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Abstract

Combating the threats imposed by hardware Trojans that are covertly inserted in hard-
ware has surfaced as a challenging problem in recent times. An adversary may maliciously
tamper the given SoC design at netlist level to insert Trojans for the purpose of extracting
secret information from the chip via output pins, or for launching denial-of-service attack.
Because of several scalability issues, the detection of hardware Trojans in a large circuit
turns out to be extremely difficult when the Trojan sizes are small (~ 8 — 10) gates. Such
threats may not only degrade the reliability of the system but also endanger its security,
especially when these chips are used for mission-critical applications such as defence, space,
biological, and in nuclear stations. As the possible instances of Hardware Trojans present
in design are exponential, we propose ATPG-binning technique, using divide-and-conquer
strategy, to lessen the search-complexity and then use a SAT-solver to derive a test set.
Simulation results demonstrate the effectiveness and superiority of the proposed method to
prior work in terms of Trojan-coverage, size of test set, and CPU-time.

Keywords:  Hardware Trojan, Trigger Instances, Trojan Instances, Trigger, Payload,
ATPG-Binning.






Contents

1 Introduction 9
1.1 Motivation of this dissertation . . . . . . .. ... ..o 11
1.2 Contribution of this dissertation . . . ... ... ... ... ... ... .. 12
1.3 Organization of the dissertation . . . . . . .. .. ... ... ... .. .... 12

2 Background and related work 15
2.1 Background . . . . .. .. Lo 15

2.1.1  Trojan Taxonomy . . . . . . . . . . . ..o e 15
2.1.2 Trigger Mechanism . . . . . . . . .. ... ... ... 17
2.2 Related Work . . . . . . . . L 19

3 SATBIST Framework : Analysis and foundation 25
3.1 Basic Definations and Terminologies . . . . . .. ... ... ... ... ... 25
3.2 Hardware Trojan Modelling and Analysis . . . . ... ... ... . ..... 28

3.2.1 Fault Modelling . . . . ... ... ... ..o 29
3.2.2 Mapping trigger instances to stuck-at-fault model . . . . . . . . . .. 30

4 SATBIiST Framework : ATPG Binning Based Test Generation Method 33
4.1 Appropriate Disjoint Binning . . . . . . ... ... 33

4.2 Test generation with Parallel fault simulation . . . . . . ... .. ... ... 34

3



CONTENTS

4.2.1 Reporting Hard-to-detect trigger instances. . . . . . . . .

SATBIST Framework : SAT-Based Test Generation Method

5.1 Transforming Circuits into CNF . . . . ... ... ... ... ..

5.2 SAT Based Test generation methodology . . . . . ... ... ...

Experimental Results and Implementation

6.1 Implementation . . . . . . . ... ... L L oo

6.2 Results. . . . . . . .

Conclusion and Future Work

Disseminations out of this work

39

...... 40

...... 41

43

...... 43

...... 45

47

49



List of Figures

1.1

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

3.4

4.1

4.2

5.1

6.1

Various phases of IC development cyclelt. . . . .. ... ... ... 10
Trojan Taxonomy! . . . . . ... 16
Trojan Taxonomy[w] ............................... 17

Various kind of Trigger-payload combination of a Trojan. (a) Combina-
tionally triggered trojan. (b) Synchronous counter based trojan. (c) Asyn-
chronous counter based trojan. . . . . . .. .. ... L L L. 18

Various kind of Trigger-payload combination of a Trojan. (a) Hybrid nature
trojan. (b) Ananlog trojan (Trigger based on logic value at AND gate). (c)

Analog trojan (Trigger based on input from sensor). . . . . ... ... ... 19
Countermeasure for Hardware Trojan) . . . ... .. ... ... ... ... 21
A simple combinational circuit . . . . . .. .. .. L0 oL 26
A trojan infected combinational circuit . . . . . . ... ... oL 27
Static Analysis showing testability measures (Pero,Pone) - - - - o v o v o L. 28
Trigger Instances modelled as stuck-at fault model . . . . . . ... ... .. 30
Trigger injected netlist k. . . . . . . . . . ... 34
Flowchart showing ATPG Binning Algorithm . . . . . ... ... ... ... 36
Truth table representation and CNF formula of a two-input AND gate . . . 40
SATBIST Framework . . . . . . . . . .. . ... ... ... 44






List of Tables

5.1

6.1

6.2

CNF formulation of boolean logic gates . . . . . . ... ... ... .....

SATBIST test patterns with # = 0.1 (Combinational) and 0.01 (Sequential)
and ¢ = 3. For Sequential circuits, 1 million instances are taken to show
the order and magnitude of test length and CPU time, compared to previous
techniques. . . . . . . . . e

Comparative analysis of MERO Test patterns and SATBiIST test patterns
with # = 0.1 (Combinational) and 0.01 (Sequential) and ¢ = 3. For Sequen-
tial circuits, 1 million instances are taken to show the order and magnitude
of test length and CPU time, compared to previous techniques. SATBiIST
Patterns provide cent percent coverage over all feasible trigger instances,
compared to MERO patterns. . . . . . .. ... ... ... ... ... ...,

46






Chapter 1

Introduction

Electronic systems have rapidly progressed over the past few decades to the point that most
aspects of daily life are aided or affected by the automation, control, monitoring that are
provided by Integrated Circuits (ICs). With the emergence of Information Technology and
its critical role in these electronic systems, Electronic Design Automation have played a
major role in shaping the world of 21st Century. With this advent, the risk of cyber attacks
have also been larger than ever before. In 1980s, there was war between software developers
and hackers, where software was prone to attack with malicious intent. However, as time
progressed, the complexity of the design, fabrication, and distribution of electronics has
caused a shift throughout the industry toward a global business model, thereby creating
new sources of attack. In such a model, untrusted entities participate either directly or
indirectly in all phases in the life of an electronic device or integrated circuit (IC). This
unprecedented access to hardware has been a major cause for concern, resulting in very
plausible conspiracy theories. The ability to trust these ICs to perform their specied oper-
ation (and only their specified operation) has therefore become a security concern and an
active topic of research. ICs are the building blocks for all modern electronic systems, they
form the information backbone of many critical sectors including the nancial, military, in-
dustrial, and transportation sec- tors. Without trust in these ICs, the systems they support
cannot necessarily be trusted to perform as specied and may even be susceptible to attack
by a malicious adversary.

In 2008, it was reported that a critical failure in Syrian radar might have been intentionally
triggered through a “back door hidden within a commercial off-the-shelf (COTS) micro-
processor. According to a U.S. defence contractor who spoke on condition of anonymity, a
“European chip maker recently built such microprocessors with remote kill switches for just
such purposes. Given the dire consequences associated with such weaknesses, the so-called
hardware Trojan issue has received considerable attention from academia, industry, and
government over the last decade [1, 2, 3, 5].
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Figure 1.1: Various phases of IC development cyclel!l.

With semiconductor scaling to very deep sub micron levels, the complexity and cost of 1C
design and fabrication have increased dramatically. An SoC component will typically go
through design cycle starting from specification to retail marketing. The first step of the pro-
cess involves the process of translation of the specifications into a behavioural description,
typically in a hardware design language (HDL) such as Verilog or VHDL. Next, synthesis
is performed to transform the behavioural description into a design implementation in gate
level netlist using technological library provided by Semiconductor Companies like TSMC,
Intel. After implementing the netlist as a layout design, the digital GDSII files are then
handed to a foundry for IC fabrication. Once the foundry produces the ICs, the testing
step ensures the chips are free from manufacturing defects. Those ICs that pass testing are
then assembled, retested, sent to the market, and eventually deployed in systems.

