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Abstract

With the advancement of technology, different sources of genetic information

become available with a low cost. In the research for finding cancer subtypes,

what will help to proceed with a targeted treatment, this opened up a new

dimension. However, the basic problem is how to reach towards a proper

integration scheme such that both the personal significance and interactive

information is conserved, because only then it will be possible to utilize the

data resource and obtain richer information about subtypes. On the other

hand, as the subtypes are not always properly defined or even known, thus

any solution should be unsupervised in nature. This study presented an

integration scheme based on the concept of iCluster method, to address these

issues. With its many merits, however the crisp nature of clusters obtained

by iCluster is not always natural in the case of overlapping and incomplete

nature of the data, thus a rough-fuzzy clustering approach will be more

suitable, where an addition of intelligent initial center selection algorithm is

most desired. A variety of cluster validation index are used to support the

claims and present the findings on two different cancer data.
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Chapter 1

Introduction

With the advance of technology not only we get to know about new sources

of genetic informations originated from the description of different structural

and functional features of a genetic body such as mRNA, miRNA or the DNA

itself, but also obtain them from samples at a low cost. This huge supply

of information gave a new dimension to genetic research what aims to inte-

grate these different sources with the intuition of obtaining richer insights on

their objectives. This helps form the addition of interactive effects between

sources, over their personal significance that is different for the sources. Now

it is established that data like gene expression, miRNA expression, copy num-

ber variation (CNV) of genes and DNA methylation of cytosine residues at

CpG di-nucleotides are very much correlated and coveys very useful descrip-

tion of a cell’s health and functional behaviour. But the exact pathway of

interaction is quiet vague and hard to isolate from their own modifications.

As for example gene expression can be altered in disease state, for mutation

or corruption in a very personal modification, but miRNA, methylation pat-

tern and copy number regulates the expression pattern of genes, or different

copy of a gene can be methylated differently or targeted by different miRNA

resulting in different functional activity.

Here we will use four major types of genetic data, both mRNA and
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miRNA expression data is similar in nature. They are both obtained through

microarray experiments. They forms a expression tables where we usually

take each column to be a gene or miRNA and each row a sample. Each entry

is the expression of a sample, which is either a normalized log2 ratio of the

intensity of the two channels in a microarray probe which will be mapped to

a gene, or a single intensity value for a single channel microarray depending

on the make (For multiple probes corresponds to a gene, an average is taken

over the final values). DNA methylation data indicates the methylation level

of a gene, methylation of gene acts as a switch regulating the expression.

This data set is similar in nature where only, instead of genes in the column

we have probes and each entry is a β value ranged between 0 and 1. This data

set can be transformed into a set, similar to expression table by mapping the

probes to corresponding genes and taking average over the case of multiple

correspondence[4]. The β value is the ratio of the methylated probe intensity

and sum of overall i.e. methylated and unmethylated probe intensity, where

a probe corresponds to a CpG site of a gene. So a β value equals to 0 means

a completely unmethylated CpG site, and 1 the exact opposite. By default

each of the gene occurs in pairs in the two sister chromosomes, except in

gamet cells. For reasons this copy number changes by alteration (duplication

or deletion in nature) of a part or the entire gene. Being an intrinsic part

of evolution CNV or series of single nucleotide polymorphism (SNP) over a

large region is observed almost regularly. However as it leads to a complete

change of the gene, an unfortunate or corrupted one is very sure to cause

genetic disorder and diseases[21]. CNV data is obtained these days through

a SNP array which is a variation of microarray.

Cancer is known to effect the entire genetic system and alter their struc-

ture and functions differently, thus both the interaction pattern and private

feature goes through drastic changes. Like copy number changes of genes

which changes the coding and the number of gene and irregular methylation

pattern leading to faulty expression of oncogenes and tumor suppressors,
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are common. Methylation acts as a switch, the more methylated a gene,

the expression lowers down in reverse. Also miRNA shows a very unpre-

dictable behaviour in target mRNA selection and directly regulates a gene’s

functions taking a major role in different cancers[2]. Thus not only gene

expression which in most of the time the result of a deeper alteration, but

all these causal factors comes into play when a cancer takes place and the

minute variation of their interaction and alteration, results into chancer sub-

types. Thus the research of subtype discovery can be highly benefited by this

integrative analysis approach. Defining proper subtypes mentioning their in-

dividual characteristics is very much necessary for diagnosis and targeted

treatment, unfortunately for most of the cases none exists. Thus a type of

integration that captures the inter-source association keeping their hetero-

geneity and specificity alive will obtain more useful and rich information.

But such an integration is always a challenge as the data sources are from

different domain, scale and interprets differently. Also as the subtypes are

not properly defined thus obtaining a labeled data set is impossible, so clas-

sification of unknown samples after training is beyond question, however a

solution can be obtained through clustering.

In the growing interest and importance, many people trying to attack

this integrative clustering problem. Mainly they followed one of the two

paths, either the clustering took place on individual data sets followed by

an post hoc method of integration, or combine the data set and “jointly”

cluster them. In both of this direction there are many notable works. In

the first approach the level of agreement between clusters can be found by

adjusted rand index or by the help of a consensus clustering (also known as

ensemble clustering), an example can be the integration proposed by Cancer

Genome Atlas Network [12]. However the approach may be attractive due

to its simplicity but unfortunately looses shared information by the process.

The second approach on the other hand always faces a problem to conserve

the source specific information alongside the shared. For example Qin et
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al.[14] performed a hierarchical clustering on the correlation matrix of gene

and miRNA expression. Lee et. al.[8] applied a biclustering on the correla-

tion matrix of CNV and gene expression data. While both these methods

captured the shared information but failed to accumulate the individual.

Lock et. al.[9] developed a statistical model known as JIVE, where a de-

composition was proposed to capture the individual, joint and residual noise

separately. The method was inspired by the PCA and provides a dimension

reduction. Zhang et. al.[22] used a non-negative matrix factorization method

for integrative analysis of different genomic data.

