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Abstract

High-dimensional data means data with large number of features and samples.
Sometimes, the number of features may even be larger than the number of sam-
ples. So, it gets very difficult and computationally complex to handle such huge
amount of data. High-dimensional data are obtained from different domains like
engineering, informatics, biometrics, neuroimaging, etc. These data needs to be
processed and classified or clustered while using in pattern recognition, image
processing, information retrieval, computer vision, etc. Classifying these data is a
difficult problem because of the enormous size of the data. Conventional classifica-
tion methods can also handle such huge data but takes a lot of computational time
which makes many classical techniques impractical. A trivial approach of solving
this problem is to apply any dimensionality reduction technique followed by a clas-
sification method. There are many linear and non-linear dimensionality reduction
techniques. Some of the popular methods are Principal Component Analysis, Lin-
ear Discriminant Analysis, Factor Analysis (linear), Sammon’s Mapping, Locally
Linear Embedding, Isomap, Local Tangent Space Alignment, Self-Organising Map,
Laplacian Eigenmap (non-linear), etc. These dimensionality reduction techniques
varies in terms of basic assumptions about data, principles, computational com-

plexity, objectives (preserving local or global properties), etc.
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Chapter 1

Introduction

1.1 Motivation

Dimensionality reduction techniques play a major role in handling huge data and
extracting relevant information from them. So, improving this techniques will
help immensely in working with real-datasets. One of the popular dimensionality
reduction technique is Locally Linear Embedding. The main motivation of our
work is to enhance the performance of Locally Linear Embedding technique. The
performance of this technique is evaluated based on the misclassification results
obtained while classifying the low-dimensional embeddings of the high-dimensional

real datasets.

An important stage of Locally Linear Embedding technique is to compute the K
nearest neighbouring points of all the datapoints based on the pairwise distances
between them. In the classical Locally Linear Embedding technique, Euclidean
distance is used as the distance measure. While Euclidean distance computes the
shortest distance between two datapoints, it may not give the desired result. This

is because the high-dimensional real-data may not lie in a Euclidean space, so it



may not exhibit Euclidean geometry properties globally. Our aim is to overcome
this bottleneck of Locally Linear Embedding by modifying this existing distance

measure.

So, instead of using the Euclidean distance measure, we tried some different
distance measures like diffusion distance, commute-time distance and biharmonic
distance. The working principle behind these distance measures are graph connec-
tivity, random walk and timestep. Based on these distance measures, the high-
dimensional real datasets are embedded into low-dimensional space using Locally

Linear Embedding.

The low-dimensional data are classified using the classical k-Nearest Neighbour
classification technique. The misclassification errors as obtained from the classifi-
cation method are regarded as the parameter for evaluating the performances of

these distance-measure methods.

The performances of these distance-measure methods are analyzed based on
some non-parametric statistical tests like Friedman Test, Multiple Sign Test, Me-
dian based Contrast Estimation Test, Friedman Aligned Rank Test and Quade
Test.

Apart from the Locally Linear Embedding, there are some other non-linear
dimensionality reduction techniques like Laplacian Eigenmap, Isomap, Local Tan-
gent Space Alignment and Maximum Variance Unfolding that also involves com-
puting the nearest neighbours based on Euclidean distance. These techniques can
also be modified with these three different distance measures i.e. diffusion distance,

commute-time distance and biharmonic distance.



1.2 Thesis Outline

The remaining chapters are organized as follows.

In Chapter 2, we have discussed in details the significance of dimensionality re-
duction and its uses in manifold learning. We have also discussed in details some
of the traditional and widely used dimensionality reduction techniques. They can

be both linear and non-linear.

In Chapter 3, we have mentioned in details the working principle behind Locally
Linear Embedding and its algorithm, complexity along with the advantages and

disadvantages of using Locally Linear Embedding.

In Chapter 4, we have presented our proposed modifications on Locally Linear
Embedding. The different distance measures used in our proposed modification

are described in details.

In Chapter 5, we have performed all the nonparametric statistical testing. These
testing are done on the results obtained after classifying the low dimensional em-
bedding. These embedding’s are done by using Locally Linear Embedding while

the classification is done by applying k-Nearest Neighbour classification technique.

In Chapter 6, we have discussed the result of the experiments and gave a brief
analysis of the outcome of our work. This section contains the conclusion of our
study. Apart from this, we have given some lines of expanding our work for further

research and development.



Chapter 2

Dimensionality Reduction

2.1 General Idea

High-dimensional datasets provide both challenges and opportunities. It also helps
to develop new theories. A major aspect of dealing with high-dimensional data
is that all the features of the datasets are not relevant. Some of the features of
the dataset are redundant and do not contribute in understanding the structure
of the data. There are some methods that can handle high-dimensional data
efficiently. They can construct predictive models with high accuracy. But the
problem with these methods is that they have high computational complexity. So,
dimensionality reduction plays a major role in handling high dimensional data.
Before constructing the model, the dimension of the high-dimensional datasets
may need to be reduced.

Many machine learning algorithms tend to have high-dimensional data. Han-
dling high dimensional data is an important aspect of statistical pattern recogni-
tion. High dimensional data requiring more than three dimensions can be difficult
to represent, visualize and interpret. By reducing the dimensions of the data, the

analysis algorithms can perform more efficiently by giving more accurate results



Many real-life high-dimensional datasets can be represented as datapoints lying
close to a low-dimensional nonlinear manifold. The geometrical structure of the
manifolds can be obtained from a set of sampled datapoints. In general, dimen-
sionality reduction is an unsupervised learning problem. It can be difficult to solve
this problem as the sampled datapoints may contain noise. The low-dimensional
structures obtained after dimensionality reduction can be used for performing clas-
sification, clustering, outlier detection and data visualization.

There are many traditional dimensionality reduction techniques like Princi-
pal Component Analysis (PCA) or Multi-Dimensional Scaling (MDS). Both are
eigenvector methods which captures linear variabilities in high dimensional data.
Traditional dimension reduction techniques generally give better results when dat-
apoints are lying close to a linear subspace in the input space. It gets difficult for
them to discover nonlinear structures which remains embedded in the datapoints.

PCA is a linear dimensionality reduction algorithm which computes the linear
projections of greatest variance from the top eigenvectors of the data covariance
matrix. It is a statistical procedure using an orthogonal transformation to convert
a set of observations of possibly correlated variables into a set of values of linearly
uncorrelated variables called principal components. When PCA reduces a high
dimensional dataset into two dimensions, the output of the reduced dimension
values may not be well organized and cause overlaps and thereby losing the entire
property of embedding in lower dimensional data. This shows that the high-
dimensional vectors sampling the manifold varies non-linearly.

On the other hand, MDS tries to preserve the inter-point distances as observed
in higher-dimensional space in the lower-dimensional projection as well. This is a
structure preserving mapping. When distance metric is Euclidean, PCA and MDS
gives same result.

Apart from the traditional linear dimensionality reduction techniques like PCA



and MDS, there are also some non-linear dimensionality reduction methods like
Self-Organizing Map (SOM), Sammon’s mapping, Isomap, Laplacian Eigenmap,
Local Tangent Space Alignment (LTSA), Locally Linear Embedding (LLE), etc.
The non-linear dimensionality reduction methods generally exhibit two kind
of properties, so they are classified into two categories. One type deals with pro-
viding a mapping either from the high-dimensional space to the low-dimensional
embedding or from the low-dimensional space to the high-dimensional embedding.
Beside, they also provides the preliminary feature extraction step. Based on the
results obtained from this step, the pattern recognition algorithms are applied. On
the other hand, the second kind of non-linear dimensionality reduction techniques
is more concerned with only giving a visualization of the data. They are based on

the proximity of the data i.e. distance measurements.

2.2 Curse of Dimensionality

Algorithms designed with intuitions based on two or three-dimensional spaces may
face unexpected problems when dealing with high-dimensional data. The phe-
nomenon which maybe most relevant for dimension reduction is the concentration
of distances. When number of dimension components grows, contribution of any
one axis becomes more and more meaningless. It becomes difficult to tell two points
apart unless they differ in most dimensions. Most points are roughly equally far
from each other, and the distribution of pairwise distances becomes peaked.

An important practical consequence of this is that the concept of nearest neigh-
bour is weakened. When the difference in distances to the nearest and the furthest
neighbours becomes less than the measurement noise, algorithms relying on neigh-
bourhoods break down. This and other peculiarities of high-dimensional spaces

are referred to as the curse of dimensionality.



Curse of dimensionality can severely affect distance-based algorithms, and be-
come noticeable already in 5 to 10 dimensions, which is much less than the number
of attributes in many modern datasets. These distance-based algorithms are used
based on the basic assumption that the intrinsic dimensionality of the data is fairly
low. Non-linear dimensionality reduction, sometimes thought as a remedy for the
curse of dimensionality. It implicitly relies on the assumption of a low intrinsic
dimensionality. Most dimensionality reduction methods use nearest neighbours or
comparisons of pairwise distances, and are thus are equally sensitive to the curse

of dimensionality as other machine learning methods.

2.3 Intrinsic Dimensionality

The number of attributes is usually different from dimensionality. In problems with
less data points than dimensions, the number of data points dictates the maximum
dimensionality of the subspace that the data vectors can span. Sometimes data can
contain directions that are mostly noise, or it can have attributes that are mostly
irrelevant for the task in hand and can be left out by variable selection. And,
even more importantly, data may contain dependencies which effectively lower its
dimensionality. The smaller dimensionality caused by dependencies is referred to
as the intrinsic dimensionality of data, or the number of degrees of freedom that
is sufficient for describing the data.

One of the most important parameter of dimensionality reduction is this intrin-
sic dimensionality. For data visualization, we need to view data in two-dimension
or three-dimension. So in those cases, we are forced to set intrinsic dimension to

two or three. There is a chance of considerable information loss in such cases.

10



2.4 Manifold Learning

A manifold can be defined as a topological space which resembles Euclidean space
near each point. Each point of an n-dimensional manifold has a neighbourhood
that is homeomorphic to the Euclidean space of dimension n. Some example of
one-dimensional manifolds are lines and circles. The two-dimensional manifolds are
known as surfaces. Some example of two-dimensional manifolds are planes, torus,
sphere, etc. All two-dimensional manifolds may not be possible to be embedded
in three dimensional space.

Manifold exhibit the properties of Euclidean space locally. The space near each
point may be considered to be Euclidean space. But globally, it generally do not
behave like an Fuclidean space.

Manifold is an important idea which is adopted in several scientific fields like
geometry, modern physics, mathematics, etc. Highly complicated structures of
datasets can described with the Euclidean space properties. Manifolds are gener-
ally obtained as graph of function or while solving systems of equations. Mani-
folds may have additional features like they can be differentiable (allow applying
calculus on manifolds), Riemannian (allow measuring distances and angles), Sym-
plectic (handle phase spaces in the Hamiltonian formalism of classical mechanics)
or Lorentzian (deals with general relativity in space-time model).

Non-linear dimensionality reduction can be done by the help of manifold learn-
ing. The basic principle behind manifold learning is that the some dimensions of
the high-dimensional datasets are redundant. Manifold Learning generalizes linear
frameworks to perform efficiently on non-linear datasets as well. Manifold learn-
ing is generally an unsupervised learning although supervised learning methods
are also present. In unsupervised learning, the geometry of the high-dimensional
dataset is learnt from the data itself, there is no need of using predetermined

classifications.

11



The three basic steps of most manifold learning algorithms are

1. Construction of the nearest neighbour graph based on the pairwise distances

between the sample datapoints.

2. Linear approximation of the local manifold geometry inside the neighbour-

hood of each sample datapoint.

3. Minimization of the global error function which provides the global embed-

ding. This is done by solving an eigenvalue problem.

An important step for non-linear dimensionality reduction method is to effec-
tively select the neighbourhood size to construct the neighbourhood graph. The
aim of manifold learning is to uncover the intrinsic coordinate system of the man-
ifold from which the data is sampled. Manifolding learning enables ‘unfolding’
of the manifold for better visualization. Dimensionality reduction is done using
these coordinates instead of the Euclidean coordinates of the embedding space.
The manifold coordinates can be approximated by studying the data in a local
scale, and then combining local, linear views into a global nonlinear shape. Local
views are obtained by restricting the analysis to the nearest neighbours of a data
point.

Manifolds learning is not only concerned with the ways of looking at the struc-
ture of data. Some other aspects of manifold learning are clustering of the data,
generative topographic mapping, classification of labeled data, emphasizing its
natural density structure or simple unfolding of manifolds. Manifold learning rely
heavily on neighbourhoods, but neighbourhoods can be exploited without bringing

in strong manifold assumptions.

12



2.5 Dimensionality Reduction Methods

Dimensionality reduction is the method of transforming high-dimensional data into
a low-dimensional data. The representation in the low dimension is meaningful.
In ideal situations, the dimensionality of the low-dimensional representation of a
dataset is equal to the intrinsic dimensionality of that data. The minimum number
of parameters that meaningfully represents the observed properties of the data is
called its intrinsic dimensionality.

Let us now formally define the dimensionality reduction problem. Assume
we have dataset represented in a n x D matrix X consisting of n data vectors
x; (1 €l,2,...,n) with dimensionality D. Let the intrinsic dimensionality of this
dataset be d where d < D and often d << D. The high-dimensional dataset X
is transformed into low dimensional dataset Y by the dimensionality reduction
techniques. We get a mapping from D dimension to d dimension. The geometry
of the dataset is preserved as much as possible. In practice, we do not know the
intrinsic dimensionality or geometry of the data manifold. So, the dimensionality
reduction problems can only be solved based on some assumptions like assuming
the intrinsic dimension of the dataset.

Dimensionality reduction methods are of two types. They are

1. Linear Dimensionality Reduction

2. Non-Linear Dimensionality Reduction

There are several dimensionality reduction techniques, both linear and non-

linear. They are discussed in the following sections.

