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Abstract

Browsers can detect malicious websites that are provisioned with forged or fake
TLS/SSL certificates. However, they are not so good at detecting malicious websites
if they are provisioned with mistakenly issued certificates or certificates that have
been issued by a certificate authority (CA) which is compromised. Google proposed
certificate transparency which is an open framework to monitor and audit certificates
in real time. However, the size of a proof is logarithmic in the number of certificates.
This large proof size consumes a lot of bandwidth. Apart from this drawback, re-
vocation is not handled. In NDSS 2014, Ryan extended certificate transparency to
handle efficient revocation of a certificate. However, the size of a proof still remains
logarithmic in the number of certificates.

We have developed and extended the concept of certificate transparency intro-
duced by Google and its enhanced version proposed by Ryan. We have introduced
bilinear-map accumulators (in the context of certificate transparency) in order to pro-
vide proofs of constant size irrespective of the number of certificates. Our scheme has
many desirable properties like efficient revocation, constant size proofs, low verifica-
tion cost and update costs comparable to the existing schemes. We provide proofs of
security and evaluate the performance of our scheme.

Keywords: Certificate transparency, Revocation, Bilinear-map accumulator
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Chapter 1

Introduction

1.1 Introduction

In public key encryption schemes, the sender encrypts a message using the receiver’s
public key to produce a ciphertext, and the receiver decrypts the ciphertext to obtain
the message using her private key. On the other hand, in digital signature schemes,
a verifier uses the public key of the signer in order to check whether a signature on
a given message is valid. Thus, in public key cryptography, a user should be able to
verify the authenticity of the public keys of other users. Suppose, for example, a user
logs in into her bank account through a web browser, and this web session is made
secure by using the public key of the concerned bank. If the web browser uses the
public key of some attacker instead of the bank’s public key, then all the (possibly
sensitive) information along with the login credentials may be known to the attacker
who can misuse them later.

One solution to prevent such attacks is to rely on a trusted entity called certificate
authority (CA) that issues digital certificates showing the association of public keys
with the users. The certificate authority signs each of these certificates using its
private key. When a user wants to communicate with a server, she receives the
server’s certificate (signed by an appropriate CA). The process of verifying the “signed
certificate” is done by the user’s software (typically a web browser) that maintains
an internal list of popular CAs and their public keys. It uses the appropriate public
key to verify the signature on the server’s certificate. However, this CA model suffers
from the following two major problems [33]. Firstly, if the CA is untrusted, then it
may issue certificates which certify the ownership of fake public keys that could be
created by an attacker or by the CA itself. So, the CA must be trustworthy. On
the other hand, if the private key of a certificate owner is compromised, then the CA
must revoke the corresponding certificate before its expiration date.

Over the past few years there have been numerous instances of issuing fake cer-
tificates by compromised CAs. In March 2011, in an attack on a Comodo reseller,
fake certificates were issued for mail.google.com, www.google.com, login.yahoo.com,

9



10 1. Introduction

login.skype.com, login.live.com, and addons.mozilla.org [32]. Comodo suggested that
the attack originated from an Iranian IP address. In July 2011, an attacker with
access to system of DigiNotar, a Dutch CA, improperly issued a certificates for all
domains of Google [11, 1]. It was claimed that as many as 250 false certificates for an
unknown number of domains were released. For weeks the rogue certificate had been
abused in a large scale Man-In-The-Middle (MITM) attack on approximately 300,000
users that were almost exclusively located in the Islamic Republic of Iran. Eventually,
the Dutch CA’s certificates were revoked and the CA was shut down. More recently,
a large U.S.-based CA (TrustWave) admitted that it issued subordinate root certifi-
cates to one of its customers so the customer could monitor traffic on their internal
network. Later, that customer used subordinate root certificates to create fake SSL
certificates. Although Trustwave has revoked the certificate and stated that it will
no longer issue subordinate root certificates to customers.

In order to overcome these problems, researchers have come up with various so-
lutions. Techniques like certificate pinning [24, 27] and crowd-sourcing [3, 4, 17, 35]
have been proposed to restrict the browser to obtain certificates from the verified
CAs only. All the approaches discussed above are centralized where a certificate au-
thority acts as a trusted third party responsible for managing digital certificates for a
network of users. An alternative approach to the problem of public authentication of
public key information is the Web of Trust [13] (WoT as coined by Phil Zimmerman)
that uses self-signed certificates and third party attestations of those certificates. The
WoT is entirely decentralized in that a user signs the public keys of other users (whom
she trusts) and designate them as trustworthy. However, it is difficult for a new (or
remote) user to join the network as she has to meet with someone in person to get
her public key signed for the first time. Moreover, the WoT does not deal with key
revocation. Certcoin [19] is another decentralized public key infrastructure (PKI)
based on Bitcoin [30].

Certificate transparency (CT) [25, 21], a technique proposed by Google, aims to
make certificate issuance transparent by efficiently detecting fake certificates issued
by malicious certificate authorities. To achieve transparency, a public append-only
log structure is maintained containing all the certificates. Domain owners can obtain
proofs that their certificates are recorded in the log structure appropriately. Then,
they provide the certificate along with a proof to their clients so that the clients can
be convinced about the authenticity of the received certificate. Google’s CT scheme
provides two basic proofs: proof of presence (that is, the issued certificate is present
in the log structure) and proof of extension (that is, the log structure is maintained
in an append-only mode). However, certificate transparency by Google does not
handle revocation of a certificate. Ryan [33] extends Google’s scheme to support
certificate revocation efficiently and provides two more proofs: proof of currency (that
is, the issued certificate is current or active) and proof of absence of a user (that is,
no certificates have been issued for a particular user). In both of the CT schemes
described above, the size of a proof, the computation time (and verification time) of
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the proof are logarithmic in the number of certificates present in the log structure.

1.2 Our Contribution

Our contributions are summarized as follows.

• We have proposed an efficient and secure structure for CT, which is an im-
provement over existing schemes. We have designed a certificate transparency
scheme (using bilinear-map accumulators and binary trees) that supports all
the proofs found in the previous works. For the existing proofs, the parameters
in our scheme are comparable to those proposed in the earlier schemes.

• In addition to the proof of currency, we have introduced another proof (proof of
absence of a certificate) related to certificate revocation. Both of these proofs
are of constant size, and verification cost is also constant for them.

• To prove the security of our scheme, we have defined the security model for
certificate transparency, and we have shown that our scheme is secure in this
model. To the best of our knowledge, in this work, the security model for a
certificate transparency scheme is defined formally for the first time.

• We have also provided the performance evaluation of our scheme. We defer the
detailed performance analysis of our construction in Section 5.3. For a quick
review, we summarize the comparison of our construction with the existing
schemes for certificate transparency in Table 5.3 in Section 5.3.

1.3 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2 and 3, we briefly discuss
about the preliminaries and background related to our work. Chapter 4, describes
the detailed construction of our scheme along with the data structures used in the
construction. In Chapter 5, we provide the security analysis and performance analysis
our scheme. In the concluding Chapter 6, we summarize the work done and future
directions related to our work.





Chapter 2

Preliminaries

2.1 Notation

We take λ to be the security parameter. An algorithm A(1λ) is a probabilistic
polynomial-time algorithm when its running time is polynomial in λ and its output
y is a random variable which depends on the internal coin tosses of A. An element a

chosen uniformly at random from a set S is denoted as a
R←− S. A function f : N→ R

is called negligible in λ if for all positive integers c and for all sufficiently large λ, we
have f(λ) < 1

λc
.

