.000 190 00.000 190 00.000
2 1330 190 85.714 190 85.714 190 85.714
3 9310 190 95.759 190 95.759 190 95.759
4 65170 190 99.708 190 99.708 190 99.708
5 456190 190 99.958 190 99.958 190 99.958

QD K 1 190 25 76.190 21 80.000 19 81.905
2 760 190 75.000 190 75.000 190 75.000
3 3040 190 93.750 190 93.750 190 93.750
4 12160 190 98.437 190 98.437 190 98.437
5 48640 190 99.609 190 99.609 190 99.609

Chapter 5. Results and Observations 75

Table 5.6: Savings (in %) on EC blocks for 8-bit Adder circuit on IT, SC and NA

PMD QECC Concat Orig. Th=0.7 % save Th=0.8 %save Th=0.9 % save

IT BS 1 274 0 100.000 0 100.000 0 100.000
2 2466 105 95.742 105 95.742 105 95.742
3 22194 105 99.527 105 99.527 105 99.527
4 199746 3 99.998 0 100.000 0 100.000
5 1797714 58 99.997 55 99.997 53 99.997

IT S 1 274 0 100.000 0 100.000 0 100.000
2 1918 116 93.952 113 94.108 112 94.161
3 13426 232 98.272 232 98.272 232 98.272
4 93982 232 99.753 232 99.753 232 99.753
5 657874 232 99.965 232 99.965 232 99.965

IT K 1 274 0 100.000 0 100.000 0 100.000
2 1096 51 95.347 51 95.347 56 94.891
3 4384 105 97.605 105 97.605 105 97.605
4 17536 232 98.677 232 98.677 232 98.677
5 70144 232 99.669 232 99.669 232 99.669

SC BS 1 274 0 100.000 0 100.000 0 100.000
2 2466 105 95.742 105 95.742 105 95.742
3 22194 40 99.820 38 99.829 33 99.851
4 199746 262 99.869 262 99.869 262 99.869
5 1797714 262 99.985 262 99.985 262 99.985

SC S 1 274 0 100.000 0 100.000 0 100.000
2 1918 232 87.904 232 87.904 232 87.904
3 13426 232 98.272 232 98.272 232 98.272
4 93982 232 99.753 232 99.753 232 99.753
5 657874 232 99.965 232 99.965 232 99.965

SC K 1 274 0 100.000 0 100.000 0 100.000
2 1096 107 90.237 106 90.328 105 90.420
3 4384 232 94.708 232 99.965 232 99.965
4 17536 232 98.677 232 98.677 232 98.677
5 70144 232 99.669 232 99.669 232 99.669

NA BS 1 274 232 15.328 232 15.328 232 15.328
2 2466 262 89.376 262 89.376 262 89.376
3 22194 262 98.820 262 98.820 262 98.820
4 199746 262 99.869 262 99.869 262 99.869
5 1797714 262 99.985 262 99.985 262 99.985

NA S 1 274 232 15.328 232 15.328 119 56.569
2 1918 232 87.904 232 87.904 232 87.904
3 13426 232 98.272 232 98.272 232 98.272
4 93982 232 99.753 232 99.753 232 99.753
5 657874 232 99.965 232 99.965 232 99.965

NA K 1 274 119 56.569 119 56.569 119 56.569
2 1096 232 78.832 232 78.832 232 78.832
3 4384 232 94.708 232 94.708 232 94.708
4 17536 232 98.677 232 98.677 232 98.677
5 70144 232 99.669 232 99.669 232 99.669

Chapter 5. Results and Observations 76

Table 5.7: Savings (in %) on EC blocks for 8-bit Adder circuit on LP, NLP and QD

PMD QECC Concat Orig. Th=0.7 % save Th=0.8 %save Th=0.9 % save

LP BS 1 274 262 04.380 262 04.380 232 15.328
2 2466 262 89.376 262 89.376 262 89.376
3 22194 274 98.765 274 98.765 274 98.765
4 199746 274 99.863 274 99.863 274 99.863
5 1797714 274 99.985 274 99.985 274 99.985

LP S 1 274 232 15.328 232 15.328 232 15.328
2 1918 232 87.904 232 87.904 232 87.904
3 13426 232 98.272 232 98.272 232 98.272
4 93982 274 99.708 274 99.708 274 99.708
5 657874 274 99.958 274 99.958 274 99.958

LP K 1 274 1283 12.543 1283 12.543 977 33.401
2 1096 1283 78.136 1283 78.136 1283 78.136
3 4384 1283 94.534 1283 94.534 1283 94.534
4 17536 1283 98.633 1283 98.633 1283 98.633
5 70144 1283 99.658 1283 99.658 1283 99.658

NLP BS 1 274 124 54.745 96 64.963 93 66.058
2 2466 262 89.376 262 89.376 262 89.376
3 22194 262 98.820 262 98.820 262 98.820
4 199746 262 99.869 262 99.869 262 99.869
5 1797714 262 99.985 262 99.985 262 99.985

NLP S 1 274 45 83.577 43 84.307 45 83.577
2 1918 232 87.904 232 87.904 232 87.904
3 13426 232 98.272 232 98.272 232 98.272
4 93982 232 99.753 232 99.753 232 99.753
5 657874 232 99.965 232 99.965 232 99.965

NLP K 1 274 49 82.117 48 82.481 42 84.672
2 1096 232 78.832 169 84.580 169 84.580
3 4384 232 94.708 232 94.708 232 94.708
4 17536 232 98.677 232 98.677 232 98.677
5 70144 232 99.669 232 99.669 232 99.669

QD BS 1 274 274 00.000 274 00.000 274 00.000
2 2466 232 87.904 232 87.904 232 87.904
3 22194 232 98.272 232 98.272 232 98.272
4 199746 232 99.753 232 99.753 232 99.753
5 1797714 232 99.965 232 99.965 232 99.965

QD S 1 274 274 00.000 274 00.000 274 00.000
2 1918 274 85.714 274 85.714 274 85.714
3 13426 274 97.959 274 97.959 274 97.959
4 93982 274 99.708 274 99.708 274 99.708
5 657874 274 99.958 274 99.958 274 99.958

QD K 1 274 274 00.000 274 00.000 274 00.000
2 1096 274 75.000 274 75.000 274 75.000
3 4384 274 93.750 274 93.750 274 93.750
4 17536 274 98.437 274 98.437 262 98.506
5 70144 274 99.609 262 99.626 262 99.626

Chapter 5. Results and Observations 77

Table 5.8: Savings (in %) on EC blocks for Multiplier circuit on IT, SC and NA

PMD QECC Concat Orig. Th=0.7 % save Th=0.8 %save Th=0.9 % save

IT BS 1 1467 0 100.000 0 100.000 0 100.000
2 13203 645 95.115 645 95.115 645 95.115
3 118827 645 99.457 645 99.457 645 99.457
4 1069443 54 99.995 36 99.997 43 99.996
5 9624987 360 99.996 309 99.997 299 99.997

IT S 1 1467 0 100.000 0 100.000 0 100.000
2 10269 711 93.076 666 93.514 663 93.544
3 71883 1283 98.215 1283 98.215 1283 98.215
4 503181 1283 99.745 1283 99.745 1283 99.745
5 3522267 1283 99.964 1283 99.964 1283 99.964

IT K 1 1467 0 100.000 0 100.000 0 100.000
2 5868 506 91.377 506 91.377 507 91.360
3 23472 687 97.073 687 97.073 687 97.073
4 93888 1283 98.633 1283 98.633 1283 98.633
5 375552 1283 99.658 1283 99.658 1283 99.658

SC BS 1 1467 0 100.000 0 100.000 0 100.000
2 13203 645 95.115 645 95.115 645 95.115
3 118827 245 99.794 209 99.824 198 99.833
4 1069443 1467 99.863 1467 99.863 1467 99.863
5 9624987 1467 99.985 1467 99.985 1467 99.985

