
Temporal Access Control on Cloud Data

Ayan Das

1

Temporal Access Control on Cloud Data

Dissertation submitted in partial fulfillment of the requirements
for the degree of

Master of Technology
in

Computer Science

by

Ayan Das
[Roll No: CS-1414]

under the guidance of

Dr. Sushmita Ruj
Assistant Professor

Cryptology and Security Research Unit

Indian Statistical Institute
Kolkata-700108, India

July 2016

To my family and my supervisor

CERTIFICATE

This is to certify that the dissertation entitled “Temporal Access
Control on Cloud Data” submitted by Ayan Das to Indian Statis-
tical Institute, Kolkata, in partial fulfillment for the award of the degree
of Master of Technology in Computer Science is a bonafide record
of work carried out by him under my supervision and guidance. The
dissertation has fulfilled all the requirements as per the regulations of
this institute and, in my opinion, has reached the standard needed for
submission.

Dr. Sushmita Ruj
Assistant Professor,
Cryptology and Security Research Unit,
Indian Statistical Institute,
Kolkata-700108, INDIA.

Acknowledgements

I take this opportunity to express my gratitude towards my project supervisor and
mentor, Dr. Sushmita Ruj , for her guidance, encouragement and useful critiques of
this research work. There were times when I had to change the concept of the project
completely. It was her support that led me through to complete the anticipated work.
I really appreciate Dr. Sushmita Ruj’s willingness to generously devote her time for
clariying my doubts, editorial comments and her efforts to ensure that I successfully
complete the work as per schedule.

My honest appraisals to our institute which played the role of a great platform on
which I could carry out my work with almost no difficulty, as the relevant research
papers needed for my work were readily available.

Ayan Das
M.Tech. II Year
Discipline of Computer Science and Engineering
ISI Kolkata

Abstract

Cloud storage is a model of data storage in which the digital data is stored in remote
server. The physical storage spans multiple servers (and often locations), and the
physical environment is typically owned and managed by a hosting company. These
cloud storage providers are responsible for keeping the data available and accessible.
Generally data is used to store in cloud without any encryption. But The two big
concerns about cloud storage are reliability and security. Clients are not likely to
entrust their data to another company without a guarantee that they will be able to
access their information whenever they want and no one else will be able to get at it.
One solution of these problem is temporal access control which is based on attribute
based encryption.
Attribute-based access control is one of the most important security mechanisms
for data storage, especially in cloud computing. Attribute-based encryption is an
attribute-based access control mechanism which requires data to be kept encrypted
at servers. This data is open to access to all, but can be decrypted only by those users
whose attributes satisfy a given access policy. Also the data owner can revoke any
authorized user from decrypting the data in any point of time. An issue in attribute-
based encryption is huge time complexities for generating the keys and encrypting
the content. The problem becomes critical when the number of attributes is large,
however little work has been done to develop schemes that support efficient and
reliable storage of data in cloud with temporal access control. Here, we review some of
the important work that has been done in this field. We then present a protocol which
improves the efficiency, scalibilty and makes it feasible for real time implementation.
We also analyze it’s time and communication complexity to demonstrate the efficiency
of our methodology. Another merit of our scheme is that the computationally intense
task is outsourced to the cloud without compromising on the security of the scheme.
In this way, we propose a comprehensive scheme which promises encompass all the
major issues in attribute-based encryption.