2.2 Merkle Hash Tree

A Merkle hash tree [29] is a binary tree where each leaf-node stores a data item. The
label of each leaf-node is the data item stored in the node itself. A collision-resistant
hash function h is used to label the intermediate nodes of the tree. The label of a
intermediate node v is the output of h computed on the labels of the children nodes
of v. A Merkle hash tree is used as a standard tool for efficient memory-checking.
Figure 2.1 shows a Merkle hash tree containing the data items {d1, d2, . . . , d8} stored
at the leaf-nodes. Consequently, the labels of the intermediate nodes are computed
using the hash function h.

The hash value of the root node A (the root digest) is made public. The proof
showing that a data item d is present in the tree consists of the data item d and the
labels of the nodes along the associated path (the sequence of siblings of the node
containing the data item d). For example, a proof showing that d3 is present in the
tree consists of {d3, (d4, lD, lC)}, where d4, lD and lC are the labels of the nodes K,D
and C, respectively. Given such a proof, a verifier computes the hash value of the
root. The verifier outputs accept if the computed hash value matches with the public
root digest; it outputs reject, otherwise. The size of a proof is logarithmic in the
number of data items stored in the leaf-nodes of the tree.

13



14 2. Preliminaries

A
h(h(h(d1, d2), h(d3, d4)), h(h(d5, d6), h(d7, d8)))

B
h(h(d1, d2), h(d3, d4))

D
h(d1, d2)

H
d1

I
d2

E
h(d3, d4)

J
d3

K
d4

C
h(h(d5, d6), h(d7, d8))

F
h(d5, d6)

L
d5

M
d6

G
h(d7, d8)

N
d7

O
d8

Figure 2.1: A Merkle hash tree containing data items {d1, d2, . . . , d8}.

Due to the collision-resistance property of h, it is impossible (except with some
probability negligible in the security parameter λ) to add a new data item in the
Merkle hash tree without changing the root digest of the tree.

2.3 Bilinear Maps

Let G1, G2 and GT be multiplicative cyclic groups of prime order p. Let g1 and g2 be
a generator of G1 and G2 respectively. A bilinear map is a function e : G1×G2 → GT .
The bilinear map e has the following properties:

• Bilinearity: for all u ∈ G1, v ∈ G2, a ∈ Zp, b ∈ Zp, we have e(ua, vb) = e(u, v)ab

• Non-degeneracy: e is non-degenerate, that is, e(g1, g2) 6= 1.

Furthermore, properties (1) and (2) imply that e(u1 · u2, v) = e(u1, v) · e(u2, v) for
all u1, u2 ∈ G1 , v ∈ G2.

If G1 = G2 = G, the bilinear map is symmetric; otherwise, asymmetric. Un-
less otherwise mentioned, we consider only the bilinear maps which are efficiently
computable and symmetric. Let g be a generator of G.

2.4 Assumptions

Definition 1 (Strong RSA assumption) Given an RSA modulus N and a ran-
dom element x ∈ ZN , it is hard (i.e., it can be done with probability that is negl(k),
which is negligible in the security parameter k) for a computationally bounded adver-
sary A to find y > 1 and a such that ay = x mod N.
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Definition 2 (q-strong Diffie Hellman assumption) Let G =< g > be a cyclic
group of prime order p and κ ∈ Z∗p. Under the q-strong Diffie-Hellman assumption,

any probabilistic polynomial-time algorithm A that is given set {gκi : 0 ≤ i ≤ q}, finds

a pair (x, g
1

x+κ ) ∈ Z∗p × G with at most O(1/p) probability, where the probability is
over the random choice of κ ∈ Z∗p and the random bits chosen by A.

2.5 Accumulators

A cryptographic accumulator is a one-way membership function. It answers a query
to check whether an element is a member of a set X without revealing the individual
members of X. An accumulator scheme was introduced by Benaloh and de Mare [9]
and further developed by Baric and Pfitzmann [5]. Both of these constructions are
based on RSA exponentiation functions (secure under the strong RSA assumption)
and provides a constant size membership witness for any element in X with respect
to the accumulation value denoted by A(X) [16]. Universal accumulators [26] are
designed to provide both membership and non-membership witnesses of constant
size. Camenisch and Lysyanskaya [12] proposed a dynamic accumulator in which
elements can be efficiently added into or removed from the accumulator. Whenever
an element is inserted or deleted from X, then this results in an update on A(X) and
the membership (and non-membership) witnesses.

2.5.1 RSA Accumulators

Prime Representatives: Prime representatives provides the solution whenever it
is necessary to map general elements to prime numbers. In particular, one can map
a k -bit element ei to a 3k -bit prime element xi using two-universal hash functions.

Definition 3 H is a two-universal family (set) of hash functions from M to N if,
for all x, y in M such that x 6= y,

Prh∈H [h(x) = h(y)] ≤=
1

|N |

similar to pairwise independence.

In our case, set M is the set of 3k -bit boolean vectors, N is the set of k-bit boolean
vectors, and the two-universal hash function used,

h(x) = Fx

where F is k×3k boolean matrix. This system has more than one solution, i.e., one
k-bit element is mapped to more than one 3k-bit elements. We are interested in
finding only one solution which is prime.
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The RSA accumulator: It provides an efficient technique to produce a short (com-
putational) proof that a certain element is a member of a set of elements. Let
S = {e1, e2, . . . , en} be the set of elements. Each element e is represented by k-
bit element. Let N be a k′-bit RSA modulus (k′ > 3k), namely N = pq, where p

and q are strong primes that are suitably large, e.g., p, q > 2
3
2
k. It can represent S

compactly and securely with an accumulation value which is an k′-bit integer,

A(S) = gr(e1)r(e2)...r(en) mod N

where g is relative prime toN and r(ei) is a 3k-bit prime representative. RSA modulus
N , the exponentiation base g and the two-universal hash function h comprise the
public key pk. Each element ei in set S has membership witness as,

Aei = g
∏
ej∈S:ej 6=ei

r(ej) mod N

Then verifier can verify the membership of element ei in S by computing A
r(ei)
ei

and checking that it is equal to publically known accumulation value A(S).
It has a property that any computationally bounded adversary A cannot find an-

other set S ′ 6= S such that A(S ′) = A(S), unless A breaks the strong RSA assumption
(see Definition 1 in Section 2.4) [6].

2.5.2 Bilinear-Map Accumulator

Nguyen [31] constructed the first dynamic (but not universal) accumulator based on
bilinear maps. Later, Damg̊ard and Triandopoulos [15] extended the work of Nguyen
in order to provide both membership and non-membership witnesses. This scheme
is proved secure under the q-strong Diffie-Hellman assumption. We briefly describe
this scheme proposed by Damg̊ard and Triandopoulos [15] as follows.

Let an algorithm BLSetup(1λ) output (p, g,G,GT , e) as the parameters of a bi-
linear map, where g is a generator of G. Given a set X = {x1, x2, . . . , xn}, an
accumulation function fs(X) : 2Z∗p → G gives the accumulation value A(X) defined

as fs(X) = A(X) = g(x1+s)(x2+s)...(xn+s), where s
R←− Z∗p is the secret trapdoor informa-

tion. The set {gsi |0 6 i 6 q} is public, where q is an upper bound on |X|.
For any x ∈ X, the membership witness is defined as wx = g

∏
xj∈X:xj 6=x

(xj+s). The
verifier can verify the membership witness by checking the equation

e(wx, g
x · gs) ?

= e(A(X), g).

For any y /∈ X, the non-membership witness is defined as ŵy = (wy, vy), where

vy = −
∏

x∈X(x− y) mod p and wy = g
(
∏
x∈X (x+s))+vy

y+s . Now, the verifier can verify the
non-membership witness by checking the equation

e(wy, g
y · gs) ?