13



2.6 Linear Methods

The technique of embedding high-dimensional data into a low-dimensional sub-
space is called dimensionality reduction. When the data lie on or near a linear
subspace of the high-dimensional space, the technique applied is linear in nature.
Some of the popular linear dimensionality reduction techniques existing are Prin-
cipal Component Analysis (PCA), Factor Analysis (FA), Independent Component
Analysis (ICA), Linear Discriminant Analysis (LDA) and Singular Value Decom-
position (SVD). But these linear dimensionality reduction techniques cannot ade-
quately handle complex non-linear data. Among these techniques, PCA gives the
best performance. So it is the most popular (unsupervised) linear dimensionality
reduction technique.

A brief discussion on some of the linear dimensionality reduction techniques

are given below.

2.6.1 Principal Component Analysis

Principal Component Analysis (PCA) is the most popular and best linear dimen-
sionality reduction technique that is based on minimizing the least square error.
PCA gives a low-dimensional representation of the data which gives us the in-
formation about the variance in the data. For the dataset, PCA finds a linear
basis of reduced dimensionality which have the maximal amount of variance in
the data. The dimension of the data is reduced by finding a few orthogonal linear
combinations of the original variables with the largest variance. This orthogonal
combinations are known as Principal Components. The first principal component
gives us the linear combination with maximum variance, second principal compo-
nent gives the second maximum variance and so on.

Mathematically, PCA tries to find a linear mapping M such that it maximizing

14



M7Tcov(X)M. Here, cov(X) is the covariance matrix of the data X. The mean of
each variable is subtracted from the variable to make the data zero-mean. This
linear mapping is formed by the d principal eigenvectors of the covariance matrix of
this zero-mean data. PCA solves the eigenproblem cov(X)M = AM. This Eigen
problem is solved to obtain the d principal eigenvalues \; and its corresponding
eigenvectors v;. The low-dimensional data representations y; of the datapoints z;
are computed by mapping them onto the linear basis M, ie., Y = (X — X,,,)M
The main drawback of PCA is that the size of the covariance matrix is propor-
tional to the dimensionality of the datapoints. When the dimension of the dataset
is very large, it may be infeasible to compute the eigenvectors of the covariance
matrix. In datasets where n < D, this drawback can be handled by computing

the eigenvectors of the matrix (X — X,,,)(X — X,,)7

2.6.2 Independent Component Analysis

Independent Component Analysis (ICA) [Common(1994), Hyvarinen(1999), Hy-
varinen(2000), Hyvarinen(2001)] is an example of information-theory based algo-
rithm. It is a generative model. While PCA looks for uncorrelated factors i.e,
a constraint on the second-order statistics, ICA looks for independent factors i.e,
a constraint on all their moments. This is an advantage if the factors are truly
independent. The equation for the generative model is X = W,,x,, where x,,
is the source, W,, is the mixing matrix and X is the observation. The target is
to compute the unmixing matrix W, such that the components of z, = W X
are as independent as possible. The sources are recovered in different scale and
order. A limitation of this technique is that usually sources are supposed to be
non-Gaussian since the linear combination of two Gaussian variables is also Gaus-
sian making the separation an ill-posed problem. Different ICA methods differ

in the way they measure the independence of the estimates of the source vari-

15



ables, resulting in different estimates of the W, and x,. The different methods are

Non-Gaussianity, Maximum Likelihood and Non-linear decorrelation.

2.6.3 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a supervised dimensionality reduction tech-
nique. The feature selection in traditional LDA is obtained by maximizing the
difference between classes and minimizing the distance within classes. For better
separation, the high dimensional space is reduced into low dimensional subspace.
The optimization function is a function of v where v is the projection vector sep-
arating the two classes. The optimization function is

(M, — My)?

52+ 53

J(v) = (2.1)

where M;, M, are the means of the projected classes while s1, s, are the scatter of
the projected classes. The aim is to maximize the objective function i.e. maximize
the distance between class-means and minimize the intra-class scatter. Now, after

some linear algebra and calculus, the optimization function boils down to

vT S
Jw) = S;U (2.2)

Here, Sp is the between-class scatter matrix and Sy is the within-class scatter
matrix. Sp is represented as Sp = (m; — my)(my — my)T where my, my are the
mean of the two classes. Sy is defined as Sy = S; + Sy where S; and Sy are
the class scatter matrix represented as S} = ) z; —mq)(z; — my)? and

S2 = ZmeclassZ(xi - m2)(xz - mQ)T

The linear discriminant vectors are determined by the LDA algorithm based

z;eclassl (

on the global structure information of the dataset. These vectors are all global in
nature. But in the case of a test datapoint, the local linear discriminant vectors

are used instead of global ones while extracting features from the datapoints. This

16



is because in case of global discriminant vectors, classification may be incorrect.
The major drawbacks of LDA are Small Sample Size problem and Common Mean
problem. When the dimensionality of the dataset is greater than the number of
samples, it results to the small sample size problem. Common mean problem
occurs when the classes have same mean i.e J(v) = 0. Beside, LDA is sensitive to

outliers.

2.6.4 Singular Value Decomposition

Let M be a m x n matrix, and let the rank of M be r. Based on the Singular
Value Decomposition (SVD), we will get a decomposition of the matrix M into

matrices U, X and V such that

1. Matrix U is a m x r column-orthonormal matrix. Each of the columns of U

is a unit vector. The dot product of every two columns is 0.

2. Matrix V is a n X r column-orthonormal matrix where the rows of V7 are

orthonormal in nature.

3. Matrix X is a diagonal matrix having all the non-zero elements in the prin-

cipal diagonal.

Thus, M can be written as
M=UxvT (2.3)

We do not get a unique decomposition when the rank of M is greater than the
number of columns in the matrices U, ¥ and V. In order to get the best solution,
the columns of U and V' corresponding to the smallest singular values in the exact
decomposition needs to be eliminated. The elements of S are called the singular

values of M.
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One of the major application of SVD is in dimensionality reduction. A high
dimensional dataset may be too large to be handled. So, it may be decomposed
into three matrix by its SVD components U, ¥ and V. Even these matrices may
be too large to tackle. Then dimensionality of these three matrices are reduced by
taking only the non-negative singular values of the matrix . The corresponding
rows of U matrix and V matrix can be eliminated. Similarly, if we want to reduce
the dimension by x, we can simply eliminate the rows of U matrix and V' matrix,
corresponding to the smallest x singular values. Thus, by using this decomposition

method, the dimension of the matrix M is reduced.

2.6.5 Factor Analysis

Factor analysis (FA) [Spearman(1904), Thurstone(1947), Kaiser(1960), Lawley(1971),
Mulaik(1971), Harman(1976)] is another statistical technique intimately related to
PCA and dimensionality reduction. It is a generative model that assumes that the
observed data has been produced from a set of latent, unobserved variables (called
factors) through the equation X = Wx 4 n. In this technique all the variances
of the factors are absorbed into W such that the covariance of X is an identity
matrix. Factors are assumed to follow a multivariate normal distribution, and to
be uncorrelated to noise. Under these conditions, the covariance of the observed
variables is C, = WWT + C,, where C,, is the covariance matrix of the noise and
has to be estimated from the data. Matrix W is solved by factorization of the
matrix WW?T = C, — C,,. This factorization is not unique since any orthogonal
rotation of W results in the same decomposition of C, — C,,. This fact is exploited
to produce simpler factors in the same way as the PCA is rotated. The rotation is
done in the same method as that in PCA. If there is no noise, FA is same as PCA

but PCA is not a generative model.
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2.7 Non-linear Methods

In this section, we discuss in details some of the popular nonlinear dimension-
ality reduction techniques. The main difference between linear and non-linear
dimensionality reduction methods is that the non-linear dimensionality reduc-
tion techniques do not assume that the datapoints lie near a linear subspace
in high-dimension. So, non-linear techniques can handle more complex high-
dimensional datasets with better efficiency and embed them more accurately in
the low-dimensional space.

The nonlinear techniques can handle complex nonlinear data. In practice,
non-linear dimensionality reduction techniques give better performance than linear
methods while handling real-world datasets as they are more non-linear in nature.
Based on some previous studies, it is observed that linear techniques perform
poorly in comparison to non-linear techniques. On the other hand, non-linear
dimensionality reduction techniques tend to perform better on natural datasets.
So, it can be said that the dimensionality reduction techniques performs differently
on different datasets.

Non-linear dimensionality reduction techniques are of three main types. The
first type of techniques are concerned with the global properties of the original
data whereas the second type of techniques are more concerned about the local
properties of the original data. These two type of techniques try to preserve the
respective global and local properties of the original high-dimensional data in the
low-dimensional representation as well. On the other hand, the third type of
techniques deal with both the local and global features of the original data and
try to retain all those properties in low-dimensional space.

Some of the non-linear dimensionality reduction techniques are discussed is the

following sections.
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2.7.1 Multi-Dimensional Scaling

There are several non-linear techniques that map the high-dimensional data into a
low-dimensional space while nearly preserving the pairwise distances between the
datapoints. These techniques are collectively known as Multi-Dimensional Scaling
(MDS). This mapping is done based on optimizing a stress function. This function
is the error which is measured as the difference between the pairwise distances in
the low-dimensional and high-dimensional representation of the data.

The error is calculated by the raw stress function given below:

oY) = (llzi — 25l = lly: — w51 (2.4)
]

where z;, z; are the two high-dimensional datapoints and ||z; — z;|| is the Eu-
clidean distance between them. Similarly, v;, y; are the two low-dimensional dat-
apoints and |ly; — y;|| is the Euclidean distance between them.

Some methods based on MDS are Sammon’s Mapping and Isomap. This two

methods are discussed in the following sections.

2.7.2 Sammon’s Mapping

Sammon mapping algorithm is a member of the MDS family which maps high-
dimensional data to a low-dimensional space while preserving the inter-point dis-
tances in low-dimensional projection as it was in the high-dimensional space. It
is a type of MDS with a different stress function. John W. Sammon, Jr. (1969)
proposed this method. In this method, the mapping cannot be represented as a
linear combination of the original variables. Thus, it is not a linear approach. So,
sometimes it becomes difficult to use this technique for classification applications.
The cost function for Sammon’s mapping is given below.
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The difference between raw stress function and Sammon cost function is that
the Sammon cost function emphasizes more on retaining distances that were orig-
inally small. It acts as a weightage to the significance of a datapoint based on its
distance.

There are many methods for minimizing the cost function. They are the Eigen
decomposition of a pairwise dissimilarity matrix, gradient descent or some iterative
methods. The number of iterations needed are determined experimentally. The
convergence of the solutions are not always guaranteed.

The Sammon mapping is one of the most successful non-linear metric MDS
method. There are some studies on improving on the algorithm while the stress
function is somewhat overlooked. Bregman divergence has been used to improve

the performance of the Sammon mapping.

2.7.3 Isomap

Isometric feature mapping, or Isomap is a combination of the Floyd—Warshall al-
gorithm with classical MDS. This method was proposed by Joshua B. Tenenbaum,
Vin de Silva, John C. Langford in the year 2000. MDS computes the pair-wise
distances between all datapoints and based on these distances, it computes the
position for each point. But MDS only considers the Euclidean distance between
the datapoints. As a result, the global geometry of the datapoints may not be
captured properly. In case of high-dimensional data, two datapoints may lie at a
larger distance along the manifolds but they may be close to one another if the
typical interpoint distance is considered. Isomap handles this problem by retain-
ing the pairwise geodesic distances between those datapoints. Distance between
two points along the manifold is called the geodesic distance. Isomap takes help
of the Floyd—Warshall algorithm to compute the pairwise distances between ev-

ery datapoints based on the assumption that only the pairwise distances between
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neighbouring points are known. As a result, the geodesic distances between all
possible pair of datapoints are obtained. Based on these distance informations,
Isomap implement classical MDS to perform the dimensionality reduction on all
the datapoints. The details of the Floyd-Warshall algorithm is discussed in the
Appendix.

The Isomap algorithm has three major steps which are discussed below.

Algorithm

1. Neighbourhood Graph Construction

This step determines which points are neighbours on the manifold M. The
distances dj; between pairs of points ¢ and j in the high-dimensional space
are computed. This two points are connected if the distance dj; is less than
some value, say € or the points are among k nearest neighbours of each
other. Based on these neighbourhood relations, the neighbourhood graph is
constructed where the nodes represents datapoints whereas the edges repre-

sents the weight dj; between neighbouring points ¢ and j.

2. Shortest Path Computation

In this step, Isomap computes the shortest path distances dfj between every
pair of points in the graph G by using the Floyd-Warshall algorithm. Based
on these dfj values, the geodesic distances d;; between all pairs of points on

the manifold M are estimated.

3. Low-dimensional Embedding

This is the final step of the Isomap algorithm. In this step, [somap applies
classical MDS to the graph distances matrix D¢, whose element at (i, j)-th

position is dfj, to construct the low-dimensional embedding Y of the data
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in a d-dimensional Euclidean space. Y preserves the manifold’s estimated

intrinsic geometry.

Let y; be the coordinate vector of point i in the embedding Y. They are

chosen to minimize the cost function
o(Y) = [[7(Dg) — 7(Dy )|l 2 (2.6)

where Dy denotes the Euclidean distance matrix whose elements are rep-
resented as d; = |ly; —y;l| i.e. the Euclidean distance between points y;
and y;. The 7 operator convert distances to inner products, which uniquely
characterize the geometry of the data, thus supporting efficient optimiza-
tion. The global minimum of the cost function is achieved by setting the

coordinates y; to be the top d eigenvectors of the matrix 7(Dg).

There are four major weaknesses of Isomap technique. Firstly, it is topo-
logically unstable i.e. it may do errors while constructing the connections in the
neighbourhood graph GG. This errors can severely affect the performance of Isomap.
Secondly, it may suffer from ‘holes’ in the manifold. Thirdly, it may suffer from
short-circuiting which causes problem in case of manifold unfolding. Lastly, in

case of convex manifold, it may fail.