Contents

1 Introduction 5
1.1 Introduction . 5
1.2 Our Contributions . 8
1.3 Thesis Outline . 9

2 Preliminaries 10
2.1 Secret Sharing . 10

2.1.1 Threshold Secret Sharing . 10
2.1.2 Shamir’s Secret Sharing Scheme 11

2.2 Access Structures . 12
2.2.1 Access Structures . 12
2.2.2 Monotone Access Structures 13

2.3 Bilinear Maps . 13
2.3.1 Bilinear Maps . 13
2.3.2 Composite Order Bilinear Maps 14

2.4 Forward/Backward Derivation Functions 14
2.5 Cryptographic Construction of FDF/BDF 15

3 Related Work 17
3.1 Ciphertext-Policy Attribute-Based Encryption 17

3.1.1 Algorithms . 17
3.1.2 Model . 18
3.1.3 Construction . 19

3.2 Revocation Schemes . 21
3.2.1 Revocation scheme of Naor and Pinkas 21

3.3 Comparison Criterion . 22
3.4 Fine-grained Access Control with Comparison 23
3.5 Temporal Access Control Scheme . 24

3.5.1 Entities involved . 24
3.5.2 drawback of the Scheme . 24

1

4 Three Basic Temporal Access Scheme 25
4.1 Introduction . 25
4.2 Scheme-1:Basic Temporal Access Control Scheme 25

4.2.1 Framework . 26
4.2.2 Construction . 26

4.3 Scheme-2:Temporal Access Control with Revocation Added 30
4.3.1 Framework . 30
4.3.2 Construction . 31

4.4 Scheme-3:Temporal Access Control Scheme with added decryption out-
sourcing . 36
4.4.1 Framework . 37
4.4.2 Construction . 38

5 Our implementations 44
5.1 Introduction . 44
5.2 Scheme-4:Temporal Access Control with added two phase encryption 44

5.2.1 Framework . 45
5.2.2 Construction . 46
5.2.3 drawback of this scheme . 53

5.3 Scheme-5: Distributed Access Control Scheme 53
5.3.1 Framework . 53
5.3.2 Construction . 55

6 Complexity Analysis 64
6.1 Notations . 64
6.2 Complexity comparision in form of table 64
6.3 Comparing Complexity comparision in the form of graph 66

7 Security proof 70
7.1 Security for collusion privilage attack 70

7.1.1 Case 1.1 . 71
7.1.2 Case 1.2 . 71

7.2 Security for KS-CDA attack . 72
7.3 Security against SS-CDA attack . 73

7.3.1 Proof of SS-CDA resistance 74
7.4 Security against revoked user . 75
7.5 Security against attack by the user with non overlapping time duration

with ciphertext . 75
7.6 Security against derivation key attack by collusion 76

7.6.1 Exchanging τa . 76
7.6.2 Exchanging range attribute 77
7.6.3 Security against derivation key attack by 2 revoked user’s col-

lusion . 77

2

7.6.4 Security against derivation key attack by one revoked user and
one non-revoked user collusion 77

7.7 Security against derivation key attack by the previous derivation key 78
7.8 Proofs of CPA attack . 78
7.9 Security against the online offline encryption scheme using shamir’s

secret sharing . 79

8 Future Work and Conclusion 81

3

List of Tables

6.1 Notations . 65
6.2 Comparing computational complexity of key generation with other

scheme . 66
6.3 Comparing computational complexity of encryption with other scheme 66
6.4 Comparing decryption complexity with other scheme 66
6.5 Comparing Ciphertext size or communication cost with other scheme 66

7.1 Comparison with bsw Scheme . 73

4

Chapter 1

Introduction

1.1 Introduction

Data is usually stored in cloud server without any encryption. But The two big
concerns about cloud storage are reliability and security. Clients aren not likely to
entrust their data to another company without a guarantee that they will be able
to access their information whenever they want and no one else will be able to get
at it. There is always the possibility that a hacker will find an electronic back door
and access data from cloud server. Hackers could also attempt to steal the physical
machines on which data are stored. Here our temporal access control scheme comes
into the picture.
Access control refers to a method of selectively granting access to a resource. Access
control has numerous applications in cloud computing as access to data has to be
restricted to a confined set of users. In a typical access control scheme the data is
stored in cloud server in encrypted format. Only the authorized users who have a
specific set of attributes can decrypt the data. For example, in social networks like
Facebook, statuses, photos, videos, and posts have to visible only to a fixed set of
users. It is essential to realize that privacy constitutes an inseparable necessity in
online social networks. As another example, file sharing using Dropbox or Google
Drive must ensure that access to shared files is granted only to the authorized users.
To realize these forms of access control, the three most widely recognized models are
as follows:

Identity-Based Access Control
Identity-Based Access Control is access control based on the identity of the user where
access authorizations to specific objects are assigned based on user identity. In this
method, a list of users is maintained and the identities of users requesting access are
checked against the list to mediate access control. This approach is simplistic and
works well for small groups but is highly inefficient for large and dynamic groups like
social networks.