= e(A(X) · gvy , g).
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Under the q-Strong Diffie-Hellman assumption (see Definition 2 in Section 2.4),
any probabilistic polynomial-time algorithm B(1λ), given any set X (|X| 6 q) and
set {gsi |0 6 i 6 q}, finds a fake non-membership witness of a member of X or a
fake membership witness of a non-member of X with respect to A(X) only with
a probability negligible in λ (measured over the random choice of s ∈ Z∗p and the
internal coin tosses of B) [15, 31].





Chapter 3

Related Work

3.1 Certificate Transparency

Certificate transparency (CT) [25, 21] is a technique proposed by Google in order
to efficiently detect fake public keys issued by malicious certificate authorities. A
detailed description of this open framework is given in [21]. We provide a brief
overview of the same. The framework consists of the following main components (see
Figure 3.1) .

• Certificate Log: All the certificates that have been issued by certificate au-
thorities are stored in an append-only log structure. The log structure is main-
tained as a Merkle hash tree (see Section 2.2). This enables the log maintainer
to provide two types of verifiable cryptographic proofs: (a) proof of presence
(that is, the issued certificate is present in the log structure) and (b) proof of
extension (that is, the log structure is maintained in an append-only mode).

• Monitors: Monitors are publicly run servers that contact all of the log main-
tainers periodically and watch for suspicious certificates (illegitimate or unau-
thorized certificates, unusual certificate extensions, or certificates with strange
permissions). Monitors also verify that all logged certificates are visible in the
log structure.

• Auditors: Auditors are lightweight software components that perform the fol-
lowing two functions. Firstly, they can verify that logs are behaving correctly
and are cryptographically consistent. Secondly, they can verify that a particular
certificate is recorded in a log appropriately. An auditor may be an integral com-
ponent of a browser’s TLS client, a standalone service, or a secondary function
of a monitor.

We may consider a certificate as a signed pair (u, pku), where u is a user and pku
is a public key of u. We denote the certificate by cert(u, pku). The log maintainer
maintains certificates issued by CAs in a Merkle hash tree that stores the certificates

19
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Figure 3.1: Three components of Certificate Transparency

as the leaf-nodes in chronological order (left-to-right). Whenever a new certificates is
added, it is appended to the right of the tree. User’s browser accepts the certificate
only if it is accompanied by a proof of the presence of the certificate in the log. For
proof of extension, the monitor submits two hash values (computed at different time)
of the log to the CA. The CA returns a proof that one of them is an extension of
the other. Both the proof of presence and the proof of extension can be done in
time/space complexity of O(log n), where n is the total number of certificates.

3.2 Enhanced Certificate Transparency

Enhanced certificate transparency (ECT) by Ryan [33] proposes an idea to address the
revocation problem that was left open by Google. It provides transparent certificate
revocation. It also reduces reliance on trusted parties by designing the monitoring
role so that it can be distributed among the browsers.

In this extension, Ryan introduced two proofs: (a) proof of currency (that is, the
certificate is issued and not revoked) and (b) proof of absence of a user (that is, the
CA has not issued any certificate for a particular user). Both of these proofs are
logarithmic in the number of certificates. The proof of extension remains the same
as that of Google’s certificate transparency.

3.3 Accountable Key Infrastructure

Accountable Key Infrastructure (AKI) [22], integrating an architecture for key revo-
cation of all entities (e.g., CAs, domains) with an architecture for accountability of
all infrastructure parties through checks-and-balances. Through checks-and-balances
among independent entities, AKI reduces the amount of trust placed in any one in-
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frastructure component (e.g., CA) and successfully distributes trust over multiple
parties. It detects misbehaving entities by maintaining a public log of certificates.
A domain in AKI can define which and how many CAs are required to update the
certificate. To enable recovery, certificates can be updated through another set of
CAs.

In their approach of check-and-balances, they assume a set of entities that do
not collude: CAs, public log servers, and validators. It heavily relies on third party
(called validators) to ensure that log is properly maintained.

3.4 Attack Resilient Public-Key Infrastructure

Attack Resilient Public-Key Infrastructure (ARPKI) [8], a public-key infrastructure
that ensures that certificate-related operations, such as certificate issuance, update,
revocation, and validation, are transparent and accountable. ARPKI is inspired by
AKI’s design and employs some of its concepts. A client in ARPKI can designate n
different service providers (e.g. CAs and log maintainers), and only needs to contact
one CA to register her certificate. Each of the designated service providers will
monitor the behaviour of other designated service providers. As a result, it offers
resilience against impersonation attacks that involve n− 1 compromised entities.

The involvement of all n designated service providers in certificate registration,
confirmation and update cause considerable extra latencies and delay in client con-
nections.

3.5 Distributed Transparent Key Infrastructure

Distributed Transparent Key Infrastructure (DTKI) [36] is an infrastructure for man-
aging keys and certificates on the web in a way which is transparent, minimises
oligopoly. It prevents attacks that use fake certificates and eliminates the need for
trusted parties. There are mainly two types of logs. First, certificate log stores all
valid and invalid certificates for particular set of domains. Second, mapping log stores
the association between certificate logs and the domains they are responsible for.

Rather than relying on trusted parties (e.g. monitors in CT and validators in
AKI) to verify the healthiness of logs and the relations between logs, DTKI uses a
crowdsourcing to ensure the integrity of the log and the relations between mapping
log and a certificate log, and between certificate logs.

3.6 Key Usage Detection (KUD)

Key Usage Detection protocols are used to monitor the usage of cryptographic keys
(for both signing and decryption) and can detect unauthorised key usage, i.e., that
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allows the device owner to detect if another party is using the device’s long-term key.
This concept was proposed by Ryan and Yu [37]. They achieve this by storing keys
in append-only log, which the device owner can interrogate. In their scheme, log is
maintained as a tree of trees.

The log is an append-only Merkle Tree T which records the entire update history.
Leaves of tree T contains items which are ordered chronologically. Each leaf node is
labeled by root hash value of another Merkle Tree T ′. Items in T ′ are also stored only
in leaves but ordered lexicographically by user’s identity. Each leaf contains user’s
identity and list of certificates for different devices of the same user. It can provide
proofs if/when a specific key has been compromised as a result of an attack and allow
for the key to be revoked. These proofs can be proof of presence, proof of absence,
proof of extension and proof of currency. All of these proofs are logarithmic in the
number of users in Merkle Tree.

3.7 Key Transparency to End Users

CONIKS [28] is a transparency log scheme that aims to enable privacy-preserving
transparency logging for end-user keys, for applications such as secure messaging.
CONIKS uses a Merkle prefix tree to aggregate user’s public keys. Position of user’s
key in the tree is determined by user’s identity. The root of the tree is signed by the
log maintainer and made public and is known as signed tree root (STR). Signed tree
roots are linked to its previous by including a hash of the previous signed tree root
in its computation.

CONIKS employs cryptographically primitives to make the log privacy-preserving.
Private index is computed for each username by using verifiable unpredictable func-
tion which is a function that requires a private key. CONIKS allows clients to monitor
their own keys and quickly detect equivocation with high probability. Log maintainer
provides the membership proof of a key by providing authentication path from leaf
node containing key to root node and these proofs are logarithmic in the number of
users in the log.

3.8 Decentralized PKI

3.8.1 Web of Trust

Web of Trust (WoT) [13] is an alternative approach to the problem of public au-
thentication of public key information. This term was coined by Phil Zimmerman.
WoT uses self-signed certificates and third party attestations of those certificates.
The WoT is entirely decentralized in that a user signs the public keys of other users
(whom she trusts) and designate them as trustworthy. However, it is difficult for a
new (or remote) user to join the network as she has to meet with someone in person
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to get her public key signed for the first time. Moreover, the WoT does not deal with
key revocation.

