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Abstract

In recent times, approximate computing is being looked at as a viable alternative for reduc-
ing the energy consumption of programs, while marginally compromising on the correctness
of their computation. The idea behind approximate computing is to introduce approxima-
tions at various levels of the execution stack, with an attempt to realize the resource hungry
computations on low resource consuming approximate hardware blocks. Approximate com-
puting for program transformation faces a serious challenge of automatically identifying
core program areas/statements where approximations can be introduced, with a quantifi-
able measure of the resulting program correctness compromise. Introducing approximations
randomly can cause performance deterioration without much energy advantage, which is
undesirable. In this thesis, we introduce a verification-guided method to automatically iden-
tify program blocks which lend themselves to easy approximations, while not compromising
significantly on program correctness. Our method is based on identifying regions of code
which are less influential for the computation of the program outputs and therefore, can be
compromised with, however still having a potential of significant resource reduction. We
take the help of assertions to quantify the effect of the resulting transformations on program
outputs. We show experimental results to support our proposal.

Keywords: Approzimate Computing, Program Slicing, Assertions, Verification, State-
ment Coverage, Linear Programming.
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Chapter 1

Introduction

Energy efficiency has become an element of paramount concern in design of computing sys-
tems. Ongoing technological developments and the Internet of Things mean more aspects
of our lives are being computerized and connected, needing ever more processing of data,
thereby requiring the computing systems to become increasingly embedded and mobile.
Despite advances in reducing the power consumption of devices and enhanced battery tech-
nology, today’s designs continue to increase their energy use as the amount of computation
increases, at a time when energy efficiency is being encouraged and demands on battery life
increasingly scrutinized.

Approximate computing is an emerging design paradigm that aims to address the energy
utilization problem from a completely different perspective, by using the inherent resilience
of applications to perform computations in an in-exact manner. Computing today is not
always about producing a precise numerical result at the end. Many applications have
intrinsic tolerance of minor to moderate elements of inaccuracy. Applications in domains
like computer vision, media processing, machine learning, and sensor data analysis already
incorporate imprecision into their design. Large scale data analytics focus on aggregate
trends rather than the integrity of individual data elements. In domains such as computer
vision and robotics, there are no perfect answers: results can vary in their usefulness, and
the output quality is always in tension with the resources that the software needs to produce
them. All these applications are approximate programs: a range of possible values can be
considered correct outputs for a given input.

The central challenge in approximate computing is forging abstractions that make impreci-
sion controlled and predictable without sacrificing its efficiency benefits. Many applications
are often intrinsically resilient to a large part of their computations being performed in an
approximate or imprecise manner, enabling us to save computing resources. Approximate
computing helps design platforms for which correctness is defined as producing results that
are good enough, judged by some metric, departing from the long held belief that comput-
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ing platforms should be developed by the same strict notion of correctness. A number of
research articles have discussed strategies for implementation of approximate computing in
both hardware and software. In [30], approximate computing of applications by loop per-
forations is proposed. Critical versus tunable loops are identified by intentional perforation
of loops and observing the respective output. For hardware, [15] presents the design of a
system architecture for approximate applications. [20] designs an imprecise adder which
consumes low power performing approximate computing.

The technology of approximate computing today is poised at an interesting juncture, which
has led researchers to identify the two main subproblems as below.

1. Identification of areas to apply approximation

2. Application of suitable approximations, and verify the correctness and gain of the
application.

This dissertation attempts to address both the above problems and create a framework that
can enable us harness the full power of approximate computing in the best possible way.
We discuss about our specific contributions below.

While existing literature talks mostly about methods for implementation of approximate
computing in different layers of the execution stack and approximate designs, the problem
of automatic identification of candidate program blocks amenable to approximation has
been relatively less addressed. We aim to address this important question, specifically,
we aim to develop an automated technique for identification of areas in an application
where approximations can be implemented. A few articles in recent past have addressed
this question in a semi-automated way. In [12, 25, 29] approximation aware programming
frameworks are proposed, which provide language constructs to annotate functions, data or
loop as approximate or precise. [13, 14] identify resilient computation kernels by injecting
errors and then classifying them based on the output quality metric.

In this dissertation, we present A Verification Guided Approach for selective program trans-
formations for Approximate Computing, that can be used to automatically identify areas in
a digital design to apply Approximate Computing. A number of proposals have been made
in [13, 14] to identify program blocks based on the kernel computation time of innermost
loops. The fundamental difference with this body of work on identification of program blocks
for application of approximations and our proposed approach is that existing approaches
primarily use a semi-automated way based on the program execution on a specific set of
inputs, whereas our work proposes a novel approach of statement identification based on
program structure along with the execution traits of the design. Our approach stems from
the observation that not all statements in a program execute with same effect, nor influence
the computation of the outputs equally. Statements which are less prone to executions, or
have minor effects on the program output, can thus be approximated, thereby saving com-
putation resources resulting in improved system resource utilization and efficiency. In our
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model, we propose a formal framework for statement identification, that can identify the set
of statements that are suitable for approximations, thereby reducing resource utilization.
Experiments show our proposed framework is capable of saving resources significantly for
standard Verilog designs.

1.1 Motivation of this dissertation

The general system stack is shown in Figure 1.1. From the figure it is clear that, approx-
imation provides a lot of gain if applied to the hardware, while it is better if we apply
approximation mainly at the user level or at the language level. The latter approach can
be taken in two ways.

e Apply approximations directly in the application or program.

e Identify program areas to be computed with approximate hardware.

In both the methods, it is imperative that parts of the program suitable for approximation
are identified, in an efficient method. The main issue, as mentioned is that it is difficult
to receive a lot of gain by approximating at the language level. To make the best out of
the situation, all possible approximating areas of a program needs to identified. To the
best of our knowledge although work has been done to identify program statements for
approximation in different machine learning programs, no work has yet been done in digital
design. This is the main motivation for this dissertation, where we present such an approach
for Verilog design codes. The main contribution of this dissertation is highlighted in the
following section.

1.2 Contribution of this dissertation

In this dissertation, we propose an automated approach for statement identification for
approximation in Verilog programs. We consider a simple overview of our work presented in
Fig 1.2, where the three basic steps in our methodology are presented. In this work, initially,
we identify statements based on their execution rate and their effects on outputs. After the
initial set of statements are identified, we insert random errors (raw approximations) to the
programs. This step is interchangeably used along with the correctness and compromise
measure which measures the effect of the random error on the program functionality. We
use assertions [18] to specify the correctness of the design. After the random error insertion
step, we measure the number of assertions that change their truth value. Along with the
correctness metric, we also provide the amount of power and circuit area that is reduced
due to the random error. Based on these scores, we select the best set of statements to
apply our approximations on. In order to avoid applying approximations which result in no
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Figure 1.1: Stack Showing Layers of Approximate Computing

gain or highly compromised circuits, we propose certain heuristics for candidate statement
selection. This helps us to identify a set of statements suitable for approximations in an
efficient and scalable way.
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Figure 1.2: Overview of our Approach
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1.3 Organization of the dissertation

The rest of the dissertation is organized into 6 chapters. A summary of the contents of the
chapters is as follows:

Chapter 2: A detailed study of relevant research is presented here.
Chapter 3: This chapter describes the statement identification step of our approach.