One of the popular method for integrative clustering is iCluster pro-

posed by Shen et. al. (2009)[16], which was inspired by probabilistic PCA

(PPCA)[18], where the tumor subtypes are modeled with a Gaussian latent

variable. However with the many benefits of the algorithm, for a high dimen-

sion data the time complexity will be large enough due to a matrix inversion,

what will take place in the iterative phase of the algorithm and only a crisp

clustering is produced, we will highlight these points later, at the time of

presenting the details. iCluster method can be seen as a two stage process,

where a feature extraction is followed by a clustering. There can be vari-

ous types of clustering methods available based on the nature of the data

and shape of clusters. Here, in genetic data the inherent possible incom-

pleteness and overlapping character opposes a crisp partition of the samples,

we intended to tackle this situation by a rough fuzzy clustering[10] with an

intelligent starting center selection[11].
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Chapter 2

iCluster: A Brief Discussion

The method, iCluster is one of the most interesting and popular methods

of genomic data integration and clustering. The algorithm is notable for its

many merits such as a strong mathematical basis, which also opens up oppor-

tunities for further development or extension by adding modules supporting

different new data type or type specific treatment. The algorithm provides

internal feature selection process by making the insignificant features to have

less effect on the result and outputs a transformed data in a low-dimensional

space that can be used for further analysis, acting similar to a feature ex-

traction algorithm. However the iCluster used a crisp natured clustering

algorithm like k-means to cluster the samples into subtypes, which is not

always supportive to the nature of real life data which contains vagueness or

incompleteness and overlapping clusters. Also, it has a high computational

complexity, which is discussed in this chapter.

Being one of the simplest clustering algorithm k-means is used widely. It

iteratively minimizes an objective function that is actually the total within

cluster distance. However a demerit of the algorithm is, it suffers from a local

minima convergence problem. The k-means algorithm is very much sensitive

to the initial cluster centers, which are usually chosen at random, and reaches

to a local minima of the objective function rather than the global one. Zha et.
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al.[20] showed that the objective function of k-means can be expressed in the

form of a matrix trace maximization problem. This type of formulation of the

problem is appreciated because, now the continuous solution of the cluster

indicator matrix will be represented by the k Eigen vector corresponding to

the top k Eigen values of the sample gram matrix. A k-means applied on this

continuous solution can recover the interpretability of the cluster indicator

matrix, or the samples can be labeled properly. He et. al.[3] pointed out that

among this k Eigen vectors one is a linear combination of others, thus only

k − 1 EIgen vector is sufficient. Now the first k − 1 Eigen vector actually

represents the directions along which, if the dataset is projected, maximum

variance will be achieved in that low dimensional space. As a result any

distinct subgroup will be best identified. This approach is similar to the

principal component analysis (PCA), here only the top (k − 1) principal

component are considered.

But PCA has the problem of failing to distinguish between the vari-

ance and co-variance. This is very important drawback in our topic as the

co-variances and variances actually interprets the interaction and specific

significance of the datasets. This problem was solved by the introduction

of probabilistic PCA[18] or PPCA. PPCA used a Gaussian latent variable

model which for a mean centered data is like

X = WZ + ǫ (2.1)

inspired by the factor analysis model which inherently takes care of the

above problem by representing the correlations by the latent variable Z

and the individual variances by ǫ. To be more specific about the model,

Z ∼ N(0, 1) and ǫ ∼ N(0, ψ) thus from the properties of normal distribution

X ∼ N(WW ′ + ψ). However, the space spanned by the PCA and PPCA is

not similar, such equality is possible under the condition of isotropic error

terms, where ψ = σ2I, which is very unlikely in real life cases.

By the virtue of this model an direct extension to multiple dataset can
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be observed. Let the datasets be Xi, where i = 1, · · · p, each having n

samples and mi features, and Z is the common latent space, Z = [zkj], k =

1, · · · c− 1, j = 1, · · ·n, here we take c to be the number of cancer subtypes.

We also take M =
∑p

i=1mi. for a single dataset, let the ith model be

Xi = WiZ + ǫi

The p set of models are connected by the latent component which represent

the interaction, while ǫ = (ǫ1, · · · ǫp), where each ǫi having mean zero and

diagonal covariance matrix say ψi represents the residual variance specific to

each data types. W = (W1, · · · ,Wp) is a coefficient or projection matrix.

To be precise each Wij actually denotes the contribution of feature i in de-

termining the cluster j. This property allow us to introduce a lasso type

error on W which reduces the effect of insignificant features towards zero.

Lasso error is a L1 norm penalty that in many cases actually reduces to a

soft thresholding operation defined as follows, S is a soft threshold operation

on x under a penalty term λ:

S(x, λ) =











x− λ if x > λ

0 if |x| ≤ λ

x+ λ if x < −λ

However, to match our model with the model and solution framework

of the PPCA we need to assume a continuous parameterization of Z, nam-

ing Z∗, such that Z∗ ∼ N(0, 1). We define ǫ ∼ N(0, ψ), such that ψ =

diag(ψ1, · · ·ψM). We take X = (X1, · · ·Xp), and obtain the marginal distri-

bution to be following multivariate normal with mean zero, and variance Σ,

where Σ = WW ′+ψ. Now our model resembles the PPCA model defined in

equation (2.1). Now to obtain the maximum likelihood estimate of W and

ψ to determine E(Z∗|X), we need to utilize the EM algorithm. Before doing
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so we need to write the complete data log likelihood, as defined below:

lc(W,ψ) = −
n

2

{

p
∑

i=1

miln(2π) + ln(det|ψ|)

}

−
1

2

{

tr((X −WZ∗)′Σ−1(X −WZ∗)) + tr(Z∗′Z∗)
}

(2.2)

We will now use the E and M step of the EM algorithm, which will directly

follow up from the theorems of Gaussian distribution. In E step we will

calculate the mean and variance of Z∗ given X, and in the M step will use

those results to update the value of W and ψ. To introduce the effect of the

lasso error, we can actually soft threshold the updated W at each iteration.