2.7.4 Locally Linear Embedding

Locally Linear Embedding (LLE) is a local technique for dimensionality reduc-
tion that attempts to preserve local properties of the original data in the low
dimensional representation. LLE is less sensitive to short-circuiting than Isomap,
because only a small number of properties are affected if short-circuiting occurs.
LLE preserves the local properties of the manifolds. LLE computes the K-nearest

neighbours of every datapoint. Based on these neighbouring points, LLE represents
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a datapoint as an approximate linear combination of its k-nearest neighbours. This
linear combination gives a weighted combination of the neighbouring points based
on the relative distance of the datapoint and its neighbours. The low-dimensional
embedding of the datapoints is obtained by nearly preserving this reconstruction
weights in the linear combinations.

This Locally Linear Embedding (LLE) method is discussed in detail in the later

sections.

2.7.5 Local Tangent Space Alignment

Local Tangent Space Alignment (LTSA) is a non-linear dimensionality reduction
technique. It follows the principle of representing each datapoints using the lo-
cal tangent space based on their local properties. The basic assumption is that
when the manifold is accurately unfolded, it will automatically align the tangent
hyperplanes of the manifold.

There are two linear mappings, one from a high-dimensional datapoint to its
local tangent space and another one from the corresponding low-dimensional dat-
apoint to the same local tangent space. By aligning these two mappings, LTSA
construct the low-dimensional embedding of the local tangent space of this man-
ifold. LTSA preserves the neighbourhood information i.e. inter-point distance
between neighbouring points of the high-dimensional space in the low-dimensional
embedding as much as possible.

There are three fundamental steps of the LTSA algorithm for obtaining the
low dimensional embeddings of the high-dimensional dataset. The first step is
computing the k-nearest neighbours for each of the datapoints, the second step
is constructing the tangent space at every point based on these neighbourhood
informations and then the third step is optimizing the error function for aligning

the tangent spaces.
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The algorithm of LTSA is discussed below.

Algorithm

1. Setting neighbourhoods

For each of the datapoints z;, the k nearest neighbours z;; are computed
based on the distance between the points. This distance is generally consid-

ered to be Euclidean distance.

2. Extracting local coordinates

For each of the datapoints x; and its k£ neighbours z;;,, PCA is applied. From
the result of PCA, we obtain an optimal linear fitting to the sample points

of the neighbourhood. It is done by minimizing the following error

k; 9

Tij — Ti — Qiej('i) (2.7)

j=1
where x;; is the coordinate of the j-th neighbour of datapoint x;
(); is the tangent span of datapoint x;

9]@ is the local coordinate of the datapoints x; in tangent space

||la|| represents the Fuclidean norm of vector a

3. Aligning local coordinates

We obtain NNV sets of aligned local co-ordinates 6;. These local co-ordinates
are aligned to get the global co-ordinates T;. It is done by minimizing the

global error

0|
T‘ij — C; — ngj

(2.8)

9]

where T' is the set of all global co-ordinates and ¢ is the semidefinite matrix

represented as

N
0=) SitiS! (2.9)
=1 "
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2.7.6 Self-Organizing Map

A self-organizing map (SOM) or Kohonen map is a type of artificial neural net-
work (ANN). It is also known as Kohonen map, named after its introducer Teuvo
Kohonen of Finland (1980). It is an unsupervised learning method that produces
a ‘map’ from high dimensional input space to discrete, low-dimensional represen-
tation. SOM uses a neighbourhood function to retain the structural properties
of the input space which makes it different from the other ANN’s. So it helps
in low-dimensional data visualization. The Kohonen net is based on the working
principle of a biological neural network and morphogenesis model.

There are two working modes in SOM, the training mode and the mapping
mode. In training mode, SOM constructs the map using training data, a method
called vector quantization. An internal model is developed in the training mode.
So based on this internal model, SOM can classifies a new input datapoint in the
mapping mode.

Nodes or neurons are the building component of a SOM. Each node is associated
with a weight vector having same dimension as the input and a position in the
map space. While mapping, SOM finds the node with the closest (least distance
metric) weight vector to the data space vector. Initially, the weights of the neurons
are small random values. But in that case, learning is slow. A faster approach is
to select a better approximation of initial weights. This is done by choosing values
sampled evenly from the subspace spanned by the two largest principal component
eigenvectors.

In case of SOM’s with a small number of nodes, it behave similar to K-means,
while SOM’s with large number of nodes rearrange data in a way that is funda-
mentally topological in nature. Large SOM’s display emergent properties. In maps
consisting of thousands of nodes, it is possible to perform cluster operations on

the map itself.
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2.7.7 Autoencoder

An autoencoder is a feed-forward neural network. It optimizes the identity func-
tion. It is done by minimizing the mean of squared error between the input and the
output of the network. In best case scenario, it will be 0. It provides a mapping
from a vector of values to the same vector. In case of dimensionality reduction,
odd number of hidden layers are present. One of the hidden layer contains small
number of network units. The network has two halves. The first half maps vectors
from high to low-dimensional space and the second half performs the opposite ac-
tion. D nodes are present as input and output while the middle hidden layer has
d nodes.

The neural network is trained on the data-points z; having dimension D to
construct a mapping to the middle hidden layer having dimension d such that in
retains the structural information as much as possible. From this hidden middle
layer, the low-dimensional representations y; having dimension D is obtained. In
case of linear mapping, linear activation functions are used while for non-linear
mapping, sigmoid activation functions are used.

The main drawback of multilayer autoencoder is that its backpropagation
method converges slowly. This occurs because of high number of connections.
Another problem is that this convergence may reach to a local minima instead of
a global one. These drawbacks can be overcomed by using a learning procedure.
In the first step, the recognition layers of the network are trained one-by-one using
Restricted Boltzmann Machines (RBM) having binary and stochastic nodes. The
RBM’s minimizes the contrastive divergence based on some unsupervised learning.
Secondly, based on the inverse of the trained recognition layers, the reconstruction
layers are formed. This process is called autoencoder unrolling. This reconstruc-

tion layers are fine-tuned using backpropagation.

27



2.7.8 Laplacian Eigenmap

The intrinsic geometry of the data are not taken into account by the linear dimen-
sionality reduction techniques like PCA. On the other hand, Laplacian Eigenmap is
a local features preserving method using spectral techniques for non-linear dimen-
sionality reduction. The local features are based on the pairwise distances between
neighbouring datapoints. The basic assumption is that the data lies in a low-
dimensional manifold in a high-dimensional space. It represents high-dimensional
data in low-dimension by preserving the local manifold properties.

Laplacian Eigenmaps constructs a graph based on the geometry of the dataset
i.e. neighbourhood information of the dataset. Each node represents a datapoint
and the edges connect the nearest neighbouring nodes. This graph is a discrete ap-
proximation of the low-dimensional manifold in the high-dimensional space. Sim-
ilar to LLE, it constructs a low-dimensional embedding based on the objective of
minimizing the distances between a datapoint and its k£ nearest neighbours. It
computes the weighted distance measure between the datapoints that is directly
proportional to the closeness of the points in the low-dimensional space. Distance
of the datapoints from its closest neighbour contributes more to the cost func-
tion than that of its second nearest neighbour. The goal is to minimize this cost
function, ensuring that neighbouring points on the manifold are mapped as neigh-
bouring points in the low-dimensional space also. Using spectral graph theory, this
minimization is done which is an Eigen problem. Under mild conditions, Laplace-
Beltrami operator has a countable spectrum that is a basis for square integrable
functions on the manifold, for which the Eigen functions of the Laplace-Beltrami
operator based on the manifold act as the embedding dimensions. With the num-
ber of points approximating to infinity, the graph Laplacian matrix converges to
the Laplace-Beltrami operator with some non-restrictive assumptions. The main

disadvantage of this technique is that it cannot embed test datapoints.
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The algorithm of Laplacian Eigenmap is discussed below.

Algorithm

1.

The neighbourhood graph G is constructed where each nodes represents each
datapoint and the nearest k neighbours of each datapoints are connected by

edges.

. The weight of each edge is computed by using the Gaussian kernel function.

The weight matrix W is computed whose element W;; is the weight of the

edge between nodes ¢ and j.

The optimization cost function needs to be minimized. The function is given

below

(V) = Z(yz — ;) wi (2.10)

where y;, y; are the two points in low dimensional space and w;; is the weight

between them as computed in the W matrix.

The above cost function can be reformulated as

oY) = Z(yz — ;) wy; =2YTLY (2.11)
]
where L is the graph Laplacian of W computed as L = M-W

M is the diagonal matrix of W having row sum as the diagonal entry i.e.
J
This cost function boils down to the following generalised eigenvalue problem

Lv =AMv (2.13)

The d eigenvectors v; corresponding to the smallest non-zero eigenvalues form

the low-dimensional data representation Y
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2.7.9 Diffusion Map

Diffusion map is based on the relationship between diffusion and a random walk.
The idea of diffusion came from the field of dynamical systems while the idea of ran-
dom walk came from Markov chain. Diffusion map defines a Markov random walk
on the connectivity graph of the datapoints. Based on the number of timesteps
required for a random walk from one point to another, neighbourhood information
of the datapoints are calculated. Based on these neighbourhood information, the
diffusion distances are calculated. The pairwise diffusion distances between the
datapoints in high-dimensional space are nearly preserved in the low-dimensional
representation as well.

The algorithm of diffusion map is discussed below.

Algorithm

1. Construct the graph G based on the dataset. Each node represents a data-
point while the weights of the edges between two nodes are the result of the

Gaussian Kernel function between them. The weights are calculated as

2

mim |

W;; = e 202 (214)

2. The weight matrix W computed, is normalized so that the new matrix Wy
is stochastic i.e. each row sum is 1. The normalization is performed by using

the following equation

P-(~1) Wi

v > Wik

3. The forward transition probability matrix of a dynamic process is defined

(2.15)

by the Markov matrix Wy. So the probability that in a single timestamp, a

point goes from one datapoint to another is represented as the matrix P™).

30



4. For t timesteps, the forward probability matrix P is given by (P')!. The
equation for diffusion distance based on the random walk forward probabil-

ities pj; is given below.

0 _ 0y,
DO (x;, ;) = ZM

DAL (2.16)

5. From the spectral theory on the random walk, the diffusion distance in high-
dimensional space is preserved in the low-dimensional representation Y. The

d non-trivial principal eigenvectors are obtained by solving the eigenproblem

PY =\ (2.17)

6. The low-dimensional data representation is given by

Y = {Xova, ..o, Agy1Vasr } (2.18)

where \; are the eigenvalues and v; are their corresponding eigenvalues.

2.7.10 Maximum Variance Unfolding

Maximum Variance Unfolding (MVU), introduced by Saul et. al., is an effec-
tive heuristic method for dimensionality reduction. It produces a low-dimensional
representation of the data by maximizing the variance of their embeddings while
preserving the local distances of the original data. This method is based on a sim-
ple heuristic: maximizing the overall variance of the embedding while preserving
the local distances between neighbouring observations. The weakness of MVU is
that it may suffer from short-circuiting that hampers proper manifold unfolding.

MVU computes a neighbourhood graph based on the distance between the
datapoints. It preserves the pairwise distances in the resulting graph. MVU

tries to ‘unfold” data manifolds ‘explicitly’. The Euclidean distances between the
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datapoints are maximized keeping neighbourhood graph distances intact. Semi-
definite programming can be used in solving this optimization problem.

The algorithm of MVU is discussed below.

Algorithm

1. Construct the neighbourhood graph G where each node represents a data-
point and each datapoint is connected with its nearest neighbouring data-

point by an edge.

2. It tries to maximize the Euclidean distance between the nearest neighbouring
points in the low dimensional space with the restriction that distance between
the neighbouring points are preserved. The optimization function is written

as

Maximize Z lyi — y5)° (2.19)
ij
satisfying the condition that

lyi = y51° = llwi = 251* ¥ (5,§) € G (2.20)

3. This optimization problem boils down to a Semidefinite Programming prob-
lem (SDP). Let M be a matrix having elements m;; representing the inner
product of the low-dimensional dataset Y. The SDP is defined as follows.

Maximize trace(M) subject to:

(a) ma — 2my; +mi; = ||z —2;)|* V (4,5) € G
(b) Zij mij =0
(¢) M>0

4. The M matrix is obtained as the solution of the SDP. The low-dimensional
data representation Y is obtained from the M matrix by performing a Sin-

gular Value Decomposition (SVD).
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2.7.11 Kernel PCA

Kernel Principal Component Analysis (KPCA) is a modification on classical Prin-
cipal Component Analysis (PCA). It is a combination of linear PCA and kernel
trick i.e. using kernel function.

As Kernel PCA is a kernel-based method, the mapping performed by Kernel
PCA relies on the choice of the kernel function k. Kernel functions can be linear
kernel, polynomial kernel or Gaussian kernel. In case of linear kernel, the Kernel
PCA boils down to classical linear PCA. KPCA has an internal model. As a
result, it can embed new test datapoints based on the information obtained from
the embeddings of the train datapoints. In traditional PCA covariance matrix is
used to compute principal eigenvectors whereas in Kernel PCA the kernel matrix
itself is used. The kernel matrix is the inproduct of the datapoints in the high-
dimensional space. It is constructed using the kernel function. PCA is applied on

this kernel matrix and as the output, we get the non-linear mappings.

The algorithm of Kernel PCA is discussed below.

Algorithm

1. The kernel matrix K of the datapoints z; is computed. The elements of the

kernel matrix K is given by
ki]’ = H(l’i,ﬂjj) (221)
where ‘k’ is the kernel function used in this method

2. The kernel matrix K is then centered by subtracting the means of the fea-

tures. The new matrix is constructed by using the following formula
kij = kij — Z ki (2.22)
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3. The principal d eigenvectors v; of the centered kernel matrix are computed.