Chapter 4: This chapter describes the random error insertion and correctness step of our
approach.

Chapter 5: This chapter presents methods for candidate statement selection.

Chapter 6: This chapter describes the detailed case study of our work, implementation
and results.

Chapter 7: We summarize with conclusions on the contributions of this dissertation.






Chapter 2

Background and related work

In this chapter, we first present a few background concepts needed for developing the foun-
dation of our framework. We also present an overview of different schemes proposed in
literature for approximate computing.

2.1 Background

In this section, we discuss a few background concepts.

2.1.1 Assertions

Assertions are primarily used to validate the behavior of a design ("Is it working cor-
rectly?”). They may also be used to provide functional coverage information for a design
("How good is the test?”). Assertions can be checked dynamically by simulation, or stati-
cally by a separate property checker tool i.e. a formal verification tool that proves whether
or not a design meets its specification. Such tools may require certain assumptions about
the design behavior to be specified.

Some of the popular assertion languages used in the industry are :

e PSL (Property Specification Language) based on IBM Sugar [4]
e Synopsys OVA (Open Vera Assertions) and OVL (Open Vera Library) [7]
e Assertions in Specman [6]

e 0-In (OIn Assertions)

15
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e SystemC Verification (SCV)

e SVA (SystemVerilog Assertions)

In this section, we introduce the popular type of assertions System Verilog Assertions (SVA)
[18] and describe its functionality.

System Verilog Assertions

System Verilog assertions are built from sequences and properties. Properties are a superset
of sequences; any sequence may be used as if it were a property, although this is not
typically useful. In SystemVerilog there are two kinds of assertion: immediate (assert)
and concurrent (assert property). Coverage statements (cover property) are concurrent
and have the same syntax as concurrent assertions, as do assume property statements, which
are primarily used by formal tools. Finally, expect is a procedural statement that checks
that some specified activity (property) occurs. The three types of concurrent assertion
statement and the expect statement make use of sequences that describe the design’s
temporal behavior ” i.e. behavior over time, as defined by one or more clocks.

Immediate Assertions

Immediate assertions are procedural statements and are mainly used in simulation. An
assertion is basically a statement that something must be true, similar to the if statement.
The difference is that an if statement does not assert that an expression should be true, it
simply checks that it is true.

Example 2.1 if (A == B) ... // Simply checks if A equals B
assert (A == B); // Asserts that A equals B; if not, an error is generated

If the conditional expression of the immediate assert evaluates to X, Z or 0, then the
assertion fails and the verification tool writes an error message. An immediate assertion
may include a pass statement and/or a fail statement. The following example shows a case
with an action specified if the assertion evaluates to true.

Example 2.2 assert (A == B) $display ("OK. A equals B”);

It is executed immediately after the evaluation of the assert expression. The statement
associated with an else is called a fail statement and is executed if the assertion fails:
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Example 2.3 assert (A == B) $display ("OK. A equals B”); else $error(”It’s gone wrong”);

We may omit the pass statement yet still include a fail statement:

Example 2.4 assert (A == B) else $error(”It’s gone wrong”);

Concurrent Assertions

The behavior of a design may be specified using statements similar to these:
“The Read and Write signals should never be asserted together.

” A Request should be followed by an Acknowledge occurring no more than two clocks after
the Request is asserted.

Concurrent assertions are used to check behavior such as these. These are statements that
assert that specified properties must be true.

Example 2.5 assert property ( !(Read &6 Write) );

asserts that the expression Read &€& Write is never true at any point in the design.

Properties are often built using sequences.

Example 2.6 assert property ( @Q(posedge Clock) Req |— > ##/[1:2] Ack);

where Req is a simple sequence (it’s just a Boolean expression) and #+#[1:2] Ack is a more
complex sequence expression, meaning that Ack is true on the next clock, or on the one
following (or both). |- > is the implication operator, so this assertion checks that whenever
Req is asserted, Ack must be asserted on the next clock, or the following clock.

Concurrent assertions like these are checked throughout simulation or formal verification.
They usually appear outside any initial or always blocks in modules, interfaces and pro-
grams. Concurrent assertions may also be used as statements in initial or always blocks. A
concurrent assertion in an initial block is only tested on the first clock tick.

The first assertion example above does not contain a clock. Therefore it is checked at every
point in the simulation. The second assertion is only checked when a rising clock edge has
occurred; the values of Req and Ack are sampled on the rising edge of Clock.



18 2. Background and related work

Implication

The implication construct (|— >) allows a user to monitor sequences based on satisfying
some criteria, e.g. attach a precondition to a sequence and evaluate the sequence only
if the condition is successful. The left-hand side operand of the implication is called the
antecedent sequence expression, while the right-hand side is called the consequent sequence
expression. If there is no match of the antecedent sequence expression, implication succeeds
vacuously by returning true. If there is a match, for each successful match of the antecedent
sequence expression, the consequent sequence expression is separately evaluated, beginning
at the end point of the match.

There are two forms of implication: overlapped using operator |— >, and non-overlapped
using operator | =>. For overlapped implication, if there is a match for the antecedent se-
quence expression, then the first element of the consequent sequence expression is evaluated
on the same clock tick.

sl |— > s2;

In the example above, if the sequence sl matches, then sequence s2 must also match. If
sequence s1 does not match, then the result is true. For non-overlapped implication, the
first element of the consequent sequence expression is evaluated on the next clock tick.

sl | => s2;

where true is a boolean expression, used for visual clarity, that always evaluates to true.

Assertion Clocking

Concurrent assertions (assert property and cover property statements) use a generalized
model of a clock and are only evaluated when a clock tick occurs. In fact, the values of the
variables in the property are sampled right at the end of the previous time step. Everything
in between clock ticks is ignored.

A clock tick is an atomic moment in time and a clock ticks only once at any simulation
time. The clock can actually be a single signal, a gated clock (e.g. (clk && GatingSig)) or
other more complex expression. When monitoring asynchronous signals, a simulation time
step corresponds to a clock tick.
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Example 2.7 property p;
@(posedge clk) a ##1 b;
endproperty

assert property (p);

Putting It All Together

We look at couple of complete examples for System Verilog Assertions.

Example 2.8 7A request (req high for one or more cycles then returning to zero) is followed
after a period of one or more cycles by an acknowledge (ack high for one or more cycles
before returning to zero). ack must be zero in the cycle in which req returns to zero.”

assert property ( @(posedge clk) disable iff reset

Ireq ##1 req[*1:$] ##1 Ireq

|— >

lack[*1:$] ##1 ack[*1:8] ##1 lack );
Example 2.9 "After a request, ack must remain high until the cycle before grant is high.
If grant goes high one cycle after req goes high then ack need not be asserted.”

assert property ( @(posedge clk) disable iff reset $rose(req) | => ack[*0:$] ##1 grant );

where $rose(req) is true if req has changed from 0 to 1.
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2.2 Related Work on Approximate Computing

In this section, we discuss some related work that has been done so far. In the first part
of this section, we discuss various work done on automatic identification for approximate
computing in literature. This is followed by a brief analysis of work done on ensuring quality
of approximate computing.