At convergence we will find the E(Z∗|X), which will be our transformed

data. The main steps of the algorithm are:

Input: Let us take n samples and p datasets, Xi having dimension mi,

where i = 1, · · · , p and M =
∑p

i=1mi. The lasso error L, which may be a

vector of length p, if we want to use different error for different dataset. We

want to cluster the samples into c clusters.

Output: A transformed dataset E(Z∗|X) = [zij], where i = 1, · · · , c− 1

and j = 1, · · · , n.

1. Stack the datasets to form a dataset X, having n sample andM dimen-

sions. Mean center each dimension (here imagined as the the rows).

2. Find the covariance matrix by calculating XX ′. Find the Eigen vectors

ai and Eigen values λi, where i = 1, · · · , n of the covariance matrix.

(As n <M, thus the bottom M− n Eigen values will be 0.)

3. Initialize as follows:

sigmaError =
1

n− c+ 1

n
∑

i=c

√

λi (2.3)
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A = [a1 a2 · · · ac−1]

bi =
√

λi − sigmaError, i = 1, · · · c− 1.

B = diag(b1, · · · bc−1)

W = AB (2.4)

Σ = WW ′ + I ∗ sigmaError (2.5)

Initialize convergenceRate=1.0, iteration=0, acceptableError, maxIter-

ation as per choice and E(Z∗|X) = 0. Initialize psi as aM dimensional

vector with all elements being sigmaError.

4. E Step:

E(Z∗|X)old = E(Z∗|X)

E(Z∗|X) = W ′Σ−1X (2.6)

E(Z∗Z∗′ |X) = I −W ′Σ−1W + E(Z∗|X)E(Z∗|X)′ (2.7)

M Step: Let psi(t) and W (t) be the psi and W at the tth iteration.

psi(t+1) =
1

n
diag

{

XX ′ −W (t)E(Z∗|X)X ′
}

(2.8)
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W (t+1) = XE(Z∗|X)′E(Z∗Z∗′ |X)−1 (2.9)

The lasso error application will be a soft threshold type operation as

follows:

W
(t+1)
lasso = sign(W (t+1))

(

|W (t+1)| − L
)

+
(2.10)

For the L being a vector, the lasso error corresponding to the dataset

will be used for the rows of W which correspond to the same dataset.

The normalization step will be done by dividing each element, by the L2

norm of the corresponding column vector. Calculate convergenceRate

as

E = |E(Z∗|X)old − E(Z∗|X|

if E = [eij](c−1)∗n, then convergenceRate = max
i=1,··· ,(c−1)
j=1,··· ,n

eij (2.11)

5. Repeat step 4 till convergenceRate¡acceptableError and iteration ≤

maxIteration.

The analysis of the time complexity starts from the finding of Eigen vec-

tors and Eigen values. For finding the covariance matrix we will need a time

of Θ(M2n), which is followed by the Jacobi Eigen value finding algorithm

involving Jacobi rotation, which takes a O(M2) time. However being an

iterative algorithm which usually converges at a high number of iteration for

large matrices, increase the overall time greatly. So, Jacobian Eigen value

finding takes Θ(kM2) time where k ≫ M, being a “large constant” value.

The initialization step takes the calculation Σ, which involves a multiplication

done in Θ(M2(c−1)) time and an addition of Θ(M) time. The E step takes

a time of O(M3) dominated by the finding of the inverse of Σ, to update the
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value of E(Z∗|X) in equation (2.6). The multiplication of E(Z∗|X)E(Z∗|X)′

takes a time of Θ((c − 1)2n) at the time of update of E(Z∗Z∗′ |X) in equa-

tion (2.7), while the multiplication W ′Σ−1W takes a time of O(M2(c− 1)),

dominating the time needed for the step. Clearly update of ψ in the M step

is overruled by the calculation of covariance matrix, which may be used from

the previous, thus limiting the actual time to be O(M2(c−1)) corresponding

to the the remaining multiplication. The update of W takes O(Mn(c− 1)),

followed by an O(M(c− 1)) time for the lasso error. The normalization will

take O(M(c − 1)) time. So from the explanation it is observed that the it-

erative steps re dominated by an O(M3) time, which is taken by the matrix

inversion. If we assume the number of iteration to be k again, it will usually

be k ≪ M, thus the complexity of the iterative steps remains as before.

After obtaining the transformed data by the above process, a clustering

of samples is used to find the subtypes of cancer. A work flow is given in

figure: 2.1.
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Figure 2.1: The work flow of the iCluster method

13



Chapter 3

Proposed Algorithm

The proposed method starts with the collection of different data sources for

the same set of samples having a similar cancer. After feeding these datasets

to iCluster alongside an appropiate L value (The choice of L value is impor-

tant as one or more dimension of the transformed dataset may lead down

to 0, for an unsuitable one, as demonstrated in the experments chapter).

The iCluster ouput, in the form of the transformed data, is then fed to a

initial center selection algorithm, followed by a RFCM clustering with the

obtained initial centers. The evaluation of clustering solutions and optimisa-

tion of different parameters will follow next. The proposed algorithm follows

a workflow as shown in figure: 3.1.

3.1 Initial Center Selection

A limitation of any c-means algorithm is that it can only achieve a local

optimum solution that depends on the initial choice of the cluster prototypes.

Consequently, computing resources may be wasted in that some initial centers

get stuck in regions of the input space with a scarcity of data points and may

therefore never have the chance to move to new locations where they are

needed.
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Figure 3.1: The workflow of the proposed method
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Input: The dataset X of n samples and m features. The number of

clusters c.

