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Chapter 1

Introduction

This thesis is on improving the nonlinear dimensionality reduction techniques using

a better approach for neighborhood selection and thereby improving classification

and clustering processes.

1.1 Motivation

Most real datasets have very high dimensions: hence handling them is important

as high dimensional data computation is costly. But due to high correlation of the

data, it is safe to assume, feature extraction techniques are needed to reduce the

dimensions into relevant information. In this thesis, the work is focused on how

nonlinear datasets are such that they have high dimension feature space but can

be embedded into a lower dimensional data. Embedding consists of planarizing a

high dimension nonlinear data into linear data.
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1.2 Thesis Outline

The remaining chapters are organized as follows. In Chapter 1, dimensionality

reduction is discussed in detail along with other nonlinear dimensionality reduction

techniques. The various other nonlinear techniques identify how our proposed

algorithm is different in approach and performs better.

In Chapter 2, Locally linear embedding is discussed in detail along with a

short survey of all modifications done on it and all previous work done related to

neighbourhood selection for nonlinear dimensionality reduction.

In Chapter 3, the proposed algorithms are discussed along with their time

complexities and how they are an improvement over the former.

In Chapter 4, the experiments are discussed. These testing are done on the

results obtained after classifying the low dimensional embedding. The embed-

dings are done using Locally Linear Embedding while the classification is done by

applying k-Nearest Neighbor classification technique.

In this report, initially we see how the LLE works and performs on manifolds as

well as real datasets. LLE having no internal model tries a generalized nonlinear

dimensionality reduction approach: this method is not intended as depending upon

the geometry and spatial organization of the points if the point model is made

adaptive, the algorithm will run faster and with better result as it would then

always tend to return true neighbours not just any neighbours through Euclidean

distance measure. This is the motivation for our proposed algorithms, where true

neighbours are found using the neighbourhood similarity of the points. If two

houses are true neighbours for each other in a locality, then the two house share a

large of neighbours among each other, while the converse is also true. The other

proposed algorithm is based on the fact that the neighbours are distributed on the

higher dimensional space in Gaussian distribution, so the Euclidean distances of

the neighbours from a point follows a Gaussian distribution. This being the fact
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then by central limit theorem, only the points from the central mean of threshold

distance are true neighbors once the distances are fit to a normal distribution.

This approach works sufficiently well and better than the original LLE algorithm

as the datasets tend to follow a Gaussian distribution to the fact that the Entropy

of the distances from the all other points fits a normal distribution.

These proposed algorithms find a better way of finding the neighbourhood of

each point, beyond that this neighbourhood is fed to the LLE algorithm which in

turn does the nonlinear dimensionality reduction. Topological preservation tech-

niques are the measures of finding if a new topological embedding is better than

the original topological embedding, or one embedding is better than the other.

Since a lot of algorithms do nonlinear dimensionality reduction techniques, a mea-

sure or a ranking system is needed to see which algorithm outperforms the other.

The topological preservation techniques are used to measure the embeddings of

manifold datasets of Swiss Roll, S-Curve, Mobius strip and few other manifolds.

Through this a comparison can be easily made as to which algorithm ranked best.

Since the nonlinear dimensionality reduction techniques are mostly used in real

datasets and even more so on face and character recognition, linear classification

tools are used to classify the results of the various embedding results.
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1.3 Dimensionality Reduction

Apart from few simple datasets, most datasets have a huge number of dimensions.

These datasets are computationally expensive to work with. But it is seen, that

in many cases, the features are highly correlated to one another i.e. one feature

is highly dependent on another feature. So these features are redundant and dont

provide any new insight/affect the properties of the datasets. Though high di-

mensional data is hugely important, getting rid of such features and reducing the

dimensions becomes a more important job. Lower the dimension of feature space,

better the algorithm works to understand the properties of the data. Manifold data

is one where data is Euclidean in a close neighborhood but globally is not. Lets

consider the Earth, Earth being a manifold. All the cities on earth are datapoints

for the manifold. Distance between two cities: Kolkata and Howrah is distance

from Kolkata to Howrah through the surface of Earth, more like a geodesic dis-

tance. But, Kolkata and Howrah being so close the geodesic distance and the

Euclidean distance between the two are the same. Now consider Kolkata and New

York, the distance between these two cities through the surface(geodesic distance)

and the Euclidean distance(through the center of earth) are quite different. So

Earth is a manifold, considering how it shows Euclidean properties in close neigh-

borhood while in large global space it doesnt. Discovering the underlying manifold

from a dataset becomes very important to know how to reduce the dimensions of

the feature space.

Over the years a bunch of dimensionality reduction techniques have been de-

vised and improved upon. Principal Component analysis or PCA is probably the

most important of them all.

In this figure 1.1, the PCA algorithm identifies the principal components for

the data. Thus the new dimensions of the datasets becomes the new eigenvectors.

The eigenvector along the stretch of the data is the first principal component. To
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Figure 1.1: PCA performed on two dimensional Iris data.

note, PCA can identify only the linear dimensional reduction. So for nonlinear

data like manifolds, the the principal components would be long the equator and

through the poles. Take Figure 1.2 for example, this is a nonlinear data, and the

PCA doesn’t work. Other linear dimensional reduction techniques are Singular

Value decomposition, Factor analysis, Linear discriminant analysis.

Figure 1.2: Nonlinear data: Sphere manifold

The nonlinear dimensionality reduction techniques can handle such cases. They

are discussed In details later. They can be broadly categorized as two types: either

they perform mapping from high to low dimensional data or they use high dimen-

sional data to form datapoints using linear combination of their neighbors. Once
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that is done, the dimensions reduced, keeping constrain the linear combination,

hence the intrinsic manifold properties of the data remains intact.

Real datasets have high dimensions and highly correlated features. In an ideal

case, they fall into a manifold and thereby the manifold can be properly embedded

without any error. But real dataset dont possess the ideal case, they do tend to

fall on a manifold but with a degree of noise. So the embedding them causes

few loss of intrinsic properties. This is the curse of dimensionality reduction. If

a dataset is dimensionality reduced, it losses intrinsic details. But the dataset

becomes much less costly for computation. A very important scenario is when the

nearest neighbor doesnt remain the remain the nearest neighbor after embedding,

or when nearest neighbor and the furthest neighbor becomes so close that it cannot

be detected as measurement noise, then the nonlinear dimensionality reduction

techniques fail to work. Nonlinear dimensionality reduction techniques work on

the basic assumption that there is a lower dimensional manifold for these data.

1.4 Manifold Learning

Manifold data is one where data is Euclidean in a close neighbourhood but globally

is not. Lets consider the Earth, Earth being a manifold. All the cities on earth are

datapoints for the manifold. Distance between two cities: Kolkata and Howrah

is distance from Kolkata to Howrah through the surface of Earth, more like a

geodesic distance. But, Kolkata and Howrah being so close the geodesic distance

and the Euclidean distance between the two are the same. Now consider Kolkata

and New York, the distance between these two cities through the surface(geodesic

distance) and the Euclidean distance(through the center of earth) are quite dif-

ferent. So Earth is a manifold, considering how it shows Euclidean properties in

close neighbourhood while in large global space it doesnt. Discovering the under-
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lying manifold from a dataset becomes very important to know how to reduce the

dimensions of the feature space.

Figure 1.3: Twin Peaks

In the figure 1.3, it is Twin peaks data surface generated through MATLAB

commands. Twin Peaks is a nonlinear dataset and the manifold is the surface of

the Twin peaks that is drawn. The concept of manifold is very important as it

refers to topology and manifold learning being topological preservation techniques.