4. The eigenvectors a; of the covariance matrix of the high-dimensional space
is computed from the eigenvectors v; and their corresponding eigenvalues \;

of the centered kernel matrix by using the following relation

1
X (2.23)

a; =

5. The low-dimensional data representation is obtained by projecting the data
onto the eigenvectors of the covariance matrix A having elements a;. The

low-dimensional projection Y is computed by the following relation
Y = {Z CL}K(J?Z', zj), ..., Z a;l/f(a:i, x;)} (2.24)
j=1 j=1

There are some disadvantages of kernel PCA. First of all, KPCA may not give
desired results in some problems while using standard kernels as obtaining a good
kernel is not trivial for a specific problem. Secondly, it may be difficult to handle
the kernel matrix as its size is proportional to the square of the size of the dataset.
In case of high number of sample datapoints, the kernel matrix becomes large

sized. So it gets difficult to handle such a huge kernel matrix.

2.7.12 Locally Linear Coordination

Locally Linear Coordination (LLC) is a combination of both local and global prop-
erty preserving techniques. At first, LLC computes a number of locally linear mod-
els. Based on these models, LLC computes the linear models and they are aligned
globally. Expectation Maximization (EM) algorithm is used to compute different
local linear models of the dataset. Then the local linear models are aligned to con-
struct the low-dimensional embedding. This embedding is done by using a variant

of LLE.
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The algorithm of LLC is discussed below.

Algorithm

1.

Models are constructed from a Mixture of m Factor Analyzers (MoFA) using

the EM algorithm or a Mixture of Probabilistic PCA models (MoPPCA).

. The output of these models are datapoints represented as z;;. Their corre-

sponding responsibilities, represented as r;; where j e{ 1, 2, ..., m } for each
datapoints x;. r;; represents the significance of the datapoint z; correspond-

ing to the model j, which is stochastic i.e. satisfying the condition
Ty =1 (2.25)
The responsibility-weighted matrix S is constructed from the local models
and the corresponding responsibilities. The elements of S are computed as
Sij = TijZij (2.26)
Let W be the weight matrix which is computed by using the same method
as used in LLE. Then the matrix M is represented as
M=(I-W)"(I-W) (2.27)
LLC aligns the local models by solving the generalized eigenproblem
Av = ABv (2.28)

where A is the inproduct of M7? and B is the inproduct of S.

The d principle eigenvectors of the solution provides a mapping from high-
dimensional space to low-dimensional space. Let V' be the matrix of d princi-
ple eigenvectors. The low dimensional datapoints are given by the following
equation

Y =UV (2.29)
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Chapter 3

Locally Linear Embedding

3.1 General Idea

Locally-Linear Embedding (LLE) was proposed by Yang (2006). It was introduced
almost concurrently with Isomap. The main advantage of LLE over Isomap is
faster optimization which do not involve local minima. LLE makes best use of the
sparse matrix algorithms. It gives better result in tackling many problems.

LLE assumes that the manifold has enough datapoints where every datapoint
and its neighbours lie on or close to a locally linear patch. As a result, these
datapoints can be approximately represented as a linear combination of its neigh-
bouring datapoints. Based on the distance between the neighbouring datapoints,
a weighted linear combination is obtained. The working principle behind LLE is
that this linear combination is invariant under linear transformations. So, based
on this linear combination, we get a mapping of the high-dimensional datapoints
to its corresponding low-dimensional points.

LLE is an unsupervised learning algorithm that computes low-dimensional,
neighbourhood-preserving embedding of high-dimensional inputs. LLE maps its

high-dimensional input data into a low-dimensional space. It tries to find local
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linear patches around each sample point in low-dimensional manifold embedded
in high-dimension space. When such manifold exist, LLE performs effectively.
LLE learns the global structure of non-linear manifolds by exploiting the local
symmetries of the linear reconstructions.

LLE algorithm is mainly based on three major steps. Firstly, finding the nearest
neighbours of each datapoints. Secondly, representing each datapoint as an approx-
imate linear combination of its nearest neighbours and computing the reconstruc-
tion weights based on it. Finally, constructing the mapping from high-dimensional
space to low-dimensional space by preserving the same linear combination of its
neighbours.

The main disadvantages of LLE are as follows:

1. LLE cannot handle the non-uniform sample densities efficiently. As various
regions differs in sample densities, the weights also drifts accordingly. This

cannot be prevented.
2. LLE do not have any internal model, so it cannot embed new datapoints.

3. LLE is sensitive to its control parameter K i.e. number of neighbours which

is a fixed value.

4. LLE is very sensitive to noise. Even a small noise would cause failure in

deriving low dimensional coordinates.
5. Eigen problem may not always be solvable.

6. LLE cannot ensure that two different data points in the high-dimensional

space are embedded at different points in a lower-dimensional space.
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3.2 Algorithm

1. LLE computes the K-nearest neighbours for each of the datapoints.

LLE computes the barycentric coordinates of a point X; based on its K-
nearest neighbours X;. The original datapoint is represented as a weighted
linear combination of its neighbours. The weight information is recorded in
the weight matrix W;;. The reconstruction error is given by the cost function
BW) =) 1Xi = WXl (3.1)

e J

2. LLE compute the weights for each datapoint, so that particular datapoint

can be expressed as a linear combination of its K-nearest neighbours.

The amount of contribution the point X; in constructing the point X; is given

by W;;. Minimization of the cost function is done with two constraints:

(a) If point X; is not a neighbour of the point X;, then W;; is 0.

(b) The rowsum of every row of the weight matrix is 1.

3. It computes the low-dimensional embedding of datapoints based on linear
combination of its neighbours as obtained from the high-dimensional data-

points. This is done by using a eigenvector based optimization technique.

(a) The high-dimensional data points having dimension D are reduced to d
where D >> d. The weight matrix computed in step 2 is used to embed
the datapoints in low-dimensional space. As a result, the mapping is
obtained that retains the neighbourhood information. Each datapoint
X; in high-dimension is mapped onto a datapoint Y; in low-dimension

embedding.

38



(b) The embedding is done by minimizing the cost function which optimize
the coordinates. A sparse N x N Eigenvalue problem is solved to han-
dle the minimization problem. The maximum d non-zero eigenvectors
provides the mapping of the datapoints. The cost function, based on

the error as measured using Euclidean distance is given below.

CY) =D Vi3 Wil (3.2)

Complexity
The three stages of LLE algorithm are:

1. Computing K-Nearest Neighbours: Complexity is O[Dlog(K)Nlog(N)]

2. Weight Matrix Computation : Complexity is O[DNK3]. A K x K linear

equation is solved for each of the local neighbourhoods.

3. Partial Eigenvalue Decomposition : Complexity is O[DN?|. The d
largest eigenvalues are selected and their corresponding eigenvectors are used
for embedding the high dimensional datapoints.

The overall complexity of standard LLE is

O[Dlog(K)Nlog(N)] + O[DNK?®] + O[DN?]
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Chapter 4

Proposed Modification

4.1 General Idea

The original LLE algorithm remains very effective while embedding any manifold
structure. But in case of real datasets, it tend to overlook the geometry of the man-
ifold and thereby various errors are introduced due to wrong distance considered
in the least K distances. Our approach holds in heart the basic LLE algorithm
but modifies the distance calculation by replacing the Euclidean distance mea-
sure with other distance measures like diffusion-distance, commute-time distance
and biharmonic distance. This causes the algorithm to take better embedding
with lesser errors and standard deviations and also increases the stability of the
manifold embedding. Here, stability of the manifold learning is meant by correct
embedding of the manifold with greater variation of the manifold or value of K.
Euclidean distance computes the shortest distance between two points. It is ap-
plied in LLE assuming that the K nearest points will be in euclidean space but it
may not be true in case of real dataset. So, instead of using shortest path measure,
we used other distance measure which are based on the principle of random walk

and timestep.
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4.2 Distance Measures

LLE is based on the principle of embedding high dimensional data into lower
dimension. The points in the higher dimension are considered to be in Euclidean
space locally. For LLE, the embedding is done based on the distance between the
datapoints. In classical LLE, Euclidean distance is used as the distance measure.
But Euclidean distance may not always give the desirable results for all datasets.

All distances are not a metric. The distance measure needs to meet certain
conditions so that it can me considered as a metric. These conditions are discussed
below.

A distance function d : D x D — R must satisfy the following properties:
1. Symmetry : d(z,y) = d(y, x)

2. Non-negativity : d(z,y) >0

3. Identity of indiscernibles : d(z,y) =0<=z =1y

4. Triangle inequality : d(z,z2) + d(z,y) > d(x,y)

The important properties of distance measures are:
1. Metric : Satisfies all the three conditions of distance measure.

2. Locally Isotropic : Approximates to geodesic distance when two points

are close to each other.

3. Globally shape-aware : Gives idea about global shape when two points

are far from each other.

4. Simple computation : Easy to compute the distance between a pair of

points .
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Apart from Euclidean distance, there are different distance metric like geodesic
distance, diffusion-distance, commute-time distance, biharmonic distance, Ma-
holanobis distance etc. Instead of using Fuclidean distance, these distance can be
tried out. So we modified the classical LLE by using diffusion-distance, commute-
time distance and biharmonic distance in place of Euclidean distance and stud-
ied their performance on different datasets. The details of diffusion-distance,

commute-time distance and biharmonic distance are given in the next section.

4.2.1 Euclidean Distance

Euclidean distance is the measure of distance between two points x and y in Eu-
clidean space. It is calculated as the length of straight line joining points x and y.
For n-dimensional space, Euclidean distance between two points z(x1, s, .. .., T,)

and y(y1, vz, . ..., Ys) is calculated as:

dp(z,y) = V(21— y1)? + (22— 12)? + o+ (T — Yn)? (4.1)

Euclidean distance satisfies all the conditions for being a metric. The proof is

given below.

Proof of Euclidean distance to be a Metric

Lodp(z,y) = /(21 — 1) + (@2 — 92)2 + - + (20 — yn)?
\/(yl - xl)z + (?/2 - 332)2 + ...+ (yn - xn)Q = dE(ya 75)

dg(z,y)

2. From the equation of Euclidean distance, it is obvious that the distance is

non-negative

3. From the equation of Euclidean distance, it is evident that if x = y , then
dg(x,y) = 0 Now if dg(z,y) = 0, then the all the squared terms must be
individually 0 which implies x =y
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4. As per Cauchy-Schwarz inequality, |p.q| < |p|.|q|. So,

lp+ g = |p|* + 2p.g| + g < |p|* + 2[p|.lg| + g = (Ip| + |a])?

Therefore (|p + q|* < |p| + |q])*.

Let x, y and z be three points. From the above inequality
di,z) = |z =zl =le—y+y—z <|o —yl+y — 2| = d(z,y) + d(y, 2)

The advantages of Euclidean distance is that it is easy to compute. It computes
the shortest distance between two points. The bottleneck of Euclidean distance is

that it cannot compute distance along the surface.
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08r

Figure 4.1: Embedding of IRIS dataset using classical LLE (Euclidean distance)
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4.2.2 Diffusion Distance

The diffusion distance between two points is the similarity of two points at time ¢
in the observation space with the connectivity between them. Diffusion distance
is dependent on the parameter . This time parameter determines the time period
for which the path lengths are calculated. If the value of ¢ is large, it gives a dis-
tance measure capturing global properties more efficiently than local properties.

But when ¢ is small, local properties are better captured.

The diffusion distance between two points x and y is calculated as:

= e (gi(x) — duly))? (4.2)

k=1
where ¢ and A\, are the k-th eigenvector and eigenvalue of Laplace-Beltrami op-

erator respectively. The eigenvalues are non-negative and in increasing order.

Diffusion distance satisfies all the conditions for being a metric. The proof is

given below.

Proof of diffusion distance to be a Metric

1. As diffusion map is an embedding into the Euclidean space, the diffusion
distance inherits some of the metric properties i.e. symmetry, non-negativity

and the triangle inequality.

2. The only property remaining is the ‘identity of indiscernibles’. Here, it
is obvious that if + = y then ¢p(z) = ¢r(x) = dp(zr,y) = 0. Now, if
dg(z,y) = 0, then ¢x(z) = ¢(x). In this case, z # y if and only if x and

y have exact same neighbours and proportional weights. Formally, it can be
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written as

Wi, = aWji, where a >0V k=1,2,....n +— dp(z;,z;) = 0;2; # x;

The main advantages of diffusion distance are:
1. It can be computed very quickly.

2. Points closer to one another are highly connected in the graph, so may help

in forming clusters.

3. It is sensitive to noise as the distance between two datapoints is dependent

on all possible paths of length ¢.
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Figure 4.2: Embedding of IRIS dataset using modified LLE (Diffusion distance
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4.2.3 Commute-time Distance

Commute-time distance was proposed by Fouss et al. (2006), Yen et al. (2007),
Qiu and Hancock (2007). It is the distance measure based on the random walk on
the similarity graph. Consider two vertices on a graph. The average time taken
by a random walker to walk from one vertex to the other and back is represented
as the commute-time distance. With the increase in number of paths between
two nodes, the lengths of those paths decrease. As a result, the commute-time
distance also decreases. Commute-time distance considers the closeness between
two nodes based on the connectivity within the graph. So, two datapoints of the
same cluster should have very small commute-time distance between them. On the
other hand, commute-time distance between two datapoints in different clusters
should be relatively large. This property of the commute-time distance makes it

well suited for clustering.

The distance calculation for commute-time distance is given below:

o0

de(@,y)* = (dn(r) — dr(y))* /M (4.3)

k=1

where ¢ and A\, are the k-th eigenvector and eigenvalue of Laplace-Beltrami op-
erator respectively.

It can also be written as

do(z,y)? = go(z,2) + 9c(y,y) — 29¢(x,y) (4.4)

where go(z,y) is the Green’s function of the Laplacian for the commute-time

distance which is written as

go(r,y)* = dnl@)dr(y) /M (4.5)
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Commute-time distance satisfies all the conditions for being a metric. The proof

is given below.