In most of the countries, setting up foundry, fabrication facilities and R&D services for
latest semiconductor technology requires a huge investment. Also, to design and setup a
complex system, a company outsource most of the requirements in order to reduce cost of
skilled manpower and domain experts across all the subsystems required to build the whole
design. These basically involve outsourcing fabrication to third party foundry, purchase and
use third-party intellectual property (IP) cores, and/or use EDA tools from outside vendors.
Use of third-party tools and IPs, and integrating them into the design though speed up the
development cycle, but introduce potential security concerns. The supply chain is therefore
susceptible to various kind of attacks like Hardware Trojan insertion, reverse engineering,
IP piracy, IC tampering and so forth. Amongst all the challenges, hardware trojans are
undoubtedly the biggest concern and have earned considerable attention.

A hardware trojan is defined as malicious, undesired and intentional modification of given
SoC design or electronic circuit, resulting in modified functionality of the device, when
in operation. It is like a back-door that can be used by attackers to gain unauthorized
access to the system, or to destroy the original functionality of the system, or to leak out
important information from the system. Several previous research papers and articles have
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proposed various modelling of potential Trojans that can be possibly inserted in the design.
In [2, 4, 10], the authors have classified Trojans into five different categories, based on
the attributes: insertion phase, abstraction level, activation mechanism, region and effects.
Trojans are inherently stealthy in nature, owing to the fact, that these should not be easily
detectable during normal operation. Intelligent adversaries try to devise such trojans which
are extremely hard-to-detect but moderately triggerable. Trojans are totally different from
manufacturing defects. manufacturing defects are totally random and are unintentional.
Defects can be easily modelled with stuck-at fault, delay fault, transition fault, and are
comparatively easy to detect. But, the same is not valid for trojans. Trojans cannot be
easily modelled to some pre-defined or existing models, hence the modified functionality are
not easily detectable. Also, as the trojans can be inserted at various phase of IC development
cycle, worst case would be exhaustive verification and testing to detect the presence, which
is generally infeasible and time consuming.

1.1 Motivation of this dissertation

Given the threat posed by Hardware trojan inserted in the SoC design, owing to the stealth-
iness and malicious nature, a deep and thorough understanding is vital while developing
next generation sophisticated systems, which are required for critical systems like defence,
healthcare, and nuclear stations. In India, especially in defence sectors, most of the state-of-
the-art technology related to electronic warfare, are either imported from foreign countries
or Transfer-of-Technology is done. Ensuring trust and reliability on these imported tech-
nologies, is a major requirement and should not be taken lightly. Research over a decade
in this area, have come up with lots of methodology involving Trojan Detection and coun-
termeasures [1, 3, 4, 5, 12].

Though a lot of research have been done on trojan detection and diagnosis, and preventive
measures have been taken, the major shortcomings amongst the techniques is that, they
are able to detect the trojans, which have been modelled as per the philosophy defined in
insertion of trojan. Latest research have shown, that if the trojan modelling is changed,
the technique fail to detect the trojan. Though the researchers and academicians in this
area have been considerate enough to provide some benchmarks about the trojan-free and
trojan-injected circuitry, the real attackers and adversaries are well aware of the modelling,
and would try to devise such trojans that can evade current detection schemes.

So, in this cat-and-mouse game between attackers and the people involved in detecting
trojans, there has to be a solid framework, which has the ability to detect most of the
trojans, modelled on any philosophy. The systems, which are generally required in defence,
space, nuclear stations and Health centres require cent percent assurance of the system to
be trojan free. Motivated by the need, we decided to have a survey of current techniques
and methodology adapted for detection, which has the ability to cover all possible flavour
of trojans. The authors in [16, 18, 20, 23, 24] have used current signature and power
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analysis, to detect the presence of extra and redundant circuitry in the given design. In
[25, 35], authors have presented layout and region based approach for detecting Hardware
Trojans. However, in [17], authors have taken best of all the worlds, and used multiple
side channel parameters, to detect trojans. The technique was immensely successful in
detection of majority of trojans, irrespective of any modelling of trojan. It monitors all
the side channel parameters, and compare them with the parameters obtained from golden
trojan free design. Any deviation from accepted threshold values is reported as presence
of trojan in the design. However, the method issue false positive reports, when the trojan
sizes are extremely small, i.e. trojans are inserted by additional insertion of 3-4 gates, and
nets.

All the methodology related to side channel parameters suffer from this issue of false positive,
when comes to small sized trojans. A path breaking work was done by authors in [31], where
logic testing based approach was used and trojan coverage was phenomenal. The technique,
added with multiple side channel parameters seemed to be a perfect framework, for trojan
detection. But, there was still an underlying problem related to technique discussed in [31].
The method failed to provide cent percent coverage, and when sizes of circuit increased,
the trojan coverage failed miserably. Our motivation was to propose an optimised ATPG ,
which would be able to detect exhaustively all possible small trojans in given design, within
reasonable time.

1.2 Contribution of this dissertation

Our test generation framework SATBIST, is able to provide optimised test patterns, which
would be able to provide a cent percent trigger coverage and a wider trojan coverage. The
framework is scalable, and generates optimized test pattern, providing exhaustive coverage.
The framework assumes the generic philosophy of trojan insertion, i.e. stealthiness and tro-
jan activation is rare occurring event. The framework employs divide-and-conquer strategy
called ATPG Binning, which in turn generate test patterns for a considerable number of
trojan instances. We have taken the help of already existing optimised tools, and modelled
the problem of test pattern generation in such way, that can provide a good trigger and
trojan coverage. Test-patterns for hard-to-detect trigger instances are generated with the
help of SAT Solver. In the end, optimized ATPG is reported providing cent percent cover-
age of all possible trigger instances. Simulation results show effectiveness of the technique
in terms of trojan-coverage, CPU time, and test-length.

1.3 Organization of the dissertation

The rest of the dissertation is organized into 6 chapters. A summary of the contents of the
chapters is as follows:
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Chapter 2: A detailed study of relevant research is presented here.

Chapter 3: This chapter describes the mathematical calculations related triggering in-
stances of Hardware Trojan, taken into consideration.

Chapter 4: This chapter formalizes the ATPG Binning approach, divide-and-conquer
strategy to provide scalability.

Chapter 5: This chapter describes the approach for test generation for Hard-to-detect
trigger instances using SAT.

Chapter 6: This chapter describes the detailed framework implementation and results.

Chapter 7: We summarize with conclusions on the contributions of this dissertation.






Chapter 2

Background and related work

In this chapter, we present a few background concepts needed for developing the foundation
of our framework. We also present an overview of different schemes proposed in literature
for Hardware trojan detection.

2.1 Background

In this section, we discuss a few background concepts.

2.1.1 Trojan Taxonomy

Before going to the methods used for trojan detection and countermeasure techniques, we
first go through few fundamental concepts about nature of Hardware Trojan. When trojans
are non-destructively inserted in any phase of IC design cycle, the threat remains whenever
the system is powered on. It depends on the adversary and the stage of insertion, about the
kind of modification a trojan would be carrying out, after infecting the design. Researchers
and Academicians have gone through a rigorous research, and have come down to a broad
level of trojan taxonomy, that is widely accepted amongst the community. Fig. 2.1 and 2.2,
shows a detailed classification of types of trojan, based on various attributes. The detailed
classification help us to understand, the possible areas and phases which are vulnerable,
and the behaviour of trojan, i.e. whether the trojan is used for modifying functionality,
or gaining unauthorized access to the system, or for leaking out sensitive information. In
order to design a strong methodology and framework to detect trojans, irrespective of any
modelling or assumption used for inserting the malicious logic, it is a necessary thing to
find out common parameters.