Manifold learning is an approach to non-linear dimensionality reduction. It

refers to understanding the intrinsic topology of the graph and then determin-

ing the optimal dimensionality reduction based on the topology. It is in general

an unsupervised algorithm as it doesnt consider labels to determine the optimal

dimensional reduction.

Most manifold learning techniques are based on the following three steps:

1. Identify local neighbors.

2. Make each point a linear combination of its neighbors.

3. Solve the Eigen decomposition problem of minimizing the global cost func-

tion.
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The first step and the most important step for the manifold learning is effective

choice of neighbors. The thesis focuses on two novel neighbourhood selection

techniques. Since most manifold learning techniques uses local neighbourhood

information, thus the proposed algorithms can be used with any manifold learning

algorithm. The locality identification is the most important step as it identifies

the intrinsic properties of the dataset and thereby how the manifold is aligned.

All manifold learning techniques need a parameter of what is the dimension of

the reduced dataset. So, if the original dataset is of 10 dimensions which contain

a manifold of 6 dimensions, then the parameter value should be 6. Since this

is a value to be inputted by the user, it relies on the fact that the user has an

understanding of the manifold, which is rarely true. If the same dataset is reduced

to 5 dimension, then the data loses major information, it loses the sense of locality

and hence the manifold learning becomes a waste.

Let X be the dataset which needs to dimensionality reduced. X is a matrix

of n × m where n represents the number of datapoints and m represents the

dimension of the feature space. The dataset is dimensionality reduced to Y , n× d

where d << m. That is the data is transformed from a m-dimensional feature

space to a d-dimensional feature space.

Dimensionality reduction techniques are of two type mainly:

1. Nonlinear dimensionality reduction techniques

2. Linear dimensionality reduction techniques

This thesis identifies how to better identify neighborhood for manifold. Nonlinear

dimensionality reduction techniques is thereby discussed in details.
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Figure 1.4: Nonlinear dimensionality reduction: Punctured Sphere

1.5 Nonlinear dimensionality reduction techniques

Figure 1.4 shows a nonlinear dataset. These cannot be embedded using linear

dimensionality reduction techniques. In this section, the most common nonlinear

techniques for dimensionality reduction are explained in details along with their

timing complexities.

Some of the non-linear dimensionality reduction techniques are discussed below.

1.5.1 Multi-dimensional Scaling

Multi-dimensional scaling or MDS is an algorithm which causes a simple mapping

from high dimensional data to low dimensional data: as it retains the intrinsic

properties of the data, it is a nonlinear dimensionality reduction technique. But

unlike other algorithms which we will discuss later, it doesnt consider the opti-

mization cost function required for the locality preservation.
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The error is calculated by the raw stress function given below:

φ(Y ) =
∑
ij

(‖(xi − xj)‖ − ‖(yi − yj)‖)2 (1.1)

Where xi, xj are the corresponding high dimensional datapoints and ‖xi − xj‖ is

the normal Euclidean distance between these two points. Similarly, yi, yj are the

corresponding low dimensional datapoints and ‖yi − yj‖is the Euclidean distance

between them.

1.5.2 Sammon’s Mapping

Sammons mapping, named after John W. Sammon who proposed the algorithm

in 1969, is the most primary and simple approach algorithm that maps a high-

dimensional space to a space of lower dimensional space while maintaining the

intrinsic property of the data, hence by embedding the data. Unlike traditional

PCA approach, it involves a cost function optimization problem and not solving

a system a linear equations. To note, being a nonlinear dimensionality reduction

technique, Sammon’s mapping performs better than the traditional PCA.

The cost function for Sammons mapping is given below.

φ(Y ) =
1∑

ij ‖xi − xj‖
∑
i 6=j

(‖xi − xj‖ − ‖yi − yj‖)2

‖xi − xj‖
(1.2)

Clearly the cost function doesn’t take in consideration of the locality condition

for the nonlinear data, but considers the entire data, thus the algorithm is not

suitable for manifold embedding.

Coming back to the optimization problem in hand, the optimization problem

can be easily solved by “Eigen decomposition of a pairwise dissimilarity matrix”

or many other means possible. Due to the simplicity of Eigen decomposition

problem, it is most commonly used in dimensionality reduction. Only drawback
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being the algorithm doesn’t always converges, so in such cases the algorithm is

iterated multiple times and then stopped.

1.5.3 Locally Linear Embedding

Locally Linear Embedding has the basic assumption of the manifold/topological

subspace being very well sampled i.e., datapoints are much uniformly spread and

vice versa all the corresponding true neighbors lie in a Euclidean neighborhood

(i.e. satisfies the manifold property). It can be inferred from the assumption that

in an ideal case, the datapoints are possibly some weighted linear combination

of its true neighbors. To note, this is an approximation the better the neighbor-

hood set, better is the approximation. From this comes the intrinsic idea for LLE

that similar weighted linear combination becomes invariable under simple linear

transformations such as translation, rotation, and scaling: Therefore, the intrinsic

property of the data should remain undeterred even after the manifold is trans-

formed (while unfolding) into a lower dimensional data. The lower dimensional

unfolding and dimensionality reduction of the datapoints is given by solving two

constrained least squares optimization problems.

Locally Linear Embedding (LLE) is discussed in details in the later sections.

1.5.4 Local Tangent Space Alignment

Local Tangent Space Alignment (LTSA) identifies locality of the data by consid-

ering local tangent space of each datapoint. For each point a tangent space is

created and all point are projected on the tangent space and then decided which

points are true neighbors of the datapoint. The motivation of the algorithm is that

true neighbors share the same tangent space so projected points in turn becomes

neighbors. When the data is embedded, the tangent spaces becomes same and

uniform thus solidifying the idea. LTSA preserves the intrinsic properties of the
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dataset. It considers locality to reduce the dimensions of the dataset, hence by it

is a nonlinear dimensionality technique.

The algorithm of LTSA is discussed below.

Algorithm 1: Local Tangent Space Alignment

Result: Embedded dataset

initialization;

1. Selecting neighbourhood for each point;

2. Extracting local coordinates;

3. Aligning local coordinates;

1. Selecting neighbourhood for each point

For each of the datapoints xi, the k nearest neighbours xij. The nearest

neighbors for each datapoints xi is identified based on a desired distance

metric which in general is Euclidean norm.

2. Extracting local coordinates

Since the locality the datapoints hold the linear property, PCA is performed

on each of the datapoints xi and its k neighbours xik. PCA identifies the

tangent space and projects the neighbors xik on them. The optimization

error function becomes:

ki∑
j=1

∥∥∥xij − xi −Qiθ
(i)
j

∥∥∥2

(1.3)

where xij is the coordinate of the j-th neighbour of datapoint xi

Qi is the tangent span of datapoint xi

θ
(i)
j is the local coordinate of the datapoints xi in tangent space

‖xi − yj‖ represents the Euclidean norm.
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3. Aligning local coordinates

These local tangent space coordinates are used to find the lower dimensional

embedding.The optimization error function becomes:

N∑
i=1

∥∥∥Tij − ci − Liθ(i)
j

∥∥∥2

(1.4)

where T is the set of all global co-ordinates and φ is the semi-definite matrix

represented as

φ =
N∑
i=1

1

ki
SiφiS

T
i (1.5)

It can be solved by Eigen decomposition problem.