SC S 1 1467 0 100.000 0 100.000 0 100.000
2 10269 1248 87.847 1248 87.847 1248 87.847
3 71883 1283 98.215 1283 98.215 1283 98.215
4 503181 1283 99.745 1283 99.745 1283 99.745
5 3522267 1283 99.963 1283 99.963 1283 99.963

SC K 1 1467 0 100.000 0 100.000 0 100.000
2 5868 667 88.633 665 88.667 663 88.701
3 23472 1283 94.534 1283 94.534 1283 94.534
4 93888 1283 98.633 1283 98.633 1283 98.633
5 375552 1283 99.658 1283 99.658 1283 99.658

NA BS 1 1467 1301 11.316 1301 11.316 1269 13.497
2 13203 1467 88.889 1467 88.889 1467 88.889
3 118827 1467 98.765 1467 98.765 1467 98.765
4 1069443 1467 99.863 1467 99.863 1467 99.863
5 9624987 1467 99.985 1467 99.985 1467 99.985

NA S 1 1467 1283 12.543 1251 14.724 668 54.465
2 10269 1283 87.506 1283 87.506 1283 87.506
3 71883 1283 98.215 1283 98.215 1283 98.215
4 503181 1283 99.745 1283 99.745 1283 99.745
5 3522267 1283 99.964 1283 99.964 1283 99.964

NA K 1 1467 670 54.329 670 54.329 654 55.419
2 5868 1283 78.136 1283 78.136 1283 78.136
3 23472 1283 94.534 1283 94.534 1283 94.534
4 93888 1283 98.633 1283 98.633 1283 98.633
5 375552 1283 99.658 1283 99.658 1283 99.658

Chapter 5. Results and Observations 78

Table 5.9: Savings (in %) on EC blocks for Multiplier circuit on LP, NLP and QD

PMD QECC Concat Orig. Th=0.7 % save Th=0.8 %save Th=0.9 % save

LP BS 1 1467 1467 00.000 1467 00.000 1301 11.316
2 13203 1467 88.889 1467 88.889 1467 88.889
3 118827 1467 98.765 1467 98.765 1467 98.765
4 1069443 1467 99.863 1467 99.863 1467 99.863
5 9624987 1467 99.985 1467 99.985 1467 99.985

LP S 1 1467 1283 12.543 1283 12.543 1251 14.724
2 10269 1283 87.506 1283 87.506 1283 87.506
3 71883 1301 98.190 1301 98.190 1301 98.190
4 503181 1467 99.708 1467 99.708 1467 99.708
5 3522267 1467 99.958 1467 99.958 1467 99.958

LP K 1 1467 1283 12.543 1283 12.543 977 33.401
2 5868 1283 78.136 1283 78.136 1283 78.136
3 23472 1283 94.534 1283 94.534 1283 94.534
4 93888 1283 98.633 1283 98.633 1283 98.633
5 375552 1283 99.658 1283 99.658 1283 99.658

NLP BS 1 1467 669 54.397 507 65.440 536 63.463
2 13203 1467 88.889 1467 88.889 1467 88.889
3 118827 1467 98.765 1467 98.765 1467 98.765
4 1069443 1467 99.863 1467 99.863 1467 99.863
5 9624987 1467 99.985 1467 99.985 1467 99.985

NLP S 1 1467 275 81.254 243 83.436 238 83.776
2 10269 1283 87.506 1283 87.506 1283 87.506
3 71883 1283 98.215 1283 98.215 1283 98.215
4 503181 1283 99.745 1283 99.745 1283 99.745
5 3522267 1283 99.964 1283 99.964 1283 99.964

NLP K 1 1467 242 83.504 234 84.049 210 85.685
2 5868 1283 78.136 942 83.947 942 83.947
3 23472 1283 94.534 1283 94.534 1283 94.534
4 93888 1283 98.633 1283 98.633 1283 98.633
5 375552 1283 99.658 1283 99.658 1283 99.658

QD BS 1 1467 1467 00.000 1467 00.000 1467 00.000
2 13203 1467 88.889 1467 88.889 1467 88.889
3 118827 1467 98.765 1467 98.765 1467 98.765
4 1069443 1467 99.863 1467 99.863 1467 99.863
5 9624987 1467 99.985 1467 99.985 1467 99.985

QD S 1 1467 1467 00.000 1467 00.000 1467 00.000
2 10269 1467 85.714 1467 85.714 1467 85.714
3 71883 1467 97.959 1467 97.959 1467 97.959
4 503181 1467 99.708 1467 99.708 1467 99.708
5 3522267 1467 99.958 1467 99.958 1467 99.958

QD K 1 1467 1467 00.000 1467 00.000 1467 00.000
2 5868 1467 75.000 1467 75.000 1467 75.000
3 23472 1467 93.75 1467 93.75 1467 93.75
4 93888 1467 98.437 1467 98.437 1467 98.437
5 375552 1467 99.609 1467 99.609 1467 99.609

Chapter 5. Results and Observations 79

Table 5.10: Comparative results considering Grover’s search circuit for IT, SC and
NA

PMD QECC Concat Orig. Th=0.7 % save Th=0.8 %save Th=0.9 % save

IT BS 1 27 0 100.000 0 100.000 0 100.000
2 243 7 97.119 7 97.119 7 97.119
3 2187 7 99.680 7 99.680 7 99.680
4 19683 0 100.000 0 100.000 0 100.000
5 177147 4 99.998 3 99.998 4 99.998

IT S 1 27 0 100.000 0 100.000 0 100.000
2 189 7 96.296 7 96.296 7 96.296
3 1323 14 98.942 14 98.942 14 98.942
4 9261 14 99.849 14 99.849 14 99.849
5 64827 14 99.978 14 99.978 14 99.978

IT K 1 27 0 100.000 0 100.000 0 100.000
2 108 2 98.148 2 98.148 0 100.000
3 432 7 98.380 7 98.380 7 98.380
4 1728 14 99.190 14 99.190 14 99.190
5 6912 14 99.797 14 99.797 14 99.797

SC BS 1 27 0 100.000 0 100.000 0 100.000
2 243 7 97.119 7 97.119 7 97.119
3 2187 4 99.817 3 99.862 3 99.862
4 19683 23 99.883 23 99.883 23 99.883
5 177147 23 99.987 23 99.987 23 99.987

SC S 1 27 0 100.000 0 100.000 0 100.000
2 189 14 92.593 14 92.593 14 92.593
3 1323 14 98.942 14 98.942 14 98.942
4 9261 14 99.849 14 99.849 14 99.849
5 64827 14 99.978 14 99.978 14 99.978

SC K 1 27 0 100.000 0 100.000 0 100.000
2 108 7 93.519 7 93.519 7 93.519
3 432 14 96.759 14 96.759 14 96.759
4 1728 14 99.190 14 99.190 14 99.190
5 6912 14 99.797 14 99.797 14 99.797

NA BS 1 27 15 44.444 15 44.444 15 44.444
2 243 23 90.535 23 90.535 23 90.535
3 2187 23 98.948 23 98.948 23 98.948
4 19683 23 99.883 23 99.883 23 99.883
5 177147 23 99.987 23 99.987 23 99.987

NA S 1 27 14 48.148 14 48.148 7 74.074
2 189 14 92.592 14 92.592 14 92.592
3 1323 14 98.942 14 98.942 14 98.942
4 9261 14 99.849 14 99.849 14 99.849
5 64827 14 99.978 14 99.978 14 99.978

NA K 1 27 6 77.778 6 77.778 6 77.778
2 108 14 87.037 14 87.037 14 87.037
3 432 14 96.759 14 96.759 14 96.759
4 1728 14 99.190 14 99.190 14 99.190
5 6912 14 99.797 14 99.797 14 99.797

Chapter 5. Results and Observations 80

Table 5.11: Comparative results considering Grover’s search circuit for LP, NLP and
QD