Output: The set of centers V = {v1, v2, · · · vc}.

1. For each sample xi, calculate d(xi, xj) between itself and the sample

xj, where i, j = 1, 2, · · ·n. where d(xi, xj) is the distance measure

calculated as follows.

d(xi, xj) =

√

√

√

√

[

m
∑

r=1

(

xir − xjr
maxr −minr

)2
]

2. Calculate similarity score between two samples xi and xj as follows:

S(xi, xj) =

{

1 if d(xi, xj) ≤ γ

0 Otherwise

3. For each sample xi, calculate total number of similar samples of xi as

N(xi) =
n

∑

j=1

S(xi, xj).

4. Sort n samples according to their values of N(xi) such that N(x1) >

N(x2) > · · · > N(xn).

5. If N(xi) > N(xj) and d(xi, xj) ≤ γ, then xj cannot be considered as

an initial cluster center, resulting in a reduced set of samples to be

considered for c initial cluster centers vi, i = 1, 2, · · · , c.

The initial centers should be in the dense most region of the data, as the

process of clustering actually tries to find those dense regions and return us

the representatives for those regions. The initial center selection process helps

this activity as it tries to identify those regions at the start, by selecting the

sample having most number of close neighbours. Now none of it’s neighbours
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can be a good center as they belong to the same dense region, thus the

algorithm discards them and looks for another point from the remaining, in

the same way till c centers are found. Hence, the initialization method[11]

helps to identify different dense regions present in the data set. The identified

dense regions ultimately lead to discovering natural groups present in the

data set. The whole approach is, therefore, data dependent. The value γ is

an user given parameter and 0.51 < γ < 0.99, whose value takes a major

role over the performance. However an optimal value may be chosen by

comparing cluster validity indexes for different values of γ.

3.2 Fuzzy C-Means and Rough Sets

This section presents the basic notions of fuzzy c-means and rough c-means.

The rough-fuzzy c-means algorithm is developed based on these algorithms[10].

3.2.1 Fuzzy C-Means

LetX = {x1, · · · , xj , · · · , xn} be the set of n objects and the set of c centroids

V = {v1, · · · , vi, · · · , vc}, where xj ∈ ℜm and vi ∈ ℜm. The fuzzy c-means

provides a fuzzification of the hard c-means [1, 5]. It partitions X into c

clusters by minimizing the objective function

J =
n

∑

j=1

c
∑

i=1

(µij)
ḿ1||xj − vi||

2 (3.1)

where 1 ≤ ḿ1 < ∞ is the fuzzifier, vi is the ith centroid corresponding to

cluster βi, µij ∈ [0, 1] is the probabilistic membership of the pattern xj to

cluster βi, and ||.|| is the distance norm, such that

vi =
1

ni

n
∑

j=1

(µij)
ḿ1xj; where ni =

n
∑

j=1

(µij)
ḿ1 (3.2)
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µij = (
c

∑

k=1

(
dij
dkj

)
2

ḿ1−1 )−1; d2ij = ||xj − vi||
2; subject to

c
∑

i=1

µij = 1, ∀j, 0 <
n

∑

j=1

µij < n, ∀i.

(3.3)

The process begins by randomly choosing c objects as the centroids (means)

of the c clusters. The memberships are calculated based on the relative

distance of the object xj to the centroids {vi} by Equation 3.3. After com-

puting memberships of all the objects, the new centroids of the clusters are

calculated as per Equation 3.2. The process stops when the centroids stabi-

lize. That is, the centroids from the previous iteration are identical to those

generated in the current iteration. The basic steps are outlined as follows:

1. Assign initial means vi, i = 1, 2, · · · , c. Choose values for ḿ1 and

threshold ǫ. Set iteration counter t = 1.

2. Compute memberships µij by Equation 3.3 for c clusters and n objects.

3. Update mean (centroid) vi by Equation 3.2.

4. Repeat steps 2 to 4, by incrementing t, until |µij(t)− µij(t− 1)| > ǫ.

In fuzzy c-means, the memberships of an object are inversely related to

the relative distance of the object to the cluster centroids. In effect, it is very

sensitive to noise and outliers. Also, from the standpoint of “compatibility

with the centroid”, the memberships of an object xj in a cluster βi should

be determined solely by how close it is to the mean (centroid) vi of the class,

and should not be coupled with its similarity with respect to other classes.

To alleviate this problem, Krishnapuram and Keller [6, 7] introduced pos-

sibilistic c-means algorithm, where the objective function can be formulated

as

J =
c

∑

i=1

n
∑

j=1

(νij)
ḿ2||xj − vi||

2 +
c

∑

i=1

ηi

n
∑

j=1

(1− νij)
ḿ2 (3.4)
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where 1 ≤ ḿ2 ≤ ∞ is the fuzzifier and ηi represents the scale parameter.

The membership matrix ν generated by the possibilistic c-means is not a

partition matrix in the sense that it does not satisfy the constraint

c
∑

i=1

νij = 1 (3.5)

The update equation of νij is given by

νij =
1

1 + D
; where D =

{

||xj − vi||
2

ηi

}1/(ḿ2−1)

(3.6)

subject to νij ∈ [0, 1], ∀i, j; 0 <
n

∑

j=1

νij ≤ n, ∀i; and maxiνij > 0, ∀j.