Proof of commute-time distance to be a Metric

1. It is symmetric as interchanging the roles of x and y does not change the the

equation for computing biharmonic distance.

2. From the equation of commute-time distance in the continuous domain, it is

clear that the distance is non-negative

3. It is trivial from the equation of commute-time distance that * = y —
or(z) = ¢y(y) = dp(z,y) = 0. We have to show that v = y <= dp(z,y) =
0. Now, if Ay # 0, it can be clearly said that ¢i(x) — ¢, (y) = 0 = ¢p(x) =
¢y (y). Now, ¢y is an orthonormal basis, so every Lo integrable function f can
be written as Y po, { f, ¢ )di(x) for which the equality f(z) = f(y) holds.

Since no function distinguishes between x and y it holds x =y

4. Let the inequality be

la —cll < fla = bl + b —c]| =

3

n n

(ar —cr)? < (| D (e — )2+ | > (ar — bi)? (4.6)

k=1 k=1 k=1

Now, for n = 0o and a; = qij%) yop = %),ck = ¢’“—\//(\;? the triangle inequality

condition is satisfied.
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Figure 4.3: Embedding of IRIS dataset using modified LLE (Commute-time Dis-

tance)

The main disadvantages of commute time distance are:
1. Harmonic Green’s function is singular at the diagonal.

2. It depends on the conformal structure of the surface.

4.2.4 Biharmonic Distance

Biharmonic distance was introduced by Y. Lipman, R. M. Rustamov, T. A. Funkhouser
(2010). It is based on the idea of taking into account both the local and global
properties of the distance. This is done by eigenvalue normalization related to the

biharmonic differential equation. The distance calculation is as follows:
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4.2.4.1 Continuous domain

The equation for calculating the biharmonic distance in continuous domain is given

below.

= (¢ )/ Xk (4.7)

k=1

where ¢ and A are the k-th eigenvector and eigenvalue of Laplace-Beltrami op-

erator respectively. It can also be written as

dB(xa y)2 - gB('Ta l‘) + gB(ya y) - QQB(xv y) (48)

where gg(z,y) is the Green’s function of the biharmonic operator A?
zﬁk (v)/ A% (4.9)

4.2.4.2 Discrete domain

The equation for calculating the biharmonic distance in discrete domain is given

below.
dp(vi,v)? = ga(i, 1) + ga(4, §) — 294(4. §) (4.10)

where g4(z,y) is the discrete Green’s function of the Bi-Laplacian. Dicretization
is based on discrimination of the Laplace-Beltrami differential operator on meshes
K = (cotay + cotByy)(u; — u;) /A; (4.11)

JeN1 (i)
where A; is the Voronoi area at the i-th mesh vertex, a;; and «;; are the angles
connecting ¢ and j, A is a diagonal matrix where A;; = A;, l4 is the matrix of lin-

ear transformation. Now, l; = A~!l, where [, is the conformal discrete Laplacian

without the inverse area terms. Finally, g4 = (. A7,
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Biharmonic distance satisfies all the conditions for being a metric. The proof

is given below.

Proof of biharmonic distance to be a Metric

1. It is symmetric as interchanging the roles of x and y does not change the the

equation for computing biharmonic distance.

2. From the equation of biharmonic distance in the continuous domain, it is

clear that the distance is non-negative.

3. It is trivial from the equation of biharmonic distance that © = y = ¢y (z) =
oy(y) = dp(z,y) = 0. We have to show that v = y <= dp(z,y) = 0. Now,
if A, # 0, it can be clearly said that ¢p(z) — ¢, (y) = 0 = dr(x) = ¢y(y).
Now, ¢, is an orthonormal basis, so every Ly integrable function f can be
written as >y, (f, ¢k )¢k(z) for which the equality f(z) = f(y) holds. Since

no function distinguishes between x and y it holds z = y.

4. Let the inequality be

la —cll < fla = bl + b —c]| =

3

n n

(ar — cr)? < D (ax —be)> + | > (ax — by)? (4.12)

k=1 k=1 k=1

Now, for n = oo and a;, = ‘b’j\(f) b = ‘z”j\iy) ,Cp = ‘b’j\—iz) the triangle inequality

condition is satisfied.
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Figure 4.4: Embedding of IRIS dataset using modified LLE (Biharmonic Distance)
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Chapter 5

Statistical Analysis

Experimental results are an integral part of establishing a theory. In this section,
we will describe the experimental set-up, steps of experiments, experimental pa-
rameters and datasets. Initially, we will mention the basic experimental setup and
discuss them in details as we go progressing ahead. Along with the experiments,
the results obtained are reported. The inferences are described along with the
results. The experiments are done in two phases. The details of these experiments

are discussed in the later sections.

1. Experiment-I

In this type of experiments, for each dataset, for each valid embedding,
the misclassification fractions are computed. Based on this misclassification

values, all the testings are done.

2. Experiment-II

In this type of experiments, for each dataset, the minimum misclassifica-
tion ratio for each distance-measure methods are recorded. Based on this

misclassification values, all the testings are done.
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5.1 Dataset

For our experiments, we have used 16 datasets in total. 9 of them are selected
from UCI machine learning repository while the “T'wo-Norm’ dataset is obtained
from the Delve dataset. Among remaining 6 datasets, 3 are real datasets while rest
3 are derived datasets. The 3 real datasets are MNIST dataset for hand-written
numbers, YALE face dataset and AT&T face dataset. Remaining 3 are constructed
by applying PCA algorithm on the original MNIST, YALE and AT&T dataset.
For these 3 synthetic datasets, the top 10% principal eigenvectors are selected.
As a result, in these reduced datasets, the number of attributes is 10% of that of
the mother dataset. So, for AT&T and YALE face dataset, the original attribute
is 1024 whereas in the reduced dataset, attribute is 103. On the other hand,
for MNIST dataset, the original attribute is 784 whereas in the reduced dataset,
attribute is 79. The number of samples, number of attributes, and number of
classes of these 16 datasets are given in the columns #sample, #attribute and
#class of the table-5.1. Each row represents a dataset. The details of these
datasets are described in the Appendix.

5.2 Experiments

5.2.1 Steps of Experiment

Experimentation is the most important part of this study. The goal of these
experiments is to compare the performances of Locally Linear Embedding in clas-
sification of real-datasets. In LLE, for computing neighbours, four different dis-
tance measures are used i.e. Euclidean distance (original LLE), diffusion distance,
commute-time distance and biharmonic distance (modified LLE). So we get four

different distance-measure methods which will be considered as test methods.
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Table 5.1: Description of Dataset

Dataset #sample | #attribute | #class
AT&T (face) 400 1024 40
Breast_cancer 457 9 2

Diabetes 513 8 2
Haberman 205 3 2
Heart 181 13 2
Ionosphere 235 34 2
Iris 150 4 3

Liver 231 5) 2
MNIST (number) 2105 784 10
Reduced_at&t 400 103 40
Reduced_mnist 2105 79 10
Reduced_yale 165 103 15
Thyroid 143 D 2
Two-Norm 400 20 2
Wine 120 13 2
YALE (face) 165 1024 15

The three major experimental steps of this study are:
1. Dimensionality Reduction
2. Classification
3. Statistical Testing

The In the dimensionality reduction stage, the high-dimensional datasets are

embedded into low-dimensional space by the help of Locally Linear Embedding
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technique. After this stage, the low dimensional datasets are classified by us-
ing the k-Nearest Neighbour classification method. Based on the misclassification
values obtained from the previous stage, five non-parametric statistical tests are
performed. The results of these statistical tests are analyzed to compare the per-
formance of the test methods. The internal steps and the sequence of experimen-

tations are given in the following flow chart (Figure-5.1).

Dimensionality

Reduction using Classification of Low- Statistically Analyzing

Dimensional Data the different Distance
using K-NN Classifier Measures Methods

Locally Linear
Embedding

¢ Euclidean Distance ¢ Friedman Test

¢ Diffusion Distance * Multiple Sign Test

e Commute-time Distance * Medians based Contrast
« Biharmonic Distance Estimation Test

* Friedman Aligned Rank Test
e Quade Test

Figure 5.1: Sequence of Experimentations

5.2.2 Experimental Setup

In this section, we discuss about the setup of the experiments. The experimental
setup describes about how the experiments were carried out and what were the
parameters used for experiments and their respective values. The three main stages
of the experimentation are dimensionality reduction, classification and statistical
testing. The details of the experimental parameters used for these three major

steps are described individually in the following sections.
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5.2.2.1 LLE

We have selected Locally Linear Embedding (LLE) as the method of dimensionality
reduction. The parameters required for this LLE algorithm are d and K. Here, K
represents the number of points to be considered as nearest neighbours whereas
d represents the low dimension to which the high-dimensional data needs to be
embedded. For our experiments, we selected 6 different K-values and 8 different
d-values. The d-values ranges from 2 to 99 while the K-value ranges from 7 to
30. The d-values and K-values chosen for the experiments are given below in the

table-5.2. In each case except ‘Breast cancer’ dataset, all 6 of the K-values are

Table 5.2: Set of d-values & K-values for LLE

d-values || 2| 3 | 15|25 |40 |55 |77 |99

K-values || 712 | 1520 [ 25|30 | - | -

considered while all the d-values that are not more than the actual dimension of
the dataset are taken. Experiments are performed for all valid (d, k) pairs for
each datasets. In case of ‘Breast cancer’ dataset, the last 5 K-values are selected.
The total number of experiments performed on each of the datasets is product of
corresponding number of d-values and K-values. The details of the set of d-values

& K-values for each dataset is given in the table-5.3

5.2.2.2 k-NN Classification

k-nearest neighbouring (k-NN) is a popular classification technique. The only
parameter required in this classification algorithm is k. In this method, the k
nearest neighbours of the unlabelled test datapoint are computed. By applying
the ‘majority wins’ rule, the majority class label of those neighbouring datapoints

is assigned to the test datapoint.
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Table 5.3: Set of d-values & K-values for each dataset used for LLE

Dataset #d #K #exp
AT&T (face) 2, 3,15, 25,40, 55, 77,99 | 7, 12, 15, 20, 25, 30 | 48
Breast_cancer 2,3 12, 15, 20, 25, 30 10

Diabetes 2,3 7,12, 15, 20, 25, 30 12

Haberman 2,3 7,12, 15, 20, 25, 30 12
Heart 2,3 7,12, 15, 20, 25, 30 | 12
Ionosphere 2,3, 15, 25 7,12, 15, 20, 25, 30 | 24
Iris 2,3 7,12, 15, 20, 25, 30 | 12
Liver 2,3 7,12, 15, 20, 25, 30 | 12
MNIST (number) || 2, 3, 15, 25, 40, 55, 77, 99 | 7, 12, 15, 20, 25, 30 | 48
Reduced_at&t 2, 3,15, 25,40, 55, 77,99 | 7, 12, 15, 20, 25, 30 | 48
Reduced_mnist 2, 3, 15, 25, 40, 55, 77 7,12, 15, 20, 25, 30 | 42
Reduced_yale 2, 3,15, 25,40, 55, 77,99 | 7, 12, 15, 20, 25, 30 | 48
Thyroid 2,3 7,12, 15, 20, 25, 30 | 12
Two-Norm 2,3, 15 7,12, 15, 20, 25, 30 | 18
Wine 2,3 7,12, 15, 20, 25, 30 | 12
YALE (face) 2, 3,15, 25,40, 55, 77,99 | 7, 12, 15, 20, 25, 30 | 48

This algorithm is very easy to implement. But the classification results can

experiments of each datasets.

o7

be sensitive to this k-value. It is difficult to decide the value of k. Generally, the
value of k is selected by various heuristic techniques. For our experiment, value of
k is assigned to be 9. We have used 5-fold cross validation and each experiment is
run for 5 times, so we get 25 results and those are averaged. These are done for

each experiments of each dataset. The misclassification fraction is noted for each




The k-NN classification algorithm is given below.

Algorithm

1. For a test data-point, compute its distance with every other trained data-
points. This distance measure is generally considered to be the Euclidean

distance but it can be other distance measures as well.

2. Among all the data-points, select the nearest k£ neighbouring data points i.e.

the k data-points closest to the test data point.
3. Record the class labels of these k-nearest data-points.
4. Calculate the count of class labels of these neighbouring data points.

5. The class label having majority count then gets assigned to the test data-

point as the class label.

5.2.2.3 Statistical Testing

Here, the tests are done to analyze the performances of the distance measures, their
interrelationships or co-dependencies. These tests compares the performances of
different algorithms which gives us an idea about which algorithm is performing
better. Experiments are categorized into two types. Type-I experiments consider
all the valid embedding’s of each dataset and compares each of them across all
the distance-measure methods for ranking. On the other hand, Type-II experi-
ments consider only the ‘minimum’ misclassification fraction of each dataset as
its representative value and compares each of those values across all the distance-
measure methods. Five different statistical testing are performed on these results
and the distance-measure methods are analyzed based on these tests and their

performances are evaluated.
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5.3 Results

5.3.1 Type-1 Experiments

For the Type-I experiment, for each dataset, for each valid embedding, the mis-
classification fractions are computed. The distance-measures methods are ranked
from 1 to n accordingly. The method having least misclassification value performs
best and is ranked 1, second best is ranked 2 while the one performing worst is
ranked n. In this way, for each dataset, ranks are computed. Here, we have 4
distance-measure methods, so they are ranked from 1 to 4. In the table-5.4 is the

example of ranking for the MNIST dataset.