1.5.5 Isomap

Isometric feature mapping, or Isomap is a combination of the Floyd Warshall al-

gorithm with classical MDS. This method was proposed by Joshua B. Tenenbaum,

Vin de Silva, John C. Langford in the year 2000. MDS takes a matrix of pair-wise

distances between all points, and computes a position for each point. But MDS

only considers the Euclidean distance between the datapoints. As a result, the

global geometry of the datapoints may not be captured properly. Isomap uses

geodesic distances thereby confirming the global shape of the dataset. Geodesic

distance is the distance between two points measured over the surface of the man-

ifold. Finally given all the geodesic distance matrix, it uses Floyd Warshall algo-

rithm to find the neighborhood graph.Isomap then uses classic MDS to compute

the reduced-dimensional positions of all the points.
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Algorithm 2: ISOMAP

Result: Embedded dataset

initialization;

1. Neighbourhood graph construction;

2. Shortest path computation;

3. Low-dimensional Embedding;

The Isomap, algorithm has three major steps which are discussed below.

1. Neighborhood graph construction

Most nonlinear dimensionality reduction technique uses locality condition

and thereby uses any distance metric. In this step, geodesic distance is

used to compute distances dxij between pairs of points i and j in the high-

dimensional space. Geodesic distances compute distances over the manifold.

Once the geodesic distances are compute it gives a rough measure of which

are neighbors and which aren’t. Computing geodesic distances also trans-

forms the dataset into a neighborhood graph, where shortest distance paths

are connected by edges representing the weight dxij between neighbouring

points i and j.

2. Shortest path computation

In this step, the shortest path dgij between each pair of point is calculated

in the transformed new graph. This can be achieved by using the Floyd-

Warshall algorithm of all pair shortest distance in graphs.

3. Low-dimensional Embedding

Isomap is a variant of the classical MDS method. Once the global neigh-

borhood is identified using the geodesic distances, the cost function of the

classical MDS can be applied to reduce the dimension of the dataset.
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Let Yi be the new embedding of the point corresponding to Xi in the em-

bedding Y . The cost function:

φ(Y ) = ‖τ(DG)− τ(DY )‖L2 (1.6)

where DY is the Euclidean distance matrix in the embedded coordinate sys-

tem and dyij = ‖Yi − Yj‖ is the Euclidean norm for Yi and Yj.. The τ operator

converts distances to inner products. This is later solved by Eigen decom-

position problem.

As is clear from figure 1.5, Swiss Hole manifold, embedding cannot be achieved well

by ISOMAP, as it cannot make up the gap the point to identify nearest neighbors

as it is more susceptible to noise and outliers as the geodesic distance is used.

Figure 1.5: Swiss Hole ISOMAP embedding
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Chapter 2

Locally Linear Embedding

2.1 Locally Linear Embedding

Locally Linear Embedding has the basic assumption of the manifold/topological

subspace being very well sampled i.e., datapoints are much uniformly spread and

vice versa all the corresponding true neighbors lie in a Euclidean neighborhood

(i.e. satisfies the manifold property). It can be inferred from the assumption that

in an ideal case, the datapoints are possibly some weighted linear combination

of its true neighbors. To note, this is an approximation the better the neighbor-

hood set, better is the approximation. From this comes the intrinsic idea for LLE

that similar weighted linear combination becomes invariable under simple linear

transformations such as translation, rotation, and scaling: Therefore, the intrinsic

property of the data should remain undeterred even after the manifold is trans-

formed (while unfolding) into a lower dimensional data. The lower dimensional

unfolding and dimensionality reduction of the datapoints is given by solving two

constrained least squares optimization problems.

Given a set of datapoints, X where each datapoint, Xi, is represented by each

high dimensional features, which in turn serves as the input to the Locally Linear
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Figure 2.1: LLE algorithm. Source: Nonlinear dimensionality reduction by locally

linear embedding. Roweis, Saul (2000)

algorithm consisting of m n-dimensional datapoints/vectors Xi = (xi1, ..., xin), i =

1,m, (XiεR
n),. Thereby X becomes a matrix of size n × m. The target of the

LLE algorithm is to reduce the n dimensional features into d dimensions. Thereby

the output of the LLE algorithm becomes m d-dimensional datapoints/vectors

Yi = (yi1, ..., yin), i = 1,m, (YiεR
d), and Y becomes a matrix of size d ×m. The

LLE algorithm has three simple stages. The first stage consists of identifying all

the k nearest neighbors of each datapoint, Xi. Initially all pairwise distances are

measured using a distance measure, possibly Euclidean distances, or considering

a radius of neighborhood and take all points in the radius as neighbors: based

on these distances, the k nearest neighbors are chosen.In the second stage, the

weights wij are computed which can approximate each datapoint, Xi, from a lin-

ear combination of the neighborhood, Xi1, ..., Xik, minimizing the following cost

function:

E(W ) =
m∑
i=1

∥∥∥∥∥Xi −
k∑
j=1

wijXij

∥∥∥∥∥
2

, (2.1)
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given that
∑j=1

k wij = 1. In general, LLE algorithm uses the Euclidean distance to

compute the distance, thereby Xij = (xji1, ...., x
j
in), i = 1,m, j = 1, k, and ‖Xi − Yi‖

is the Euclidean norm. This is constrained least squares optimization problem that

can be easily solved by a system of linear equations.

Consider a particular data point Xi with its k nearest neighbors Xij and re-

construction weights Xij, j = 1, k, which sums up to one. Then the reconstruction

error can be written as:

E(i)(W ) =

∥∥∥∥∥Xi −
k∑
j=1

wijXij

∥∥∥∥∥
2

=

∥∥∥∥∥
k∑
j=1

wij(Xi −Xij)

∥∥∥∥∥
2

E(i)(W ) =
k∑

j,l=1

wijwdc
i
jl =

k∑
j=1

wij

k∑
l=1

wdc
i
jl (2.2)

Here Ci = cijl, j, l = 1, k is the k × k local Gram matrix with the elements defined

by the following equation:

cijl = (Xi −Xij) · (Xi −Xil) (2.3)

where Xij and Xil are the neighbors of Xi.

Like previously mentioned, LLE may use any metric distances not just Eu-

clidean to form the distances between points, e.g. instead of traditional distance

measure a kernel distance from a kernel feature space can also compute the same

distances. This way the neighborhood detection is not unique, and the LLE algo

is more generalized.

The following system of linear equations solves the cost optimization problem:

k∑
l=1

cijlwil = 1 (2.4)

and then adjusted to hold the constraint
∑j=1

k wij = 1:

wij ← wij/
k∑
l=1

wil (2.5)
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When the number of neighbors is greater than the original data dimensionality

(k > n), the weight matrix becomes “nearly singular”. To solve that problem

reconstruction weight equation is modified:

cijl ← cijl + δjlTr(C
i)t (2.6)

where Tr(Ci) is the trace of Ci, δjl = 1 if j = l, and 0, otherwise and t is the

control parameter set: (t > 0, t� 1).

In the third stage, each datapoint Xi is mapped to a low-dimensional point

Yi, based on the weights wij so it can finally preserve the same high dimensional

neighborhood geometry. So, the new lower dimensional vectors Yi are determined

by minimizing:

Φ(Y ) =
m∑
i=1

∥∥∥∥∥Yi −
k∑
j=1

wijYij

∥∥∥∥∥
2

(2.7)

subject to the following constraints:

1

m

m∑
i=1

YiY
T
i = I, and

m∑
i=1

Yi = 0 (2.8)

In the above equation 2.8, I is the identity matrix. Since all the eigenvectors

are sorted, the d-dimensional coordinates are computed (d < n) is by taking the

bottom d+ 1 eigenvector of M = (I −W )T (I −W ) from the LLE equation, where

W = w1j, ..., wmj, j = 1, k.