PMD QECC Concat Orig. Th=0.7 % save Th=0.8 %save Th=0.9 % save

LP BS 1 27 23 14.815 23 14.815 19 29.630
2 243 23 90.535 23 90.535 23 90.535
3 2187 27 98.765 27 98.765 27 98.765
4 19683 27 99.863 27 99.863 27 99.863
5 177147 27 99.985 27 99.985 27 99.985

LP S 1 27 14 48.148 14 48.148 14 48.148
2 189 14 92.592 14 92.592 14 92.592
3 1323 19 98.564 19 98.564 19 98.564
4 9261 27 99.708 27 99.708 27 99.708
5 64827 27 99.958 27 99.958 27 99.958

LP K 1 27 14 48.148 14 48.148 13 51.852
2 108 14 87.037 14 87.037 14 87.037
3 432 14 96.759 14 96.759 14 96.759
4 1728 14 99.190 14 99.190 14 99.190
5 6912 14 99.797 14 99.797 14 99.797

NLP BS 1 27 7 74.074 8 70.370 8 70.370
2 243 23 90.535 23 90.535 23 90.535
3 2187 23 98.948 23 98.948 23 98.948
4 19683 23 99.883 23 99.883 23 99.883
5 177147 23 99.987 23 99.987 23 99.987

NLP S 1 27 2 92.592 3 88.889 2 92.592
2 189 14 92.592 14 92.592 14 92.592
3 1323 14 98.942 14 98.942 14 98.942
4 9261 14 99.849 14 99.849 14 99.849
5 64827 14 99.978 14 99.978 14 99.978

NLP K 1 27 2 92.592 2 92.592 2 92.592
2 108 14 87.037 10 90.741 10 90.741
3 432 14 96.759 14 96.759 14 96.759
4 1728 14 99.190 14 99.190 14 99.190
5 6912 14 99.797 14 99.797 14 99.797

QD BS 1 27 27 00.000 27 00.000 27 00.000
2 243 27 88.889 27 88.889 27 88.889
3 2187 27 98.765 27 98.765 27 98.765
4 19683 27 99.863 27 99.863 27 99.863
5 177147 27 99.985 27 99.985 27 99.985

QD S 1 27 27 00.000 27 00.000 27 00.000
2 189 27 85.714 27 85.714 27 85.714
3 1323 27 97.959 27 97.959 27 97.959
4 9261 27 99.708 27 99.708 27 99.708
5 64827 27 99.958 27 99.958 27 99.958

QD K 1 27 27 00.000 27 00.000 27 00.000
2 108 27 75.000 27 75.000 27 75.000
3 432 27 93.750 27 93.750 27 93.750
4 1728 27 98.437 27 98.437 23 98.669
5 6912 27 99.609 23 99.667 23 99.667

Chapter 6

Conclusion

Quantum computers have displayed superior computing power compared to classical

computers by being able to solve certain classically intractable problems. Thus they

come with the promise of promoting to a different computing paradigm. The main

strength of quantum computing lies in the phenomena of superposition and entangle-

ment, but decoherence is the main obstacle in the realization of a practical quantum

computer. To protect quantum information from noise, different QECCs have been de-

veloped. The threshold theorem stating that as long as the error probability of each

component is below a certain threshold, fault-tolerant quantum computing is possible,

avoids the situation to become hopeless.

Ideally error correction blocks should be placed after every component in a quantum

circuit and thus these constitute a significant portion of encoded fault-tolerant quan-

tum circuits. To overcome this problem, we have devised an algorithm to trace error

probability in a logical quantum circuit and place the error-correction sub-circuit only

when error probability exceeds a certain pre-defined threshold. We have also developed

an error model, by which we have calculated the error probability of gates both at the

physical level and logical level. To the best of our knowledge, such analysis has not been

done before. Our algorithm takes care of the QECC used for encoding as well as the

PMD used.

We have developed a tool in C, that takes as input the error probability of the primitive

gates of each PMD, the threshold considered, the number of levels of encoding and the

quantum logic circuit in QASM format. The tool prints the error probability of each

gate in the FTS set both at physical and logical level and also the gate delays, that are

very helpful in calculating memory error probability. It also prints the error probability

after each component in the input logical circuit and the the critical path. Accord-

ing to threshold considered, the tool places error-correction blocks at specific locations

81

Chapter 6. Conclusion 82

and modifies the error probabilities after each component in the circuit. Applying this

method on some benchmark circuits, we have shown our algorithm can cause significant

reduction in the number of error-correction blocks in a logical quantum circuit.

We would like to emphasize again that we had very limited access to error probability

of primitive gates at the physical level for each PMD. We have already mentioned the

source from which we have taken our values and the assumptions we made. The results

depend a lot on these values. We chose the threshold according to the values given to

us. So, with change in input error probabilities of primitive gates, all these are highly

likely to change. However, the error model, calculated formulae for error probabilities,

the underlying algorithm and the tool developed will still hold.

6.1 Future Scope

The future scope of this work are:

• We plan to include other codes like surface code within our model and calculate

the error probabilities.

• The analysis we did is post-processing. We plan to integrate it with some logic

synthesis algorithms like FTQLS.

• In our error model and error analyis technique we have not taken care of layuot level

errors. The placement of tiles is also an important factor in the transport of qubits

and hence contribute in the erorr probability arising from transportation. Except

for local SWAP based transport of qubits, we have not taken care of transport

over some significantly long distance. This important aspect is worth analysing

and including in the error calculations.

• The analysis we made can be made more rigorous by considering error probability

of preparation circuits, ancilla verification circuits and error-correction blocks. We

assumed all these are without error.

• We have done the calculation of error probability for the gates in the FTS set.

It would be helpful as well as interesting to calculate error probabilities for other

non-FTS gates like CP which is extensively used in quantum circuits.

Appendix A

Tile operations for CTL gates

using the Bacon Shor code

In all the diagrams, data qubits are represented by d1, d2, etc., and ancilla qubits are

noted as a1, a2, etc.The dummy qubits used to prepare and measure the ancilla as well

as for qubit transport are represented by O. The preparation of ancilla qubits is noted

by PX,Z(aj), which represents the preparation of the qubit in the eigenstate of either X

or Z, with eigenvalue 1. The single-headed thin arrows represent CNOT gates, pointing

from source to target qubits; the double-headed thick arrows represent SWAP gates; and

qubit measurements in the X or Z bases are represented by MX,Z(). It must be noted

that though SWAP is not a CTL gate, but the tile structure has been drawn because in

our architecture SWAP is the only mode of local transport.

The encoding of gates have been shown through different time steps. One time step is

the maximum time taken when each physical qubit undergoes at most one operation. It

must be noted that in no way can more than one operation be done on a single qubit

within a single time step. The total number of time steps required for the encoding of

a gate gives the latency. The latencies of CTL gates encoded with Bacon Shor code has

been summarized in Table C.1.

Table A.1: Latency of CTL gates encoded with the Bacon Shor code

Gate Latency
X 1
Y 1
Z 1
H 5
S 12
T 15

SWAP 7
CNOT 9

83

Appendix A. Tile operations for CTL gates using the Bacon Shor code 84

A.1 Pauli Gates

Time step 1:

X(d1) X(d2) X(d3)

X(d6)X(d5)X(d4)

X(d7) X(d8) X(d9)

(a) Encoded X gate

Y(d1) Y(d2) Y(d3)

Y(d4) Y(d5) Y(d6)

Y(d7) Y(d8) Y(d9)

(b) Encoded Y gate

Z(d1) Z(d2) Z(d3)

Z(d4) Z(d5) Z(d6)

Z(d7) Z(d8) Z(d9)

(c) Encoded Z gate

Figure A.1: Encoded Pauli Gates for the Bacon Shor code

A.2 H

Time step 1:

H(d1) H(d2) H(d3)

H(d4) H(d5) H(d6)

H(d7) H(d8) H(d9)

Appendix A. Tile operations for CTL gates using the Bacon Shor code 85

Time step 2:

D5

D1 D2

D3

D6

D9D8

D7

D4

Time step 3:

D5

D1 D2

D3

D6D9D8

D7

D4

Time step 4:

D5

D4 D1

D2

D3

D6D9

D8

D7

Appendix A. Tile operations for CTL gates using the Bacon Shor code 86

Time step 5:

D5

D4 D1

D2

D3D6D9

D8

D7

Figure A.2: Encoded H gate for the Bacon Shor code

A.3 SWAP

An encoded SWAP operation between |d1d2 . . . d9〉 and |q1q2 . . . q9〉.