A software framework for automatically discovering approximable data in a program by
using statistical methods is presented in [28]. Their technique first collects the variables
of the program and the range of values that they can take. Then, using binary instru-
mentation, the values of the variables are perturbed and the new output is measured. By
comparing this against the correct output, which fulfills the acceptable QoS threshold, the
contribution of each variable in the program output is measured. The variables are marked
as approximable or nonapproximable based on the above score. Thus, their framework
obviates the need of a programmers involvement or source code annotations for Approxi-
mate Computing. They compared this to a baseline with type-qualifier annotations by the
programmer [29], their approach achieves nearly 85% accuracy in determining the approx-
imable data. Their limitation is that some variables that are marked as nonapproximable
in the programmer-annotated version may be marked as approximable by their technique,
which can lead to errors. A technique was presented in [13][14] for automatic resilience
characterization of applications. The method has two parts. The resilience identification
part, considers innermost loops that occupy more than 1% of application execution time
as atomic kernels. The application executes with input datasets, then random errors are
introduced into the output variables of a kernel using the Valgrind DBI tool. If the out-
put quality is not upto the mark or if the application crashes, the kernel is marked as
sensitive; otherwise, it is potentially resilient. In the resilience characterization step, poten-
tially resilient kernels are further explored to see the applicability of various approximation
strategies. In this step, errors are introduced in the kernels using Valgrind based on the
approximation models. To quantify resilience, they propose an Approximation Computing
Technique(ACT)-independent model and an Approximate Computing Technique specific
model for approximation. The ACT-independent approximation model studies the errors
introduced due to ACT using a statistical distribution that shows the probability, magni-
tude, and predictability of errors. The ACT-specific model may use different ACTs, such
as precision scaling, inexact arithmetic circuits, and loop perforation. The experimental
results show that several applications show high resilience to errors, and many parameters
such as the scale of input data, granularity of approximation have a significant impact on
application resilience. Two techniques were presented in [27] for selecting approximable
computations for a reduce and rank kernel. A reduce and rank kernel performs reduction
between an input vector and each reference vector, the outputs are then ranked to find
the subset of top reference vectors for that input. Their first technique decomposes vector
reductions into multiple partial reductions and interleaves them with the rank computation.
The next step identifies whether a particular reference vector is expected to appear in the
final subset. Based on this, future computations that have little impact on the output after
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relaxation are selected. The second technique leverages the temporal or spatial correlation
of inputs. Depending on the similarity between current and previous input, this technique
approximates or entirely skips processing parts of the current inputs. Approximation is
achieved using precision scaling and loop perforation strategies. Language extensions and
an accuracy-aware compiler for facilitating writing of configurable-accuracy programs has
been presented in [9]. The compiler performs auto tuning using a genetic algorithm to ex-
plore the search space of possible algorithms and accuracy levels for dealing with recursion
and sub calls to other configurable-accuracy code. Initially, the population of candidate
algorithms is maintained, which is expanded using mutators and later pruned to allow more
optimal algorithms to evolve. Thus, the user needs to specify only accuracy requirements
and does not need to understand algorithm specific parameters, while the library writer
can write a portable code by simply specifying ways to search the space of parameter and
algorithmic choices. To limit computation time, the number of tests performed for evalu-
ating possible algorithms needs to be restricted. This can lead to the choice of suboptimal
algorithms and errors, hence the number of tests performed needs to be carefully chosen.
A programming language, named Rely was proposed in [12], that allows programmers to
determine the quantitative reliability of a program. In the Rely language, quantitative reli-
ability can be specified for function results; for example, in int< 0.99 * R(arg) > FUNC(int
arg, int x) code, 0.99*R(arg) specifies that the reliability of return value of FUNC must be
at least 99% of reliability of arg when the function was invoked. Rely programs can run on a
processor with potentially unreliable memory and unreliable logical/arithmetic operations.
The programmer can specify that a variable can be stored in unreliable memory and/or
an unreliable operation can be performed on the variables. Integrity of memory access and
control flow are maintained by ensuring reliable computations for the corresponding data.
By running both error-tolerant programs and checkable programs (those for which an effi-
cient checker can be used for dynamically verifying result correctness), they show that Rely
allows determination of integrity (i.e., correctness of execution and validity of results) and
QoR of the programs.

It was noted in [19] that, for several computation intensive applications, although finding
a solution may incur high overheads, checking the solution quality may be easy. They
proposed decoupling error analysis of approximate accelerators from application quality
analysis by using application specific metrics called light weight checks (LWCs). LWCs
are directly integrated into the application, which enables compatibility with any ACT.
By virtue of being lightweight, LWCs can be used dynamically for analyzing and adapting
application-level errors. Only when testing with LWCs indicates quality loss below a set
standard, exact computation needs to be performed for recovery. Otherwise, the approxi-
mation is considered acceptable. This saves energy without compromising reliability. Their
approach guarantees bounding worst-case error and obviates the need of statically designed
error models. A quality control technique for inexact accelerator based platforms was pro-
posed in [24]. They note that an accelerator may not always provide acceptable results;
thus, blindly invoking the accelerator in all cases will lead to quality loss and waste of en-
ergy and execution time. They proposed a predictor that guessed whether the invocation
of accelerator will lead to quality degradation below a threshold. If yes, their technique
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instead invokes the precise code. A novel product program construction for differential
assertion checking is presented in [23] that permits procedural programs, and allows lever-
aging off-the-shelf program verifiers and invariant inference engines. This work shows that
mutual summaries naturally express many relaxed specifications for approximations, and
SMT-based checking and invariant inference can substantially automate the verification of
such specifications and provides us with an insight that assertions can be used as a proper
metric for approximation quality.

To the best of our knowledge, our proposed model is the first work of its kind. We use
automated techniques to identify approximable regions of digital design code and measure
the resulting correctness compromise using assertions. This is the major limelight of this
dissertation.



Chapter 3

Statement Identification for
Approximate Computing

In this chapter, we formally explain our approaches for identifying statements which can be
suitable for approximations. In the subsequent chapter, we elaborate the next two steps of
our complete methodology.

3.1 Definition

The main idea of the statement identification step is to segregate the statements of a digital
design, into two parts.

e Possibly Approximable Statements : These are statements which can be executed in
a manner so that they produce a good enough result.

e Sensitive Statements : These are the statements which are extremely important to
the digital design. We can say that these statements needs to be executed with exact
accuracy.

There are two approaches we have pursued to identify possibly approximable statements.

e Dynamic Method : The dynamic method uses coverage to separate between the state-
ments. Low covered statements are judged to be possibly approximable whereas highly
covered statements are marked as sensitive statements.

e Static Method : We use the program’s dependency graph to find out the number
of output variables each statement affects. Statement which affect lower number of

23
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output variables are marked as potentially approximable statements, while the rest
are marked as sensitive statements.

We explain in detail both the methods in the discussion below.

3.2 Dynamic Method

Detailed Methodology

The dynamic approach is based on the calculation of statement coverage Csiatement, Of the
Verilog code based on a large number of given test cases, similar to the approach used in
[10].