The LLE algorithm works very well, and thereby has many advantages:

• There are only two parameters to be set.

• Only equation to optimize is minimizing the error.

• Being a topological preservation technique, manifold can be properly embed-

ded.

LLE performs very well on most datasets.The main disadvantages of LLE are

as follows:
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1. LLE cannot handle non-uniform sample densities efficiently. As various re-

gions differs in sample densities, the weights also drifts accordingly. This

cannot be prevented

2. LLE do not have any internal model, so it cannot embed new datapoints.

3. LLE is sensitive to its control parameter i.e. number of neighbours (k) which

is a fixed value.

4. LLE is very sensitive to noise. Even a small noise would cause failure in

deriving low dimensional coordinates.

5. Eigen decompsosition problem may not always be solvable like when the

number of sample is less than the number of neighbors.

6. LLE cannot ensure that two different data points in the high-dimensional

space are embedded at different points in a lower-dimensional space.

The original LLE algorithm remains very effective while embedding any mani-

fold structure. But it overlooks the geometry of the manifold and thereby various

errors are introduced due to wrong distance considered in the least k distances. So

in light of these problems shown by LLE, we wanted to address the issue that LLE

has a constant value of k. So the number of nearest neighbors considered should

be varied with the geometry of the data. Again, simply using Euclidean distances

to compute which points are true neighbors are wrong as geodesic distances are

more accurate representations of the information.

Our approach holds in heart the basic LLE algorithm but incorporates the

geometry of the manifold and thereby making the k more adaptive. This causes

the algorithm to take better embedding with lesser errors and standard deviations

and also increases the stability of the manifold embedding. Here, stability of the

manifold learning is meant by correct embedding of the manifold with greater
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variation of the manifold or value of k. As already seen, the value of k is constant

and assumed before the start of the LLE. But our approach removes this manual

part of the algorithm and supervises k according to how the other true neighbors

are doing.

Figure 2.2: LLE embedding for S-Curve

2.2 LLE using other distance measures

Any other distance measures works the same way as these metrics: like the cam

weighted distance introduced by Zhou and Chen 2006 (the weighted LLE algo-

rithm, WLLE) which computes the distance by dividing the manifold into patches,

and subsequently introducing greater weights to low density areas and high density

weights to denser areas.

For the manifold datasets, the WLLE doesn’t works well, as forming patches

causes erroneous selection of true neighbors : while using this technique for feature

extraction is very helpful as it shows the important features to be extracted of the

lot, as the points are allocated to patches, so definite features can be identified.

The Relative Transformation (RT) and Kernel Relative Transformation (KRT are
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Figure 2.3: How the WLLE changes the neighborhood of the points

proposed by Guihua et al. (2008). It is the kernel approach where a kernel distance

is used as metric and the neighborhood is calculated using nearest neighbor in

the kernel subspace. Consequently the datapoints very less susceptible to errors

caused due to noise and sparsity of data. The kernel method generates then a new

neighborhood of the datapoints, which in turn is used by the LLE algorithm.

2.3 LLE using other neighborhood selection

k-Nearest neighbor is used to find the k most near neighbors based on the distance

measure. But when the data violates the basic assumption of the LLE algorithm

that the data is well-sampled, a new neighborhood selection must be chosen as

these common methods don’t fruit proper rue neighbors to be selected.

A basic approach involves a PCA for reprocessing the data to remove the

erroneous data and then applying LLE on the analyses data. This technique

was proposed by Park et al. (2004). Robust Locally Linear Embedding (RLLE)

proposed by Chang and Yeung (2006) utilizes the same idea for applying a robust

PCA to pre-process the data, giving a probability of how likely a dataset would
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fall on the actual manifold, that is how likely a datapoint is not an oultier or noise.

Hence the approach is more susceptible to noise and outliers.

It is known that the number of neighbors to be selected, k is constant and

user defined, Kouropteva et al. (2002) proposed an algorithm so that the number

of neighbors to be selected for the dataset is chosen automatically based on the

various topological measures to show which k value optimizes topological measures.

A number of experiments are performed on a set of k values to find which suits

the dataset best. The topological measures are Spearman’s Rho, Konig’s measure,

Mean Relative Rank Error. The topological measures are well discussed later in

Chapter 4.

Once the neighborhood is selected, the linear combination of weights are de-

termined. The neighbor smoothing embedding (NSE) approach nullifies the noise

as much as possible by using a local linear surface estimator (Qiu 2004). This

estimator smooths the locally linear patches of neighbors. Finally the new re-

construction weight is calculated using the smoothed distances. NSE algorithm

performs as well as the RLLE as it can handle noise very well.

2.4 LLE using a reasonable reconstruction weights

The previous section discussed about how the distance metric can be varied, how

the neighborhood can be chosen. This section identifies the linear combination

of the neighbors. The second stage of the LLE algorithm is that each point is

approximated as a linear combination of its neighbors. For non-uniform data, the

reconstruction weight becomes very unstable as the neighbors are far away located.

So, if the density of the datapoints are considered, the LLE can be made more

stable and efficient.

Hou et al (2009) proposed an algorithm to employ linear local transformations
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in the sway the reconstruction weights for less denser areas.

Ĝi = [zi1 − zii, ..., zik − zii] = P T
i Gi. Then:

Qi = GT
i Gi = ViΣ

T
i U

T
i UiΣiV

T
i = ViΣ

T
i ΣiV

T
i (2.9)

The equation arrives from the singular decomposition of the matrix Gi.

Ui = (Ui1, Ui2); Σi =

Σi1 0

0 Σi2

 ;Vi = (Vi1, Vi2) (2.10)

where Ui1 = (ui1, ...uid) and Vi1 = (vi1, ...vid) are the first d columns of Ui and

Vi, and Ui2 = (ui(d+1), ...uiD) and Vi2 = (vi(d+1), ...vik) are the last D− d and k− d

columns of Ui and Vi, respectively, and Σi1 and Σi2 are the dimension of d× d and

(D − d)× (k − d), respectively.

Q̂i = Ĝi

T
Ĝi = ViΣ

T
i

UT
i1

UT
i2

Ui1UT
i1[Ui1, Ui2]ΣiV

T
i (2.11)

Q̂i = ViΣ
T
i

 Id×d 0d×(D−d)

0(D−d)×d I(D−d)×(D−d)

ΣiV
T
i = Vi1ΣT

i1Σi1V
T
i1 (2.12)

Thereby the LLE cost optimization problem becomes:

min wTi Vi1Σ2
i1V

T
i1wi (2.13)

s.t. wTi Γ = 1

If w ε span(vi(d+1), ...vik)), then
∥∥Σi1V

T
i1wi

∥∥ = 0. So the problem can be restated

as follows: look for wTi Γ = 1. In other words, we are looking for:

arg min
(w ε span(vi(d+1),...vik),wT

i Γ=1

∥∥w2
i

∥∥ (2.14)

The solution to the problem is

wi =
V T
i2 Vi2Γ

ΓTV T
i2 Vi2Γ

(2.15)
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Chapter 3

Proposed works

3.1 Problem Definition

Most dimensionality reduction techniques under-perform in reducing the dimen-

sions for the real datasets. To improve a nonlinear dimensionality reduction tech-

nique, it needs to perform well in neighborhood selection on which points are true

neighbors of the point.

Definition : True neighbors : True neighbors of a point, Xi are the points in

the dataset, Xj ε X that are neighbors of the point in an ideal embedding of the

dataset.