Time step 0:

d1 d2 d3

d6d5d4

d7 d8 d9

q1 q2 q3

q4 q5 q6

q9q8q7

Appendix A. Tile operations for CTL gates using the Bacon Shor code 87

Time step 1:

d1 d2 d3

d4 d5 d6

d7 d8 d9

q1 q2 q3

q4 q5 q6

q7 q8 q9

Time step 2:

d1 d2 q1 d3 q2 q3

d4 d5 q4 d6 q5 q6

d7 d8 q7 d9 q8 q9

Time step 3:

d1 q1 d2 q2 d3 q3

d4 q4 d5 q5 d6 q6

d7 q7 d8 q8 d9 q9

Time step 4:

q1 d1 q2 d2 q3 d3

q4 d4 q5 d5 q6 d6

q7 d7 q8 d8 q9 d9

Appendix A. Tile operations for CTL gates using the Bacon Shor code 88

Time step 5:

q1 q2 d1 q3 d2 d3

q4 q5 d4 q6

q7 q8 d7 q9 d8

d5 d6

d9

Time step 6:

q1 q2 q3 d1 d2 d3

q4 q5 q6 d4 d5 d6

q7 q8 q9 d7 d8 d9

Time step 7:

q1 q2 q3 d1 d2 d3

q4 q5 q6 d4 d5 d6

q7 q8 q9 d7 d8 d9

Figure A.3: Encoded SWAP gate for the Bacon Shor code

Appendix A. Tile operations for CTL gates using the Bacon Shor code 89

A.4 CNOT

An encoded CNOT operation between |d1d2 . . . d9〉 (control) and |q1q2 . . . q9〉 (target)

Time step 1:

d1 d2 d3

d4 d5 d6

d7 d8 d9

q1 q2 q3

q4 q5 q6

q7 q8 q9

Time step 2:

d1 d2 d3

d4 d5 d6

d7 d8 d9

q1 q2 q3

q4

q7

q5 q6

q8 q9

Time step 3:

d1 d2 d3

d4 d5 d6

d7 d8 d9

q1 q2 q3

q4 q5 q6

q7 q8 q9

Time step 4:

d1 d2 d3

d4 d5 d6

d7 d8 d9

q3q2q1

q4 q5 q6

q7 q8 q9

Appendix A. Tile operations for CTL gates using the Bacon Shor code 90

Time step 5:

d1 d2 d3

d4 d5 d6

d7 d8 d9

q3q2q1

q4 q5 q6

q7 q8 q9

Time step 6:

d1 d2 d3

d4 d5 d6

q1 q2 q3

q4 q5 q6

q7 q8 q9

d7 d8 d9

Time step 7:

d1 d2 d3

q1 q2 q3

q4 q5 q6

d4 d5 d6

q7 q8 q9

d7 d8 d9

Time step 8:

d1 d2 d3

q1 q2 q3

q4 q5 q6

d4 d5 d6

q7 q8 q9

d7 d8 d9

Appendix A. Tile operations for CTL gates using the Bacon Shor code 91

Time step 9:

d1 d2 d3

d4 d5 d6

d7 d8 d9

q1 q2 q3

q4 q5 q6

q7 q8 q9

Figure A.4: Encoded CNOT gate for the Bacon Shor code

A.5 S

An encoded S operation on |d1d2 . . . d9〉. We assume |q1q2 . . . q9〉 is in
∣∣+i〉 state.

Time step 1:

q1 q2 q3

q4 q5 q6

q7 q8 q9

d1 d2 d3

d4 d5 d6

d7 d8 d9

Time step 2:

q1 q2 q3

q4

q7

q5 q6

q8 q9

d1 d2 d3

d5d4 d6

d7 d8 d9

Appendix A. Tile operations for CTL gates using the Bacon Shor code 92

Time step 3:

q1 q2 q3

q4 q5 q6

q7 q8 q9

d1 d2 d3

d4 d5 d6

d7 d8 d9

Time step 4:

q3q2q1

q4 q5 q6

q7 q8 q9

d2d1 d3

d5d4 d6

d7 d8 d9

Time step 5:

d2d1 d3

d5d4 d6

d7 d8 d9

q1 q2 q3

q4 q5 q6

q7 q8 q9

Time step 6:

d2d1 d3

d5d4 d6

d7 d8 d9

q1 q2 q3

q4 q5 q6

q7 q8 q9

Appendix A. Tile operations for CTL gates using the Bacon Shor code 93

Time step 7:

d2d1 d3

d5d4 d6

d7 d8 d9

q1 q2 q3

q4 q5 q6

q7 q8 q9

Time step 8:

d2d1 d3

d5d4 d6

d7 d8 d9

q1 q2 q3

q4 q5 q6

q7 q8 q9

Time step 9:

d2d1 d3

d5d4 d6

d7 d8 d9

q1 q2 q3

q4 q5 q6

q7 q8 q9

Time step 10:

d2d1 d3

d5d4 d6

d7 d8 d9

H(q3)H(q2)H(q1)

H(q4) H(q5) H(q6)

H(q7) H(q8) H(q9)

Appendix A. Tile operations for CTL gates using the Bacon Shor code 94

Time step 11:

d2d1 d3

d5d4 d6

d7 d8 d9

Q1 Q2 Q3

Q4 Q5 Q6

Q7 Q8 Q9

Time step 12:

d2d1 d3

d5d4 d6

d7 d8 d9

H(Q1) H(Q2) H(Q3)

H(Q6)H(Q5)H(Q4)

H(Q7) H(Q8) H(Q9)

Figure A.5: Encoded S gate for the Bacon Shor code

A.6 T

An encoded T operation on |d1d2 . . . d9〉. We assume |q1q2 . . . q9〉 is in T |+〉 state.

Time step 1:

q1 q2 q3

q4 q5 q6

q7 q8 q9

d1 d2 d3

d4 d5 d6

d7 d8 d9

Appendix A. Tile operations for CTL gates using the Bacon Shor code 95

Time step 2:

q1 q2 q3

q4

q7

q5 q6

q8 q9

d1 d2 d3

d5d4 d6

d7 d8 d9

Time step 3:

q1 q2 q3

q4 q5 q6

q7 q8 q9

d1 d2 d3

d4 d5 d6

d7 d8 d9

Time step 4:

q3q2q1

q4 q5 q6

q7 q8 q9

d2d1 d3

d5d4 d6

d7 d8 d9

Time step 5:

d2d1 d3

d5d4 d6

d7 d8 d9

q1 q2 q3

q4 q5 q6

q7 q8 q9

Appendix A. Tile operations for CTL gates using the Bacon Shor code 96

Time step 6:

d2d1 d3

d5d4 d6

d7 d8 d9

q1 q2 q3

q4 q5 q6

q7 q8 q9

Time step 7:

d2d1 d3

d5d4 d6

d7 d8 d9

q1 q2 q3

q4 q5 q6

q7 q8 q9

Time step 8:

d2d1 d3

d5d4 d6

d7 d8 d9

q1 q2 q3

q4 q5 q6

q7 q8 q9

Time step 9:

d2d1 d3

d5d4 d6

d7 d8 d9

q1 q2 q3

q4 q5 q6

q7 q8 q9

Appendix A. Tile operations for CTL gates using the Bacon Shor code 97

Time step 10:

q1 q2 q3

q4 q5 q6

q7 q8 q9

M (d1) M (d2) M (d3)