Statement Coverage : Statement coverage, also known as line coverage is the easiest
understandable type of coverage. From N lines of code and according to the applied stimulus
how many statements (lines) are covered in the simulation is measured by statement cover-
age. If a DUT is 10 lines long and 8 lines out of them were exercised in a test run, then the
DUT has line coverage of 80%. Line coverage includes continuous assignment statements,
Individual procedural statements, Procedural statement blocks, Procedural statement block
types, Conditional statement and Branches for conditional statements.

For a particular test case, not all statements of the design are executed. For a large set of
test cases, a particular statement in the design will be executed for a subset of given test
set. To understand this approach consider Figure 3.1. There are two paths based on the
condition C'I. One which contains statement S2 and another which contains statement S3.
S1 is common to both the paths. For say around ¢ number of test cases, it is obvious that
S1 will be executed for all. However §2 will be executed for some of the test cases among
t, and the rest shall cause S8 to execute.

We can intuitively see that the set of statements can be segregated into two sets. One,
Covp;gn with a very high coverage value, greater than a given threshold ¢., which can be set
depending upon the level of approximation we want to perform. This signifies that majority
of the test cases had the statement on their execution path. We claim these sentences to be
very important to the design, which need to be executed with exact precision and thus, are
marked as sensitive. Second, Couvy,,, the rest of the statements which have a low coverage
value, as they are executed for a very less number of test cases. We claim these statements
to be potentially approximable statements, which can be approximated to reduce the gate
count or power consumption of the design. Since they are not executed very frequently, we
can deal with their precision being slightly inexact, having significant resource optimization
in return. The value of threshold t. can be decided by the user. It acts as the controlling
parameter of the level of approximation we want to perform.
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S1
Path1:S1-C1-S3
® Path2: S1-C1-S2-S3
c1 @

Figure 3.1: Example of Statement Coverage

Example 3.1 If t. is set to be 20%, it means we shall consider only those statements in
our next step, who have a coverage score of less than 20%,i.e they have been executed for
less than 20% of the test cases.

Figure 3.2 shows the steps of the above approach.

Formally, the dynamic approach can be stated as follows: We define S to be the set of all
statements of the given digital design code and Cligtement, , the coverage score of a statement
s € S. s is used to segregate statements as:

e {Covhigh, if Cstatement, > te (3.1)

Covjpy, otherwise

At the end of the dynamic approach, we can generate a matrix A of the form Statements
x Test Cases. A 1 in the position a;; signifies that statement i has been executed by test
case j, 0 signifies otherwise. This will be used in the upcoming sections for the purpose of
ranked aggregation.
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Figure 3.2: Dynamic method of Statement Identification

Example 3.2 The matriz below shows the matriz A for 30 sentences against b test cases.
Statement 1 is executed for all five of the test cases, whereas statement 2 is executed for
only two of the test cases, ty and ts.

t1 ta2 t3 tg ts
51 1 1 1 1 1
52 0O 1 0 0 1

ss0 | 01 1 0 1
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3.3 Static Approach for Statement Identification

3.3.1 Reason for a Different Approach

The dynamic approach of statement identification, brings forward the old question of Are
there enough test cases?. It is quite possible, that for a larger number of test cases, some
of the statements, which had low coverage score previously might end up having a high
coverage score. Also, to get a large number of test cases, one has to use a random test
generator, which without considering the design shall provide us test cases. It is quite
possible that, the test cases may be focused on some particular branches more than the rest.
So it is evident that blindly increasing the number of test cases is not enough. However the
dynamic approach gives us a rough acceptance, that our intuition of segregating statements
in a Verilog design is possible and its initial results were quite supportive as well.

As a second method, we decided to look at an approach that does not depend on the
behavior of the test cases, or the number of test cases. We decided to utilize the program
structure to shortlist our statements, rather than depend on any other separate inputs. We
present the static approach, which utilizes the dependency graph for a module to shortlist
the statements, based on the number of output variables it affects.

3.3.2 Approach

As mentioned in the previous section, we now aim to develop a statement identification
approach, which shall use the program structure to identify statements possible for approx-
imations. We present the static approach which uses the concept of the effect a statement
has on a particular output, to mark statements which are sensitive and possibly approz-
imable.

In a Verilog program, each module has multiple outputs. Each statement in the program,
does not take part in the decision for the value of every output variable. This is the major
motivation behind the static approach, where we aim to find out the number of output
variables affected by a particular statement, and then use that score to segregate between
the statements. To understand this concept let us look at the following example.

Example 3.3 Consider four statements s1, s2, s3 and sS4 in a module. There are three
outputs in the module, 01, 0oy and o3.

The value of 01 s affected by s1 and s3.
The value of oo is affected by s1, s3 and s4.

The value of o3 s affected by ss.
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From the above example, we see that there is a score on the basis of which we can segregate
the statements. Clearly, statement s has a lot less affect on the total functionality of
the module. Similar to the dynamic approach, we can separate the statements into two
categories. Omne, in which the statements affect a large number of output variables, i.e,
above a given threshold, and the other in which the statements affects a less number of
output variables.

Formally, the static approach can be stated as follows: We define S to be the set of all
statements of the function and OutScoresiatement, to be the score of a statement, which
specifies the number of output variables it affects s € S. t,5 is the given threshold. s is
segregated as:

e {OutScorehigh, if OutScoresiatement, > tos (3.2)

OutScorej,,, otherwise

Similar to the dynamic approach, we claim that the statements in the set OutScorepqp,, are
very important to the program, as they affect a large number of output variables. These
statements needs to be performed possibly with exact accuracy, and are thus said to be
sensitive. For the statements in OutScore;,,,, the program can deal with their results being
a little inexact from the correct value, as they affect very less number of output variables.
These statements are claimed as possibly approximable. The value of threshold ¢,s can be
decided by the user. It acts as the controlling parameter of the level of approximation we
want to perform.

Example 3.4 If t,s is set to be 40%, it means we shall consider only those statements in
our next step, who influence the value of less than 40% of the total output variables.

At the end of the static approach, we can generate a matrix B of the form Statements x
Output Variables. A 1 in the position b;; signifies that statement ¢ has affected output
variable j, 0 signifies otherwise. This will be used in the upcoming sections for the purpose
of ranked aggregation.

Example 3.5 The matriz below shows the matrix B for 30 sentences against 4 output
variables. Statement 2 is responsible for the value of 4 of the output variables, whereas
statement 30 affects only two output variables, o1 and o3.