The scale parameter ηi represents the zone of influence of the cluster βi. The

update equation for ηi is

ηi = K ·
P

Q
; where P =

n
∑

j=1

(νij)
ḿ2||xj − vi||

2; and Q =
n

∑

j=1

(νij)
ḿ2 (3.7)

Typically K is chosen to be 1. In each iteration, the updated value of νij

depends only on the similarity between the object xj and the centroid vi. The

resulting partition of the data can be interpreted as a possibilistic partition,

and the membership values may be interpreted as degrees of possibility of

the objects belonging to the classes, i.e., the compatibilities of the objects

with the means (centroids). The updating of the means proceeds exactly the

same way as in the case of the fuzzy c-means algorithm.
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3.2.2 Rough Sets

The theory of rough sets begins with the notion of an approximation space,

which is a pair < U,R >, where U be a non-empty set (the universe of

discourse) and R an equivalence relation on U , i.e., R is reflexive, symmetric,

and transitive. The relation R decomposes the set U into disjoint classes in

such a way that two elements x, y are in the same class iff (x, y) ∈ R. Let

denote by U/R the quotient set of U by the relation R, and

U/R = {X1, X2, · · · , Xm}

where Xi is an equivalence class of R, i = 1, 2, · · · ,m. If two elements x, y in

U belong to the same equivalence class Xi ∈ U/R, we say that x and y are

indistinguishable. The equivalence classes of R and the empty set ∅ are the

elementary sets in the approximation space < U,R >. Given an arbitrary set

X ∈ 2U , in general it may not be possible to describeX precisely in < U,R >.

One may characterize X by a pair of lower and upper approximations defined

as follows [13]:

R(X) =
⋃

Xi⊆X

Xi; R(X) =
⋃

Xi∩X 6=∅

Xi

That is, the lower approximation R(X) is the union of all the elementary

sets which are subsets of X, and the upper approximation R(X) is the union

of all the elementary sets which have a non-empty intersection with X. The

interval [R(X), R(X)] is the representation of an ordinary set X in the ap-

proximation space < U,R > or simply called the rough set of X. The lower

(resp., upper) approximation R(X) (resp., R(X)) is interpreted as the col-

lection of those elements of U that definitely (resp., possibly) belong to X.

Further, we can define:

• a set X ∈ 2U is said to be definable (or exact) in < U,R > iff R(X) =

R(X).

20



• for any X, Y ∈ 2U , X is said to be roughly included in Y , denoted by

X⊂̃Y , iff R(X) ⊆ R(Y ) and R(X) ⊆ R(Y ).

• X and Y is said to be roughly equal, denoted by X ≃R Y , in < U,R >

iff R(X) = R(Y ) and R(X) = R(Y ).

In [13], Pawlak discusses two numerical characterizations of imprecision of

a subset X in the approximation space < U,R >: accuracy and roughness.

Accuracy of X, denoted by αR(X), is simply the ratio of the number of

objects in its lower approximation to that in its upper approximation; namely

αR(X) =
|R(X)|

|R(X)|

The roughness of X, denoted by ρR(X), is defined by subtracting the accu-

racy from 1:

ρR(X) = 1− αR(X) = 1−
|R(X)|

|R(X)|

Note that the lower the roughness of a subset, the better is its approximation.

Further, the following observations are easily obtained:

1. As R(X) ⊆ X ⊆ R(X), 0 ≤ ρR(X) ≤ 1.

2. By convention, when X = ∅, R(X) = R(X) = ∅ and ρR(X) = 0.

3. ρR(X) = 0 if and only if X is definable in < U,R >.

3.3 Rough-Fuzzy C-Means Algorithm

Incorporating both fuzzy and rough sets, rough-fuzzy c-means or RFCM

method, adds the concept of fuzzy membership of fuzzy sets, and lower and

upper approximations of rough sets into c-means algorithm. While the mem-

bership of fuzzy sets enables efficient handling of overlapping partitions, the
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rough sets deal with uncertainty, vagueness, and incompleteness in class def-

inition.

3.3.1 Objective Function

RFCM partitions a set of n objects into c clusters by minimizing the objective

function

JRF =











w ×A1 + w̃ × B1 if A(βi) 6= ∅, B(βi) 6= ∅

A1 if A(βi) 6= ∅, B(βi) = ∅

B1 if A(βi) = ∅, B(βi) 6= ∅

(3.8)

A1 =
c

∑

i=1

∑

xj∈A(βi)

(µij)
ḿ1 ||xj − vi||

2; and B1 =
c

∑

i=1

∑

xj∈B(βi)

(µij)
ḿ1 ||xj − vi||

2

where the parameters w and w̃ (= 1− w) correspond to the relative impor-

tance of lower and boundary region. Note that, µij has the same meaning of

membership as that in fuzzy c-means.
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Figure 3.2: Rough-fuzzy c-means: cluster βi is represented by crisp lower
bound and fuzzy boundary

In RFCM, each cluster is represented by a centroid, a crisp lower ap-

proximation, and a fuzzy boundary (Figure: 3.2). The lower approximation

influences the fuzziness of final partition. According to the definitions of lower
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approximations and boundary of rough sets, if an object xj ∈ A(βi), then

xj /∈ A(βk), ∀k 6= i, and xj /∈ B(βi), ∀i. That is, the object xj is contained

in βi definitely. Thus, the weights of the objects in lower approximation of

a cluster should be independent of other centroids and clusters, and should

not be coupled with their similarity with respect to other centroids. Also,

the objects in lower approximation of a cluster should have similar influence

on the corresponding centroid and cluster. Whereas, if xj ∈ B(βi), then the

object xj possibly belongs to βi and potentially belongs to another cluster.

Hence, the objects in boundary regions should have different influence on

the centroids and clusters. So, in RFCM, the membership values of objects

in lower approximation are µij = 1, while those in boundary region are the

same as fuzzy c-means (Equation 3.3). In other word, the RFCM first par-

titions the data into two classes - lower approximation and boundary. Only

the objects in boundary are fuzzified. Thus, A1 reduces to

A1 =
c

∑

i=1

∑

xj∈A(βi)

||xj − vi||
2

and B1 has the same expression as that in Equation 3.8.