M (d6)M (d5)M (d4)

M (d7) M (d8) M (d9)

z

z z z

z z z

zzz

Time step 11:

d1

q1

d2

q2

d3

q3

d6

q6q5

d5d4

q4

d7

q7

d8

q8

d9

q9

Time step 12:

q1

d1 d2

q2 q3

d3

d6

q6q5

d5d4

q4

d7

q7

d8

q8

d9

q9

Time step 13:

H(d1) H(d2) H(d3)

H(d6)H(d5)H(d4)

H(d7) H(d8) H(d9)

q1 q2 q3

q4 q5 q6

q7 q8 q9

Appendix A. Tile operations for CTL gates using the Bacon Shor code 98

Time step 14:

q1 q2 q3

q6q5q4

q7 q8 q9

D1 D2 D3

D6D5D4

D7 D8 D9

Time step 15:

q1 q2 q3

q6q5q4

q7 q8 q9

H(D3)H(D2)H(D1)

H(D4) H(D5) H(D6)

H(D9)H(D8)H(D7)

Figure A.6: Encoded T gate for the Bacon Shor code

Appendix B

Tile operations for CTL gates

using the Steane code

The latencies of CTL gates encoded with Steane code has been summarized in Table B.1.

Table B.1: Latency of CTL gates encoded with the Bacon Shor code

Gate Latency

X 1
Y 1
Z 1
H 1
S 2
T 14

hSWAP 9
vSWAP 7
vCNOT 11
hCNOT 9

99

Appendix B. Tile operations for CTL gates using the Steane code 100

B.1 Pauli Gates

Time step 1:

X(d6) X(d5) X(d3)

X(d1) X(d7)X(d2)X(d4)

(a) Encoded X gate

Y(d6) Y(d5) Y(d3)

Y(d7)Y(d1)Y(d2)Y(d4)

(b) Encoded Y gate

Z(d6) Z(d5) Z(d3)

Z(d4) Z(d2) Z(d1) Z(d7)

(c) Encoded Z gate

Figure B.1: Encoded Pauli Gates for the Steane code

B.2 H

Time step 1:

H(d6) H(d5) H(d3)

H(d4) H(d2) H(d1) H(d7)

Figure B.2: Encoded H gate for the Steane code

Appendix B. Tile operations for CTL gates using the Steane code 101

B.3 S

Time step 1:

S(d6) S(d5) S(d3)

S(d7)S(d1)S(d2)S(d4)

Time step 2:

Z(d6) Z(d5) Z(d3)

Z(d4) Z(d2) Z(d1) Z(d7)

Figure B.3: Encoded S gate for the Steane code

B.4 hSWAP

An encoded horizontal SWAP (hSWAP) operation between |d1d2 . . . d7〉 and |q1q2 . . . q7〉.

Time step 0:

d6 d5 d3

d4 d2 d1 d7

q6 q5 q3

q4 q2 q1 q7

Appendix B. Tile operations for CTL gates using the Steane code 102

Time step 1:

q4 q2 q1 q7

d6 d5 d3

d4 d2 d1 d7

q6 q5 q3

Time step 2:

q6 q5 q3d6 d5 d3

d4 d2 d1 q4 d7 q2 q1 q7

Time step 3:

d6 d5 q6 d3 q5 q3

d4 d2 q4 d1 q2 d7 q1 q7

Time step 4:

d6 q6 d5 d3q5 q3

d4 q4 d2 q2 d1 q1 d7 q7

Appendix B. Tile operations for CTL gates using the Steane code 103

Time step 5:

d6q6 q5 d5 q3 d3

q4 d4 q2 d2 q1 d1 q7 d7

Time step 6:

q6 q5 d6 d5q3 d3

q4 d4q2 d2q1 q7 d1 d7

Time step 7:

q6 q5 d6q3 d5 d3

q4 q2 d4q1 d2q7 d1 d7

Time step 8:

q6 q5 q3 d6 d5 d3

q4 q2 q1 d4q7 d2 d1 d7

Appendix B. Tile operations for CTL gates using the Steane code 104

Time step 9:

d6 d5 d3

d4 d2 d1 d7

q6 q5 q3

q4 q2 q1 q7

Figure B.4: Encoded hSWAP gate for the Steane code

B.5 vSWAP

An encoded vertical SWAP (vSWAP) operation between |d1d2 . . . d7〉 and |q1q2 . . . q7〉.

Time step 0:

d6

q6

d5

q5

d3

q3

d4

q4

d2

q2

d1

q1

d7

q7

Appendix B. Tile operations for CTL gates using the Steane code 105

Time step 1:

q4 q2 q1 q7

d6 d5 d3

d4 d2 d1 d7

q3q5q6

Time step 2:

q6 q5 q3

d6

q4

d5

q2

d3

q1 q7

d4 d2 d1 d7

Appendix B. Tile operations for CTL gates using the Steane code 106

Time step 3:

q6 q5 q3

d6 d5 d3

q4 q2 q1 q7

d4 d2 d1 d7

Time step 4:

d6

q6

d5

q5

d3

q3

d4

q4

d2

q2

d1

q1

d7

q7

Appendix B. Tile operations for CTL gates using the Steane code 107

Time step 5:

q6 q5 q3

d6 d5 d3

d4 d2 d1 d7

q4 q2 q1 q7

Time step 6:

d6 d5 d3

q4 q2 q1 q7

d4

q6

d2

q5

d1

q3

d7

Appendix B. Tile operations for CTL gates using the Steane code 108

Time step 7:

d6 d5 d3

d4 d2 d1 d7

q6 q5 q3

q4 q2 q1 q7

Figure B.5: Encoded vSWAP gate for the Steane code

B.6 hCNOT

An encoded horizontal CNOT (hCNOT) operation between |d1d2 . . . d7〉 (control) and

|q1q2 . . . q7〉 (target).

Time step 1:

d6

q4

d3d5

q2 q1 q7

q6 q5 q3

d4 d2 d1 d7

Appendix B. Tile operations for CTL gates using the Steane code 109

Time step 2:

q6 q5 q3

q4 q2 q1 q7

d6 d5 d3

d4 d2 d1 d7

Time step 3:

q6 q5 q3

q4 q2 q1 q7

d6 d5 d3

d4 d2 d1 d7

Appendix B. Tile operations for CTL gates using the Steane code 110

Time step 4:

d6 d5 d3

d4 d2 d1 d7

q6 q5 q3

q4 q2 q1 q7

Time step 5:

d6 d5 d3

d4 d2 d1 d7

q6 q5 q3

q4 q2 q1 q7

Appendix B. Tile operations for CTL gates using the Steane code 111

Time step 6:

q6 q5 q3

q4 q2 q1 q7

d6 d5 d3

d4 d2 d1 d7

Time step 7:

q6 q5 q3

q4 q2 q1 q7d6 d5 d3

d4 d2 d1 d7

Appendix B. Tile operations for CTL gates using the Steane code 112

Time step 8:

d6 d5 d3

q6 q5 q3

q4 q2 q1 q7

d4 d2 d1 d7

Time step 9:

d4 d2 d1 d7

q6 q5 q3

q4 q2 q1 q7

d6 d5 d3

Figure B.6: Encoded hCNOT gate for the Steane code

Appendix B. Tile operations for CTL gates using the Steane code 113

B.7 vCNOT

An encoded vertical CNOT (vCNOT) operation between |d1d2 . . . d7〉 (control) and

|q1q2 . . . q7〉 (target).