01 02 03 04
51 1 1 1 0
52 1 1 1 1

ss0 | 1 0 1 0
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module farm_control(clk, car_present, enable_farm, short_timer, long_timer, farm_light,
farm_start_timer, enable_hwy);

input clk;
output farm_light;

output farm_start_timer;
output enable_hwy;

initial farm_light = RED; /*farm_start_timer,
enable_hwy, farm_light*/

assign farm_start_timer = (((farm_light == GREEN) && ((car_present == NO) || long_timer)) ||
(farm_light == RED) && enable_farm); //farm_start_timer

assign enable_hwy = ((farm_light == YELLOW) && short_timer); /*enable_hwy*/
always @(posedge clk) begin

case (farm_light) /*farm_start_timer,
enable_hwy, farm light*/

GREEN:
if ((car_present == NO) || long_timer) /*farm_start_timer, enable_hwy, farm_light*/
farm_light = YELLOW; /*farm_start_timer,
enable_hwy, farm light*/
YELLOW:
if (short_timer) /*farm_start_timer,
enable_hwy, farm_light*/
farm_light = RED; /*farm_start_timer,
enable_hwy, farm_light*/
RED:
if (enable_farm) /*farm_start_timer,
enable_hwy, farm_light*/
farm_light = GREEN; /*farm_start_timer,
enable_hwy, farm_light*/
endcase
end
always@(posedge clk)
begin

gm® : assert property(!((farm_light == GREEN) && (hwy_light == GREEN)));
gml : assert property (((car_present == YES) ##0 (!(farm_light == GREEN))[*0:$]1));
gm2 : assert property ((hwy_light == GREEN)[*1:$]);

end

endmodule

Figure 3.3: Working example of a module of traffic light controller
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3.3.3 Motivating Example

To implement the static approach, we implement dependency slicing, which traverses the
control dependency flow graph of the module, and identifies statements which changes the
values of the variables. A number of dependencies arise in this approach, namely transitive,
conditional and direct dependencies which need to be taken care of. We present an example
which presents a clear explanation of the static approach for statement identification.

Example 3.6 Consider Figure 3.3, which shows a simple Verilog design module of a light
controller, which controls the light on a crossing (details not shown in figure), depending
on the various inputs received (e.g., car present, timer duration, etc). Our algorithm begins
by examining each output variable in turn. The variables in green beside the statements
show that the statement modifies this particular variable. Consider the output farm_light
which is modified in three statements, 24,29, and 34. FEach of these is control depen-
dent on an if condition. The variables in the if conditions on line 22,27, and 32 are
enable_farm, short_timer, car_present and long_timer. All these statements lie nested un-
der the case statement at line 19 and are therefore, control dependent on it. Further,
statement 11 belongs to the dependency slice of farm_light since it assigns a value to it.
For enable_hwy, statement 16 belongs to its dependency slice due to the direct data de-
pendency. The variables on the right hand side of the assign statement are farm_light
and short_timer. The concurrency semantics of Verilog language makes the other two
outputs farm_start_timer, enable_hwy affected by statements 22 to 34 as well. In partic-
ular, enable_hwy is assigned at statement 16, which checks for a condition on farm_light.
Hence, statements 11, 19, 22, 24, 27, 29, 82, and 34 which belong to the dependency slice of
farm_light end up indirectly affecting the logic of computation for enable_hwy. A similar
reasoning holds for the other output variable as well. W
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3.3.4 Algorithm for Static Approach

The dependency slicing [11][26] step takes in the following input: (a) The program P and
(b) A list of module output variables. The output of the method is a list of statements
¢ C P that influence the computation of the output variables. The dependency slice,
Dep;, for variable ¢ computes a chain of static data and control dependencies. In the
slicing algorithm, for each output variable out, we traverse the program and mark the
data and control dependencies, both the direct ones and the transitive ones that propagate
through other variables. In other words, we end up computing the transitive closure of the
data and control dependencies for the variable out. Finally, we mark all such statements
as influencing the variable out. The slicing is done on the control and data flow graph
(CDFG) [11] constructed from the module code. Algorithm 1 presents the dependency slice
computation strategy. We take each module output out, and compute the dependency slice
chain starting from the first unmarked statement where out is assigned. The algorithm
terminates when we reach a fix point, in other words, no new statements are added and no
new variables are encountered.

Algorithm 1: Dependency Slice Computation

Input: D : Design to be approximated

Out : Outputs of D

S : Set of all statements of D

Output: Deppy: : Dependency slice of module outputs.
begin

for all out € Out do

for all unmarked s € S do

if out modified in s then
Add s to Depyys and mark s

Bls][out] +— 1
for for all variables x1,x2,..x, in the RHS of s do
| Compute dependency slice Dep,,

if s depends on conditional statement ¢ then

for all variables z1, 22, ..24 in the RHS of s do
| Compute dependency slice Dep,,

else
| Bis][out] +— 0

B Azld Depoyr to Depoy
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3.4 Merging both the Approaches

In the earlier sections we have introduced the dynamic and static approach for statement
identification suitable for approximate computing. Each method segregates statements
based on a particular behavior of the program. The dynamic method uses the fact that
not all statements are executed with the same frequency, while the static approach uses the
behavior of the verilog design that not all statements affect the value of same number of
output variables. Both the approaches have some drawbacks. The limitations of the dy-
namic approach is mentioned in Section 3.3. The static approach faces with the limitation
of dealing with a high complexity during the calculation of the dependency slicing. For our
best interests, use of both the approaches should aid us in the best identification of state-
ments suitable for approximation. This is due to the fact because both the methods are so
different in their underlying philosophy, they force the enforce that the really approximable
sentences are selected with greater priority.

In both the approaches, we generated a matrix at the end. The dynamic method generated
a matrix Statements x Test Cases, while the static approach generated a matrix of the
form Statements x Output Variables. From both the matrices, we now get a ranking of the
statements of a module.

Example 3.7 Consider two matrices of the form described above. Matriz A is from the
dynamic approach while Matrix B is from the static approach. It shows 5 statements against
8 output variables and 5 test cases.

51 0 01 0 1
s2 1 1 0 0 1
A= s 1 0 0 0 1
54 1 1 1 1 1
s5 1 1 0 1 1
01 02 03
51 1 1 1
52 1 0 0
B= s 1 0 1
54 1 0 0
s5 1 1 0

The ranking for the 5 statements generated from matriz A and B are R1 and R2 respectively,
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where the score of the statement is included beside the statement number in braces.

54(5) s1(3)
s5(4) s3(2)
R1 = s2(3) | R2= s5(2)
51(2) s2(1)
53(2) s4(1)

Now that we have two rankings of the statements, our final aim is to get a common ranking
of the statements based on both. We apply Borda’s method of ranked aggregation [16] to
achieve this.

Definition 3.1 Ranked List Aggregation : Given two full lists, sorted in the same
order 11 and Ty generated from matrizx A and B respectively, then for each s € S and list
7i, Borda’s method first assigns a score B;(c) =the total number of candidates ranked below
c in 7;, and then the total Borda score B(c) is defined as 25:1 Bi(c). The candidates are
then sorted in decreasing order of total Borda score [17].

Example 3.8 For the ranked lists R1 and R2 in Example 3.7, the Borda’s score for the
statements are given in the form Score(R1), Score(R2) in the following matriz.

s [ 1,4
s | 2,1
s | 0,3
s | 4,0
ss | 3,2

The final ranking of the 5 statements is given in the matriz F, where the final Borda
score is shown beside the statements,
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Chapter 4

Approximation Insertion and
Correctness Compromise
Quantification

In this chapter, we discuss the next step of the work flow. After statement identification, we
now have a set of statements which are possibly approximable. However we need to quantify
the amount of compromise we are making while approximating these statements and the
gain we shall acquire as a result of the approximation. The next part of the problem can
thus be broken up into two segments.

e Approzimation Insertion : In this step we enter random approximations (errors) into
the statements selected in the previous step.

e Correctness Compromise Quantification : After the approximation has been done, we
measure the amount of deviation that has occurred from the exact solution, and also
the gain in power, circuit area that can be achieved.