Neighborhood selection is a very important part of the dimensionality reduc-

tion. So better an algorithm identifies the true neighbors, the better would be the

embedding. Since neighborhood selection is necessary for all nonlinear dimension-

ality reduction technique, the proposed algorithm works as a black-box which can

be used by other nonlinear dimensionality reduction techniques. The algorithm

is discussed with reference to LLE, as it is one of the simpler algorithms and has

much less control parameters.
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3.2 Past Work

LLE in itself faces a lot of problems as due to lack of parameters, the algorithm

cannot be modified for different nonlinear surfaces. On easy way to identify the

geometry of the point around a neighborhood, is to compute the Gaussian and

mean curvatures of the point.

The value of k is determined dynamically for each point Xi of the manifold.

For each point Xi, the corresponding Gaussian curvature (KG(i)) and Mean cur-

vature (KH(i)) are computed. Now KG(i) and KH(i) values of each points Xi are

considered. If both KG(i) and KH(i) of point Xi are within 10% range of KG(i)

and KH(i) of point Xj , then points Xi and Xj are said to be neighbors and count

Ki is increased by 1. This method is applied for all points to determine the dy-

namic k value of each point. There is a limit to the maximum value of k, (Kmax).

If for some Xi, Ki exceeds Kmax, then nearest k neighbors are chosen based on

Euclidean distance.

This algorithm performs well but this modification works only on LLE. The

next two approaches are two novel approaches for neighborhood selection for non-

linear dimensionality reduction techniques. So the approaches not only finds neigh-

bors which can be used for the LLE algorithm but also other nonlinear dimension-

ality reduction techniques. For simplicity, only the LLE implementation of the

neighborhood selection is shown.
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Algorithm 3: Neighbors selection using Gaussian and mean curvatures

Result: Newneighborhood

initialization;

Gaussian curvature KG(i) and Mean curvature KH(i) for each data point Xi

are computed;

while Two points xi and xj are taken for neighborhood comparison do

if 0.9 ∗KG(i) ≤ KG(j) ≤ 1.1 ∗KG(i)and0.9 ∗KH(i) ≤ KH(j)1.1 ∗KH(i)

then

newneighborhood(xj) should contain xi;

newneighborhood(xi) should contain xj;

end

end

Since it takes into consideration the geometry of the manifold, thus it can adapt

the value of the k, rather form the d-dimensional vector is greater precision and

lesser error as k isn’t fixed manually.

3.3 True neighbors using similarity

This algorithm is a direct consequence of what neighbors are true neighbors of a

point xi. The Euclidean distances are not the correct reflection of true neighbors.

If two points “share” more neighbors, then these two points can be called true

neighbors : as can be seen in a household locality, that if two houses share a lot

of neighbors in between them, then those two houses are indeed neighbors to

themselves. To prove they will always be neighbors of each other, lets assume an

ideal case where in a neighborhood of uniformly distributed, two houses X and

Y share m neighbors among themselves. To note, this is not the case for real

datasets, real datasets are more sparse, so the neighborhood selection is harder

and the following threshold measure might not be applicable.
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Figure 3.1: Swiss Roll true neighborhood through similarity

As the image shows these two houses, can share at most a portion of the

common area.

Percentage of neighborhood shared =
2
(
πR2

3
−
√

3R2

4

)
πR2

= .391 ≈ 39%

So if the households share more than these many neighbors, the houses are neigh-

bors to each other. thus if m ≥ 39%, then the houses are neighbors to each other.

Since for real datasets, it might not be applicable, that’s why an experimental

value is chosen ≥ 39%.

But this is based on the assumption that the dataset is uniformly distributed,

but the neighborhood selection process of original LLE causes outliers only in case

of non-uniform data. So the threshold is experimentally calculated.

Consider any two datapoints of the dataset, X, say xi and xj. The motivation

of the algorithm comes the following ideas :

1. If xi and xj are sufficiently “similar” or are true neighbors of each other,

then the probability that their neighborhood are highly similar in the higher
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dimensional space approaches unity, i.e. more they are similar the more

likely it is that xi and xj are true neighbors.

2. Similarity of points is judged based on the assumption that points in the

same neighborhood have the same properties i.e. distance measure actually

identifies how varied one datapoint is from another: thereby two datapoints

are highly similar/correlated if their neighborhood are highly similar.

Figure 3.2 shows how the similarity of the neighbors are performed on the sorted

neighbors list. A similar idea was proposed by Jarvis and Patrick(1973) who used

the similarity of the neighbors to cluster the data. The idea has an added ad-

vantage that it has “own built-in automatic scaling”. Therefore, extra parameters

aren’t required to dilate the radius of the neighborhood search where the number

of neighbors are sparse: converse is also true. Though the idea of clustering is

not open to similarity to find neighborhood, the following approach identifies the

neighborhood. All pairs of points are tested if they are true neighbors of each

other, through the following approach:

|Neighbor(Xi) ∩Neighbor(Xj)| ≥ threshold

where k > threshold > .39k, as threshold cannot exceed the number of neighbors

originally considered in Euclidean distance. In figure 3.1, suppose a hybrid Swiss

roll, the circle represents radius a globular sphere where the neighbors points are

located. Still the points on the Swiss Roll around which the two spheres are located

have a lot of shared neighbors, but they aren’t true neighbors as can be seen clearly

from the figure.
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Figure 3.2: Figure to show how similarity of neighborhood is performed

Algorithm 4: True Neighbors using neighborhood similarity

Result: Newneighborhood

initialization;

while Two points xi and xj are taken for neighborhood comparison do

Y=neighbor(xi) ∩ neighbor(xj);

if |Y | ≥ threshold then

newneighborhood(xj) should contain xi;

newneighborhood(xi) should contain xj;

end

end

The initialization step consists of calculating the Neighbor matrix. The neigh-

bor matrix is the ranked matrix of the points with respect to distance from itself.

Now for general purpose, the distance measure used is the Euclidean distance.

X = {xi : xiεR
m} being the set of all points that participated in the nonlinear

dimensionality reduction, where m is the number of features or the dimension of

the feature space.
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This algorithm finally doesn’t take in the ordering of which points are better

neighbors to which are not so true neighbors of a point. The algorithm doesn’t

suffers as the LLE algorithm itself doesn’t matter if the points are randomly or-

dered, as it forms a weighted matrix irrespective of the order to make a linear

combination of the neighbors. Since linear combination doesn’t require ordering,

henceby this too doesn’t require ordering.

Complexity of this algorithm is of order O(k log(k) ∗
(
n
2

)
).All neighborhood

pairs need to be considered i.e. each xi and xj needs to be compared to see

if they are true neighbors of each other. Thus the total number of comparison

turns out as k log(k) ∗
(
n
2

)
. Finally, for each pair of points, the k-neighbors of the

two points are intersected to find the “similar” neighbors. This is a huge time-

overhead on top of the normal LLE algorithm which has a time complexity of

O[D log(k)N log(N)]+O[DNk3]+O[dN2]. But, this time can reduced significantly

through a small improvement to the the true neighbor selection process. Instead of

taking each of the
(
n
2

)
pairs to check if they are true neighbors, only the k-Euclidean

distance neighbors are checked to find if they are true neighbors. Since each of

the k neighbors are only checked for the N points, this little modification in the

algorithm makes the complexity O(nk2 log(k)). This is not a huge time overhaul

on the original LLE algorithm, and the results are better with more precision.

3.4 True neighbors using normal distribution

Neighborhood pairwise distances indicate that the point are in close neighborhood

or non-uniformly placed. Higher a specific distance from xi and xj varies the less

likely that the points are true neighbors. So all the pairwise distances are used to

form a distribution so that higher probability can be assured to lower distances

while lesser probability to higher distances. Generally this follows a Bell-curve.
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Thus there exists a normal distribution to explain the neighborhood distances of

a datapoint.