15
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Figure 2.1: Trojan Taxonomy!*

There have been several Hardware Trojan taxonomies proposed to describe such common
attributes, with the aim to enable a systematic study of Hardware Trojan characteristics,
to aid the development of detection and mitigation techniques for given classes, and to
facilitate benchmarking for detection and mitigation strategies. Chakraborty et. al. [4],
proposed a classification shown in figure 2.1, extended from Wolf et. al. [9], that is based
upon trigger and payload mechanisms. Rajendran et al. [10] extend this taxonomy further
, by consideration of design phase, abstraction level and location. In our dissertation, we
have followed the trojan taxonomy proposed by authors in [4].

A trojan is basically designed using a suitable trigger-payload combination. Fig. 2.1 shows
various areas of mixed signal SoC design, which can constitute possible trigger and payloads.
Before going to the details of trojan designing, let us first clarify the two terms: Trigger
and Payload.

TRIGGER : The malicious functionality introduced into the design, which is responsible
for activation of trojan infection. Trigger is used to feed the trojan to start corrupting
the original functionality or the job intended to be done by the attackers.

PAYLOAD : The portion of the design, which is going to be affected by activation of
trojan. Selection of payload depends on the type of attack intended to be launched
into the design. An attacker’s viewpoint would be finding out a good trigger-payload
combination, which create such trojan instance, which is very hard-to-detect.
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Figure 2.2: Trojan Taxonomy[w]

2.1.2 Trigger Mechanism

As already discussed in previous sections, trojan can be inserted into the design in variety
of ways, and they pose many direct and leveraged threats. Once the design is infected with
trojan, most of them will lie dormant until triggered to corrupt the activity. Activation
can be of any technique, mostly covert, random, directed or predetermined that elicits a
change in state or behaviour of the trojan. This activation phase is important as it provide
crucial state of the system, for detecting and countering trojan. During various testing and
verification phase of an IC development cycle, every attempt is made to activate the trojan
which are stealthily inserted in the design. Typically, it requires intelligent state-space
exploration and optimized functional validation techniques, involving input, output and
current state of the system. Triggering a trojan increase a huge chance of a trojan getting
activated and start its functionality. Most of the research on trojan detection heavily rely on
activating the trigger pattern. It is important to understand the manner in which Hardware
Trojan can be triggered, considering the level of threat posed by them. A brief taxonomy
of various trigger mechanism has been presented in consequent sections. Figure 2.2, gives
a detailed classification of types of trigger mechanism.

Digital logic Trigger

These trigger basically rely on some specific internal state of the circuit. The most common
types are combinational and sequential activation. Most of the digital logic trigger are inter-
nally triggered i.e. the trigger gets activated when certain values at specific internal nodes.
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Figure 2.3: Various kind of Trigger-payload combination of a Trojan. (a) Combinationally triggered
trojan. (b) Synchronous counter based trojan. (¢) Asynchronous counter based trojan.

The trigger is constituted by combination of these specific internal (nodes/states) only. Dig-
itally triggered trojans can again be classified into two broad categories - Combinational
and Sequential triggered trojans.

Combinational Trojan: In combinational trojan, inputs to trigger instance comes from
internal nodes of a circuit, which is a pure combinational logic. In general, attacker
tries to identify the possible areas, from RTL (Register Transfer Level) verilog/vhdl
code, which can be fused together, to form a ”combinational” trigger. Typically, a
particular set of lines from address/data bus, combined with some logic values coming
out from ALU of a processor, can form a combinational trigger. In figure 2.3a, a
combinationally triggered trojan has been presented. When A = 0 and B = 0 occur
at respective nodes, triggering happens, causing payload node C, to have a corrupted
value Cpodified- Typically, an attacker will try to find such rare combination, which
does not get detected during conventional manufacturing test.

Sequential Trojan: This kind of trojan are also known as “Time-Bombs”. They are
triggered after a certain sequence of operation. The simplest sequential Trojan can
be generated from simple clock based counter, which activates a trojan after reaching
a certain count. In figure 2.3b, a synchronous k bit counter gets triggered, when
the count value reaches 2¥ — 1. The actual value ER is corrupted to ER*. The
asynchronous counterpart of synchronous sequential trojan, is shown in figure 2.3c.
Here, the counter value gets incremented, with the number of times, the condition
P =1 and Q = 1 is satisfied. After the threshold value is reached, which was set
by the attacker, the trigger gets activated, resulting in corruption the value of FR to
ER*.

Other than combinational and sequential trojans, there can be trigger mechanism, which
incorporates both types into a single trojan. In figure 2.4a, k2-bit counter, is fed by a
synchronous counter and a combinational logic function of P and (). These trojans are
called hybrid trojans. now, when the size of design becomes large and more complex,
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various sub-circuits/sub-regions can be used to create a trigger instance based on a sequence
of rare events. In general, owing to the stealthy nature, sequential trojans are very hard-
to-detect using conventional test generation, as it require to satisfy the internal state of
the circuit, used to create the trojan instance, which is very rare. The number of such
sequential triggers are undoubtedly large and conventional state-space exploration would
not be able to provide cent percent coverage of trojan detection.

Analog Trigger

These trigger can be broadly classified into two categories : internally triggered and
externally triggered. In internally triggered, analog trojan, addition of some capacitance
value to power source or load, would act as a trigger, whereas, in externally triggered trojan,
on-chip sensors can be used to trigger a malfunction. In figure 2.4b, the capacitor which has
been inserted in the circuit, gets charged via load resistor, if the state, ;=1 and go=1 is
reached. Other than that, the capacitor, remains discharged. The charged capacitor causes
the logic threshold to cross, after large number of clock-cycles. An externally triggered
analog trojan has been shown in 2.4c. Here, higher circuit activity and high temperature
was used by the adversary, to trigger the malfunction, through a pair of ring oscillator and

counter.
output R 1
| Temperature
- >" . Sensor
H E{‘ | testing (f;)

Generator

Figure 2.4: Various kind of Trigger-payload combination of a Trojan. (a) Hybrid nature trojan. (b)
Ananlog trojan (Trigger based on logic value at AND gate). (c) Analog trojan (Trigger based on input
from sensor).

2.2 Related Work

Research on hardware trojan started way back in 2005-06, with one of the most promising
field considering the security threat posed by systems at hardware level. After that, the
field has seen significant progress since the first remarkable report of Agrawal et. al. [15], at
IBM T.J Watson Research center, New York, US. In order to exploit potential threat posed
by trojans, various trojan modelling have been developed. As discussed in previous sections
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and following the taxonomy described in [18], a trojan basically consist of two parts: trigger
and payload. As inherent nature of trojan, trigger is expected to be activated under extreme
rare condition, therefore, payload remains inactive for most of the time. And in presence of
inactive payload, there is no point in malfunctioning of system, and behave as trojan-free
circuit.