In the upcoming sections we describe the logic behind random approximation insertion, how
it is used in handshake with correctness compromise quantification. We explain the use of
assertions as a correctness metric and then show the different resource gains we have taken
into consideration. We also lay down the foundation of the problem which selects the list of
possible statements suitable for approximation. This selection is done based on quantified
results, which makes the selection all the more stronger.

35
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4.1 Random Approximation Insertion

The random approximation(error) insertion step, aims to crudely approximate the state-
ments. This is a standard approach taken to identify approximable parts of the code. We
have based this approach based on [13][14]. The idea is to reduce computation of the
statement, so that there is a possible gain in resource utilization. As an example, we use
loop perforation to trim down the number of iterations for which a loop runs, condition
modification (e.g., replacing the condition of a conditional if/case statement with simpler
conditions or constants), modifying assignment statements with random values, modifying
n-bit arithmetic operations by truncating the number of bits, etc.

A snapshot of some examples of random approximations that have been applied are given
in Table 4.1.

Original Statement Possible Modification Description

if(x) if(1) If condition to be al-
ways true

assign x = b[2:0], ¢[3:0] | assign x = b[2:0], ¢[3:2] Making the last two bits
Zero

for(..) Loop Perforation Modify the loop to exe-
cute in reduced count

assignx = (a & b)..(z & | assign x = (a & b)..(z & d) Drop part of a large

d) & (a |z) computation

Table 4.1: Snapshot of possible modifications

A lot of these approximations have been stated in the literature for approximating comput-
ing. Some examples are [10][21][30].

The step of random error insertion is used interchangeably with the correctness and com-
promise measure step. This can be understood from the fact that once a statement s has
been transformed to s, we need to quantify the amount by which the correct result has
deviated.
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4.2 Correctness and Compromise Measure

Use of Assertions as a Metric

In the previous section we have discussed about random approximation insertion in a state-
ment. The next step is to find out how much the approximation has affected the output or
the correctness of the program. We propose the use of assertions as the metric, following the
approach in [23] to judge the amount of compromise we are making in the correctness of the
program while inserting approximation. Modern designs have a large number of assertions,
which specify the way a design should behave.

We have, for every design a set of assertions Assert along with their expected valuation
(true/false) on execution for the original design. An assertion is typically evaluated by a
model checker considering all possible feasible execution paths of a design. Thus, intro-
duction of an approximate transformation at a statement s may or may not change the
truth value (true on original, false on modified or vice versa) of an assertion, depending
on whether the transformation affects the truth value computation of the assertion. Based
on this idea, for each statement in Resp,s a candidate approximation transformation is in-
troduced and the number of assertions changing truth value is measured. For a particular
statement s in Respos, let a, be the number of assertions changing truth value on transform-
ing s to s’. We thus can quantitatively measure the amount of correctness of the program
we have compromised.

Example 4.1 Consider the example in Figure 3.3. Three assertions are provided at the
end of the module. Statements 40 to 42 in the design code in Figure 3.3 contain three assert
statements. The approximation transformation done to statement 14 leads to the violation
of assertion gm2. On the other hand, for statement 16 which affects only one output variable
as found out by the static approach, if we discard the condition on the right and assign a
value true as a candidate approximate transformation, it does not alter the truth value of
any assertion.

Thus for every statement that had been selected as potentially approximable, we now have
a score of the number of assertions that have changed their state, i.e., the amount of
correctness that has been compromised due to an approximation that has been inserted.
As mentioned previously this generates a ranked list of the statements, where the statement
at the top has caused the lowest amount of change in the number of assertions. For every
statement there can be multiple approximations. We deal with this at the end of this
chapter.
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Resource Utilization Gain

Once we have a measure of the amount of correctness that we have compromised, we
need to give a measure of the amount of resource gain that we have achieved due to the
approximation. For this, we have considered simulating the design to calculate the power
usage reduction and the circuit area reduction due to the approximation inserted. For
every transformation, we thus have some gain in the resource utilization in the form of area
reduction, Ay or reduced power consumption, ws. The important fact to note here is that
these measures are an estimate of the amount of resource gain we can achieve based on the
amount of approximation we perform. As an example, the power reduction is 6.17%, while
the area reduction is 5.36%, for statement 16, when we apply the approximation described
in the previous step.

For the two metrics, we have now further have two ranked lists of the set of possibly
approximable statements, one based on the power gain and the other based on the decrease
in circuit area. In the first list, the statement at the top has the largest amount of power
gain, while in the second list the statement at the top has the highest decrease in circuit
area.

Algorithm 2: Resource Utilization Measure Algorithm

Input: Respos : generated set of statements which are possibly approximable
Assert : given set of assertions
Approx : A given set of possible errors
Output: Vs € Respos, < ws, Ag ><Resource gain, < oy >< Number of assertions
changing
begin
for all s € Resp,s do
for each candidate approximation x for s do
Apply z to s, converting s to s
Execute the program and fire Assert; as +—Number of assertions flipping
ws <—Gain in power
Ag +—Gain in area
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4.3 Final Form of the Problem

We now have generated for every statement s in Respos, a tuple of the form < ws, o, Ag >.
Thus we have three separate ranked lists, for the set of possibly approximable statements.
The first one is arranged for the % of assertions flipping in ascending order. The second
and third lists are arranged according to the % of power gained due to approximation and
% of circuit area decreased due to the approximation. Both of these lists are arranged in
decreasing order of the values.

Our aim is to find statements, approximating which leads to the lowest number of assertions
changing state, the highest amount of power gain and the highest amount of circuit area
decrease. It is possible that a statement which has the highest power gain may not be the
first rank holder in the other two ranked lists. This has the flavor of a multi objective
optimization problem. The problem is modeled as a ranked list aggregation problem [17],
where we aim to select the best statements which shall give us the maximum optimized value
in all the three metrics. We present the optimization problem and its possible solutions in
the next chapter.

The problem can become more complex when we consider the fact that there can be mul-
tiple approximations possible for a single statement. Thus we also have to select which
approximation to select for each statement along with the earlier selection criteria. This
added constraint increases the complexity of the problem, and we aim to provide suitable
heuristics to overcome this. As an example, let us consider the following situation.

We have three sentences si, so, s3. Let the set of possible approximations be aq, as,
as. In the bipartite graph shown in Figure 4.1, a line between a statement node and an
approximation node shows that the particular approximation is applicable to the statement.

Statements Approximations

51 al

53 al

Figure 4.1: Bipartite Graph relationship between statements and approximations

Thus one possible combination which can be applied is s1(a1), s2(a1), s3(az), where s;(a;)
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means that approximation a; has been applied to statement s;, which will have a different
value of the tuple consisting of the three correctness and compromise values, from the rest of
the combinations. Our problem boils down to selecting the best possible combination among
all the possible combinations that can be possible. We deal with the different variations of
this problem in the next chapter.