Figure 5.2: Embedding of MNIST dataset using classical LLE (Euclidean distance)

In the table-5.4, row-1, row-2, row-3 and row-4 signifies the number of cases
where different distances ranked 1, 2, 3 and 4 respectively. The total is the weighted

sum rank of each of the distance-measure methods.
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Figure 5.3: Embedding of MNIST dataset using modified LLE (Diffusion distance)

It is calculated as:
T,=) je (5.1)
j=1
where ¢;; is the number of j-th ranked cases in ¢-th distance-method
Average rank is calculated as
i=1 j=1

where n is the number of distance-measures methods

From the table-5.4, we get the total rank and the average rank. Based on these
average rank, the final ranking of the test methods are done. It is done in increas-
ing order of their corresponding average rank. The distance-measure method with
highest average rank is ranked 4 while that having least average rank is ranked

1. In case of a tie, the mean of the rank is given to all the tied test-methods.
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Figure 5.4: Embedding of MNIST dataset using modified LLE (Commute-time

distance)

Table 5.4: Rank distribution across different distance measures for all 48 embed-

ding of MNIST dataset

MNIST EC DF CT BI
1 7 8 19 14
2 3 21 16 8
3 4 13 11 20
4 34 6 2 6

Total (T;) | 161 | 113 | 92 | 114
Average (4;) | 3.354 | 2.354 | 1.917 | 2.375

Rank 4 2 1 3
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Figure 5.5: Embedding of MNIST dataset using modified LLE (Biharmonic dis-

tance)

So, the method having best average performance is ranked 1 while the one hav-
ing worst average performance is ranked 4. These experiments are done on each
of the datasets. The ranks of all the four distance-measure methods for each of
the datasets are computed individually. The detailed individual results of all the
datasets are given in the Appendix. The individually computed ranks of the differ-

ent distance measures for different datasets are recorded row-wise in the table-5.5

Now, to evaluate the overall performance of each test methods across all datasets,
the combined ranking of all the datasets are needs to be computed. In the table-
5.6, row-1, row-2, row-3 and row-4 signifies the number of cases where different

distances ranked 1, 2, 3 and 4 respectively. The total is weighted sum rank of each
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Table 5.5: Experiment-wise ranking based on Friedman Test

Dataset EC | DF | CT | BI
AT&T (face) 1| 4|2 |3
Breast_cancer 1 4 2 13

Diabetes 4 3 2 11

Haberman 4 1 2 3
Heart 3 2 1 4
[onosphere 3 4 2 1
Iris 1 4 2 3
Liver 4 2 3 1
MNIST (number) | 4 | 2 113
Reduced_at&et 1 4 2 |3
Reduced_mnist 4 2 3 1
Reduced_yale 1 3 2 | 4
Thyroid 3 1 2 | 4
Two-Norm 1 3 2 | 4
Wine 2 3 1 |4
YALE (face) 1| 4|2 |3

of the distance-measure methods. It is calculated as:
n
T, = Zj Cij
j=1

where ¢;; is the number of j-th ranked cases in ¢-th distance-method

The average ranks for n distance-measure methods are calculated as

Ai:Tz‘/ZZCij

i=1 j=1
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The average rank gives the weighted combined rank of each distance-measure meth-
ods across all the datasets. The total and average rank are computed in the similar
way as it was done for the individual datasets. The detailed results of the average
performance of each of the distance-methods across all datasets are given in the

table-5.6.

Table 5.6: Summarised ranking table based on Friedman Test

All Data | EC DF CT BI

1 7 2 3 4
2 1 4 11 0
3 3 4 2 7
4 5 6 0 b}
Total 38 46 31 45

Average | 2.375 | 2.875 | 1.9375 | 2.8125

Rank 2 4 1 3

RANKING

COUNT

~ ~
[}
n %)
= <
™ m
~ ~

-

n I l- o

EC DF cT BI

mRank1l mRank2 mRank3 Rank 4

Figure 5.6: Friedman Test result for Experiment-I
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Based on the results as represented in the table-5.6, it is observed that among
all the four distance-measure algorithms, commute-time distance gives the best
result. The average rank for commute-time is least, followed by Euclidean distance,
biharmonic distance and diffusion distance. The average rank for commute-time
is better than that of second placed Fuclidean distance by a considerable margin.
On the other hand, the average rank of biharmonic distance and diffusion distance
across different datasets are close, so it may be concluded that they have similar

performance across these datasets.

Average Ranking

2.875 2.813

2.375
. ]
ec df ct bi

H Average Rank
Figure 5.7: Ranking based on Friedman Test for Experiment-I

5.3.2 Type-1I Experiments

In this type-II experiments, for each dataset, the Minimum Misclassification Ratio
(MMR) for each distance-measure methods are recorded. Based on these misclas-
sification values, all the statistical testing are performed and the relative perfor-
mance of each distance-measure methods are analyzed.

In our statistical analysis, we have performed five statistical tests namely Fried-

man Ranking test, Multiple-sign test, Median Based Contrast Estimation Test,
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Friedman Aligned Rank test and Quade test. For each of these statistical tests,
based on the misclassification value for each distance-measure methods for all
datasets, the distance-measure methods are ranked. After performing all these
tests, we give a comparative study of all the distance-measure methods based on
the results of these tests. The table-5.7 gives the misclassification ratio of the

different datasets across all distance measures.

Table 5.7: MMR of datasets across different distance measures

Dataset EC DF CT BI
AT&T (face) 0.114 | 0.129 | 0.143 | 0.131
Breast_cancer 0.303 | 0.300 | 0.331 | 0.290

Diabetes 0.304 | 0.287 | 0.298 | 0.278
Haberman 0.233 | 0.218 | 0.248 | 0.223
Heart 0.320 | 0.333 | 0.338 | 0.328

Tonosphere 0.138 | 0.153 | 0.122 | 0.160

Iris 0.033 | 0.001 | 0.000 | 0.000

Liver 0.345 | 0.359 | 0.361 | 0.354
MNIST (number) || 0.088 | 0.086 | 0.086 | 0.073
Reduced _at&t 0.166 | 0.185 | 0.169 | 0.179
Reduced_mnist 0.089 | 0.087 | 0.088 | 0.085
Reduced_yale 0.348 | 0.380 | 0.372 | 0.354

Thyroid 0.048 | 0.053 | 0.026 | 0.044
Two-Norm 0.041 | 0.042 | 0.045 | 0.040
Wine 0.262 | 0.278 | 0.293 | 0.270

YALE (face) | 0.251 | 0.276 | 0.261 | 0.269
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5.3.2.1 Friedman Rank Test

The Friedman test is a non-parametric statistical test developed by the U.S.
economist Milton Friedman. It is similar to the parametric repeated measures
two-way analysis of variance, commonly known as ANOVA. The main objective of
Friedman test is to detect differences in treatment across multiple test attempts.
This procedure involves ranking each sample of results together, then considering
the values of ranks by test methods.

The Friedman test is used for one-way repeated measures analysis of variance
by ranks. The ranking is done based on the misclassification values of each dataset
across all test-methods. Then Friedman Test Statistics is done on these values.
Based on these Friedman test results, the relative performance of the distance-
measure methods are compared and analyzed. The method of computing the

Friedman statistics is given below.

Method

1. The {x;; }nxk matrix is given where each row represent each sample of results
and each column represent each test methods. The element z;; represents
the original result of the ¢-th sample of the j-th method. This original result

is converted to rank matrix {s;; }nxk

2. The ranking of the test-methods is done for each row. The best performing
test method gets rank 1, second best gets rank 2 and so on with the last one
getting rank n. In case of a tie, the mean rank is given to the tied methods.

In this way, the rank matrix is populated.
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3. Compute

1
7"]' = ﬁ : rij (55)
=1
4. Compute
1 n k
Tm:%_ ZTZ‘J' (56)
i=1 j=1
5. Compute
k
SSy=nY (rj—rm)’ (5.7)
j=1
6. Compute
n k
1
S8, = ——t Ty = T’ (58)
) 2 2
7. The test statistics () is given as
Sy
= 5.9
Q- (59)

8. When n > 10 or k > 4, the probability distribution of () can be approx-
imated by that of a chi-squared distribution but if n and k are small, the

approximation becomes poor.

9. When n or k is large, the Friedman statistics is computed as

;= %(Z "2 - @) (5.10)

Here, n is the number of sample results i.e. number of datasets
k is the number of test methods

R; is the average rank of j-th method

While when n and k are small, exact critical values are computed. In our ex-

periment, n = 16 and k = 4 are large, so we will follow the chi-square distribution.
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The table-5.8 gives the information about the rank of each test methods for
each test samples based on the Friedman test. In our experiment, the total number
of test methods is 4, so the ranks ranges from 1 to 4. Rank 1 indicates the best
performing test method while rank 4 indicates the worst performing test method.
Each row of the table represents each of the 16 datasets while each column repre-
sents each distance-measure methods. The total rank is the sum of all ranks for
each distance-measure method and average rank is the mean rank of each distance-

measure method.

Average Ranking

2.844 2.938

2.250

ec df ct bi

H Average Rank

Figure 5.8: Ranking based on Friedman Test for Experiment-I1I

Under the null hypothesis, all test methods are assumed to be performing
similarly. So the rank of each test methods should be similar to one another.
The average rank of each test methods across all samples give a good estimate
of the performance of the test methods. As per the Friedman ranking system,
the table-5.8 is generated. From this table, it is evident that biharmonic dis-

tance performs best, followed by Euclidean distance and diffusion distance while

69



Table 5.8: Rank matrix based on Friedman Test

Dataset EC DF cT BI
AT&T (face) 1 2 4 3
Breast_cancer 3 2 4 1

Diabetes 4 2 3 1

Haberman 3 1 4 2
Heart 1 3 4 2
[onosphere 2 3 1 4
Iris 4 3 1.5 1.5
Liver 1 3 4 2
MNIST (number) 4 2.5 2.5 1
Reduced_at&t 1 4 2 3
Reduced_mnist 4 2 3 1
Reduced_yale 1 4 3 2
Thyroid 3 4 1 2
Two-Norm 2 3 4 1
Wine 1 3 4 2
YALE (face) 1 4 2 3
Total 36 45.5 47 31.5
Average 2.250 | 2.844 | 2.938 | 1.969
Rank 2 3 4 1

commute-time distance performs worst. The average rank of biharmonic distance
and Euclidean distance are close, so their performances can be said to be are simi-
lar across all datasets together. Same conclusion can inferred for diffusion distance

and commute-time distance.
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5.3.2.2 Multiple-sign Test

In this method, one of the test-method is selected as the control method. With
respect to the control method, the performance of the other test methods are eval-
uated. The null hypothesis is that the control method performs best. The steps

of this method are discussed below.

Method

1. The {z;; },x matrix is given where each row represent each sample of results
and each column represent each test methods. The element ‘x;;” represents
the original result of the i-th sample of the j-th method. This original result

is converted to signed matrix {s;; }nxk

2. The signed matrix {s;; },xx is computed for each row. This matrix indicates
the relative performance of each test-method with the control method. It is
computed by subtracting the original value of test-method from the control
method of a particular sample result. The sign and the magnitude of the

differences are recorded in the table.

3. For each test methods, the total number of positive and negative ‘differences’
with respect to the control method are counted and noted accordingly in the

‘plus’ and ‘minus’ rows of the table.

4. Let the null hypothesis be such that control method performs better than
the other test-methods. This null hypothesis will be rejected if the number
of minus signs is less than the number of plus signs whereas if the number of
minus signs is greater than the number of plus signs, then the null hypothesis

will be accepted.
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The table-5.9 contains the original misclassification ratio of the different datasets
across all test-methods. In the parenthesis, the sign of the difference between val-
ues of test methods and control method are recorded. The sign is computed by
subtracting the original value of test-method from the control method for each
sample result. If the value of test method is greater than that of control method,
the sign is -’ and if the value of test method is less than that of control method,

then the sign is ‘+’. But if the value is 0, then the sign will be ‘=".

Multiple Sign

DF

o
[N
»
o
[+]
=
o

12

H #Plus H #Minus

Figure 5.9: Ranking based on Multiple Sign Test for Experiment-II

In our set of experiments, total number of datasets is 16. We have selected
Euclidean distance-measure method as the control method. Our null hypothesis
is that the Euclidean distance-measure method performs best. Based on our null
hypothesis, for the control method to be performing best, it should have at least
9 ‘minus’ signs. From the table-5.9, it is evident that in case of commute-time
distance and diffusion distance, Euclidean distance is clearly performing better.

But in case of biharmonic distance, both are tied at same result. In this situation,
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based on Multiple Sign Test with EC as Control Method

Table 5.9: Comparison of MMR of datasets across different distance measures

Dataset EC DF CT BI
AT&T (face) 0.114 0.120 (-) | 0.143 (-) | 0.131 (-)
Breast_cancer 0.303 0.300 (+) | 0.331 (-) | 0.290 (+)

Diabetes 0.304 0.287 (+) | 0.208 (+) | 0.278 (+)

Haberman 0.233 0.218 (+) | 0.248 () | 0.223 (+)
Heart 0.320 0.333 (1) | 0.338 (-) | 0.328 (-)
Tonosphere 0.138 0.153 (-) | 0.122 (4) | 0.160 (-)
Tris 0.033 0.001 (+) | 0.000 (+) | 0.000 (+)
Liver 0.345 0.359 (-) | 0.361 (-) | 0.354 (-)
MNIST (number) 0.088 0.086 (+) | 0.086 (+) | 0.073 (+)
Reduced_at&t 0.166 0.185 (-) | 0.169 (-) | 0.179 (-)
Reduced_mnist 0.089 0.087 (+) | 0.088 (+) | 0.085 (+)
Reduced_yale 0.348 0.380 (-) | 0.372 (-) | 0.354 (-)
Thyroid 0.048 0.053 (-) | 0.026 (+) | 0.044 (+)
Two-Norm 0.041 0.042 (-) | 0.045 (-) | 0.040 (+)
Wine 0.262 0.278 (-) | 0.293 (-) | 0.270 ()
YALE (face) 0.251 0.276 (-) | 0.261 (-) | 0.269 ()
#plus 6 6 8

#minus 10 10 8

Performance Control Method Poor Poor Equal

it is difficult to identify any one of them to be performing better than the other.
So it may be inferred safely that both biharmonic distance and Fuclidean distance

performs similar.
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5.3.2.3 Contrast Estimation based on Median Test

In this technique, we compare between each pair of distance-measure methods
across all the datasets. Here, we try to get an estimate of the relative perfor-
mances between two methods of each pair of test methods across all datasets. To
do so, we compute the difference between the median of all pairs of test methods.
Based on these medians, we try to conclude which one of the method performs

better than the other methods. The steps of this technique are stated below.