The next proposed algorithm works on the idea that the neighborhood of a

point in the Euclidean space follows a normal distribution, that is the neighborhood

distances, or the distances of all points to each other around the neighborhood,

follows a Gaussian distribution.

Algorithm 5: Neighborhood selection based on probability of fitting the

distribution
Result: Newneighborhood

initialization of the neighborhood using a distance measure;

for Each point xi in the dataset do

Let M be the set of all the k neighbors of xi;

Di = dist(xj, xk) : xj, xkεneighborhood(xi) ;

Fit a normal distribution on Di;

Find the membership of the radial distances from the point xi ;

Top k′ probability values indicate the most likely neighbors;

end

The original neighborhood distances are put to the normal distribution, thus

with a mean, µ and standard deviation, σ they fit the distribution. The neigh-

borhood distances being an always positive distances, the distances forms a Half-

normal distribution by itself. Finally, the radial distances are then put to fit on

the normal distribution with the same µ, and σ. Fitting the radial distances on the

distribution will give a probability of how likely the points are likely to fall close

to the central. Thus with higher probability it is likely to fall away from the center

while with lower probability it is likely to fall towards the center. The distances

that fall closest to the neighbors are taken as the neighbors of the original point

xi. Since following the 3-sigma rule, k′ = 0.68k, as then the new neighborhood

would fall on the first quadrant of the normal distribution. Figure 3.3 shows how
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the guassian dataset can be embedded using the above algorithm.

Time complexity of the above proposed algorithm is O(n
(
k
2

)
). As for each of

the point in the dataset all the
(
k
2

)
combinations are taken as the neighborhood

distances so that they can be fit on the normal distribution. Now once the nor-

mal distribution is fitted, only the k neighborhood distances are compared to the

normal distribution to find their membership. Hence the total time complexity

is governed by the initial O(n
(
k
2

)
). This neighborhood selection is then the new

neighbor for the points fit to the LLE algorithm. Thus the complexity of the total

run-time is complexity of this algorithm along with the complexity of the LLE

algorithm, thus making the run time of the overall algorithm not affect much on

the proposed algorithm as the complexity of the LLE algo is greater.

3.5 Timing Complexity analysis

The table 3.1 shows all the timing complexities of the nonlinear dimensionality

reduction techniques which can be used with the proposed neighborhood selection

process to yield better neighborhood and hence better embedding of the datasets.

In this table, mentioned, D is the input higher dimension of the data, k is the

number of neighboring points considered, d is the output dimensions, and N is the

number of the samples/datapoints.

For Locally Linear Embedding, the initial O[D log(k)N log(N)] is for the neigh-

borhood selection process. The initial searching of k-Neighbors based on any dis-

tance measure and then sorting the data of dimensions N × D. The proposed

algorithms work after this step, so the total cost of K-nearest neighborhood selec-

tion turns out to be O[D log(k)N log(N)] +O[Nk2 log(k)].

The final step of any nonlinear dimensionality reduction is a partial Eigen

decomposition problem. This step converts the D dimensional input data into d
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(a)

(b)

Figure 3.3: (a) Gaussian manifold (b) 2 dimensional Embedding of the dataset

done using proposed algorithm 1
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Table 3.1: Timing complexities of nonlinear dimensionality reduction techniques

Complexity

Isomap O[D log(k)N log(N)] +O[N2(k + log(k))] +O[dN2]

LLE O[D log(k)N log(N)] +O[DNk3] +O[dN2]

Modified LLE O[D log(k)N log(N)] +O[DNk3] +O[N(k −D)k2] +O[dN2]

Hessian LLE O[D log(k)N log(N)] +O[DNk3] +O[Nd6] +O[dN2]

LTSA O[D log(k)N log(N)] +O[DNk3] +O[dk2] +O[dN2]

Laplacian Eigenmaps O[D log(k)N log(N)] +O[DNk3] +O[dN2]

dimensions. The complexity of this step is O[dN2]. Since this step already has a

O[dN2] order, thus dN2 >> Nk2 log(k) and thereby dN >> k2 log(k) condition

needs to satisfy to not affect the complexity of the algorithm. Again the second

step of most nonlinear dimensionality reduction technique uses a reconstruction

matrix of the neighbors which is of the complexity O[DNk3]. This step is clearly

the rate determining step in most algorithms. And this step takes far longer time

than O[Nk2 log(k)]. Hence the addition of the algorithm to find true neighbors

doesn’t hamper the timing of the nonlinear dimensionality reduction techniques.
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Figure 3.4: Flowchart of the nonlinear dimensionality reduction process
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Chapter 4

Experimental Evaluation

In this section, we discuss about the setup of the experiments. The datasets

used for the experiments are clearly described below along with the tools used

in the experimentation and testing. For the synthetic datasets the topological

preservation techniques are used which identify how well an embedding preserves

the inherent topology. For the real real datasets, k-NN classifier is used. The real

datasets are explained below.

4.1 Datasets

For the experiments, only 11 datasets are used, 9 of them are selected from UCI

machine learning repository rest two are MNIST and YALE datasets, they are

obtained from Saul Roweis’s website.

Here, #sample, #attribute and #class represents the number of number of

data samples or examples, number of attributes or features and number of classes

for each dataset respectively. Each row represents a dataset.
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Table 4.1: Description of Datasets

Datasets #sample #attribute #class

Breast cancer 457 10 2

Diabetes 513 8 2

Haber 205 3 2

Heart 181 13 2

Ion 235 34 2

Iris 150 4 3

Liver 231 5 2

MNIST (number) 2105 784 10

Thyroid 143 5 2

Wine 120 13 2

Yale (face) 165 1024 15

4.2 k-NN

k-NN or k nearest neighbors is a classification technique. For a set of labeled data,

k-NN divides them into train set and test set. Train set consists of the subset of the

data which is fed to the k-NN algorithm along with the corresponding labels. The

k-NN algorithm is then fed the test set without the labels. Each of the datapoint in

the test set is then calculated to find which label it belongs to. It is a classification

technique as the labels are known and a misclassification rate can be computed

based on how many datapoints are labeled different from their original labels. The

only parameter for the algorithm is k, hence the algorithm is simple to implement

and performs well too.
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Algorithm 6: k-NN algorithm

Result: k nearest neighbors

1. All pairwise distances need to be calculated based on a distance

metric,like Euclidean distances;

2. The distances are then sorted in increasing order and the top (k + 1)

distances are chosen;

3. All the points corresponding to respective distances are mapped;

The bottom k points result in the k nearest neighbors;

In the experiments, 7-NN is chosen with a 5-fold cross validation which is

iterated 5 times.

4.3 Three Topology Preservation Measures

Given the various nonlinear dimensionality reduction techniques proposed, and

the algorithms already there are compared to each other on manifolds.These tech-

niques needs to be compared to see mathematically which outperforms the other,

by some embedding measure. Since by nonlinear dimensionality reduction tech-

niques we refer primarily to manifold embedding, any measure or ranking measure

should be based on manifold functionality, thus ranking an algorithm better or

worse than another should be based on how the ranking measure ranks their re-

spective embeddings of the manifolds. A manifold is is a topological space that

resembles Euclidean space near each point. The best way of such ranking mea-

sure and also the most useful way to find such a ranking is through topological

preservation techniques.The topological preservation techniques can somehow cap-

ture the essence of how the topology is maintained when a higher dimensionality

manifold is reduced to a lower dimension. Most common topological preservation

techniques which are used to measure manifold embeddings, are: Spearman’s Rho,

Konig’s measure(or KM), and Mean Relative Rank Error(or MRRE).
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4.3.1 Spearmans rho

Spearman’s rho also sometimes referred to as Spearman’s rank correlation, ρ or

rspearman , is a metric to find correlation between two variables. Manifold em-

bedding is supposed to preserve the intrinsic data topology, so it can be used

to compare an embedded point and the original point in the higher dimensional

space. These two points represent the same data hence the more similar they are

the better should be the embedding. The correlation between each Xi and Yi are

recorded to find the total topology preservation between the lower order projection

and the higher order original data.