5

Role-Based Access Control
Role-Based Access Control is access control in which permissions are assigned to roles
rather than to individual users and users are assigned to roles rather than directly to
permissions. For example, in a company, certain resources may be accessible only by
the role of a manager. As a result, all individuals who have been assigned the role of
a manager will be able to access the resource. It is easy to see, that this method is
especially useful in a company where it is natural and intuitive to have roles assigned
to individuals. Although, this method is more expressive than identity-based access
control, it is possible to improve upon this model to support more fine-grained access
control.

Attribute-Based Access Control
Attribute-Based Access Control is access control in which every user is assigned a
set of attributes and access is granted based on an access policy on attributes. We
formally define an access policy as follows:

Definition 1 Let A denote a set of attributes, A = {A1, · · · , Am}. An access policy
P is a Boolean function on AND/OR logical operations, generated by the grammar:
P ::= Ai|P AND P|P OR P where Ai ∈ A.

For example, suppose that a social network user has grouped his friends into lists
like close friends, batch mates, acquaintances, and family. The user may want to
share a sensitive status so that only friends who have certain credentials or attributes
can access it. For instance, the user may specify the following access structure for
accessing this information: (’close friends’ AND ’batch mates’) OR (’family’).

As illustrated by this example, it can be crucial that the person in possession of the
secret data be able to choose an access policy based on specific knowledge of the
underlying data. Furthermore, this person may not know the exact identities of all
other people who should be able to access the data, but rather she may only have a
way to describe them in terms of descriptive attributes or credentials. This provides
a very expressive and fine-grained way of controlling access to data.

Traditionally, this type of expressive access control is enforced by employing a trusted
server to store data locally. The server is entrusted as a monitor that checks that a user
presents proper credentials before allowing him to access records or files. XACML
(eXtensible Access Control Markup Language) defines a declarative access control
policy language implemented in XML and a processing model describing how to eval-
uate authorization requests according to the rules defined in policies.

The drawback of this trend is that it is increasingly difficult to guarantee the security
of data using traditional methods. If the trusted server is compromised, the data will

6

be lost forever. For these reasons, we would like to require that sensitive data is stored
in an encrypted form so that it will remain private even if a server is compromised.

Attribute-Based Encryption
In attribute-based encryption, data is kept encrypted at the server and is open to all
users. However, only those users who have sufficient attributes to satisfy the access
policy will be able to successfully decrypt the ciphertext. There are majorly two
ways of realizing attribute-based encryption - key-policy attribute-based encryption
(KP-ABE) and ciphertext-policy attribute-based encryption (CP-ABE).

In key-policy attribute-based encryption, ciphertexts are associated with sets of de-
scriptive attributes, and users’ keys are associated with policies. In key-policy at-
tribute based encryption, the encryptor exerts no control over who has access to the
data it encrypts, except by its choice of descriptive attributes for the data.

In ciphertext-policy attribute-based encryption, the access policy is embedded in the
ciphertext and not in the users’ keys. This allows the encryptor to have complete
control over who has access over the data it encrypts.