3.8.2 Certcoin

Certcoin [19] is another decentralized public key infrastructure (PKI) based on Bit-
coin [30]. It incorporates the aspects of transparent Certificate Authorities and of the
Web of Trust. Certcoin is build on top of Namecoin [2] by branching the project and
taking advantage of the merged mining protocol to ensure that Certcoin transactions
are constructed properly in its blockchain. It supports the features of a Certificate
Authority including certificate creation, revocation, chaining, and recovery. Using
Certcoin, user can register a domain and update public keys corresponding to a re-
spective domain.





Chapter 4

Proposed Scheme

4.1 Our Construction

In our extension of certificate transparency, each certificate issued by a (possibly mali-
cious) certificate authority (CA) is associated with proofs showing the validity of that
particular certificate. The certificates issued by various CAs are stored in a public
(and append-only) log structure that is maintained by the log maintainer. This log
maintainer that maintains the public log of all certificates issued by certificate author-
ities is known as the certificate prover (CP). We use the terms “log maintainer” and
“certificate prover” interchangeably in this work. Anyone can submit certificates to a
log, although certificate authorities will likely be the foremost submitters. Likewise,
anyone can query a log for a cryptographic proof, which can be used to verify that
the log is behaving properly or verify that a particular certificate has been logged.

The number of log servers doesn’t have to be large (say, much less than a thou-
sand worldwide), and each could be operated independently by a CA, an ISP, or any
other interested party. In general, the certificate prover is a server which has enough
resources (in terms of storage capacity and computing power) to store all the cer-
tificates and compute the proofs relevant to certificate transparency efficiently. We
define certificate transparency as follows.

Definition 4 A certificate transparency scheme consists of the following algorithms.

• Setup(1λ): Given the security parameter λ, the certificate prover (CP) generates
the private key (sk), public parameters (PP), and instantiates the log structure.

• Insert(c, sk, PP ): The certificate prover (CP) adds a new certificate c in the log
structure where c = cert(u, pku) and updates the public parameters.

• Revoke(c, sk, PP ): The certificate prover (CP) removes a certificate c from the
log structure where c = cert(u, pku) and updates the public parameters.

• Query(PP ): This algorithm is run by the auditor, and it returns a query Q.

25
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• ProofGeneration(Q,PP ): On input a query Q and the public parameters PP ,
the certificate prover (CP) returns a proof Π(Q).

• Verify(Q,Π, PP ): On input a query Q, a proof Π and the public parameters
PP , the auditor outputs either accept or reject.

4.1.1 Data Structures Used in Our Construction

In our construction, the public log structure maintained by the CP is organized by
using the following tree data structures: chronTree, searchTree and accTree. Let n
be the total number of certificates present in the log structure, t be the total number
of users and m be the total number of active certificates present in the log structure.
Clearly, n > t > m. Notations used in our construction are described in Table 4.1.
We describe the data structures used in our construction as follows.

Symbol Definition

digCT Root hash value of the chronTree
digST Root hash value of the searchTree
A(X) Accumulation value of set X in accumulator
n Total number of certificates in the log structure
t Total number of users
m Total number of active certificates

cert(u, pku) Certificate of user u having public key pku

Table 4.1: Notations used in our construction.

• chronTree. The chronTree is a Merkle hash tree (see Section 2.2) where
certificates are stored as the leaf-nodes of the tree. The certificates are ar-
ranged in the chronological order in left-to-right manner. When a new cer-
tificate c = cert(u, pku) is issued by a CA, it is added to the right of the
chronTree. When a certificate c = cert(u, pku) is revoked, another certificate
c′ = cert(u, null) is added to the right of the chronTree. A collision-resistant
function h is used to compute the hash values corresponding to the nodes of the
chronTree. The hash value of the root node (the root digest) of the chronTree is
denoted by digCT . The structure of the chronTree is shown in Figure 4.1. The
leaf-nodes of the chronTree contain items of the form x = (c, A, digST ), where
A is the accumulation value of the updated set X after inserting the certificate
c or revoking the active certificate of the corresponding user.

• searchTree. This tree is organized as a modified binary search tree where data
items corresponding to the users are stored in the lexicographic order (of the
users). Here, a data item corresponding to a user u is of the form (u, List(pku)),
where List(pku) is the list of N most recent public keys of the user u. In other
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digCT = h(h(h(x1, x2), h(x3, x4)), h(h(x5, x6), h(x7, x8)))

h(h(x1, x2), h(x3, x4))

h(x1, x2)

x1 x2

h(x3, x4)

x3 x4

h(h(x5, x6), h(x7, x8))

h(x5, x6)

x5 x6

h(x7, x8)

x7 x8

Figure 4.1: An example of the chronTree.

words, the last certificate in the list is the current public key of the user, and
other keys are already revoked. The value of N is taken to be constant, and
the list is maintained in a first-in-first-out (FIFO) fashion. The data items are
stored in leaf-nodes as well as in non-leaf nodes such that an in-order traversal
of the searchTree provides the lexicographic ordering of the users. The collision-
resistant function h is used to compute the hash values corresponding to the
nodes of the searchTree. The hash value of a node is computed on the data item
(of that node) and the hash values of its children. This hash value is also stored
in the node along with the data item. The hash value of the root node (the root
digest) of the searchTree is denoted by digST . The value of digST is linked to
a leaf-node of the chronTree. The structure of the searchTree is illustrated in
Figure 4.2. An example is showing searchTree containing data items di of the
form (ui, List(pkui)), where List(pku) is the list of N most recent public keys
of the user u and u1, u2, . . . , u9 are in lexicographic order.

d4

digST = h(d4, h(d2, h(d1), h(d3)), h(d6, h(d5), h(d7)))

d2

h(d2, h(d1), h(d3))

d1

h(d1)
d3

h(d3)

d6

h(d6, h(d5), h(d7))

d5

h(d5)
d7

h(d7)

Figure 4.2: An example of the searchTree.

• accTree. This tree is organized as a binary search tree in which active certifi-
cates are stored in the lexicographic order of the users. Let X be the set of
active (or current) certificates for different users. In our construction, the set
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X is implemented as accTree. Each node in the accTree contains a certificate
c = cert(u, pku) ∈ X and the corresponding membership (in X) witness wc
of c. The accumulation value A(X) is linked to a leaf-node of the chronTree.
Figure 4.3 shows the structure of the accTree.

c6, wc6

c4, wc4

c1, wc1 c2, wc2

c7, wc7

Figure 4.3: An example of the accTree.

4.1.2 Detailed Construction

In this section, we describe our construction in details. Our construction involves the
following algorithms to achieve certificate transparency.

• Setup(1λ): The Setup algorithm runs BLSetup(1λ) to output (p, g,G,GT , e) as
the parameters of a bilinear map, where g is a generator of G. Let X be the set
of active certificates issued by a certificate authority (CA), that is,

X = {cert(ui, pkui)},

where pkui is the active public key issued by the CA for the user ui. The Setup

algorithm selects a random element s
R←− Z∗p as the secret trapdoor information.

The set {gsi |0 6 i 6 q} is made public, where q is an upper bound on |X|. The
accumulation function fs(X) : 2Z∗p → G gives the accumulation value A(X)
defined as

fs(X) = A = g
∏
xi∈X

(xi+s).

The algorithm constructs a chronTree by inserting certificates in the chronolog-
ical (left-to-right) order and returns digCT as the root digest of the chronTree.
It also constructs a searchTree by inserting users in the lexicographic order along
with other relevant data associated with each user and returns digST as the
root digest of the searchTree. The algorithm constructs an accTree by inserting
(only) the active certificates represented as set X along with their membership
(in X) witnesses for different users. For each active certificate c ∈ X, the
membership witness wc is computed as

wc = g
∏
xj∈X:xj 6=c

(xj+s) = A
1

(c+s) .