Method

1. The difference between performances of all possible pair of test-methods are
computed for each sample results. For n test-methods, we get n(n — 1)/2
test-method pairs. For each test-method pair, the difference between the
performances of two methods are computed and recorded in the table. They

are represented as

Dj = af — af (5.11)

where 4, j are two methods compared and k is the dataset. ¥ represents the

performance of the i-th test method for the k-th dataset

2. For each pair of dataset, the median of the performance of that pair across
all dataset is computed. The median for method D;; is represented as Z;;
which is computed as

(

median(D};) where i < j

Zij =40 where i = j (5.12)

—Zij where 1 > j

74



3. Now the estimator for each methods are computed as
M= Z; (5.13)
i=1

4. The contrast estimator for each test-method pairs are computed as

M, =m; —m,; 5.14
J J

5. Based on these M;; values, the contrast estimation table is populated. Now,
if M;; is greater than or less than 0, then it can be concluded that method-
¢ performs better or poorer than method-j respectively. If M;; = 0, then
none of them can be said to be performing better than the other. So, both

methods are assumed to be having same performance.

In our experiments, there are 4 test-methods. So there are 6 possible test-method
pairs. Based on these 6 pairs, the difference of performance for each of the 16

datasets are computed and the table-5.10 is populated.

In table-5.10, the column D;; represents the performance difference between i-
th and j-th test-methods. Here, first, second, third and fourth methods are
the Euclidean, diffusion, commute-time and biharmonic distance-measures respec-
tively. The medians Z;; along each columns D;; are calculated individually and
are recorded in the row ‘median’.

Then the estimators m; for each of the test-methods are computed individu-
ally. The results obtained are recorded in the table-5.11. From these results, the
contrast estimation m; for each pair of test-methods are computed and the values
are recorded in the table-5.12. These values are based on the medians of the per-

formances of each test-methods.
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Table 5.10: Pairwise comparison of MMR of datasets across different distance

measures

Dataset D12 D13 D14 D23 D24 D34

AT&T (face) 0.015 | 0.029 | 0.017 | 0.014 | 0.002 | -0.012
Breast_cancer -0.003 | 0.028 | -0.013 | 0.031 | -0.010 | -0.041

Diabetes -0.017 | -0.006 | -0.026 | 0.011 | -0.009 | -0.020
Haberman -0.015 | 0.015 | -0.010 | 0.030 | 0.005 | -0.025
Heart 0.013 | 0.018 | 0.008 | 0.005 | -0.005 | -0.010
Ionosphere 0.015 | -0.016 | 0.022 | -0.031 | 0.007 | 0.038
Iris -0.032 | -0.033 | -0.033 | -0.001 | -0.001 | 0.000
Liver 0.014 | 0.016 | 0.009 | 0.002 | -0.005 | -0.007

MNIST (number) | -0.002 | -0.002 | -0.015 | 0.000 | -0.013 | -0.013
Reduced_at&t 0.019 | 0.013 | 0.033 | -0.016 | -0.006 | 0.010
Reduced mnist | -0.002 | -0.001 | -0.004 | 0.001 | -0.002 | -0.003
Reduced _yale 0.032 | 0.024 | 0.006 | -0.008 | -0.026 | -0.018

Thyroid 0.005 | -0.022 | -0.004 | -0.027 | -0.009 | 0.018
Two-Norm 0.001 | 0.005 | -0.001 | 0.003 | -0.002 | -0.005
Wine 0.016 | 0.031 | 0.008 | 0.015 | -0.008 | -0.023

YALE (face) 0.025 | 0.010 | 0.018 | -0.015 | -0.007 | 0.008

Median 0.009 | 0.007 | 0.003 | 0.002 | -0.006 |-0.009

Table 5.11: Estimator value for each of the Test-methods

my | 0.019 || mg | -0.013 || ms | -0.017 || my4 | 0.012
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Table 5.12: Pairwise comparison of datasets across different distance measures by

means of Contrast Estimation based on Medians.

EC DF CT BI

EC || 0.000 | 0.008 | 0.009 | 0.002
DF | -0.008 | 0.000 | 0.001 | -0.006
CT | -0.009 | -0.001 | 0.000 | -0.007
BI || -0.002 | 0.006 | 0.007 | 0.000

From the table-5.12, it is evident that Euclidean distance-method gives the best
result as it gives positive contrast estimation value when compared with bihar-
monic distance-method, diffusion distance-method and commute-time distance-
method individually. Similarly, the second best is biharmonic distance-method.
When it is compared with diffusion distance-method and commute-time distance-
method, it gives positive contrast estimation value. So it performs better than both
of them. Now, the third best method is the diffusion distance-method followed by

the commute-time distance-method.

5.3.2.4 Friedman Aligned Rank Test

This method is similar to the Friedman rank test with some variations. In the
Friedman test, the ranking is done across all test-methods for each dataset indi-
vidually. So for k-methods and for each of the n-datasets, ranks range from 1 to k.
In this ranking scheme, the ranking is done only within a particular dataset. After
doing the intra-set ranking, the cumulative ranks are averaged and the conclusion
is drawn based on that result. But for small number of datasets, averaging may
not give a good result. This disadvantage is handled smartly in case of aligned

ranking.
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In the Friedman aligned ranking technique, the individual datasets across all
test-methods are not ranked. Instead, all the n % k results from n-datasets and
k-methods are considered for ranking together. They are ranked from 1 to nk
based on the aligned result of each dataset. This aligned ranking is done based
on the aligned observations. These aligned observation are nothing but the dif-
ference between the original performance and the average performance across all
test-methods for a particular dataset. Thus the original results are converted to

the aligned results. The steps of this technique are stated below.

Method

1. The {x;; }nxk matrix is given where each row represent each sample of results
and each column represent each test methods. The element ‘x;;’ represents
the original result of the ¢-th sample of the j-th method. This original result

is converted to aligned result matrix {a;;}nxk

2. Ranking is done for all the elements of the matrix. The best performing test
method gets rank 1, second best gets rank 2 and so on. In case of a tie,
the mean rank is given to the tied methods. In this way, the rank matrix is
populated. Here, total results is nk, so they are ranked from 1 to nk. This

aligned result is converted to rank matrix {r;; }nxk
3. The mean performance of each row are computed as
1
=1
where z;; is result of i-th test-method of the j-th dataset.

4. From each result of a row, subtract the mean value of that row from the

original result. The new result y;; is computed as
Yij = Tij — X5 (5-16)
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5. Now based all the n * k y;; values, they are ranked in their increasing order.
The y,;; having minimum value is ranked 1 and the y;; having maximum
value is ranked nk. In case of a tie, the average rank is given to all the tied

contenders.

6. The average rank of each test-methods are computed. The test-method

having least average rank is concluded to be the best performing method.

7. The Friedman Aligned test statistics is computed as

(k=D BE — kn?(kn +1)2/4]
a [kn(kn + 1)(2kn + 1)/6] — >, R2/k] (5.17)

where k is number of test-methods

‘n’ is the number of datasets

‘R;’ is the total rank of the j-th dataset and
‘R;’ is the total rank of the ¢-th test-method.

In our experiments, there are 16 datasets and 4 test-methods. So, total num-
ber of results is 64. The average results of each of the datasets are computed
individually. These average results are subtracted from all the four corresponding
results of that particular dataset. Now, based on these new values so obtained, all
the results are ranked from 1 to 64 in increasing order of their value. The result
having minimum value will be ranked 1 while the result with maximum value will
be ranked 64. In case of a tie, the average rank is given to all of the tied results.
The aligned ranks are specified after delimiter ‘|” . Based on the above method,
the table-5.13 is generated.

The total rank and the average rank gives us a good idea about the perfor-
mance of the test-methods based on aligned rankings. From the average rank as
obtained from table-5.13, it is evident that biharmonic distance-measure method

performs best. It is closely followed by Euclidean distance-measure method. In
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Table 5.13: Comparison of MMR of datasets across different distance measures

along with ranks based on Friedman Aligned Test

Dataset Mean EC DF cT BI
AT&T (face) 0.129 -0.015/5 0.000|32 0.014/58 0.002|37
Breast_cancer 0.306 || -0.003|19 | -0.00620 | 0.025|63.5 | -0.016|1.5

Diabetes 0.292 || 0.012[56.5 | -0.005|22.5 | 0.006/49.5 | -0.014]6.5

Haberman 0.231 0.003|41 | -0.013/8.5 | 0.018|62 -0.008]19
Heart 0.330 || -0.010|11.5 | 0.003]|41 | 0.008|51.5 | -0.002|27
Ionosphere 0.143 || -0.005|22.5 | 0.010|54 -0.021]1 0.017|60
Iris 0.009 || 0.025/63 |-0.008/17.5 | -0.009|15 | -0.009|16
Liver 0.355 || -0.010/11.5 | 0.004|44.5 | 0.006|49.5 | -0.001]29.5
MNIST (number) || 0.083 || 0.005]47 0.003|41 0.003|41 | -0.010]12.5
Reduced_at&t 0.175 || -0.009|15 0.010|54 -0.006/20 | 0.004|44.5
Reduced mnist 0.087 || 0.002|37 0.000[32 | 0.001|34.5 | -0.002|27
Reduced_yale 0.364 || -0.016|3.5 0.017|60 | 0.008|51.5 |-0.010]|12.5
Thyroid 0.043 || 0.005[47 0.010|54 -0.017|2 | 0.001|34.5
Two-Norm 0.042 || -0.001/29.5 | 0.000|32 0.003]41 -0.002|27
Wine 0.276 || -0.014]6.5 0.002|37 0.017|60 | -0.006|21.5
YALE (face) 0.264 || -0.013]8.5 | 0.012]56.5 | -0.003|24.5 | 0.005]47
Total 430 606.5 624.5 419
Average 26.875 37.906 39.031 26.188
Rank 2 3 4 1

third and fourth place are commute-time distance-measure method and diffusion

distance-measure method respectively.
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Average Ranking
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Figure 5.10: Ranking based on Friedman Aligned Test for Experiment-I1

5.3.2.5 Quade Test

In the Friedman test, all datasets considered, are assumed to be having same im-
portance in evaluating the test methods. This may not give the best accuracy
while concluding the performance ranking of the test-method. So some weightage
is given to the dataset so that the ranking is scaled based on the relevance of each
dataset. The Quade test is used to implement this. It take into consideration the
observed differences in performances of the test-methods. Thus, it gives a weighted

ranking to all the sample results. The method of Quade Test is described below.

Method

1. The {x;; }nxk matrix is given where each row represent each sample of results
and each column represent each test methods. The element z;; represents

the original result of the ¢-th sample of the j-th method.

2. The range of each dataset is computed as the difference between maximum
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value and minimum value of dataset across all test-methods. The range G;

of the j-th dataset is given as
G; = max{x;;} — min{z;;} (5.18)
where z;; is result of i-th test-method of the j-th dataset.

. Based on these G value, all datasets are ranked in their increasing order. The
dataset having minimum G value is ranked 1 and the one having maximum

G value is ranked n. The rank of the j-th dataset is denoted as R;.

. Each sample result is ranked from 1 to k in their increasing order. The
minimum valued result is ranked 1 while the maximum valued result is ranked
k. The rank of the result of the i-th test-method of the j-th dataset is

represented as 7;;.

. The average rank within a dataset is (k + 1)/2. The difference between the
rank of a sample result within a dataset and its average rank is computed.
This value is multiplied with the corresponding rank of that dataset to obtain
a new score .S5;;. This score gives us an idea about the relative significance

of each dataset. The equation to compute S;; is written as

. Another score W;; is computed that do not adjust the average performance
of the dataset. It is the product of the rank of a sample result of a dataset

and its corresponding dataset rank. The equation to compute W;; is
VVZ'j = Rj * Tij (520)

. S and W are computed for each test methods. They are nothing but the

sum of the S;; and W;; value along each test method. The equations for
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evaluating S and W are given below

n

Si=>_ 8y (5.21)

j=1

and
n

W; = Z Wi (5.22)

j=1
8. The Quade test statistics T is given as

(n—1)B

'="r—n

(5.23)

nk(n+1)(2n+1)(k* — 1)
72

where A =
1 k
_ 2: 2
andB—ﬁ‘lsj
j:

In our experiment, total number of dataset is 16 and total number of test-methods
is 4. So the dataset rank R; ranges from 1 to 16 while the test-method ranks
ranges from 1 to 4. Based on the above method, the table-5.14 is computed.

This table-5.14 contains the the range and rank of each dataset along with
S-value and W-value of each test-method for each dataset. Based on the range of
each dataset across all test-methods, they are ranked from 1 to 16. In the test-
method columns, the value before the delimiter ‘|” represents the S;; value while
the value after delimiter ‘|” represents the W;; value of the i-th test-method of the
j-th dataset. The cumulative sum of all the S-values and W-values about all the
columns are given in the last two rows i.e. S and W rows. Based on these S-value
and W-value, the test-methods are ranked. Lesser the value, better is the rank.
From the table-5.14, it is observed that the average rank of biharmonic distance-

measure method is the best followed by Euclidean distance-measure method. In
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third place is a tie between commute-time distance-measure method and diffusion

distance-measure method.