Time step 1:

d6 d5 d3

d4 d2 d1 d7

q6 q5 q3

q4 q2 q1 q7

Time step 2:

d6 d5 d3

d4 d2 d1 d7

q4 q2 q1 q7

q6 q5 q3

Time step 3:

d4 d2 d1 d7

q4 q2 q1 q7

d6 d5 d3

q6 q5 q3

Appendix B. Tile operations for CTL gates using the Steane code 114

Time step 4:

q6 q5 q3

q4 q2 q1 q7

d5d6 d3

d4 d2 d1 d7

Time step 5:

q6 q5 q3

q4 q2 q1 q7

d6 d5 d3

d4 d2 d1 d7

Time step 6:

q6 q5 q3

q4 q2 q1 q7

d6 d5 d3

d4 d2 d1 d7

Time step 7:

q6 q5 q3

q4 q2 q1 q7

d4 d2 d1 d7

d6 d5 d3

Appendix B. Tile operations for CTL gates using the Steane code 115

Time step 8:

d4 d2 d1 d7

d6 d5 d3

q6 q5 q3

q4 q2 q1 q7

Time step 9:

q6 q5 q3

q4 q2 q1 q7

d3d5d6

d4 d2 d1 d7

Time step 10:

q4 q2 q1 q7

d6 d5 d3

d4 d2 d1 d7

q6 q5 q3

Time step 11:

d6 d5 d3

d4 d2 d1 d7

q6 q5 q3

q1 q7q2q4

Figure B.7: Encoded vCNOT gate for the Steane code

Appendix B. Tile operations for CTL gates using the Steane code 116

B.8 T

An encoded T operation on |d1d2 . . . d7〉. We assume |q1q2 . . . q7〉 is in T |+〉 state.

Time step 1:

q4 q2 q1 q7

d6 d5 d3

d4 d2 d1 d7

q6 q5 q3

Time step 2:

d6 d5 d3

d4 d2 d1 d7

q6 q5 q3

q4 q2 q1 q7

Time step 3:

d6 d5 d3

d4 d2 d1 d7

q6 q5 q3

q4 q2 q1 q7

Time step 4:

d6 d5 d3

d4 d2 d1 d7

q6 q5 q3

q4 q2 q1 q7

Appendix B. Tile operations for CTL gates using the Steane code 117

Time step 5:

d6 d5 d3

d4 d2 d1 d7

q6 q5 q3

q4 q2 q1 q7

Time step 6:

d6 d5 d3

d4 d2 d1 d7

q6 q5 q3

q4 q2 q1 q7

Time step 7:

d6 d5 d3

d4 d2 d1 d7

q6 q5 q3

q4 q2 q1 q7

Time step 8:

d6 d5 d3

d4 d2 d1 d7

q6 q5 q3

q4 q2 q1 q7

Appendix B. Tile operations for CTL gates using the Steane code 118

Time step 9:

d6 d5 d3

d4 d2 d1 d7

q6 q5 q3

q4 q2 q1 q7

Time step 10:

d6 d5 d3

d4 d2 d1 d7

q6 q5 q3

q4 q2 q1 q7

Time step 11:

q6 q5 q3

q4 q2 q1 q7

M(d3)M(d5)M(d6)

M(d4) M(d2) M(d1) M(d7)z z z z

zzz

Time step 12:

q6

d6

q5

d5

q3

d3

d7

q7

d1

q1q2

d2d4

q4

Appendix B. Tile operations for CTL gates using the Steane code 119

Time step 13:

d6 d5 d3

d7d1d2d4

X(q6) X(q5) X(q3)

X(q7)X(q4) X(q2) X(q1)

Time step 14:

d6 d5 d3

d7d1d2d4

S(q6) S(q5) S(q3)

S(q1) S(q7)S(q2)S(q4)

Figure B.8: Encoded T gate for the Steane code

Appendix C

Tile operations for CTL gates

using the Knill code

The latencies of CTL gates encoded with Knill code has been summarized in Table C.1.

Table C.1: Latency of CTL gates encoded with the Bacon Shor code
Gate Latency
X 1
Y 1
Z 1
H 1
S 10
T 13

SWAP 7
CNOT 7

C.1 Pauli Gates

Time step 1:

d3

d4

X(d1)

X(d2)

(a) Encoded X gate

d4

Z(d3)Y(d1)

X(d2)

(b) Encoded Y gate

d4

Z(d1) Z(d3)

d2

(c) Encoded Z gate

Figure C.1: Encoded Pauli Gates for the Knill code

120

Appendix C. Tile operations for CTL gates using the Knill code 121

C.2 H

Time step 1:

H(d1) H(d3)

H(d4)H(d2)

Figure C.2: Encoded H gate for the Knill code

C.3 SWAP

An encoded SWAP operation between |d1d2 . . . d9〉 and |q1q2 . . . q9〉.

Time step 1:

q1

q2

q3

q4

d1

d2

d3

d4

Time step 2:

q1

q2

q3

q4

d1

d2

d3

d4

Appendix C. Tile operations for CTL gates using the Knill code 122

Time step 3:

q1

q2

q3

q4

d1

d2

d3

d4

Time step 4:

d1 d3

d2 d4

q1

q2

q3

q4

Time step 5:

d1

d2

d3

d4

q1

q2

q3

q4

Time step 6:

q1

q2

q3

q4

d1

d2

d3

d4

Appendix C. Tile operations for CTL gates using the Knill code 123

Time step 7:

q1 q3

q2 q4

d1 d3

d2 d4

Figure C.3: Encoded SWAP gate for the Bacon Shor code

C.4 CNOT

An encoded CNOT operation between |d1d2 . . . d9〉 (target) and |q1q2 . . . q9〉 (control)

Time step 1:

q1 q3

q4q2

d1 d3

d4d2

Time step 2:

q1

q2

d1

d2

q3

q4

d3

d4

Appendix C. Tile operations for CTL gates using the Knill code 124

Time step 3:

q1

q2

d1

d2

q3

q4

d3

d4

Time step 4:

q1

q2

d1

d2

q3

q4

d3

d4

Time step 5:

q1

q2

q3

q4

d1

d2

d3

d4

Time step 6:

d3

d4d2

q1

q2

q3

d1

q4

Appendix C. Tile operations for CTL gates using the Knill code 125

Time step 7:

q1 q3

q2 q4

d1 d3

d4d2

Figure C.4: Encoded CNOT gate for the Steane code

C.5 S

An encoded S operation on |d1d2 . . . d9〉. We assume |q1q2 . . . q9〉 is in
∣∣+i〉 state.

Time step 1:

q1 q3

q4q2

d1 d3

d2 d4

Time step 2:

d1 d3

d2 d4

q1 q3

q2 q4

Appendix C. Tile operations for CTL gates using the Knill code 126

Time step 3:

d1 d3

d2 d4

q1

q2

q3

q4

Time step 4:

d1 d3

d2 d4

q1

q2

q3

q4

Time step 5:

d1 d3

d2 d4

q1

q2

q3

q4

Time step 6:

d1 d3

d2 d4

q1 q3

q2 q4

Appendix C. Tile operations for CTL gates using the Knill code 127

Time step 7:

d1 d3

d2 d4

q1 q3

q2 q4

Time step 8:

d1 d3

d2 d4

H(q1) H(q3)

H(q2) H(q4)

Time step 9:

d1 d3

d2 d4

Q1 Q3

Q2 Q4

Time step 10:

d1 d3

d2 d4

H(Q1) H(Q3)

H(Q4)H(Q2)

Figure C.5: Encoded S gate for the Steane code

Appendix C. Tile operations for CTL gates using the Knill code 128

C.6 T

An encoded T operation on |d1d2 . . . d9〉. We assume |q1q2 . . . q9〉 is in T |+〉 state.