Existing research for hardware trojan design has been much more focussed on trigger
and payload mechanisms. Since, trigger and payload determine the difficulty of detection
and activation, researchers have explored and modelled novel trigger designs and payload
mechanism. Some of the newest trigger mechanisms have been described in [13, 14], where
trigger model consist of don’t care terms, or silicon wear out mechanisms, for trojan acti-
vation. New payloads have been modelled such that, the side channel parameters leak out
important information from the design. The major takeaway is for trojan infected circuitry,
due to trigger and payload, inevitably some side effects are introduced, such as additional
power consumption, change in path-delay, additional area, or radiation. These parameters
can be effectively used by defenders for detecting trojan. Thus, researchers in the field,
already aware of attacker’s philosophy, have tried to model and optimize trojan design in
such way, that trojans are much more stealthy in nature and affect normal operation in
a minimal way possible. Various approaches to the mentioned philosophy have been pre-
sented in [1, 2, 3, 4, 6, 8, 9]. Finally, in 2014, the research community felt the need to
present some standardized benchmark, to compare effectiveness of various techniques fairly.
The standard benchmarks in various formats such as RTL, gate level, and layout form, and
trojan affected designs have been presented in website trust-hub.org [52].

Current research trend focusses on various countermeasure techniques that are able to
deal with trojan threats, inserted at various phases of supply chain. Figure 2.5, shows
various categories of countermeasures, that have been proposed against the threat of hard-
ware trojan. We will describe more about two major schemes : Trojan Detection and
Design-for-Trust methodology.

Trojan Detection

This category has been pretty straightforward and commonly used methodology to deter-
mine the existence of trojan. They are performed generally at two stages : pre silicon
and post silicon stage. The detailed explanation and philosophy of techniques falling under
different category are described in subsequent sections.

Post Silicon Detection Schemes

As shown in figure 2.5, post silicon techniques can be further classified into two categories,
destructive approach, and non-destructive approach. In destructive approach, an IC is de
packaged using reverse engineering techniques, and obtain images of the original components
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to reconstruct design-for-trust validation. Though the technique has the potential to give
100% assurance, that the chip is malicious or not, but it takes several weeks or months to
determine the trust, for an IC of reasonable complexity. The technique is suitable, to get
the golden model of trojan-free ICs. Bao et. al. [28], proposed reverse-engineering based
solution, using machine learning technique, for identification of golden IC. Non destructive
techniques try to authenticate the chip, after fabrication. These include functional tests,
which are performed with manufacturing tests, and side channel analysis technique.

In functional tests, appropriate test vectors are applied to IC under test, and the results
are compared with response of golden IC. While, the technique sounds familiar with manu-
facturing tests, the test patterns optimized for various fault-models provides poor coverage
on trigger and thereby on trojan coverage, as mentioned in [5, 9]. Attackers try to model
the trigger-payload combination in such a way, that it remains hidden, and has the ability
to bypass manufacturing tests. As, trojan activation is a rare event, Chakraborty et. al.
[31], Banga et. al. [35], Jin et. al. [33], proposed various optimized test patterns, which
comparatively increases the trigger and trojan activation. These patterns help to catch
the malfunctioning which would have been occurred by trojan injection. However, these
techniques fail to scale up, thereby exhaustive search on whole state space is not possible.
Authors in [32, 34] have provided comparable improvements, still the issue of exhaustive
coverage remains a critical problem.

In side channel analysis based methods,involve monitoring the physical parameters like
path-delay by Jin et. al.[18], power based analysis given by Agrawal et. al.[15], Rad et.
al.[23]. Rad and Jim et. al.[24] and current signature based methods given by Wang et.
al. [19] and Aarestad et. al. [20]. All these techniques mentioned carefully monitors the
parameters mentioned, and check for abnormalities w.r.t the parameters of golden IC. Any
variation beyond a tolerable threshold would be reported as presence of Hardware Trojan
in the design. However, until recently, it has been observed that the technique suffers from
process and environmental variations. Still, the side channel parameter technique is one of
the best method in hand today, for trojan detection, where sizes of trojan induced inside
the circuit is typically big.

However, combining testing based methodology and multiple parameter side channel
analysis, can prove to deliver a reliable and trustworthy tool, which would be able to detect
trojans of all possible sizes. The only requirement of developing such framework is to have
a golden IC/trojan free circuit of the design, which has to be checked for reliability and
trustworthiness.

Pre Silicon Detection Schemes

The main idea of functional validation is same as logic testing based methodology described
earlier. the functional validation is done using simulation in pre-silicon stage, while in post-
silicon stage, the same is done, by applying test patterns, and collecting output response
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from chip. HDL analysis can also be done at pre-silicon stage from the codes which are
written at behavioural level [43], or at structural level [41]. Using structural analysis of the
code, various metrics can be defined and used, to find the probable areas, of trojan injection
in the design. The limitations of code/structural analysis is that, they don’t guarantee
trojan detection. Formal verification method is mathematical and formal approach to logic
verification, that has the potential to exhaustively prove predefined set of properties, where
properties are written in security point of view. The design, is converted into a finite-state-
machine (FSM) and using satisfiability problem, it is checked whether the properties are
satisfied during the run. The technique suffers from scalability issues, and fail to detect
additional functionalities introduced by trojan in design.

Design for trust

Detection of stealthy and low overhead trojan is quite a challenging problem, in the area
of hardware trojan detection. An effective way to deal with this problem, is to facilitate
various modification and introduction of additional circuits during design phase itself. A
way of introducing design-for-trust is to introduce additional test points in the circuits, to
those nodes which have low testability measures. Another approach is via runtime mon-
itoring, which can significantly increase the level of trust. Runtime monitoring introduce
supplemental on-chip circuit, to monitor the behaviour during runtime. Jin et. al. [44]
proposed a post-silicon based method, which uses a neural network, that can be trained
using on-chip parameters, and used for distinguishing the circuit operating in normal mode,
and working under trojan attacked mode.

Another approach to implement design-for-trust in IC, is to apply preventive measures
that attempt to thwart insertion of hardware trojan inside the design. This is for those
attackers, who are not present in design phases, but they are present in later phases of
development cycle. one way is by Logic Obfuscation. In this method, unless the key is
not provided, during the operation of circuit, the exact functionality of the design is not
revealed. The circuit produces correct function, when correct key is applied. Chakraborty
et. al. [27] devised such method in 2009, which was further improved by many researchers
of the domain.

Split-manufacturing-for-Trust is a more recent technique as a countermeasure to trojan
detection. It uses current state-of-art foundries while minimizing the risks to an IC Design.
The technique is very new, and theoretical solutions have been proposed. However, research
is still going on, with scope of delivering promising solutions.






Chapter 3

SATBiST Framework : Analysis
and foundation

In this chapter, we formally explain the mathematical analysis of the foundation and as-
sumption, we have taken into consideration for developing our test framework. In a sub-
sequent chapters, we elaborate the algorithms involved in the framework and experimental
results.

3.1 Basic Definations and Terminologies

We now present a brief overview about the rare event occurrences we have taken into
account, while detection of trojan present in a given circuitry.

Here, in figure 3.1, a simple combinational circuit’s gate level netlist has been shown. Under
normal and ideal condition, the circuit is expected to produce the output as desired. Now,
suppose, we have introduced a trojan in the design, and now the circuit looks like in figure
3.2. What we have done is, we have ANDed up some of the internal nodes of the circuit,
and XORed the output of AND gate to some randomly chosen primary output. Now, as
shown in the figure 3.2, when G7 = 0, G8 = 1 and G11 = 1, occurs simultaneously, the
ANDed output becomes one, and hence, the value at primary output, G15 is inverted from
the expected output.