User Revocation
User revocation refers to the problem of managing attribute-based encryption given
that some users or their attributes have been revoked. Data access must then be
denied for these revoked users.
Traditional revocation approaches for attribute-based encryption use frequent rekey-
ing, and cannot block access to previously stored data without re-encrypting it. Ef-
ficient schemes like EASiER [7] have been proposed to deal with user revocation for
online social networks.Our scheme have adopted the idea of revocation in our tempo-
ral access scheme
A typical example of where revocation can be used is suppose in hospital some data
related to specific patient can be accessed by that patient starting from the time of
admission. Now if the patient check out the hospital then hospital need to revoke that
patient from accessing the data. But data is supposed to be still visible to doctors and
hospital authorities. So we cannot delete the data at that time. So the alternative is
to revoke the patient whenever he check out from hospital. This can be done by our
temporal access scheme with user revocation.
Temporal Constraints
Another issue in attribute-based encryption is the treatment of attributes which are
time-dependent. Every user is assigned an access privilege which contains a time
component i.e. a license At[ta, tb] where [ta, tb] is assigned time interval for the at-
tribute At. Mediating access control with temporal constraints is not handled by
the conventional ciphertext-policy attribute-based encryption proposed by Bethen-
court et. al. [1]. For example, we cannot generate a user’s private key with the

7

temporal constraint 4 ≤ Month ≤ 10, which is particularly useful for expressing
fine-grained access policies. Comparison-based encryption [6], which is built on top
of ciphertext-policy attribute-based encryption provides an effective way of dealing
with such constraints.

Our Work
The schemes mentioned so far have handled attribute-based encryption without two-
phase encryption or distributed key generation. Two-phase encryption are done only
on other ABE scheme and distributed key generation is done on simple CPABE
scheme. To the best of our knowledge, no significant work has been done to design
a scheme which encompasses both these issues in a unified manner in any temporal
access scheme. In this thesis, we propose a novel scheme which efficiently addresses
both the issues along with the outsourced decryption for mobile cloud. So our protol
will work much more efficiently in mobile cloud. in a single protocol. This scheme
offers to be a complete package to realize fine-grained access control and has appli-
cations in numerous domains like cloud computing and social networks. Also, we
provide a complexity analysis to prove the effectiveness of our methodology.

1.2 Our Contributions

In this thesis, we proposed an efficient temporal access control scheme for mobile
cloud. Our scheme enjoy the following features:-

• Our first temporal access scheme support user revocation where the authorized
user can be revoked from accessing the data stored in cloud. at any point of
time.

• Key generation for each user is divided into multiple authorities where each
authority will generate key for specific subset of attributes and then those keys
will be combined into a single key by a central authority.

• Encryption phase is divided into two phases, Offline encryption(can be done
when message and access structure of that message is unknown) and online
encryption.

• A decryptor can outsource the decryption task to a proxy (which can be cloud
service provider) in such a way that proxy don’t get any information about
plaintext.

• We have shown analytically that key generation, encryption and decryption cost
reduced compared to other existing CPABE scheme.

• we have shown step by step development of our scheme by describing the fol-
lowing scheme:-

8

1. Scheme without decryption Outsourcing and revocation

2. Scheme without decryption Outsourcing with revocation

3. Scheme with decryption Outsourcing and revocation

4. Scheme with decryption Outsourcing, revocation and online-offline encryp-
tion

5. Scheme with decryption Outsourcing, revocation, online-offline encryption
and multi-authority key generation

• We have proved the security of our scheme from differnt aspects

1.3 Thesis Outline

This thesis is organized as follows. We define some of the essential preliminaries in
chapter 2. In chapter 3, we review some of the existing work in the fields of attribute-
based encryption, user revocation and temporal access control. Chapter 4 explain
first three basic schemes mentioned above. In chapter 5 we explain last two tempo-
ral access scheme with two phase encryption and multi-authority key generation,In
chapter 6 we evaluate the complexity of our proposed scheme and compare it with
comparison-based encryption. We show that the additional overhead associated with
user revocation is not significant and thereby, our scheme is efficient. Finally, in chap-
ter 6, we conclude the thesis and also mention our future goals with respect to our
novel scheme.