These data structures are discussed in Section 4.1.1.
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We note that a collision-resistant hash function h is used to compute the hash
values in the searchTree and the chronTree.

Finally, (p, g,G,GT , e, {gs
i |0 6 i 6 q}, h, A, digCT, digST ) are set as the public

parameters PP , and the secret key is the trapdoor value s.

• Insert(c, sk, PP ): When a new certificate c = cert(u, pku) is issued by a CA,
then it asks the log maintainer (or the certificate prover) to insert the certificate
in the log structure. The new certificate c is added to the log structure (accu-
mulator, searchTree and chronTree) as follows. The public parameters PP are
updated accordingly.

– Adding c to accTree: Compute the new accumulation value A′ (corre-
sponding to the new set X ′ = X ∪ {c}) as

A′ = A(c+s).

The membership witness for c is A. For each i ∈ X, the updated member-
ship witness is computed as

w′i = w
(c+s)
i .

The accTree is updated accordingly.

– Adding c to searchTree: Search for the node corresponding to the user
u, if it is present, then append the new public key pku to the associated
list of public keys for u. Otherwise, create a new node for u with the
list containing only the public key pku and insert it in the searchTree
maintaining the lexicographic order. Consequently, the root digest of the
searchTree is updated as digST ′.

– Adding c to chronTree: Add a new node containing (c, A′, digST ′) to the
right of the existing chronTree. The new root digest of the chronTree is
updated as digCT ′.

• Revoke(c, sk, PP ): Let c = cert(u, pku) be the certificate to be revoked. Then,
the following operations are performed on the log structure, and the public
parameters PP are updated accordingly.

– Removing c from accTree: Compute the new accumulation value A′ (cor-
responding to the new set X ′ = X\{c}) as

A′ = A
1

(c+s) .

Remove the node corresponding to the user u of certificate c from the
accTree. For each i ∈ X ′, the updated membership witness is computed
as

w′i = w
1

(c+s)

i .

The accTree is updated accordingly.
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– There are no changes in the searchTree for the revocation of c. Therefore,
the value of digST , the root digest of the searchTree, remains the same.

– Adding a new node for the user u to chronTree: Add a new node con-
taining (c′, A′, digST ) to the right of the existing chronTree where c′ =
cert(u, null). The new root digest of the chronTree is updated as digCT ′.

• Query(PP ): This algorithm is run by an auditor to output a query Q. The
type of the query Q is based on the type of the proof associated with Q. The
types of proofs are as follows.

– Proof of presence of a certificate (Type 1): The query Q asks for a proof
of whether a certificate c = cert(u, pku) is present in the log structure.

– Proof of absence of a certificate (Type 2): The query Q asks for a proof
of whether a certificate c = cert(u, pku) is absent in the set of active
certificates, that is, c /∈ X.

– Proof of absence of a user (Type 3): The query Q asks for a proof of
whether a user u is absent, that is, there are no certificates for u in the log
structure.

– Proof of extension (Type 4): The query Q asks for a proof of whether
the chronTree corresponding to digCT ′ is an extension of the chronTree
corresponding to digCT .

– Proof of currency (Type 5): The query Q asks for a proof of whether pku
is the current public key of the user u, that is, whether the certificate
c = cert(u, pku) is present in the set of active certificates (c ∈ X).

• ProofGeneration(Q,PP ): Upon receiving the query Q, the certificate prover
(CP) generates the corresponding proof Π(Q) as follows.

– Proof of presence of a certificate (Type 1): Search for the certificate c in
the searchTree. If a node for the user u is present in the searchTree, define
h1 and h2 to be the hash values of the children of the node (they are taken
to be null if the node is a leaf-node). Send the following sequences of data
items and hash values as the proof Π.

Let the sequence of data items of the nodes along the search path be

dataseqtype1 = (d1, d2, d3, . . . , dr)

for some r ∈ N, where d1 is the data item corresponding to the node for
the user u, dr is the data item corresponding to the root node, and other
data items correspond to the other intermediate nodes in the search path.
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Let the sequence of hash values of the nodes in the associated path (the
path containing the siblings of the nodes along the search path mentioned
above) along with h1 and h2 be

hashseqtype1 = (h1, h2, h(v1), h(v2), h(v3), . . .).

– Proof of absence of a certificate (Type 2): Search for the certificate c in
the accTree. If there is no node for the user u in the accTree, then send the
non-membership (not in X) witness ŵc = (wc, vc) of certificate c, where

vc = −
∏
x∈X

(x− c) mod p ∈ Z∗p and wc = g
(
∏
x∈X (x+s))+vc

c+s ∈ G.

– Proof of absence of a user u (Type 3): The proof is similar to the proof of
Type 1. Find the nodes in the searchTree corresponding to the users u1 and
u2 such that they were the neighbor (in the lexicographic ordering) nodes
of the node corresponding to u if u were present in the searchTree, that is,
u1 6 u 6 u2 lexicographically. These nodes can be found by searching for
the user u in the searchTree, and the search ends at some leaf-node in the
searchTree. The nodes corresponding to u1 and u2 reside on this search
path itself, and one of them is the leaf-node (where the search ends).

Let the sequence of data items of the nodes along the search path be

dataseqtype3 = (d1, d2, . . . , dr′)

for some r′ ∈ N, where d1 is the data item corresponding to the leaf-node,
dr′ is the data item corresponding to the root node, and other data items
correspond to the other intermediate nodes in the search path.

Let the sequence of hash values of the nodes in the associated path (the
path containing the sibling nodes of the nodes along the search path) be

hashseqtype3 = (h(v1), h(v2), . . .).

Finally, send (dataseqtype3, hashseqtype3) as the proof Π.

– Proof of extension (Type 4): Compare the chronTree structures corre-
sponding to both digCT and digCT ′ and send one hash value per level of
the latest chronTree as a proof Π.

If the chronTree corresponding to digCT ′ is an extension of the chronTree
corresponding to digCT , then the latter chronTree is a subtree of the earlier
chronTree. The proof Π = (h1, h2, . . .) is the sequence of hash values of
the nodes required to compute the current root digest digCT ′ from the
previous root digest digCT . Here, h1 is the hash value of the sibling node
of node v whose hash value is digCT (that is, v is the root of the previous
chronTree), h2 is the hash value of the sibling node of parent node of v,
and so on.
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– Proof of currency (Type 5): Search for the certificate c in the accTree.
If c is present in the node for the user u in the accTree, then send the
membership (in X) witness wc stored at that node.

• Verify(Q,Π, PP ): Given the query Q and the corresponding proof Π, the audi-
tor verifies the proof in the following way depending on the type of the proof.

– Proof of presence of a certificate (Type 1): Given the sequence of data
items dataseqtype1 = (d1, d2, d3, . . . , dr) and the sequence of hash values
hashseqtype1 = (h1, h2, h(v1), h(v2), h(v3), . . .), the auditor verifies whether

h(· · ·h(d3, h(d2, h(d1, h1, h2), h(v1)), h(v2)) . . .)
?
= digST

and outputs accept if the equation holds; it outputs reject, otherwise.

– Proof of absence of a certificate (Type 2): Given the non-membership (in
X) witness ŵc = (wc, vc) for a certificate c, the value of gs (included in
PP ) and the accumulation value A = fs(X), the auditor verifies whether

e(wc, g
c · gs) ?

= e(A · gvc , g)

and outputs accept if the equation holds; it outputs reject, otherwise.

– Proof of absence of a user (Type 3): Given the two sequences dataseqtype3 =
(d1, d2, . . . , dr′) and hashseqtype3 = (h(v1), h(v2), . . .), the auditor verifies
whether

h(· · ·h(d3, h(d2, h(d1), h(v1)), h(v2)) . . .)
?
= digST

and outputs accept if the equation holds; it outputs reject, otherwise.