Time step 1:

q1 q3

q4q2

d1 d3

d2 d4

Time step 2:

d1 d3

d2 d4

q1 q3

q2 q4

Time step 3:

d1 d3

d2 d4

q1

q2

q3

q4

Time step 4:

d1 d3

d2 d4

q1

q2

q3

q4

Appendix C. Tile operations for CTL gates using the Knill code 129

Time step 5:

d1 d3

d2 d4

q1

q2

q3

q4

Time step 6:

d1 d3

d2 d4

q1 q3

q2 q4

Time step 7:

d1 d3

d2 d4

q1 q3

q2 q4

Time step 8:

q1 q3

q2 q4

M (d1) M (d3)

M (d2) M (d4)

Z Z

ZZ

Appendix C. Tile operations for CTL gates using the Knill code 130

Time step 9:

d1

q1

d3

q3

d2

q2

d4

q4

Time step 10:

q1

d1 d3

q3

d2

q2

d4

q4

Time step 11:

q1 q3

q2 q4

H(d1) H(d3)

H(d2) H(d4)

Time step 12:

q1 q3

q2 q4

D3D1

D2 D4

Appendix C. Tile operations for CTL gates using the Knill code 131

Time step 13:

q1 q3

q2 q4

H(D1) H(D3)

H(D4)H(D2)

Figure C.6: Encoded T gate for the Knill code

Bibliography

[1] A. M. Turing, On computable numbers, with an application to the Entschei-

dungsproblem. Proceedings of the London mathematical society 42, no. 2, pp 230-

265, 1936.

[2] J. Von Neumann, Probabilistic logics and the synthesis of reliable organisms from

unreliable components., Automata studies 34, pp 43-98, 1956.

[3] R. P. Feynman, Simulating physics with computers., International Journal of The-

oretical Physics 21, no. 6, pp 467-488, 1982.

[4] W. K. Wootters, W. H. Zurek, A single quantum cannot be cloned., Nature 299, no.

5886, pp 802-803, 1982.

[5] P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring,

Proceedings of the 35th Annual Symposium on Foundations of Computer Science,

pp 124-134, IEEE, 1994.

[6] I. Chuang, R. Laflamme, P. Shor, W. Zurek, Quantum computers, factoring, and

decoherence., arXiv preprint quant-ph/9503007, 1995.

[7] R. Landauer, Is quantum mechanics useful?., Philosophical Transactions of the

Royal Society of London. Series A: Physical and Engineering Sciences 353, no.

1703, 367-376, 1995.

[8] P. W. Shor, Scheme for reducing decoherence in quantum computer memory., Phys-

ical review A 52, no. 4,pp R2493-R2496, 1995.

[9] W. G. Unruh, Maintaining coherence in quantum computers., Physical Review A

51, no. 2: 992, 1995.

[10] R. A. Calderbank, P. W. Shor, Good quantum error-correcting codes exist., Physical

Review A 54, no. 2: 1098, 1996.

[11] L. K. Grover, A fast quantum mechanical algorithm for database search., Proceed-

ings of the 28th annual ACM symposium on Theory of computing, pp. 212-219.

ACM, 1996.

132

Bibliography 133

[12] E. Knill, R. Laflamme, Concatenated quantum codes., arXiv preprint quant-

ph/9608012, 1996.

[13] A. M. Steane, Error correcting codes in quantum theory., Physical Review Letters

77, no. 5, pp 793-797, 1996.

[14] A. Steane, Multiple-particle interference and quantum error correction., Proceedings

of the Royal Society of London. Series A: Mathematical, Physical and Engineering

Sciences 452, no. 1954, pp 2551-2577, 1996.

[15] P. W. Shor, Fault-tolerant quantum computation., In Foundations of Computer

Science, 1996. Proceedings., 37th Annual Symposium on, pp. 56-65. IEEE, 1996.

[16] V. Vedral, A. Barenco, A. Ekert, Quantum networks for elementary arithmetic

operations., Physical Review A 54, no. 1: 147, 1996.

[17] D. Aharonov, M. Ben-Or, Fault-tolerant quantum computation with constant er-

ror., In Proceedings of the twenty-ninth annual ACM symposium on Theory of

computing, pp. 176-188. ACM, 1997.

[18] C. H. Bennett, E. Bernstein, G. Brassard, U. Vazirani. Strengths and weaknesses of

quantum computing., SIAM Journal on Computing 26, no. 5, pp 1510-1523, 1997.

[19] D. Gottesman, Stabilizator codes and quantum error correction., PhD diss., PhD

thesis, CIT, quant-ph/9705052, 1997.

[20] A. Y. Kitaev, Quantum computations: algorithms and error correction., Russian

Mathematical Surveys 52, no. 6 (1997): 1191-1249.

[21] P.W. Shor, Polynomial time algorithms for prime factorization and discrete log-

arithms on a quantum computer, SIAM Journal on Computing, 26(5):1484-1509,

1997.

[22] E. Knill, R. Laflamme, W. H. Zurek, Resilient quantum computation: error models

and thresholds., Proceedings of the Royal Society of London. Series A: Mathemati-

cal, Physical and Engineering Sciences 454, no. 1969, pp 365-384, 1998.

[23] A. M. Steane, Efficient fault-tolerant quantum computing., Nature 399, no. 6732,

pp 124-126, 1999.

[24] E. Knill, R. Laflamme, L. Viola, Theory of quantum error correction for general

noise., Physical Review Letters 84, no. 11, pp 2525-2528, 2000.

[25] E. Knill, R. Laflamme, G. J. Milburn, A scheme for efficient quantum computation

with linear optics., nature 409, no. 6816, pp 46-52, 2001.

Bibliography 134

[26] C. Monroe, C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J.

Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, Scalable entan-

glement of trapped ions, AIP Conference Proceedings, vol 551, 2001.

[27] S. Beauregard, Circuit for Shor’s algorithm using 2n+ 3 qubits., arXiv preprint

quant-ph/0205095, 2002.

[28] D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, B. Jelenkovi-

cacute WM Itano, C. Langer, and D. J. T Rosenband, Experimental demonstration

of a robust, high-fidelity geometric two ion-qubit phase gate., Nature 422, no. 6930,

pp 412-415, 2003.

[29] C. liwa, K. Banaszek, Conditional preparation of maximal polarization entangle-

ment., Physical Review A 67, no. 3 : 030101, 2003.

[30] F. W. Strauch, P. R. Johnson, A. J. Dragt, C. J. Lobb, J. R. Anderson, F. C.

Wellstood, Quantum logic gates for coupled superconducting phase qubits., Physical

review letters 91, no. 16: 167005, 2003.

[31] S. A. Cuccaro, T. G. Draper, S. A. Kutin, D. P. Moulton, A new quantum ripple-

carry addition circuit., arXiv preprint quant-ph/0410184, 2004.

[32] J. D. Franson, B. C. Jacobs, T. B. Pittman, Quantum computing using single pho-

tons and the Zeno effect., Physical Review A 70, no. 6: 062302, 2004.

[33] P. Aliferis, D. Gottesman, J. Preskill, Quantum accuracy threshold for concatenated

distance-3 codes., arXiv preprint quant-ph/0504218, 2005.

[34] M. D. Barrett, T. Schaetz, J. Chiaverini, D. Leibfried, J. Britton, W. M. Itano, J. D.

Jost et al, Quantum information processing with trapped ions., In AIP Conference

Proceedings, vol. 770, p. 350. 2005.

[35] R. McDermott, R. W. Simmonds, M. Steffen, K. B. Cooper, K. Cicak, K. D. Osborn,

S. Oh, D. P. Pappas, John M. Martinis, Simultaneous state measurement of coupled

Josephson phase qubits., Science 307, no. 5713 : 1299-1302, 2005.

[36] C. M. Dawson, M. A. Nielsen, The Solovay-Kitaev Algorithm, arXiv preprint quant-

ph/0505030, 2005.

[37] E. Knill, Quantum computing with realistically noisy devices., Nature 434, no. 7029,

pp 39-44, 2005.

[38] W. J. Munro, K. Nemoto, T. P. Spiller, S. D. Barrett, P. Kok, R. G. Beausoleil,

Efficient optical quantum information processing., Journal of Optics B: Quantum

and Semiclassical Optics 7, no. 7: S135, 2005.