9

Chapter 2

Preliminaries

This section introduces some basic concepts and preliminaries used in attribute-based
encryption. First, we present the concept of secret sharing and describe Shamir’s
secret sharing scheme in detail. Then, we define a very general type of structure
known as an access structure, which is used to label different sets of encrypted data.
Finally, we go on to present a few facts related to groups with efficiently computable
bilinear maps.

2.1 Secret Sharing

Secret sharing refers to a method of distributing a secret amongst a group of partici-
pants, each of whom is allocated a share of the secret. The secret can be reconstructed
only when a sufficient number, of possibly different types, of shares are combined to-
gether. Individual shares are of no use on their own. We formally define threshold
secret sharing and describe Shamir’s secret sharing scheme, which is the most widely
used secret sharing scheme.

2.1.1 Threshold Secret Sharing

A (t, n) threshold secret sharing scheme distributes a secret among n participants in
such a way that any t of them can recreate the secret, but any t−1 or fewer members
gain no information about it. The piece held by a single participant is called a share
of the secret. Secret sharing schemes are normally set up by a trusted authority who
computes all shares and distributes them to participants via secure channels. The
trusted authority who sets up the scheme is called a dealer. The recovery of the secret
is done by the so-called combiner who on behalf of the cooperating group computes
the secret. The combiner can be collective, i.e., all active participants show to each
other their shares so that any active participant can calculate the secret.

10

Assume that secrets belong the set K and shares are from the set S. Let Si be the
set from which the dealer draws shares for the participants Pi, i = 1, · · · , n. The set
of all participants P = {P1, · · · , Pn}.

Definition 2 A (t, n) threshold scheme is a collection of two algorithms. The first
algorithm is called the dealer

D : K → S1 × S2 × · · · × Sn

assigns shares to the participants for a secret k ∈ K. The share si ∈ Si is commu-
nicated via a secure channel to the participant Pi. If all share sets Si are equal we
simply say that si ∈ S.

The second algorithm (the combiner)

C : Si1 × Si2 × · · · × Sij → K

takes an arbitrary collection of shares and attempts to compute the secret. The com-
biner recovers the secret successfully only if the number j of different shares is greater
than or equal to t (j ≥ t). It fails if the number j of shares is smaller than t (j < t).

2.1.2 Shamir’s Secret Sharing Scheme

Shamir’s secret sharing scheme [8] uses Lagrange polynomial interpolation to design
a (t, n) threshold secret sharing scheme. All calculations are done in a Galois Field
GF (p) where the prime p is a large enough integer (so that the secret is always smaller
than p).

A (t, n) Shamir scheme is constructed starting with the dealer. The dealer chooses
n different points xi ∈ GF (p) for i = 1, · · · , n. These points are public. Next,
the dealer randomly selects coefficients a0, · · · , at−1 from GF (p). The polynomial
f(x) = a0 +a1x+ · · ·+at−1x

t−1 is of degree at most (t−1). The shares are si = f(xi)
for i = 1, · · · , n and the secret k = f(0). The share si is distributed to the participant
Pi ∈ P via a secure channel and is kept secret.

When t participants agree to cooperate, the combiner takes their shares and tries to
recover the secret polynomial f(x). The combiner knows t points on the curve f(x)

(xij , f(xij)) = (xij , sij) for j = 1, · · · , t.

The Lagrange interpolation formula allows us to determine the polynomial f(x) of
degree (t− 1) from t different points (xij , sij), thus,

11

f(x) =
t∑

j=1

sij
∏

1≤l≤t,l 6=j

x− xil
xij − xil

.

The secret k = f(0), therefore, we obtain,

k = a0 =
t∑

j=1

sijbj,

where,

bj =
∏

1≤l≤t,l 6=j

xil
xil − xij

If the combiner knows (t − 1) or fewer shares, it cannot find the unique solution for
k = a0 as the system contains t unknowns but fewer than t equations.

2.2 Access Structures

2.2.1 Access Structures

Definition 3 The collection of all subsets of participants who are able to access the
secret is called the access structure Γ.