– Proof of extension (Type 4): Given the proof Π = (h1, h2, . . .), the auditor
verifies whether

h(. . . (h(h(digCT, h1), h2) . . .)
?
= digCT ′

and outputs accept if the equation holds; it outputs reject, otherwise.

– Proof of currency (Type 5): Given the membership (in X) witness wc for a
certificate c, the value of gs (included in PP ) and the accumulation value
A = fs(X), the auditor verifies whether

e(wc, g
c · gs) ?

= e(A, g)

and outputs accept if the equation holds; it outputs reject, otherwise.

We show a complete chronTree, searchTree and accTree in Figure 4.4, and then
update it with one revoked certificate and two new certificates, resulting in new
chronTree, searchTree and accTree in Figure 4.5.
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digCT = h(h(h(x1, x2), h(x3, x4)), h(h(x5, x6), h(x7)))

h(h(x1, x2), h(x3, x4))

h(x1, x2)

x1 x2

h(x3, x4)

x3 x4

h(h(x5, x6), h(x7))

h(x5, x6)

x5 x6

x7

(a) The chronTree stores the certificates ci in the chronolog-
ical order (the higher the value of i, the more recent the
certificate ci is). The certificates c1 = cert(Alice, pkAlice),
c2 = cert(Bob, pkBob), c3 = cert(Alice, null), c4 =
cert(Charlie, pkCharlie), c5 = cert(Alice, pk′Alice), c6 =
cert(Eve, pkEve) and c7 = cert(Frank, pkFrank) are stored in the
order they are issued (or revoked). When the certificate c1 is re-
voked, another certificate c3 is inserted in the chronTree having
null as the public key of Alice. The leaf-nodes of the chronTree
contain items of the form x = (c, A, digST ), where A is the accu-
mulation value of the updated set X after inserting the certificate
c or revoking the active certificate of the corresponding user.

d4 = (Eve, pkEve)
digST8 = h(d4, h(d2, h(d1), h(h3)), h(d5, h(d6)))

d2 = (Bob, pkBob)
h(d2, h(d1), h(h3))

d1 = (Alice, (pkAlice, pk
′
Alice))

h(d1) d3 = (Charlie, pkCharlie)
h(d3)

d5 = (Frank, pkFrank)
h(d5, h(d6))

(b) The searchTree stores the certificates in the lexicographic order of the
users.

c6 = cert(Eve, pkEve), wc6

c2 = cert(Bob, pkBob), wc2

c5 = cert(Alice, pk′Alice), wc5
c4 = cert(Charlie, pkCharlie), wc4

c7 = cert(Frank, pkFrank), wc7

(c) The accTree stores the elements of X (the set of active or current certificates)
and their corresponding membership (in X) witnesses.

Figure 4.4: The structures of chronTree, searchTree and accTree used in our scheme.
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digCT = h(h(h(h(x1, x2), h(x3, x4)), h(h(x5, x6), h(x7, x8))), h(x9, x10))

h(h(h(x1, x2), h(x3, x4)), h(h(x5, x6), h(x7, x8)))

h(h(x1, x2), h(x3, x4))

h(x1, x2)

x1 x2

h(x3, x4)

x3 x4

h(h(x5, x6), h(x7, x8))

h(x5, x6)

x5 x6

h(x7, x8)

x7 x8

h(x9, x10)

x9 x10

(a) Certificate c2 is revoked and another certificate c8 = cert(Bob, null) is inserted in chron-
Tree having null as the public key of Bob. Then certificates c9 = cert(Henry, pkHenry) and
c10 = cert(Bob, pk′Bob) corresponding to Henry and Bob respectively are inserted.

d4 = (Eve, pkEve)
digST8 = h(d4, h(d2, h(d1), h(h3)), h(d5, h(d6)))

d2 = (Bob, (pkBob, pk
′
Bob))

h(d2, h(d1), h(h3))

d1 = (Alice, (pkAlice, pk
′
Alice))

h(d1)
d3 = (Charlie, pkCharlie)

h(d3)

d5 = (Frank, pkFrank)
h(d5, h(d6))

d6 = (Henry, pkHenry)
h(d6)

(b) New node for Henry is created and its public key is stored. For Bob, its new public
key is inserted in the list of public keys corresponding to Bob′s node in searchTree.

c6 = cert(Eve, pkEve), wc6

c10 = cert(Bob, pk′Bob), wc10

c5 = cert(Alice, pk′Alice), wc5
c4 = cert(Charlie, pkCharlie), wc4

c7 = cert(Frank, pkFrank), wc7

c9 = cert(Henry, pkHenry), wc9

(c) Revoked certificate cert(Bob, pkBob) is removed from accTree and new certificates c9 and
c10 are inserted.

Figure 4.5: The updated structures of chronTree, searchTree and accTree af-
ter revoking certificate c2 = cert(Bob, pkBob) and inserting new certificates c9 =
cert(Henry, pkHenry) and c10 = cert(Bob, pk′Bob).
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Security and Performance Analysis

5.1 Notations

Symbol Definition

λ Security Parameter
|data| Size of data item stored in each node of the searchTree
U Space of user-identifiers

N
Maximum size of the list of public keys corresponding to any
user in searchTree

pksize Size of a public key
hashin Size of the message input to the hash function h in searchTree

Table 5.1: Notations used for analysis.

5.2 Security Analysis

We assume that auditor and monitor are honest while log maintainer and certificate
authority (CA) are dishonest. We formalize the security analysis of our scheme in
following lemma.

Lemma 1 Let A be an honest auditor and certificate authority (CA) issues a fake
certificate, c = cert(u, pk′u), for a domain owner u. If it is not logged in public log,
then A will reject the certificate.

Proof:
The above lemma holds because A accepts the certificate c = cert(u, pk′u) only

when it is accompained by a proof of presence of the certificate in the log. As the
certificate c is not present in the log, therefore, the log maintainer will fails to provide
proof of presence of the certificate. �
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Lemma 2 Let A be an auditor and D be an domain owner. Certificate authority
(CA) issues a fake certificate, c = cert(u, pk′u), for a domain owner u. If it is present
in public log, then an monitor will be able to see this mis-issue immediately and will
report this problem.

Proof:
The above lemma holds because when an auditor, A, asks for the certificate for a

domain owner, u, then auditor will get the fake certificate c = cert(u, pk′u) along with
the proof of presence of the certificate in the log. As certificate c is present in the
log, then the domain owner u while monitoring the log will see that new certificate
is issued for his domain which is not requested by him. Therefore, domain owner u
will report this problems and asks CA for revocation of the fake certificate c. �

Lemma 3 Let a certificate authority (CA) colludes with the log maintainer. The CA
issues a fake certificate, c = cert(u, pk′u), for a domain owner u. If the certificate
c is not present in the log and the log maintainer provides a proof of currency of a
certificate c, then an auditor, A, will able to see that the proof is not correct.

Proof:
According to our construction, the trapdoor information s used in the accumu-

lator is secret with the log maintainer (see Section 2.5.2). As the log maintainer
colludes with CA, then the log maintainer can use different trapdoor information
s′ to generate the fake membership witness, wc, for the certificate, c = cert(u, pk′u)
which is not present in the log. When an auditor, A, gets the certificate c along with
proof of currency, wc, then will try to verify the membership witness by checking the
equation

e(wc, g
c · gs) ?

= e(A(X), g).

As bilinear-map accumulator used in our construction is secure, then the value gs
′
will

not be same as publically known gs. Therefore, the above equation will not satisfy
and proves that the proof of currency is not correct. Hence, above lemma holds and
an auditor A will report this problem and say that the log maintainer is not acting
correctly. �

Lemma 4 Let a certificate authority (CA) is dishonest and log maintainer or cer-
tificate prover (CP) is honest. The CA issues a fake certificate, c = cert(u, pk′u), for
a domain owner u. If certificate c is not present in the log, then certificate authority
will fails to provide a valid proof Π of any type except with some probability negligible
in the security parameter λ.