3.3.2 Cluster Prototypes

The new centroid is calculated based on the weighting average of the crisp

lower approximation and fuzzy boundary. Computation of the centroid is

modified to include the effects of both fuzzy memberships and lower and

upper bounds. The modified centroid calculation for RFCM is obtained by

solving Equation 3.8 with respect to vi:

vRF
i =











w × C1 + w̃ ×D1 if A(βi) 6= ∅, B(βi) 6= ∅

C1 if A(βi) 6= ∅, B(βi) = ∅

D1 if A(βi) = ∅, B(βi) 6= ∅

(3.9)
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C1 =
1

|A(βi)|

∑

xj∈A(βi)

xj; and D1 =
1

ni

∑

xj∈B(βi)

(µij)
ḿ1xj;

where ni =
∑

xj∈B(βi)

(µij)
ḿ1

|A(βi)| represents the cardinality of A(βi).

Thus, the cluster prototypes (centroids) depend on the parameters w and

w̃, and fuzzifier ḿ1 rule their relative influence. The correlated influence

of these parameters and fuzzifier, makes it somewhat difficult to determine

their optimal values. Since the objects lying in lower approximation definitely

belong to a cluster, they are assigned a higher weight w compared to w̃ of

the objects lying in boundary region. Hence, for RFCM, the values are given

by 0 < w̃ < w < 1.
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Chapter 4

Experiments and Results

We will first start by giving a brief descriptions of the datasets used and

definition of the cluster validity indexes. We have used three parameters, L

as the lasso error in iCluster, γ in the center selection and ω in the RFCM,

alongside the number of clusters. We will vary those parameter values in the

allowable range, and present the results obtained from the different clustering

algorithms (k-means, FCM and RFCM) for the different parameter combina-

tion, and show RFCM to be working better. We will also compare the result

by the integration of different data sources combination and study their ef-

fects. We will follow up with a detailed analysis of the nature of variation of

the indexes with the variation of parameter values. We will also demonstrate

the variation of performance of individual and different combinations of the

datasets.

4.1 Description of Datasets

We used two cancer datasets, both available freely with the R package “iClus-

ter”.

Breast Cancer (BC): This dataset contains the copy number variation

(CNV) and gene expression (GE) having 354 features each, for 41 samples.

25



Among those 41 samples 37 are known to be from tumor while the remaining

4 are cell lines. From the experiments of Shen et. al.[16] we know the dataset

performs best clustering with number of clusters to be 4 and L to be 0.2.

Glioblastoma Multiforme (GBM): This dataset contains three data

sources, copy number variation, gene expression and DNAmethylation (MET),

having 1599, 1740 and 1515 number of features respectively for 55 samples.

Though the number of subtypes for GBM is found to be 4[19], another ex-

periments from Shen et. al.[15] found only 3 of them.

4.2 Cluster Validation

We will evaluate our obtained clusters by the help of four cluster valid-

ity indices, namely POD[16], Dunn index (DNI)[17], Davies Bouldin index

(DBI)[17] and silhouette index (SHI)[17].

POD Index: Let us arrange the sample point of the dataset X, in

such a way that samples from same clusters resides in following rows of the

data matrix. We now calculate B = XXT and standardize the elements of

B by having Bij = Bij/
√

BiiBjj, where i, j = 1, · · ·n , we also impose a

non-negativity by making the negative terms 0. We assume the points in

the clusters to most related and least related with other cluster members.

Thus B should ideally be a block diagonal matrix, let us take an ideal block

diagonal matrix B̄, where if xi and xj belongs to same cluster then B̄ij = 1 or

it is 0 otherwise. We calculate the deviation by D =
∑n

i=1

∑n
j=1 |Bij − B̄ij|.

We define POD = D/n2. Clearly 0 < POD < 1. The less deviation from

the diagonal block structure, indicates better clustering’ thus a low value of

POD indicates a good cluster solution.

For the following indexes the distance between two m dimensional point
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x and y are calculated as

D(x, y) =
1

m

√

√

√

√

m
∑

j=1

(xj − yj)
2

We also assume there are c clusters, C1, C2, · · ·Cc having means as centroidi

for the ith cluster. The distance between two clusters say Ci and Cj is defined

as:

D(Ci, Cj) =
1

m

√

√

√

√

m
∑

k=1

(centroidik − centroidjk)
2

The width of a cluster Ci having ni points is defined as:

W (Ci) =
1

ni

∑

x∈Ci

D(x, centroidi)

Dunn Index: Let us call the maximum width between all the clusters

as Wmax=maxi=1,2,···cW (Ci). We define Dunn index as

Dunn = min
i=1,···c

{

min
j=i+1,···c

(

D(Ci, Cj)

Wmax

)}

Clearly as we indicate a good cluster as separate from others as possible and

as “compact” as possible, thus the width of a good cluster goes to be small

while the distance from other cluster being greater. This indicates the more

the value of Dunn index the better clustering has been obtained.

Davies Bouldin Index: The Davies Bouldin or DB index is defined as:

DB =
1

c

c
∑

i=1

max
i 6=j

{

W (Ci) +W (Cj)

D(Ci, Cj)

}

DB index minimizes the width of a cluster, and maximizes the distance be-

tween two clusters, resulting in a lower value of DB to indicate a good clus-
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tering. Thus we try to minimize the DB index to obtain a good cluster

solution.