Now, the question which comes to mind, that whether simultaneous occurrence of G7 =
0, G8 =1 and G11 = 1 is really a RARE event or not. As its the inherent nature of trojan,
to be much more stealthy in nature, we have to find those state of the design, which are
very rare to occur. To determine rare events at netlist level, we have followed the method
given by Salmani et. al. [30]. We determine the probability of occurrence of 0 and 1, at

25



26 3. SATBIST Framework : Analysis and foundation
G1 ;ﬂi \ G12
G2 ' _)

| D_) 615
G3 G8 G13
G4 ' '

611 ‘:>_> 616

> G9 G14

>— Primary Input

1Y

G5
G6

1T

—  Primary Output

Figure 3.1: A simple combinational circuit

each of the node of the netlist. This can be done in two ways. First, using some arbitrary
high number of random test vectors are applied to the design, and the occurrences of Os
and 1s are determined. This method is simulation based. Another technique is by static
analysis. In this methodology, we have applied the probability of occurrence of 0 and 1, 0.5
at each of the primary input, and then, determine Probability of Occurrence of 0 (Pero0)
and 1 (Pope). Figure 3.3, shows the values of (P,ero) and (Pope) at each of the nodes.

Now, consider a node, where probability of occurrence of a logic is very low. We now,
introduce traditional concepts of VLSI testing, controllability and observability. Sup-
pose, a line is having the value of P, very low. So, given a set of random test vectors
applied on CUT(Circuit-under-test), the chances node/logic line having logic value zero is
very less, i.e. given a test vector set, it is very difficult to get logic zero on that node. So,
the node is having very less controllability of logic zero. We can clearly assume that, logic
0 on this particular node can be defined as RARE event, since a less controllable line will
ultimately mean that there exist very few test vectors, for occurrence of rare logic to that
node.

We now define some important terminologies, which we would be using further for founda-
tion of our test framework.

Definition 3.1 Rare Event: A state of the circuit/design which occurs very rarely, given
a set of input patterns. |

Definition 3.2 Rareness Threshold: A threshold probability value set, below which a
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node, along with its logic value would be considered as rare event of the circuit. Denoted by
0. |

Definition 3.3 Activation Node: A node where either Pyoro 07 Pope is less than 6. It
is denoted as tupple (i, L), where i, represents node number, and L is the boolean logic for
which Py, < 0. [ |

Definition 3.4 Trigger Instance: A set of Activation Nodes, ANDed together to form
trigger of hardware trojan, is called Trigger Instance. |

Definition 3.5 Q value: Number of Activation Nodes, ANDed together to form trigger
of hardware trojan, is called Q value. |

Definition 3.6 Trojan Instance: A suitable trigger-payload combination to form a hard-
ware trojan, is called Trojan Instance. |

Definition 3.7 Controllability: It is a parameter related to each node of the circuit.
Defined as difficulty in sensitizing the node to given logic value, given a set of randomly
chosen input test vectors. |

Definition 3.8 Observability: It is a parameter related to each node of the circuit.
Defined as the difficulty in propagating the logic value to one of the primary output of the
circuit. |
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Figure 3.3: Static Analysis showing testability measures (Pero,Pone)

In subsequent sections, we now describe, how the trigger instances have been modelled
in our designs, and how our testing techniques have enable us to perform generate test
vectors to perform exhaustive coverage.

3.2 Hardware Trojan Modelling and Analysis

We now discuss how we have modelled our trojans and triggers, that can be present in the
given design, and our contribution to design a framework, ensuring reliability and trust of
a design. We have considered that trojan activation is a RARF event, and in a netlist level,
a RARFE event, can be modelled by a combination of Activation Nodes. A defender, whose
primary role, is to detect hardware trojan, would like to set the value of Rareness Threshold,
very low, such that only a smaller percentage of nodes can be termed as activation nodes.
This is done, in order to evade the manufacturing tests, that are primarily to detect defects
in the CUT. After the set of activation nodes is available, @) value is set, to determine the
number of nodes participating to form a trigger instance.

Generally, any @ value can be taken form a trigger instance. Typically, this Q value depends
on choice of attacker. However, existing side-channel parameter techniques [17, 18, 22, 24],
are capable of monitoring the power, current and various signatures, and would be able
to detect the trojan presence, when value of () > 8, as cited in [31]. So, logic testing
based approaches come to the rescue, in detecting trojans, which are of small sizes, just by
introduction of one gates and couple of nodes from netlist. Side-channel techniques fail to
detect these, as the parameters are within tolerable limit of trojan-free ICs.
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MERO test patterns proved to be quite good in comparison to existing ATPG patterns
and random test vectors. The technique, first proposed in 2009, was to be used along with
side-channel analysis, to detect trojans of any @ value. However, MERO test patterns lack
scalability and exhaustive coverage of all trojans that can be present in the CUT. Motivated
by the drawback, we decided to give set of test patterns, which are capable of providing
exhaustive coverage over all trigger instances, and trojan instances. We now discuss about
how we have modelled trigger instances, into existing fault models.

3.2.1 Fault Modelling

We now explain how errors and defects in electronic circuits is suitably mapped to various
fault models. Without going into vast details, we would like to explain the portion that are
relevant to this dissertation. Rest of the things are out of scope of this dissertation.

After post-silicon stage, the chip which are fabricated, need to under manufacturing
tests. This is required in order to detect the defects and errors that has been introduced
in the design, during fabrication. We have assumed that the chip performs corrected func-
tionality and has been verified extensively at pre-silicon stage. Now, during fabrication, it
may happen, that some of the internal logic lines, has been shorted to 45V line or ground
line. Due to this, irrespective of any boolean operation that is being performed, does not
get reflected in the line, as it has been mistakenly shorted to some logic value.

In order to cope up with this problem, test patterns are being applied, to check whether
these kind of defects are present in the circuit or not. The defect, mentioned above is
effectively modelled with stuck-at fault model. In stuck-at fault model, (s-a-f), either
the line is said to “stuck-at” value 0 or value 1. So, ATPG (Automatic Test Pattern
Generator) derives test vectors, that is able to cover all possible “stuck-at” faults at each
of the lines. Now, it depends on controllability and observability of node, whether stuck-at
fault is easily detectable, or hard-to-detect. In general, for a node to have a good testability,
it is required to have both, i.e. good observability and good controllability.

In stuck-at fault model, suppose we need to find “stuck-at-0” (s-a-0) fault at a certain
internal node of a circuit. So, in order to check the fault, we need to apply boolean logic in
such way, that the faulty is sensitized to the opposite value, i.e. for s-a-0 fault at a node,
we need to apply such test vector, that sensitize that node to 1. Now, this 1, needs to be
propagated to be visible in one of the primary outputs. For sensitization, the controllability
of the node needs to be good, and for propagation, the observability needs to be good
enough. We now, formally define the stuck-at fault model, which would be used by us, for
effective mapping of trigger instances to testing methodologies.