Proof:
To prove the above lemma, we define the security model and the corresponding

security proof:



5.2. Security Analysis 37

Security Model We define the security game between the challenger (acting as
the Certificate Prover or CP) and the probabilistic polynomial-time adversary (acting
as the Certificate Authority or CA) as follows.

• The challenger executes the Setup algorithm to generate the secret information
s for the bilinear-map accumulator and the public parameters PP . The public
parameters are made available to the adversary.

• Given the public parameters PP , the adversary chooses a sequence of requests
(of its choice) defined by {(reqtypei, metadatai)} for 1 6 i 6 q (q is polynomial
in the security parameter λ). The type of each of these requests, defined by
reqtype, is an insertion (or revocation) of a certificate c or a query Q of any of
the five types described above. The relevant information for each of these re-
quests is stored in the corresponding metadata. If the request is for an insertion
(or revocation) of a certificate, the challenger performs the necessary changes
in the log structure and publishes the updated public parameters PP . If the
request is a query Q, the challenger generates the proof corresponding to that
particular Q and sends it to the adversary.

Let PP be the final public parameters at the end of the security game mentioned
above. The adversary generates a proof Π of one of the five types. The adversary
wins the game if the proof Π is not provided by the challenger in the request phase
and Verify(Q,Π, PP ) = accept.

Security Proof Based on the security game described above, we show that an
adversary in our scheme cannot win the game except with some probability negligible
in the security parameter λ. To be more precise, the adversary cannot produce a
valid proof of one of the following types unless it is provided by the challenger itself
in the request phase.

• Proof of presence of a certificate (Type 1): A proof of this type consists of two
sequences (dataseqtype1, hashseqtype1) in the searchTree. Since the hash function
h involved in the computation of the root digest of the searchTree is collision-
resistant and the root digest is public, the adversary fails to provide such a valid
pair of sequences, except with some probability negligible in λ.

• Proof of absence of a certificate (Type 2): A proof of this type is a witness of
non-membership in the accumulator set X. Since the bilinear-map accumulator
used in our scheme is secure, the adversary cannot forge a proof Π showing that
a certificate c = cert(u, pku) is absent in the set X (where actually c ∈ X).

• Proof of absence of a user (Type 3): The proof is similar to the proof of Type 1.
A proof consists of two sequences (dataseqtype3, hashseqtype3) in the searchTree.
Since the hash function h involved in the computation of the root digest of the
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searchTree is collision-resistant and the root digest is public, the adversary fails
to forge a proof of Type 3, except with some probability negligible in λ.

• Proof of extension (Type 4): The proof of extension involves the computation of
the collision-resistant hash function h per layer of the chronTree and checking
whether the final hash value is equal to digCT . Due to the collision-resistance
property of h, the adversary cannot forge a proof for extension.

• Proof of currency (Type 5): A proof of this type is a witness of membership
in the accumulator set X. Since the bilinear-map accumulator used in our
scheme is secure, the adversary cannot forge a proof Π showing that a certificate
c = cert(u, pku) is present in the set X (where actually c /∈ X).

�

5.3 Performance Analysis

5.3.1 Asymptotic Analysis

Let n be the total number of certificates in the log structure, t be the total number
of users and m be the total number of active certificates (the size of the accumulator
set X).

Cost of Insertion and Revocation In the chronTree, the cost of the insertion
or revocation of a certificate is O(log n) as the new leaf-node is to be inserted to
the right of the chronTree and the new root digest digCT is to be computed. In
the searchTree, the cost of the insertion or revocation of a certificate is O(log t)
since searching for the node corresponding to the particular user (and computing the
updated root digest digST ) takes O(log t) time. In the accTree (maintained for the
accumulator X), an insertion or revocation takes O(m) time as the new membership
witness is to be updated (and stored) for each element of the set X. Although the
cost of revocation is O(m) for the bilinear-map accumulator, we get constant size
proofs (with constant verification cost) related to revocation transparency (discussed
in the following sections). However, this trade-off is justified as revocation is done by
the powerful log server (CP), whereas the proof is verified by a lightweight auditor
(or user). In Table 5.2, we have summarized the cost of insertion and revocation in
all the three trees maintained by the log maintainer.

Parameters of a Proof For each type of proof, we consider the following pa-
rameters: the size of the proof, the computation cost for the proof and the verification
time for the proof.
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Insertion Revocation

chronTree O(log n) O(log n)
searchTree O(log t) O(log t)

accTree O(m) O(m)

Table 5.2: Cost of Insertion and Revocation

• Proof of presence of a certificate (Type 1): The proof consists of the sequences
(dataseqtype1, hashseqtype1) in the searchTree. The size of each of these se-
quences, the time taken to generate them and the time taken to verify them
with respect to the root digest digST — all are O(log t).

• Proof of absence of a certificate (Type 2): The size of a non-membership (in
X) witness is O(1). The computation time of a proof is O(m) as the calcula-
tion of the non-membership witness requires O(m) multiplications in Z∗p. The
verification time for a proof is O(1) as it involves only two pairing operations.

• Proof of absence of a user (Type 3): The proof is similar to the proof of Type
1. Here, the proof consists of the sequences (dataseqtype3, hashseqtype3) in the
searchTree. Thus, the size of a proof, the time taken to generate it and the time
taken to verify it with respect to the root digest digST — all are O(log t).

• Proof of extension (Type 4): The proof consists of the sequence (h1, h2, . . .) in
the chronTree. The size of the sequence, the time taken to generate it and the
time taken to verify it with respect to the root digest digCT — all are O(log n).

• Proof of currency (Type 5): The size of a membership (in X) witness is O(1).
The search for a node containing the certificate c in the accTree takes O(logm)
time, and it takes O(1) time to retrieve the precomputed witness wc stored at
that node. Thus, the computation time of a proof is O(logm). The verification
time for a proof is O(1) as it involves only two pairing operations.

We compare our construction with the existing schemes for certificate trans-
parency based on the parameters described above. The comparison is summarized in
Table 5.3. This comparison is based on the parameters: the size of a proof, the cost
for computing a proof and the cost for verifying a proof. † For a proof of presence, a
certificate is searched in the list of the most recent N public keys of the correspond-
ing user u. This list is maintained in a node (associated with u) of the searchTree.
Instead, if we want to search the certificate in the chronTree (which includes all the
historical certificates), then the value of this parameter is exactly the same as that
for Google [25].
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Method Parameters

Proof Proof of Proof of Proof Proof
of Absence of Absence of of of

Presence a Certificate a User Extension Currency
(Type 1) (Type 2) (Type 3) (Type 4) (Type 5)

Google [25]

Proof Size O(log n) - - O(log n) -
Cost of Proof

O(n) - - O(log n) -
Computation
Cost of Proof

O(log n) - - O(log n) -
Verification

Ryan [33]

Proof Size - - O(log t) O(log n) O(log t)
Cost of Proof

- - O(log t) O(log n) O(log t)
Computation
Cost of Proof

- - O(log t) O(log n) O(log t)
Verification

Our Construction

Proof Size O(log t)† O(1) O(log t) O(log n) O(1)
Cost of Proof

O(log t)† O(m) O(log t) O(log n) O(log m)
Computation
Cost of Proof

O(log t)† O(1) O(log t) O(log n) O(1)
Verification

Table 5.3: Comparison of our scheme with the existing certificate transparency
schemes.