The access structure of (t, n) threshold schemes is Γ = {A ∈ 2P : |A| ≥ t}, where
2P is the class of all subsets of P . The access structure, in this case, consists of all
groups whose cardinality is at least t. These groups are called authorized subsets. On
the other hand, an unauthorized subset is a group that does not belong to Γ or whose
cardinality is smaller than t.
Consider the scenario where it has been decided by the Uni- versity that the mark-
sheets of students in the Computer Science department prior to publishing will be
made available only to the Computer Science faculty and the Examination Depart-
ment and to dean of studies. So, the relevant policy for encrypting marksheets would
be (COM- PUTER SCIENCE AND FACULTY) OR EXAMINATION DEPART-
MENT OR ”Dean”. So the access structure will look like :-

12

2 of 2

1 of 3

CS
Department

Faculty Exam Dept Dean

Figure 2.1: Access structure for result before publishing

2.2.2 Monotone Access Structures

Definition 4 An access structure Γ is monotone if for any subset A ∈ Γ, all its
supersets B are contained in Γ, that is, if A ∈ Γ and A ⊆ B, then B ∈ Γ.

2.3 Bilinear Maps

2.3.1 Bilinear Maps

Let G0 and G1 be two multiplicative cyclic groups of prime order p. Let g be a
generator of G0 and e be a bilinear map, e : G0 ×G0 → G1. The bilinear map e has
the following properties:

• Bilinearity: ∀u, v ∈ G0 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab;

• Non-degeneracy: e(g, g) 6= 1.

We say that G0 is a bilinear group if the group operation in G0 and the bilinear map
e : G0 ×G0 → G1 are both efficiently computable.

Proposition 1 The bilinear map e is symmetric i.e. ∀u, v ∈ G0, e(u, v) = e(v, u).

13

2.3.2 Composite Order Bilinear Maps

A bilinear map group system [4] S = (N = pq,G,GT , e) where N = pq is the
RSA-modulus, p, q are two large primes, G and GT are two cyclic groups with order
n = s′p′q′, and e is a computable bilinear map e : G × G → GT with the following
properties:

• Bilinearity: for any g, h ∈ G and all a, b ∈ Z, e(ga, hb) = e(g, h)ab;

• Non-degeneracy: e(g, h) 6= 1 whenever g and h are the generators of the group
G;

• Computability: e(g, h) is efficiently computable.

In this system, N is made public and n, s′, p′, q′ are kept secret.

Proposition 2 Let Gs′ and Gn′ denote subgroups of order s′ and n′ = p′q′ in G,
respectively. For g ∈ Gs′ and h ∈ Gn′, e(g, h) is the identity element in GT .

Proof:

Let w denote a generator of G, then, wn
′

generates Gs′ and ws
′

generates Gn′ .

Hence, for some k1, k2, g = (wn
′
)
k1

and h = (ws
′
)
k2

, we have

e(g, h) = e((wn
′
)
k1
, (ws

′
)
k2

) = e(wk1 , wk2)
s′n′

= 1
�

2.4 Forward/Backward Derivation Functions

This scheme utilizes the one-way property to represent a total order on integers. This
means that given ti ≤ tj and two corresponding values vti and vtj , there exists an
efficient algorithm to obtain vtj from vti ; however it is hard to compute vti from vtj .
Based on this idea, the forward and backward derivation functions are formally de-
fined.

Let comparable variables be denoted as a countable set U = {t1, t2, ..., tT} constituted
from the discrete consecutive integers with a total order 0 ≤ t1 ≤ t2 ≤ ≤ tT ≤ Z,
where Z is the largest integer. In order to construct a cryptographic algorithm for
integer comparison, a map ψ : U → V , where V = {vt1 , ..., vtT } is a set of values. It
is essential for ψ to be an order-preserving map, that is, a map such that ti ≤ tj in U
implies there exists a partial-order � in V to ensure vti � vtj in V where vti = ψ(ti)
and vtj = ψ(tj). In order to setup this kind of relation over V , we consider the
partial-order in V as the one-way property in cryptography, which is defined as a
forward derivation function:

14

Definition 5 Given a function f : V → V based on a set (U,≤), it is called a forward
derivation function if it satisfies the conditions:

• Easy to compute: the function f can be computed in polynomial-time, if
ti ≤ tj, i.e., vtj ← fti≤tj(vti);

• Hard to invert: it is infeasible for any probabilistic polynomial (PPT) algo-
rithm to compute vti from vtj if ti < tj.