Definition 3.9 Stuck-at Fault Model (s-a-f): This defect oriented fault model is de-
fined by assigning a fixed boolean logic (0 or 1) to a node in a circuit. A node can be
primary input, internal signals, or primary output of gate level netlist of a circuit. For
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manufacturing tests, two stuck-at faults are used per node, i.e. s-a-0 fault and s-a-1 fault.
|

3.2.2 Mapping trigger instances to stuck-at-fault model

In earlier sections, we described, how we have modelled our trigger and trojan instances.
In our dissertation, all the assumptions, considerations, and trojan modelling have been
strictly described below.

e Trigger Instances: We have created trigger instances, by combination of activation
nodes in the circuit.

e () value: For logic testing based methodology, we have defined that @ < 10.

e Trojan Instances: For now, we have generated test vectors considering payload to be
primary output of a circuit.

pr— ~

s-a-0 fault at
— all the
Trigger = triggers

Instances

Activation
Node ]
[Combinations
Trigger Instances modelled as
stuck-at fault

Figure 3.4: Trigger Instances modelled as stuck-at fault model

In figure 3.4, it has been shown, how the trigger instances has been modelled using stuck-at
fault model. In order to activate the trigger, the output of AND gate has to be 1. So, we
would apply s-a-0, at the output of trigger instances, and will generate the test patterns,
for that. In our modelling, as we have taken the payload to be one of the primary outputs,
test pattern, which would be activating the trigger instances, will automatically activate
the trojan. Now, in order to provide exhaustive coverage, we need to obtain all possible
combinations of activation nodes, we are possible trigger instances. Given the value of 6,
we would be having a list of activation node tuples, and @), i.e. number of activation nodes
in one trigger instance. We now, present the algorithm, which would report, all possible
trigger instances.
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Algorithm 1 ENUMERATING TRIGGER INSTANCES
Input:

N : Gate level Netlist

0 : Activation Node threshold Probability

q : No. of Activation Nodes in Trigger Instance Instance
Output: T : Trigger Instance set
: Read gate level netlist of design.
: for Vnodei e N do
Calculate Peo(7) and Pope(7)
if Pyero(i) < 6 then

R+ RU(i,0)
else

if Pone(i) < 6 then

R+ RU(i,1)

end if
end if
: end for
: Set R is reported as set of tuples (¢, L), where i is the node and L is its associated Rare

logic value.

13: Initialize T' < ¢.
14: for V tuple (i,L) € R do
15: Generate a trigger instance TRIG , taking ¢ tuples at a time.
16: if TRIG¢T thenT «+ TUTRIG
17: end if
18: end for
19: Report Set T.

_ = =
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As shown in algorithm 1, set T is reported, containing all possible trigger instances. As
the number of trigger instances, are exponential in terms of number of activation nodes,
we provide a two-step approach, which would be able to report minimum possible testset,
which would be able to provide cent-percent coverage. In next chapters, the algorithms
related to test generation framework has been described in detail.



Chapter 4

SATBiST Framework : ATPG
Binning Based Test Generation
Method

In this chapter, we discuss the ATPG Binning based test generation methodology, where we
used divide and conquer based method, and parallely test generation along with fault sim-
ulation based technique. We use the results obtained in the previous chapter to intuitively
illustrate the objectives of our work. As already discussed in previous chapters, the number
of trigger and trojan instances are exponential in terms of the number of activation nodes,
and feasible payloads present in the given design. Reporting a minimal testset, to provide
cent-percent coverage of all trigger instances, is a real challenge, and is require, to ensure
reliability and trust of a design. We present our first approach out of two-step approach we
have taken to address the problem.

4.1 Appropriate Disjoint Binning

We are available with set T', containing all possible trigger instances, for a given value of
Q@ and 0. We appropriately divide the trigger instances into disjoint bins, each containing
B trigger instances. Let S be called the set, containing all these bins. Now, V bin b € S,
a modified netlist is created. A modified netlist can be created, by taking original gate
level netlist N, and additionally inserting trigger instances into the netlist, and make the
trigger, primary output. Let, numBins, be the cardinality of set S. Now, as described,
for each bin b € S, a modified netlist " is created, where along with the original netlist,
all trigger instances of that bin b, is also inserted. Let the collection of all these modified
netlists created for each bin, be called K.
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In figure 4.1, a typical structure of modified netlist for each bin, has been shown. Here,
each modified netlist ¥’ € K, contain B trigger instances. As discussed previously, we have
modelled the trigger, using stuck-at fault modelling, with s-a-0 fault at each of the trigger,
acting as primary output. We need to create a fault file corresponding to each modified
netlist, containing all the trigger with s-a-0 fault. This fault file f, is required to supplied
to the existing ATPG tool, to generate test vectors targeting the faults given in fault list.
This is done to generate test patterns specifically which can excite the trigger instances.

4.2 Test generation with Parallel fault simulation

While in previous methods given for logic testing targeting this problem, statistical meth-
ods were given accompanying N-detect test [31], and using Genetic Algorithm [34] guided
approach to develop test patterns. Our objective was different in sense, that we want to
model the problem in such a way, so that we can use existing optimized ATPG algorithms
used in VLSI testing to address the problem. So we appropriately created the modified
netlist along with corresponding fault files. The set containing all these is called K.
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Now, randomly, a modified netlist is picked from set K, and using established ATPG
tool, test vectors are generated, targeting the faults given in fault file. Implicitly it derived
all the test vectors, which could activate all triggers, that are injected in the netlist. The
ATPG tool also report two important thing along with test vectors. They are :

o Aborted Fault List

o Redundant Fault List

Aborted fault list denotes all those faults, for which the algorithms used in ATPG tool,
failed to generate test vectors, under given constraint of time and other implicit parameters.
Redundant fault list denotes all those faults, for which no test pattern exist to detect
them. Now, the way we have modelled the trigger instances, into existing fault model, the
report generated gives important information about nature of trigger and trojan instances.
As, in our modified netlist, all the trigger instances are set as primary output, there is no
role of observability. The requirement is about controllability of 1 at the trigger node. So, all
the faults, which has been reported as redundant fault by the ATPG tool, conclude the fact
that all the corresponding trigger instances are infeasible, i.e. the instances formed by the
combination of activation nodes cannot be simultaneously activated to corresponding rare
logic value. So, redundant fault list are infeasible trigger instances, which can be ignored,
since they represent illegal state of the circuit. Considering aborted fault list, the ATPG
tool failed to determine whether there exist a test vector for detecting the fault. We can
classify these trigger instance, as hard-to-detect, and we will employ our second technique
of test generation based on SAT methodology, which we will discuss in subsequent chapters.

Now, after generation of test vector for one randomly chose netlist &’ from set K, let
the test vectors be included into a master test vector set T'A. Let the trigger instances
corresponding to each aborted fault be included in set I, and redundant faults in set U.
Remove netlist &' from set K. Now, using test vectors available in T' A, perform fault
simulation V netlist &’ € K. The faults which are detectable corresponding to each modified
netlist, are removed, and faultfile is updated with undetectable fault. In this fashion, we
reduced the common test vectors, which would have generated, if parallel fault simulation
was not performed. This step also ensured that in subsequent runs, the ATPG tool don’t
have to generate test vectors containing B faults, unless there were no common test vectors
between the bin under test, and the bins already explored. After one run, all fault files,
are updated corresponding to each modified netlist, each containing < B faults. Again, the
subset of modified netlist is chosen from K, containing the highest number of undetected
faults, and out of them, one is chosen randomly, and ATPG tool is run for that netlist. The
test vectors generated in included into the master testset T'A, and the netlist is removed
from K. The whole process is repeated again, unless set K becomes empty. in this way,
we presented a divide-and-conquer based strategy to lessen search complexity, and testset
length.
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4.2.1 Reporting Hard-to-detect trigger instances

Figure 4.2, shows a flowchart based presentation of ATPG Binning algorithm. After set K
becomes empty, master testset T'A is reported containing all minimal test vectors generated
by the algorithm. I contains all the trigger instances of the aborted faults generated during
the ATPG run. Now, it may happen, that the test vectors generated in later stage, might
cover some of the aborted faults that were generated in previous rounds of ATPG Binning.
So, a freshly modified netlist &’ is created as previously defined, containing all trigger
instances from set I. Using fault simulator, this modified netlist &’ is simulated with master
testset T'A. All detectable faults are removed from set I. Now, set I consist of hard-to-
detect faults, which may or may not have a test vector. We will present our second SAT
based methodology in next chapter which would be used to generate test vectors for the
instances present in set I.