Chapter 5

Statement and Approximation
Selection based on Multiple
Optimization Criteria

As discussed in the earlier chapter, we are presented with three ranked lists of the set of all
possible combinations of possibly approximable statements and the possible approximations.
The ranked lists are based on increasing order of the % of assertions flipping, decreasing
order of % of power reduction and decreasing order of % of circuit area reduction. This is
based on the fact that when one approximation is applied to each statement, the combination
of all the approximated statements in the module shall cause certain change in correctness
and shall cause some resource optimization. We present below optimization formulations
for the problem and scalable heuristics.

5.1 An Integer Linear Programming formulation for Ranked
List Aggregation

The motivation behind this method is to generate an aggregate ranked list that minimizes
the number of pairwise disagreements between client pairs between the individual rank lists.
Intuitively, if a statement S; is ranked before a statement S; in most of the individual rank
lists, the aggregate list should reflect this.

Let the multi set of the rankings be denoted by . Each ranked list is represented by
o(1)....0(n), where (i) represents the candidate with rank i. Note that c=1(4) is the rank
of candidate i, where 0 ~! denotes the inverse of o. Let there be m ranked lists and the set
of candidates be {1, ....,n} denoted as [n].

41
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In distance-based rank aggregation, the goal is to find a ranking, called the aggregate ranking,
that is as “close” as possible to all the votes simultaneously. Closeness is measured via a
chosen distance function over S,,. For a given distance d, the aggregate ranking 7 is formally
evaluated to according to

7" =argmin Y d(m o).
TESH o;) (51)

We have used Kendall distance as our distance measure. The Kendall distance between two
permutations 7 and o, denoted by dg (7, o) is the number of disagreements between 7 and
o, i.e., the number of ordered pairs (7, j) such that = ranks ¢ higher than j, and o ranks j
higher than . Formally, the distance may be defined as

dg (m,0) = |{(i,4) : 7' (i) <71 (j), 07 () <o (D)}

The solution of (5.2) for the Kendall distance is known as the Kemeny aggregate.

For o € S, and i, j € [n], let

e 1y 1
% {(1): ftflerviiief 7Y (5:2)
Let P be the set of points x = (z;;) satisfying,
xij +xj; =1, for distinct ¢, j € [n] (5.3)
Tij + xji + xp; < 2, for distinct 4, 4, k € [n] (5.4)
zi; € {0,1}, for distinct i, j € [n] (5.5)
x;; =0, for distinct i € [n] (5.6)

The objective of the Kemeny rank aggregation method is to minimize the number of dis-
agreements with the individual rankings. The Kemeny aggregate is thus a solution of the

following integer program,
min ), > wijoji
oES iy (5.7)
subject to x;j € P

Constraint 5.3 expresses for any statement pair, S; , S; , one of them has to be ranked
ahead of the other, thus both the binary variables x;; and z;; cannot be 0 or 1. The
second constraint, 5.4 is the transitivity constraint between statement triplets. Unless this
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constraint is in place, the aggregate ranking may assign values to the binary variables with
a cyclic majority, i.e the ranks may be assigned as, o~1(7) ahead of o~!(j) , 071(j) ahead
of o71(k) , and 0~1(k) ahead of o~1(i). The third constraint, 5.5 expresses the fact that
the x; and x; variables are binary. The final constraint enforces the fact no statement can
be ranked ahead of itself. The output of the optimization is a value (0 / 1) for each binary
variable x;;, that leads to the minimum value of the objective, subject to the constraints.

5.2 Borda’s Score

One simple way to complete the ranked list aggregation problem is to use Borda’s score [16].
This is a score based rank aggregation for which we have generated results in the coming
sections.

Definition 5.1 Borda’s Method for Ranked List Aggregation : Givenn full lists 1
.eo. Tn, then for each ¢ € C, where C'is the set of all possible combinations of approximations
and statements, and list T;, Borda’s method first assigns a score B;(c) =the total number of
candidates ranked below ¢ in T;, and then the total Borda score B(c) is defined as Zle Bi(c).
The candidates are then sorted in decreasing/ increasing order of total Borda score [17].
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5.3 Working

Statement ID Approximations Applica-
ble

S1 ai, as,aq,as

52 ai, ag

83 ai, ag, aq

54 a1, as, a4

Table 5.1: List of Approximations applicable

We show the working of the Integer Linear program formulated earlier and Borda’s method.
We consider the pci_rst_in module of the PCI verilog code [3]. Four statements are selected
from the module based on the statement identification approaches described earlier. Let
the sentences be names s; to s4. There are 6 possible approximations that can be applied.
Let the approximations be numbered as a1 to ag. Table 5.1 shows the approximations that
can be applied to each statement of the module. a; signifies no approximation, i.e., the
statement is left in its original form.

The total possible combinations that can arise, as we see from the above table is 72. We
show the top ten results that arise from both the methods, i.e Borda’s score and Kemeny
Aggregation. The symbol s;(a;) means that approximation a; has been applied to s;.
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Result using Borda’s method

Combination % of Approxima- | % of Power Gain % of Circuit Area
tions Flipping Gain
s1(ayq) 16.67 66.695 26.221
s1(ag) 33.33 66.695 30.892
s1(az)sz2(ag) 16.67 33.31 23.567
81(@4)84(&3) 16.67 66.695 26.221
s1(aq)sa(ag) 16.67 66.695 30.892
s1(as)ss(as) 16.67 66.695 30.892
81(&5)82(&6)84((13) 33.33 33.39 21.338
s1(as)s2(ag)sa(as) 33.33 66.695 30.892
s1(as)sa(ag)ss(ag)sa(aq) | 50 66.695 28.662
s1(as)s2(ag)ss(aq) 33.33 66.695 30.892
Table 5.2: Top Ten Combinations using Borda Score
Result using Kemeny Aggregate
Combination % of Approxima- | % of Power Gain % of Circuit Area
tions Flipping Gain
s1(ayq) 16.67 66.695 26.221
s1(ag) 33.33 66.695 30.892
s1(aq)sq(ay) 16.67 66.695 19.002
51(a5)52(a6) 16.67 33.31 23.567
s1(as)ss(as) 16.67 66.695 30.892
81(&5)82(&6)84(613) 33.33 66.695 30.892
81(@5)82(&6)83(614) 33.33 66.695 30.892
s1(as)sa(ag) 33.33 66.695 30.892
31(a5)32(a6)34(a3) 33.33 33.39 21.338
s1(ag)sa(ay) 50 66.695 26.221

Table 5.3: Top Ten Combinations using Kemeny Aggregate







Chapter 6

Implementation and Results

6.1 Implementation

Figure 6.1 shows an architectural overview of our framework. The slice generator is imple-
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Figure 6.1: System Architecture

mented in two steps. First, the Verilog design is parsed using a commercial Verilog analyzer,
through which an information dump file is generated. The dump file contains details about
variable modification, conditional statements and information about the output variables
of the module. The information dump is then fed into the dependency slice computation
program, which makes use of the provided information to list down each statement’s influ-
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ence on the output variables. For each statement which affects output variables below a
certain threshold, determined by the user, we say they can be potentially resilient. In our
experiments, we have taken the threshold to be 50%.