Similarly, we also define a function f̄ for the derivation in opposite direction, which is
called Backward Derivation Function (BDF). In order to avoid interference between
f and f̄ , we use a different sign ψ̄ : U → V̄ , and then the BDF f̄ is defined as follows:

Definition 6 Given a function f̄ : V̄ → V̄ based on a set (U,≤), it is called a
backward derivation function if it satisfies the conditions:

• Easy to compute: the function f̄ can be computed in polynomial-time, if
ti ≥ tj, i.e., v̄tj ← f̄ti≥tj(v̄ti);

• Hard to invert: it is infeasible for any probabilistic polynomial (PPT) algo-
rithm to compute v̄ti from v̄tj if ti > tj.

2.5 Cryptographic Construction of FDF/BDF

The cryptographic construction for integer comparisons is constructed based on for-
ward/backward derivation functions. This construction is built on a special multi-
plicative group Gn′ of RSA-type composite order n′ = p′q′, where p′, q′ are two large
primes. First, we choose two different random generators ϕ, ϕ̄ in a group Gn′ , where
ϕn
′
= ϕ̄n

′
= 1. Next, we choose two different random λ and µ in Z∗n′ , where the order

of λ, µ is sufficiently large in Z∗n′ .

Based on RSA cryptography system, we define two mapping functions ψ(·), ψ̄(·) from
an integer set U = {t1, t2, · · ·, tT} into V = {vt1 , ..., vtT } and V̄ = {v̄t1 , ..., v̄tT } as
follows:

vti ← ψ(ti) = ϕλ
ti ∈ Gn′

v̄ti ← ψ̄(ti) = ϕ̄µ
Z−ti ∈ Gn′

Next, according to the definition of ψ(·) and ψ̄(·), it is easy to define the FDF f(·)
and BDF f̄(·) as

15

vtj ← fti≤tj(vti) = (vti)
λtj−ti ∈ Gn′

v̄tj ← f̄ti≥tj(v̄ti) = (v̄ti)
µti−tj ∈ Gn′

It is intractable to obtain vti from vtj for ti < tj under the RSA assumption that λ−1

and µ−1 cannot be efficiently computed based on the secrecy of n′.

16

Chapter 3

Related Work

In this chapter, we review some of the related work done in the field of attribute-
based encryption, user revocation and temporal access control. First, we describe
ciphertext-policy attribute-based encryption, which allows attribute information to
be contained in the user’s private key and access policies on data to be defined inde-
pendently. Next, we describe the revocation scheme of Naor and Pinkas, which is a
widely used scheme and proved to be secure. Finally, we describe comparison-based
encryption which is used to efficiently represent ranged attributes as well as temporal
constraints.

3.1 Ciphertext-Policy Attribute-Based Encryption

In ciphertext-policy attribute-based encryption, the access policy is embedded in the
ciphertext and not in the users’ keys. This allows the encryptor to have complete
control over who has access over the data it encrypts. In this section, we review the
algorithms, model, and construction of ciphertext-policy attribute-based encryption
scheme.

3.1.1 Algorithms

An ciphertext-policy attribute based encryption scheme [1] consists of four funda-
mental algorithms: Setup, Encrypt, KeyGen, and Decrypt. In addition, the option
of a fifth algorithm Delegate is allowed.

Setup. The setup algorithm takes no input other than the implicit security param-
eter. It outputs the public parameters PK and a master key MK.