Chapter 5

SATBiST Framework : SAT-Based
Test Generation Method

The problem of “Boolean Satisfiability”, also well known as SAT-problem, is one of the
well known NP-complete problem in Computer Science. Basically SAT-problem is defined
as “Given a boolean function F(x;, 2, =3 .... x,), does there exist an assignment of
boolean logic to variables z;, x2, T3 .... x, , such that the function F' evaluates to TRUE?
7. If such as assignment exist, then it is called satisfying assignment, and function F' is
called satisfiable, otherwise, unsatisfiable. A SAT-solver is a tool which solves satisfiability
problem, and determine whether a boolean function is satisfiable or not. Here, the variables
associated are boolean variable, i.e. they can take value of either 0, or 1. The most common
logical operators that are acceptable in SAT formulae are described below.

o AND(A)

OR(V)
NEGATION (~)

o IMPLICATION (—)

EQUIVALENCE(+—)

There are also other logical operators used in SAT formulae. In practice, SAT-solver accept
the format of DIMACS CNF, where CNF stands for Conjunctive Normal Form. In a CNF
formula, a literal is an instance of a variable x, or its negation, . A clause is disjunction
(V) of one or more literals. A boolean formula is said to be in CNF format, if and only if
it is expressed as conjunction (A) of clauses. Today, various efficient SAT-solver tools are
available, which implements good heuristics to solve the SAT-problem in polynomial time
in average case. There are efficient polynomial time algorithms which can convert arbitrary
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Figure 5.1: Truth table representation and CNF formula of a two-input AND gate

boolean formulae into CNF format. Logical gate level netlist can also be converted into
CNF boolean formulae, which will be shown in subsequent sections.

5.1 Transforming Circuits into CNF

In this section, we present the technique to map a gate level netlist to an equivalent SAT
instance. This technique is popularly known as Tseytin transformation. In a gate level
netlist, the logic value assigned to internal nodes are constrained by the gates attached to
those lines. The output of an AND gate will be 1, only when all of its inputs are set to
logic 1. Similarly, in OR gate, the output will be set to logic 0, when all of the input values
are set to logic 0, and so on. Given any logic circuit, an equivalent CNF formula can be
constructed which expresses the same constraints. This can be easily generated by writing
clauses which impose the same restrictions of each gate in the circuit, and then taking the
conjunction of all the clauses.

A CNF formula representing the constraints for a logic gate can be generated from its
truth table and characteristic function. This can be mapped to a function F(.), which
evaluates to TRUE value, if the values assigned to the input and output of the logical gates
are consistent, and 0 otherwise.The characteristic function of fundamental gates can be
transformed to a minimal CNF formula by means of K-Map or Karnaugh map, or using
Quine-McClusky technique. For example, in figure 5.1, the function for an AND gate with
inputs z; and zp and output y is shown, which can be easily written in CNF format.

This process can be repeated for any type of fundamental gates, including multi-input
and multi-output gates. The construction will be polynomial in the number of inputs and
outputs, as long as “counting”-type gates are assumed to have a fixed maximum number of
inputs. In the table presented below, the CNF formulas for all gate types which have been
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used in this thesis have been presented. From the table, it can be easily concluded, that the
CNF for gates like NAND and NOR, can be made from their non-inverting counterparts,
by negation of the literal which is output of the gate.

’ Gate \ Function \ CNF Formula
AND Y = T1.29.73..Ty (Zlill (zi +7) ) (Zé(xz + y))
NAND Y = T1.T3.53..Tn (i{l a:ﬁy)(il(xﬁy))
OR y=x1+x9+T3+.. +I, (ljlﬂfz+y><§($z+y)>
NOR y=x1+x2+23+..+ Ty (]i[ﬂfz+y><§i:($i+y)>
XOR y=1x1 D2 <f1+:f2+y)<w1+w2+y>(x1+$2+y><f1+062+y)
XNOR Yy =1x1 Do <a:1+x2+y)<x1+x2+y>(x1+x2+y><:c1+:fg+y)
NOT y=1 (‘””“’)( >
BUFFER y= (”” + y) ( >

Table 5.1: CNF formulation of boolean logic gates

5.2 SAT Based Test generation methodology

In previous section, it has been shown, how to convert boolean logic gates into its equivalent
CNF formulation. Now, given a design, from gate level netlist of the circuit, we can easily
get the CNF formulation of the whole circuit, by mapping each gates input/output to
its equivalent CNF clauses. From previous chapters, we know that, we tried to cover all
feasible trigger instances. The hard-to-detect trigger instances are reported by set I. Now,
the original netlist IV, is taken, and Tsyetin transformation is applied to get the equivalent
SAT formulation of a given netlist. Let this be called C. Now, for each trigger instance,
generate the CNF for the ANDing of activation nodes of trigger instance, and add the clause
obtained to original SAT instance C. Let the SAT instance, we get after injection of trigger
be called C’. Now, using efficient SAT solvers, we check for the satisfiable instnace of C”.
If there exist such instance, then the boolean values assigned to the input lines are taken,
and added to testset TEST cquced- In this fashion, for every trigger instance present in set
1, test vector are generated using SAT solver and added to testset TEST cquced. In the end,
TEST educed 1s merged with the test vectors generated by ATPG Binning T'A, and minimal
testset is reported, covering all feasible trigger instance. Note that, as we have considered
the trojan instance, where the payload is Primary Output, the test vectors, which activate
the trigger instance, would also be able to cover trojan instances, which we have considered.
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The framework, thus able to derive a minimal test pattern, within considerable CPU-time,
providing cent-percent coverage. The detailed algorithm has been presented below.

Algorithm 3 TEST GENERATION WITH SAT SOLVER
Input:
N : Gate level Netlist
TA : Testset T'A generated by ATPG Binning
I : Aborted Trigger Instance Set
Output: TEST equced : Reduced Testset covering all possible Trigger and Trojan as men-
tioned in Section-I
: Read netlist IV, do Tseytin transformation and generate CNF of netlist, C.
: for each trigger instance t € I do
Generate CNF for trigger instance ¢, C’.
C'+— CNC
Check for satisfiable instance for C’, through SAT Solver.
Report Test vector of SAT instance, tsar
TEST educed < TEST reduced U tsaT
end for
: TEST educed < TEST reduced U T'A
: Report Reduced Testset T'EST educed-
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Chapter 6

Experimental Results and
Implementation

In this section, we present experimental results of our implementation on standard ISCAS85
[45] combinational circuits and ISCAS89 [46] sequential benchmark circuits.