For each point all the neighbors are ranked in order differently for the original

data and the embedded data. These ordered ranks are henceforth used to find the

Spearman’s rank correlation.

ρSp = 1− 6
∑T

i=1(rX(i)− rY (i))2

T 3 − T
(4.1)

where T = m(m − 1)/2), rX(i), are the ranks of the neighbors calculated for

the original data based on increasing radial distances, and rY (i) are the ranks of

the neighbors calculated for the embedded data. Henceforth it is clear that

−1 ≤ ρSp ≤ 1

The best value of the Spearman rho’s index being 1 meaning the embedded man-

ifold perfectly represents the original manifold, while -1 being the worst index.

The sign corresponds to the direction of correlation. +1 signifies as the ranks

for the original data increases the corresponding ranks for the embedded dataset

also increases: while -1 signifies as the ranks for the original data increases the

corresponding ranks for the embedded dataset also decreases.

The clear advantage of the algorithm is that it has no input parameters and

hence simple to use. As is clear from the equation, Spearman’s rho is computed for
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entire pairwise ranks. But manifold is a subspace which follows Euclidean space

properties in its locality but not globally so considering all pairwise distance is

not practical as this is turn is a topological preservation technique. So even if

ideally the data manages to successfully embed the data, still few local geodesic

distanced ranks would differ from the original data ranks. Thereby the Spearman’s

rho measure would result poor value for the embedding.

4.3.2 Konigs Measure (KM)

To take advantage of the locality idea for the manifold, a new scoring system was

proposed by Konig’s (2000) to identify how well the locality of the topology is

preserved. This is a improvement over Spearman’s rho as not the entire dataset

is considered but the neighborhood of the data from the original dataset and the

embedded dataset are considered. The algorithm works based on two parameters

numbers of the nearest neighbors: k1 and k2(k1 � k2). The Euclidean distances

estimate a neighborhood here. The score ratings are as follows for the ith and the

jth neighbor:

KMij =



3, if rX(i, j) = rY (i, j),

2, if rX(i, j) = rY (i, l), l = 1, k1, l 6= j

1, if rX(i, j) = rY (i, l), l = k1 + 1, k2, k1 < k2

0, otherwise

(4.2)

where rX(i, j) a rank of the jth neighbor Xij of the points Xi where the rank

means the order number of Xij in the analyzed data set X = (x1, x2, ..., xn), rY (i, j)

a rank of the jth neighbor Yij of the points Yi where the rank means the order

number of Yij in the analyzed data set Y = (y1, y2, ..., yn),

The general measure KM is calculated as follows:
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KM =
1

3k1 ×m

m∑
i=1

k1∑
j=1

KMij (4.3)

The range of KM is between 0 and 1, where 0 indicates a poor neighborhood

preservation, and 1 indicates a perfect one.

4.3.3 Mean Relative Rank Errors (MRRE)

As an improvement to Spearman’s rho, Lee and Verleysen (2007) proposed a topo-

logical measure that uses local neighborhood ranks. The ranks rX(i, j) are calcu-

lated differently:

• From the original dataset of high dimensions, X, for each of the point Xi as

a reference, all the Euclidean norms are computed ‖Xi −Xt‖, for 1 ≤ t ≤

m, t 6= i

• the ranks are then obtained by sorting the distances.rX(i, j) be the rank of

Xj then Xj is the rX(i, j) index in the sorted distance matrix for Xi. Note

that if

j = arg min
1≤t≤m,t6=i

‖Xi −Xt‖ then rX(i, j) = 1 (4.4)

Since MRRE doesn’t consider global ranks, but only neighbors, so MRRE(X →

Y ) is different from MRRE(Y → X).

1. MRRE(X → Y ) = 1
C

∑m
j=1

∑
jεNk(Xi))

rX(i,j)−rY (i,j)
rX(i,j)

2. MRRE(Y → X) = 1
C

∑m
j=1

∑
jεNk(Yi))

rX(i,j)−rY (i,j)
rY (i,j)

where Nk(Xi) denotes the set of order numbers of K neighbors of Xi. The nor-

malization factor is given by

C = m

K∑
l=1

|2l −m− 1|
l

(4.5)
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It ranges between 0 and 1. Both measures MRRE(X → Y ) and MRRE(Y → X)

vanish if the nearest neighbors of each data point are the same, then the ranks are

same and the result causes 0. So the ideal value for MRRE result is 0.

4.4 Experiments

Initially the experiments were carried on the manifold data with the above Topo-

logical measures to validate the perfectness of the algorithm over the original LLE

algorithm. This way we can judge on perfect manifold data with Gaussian noise

to find how the algorithms perform. For the test setup, the three algorithm codes

are run over all the manifolds, mainly Swiss roll, S Curve, Mobius Strip, Twin

Peaks, Swiss Hole, Torroidal Helix, Occluded disks, 3D clusters with parameter

for the topological measure, k=20. To note that experimental results show that

k=20 gives almost best results in the topological measures for these manifolds.

For the embeddings, the value of nearest neighbors considered are k=25.

Table 4.2: Topological measure results for embeddings of Swiss Roll dataset

KM MRRE Spearman’s Rho

Original LLE 0.6367 0.0018 0.1661

Proposed Algo 1 0.6065 0.0020 0.1661

Proposed Algo 2 0.6435 0.0017 0.1661

As is clear from the topological measures from table 4.2, 4.3, 4.4,4.5, our pro-

posed algorithms does better than the original algorithm both in the MRRE and

the KM. By MRRE, the lower is the better, hence in our case our algorithms give

lower value in all of the standard manifolds: for KM, the higher the index is, it’s

better, as is the case for our algorithms. The important thing to note is that,

the Spearman’s rho didn’t get changed for the algorithms: the reason is firstly
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Table 4.3: Topological measure results for embeddings of S-Curve dataset

KM MRRE Spearman’s Rho

Original LLE 0.7474 0.63784e-04 0.1209

Proposed Algo 1 0.7441 0.69013e-04 0.1209

Proposed Algo 2 0.7304 0.69789e-04 0.1209

Table 4.4: Topological measure results for embeddings of Mobius Strip dataset

KM MRRE Spearman’s Rho

Original LLE 0.6715 9.8036e-04 0.0184

Proposed Algo 1 0.6908 9.2215e-04 0.0184

Proposed Algo 2 0.6633 0.001 0.0184

Spearman’s rho compares all the points and doesn’t takes in consideration of the

locality for the manifolds, hence most of the points lie almost similarly in the

neighborhood map, for the original data and the embedded map. the rest of the

neighbors which do fall out of index, can be transformed from one index value to

another to subsequent swaps, which causes the changes in the value go null. This

being the case, the Spearman’s rho values are not considered, as they don’t render

a opinion which algorithm might perform better that the other.