Approximation insertion is presently done manually and we identify the change in the
program correctness, by calculating the number of design properties changing their original
value. We have used SystemVerilog Assertions [18] as the assertion specification language
and the formal property checker Magellan [1]. The assertions for the experiment setup have
been generated using Goldmine [31]. Along with the correctness measure, the reductions
in power and area area also calculated, using the Design Compiler tool [22] from Synopsys.
We considered the total sequential and combinational switching power in our experimental
setup.

Once the tuples are generated for a design, consisting of information about the gain-
correctness trade off for each statement for each transformation, we use ranked list ag-
gregation [16] to merge the score of the three measures, number of assertions changing
state, power reduction and area reduction. We implement Borda’s method [16], and the
integer linear programing model presented in Chapter 5, to implement the aggregation.
We first create three ordered lists from our earlier generated approximation transformation
information. List 1 contains an ordered listing of the approximations on the resilient state-
ments based on the power gain achieved, from highest to lowest. Similarly, list 2 contains a
similar ordering based on area gain. List 3 orders the approximations based on the number
of assertions changing truth value, from lowest (more desirable) to highest (less desirable).
Evidently, these three lists will not agree in the usual case, or in other words, the approxi-
mation with the best power gain has the best area gain and the lowest assertion change is
not typically the case. Hence, choice of the best candidate approximation or even ordering
the approximations is not straightforward. We need to therefore aggregate these lists with
the approaches mentioned in the previous chapter.

The majority of the results are based on the static approach of statement selection, due to
multiple drawbacks of the dynamic approach as discussed earlier. However we have taken
into consideration the merging of both the approaches for a few modules, which is described
in the next section.



6.2. Evaluation 49

6.2 Evaluation

We applied our framework on three standard Verilog designs with assertions. We describe
our experiments below. Results indicate that indeed there are statements which lend them-
selves to easy approximation with less compromise on correctness, while producing signifi-
cant gains in resource computation. Our dependency slicing algorithm can efficiently and
correctly identify the statements that are suitable for this analysis. Table 6.1 shows the
outcome of the implementation of our tool.

6.2.1 Case Study on USB Function Core

We present experimental results of the tool on selected modules from the USB Function
Core 2.0 protocol [8] in Verilog. Our framework has been implemented on five modules,
usbf_pa,usbf _wb,usbf_idma,usbf_pd and usbf_mem_arb.

Table 6.1: Evaluation Results of our Framework

Circuit Module | Lines Number of state- | Number of | Average Average % | Average %

of Code | ments selected by | Assertions % of As- | of Power | of Area Re-

(LOC) the  Dependency sertions Reduction duction

Slice Generator changing
state
USB Function Core
usbf_pa 240 17 17 7.9585 2.2741 2.6915
usbf_wb 147 20 47 12.234 2.4933 —0.1189
usbf_idma 336 28 45 11.9841 1.0205 1.2382
usbf_pd 270 48 53 6.5252 0.9668 1.6391
usbf_mem_arb 73 12 12 8.3333 4.2358 —5.4488
OR1200
or1200_du [ 1278 40 [ 498 4.6976 0.0.0939 —0.0306
PCI IP Core

pci_rst_in 64 4 6 12.5 25 9.5011
pci-sync_module| 57 5 4 30 9.4396 4.251

The columns indicate the lines of code (LOC) in each module, the number of lines selected
based on the dependency slice generator’s results, the number of assertions describing the
properties of each module, average percentage of assertions changing state, power reduction
and area reduction. We applied candidate approximations for each resilient statement
and recorded the outcome. For all the modules, the average % of assertions changing
state is around 7 to 12. On an average, there is power reduction for all the statements
due to approximate transformations. Area reduction is also significant for three of the
modules, however for two of the modules usbf _wb and usbf_mem_arb, there is a gain in
the average circuit area as well. This suggests that majority of the statements in the two
modules usbf_wb and usbf_mem_arb, do not help in resource optimization. The module
usbf_mem_arb has the highest gain in power consumption but a significant area compromise.
The problem of maximizing this trade off is dealt with using aggregation.
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The modified approach of merging the static approach and the dynamic approach has been
implemented on the usbf_pd module. Figure 6.2 shows a snapshot of the coverage report
for the module on 10000 test cases. Each line begins with it’s corresponding line number in
the Verilog code.

The coverage of line 2470 is 13, i.e., 0.13%, which is a very low coverage score, and thus,
is marked as potentially resilient. The coverage report has been generated using Questa
Advanced Simulator [5].

2469 1 55 always @(posedge clk)

2470 1 13 if(crcl6_clr)

2471 1 crcl6_sum <= 16’hffff;
2472 else

2473 1 2 if(data_valid_d)

2474 1 crcl6_sum <= crcl6_out;

Figure 6.2: Example of the modified approach

6.2.2 Case Study on OR1200

We tested our approach on the 0r1200_du module of the OpenRISC 1200 architecture design
[2], whose IP core is implemented in Verilog. Result is shown in Table 6.1. For the module,
majority of the statements caused no or very less change to the state of the assertions,
suggesting that the statements were quite resilient. Few of the selected statements turned
out to be very sensitive, causing the average reduction in power consumption and circuit
area to decrease.

6.2.3 Case Study on PCI IP Core

Our framework has been implemented on two modules, pci_rst_in and pci_sync_module of
the PCI IP Core [3], which is a bus bridge device between the WISHBONE SoC bus and
the PCI local bus. Table 6.1 shows the results. Module pci_rst_in, shows promising results,
with a sharp reduction in power consumption and circuit area. Module pci_sync_module,
however, also has a very high rate of assertions changing state, along with noticeable re-
duction in both the fields, indicating that the module has more sensitive statements than
resilient statements.




Chapter 7

Conclusion and Future Work

In this work, we have proposed a novel strategy for approximate computing in a digital
design. Experimental results show promising improvements in the amount of power gain
and reduction in circuit area while compromising extremely less on the program correctness.
With approximate computing gaining extreme popularity in varied domains, we believe our
work will have interesting applications.

In this work, we have proposed an algorithm for identification of regions suitable for approx-
imation. We have also shown that these statements can function without compromising a
lot in terms of correctness and also provide some gain in circuit power and circuit area.

In our future work, we wish to extend our research to two main directions. One one side,
we want to work with multiple approximations in the design. We also want to reduce the
number of candidates in the ILP for statement selection, by proposing a heuristic solution,
as currently we are dealing with all possible combinations of the approximations for all
the statements. A separate path that can be followed can be integrating approximate
hardware in the statements selected in place of random approximation insertion. The idea
also includes providing a probabilistic bound for the same.
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Chapter 8

Disseminations out of this work

e S. Mitra, M. Das, A. Banerjee, K. Datta and T. Yi Ho, “A Verification Guided Ap-
proach for Selective Program Transformations for Approximate Computing ,” under
review Asian Test Symposium (ATS ’16), 2016.
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