6.1 Implementation

The whole SATBIST framework, has been developed with the following intentions :

e The test generation framework can be used alongside multiple parameter side channel
analysis, which is capable of detecting trojans, modelled on the philosophy of activa-
tion under extremely rare conditions. The test based methodology would be able to
detect smaller trojans, with Q value less than 10.

e The test generation framework can be modelled in such a way, that already existing
good ATPG algorithms can be used to derive test patterns specifically for trojan
detection.

e The test generation framework provides exhaustive coverage, ensuring greater relia-
bility of the design.

e The test generation framework can be easily integrable into existing tools, without
much effort.
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6. Experimental Results and Implementation

IMPUT : Gate Level Metlist N,
Rareness Threshold O,
MNumber of Activation Node Q,
for Trigger

!

Compute Probability of Occurrance of 0

and 1, i.e. Pyo and Pop. ¥ nodes in
Metlist N. Enumerate all RARE nodes along
with logic value.

5 A S'I‘.age =1
"L Enumeration
of Trigger
- 3 Instances

Generate all possible trigger instances,
given the value of Q. Report T, set of all
possible Trigger Instances

N ey

!

- N
Perform ATPG Binning Algorithm. Report
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I ) Generation
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with set I. Report fault list for which ATPG Algorithm

tool can't return test vectors

N i //

!

Generate Testvectors TES Treauced
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Y .
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Figure 6.1: SATBiST Framework
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6.2 Results

We have run the simulation experiment on ISCAS85 [45] combinational circuits, and IS-
CAS89 [46] sequential circuits in full scan mode. The whole framework is coded in C++
and python, and experiments were done on an Intel core i5 processor, 3Ghz Clock and 4GB
RAM with Linux OS. We have a tool named Transition Probability Calculator (TPC) [52],
which gives an approximate value of testability measures, like controllability and observ-
ability of a node. TPC internally uses Synopsys 90nm Educational Development Kit(EDK)
technology library [54]. The pre synthesized verilog code is synthesized using Synopsys
Design Compiler [53], and using TPC, the probability values, P,er0 and Poye is determined
for all circuit nodes.

We select the value of rareness threshold 8 = 0.1, for combinational circuits and 0.01
for sequential circuits. The number (g) of activation nodes present in the given instance
is assumed to be three. This can later be extended to values less than 10. The value
q = 3 is taken, to show a comparative analysis of existing state-of-the-art technique for
test generation of hardware trojan detection. The 6 values are generally chosen in such
way, that probable activation nodes constitute 5 —10% of total nodes present in the netlist.
The list of activation nodes, containing tuples (i, L), is fed to program gen-TrojanComb,
which generates all possible combinations of trigger instances. Next, the design and the
trigger instances are provided as inputs to the program TrojanInjection, which generates
the modified netlist, considering B trigger instances at a time. We have set the value of B =
2000, for use in the ATPG tool, ATALANTA [50] in default test-compaction mode. The test
set thus produced can activate 2000 trigger instances and the corresponding Trojan instances
that corrupt POs directly. We now use HOPE [51] fault simulator to identify those trigger
instances in other bins that are activated by the present test set, and update the fault list in
each bin accordingly. The binning-algorithm terminates when all the modified netlists are
covered. The faults, reported redundant by ATALANTA, denote false trigger combinations,
and are deleted from the list. For each of the aborted faults left by ATALANTA, the trigger
combination is fed to the createSATInstance tool. The SAT-formulation for the trigger
instance thus produced along is fed to the SAT-solver, zChaff [49] along with the netlist. If
a solution is found, it is added to the test set.

The results presented in Table 1 show the trigger instances for initial set-parameters.
For sequential circuits, the trigger instances are in the range of hundreds of millions and we
have presented the result only for 1 million instances. Table 2 draws a comparative analysis
of the proposed methodology with MERO [31]. Since we have assumed that the payload
only affects primary outputs, we have focussed only on generating tests that activates
various trigger combinations. The results show significant improvements in terms of Trojan-
coverage and the size of test sets over previous results.
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Bench- | No. of No. of Pos- | Feasible Testset Length CPU

sible Trigger Time
mark Activation | Trigger In- | Instances Testset Testset Total | (in
Cir- Nodes stances generated generated seconds)
cuits by ATPG | by SAT

Binning

c432 40 9880 9648 236 0 236 0.377
c499 48 17296 32 32 0 32 1.69
¢880 62 37280 36211 91 0 91 2.799
c1355 112 227920 224 84 0 84 94.37
¢1908 65 43680 39747 161 1140 1301 1149.05
€2670 67 47905 25568 448 0 448 12.002
¢3540 196 1235780 359811 2039 3937 5976 16308.002
c5315 176 893200 725814 2353 5211 7564 | 20712.658
c7552 232 2054360 1734842 11929 59621 71550 | 96398.282
s15850 | 748 1000000 402421 6425 323 6748 | 90258.39
s38417 | 1254 1000000 943951 24501 64 24565 | 223210.89

Table 6.1: SATBIST test patterns with § = 0.1 (Combinational) and 0.01 (Sequential)
and ¢ = 3. For Sequential circuits, 1 million instances are taken to show the order and
magnitude of test length and CPU time, compared to previous techniques.

Benchmark | MERO Patterns | SATBiST Patterns
Circuits Trigger Testset| Trigger Testset
In- length | In- length
stances stances
c3540 100000 15207 | 1235780 | 5976
c5315 100000 12429 | 893200 7564
c7552 100000 14785 | 2054360 | 71550
s15850 10000 35112 | 1000000 | 6748
s38417 10000 51885 | 1000000 | 24565

Table 6.2: Comparative analysis of MERO Test patterns and SATBiIST test patterns with
6 = 0.1 (Combinational) and 0.01 (Sequential) and ¢ = 3. For Sequential circuits, 1 million
instances are taken to show the order and magnitude of test length and CPU time, compared
to previous techniques. SATBiIST Patterns provide cent percent coverage over all feasible
trigger instances, compared to MERO patterns.




Chapter 7

Conclusion and Future Work

In this work, we have proposed a novel strategy for based on logic testing based approach for
trojan detection. Experimental results show promising improvements in terms of scalability,
CPU time, testset length and trigger coverage. With hardware trojan detection gaining
widespread attention in hardware security community in recent times, we believe our work
will have interesting applications.

In this work we have restricted our analysis to the detection and cent percent coverage of
all possible trigger instances. We have shown here how we can exploit the existing good
ATPG tools, algorithms and SAT-solvers, and make a scalable framework which is able to
provide exhaustive coverage over trojan search space.

As our future work, we are extending our research to report a minimal testset where internal
nodes of design can be possible payload of trojan. In particular, we are interested to
investigate, the effectiveness of test vectors, about their trigger coverage, and ability to
cover stuck-at faults in the circuit. We would like to apply a good heuristic of selecting a
test vector, that would be able to provide maximum trigger coverage and maximum stuck-at
fault coverage. In our problem, the trigger controllability has been successfully achieved.
We need to see the observability of the payload, which can be any internal node of a circuit.
We believe, that the framework developed with this inclusion, would be able to provide
more coverage to hard-to-trigger trojan patterns.
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Chapter 8

Disseminations out of this work

e A. B. Chowdhury, A. Banerjee, and B. B. Bhattacharya, “HARDWRE Trojan :
threats and Countermeasures”. Presentation at Technical Review Committee Meet,
DRDO funded Project “Hardware Trojan Research”, 2016.

e A. B. Chowdhury, A. Banerjee, and B. B. Bhattacharya, “SATBiST : Scalable ATPG
Binning and SAT Based approach to Hardware Trojan Detection” under review 25th
Asian Test Symposium, 2016.
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