Silhouette Index: The value of γ in prediction of center plays a major

role over the performance of the clustering algorithm. The optimum value of

γ, say γ∗ can be determined by running the clustering algorithm over all the

possible values of γ between 0.51 and 0.99 with an increment of 0.01, and

compare the result with the help of Silhouette index as shown by Maji et,

al.(2013)[11]. For each point xi ∈ X, where i = 1, · · ·n we define ai as the

average distance between itself and all the other points, member of the same

cluster. Let the point xi belongs to cluster Cj, having nj members.

ai =
1

nj − 1

∑

y∈Cj

y 6=xi

D(xi, y)

We also define bi for the i
th to be the minimum distance between the point

and the nearest cluster other than Cj.

bi = min
k=1,···c
k 6=i

{

1

nk

∑

y∈Ck

D(xi, y)

}

We define the silhouette width of the point xi to be si as:

si =
bi − ai

max(bi, ai)

Clearly si ∈ [−1, 1], a value of si close to 1, means that the point has sig-

nificantly more distance from other clusters and quiet similar to the other

members of its own clusters, or bi value overwhelms ai value indicating a

good clustering of the point. Similarly si value closer to −1 indicates that

it is distant from its own cluster member, than other clusters, thus clustered

wrongly. For a boundary point si is close to 0. For a cluster Cj the silhouette

s(Cj) is calculated as the average silhouette width of all its member points.
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We define silhouette index as the average of all the silhouette of the clusters,

or SH = 1
c

∑c
j=1 s(Cj). Clearly as the greater value of SH indicates a good

clustering solution, thus we need to maximize that over the runs of clustering

algorithm. We will select the γ∗ producing the best SH value.

4.3 Parameter Optimization

For the purpose of parameter optimization, all the parameters were exhaus-

tively searched in their spaces. We used the number of clusters to be 3, 4

and 5. The value of L was between 0 and 0.5, incremented by the step of

0.05. The value of ω varied between 0.55 to 0.95, incremented by the step

of 0.05, including 0.51 and 0.99. The value of γ varied between 0.51 to 0.99,

with the step of increment 0.01. For each possible combination we obtain

the clustering solution and four cluster validity index values. We will now

present the best values of those indexes and the corresponding parameter

combination.

4.3.1 Result on Breast Cancer (BC) Dataset

For the BC dataset we only had the chance of exploring the capacity of

identifying subtypes for three cases, Two for the individual data sources,

and one the combined. We give the summary as follows:

From the above table we can see that most of the times a higher value

of ω, to be specific 0.99 is giving the best result. While for the POD index

only once we obtained the best at the minimum ω. For the CNV dataset, all

the indexes reached the best with number of clusters 3, while for the other

two datasets we have a confusion. For the integrated dataset, two indexes

became best with number of clusters being 4, as the previous studies were

made with only POD index, and our result does match for that index, thus

the confusion can be due to the nature of quantifying the cluster “goodness”.

POD uses a different measure of distance, which is similar to the angular
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Table 4.1: The best index values for different parameter combination for BC
dataset

Dataset Validity Index No. of Clusters L ω γ Value

DBI 3 0.1 0.99 0.66 0.388084

CNV DNI 3 0.05 0.99 0.71 3.257866

POD 3 0.10 0.90 0.71 0.130892

SHI 3 0.15 0.99 0.71 0.577102

DBI 5 0.1 0.99 0.97 0.389353

GE DNI 3 0 0.99 0.72 3.360559

POD 5 0.25 0.51 0.75 0.139975

SHI 3 0.2 0.8 0.64 0.559596

DBI 5 0.3 0.99 0.97 0.362967

CNV, GE DNI 4 0.05 0.99 0.68 3.22024

POD 4 0.2 0.99 0.85 0.129092

SHI 3 0 0.99 0.69 0.576171

distance between two vectors, in different in nature from the other three

Euclidean distance based index. Among three cases, the integrated dataset

outperforms the other for three indexes, POD, DBI and SHI, while DNI is

best for the GE dataset.

4.3.2 Result on GBM Dataset

For GBM dataset we get to explore 7 cases formed by the different combina-

tion of data sources. We summarize the result as follows:

The number of clusters is found to be similar in every cases and for every

index. The number of clusters for the dataset is matched with the reported.

Now for the value of ω, is most of the case found to be 0.99, for the CNV,

MET dataset for three indexes it has been 0.95, and for two case for the POD

index, it became 0.51, similar to what we observed in the BC dataset. Also

unlike the BC dataset, the value of L in most of cases 0 or 0.5 and in once

it has been 0.1 for the DNI index. The most interesting fact to note is the

performance of CNV dataset, it clearly outperformed every other integrated
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Table 4.2: The best index values for different parameter combination for BC
dataset

Dataset Validity Index No. of Clusters L ω γ Value

DBI 3 0 0.99 0.68 0.285623

CNV DNI 3 0 0.99 0.85 4.968927

POD 3 0 0.99 0.99 0.088481

SHI 3 0 0.99 0.83 0.734613

DBI 3 0 0.99 0.64 0.515081

MET DNI 3 0 0.99 0.70 2.961014

POD 3 0 0.51 0.94 0.092258

SHI 3 0 0.99 0.52 0.586846

DBI 3 0 0.99 0.64 0.572217

GE DNI 3 0 0.99 0.75 3.151997

POD 3 0.05 0.99 0.93 0.117447

SHI 3 0 0.99 0.64 0.521658

DBI 3 0 0.99 0.73 0.522468

CNV, GE DNI 3 0.1 0.99 0.93 2.997192

POD 3 0.05 0.99 0.93 0.117447

SHI 3 0 0.99 0.73 0.506221

DBI 3 0 0.95 0.99 0.572285

CNV, MET DNI 3 0 0.95 0.99 2.718833

POD 3 0 0.95 0.98 0.100037

SHI 3 0 0.99 0.97 0.547987

DBI 3 0 0.99 0.98 0.552817

GE, MET DNI 3 0 0.99 0.72 3.125528

POD 3 0.05 0.51 0.98 0.122524

SHI 3 0 0.99 0.98 0.529917

DBI 3 0 0.99 0.82 0.566246

CNV, GE, DNI 3 0.05 0.99 0.66 3.133784

MET POD 3 0 0.99 0.68 0.11039

SHI 3 0 0.99 0.98 0.529649

and individual data sources in all of the four index values. This indicates

that integration not always guarantees a better result, the subtypes may be

caused by a single data source’s variation, in that case integration will only

increase the noise rather than improving the subtype classification capacity,
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what can be observed here.