Bibliography 135

[39] M. Saffman, T. G. Walker, Analysis of a quantum logic device based on dipole-

dipole interactions of optically trapped Rydberg atoms., Physical Review A 72, no.

2: 022347, 2005.

[40] D. Bacon, A. Casaccino, Quantum error correcting subsystem codes from two clas-

sical linear codes., arXiv preprint quant-ph/0610088, 2006.

[41] K. M. Svore, D. P. DiVincenzo, B. M. Terhal, Noise threshold for a fault-tolerant

two-dimensional lattice architecture., arXiv preprint quant-ph/0604090, 2006.

[42] P. M. Leung, T. C. Ralph, Optical zeno gate: bounds for fault tolerant operation.,

New Journal of Physics 9, no. 7: 224, 2007.

[43] J. M. Taylor, J. R. Petta, A. C. Johnson, A. Yacoby, C. M. Marcus, M. D. Lukin.

Relaxation, dephasing, and quantum control of electron spins in double quantum

dots. Physical Review B 76, no. 3: 035315, 2007.

[44] X. Zou, S-L Zhang, K. Li, G. Guo, Linear optical implementation of the two-qubit

controlled phase gate with conventional photon detectors., Physical Review A 75,

no. 3: 034302, 2007.

[45] D. Aharonov, M. Ben-Or, Fault-tolerant quantum computation with constant error

rate., SIAM Journal on Computing 38, no. 4, pp 1207-1282, 2008.

[46] F. M. Spedalieri, V. P. Roychowdhury, Latency in local, two-dimensional, fault-

tolerant quantum computing., arXiv preprint arXiv:0805.4213, 2008.

[47] L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I. Schus-

ter, J. Majer et al, Demonstration of two-qubit algorithms with a superconducting

quantum processor., Nature 460, no. 7252 : 240-244, 2009.

[48] F. Motzoi, J. M. Gambetta, P. Rebentrost, F. K. Wilhelm, Simple pulses for elim-

ination of leakage in weakly nonlinear qubits., Physical review letters 103, no. 11:

110501, 2009.

[49] M. Whitney, Practical fault tolerance for quantum circuits, 2009.

[50] R. C. Bialczak, M. Ansmann, M. Hofheinz, E. Lucero, M. Neeley, A. D. OCon-

nell, D. Sank et al, Quantum process tomography of a universal entangling gate

implemented with Josephson phase qubits., Nature Physics 6, no. 6, pp 409-413,

2010.

[51] M. A. Nielsen, I. L. Chuang, Quantum computation and quantum information,

Cambridge university press, 2010.

Bibliography 136

[52] M. Saffman, T. G. Walker, K. Mlmer, Quantum information with Rydberg atoms.,

Reviews of modern Physics 82, no. 3: 2313, 2010.

[53] T. Yamamoto, M. Neeley, E. Lucero, R. C. Bialczak, J. Kelly, M. Lenander,

M. Mariantoni et al, Quantum process tomography of two-qubit controlled-Z and

controlled-NOT gates using superconducting phase qubits., Physical Review B 82,

no. 18 : 184515, 2010.

[54] M. W. Johnson,, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R.

Harris et al. Quantum annealing with manufactured spins., Nature 473, no. 7346,

pp 194-198, 2011.

[55] C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schau, T. Fukuhara, I.

Bloch, S. Kuhr, Single-spin addressing in an atomic Mott insulator., Nature 471,

no. 7338, pp 319-324, 2011.

[56] J. Booth, Quantum Compiler Optimization, arXiv preprint arXiv:1206.3348. 2012.

[57] V. Kliuchnikov, D. Maslov, M. Mosca, Fast and efficient exact synthesis of single

qubit unitaries generated by Clifford and T gates., arXiv preprint arXiv:1206.5236,

2012.

[58] C-C. Lin, A. Chakrabarti, N. K. Jha. Optimized Quantum Gate Library for Various

Physical Machine Descriptions., IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 2013.

[59] C-Y, Lai, G. Paz, M. Suchara, T. A. Brun, Performance and Error Analysis of

Knill’s Postselection Scheme in a Two-Dimensional Architecture., arXiv preprint

arXiv:1305.5657, 2013.

[60] C-C. Lin, A. Chakrabarti, N. K. Jha, FTQLS: Fault-tolerant Quantum Logic Syn-

thesis., manuscript.

[61] M. Suchara, A. Faruque, C-Y. Lai, G. Paz, F. T. Chong, J. Kubiatowicz, Estimating

the resources for quantum computation with the QuRE toolbox, manuscript.

[62] C-C. Lin, A. Chakrabarti, N. K. Jha, Qlib: Quantum Module Library., manuscript.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Quantum Computers
	1.2 Physical Limitations of Quantum Computers : Decoherence
	1.2.1 Error Correction and Fault Tolerance

	1.3 Motivation of Work and Scope
	1.4 Contribution of this Thesis
	1.5 Organization

	2 Preliminary Knowledge
	2.1 Quantum Mechanics
	2.1.1 Qubits
	2.1.2 Bloch Sphere Representation
	2.1.3 Postulates of Quantum Mechanics
	2.1.4 Indistinguishibility of non-orthogonal quantum states
	2.1.5 No Cloning Theorem

	2.2 Introduction to Quantum Computing
	2.2.1 Quantum Gates
	2.2.1.1 One-qubit Gates
	2.2.1.2 Two-qubit Gates
	2.2.1.3 Three-qubit Gates

	2.2.2 Universal Quantum Gate Library

	2.3 Physcial Machine Description (PMD)
	2.4 Quantum Error Correcting Code (QECC)
	2.4.1 [9,1,3] Shor Code
	2.4.2 [7,1,3] Steane Code
	2.4.3 [9,1,3] Bacon-Shor Code
	2.4.4 [4,2,2] Knill Code

	2.5 Fault Tolerance

	3 Overview and Synthesis
	3.1 Fault Tolerant Quantum Logic Synthesis (FTQLS)
	3.1.1 FTQLS flow
	3.1.2 Fault-Tolerant Set (FTS) of gates

	3.2 Error Models
	3.3 Error Propagation
	3.4 Methodology: Estimating error probability in quantum circuits
	3.4.1 Data Structure
	3.4.2 Methodology
	3.4.3 Time Complexity
	3.4.4 Comparison with previous works

	4 Estimation of Gate Error Probability at Logical Level
	4.1 Bacon Shor Code
	4.1.1 Encoded gates

	4.2 Steane Code
	4.2.1 Encoded Gates

	4.3 Knill Code
	4.3.1 Encoded Gates

	4.4 Calculating the error probability and delay of gates
	4.4.1 Calculation of gate error probability at physical level
	4.4.2 Calculation of gate probability and time at logical level

	4.5 Error probability and delay of gates at physical level
	4.5.1 QD
	4.5.2 SC
	4.5.3 LP
	4.5.4 NLP
	4.5.5 IT
	4.5.6 NA

	4.6 Error probability and delay of gates at logical level
	4.6.1 Bacon Shor Code
	4.6.2 Steane Code
	4.6.3 Knill Code

	5 Results and Observations
	5.1 Benchmark Circuits
	5.1.1 Circuit for Grover's Search algorithm

	5.2 Results
	5.3 Observations and Inference

	6 Conclusion
	6.1 Future Scope

	A Tile operations for CTL gates using the Bacon Shor code
	A.1 Pauli Gates
	A.2 H
	A.3 SWAP
	A.4 CNOT
	A.5 S
	A.6 T

	B Tile operations for CTL gates using the Steane code
	B.1 Pauli Gates
	B.2 H
	B.3 S
	B.4 hSWAP
	B.5 vSWAP
	B.6 hCNOT
	B.7 vCNOT
	B.8 T

	C Tile operations for CTL gates using the Knill code
	C.1 Pauli Gates
	C.2 H
	C.3 SWAP
	C.4 CNOT
	C.5 S
	C.6 T

	Bibliography