Like the previous table, in table 4.6, the real datasets are tested. The results

show the proposed algorithms do much better than the original algorithm. The

proposed algorithms perform in cases as good as the original dataset misclassifica-

tion rates. That being the case, the multi-class classification data for the datasets

aren’t much good.

The most application of nonlinear dimensionality reduction techniques has to

lie in face, character recognition datasets. MNIST data consist of around 70K data:

it wasn’t possible to test the dataset for that huge volume, so a random sample of
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Table 4.5: Topological measure results for embeddings of Twin Peaks dataset

KM MRRE Spearman’s Rho

Original LLE 0.7825 6.4747e-04 0.0023

Proposed Algo 1 0.8097 5.2097e-04 0.0032

Proposed Algo 2 0.78419 6.7728e-04 0.0036

Table 4.6: Misclassification percentages for classifying the lower dimensional em-

beddings of the separate datasets

Original Data LLE Algo Algo 2 Algo 1

Liver Disorder 7.3593 9.5238 7.7922 7.3593

Mamographic 4.3750 6.5625 5.6250 5.1563

Ionosphere 2.5532 4.6809 5.5319 4.2553

German Numeric 7.0465 6.5967 7.4963 9.1454

Heart 6.0773 8.8398 9.9448 3.8674

Diabetes 7.6023 7.7973 8.7719 7.4074

Breast Cancer 0.6565 8.0963 9.6280 10.9409

6% uniformly was taken from the each class. the new dataset contained only 4000

samples. For the setup, The images were put through Eigenfaces, after which only

the top 250 eigenvalues were taken, hence the MNIST data was previously reduced

to 250 features. For the Yale dataset, we also applied Eigenface, and took the top

40% features or the eigenvectors. The classifier used here was k-NN classifier with

value of k = 7. The classifier is first applied to the original datasets and then to

the three embeddings.The results are shown in table 4.7.

The proposed algorithms perform better, on the average as their misclassifica-

tion rates are much lower than the original data. The observed result agree with
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the topological measures results that the proposed algorithms perform better than

the original algorithms on an average.

Table 4.7: Misclassification percentages for classifying face and character dataset

Yale Faces Character Datasets(MNIST)

Original Dataset 16.05 9.1972

LLE 18.95 8.8

Proposed Algo 2+LLE 18.85 8.3121

Proposed Algo 1+LLE 14.6 7.8411

LTSA 13.97 8.22

HLLE 19.36 8.65

Laplacian Eigenmaps 20.73 13.21
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Figure 4.1: Swiss roll embedding: (a) the Swiss roll surface,(b) randomly sampled

data points from the Swiss roll, (c) LLE embedding, (d) Proposed algo 2+LLE

embedding of the same data, (e) Proposed algo 1+LLE embedding of the same

data 52



Figure 4.2: S-curve embedding: (a) the Swiss roll surface,(b) randomly sampled

data points from the Swiss roll, (c) LLE embedding, (d) Proposed algo 2+LLE

embedding of the same data, (e) Proposed algo 1+LLE embedding of the same

data 53



Figure 4.3: Swiss Hole embedding: (a) LLE embedding, (b) Proposed algo 2+LLE

embedding of the same data, (c) Proposed algo 1+LLE embedding of the same

data

Figure 4.4: 3D cluster embedding
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(a) Mobius Strip embedding: (a) Mobius Strip surface,(b)Proposed algo 2+LLE embed-

ding of the same data, (c)Proposed algo 1+LLE embedding of the same data

(b) Embedding of swiss Roll is affected by the value of k

Figure 4.5
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(a)

(b)

Figure 4.6: MNIST dataset of 3600 samples of class 2,3,4,5:(a) Figure to show em-

bedding of MNIST dataset embedding on 2-dimensions using LLE (b) embedding

done using Proposed algo 1
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Chapter 5

Conclusion

This thesis has proposed two novel neighborhood selection processes. The key step

in nonlinear dimensionality selection is neighborhood selection. The proposed al-

gorithms are added on top of classical LLE as LLE requires a prior neighborhood

selection for dimensionality reduction. To test the improvement with the new

algorithms, topological preservation techniques are measure which algorithm sur-

passed the other. The topological measures done on synthetic dataset revealed

the proposed algorithm performed better than the original LLE. Spearman’s rho

resulted same value for each of the algorithms so using Spearman’s rho for future

validation can deemed unfruitful. For results of torroidal Helix embedding, there is

a conflict for win between results of KM and MRRE, KM shows Proposed algo

1 as winner while MRRE shows Original LLE as winner. This conflict clearly

shows the topological measures aren’t foolproof measures for measuring how well

an embedding is done for a nonlinear dimensionality reduction. Clearly from the

results of the embeddings and the topological measures, Proposed Algo 2 performs

almost similar to the Original LLE: in all the experiments, they show close-by re-

sults. Though in most cases, it shows an improvement, still it doesn’t show a

huge improvement over the original LLE. To note, modified versions of the LLE
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improves on its timing complexities but none on the neighborhood selection, so

once the neighborhood is same for modified versions of the LLE with the original

LLE, the topological measures should also show similar results.

For real datasets, the misclassification rate is enough to justify which algorithm

performs better: the better algorithm should thereby put lower misclassification

rate. In most of the cases, the proposed algo 1 has much lower misclassification

rate than the other. But except the Heart dataset, in all the original data mis-

classification rate is lower, meaning, with loss in dimension the data loses valuable

information. In the Heart dataset, the misclassification rate for the Proposed algo

1 is much lower than the other misclassification rates even with original data. So

it can be deduced that for the rest of the dataset, though the misclassification rate

is lower but it isn’t at par with the original data, henceforth losing the importance

of dimensionality reduction. For the face dataset and the MNIST, the proposed

algorithms perform much better than other nonlinear dimensionality reduction

techniques and also original dataset. Face and MNIST datasets are indeed non-

linear dimensional data. Reducing the features of the 28 × 28 image using PCA

is effective as through experimental results, after 250 top eigenvectors, the rest

of the vectors don’t contribute much to the classification. A clear conclusion can

be made that the proposed algorithm performs better than the other nonlinear

dimensionality reduction methods that re tested.

5.1 Future Work

As said earlier, the goal of work in this direction is to find a good neighborhood

selection method for dimensionality reduction techniques. A good amount of pre-

liminary work for this has been done. Here is a list of future work and challenges

:
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• Use the algorithm to perform clustering as similar neighborhood selection

can be used to find which points belong to which cluster.

• Addressing the issues involved in scaling the model to deal with very huge

data. The algorithms used till now work fine on a small dataset. As the

dataset size increases, a method like nearest neighbor may no longer be

feasible.

• Finding neighborhood using normal distribution also works the same way

as finding the entropy in the neighborhood, So using entropy to find an

alternate neighborhood selection process. LEGclust or layered entropy graph

based clustering is a classic example of entropy based neighborhood selection.

This can be used to find neighborhood and later later used for dimensionality

reduction or classification purposes.

• To use this algorithm to extend this work of neighborhood selection on other

non-linear dimensionality reduction techniques. Some other non-linear di-

mensionality reduction techniques like Laplacian Eigenmap, Isomap, LTSA

and MVU also computes the nearest neighbours in a similar approach to that

of LLE. In these techniques, the proposed neighborhood selection methods

can be applied and the outcomes can be studied.

• To generalize the value of the number of nearest neighbor parameter i.e. k

used in LLE. It is an important parameter as the earlier studies have shown

that with the change in value of k, the result varies considerably. So an

adaptive approach for selecting the k value dynamically can be tried. In

that case, the value of k will be dynamic and will vary for each datapoint

based on the local geometry of the dataset.
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