4.3.3 Effect of Variation of the Parameters

For the BC dataset, we took the integrated data, i.e. CNV, GE, what per-

formed better than the others. For each index we took the number of clusters

what gave the best result i.e. 4 for POD and DNI, 5 for DBI and 3 for SHI,

for all our following experiments this was kept fixed. The parameter L and

ω was then varied while the index values corresponds to best value obtained

over all γ for the combination of L and ω. This is demonstrated in the figure:

4.1.

Figure 4.1: Effect of variation of L and ω on different index
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To show the effect on indexes due to the variation of L and γ, we keep

the ω as 0.99. This is demonstrated in the figure: 4.2.

Figure 4.2: Effect of variation of L and γ on different index

To show the effect on indexes due to the variation of ω and γ we keep

the number of clusters and L fixed to the optimal value for which that index

gave the best result. This is demonstrated in the figure: 4.3.
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Figure 4.3: Effect of variation of ω and γ on different index
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4.4 Comparison with Other Clustering Tech-

niques

To show that the replacement of k-means by RFCM is useful for improving

the result, we now present a comparison among hard c-means (HCM), FCM

and RFCM. We have the optimal value of number of clusters, L, and γ for

which a index gave the best for a dataset from previous tables. We will use

that same parameter combination for each of the algorithms and only for

RFCM will use the additional ω for which the best result has been obtained.

We present the comparison for BC and GBM in the following tables.

Table 4.3: The comparison of algorithms for BC data
Dataset Validity Index HCM FCM RFCM

DBI 0.418929 0.65027 0.388084

CNV DNI 1.569145 1.365277 3.257866

POD 0.130892 0.130892 0.130892

SHI 0.563791 0.563791 0.577102

DBI 0.764016 1.227905 0.389353

GE DNI 2,618405 1.985616 3.360559

POD 0.174308 0.146220 0.139975

SHI 0.559596 0.525333 0.559596

DBI 0.373214 1.408637 0.362967

CNV, GE DNI 2.879902 0.967837 3.22024

POD 0.149589 0.149589 0.129092

SHI 0.559443 0.441145 0.576171

From the comparison table of BC it can be seen that RFCM outperforms

both the HCM and FCM for the optimized parameter combination and sim-

ilar initial center. Once in GE dataset the SHI is similar to HCM, which

again happened for the POD of the CNV dataset. FCM performed worse

than HCM in all three cases.

From the comparison table of GBM, RFCM has a significant improvement

over the other two algorithms in terms of DNI and DBI, in some cases of POD
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Table 4.4: The comparison of algorithms for GBM data
Dataset Validity Index HCM FCM RFCM

DBI 0.302500 0.345979 0.285623

CNV DNI 4.602448 4.570306 4.968927

POD 0.139568 0.159241 0.088481

SHI 0.734613 0.734613 0.734613

DBI 0.668243 0.793733 0.572217

GE DNI 2.604013 2.207558 3.151997

POD 0.132512 0.163877 0.117447

SHI 0.515104 0.451447 0.521658

DBI 0.562117 0.557290 0.515081

MET DNI 2.379840 2.755370 2.961014

POD 0.114521 0.107314 0.092258

SHI 0.542228 0.556070 0.586846

DBI 0.621155 0.624608 0.522468

CNV, GE DNI 2.095124 1.657201 2.997192

POD 0.132513 0.163877 0.117447

SHI 0.503357 0.503357 0.506221

DBI 0.610234 0.613957 0.572285

CNV, MET DNI 2.326038 2.233771 2.718833

POD 0.100037 0.104307 0.100037

SHI 0.547883 0.547883 0.547987

DBI 0.615283 0.621810 0.552817

GE, MET DNI 2.661776 2.687317 3.125528

POD 0.136540 0.139893 0.122524

SHI 0.521870 0.513956 0.529917

DBI 0.621281 0.615655 0.566246

CNV, GE, MET DNI 1.870187 1.869240 3.133784

POD 0.110389 0.115227 0.11039

SHI 0.523357 0.523357 0.529649

and SHI it has similar index values with the HCM, beside improvement in

most cases. In CNV, GE, MET integrated dataset FCM performed better

than HCM in terms of DBI, alongside in CNV, MET and GE, MET, in terms

of DNI, in cases it has equal SHI value with the HCM.
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Chapter 5

Conclusion and Future Work

Keeping in mind the importance of integrative analysis of genomic data

sources, to discover richer information, (in our case classify cancer patients

based on disease subtypes, for diagnosis and targeted treatment), this study

addressed the multiple issues regarding the topic (like preserving individual

significance and incorporating interaction information) and focused on im-

proving performance of a popular integration scheme. The study showed

that not only a better result can be obtained by modifying the work flow of

the existing method, but also provided results evaluating the importance of

integration. The study introduced RFCM clustering algorithm in the scene,

what is more suitable for the overlapped, and incomplete natured real data.

Alongside it also used an intelligent initial center selection algorithm inspired

by the density based clustering approaches. The study used two publicly

available datasets, each containing multiple data sources. The result section

are targeted to support the claim of improvement of clustering performance

by RFCM and demonstrate the effect and classification capacity of different

data source combinations.

Analyzing the biological significance of the findings is the first future

scope of this study. The relation between the members in the identified

clusters can be explained in form of common genetic alterations. These
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cluster specific alterations are the cause of generation of subtypes. Both of

the dataset selected some genes for each sources based on a variance criteria,

a study should support the importance of these selected genes by finding

their regular functions, relation with the disease, or how their alteration

results into cancer. Secondly, we used a single method of integration in our

study, where a joint dataset was used for the clustering. A study can be

made by comparing the performance of this method with the performance of

clustering the dataset formed by individual dataset’s cluster, to obtain the

final clustering result. Thirdly the study used only four types of data sources,

these days more new sources like somantic mutation or exon information are

becoming available, how to integrate those data sources with the existing

popluar ones is still under research.
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