Table 5.14: Comparison of MMR of datasets across different distance measures

along with the ranks based on Quade Test

Dataset Range | Rank EC DF CT BI
AT&T (face) | 0.029 | 10 | -15]10 | -5/20 | 15/40 | 5|30
Breast_cancer 0.041 16 8/48 -8/32 24164 | -24/16

Diabetes 0.026 | 8 12132 | -4)16 | 424 | -12I8
Haberman 0.030 | 11 | 5.5[33 |-16.5]11 | 16.5[44 | -5.522
Heart 0.018 | 5 | -7.5/5 | 2515 | 7.5[20 | -2.5[10
Tonosphere 0.038 | 15 | -7.5)30 | 745 | -22.5/15 | 22.5/60
Tris 0.033 | 14 | 2156 | 5.5[42 | -14]21 | -14]21

Liver 0.016 | 4 64 o2 | 616 | -28
MNIST (number) | 0.015 | 3 | 4512 | 075 | 07.5 | -4.5/3

Reduced_at&t 0.019 6 -9|6 9|24 -3]12 3/18
Reduced_mnist 0.004 1 1.54 -0.5/2 0.5[3 | -1.5]1
Reduced_yale 0.032 13 -19.5|113 | 19.552 | 6.5|39 | -6.5/26
Thyroid 0.027 | 9 || 4527 | 13.5]36 | -13.5(9 | -4.5/18

Two-Norm 0.005 2 -1]4 116 3|8 -3]2
Wine 0.031 | 12 || -18/12 | 6|36 | 1848 | -6|24
YALE (face) | 0.025 | 7 || -10.5|7 | 10.5/28 | -3.5/14 | 3.5/21

S -37 44.5 44.5 -52

W 2.228 2.827 2.827 2.118

Rank 2 3.5 3.5 1
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5.4 Discussion

In our experiments, we have performed some non-parametric statistical testing
to compare the performances of the four distance-measure methods. Each of the
statistical testing used here have different significance.

The Friedman test used gives us an idea about the performances of each al-
gorithms compared individually for each dataset and then taking the mean of
that result to give the final conclusion. The two variants of Friedman test i.e.
Friedman Aligned rank test and Quade test also does the same thing with some
modifications.

Friedman aligned rank test align the sample results by taking the difference
of the results and its mean. Based on these aligned results, the aligned ranks are
computed. On the other hand, Quade test gives weightage to each dataset based on
the range of data across all test methods. This weightage denotes the significance
of the datasets in analyzing the test method’s performance. This original value is
multiplied with the weightage to get the weighted value. Now, all the values are of
same importance, so all the datasets across all test methods are ranked together.

The other two test i.e. Multiple-sign test and Contrast estimation test works
differently. In multiple-sign test, one test method is selected as the control method.
All the other test method are compared individually with this control method. The
null hypothesis is that the control method performs better than the other methods.
Based on the test results, it is concluded whether the null hypothesis is accepted
or rejected.

In the Contrast estimation test, all test methods are compared with each other.
For each pair of tests, the performances are analyzed and concluded which one is
better. As per the outcome of these pair-wise comparison tests, the test-method
giving positive contrast estimation value for all the pair-wise tests is concluded to

be the best performing test-method.
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Figure 5.11: Ranking based on Quade Test result for Experiment-II
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Chapter 6

Conclusion

6.1 Summary

The main goal of our work was to study whether the performance of Locally Linear
Embedding can be enhanced while classifying the real datasets by using some
different distance measures, other than traditional Euclidean distance measure.
The high-dimensional datasets are embedded into low-dimensional space by LLE,
thus reducing the complexity of classification. The distance measure in classical
LLE is Euclidean distance, which is replaced with diffusion distance, commute-
time distance and biharmonic distance.

For our study, we selected 16 datasets as our working database on which the
dimensionality reductions, classifications and statistical tests are performed one
after another. In our experiment, LLE is used as the dimensionality reduction
method. The reduced datasets are classified using k-Nearest Neighbour classifier.
Based on the misclassification results, the performance of all these four distance
measures are compared using five non-parametric statistical tests i.e. Friedman
Test, Multiple Sign Test, Contrast Estimation Test, Friedman Aligned Test and
Quade Test.
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Table 6.1: Summary of all the Statistical Test results

Test EC DF | CT BI

Friedman Test (Exp-I) 2 4 1 3

Friedman Test (Exp-II) 2 3 4 1
Multiple Sign Test Control Method | Poor | Poor | Equal

Contrast Estimation Test 1 3 4 2

Friedman Aligned Test 2 3 4 1

Quade Test 2 3.5 3.5 1

The table-6.1 gives the summary of the statistical test results and the ranks of
the distance-measure methods in those tests. From the above table, it is evident
that Euclidean distance performs best in one test (Contrast Estimation Test), bi-
harmonic distance comes first in three tests (Friedman Test (Exp-II), Friedman
Aligned Test and Quade Test) while commute-time distance performs best in one
test (Friedman Test (Exp-I). On the other hand, Euclidean distance performs bet-
ter than biharmonic distance in two cases (Contrast Estimation Test and Friedman
Test (Exp-1)) whereas biharmonic distance gives better performance in three cases
(Friedman Test (Exp-1I), Friedman Aligned Test and Quade Test). The result of
the other test i.e. Multiple Sign Test is inconclusive. Here, both Euclidean distance
and biharmonic distance performs better than both commute-time distance and
diffusion distance individually. Now, but when Euclidean distance and biharmonic
distance are compared with one another, inference cannot be drawn in favour of
any one of them. Although commute-time distance is the best performing method
based on Friedman Test (Exp-I), both commute-time distance and diffusion dis-
tance measures lag behind considerably from Euclidean distance and biharmonic

distance measures in respect of performances, considering all the tests together.
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6.2 Future Work

To extend the ideas in this thesis, further studies are planned. They are discussed

in brief below.

The first study is to extend this work of applying different distance measure
on other linear and non-linear dimensionality reduction techniques. Some other
non-linear dimensionality reduction techniques like Laplacian Eigenmap, Isomap,
LTSA and MVU also computes the nearest neighbours in a similar approach to
that of LLE. In these techniques, our distance measure methods i.e. diffusion dis-
tance, commute-time distance and biharmonic distance can be applied instead of
the traditional Euclidean distance measure. The outcomes of those experiments

can be extensively studied and analyzed.

The second study is to generalize the value of the ‘number of nearest neighbour’
parameter i.e. K used in LLE. It is an important parameter as the earlier studies
have shown that with the change in value of K, the result varies considerably. The
performance of LLE is quiet sensitive to the pre-decided value of the parameter
K. So an adaptive approach for selecting the K value can be tried. In that case,
the value of K will be dynamic and will vary for each datapoint based on the local
geometry of the dataset. Here also, this adaptive approach can be applied to other

non-linear dimensionality reduction techniques like LTSA.

Finally, this work can be extended by continuing the experimentation on more
number of real dataset so that a more concluding inference can be drawn. Beside,
it can be investigated in the future how the effectiveness of this proposed method

can be improved in terms of computational cost.
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Chapter 7

Appendix

7.1 Floyd-Warshall Algorithm

Floyd—Warshall algorithm is an algorithm for finding shortest paths in a weighted
graph with positive or negative edge weights without any negative cycles. This
algorithm compares all possible paths through the graph between each pair of
vertices. It does so by incrementally improving an estimate on the shortest path
between two vertices, until the estimate is optimal. The time complexity and space
complexity of this algorithm is O(n?). The algorithm is described below.

Let dfj be the length of the shortest path from ¢ to j such that all the interme-
diate vertices on the path are in the set {1,2, ..., k}. For each pairs of vertices, the
shortest path could be either a path that only uses vertices in the set {1,2,...,k}
or a path that goes from ¢ to k£ 4+ 1 and then from k& + 1 to j. Now, the shortest
path from ¢ to j contains vertex k. So it contains a subpath from ¢ to k and k to
j. Each subpath can only contain intermediate vertex {1,2, ...,k — 1}. They are
represented as dfk_l and d’,zj_l. So the path length is d?k_l +d’,§;1. Now, the shortest
path is dfj = min(dfj’l, dfk’ T4 dzj’l). Using this equation recursively, the shortest

path between all the pairs of points are computed.
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7.2 Datasets

The features of the 16 datasets are given in details below.

AT&T : The 1024 features are the 32x32 image pixels.

Breast_cancer : The 9 features are clump thickness, uniformity of cell size, uni-
formity of cell shape, marginal adhesion, single epithelial cell size, bare nuclei,

bland chromatin, normal nucleoli, mitosis.

Diabetes : The 8 features are number of times pregnant, plasma glucose con-
centration a 2 hours in an oral glucose tolerance test, diastolic blood pressure,
triceps skin fold thickness, 2-Hour serum insulin, body mass index, diabetes pedi-

gree function, age, class variable.

Haberman : The 3 features are age of patient at time of operation, patient’s

year of operation, number of positive auxiliary nodes detected.

Heart : The 13 features are age, sex, chest pain type, resting blood pressure,
serum cholesterol, fasting blood sugar, resting electrocardiographic results, max-
imum heart rate achieved, exercise induced angina, old-peak = ST depression
induced by exercise relative to rest, the slope of the peak exercise ST segment,

number of major vessels colored by fluoroscopy, thal.

Ionosphere : The 34 features are the radar data collected by a system in Goose

Bay, Labrador.

Iris : The 4 features are sepal length, sepal width, petal length, petal width.

96



Liver : The 5 features are mcv mean corpuscular volume, alkaline phosphatase,
sgpt alamine aminotransferase, sgot aspartate aminotransferase, gamma-glutamyl
transpeptidase.

MNIST : The 784 features are the 28x28 image pixels.

Reduced_at&t : The 103 features are top 10% principal eigenvectors of the
AT&T dataset computed by applying PCA algorithm.

Reduced _mnist : The 79 features are top 10% principal eigenvectors of the

MNIST dataset computed by applying PCA algorithm.

Reduced_yale : The 103 features are top 10% principal eigenvectors of the YALE
dataset computed by applying PCA algorithm.

Thyroid : The 5 features are collected from Garavan Institute, Sydney, Australia.
Two-Norm : This dataset is obtained from the Delve datasets.

Wine : The 13 features are Alcohol, Malic acid, ash, alkalinity of ash, mag-
nesium, total phenols, flavonoids, nonflavanoid. phenols, proanthocyanins, color

intensity, hue, OD280/0D315 of diluted wines, proline.

YALE : The 1024 features are the 32x32 image pixels.
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7.3 Results

Detailed result of Experiment-I for each of the datasets individually is given in the

table-7.1

Table 7.1: Rank distribution based on Experiment-I across different distance mea-

sures for all embeddings of each of the 16 datasets

AT&T Breast_cancer

EC DF CT BI EC DF CT BI

1 38 4 2 4 8 0 0 2
2 4 13 18 13 1 1 6 2
3 3 15 14 16 1 3 2 4
4 3 16 14 15 0 7 1 2

Total 67 139 136 138 13 39 22 26

Average || 1.396 | 2.896 | 2.833 | 2.875 || 1.300 | 3.900 | 2.200 | 2.600

Diabetes Haberman

EC DF CT BI EC DF CT BI

1 4 3 4 1 6 3 7 8
2 1 D D 1 6 6 4 8
3 2 2 1 7 3 9 7 5
4 5 2 2 3 9 6 6 3

Total 32 27 25 36 63 66 60 51

Average || 2.667 | 2.250 | 2.083 | 3.000 || 2.625 | 2.750 | 2.500 | 2.125
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Heart Ionosphere

EC DF CcT BI EC DF cT BI

1 4 3 4 1 6 3 7 8

2 1 ) D 1 6 6 4 8

3 2 2 1 7 3 9 7 >

4 5 2 2 3 9 6 6 3

Total 32 27 25 36 63 66 60 51
Average || 2.667 | 2.250 | 2.083 | 3.000 || 2.625 | 2.750 | 2.500 | 2.125

Iris Liver

EC M1 M2 M3 EC M1 M2 M3

1 4 1 4 3 3 3 4 2

2 4 3 D 0 1 2 1 8

3 3 4 0 > 2 7 2 1

4 1 4 3 4 6 0 d 1
Total 25 35 26 34 35 28 32 25
Average || 2.083 | 2.917 | 2.167 | 2.833 || 2.917 | 2.333 | 2.667 | 2.083

MNIST Reduced _até&:t

EC DF CcT BI EC DF CcT BI

1 7 8 19 14 22 6 13 7

2 3 21 16 8 8 14 9 17

3 4 13 11 20 15 13 13 7

4 34 6 2 6 3 15 13 17
Total 161 113 92 114 95 133 122 130
Average || 3.354 | 2.354 | 1.917 | 2.375 || 1.979 | 2.771 | 2.542 | 2.708
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Reduced mnist Reduced _yale

EC DF CT BI EC DF CT BI

1 3 14 7 18 30 5 6 7
2 4 13 13 12 6 14 20 8
3 3 12 8 9 6 17 9 16
4 32 3 4 3 6 12 13 17

Total 144 88 103 81 84 132 125 139

Average || 3.524 | 2.095 | 2.452 | 1.929 || 1.750 | 2.750 | 2.604 | 2.896

Thyroid Two-Norm

EC DF CT BI EC DF CT BI

1 2 4 4 4 7 5 3 3
2 3 5 5 5 4 2 8 4
3 4 3 4 1 2 7 3 6
4 3 0 3 6 ) 4 4 o

Total 32 23 31 34 41 46 44 49

Average || 2.667 | 1.917 | 2.583 | 2.278 || 2.778 | 2.556 | 2.444 | 2.722

Wine YALE

EC DF CT BI EC DF CT BI

1 ) 3 2 2 35 3 3 5
2 2 0 9 1 6 7 22 13
3 2 6 0 4 3 25 12 8
4 3 3 1 2 4 13 9 22

Total 27 33 24 36 72 144 121 143

Average || 2.250 | 2.750 | 2.000 | 3.000 || 1.500 | 3.000 | 2.521 | 2.979
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