5.3.2 Performance Evaluation

Bilinear Setting and Hash Function

In general setting, we take the bilinear pairing function e : G1 × G2 → GT with
parameters (p, g1, g2, G1, G2, GT ), where |G1| = |G2| = |GT | = p = Θ(22λ) and g1, g2

are generators of the groups G1 and G2, respectively. We take λ = 128. Practical
constructions of pairings are done on elliptic (or hyperelliptic) curves defined over a
finite field. We write E(Fq) to denote the set of points on an elliptic curve E defined
over the finite field Fq. Then G1 is taken as a subgroup of E(Fq), G2 is taken as a
subgroup of E(Fqk′ ) and GT is taken as a subgroup of F∗

qk′
, where k′ is the embedding

degree [23, 20, 34]. For the value of the security parameter λ up to 128, Barreto-
Naehrig (BN) curves [7, 18] are suitable for our scheme. In this setting, each of the
elements of Z∗p and G1 is of size 256 bits.

We use SHA-256 as the collision-resistant hash function h used to compute the
root digests corresponding to the chronTree and the searchTree.

Size of a Proof

We calculate the size (in bits) of each type of proof as follows.

• Proof of presence of a certificate (Type 1): The proof consists of the sequences
(dataseqtype1, hashseqtype1) in the searchTree. If SHA-256 is used as the hash
function h, then the size of hashseqtype1 is at most 256 log t bits. Let the size
of the data item stored in each node of the searchTree be denoted by |data|.
Then, |data| 6 log |U| + N · pksize, where U is the space of user-identifiers, N
is the maximum size of the list of public keys corresponding to any user and



5.3. Performance Analysis 41

pksize is the size of a public key. Thus, the size of a proof (in bits) is at most

log t(256 + log |U|+N · pksize) ≈ log t(256 + log t+N · pksize),

where t is the number of users (or nodes) present in the searchTree.

• Proof of absence of a certificate (Type 2): The size of a proof is 512 bits as the
size of a non-membership (in X) witness ŵc = (wc ∈ G1, vc ∈ Z∗p) is 512 bits.

• Proof of absence of a user (Type 3): The proof is similar to the proof of Type
1. Thus, the size of a proof is log t(256 + log t + N · pksize) bits, where t is the
number of users (or nodes) present in the searchTree.

• Proof of extension (Type 4): The proof consists of a sequence of hash values in
the chronTree. Therefore, for SHA-256 used as the hash function h, the size of
a proof is at most 256 log n bits, where n is the number of certificates present
in the chronTree.

• Proof of currency (Type 5): The size of a proof is 256 bits as the size of a
membership (in X) witness wc ∈ G1 is 256 bits.

In Table 5.4, we have summarized the size (in bits) of each type of proof provided
by the log maintainer. The graphical comparison of the size of the proofs provided by
the log maintainer in our scheme with the existing one is represented in Figure 5.1.

Proof Size (in bits)

Proof of presence
of a certificate

log t(256 + log |U|+N · pksize) ≈ log t(256 + log t+N · pksize)

Proof of absence
of a certificate

512

Proof of absence
of a user

log t(256 + log |U|+N · pksize) ≈ log t(256 + log t+N · pksize)

Proof of extension 256 log n
Proof of currency 256

Table 5.4: Size of the proof in bits.

Cost of Verification of a Proof

For the timing analysis of the pairing operations, we use PandA, a recent software
framework for Pairings and Arithmetic developed by Chuengsatiansup et al. [14]. The
cycle-counts of a pairing operation (Ate pairing) for a 128-bit secure, Type-3 pairing
framework involving a pairing-friendly BN curve is 3832644 (taken as the median of
10000 measurements on a 2.5 GHz Intel Core i5-3210M processor [14]). These many
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Figure 5.1: Graphical representation of the size of proofs in different schemes.

cycles take approximately 1.53 milliseconds on this processor. On the other hand, we
estimate the time taken, on a 2.5 GHz Intel Core i5-3210M processor, to compute
SHA-256 from eBASH, a benchmarking project for hash functions [10]. We calculate
the cost of verification of each type of proof as follows.

• Proof of presence of a certificate (Type 1): The proof consists of the sequences
(dataseqtype1, hashseqtype1) in the searchTree. The number of hashes performed
for the verification is at most log t. Each hash is performed on a message of
the form (d, h1, h2), where d is the data item associated with a node and h1

(or h2) is the hash value of the left (or right) child of the node. Let the size
of the data item stored in each node of the searchTree be denoted by |data|.
Then, |data| 6 log |U| + N · pksize ≈ log t + N · pksize, where U is the space of
user-identifiers, N is the maximum size of the list of public keys corresponding
to any user, pksize is the size of a public key and t is the number of users (or
nodes) present in the searchTree.

For SHA-256 used as the hash function h, the size of h1 (or h2) is 256 bits.
Therefore, the size of the message input to the hash function h is given by
hashin = (512 + |data|) bits. For long messages, computing a single hash value
takes 12.71 cycles per byte of the message on a 2.5 GHz Intel Core i5-3210M
processor [10]. Consequently, computing each hash value requires (hashin ·
(1.59)) cycles (approximately) that, in turn, takes around (hashin · (0.64) ·10−6)
milliseconds on this processor. Thus, the total time required for the verification
of a proof is around (log t · hashin · (0.64) · 10−6) milliseconds.

• Proof of absence of a certificate (Type 2): The cost of verification of a proof is
3.06 milliseconds as the verification requires two pairing operations.
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• Proof of absence of a user (Type 3): The proof is similar to the proof of Type
1. Thus, the total time required for the verification of a proof is around (log t ·
hashin · (0.64) · 10−6) milliseconds.

• Proof of extension (Type 4): The proof consists of a sequence of hash values in
the chronTree. If SHA-256 is used as the hash function h, then the size of the
input to h is 512 bits (the hash values of two children). The total number of
hashes to be performed is at most log n, where n is the number of certificates
present in the chronTree. For messages of length 64 bytes, computing a single
hash value takes 29.94 cycles per byte of the message on a 2.5 GHz Intel Core
i5-3210M processor [10]. Thus, the total time required for the verification of a
proof is around (log n · 64 · (11.98) · 10−6) milliseconds.

• Proof of currency (Type 5): The cost of verification of a proof is 3.06 milliseconds
as the verification requires two pairing operations.

In Table 5.5, we have summarized the cost (in milliseconds) of verification of each
type of proof by an auditor.

Proof Cost of verification (in milliseconds)

Proof of presence
of a certificate

(log t · hashin · (0.64) · 10−6)

Proof of absence
of a certificate

3.06

Proof of absence
of a user

(log t · hashin · (0.64) · 10−6)

Proof of extension (log n · 64 · (11.98) · 10−6)
Proof of currency 3.06

Table 5.5: Cost of verification of proofs at an auditor side in milliseconds.





Chapter 6

Future Work and Conclusion

We have developed a scheme which is an extended version of the existing certificate
transparency schemes. Apart from handling the existing proofs efficiently, we have
proposed a new proof showing the absence of a particular certificate. Some of the
proofs, in our scheme, enjoys constant proof-size and constant verification cost. We
have also provided a thorough analysis of the security and performance of our scheme.
To improve the efficiency of the insertion (or revocation) of certificates by updating
the data structures in a batch is a future direction in which this work can be extended.
It needs a further investigation to check if our scheme can be applied to detect unau-
thorized usage of keys and to manage encryption keys to obtain an end-to-end mail
encryption system.

Blockchain technology can be used to removes the trust from log maintainer and
build decentralized Public Key Infrastructure (PKI). Smart contracts can be devel-
oped to store certificates on the blockchain which can be later revoked and retrieve
from the blockchain. It can also be done to store certificates “off the blockchain” and
write smart contract to access this storage and performs above functionalities.
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