Encrypt(PK,M,A). The encryption algorithm takes as input the public parame-
ters PK, a message M , and an access structure A over the universe of attributes.
The algorithm will encrypt M and produce a ciphertext CT such that only a user

17

that possesses a set of attributes that satisfies the access structure will be able to
decrypt the message. It is assumed that the ciphertext implicitly contains A.

Key Generation(MK,S). The key generation algorithm takes as input the master
key MK and a set of attributes S that describe the key. It outputs a private key SK.

Decrypt(PK,CT, SK). The decryption algorithm takes as input the public param-
eters PK, a ciphertext CT , which contains an access policy A, and a private key
SK, which is a private key for a set S of attributes. If the set S of attributes satisfies
the access structure A then the algorithm will decrypt the ciphertext and return a
message M .

Delegate(SK, S̃). The delegate algorithm takes as input a secret key SK for some

set of attributes S and a set S̃ ⊆ S. It output a secret key S̃K for the set of attributes
S̃.

3.1.2 Model

In the construction, private keys will be identified with a set S of descriptive at-
tributes. A party that wishes to encrypt a message will specify through an access
tree structure, a policy that private keys must satisfy in order to decrypt.

Each interior node of the tree is a threshold gate and the leaves are associated with
attributes. (It is to be noted that this setting is very expressive. For example, a tree
can be represented with ’AND’ and ’OR’ gates by using, respectively, 2 of 2 and 1
of 2 threshold gates.) A user will be able to decrypt a ciphertext with a given key if
and only if there is an assignment of attributes from the private key to nodes of the
tree such that the tree is satisfied.

Access tree T

Let T be a tree representing an access structure. Each non-leaf node of the tree rep-
resents a threshold gate, described by its children and a threshold value. If numx is
the number of children of a node x and kx is its threshold value, then 0 < kx ≤ numx.
When kx = 1, the threshold gate is an OR gate and when kx = numx, it is an AND
gate. Each leaf node x of the tree is described by an attribute and a threshold value
kx = 1.

To facilitate working with the access trees, a few functions have been defined. The
parent of the node x in the tree is denoted by parent(x). The function att(x) is de-
fined only if x is a leaf node and denotes the attribute associated with the leaf node x
in the tree. The access tree T also defines an ordering between the children of every

18

node, that is, the children of a node are numbered from 1 to num. The function
index(x) returns such a number associated with the node x, where the index values
are uniquely assigned to nodes in the access structure for a given key in an arbitrary
manner.

Satisfying an access tree

Let T be an access tree with root r. Tx denotes the subtree of T rooted at the node
x. Hence T is the same as Tr. If a set of attributes γ satisfies the access tree Tx, it
is denoted as Tx(γ) = 1. Tx(γ) is computed recursively as follows. If x is a non-leaf
node, evaluate Tx′(γ) for all children x′ of node x. Tx(γ) returns 1 if and only if at
least kx children return 1. If x is a leaf node, then Tx(γ) returns 1 if and only if
att(x) ∈ γ.

3.1.3 Construction

Let G0 be a bilinear group of prime order p, and let g be a generator of G0. In
addition, let e : G0×G0 → G1 denote the bilinear map. A security parameter, κ, will
determine the size of the groups. The Lagrange coefficient 4i,S for i ∈ Zp and a set,
S, of elements in Zp is also defined: 4i,S =

∏
j∈S,j 6=i

x−j
i−j . Additionally, a hash function

H : {0, 1}∗ → G0 is employed that will be modeled as a random oracle. The function
will map any attribute described as a binary string to a random group element.

Setup. The setup algorithm will choose a bilinear group G0 of prime order p with
generator g. Next, it will choose two random exponents α, β ∈ Zp. The public key is
published as:

PK = G0, g, h = gβ, f = g
1
β , e(g, g)α

and the master key MK = (β, gα). (Note that f is used only for delegation.)

Encrypt(PK,M, T). The encryption algorithm encrypts a message M under the
tree access structure T . The algorithm first chooses a polynomial qx for each node x
(including the leaves) in the tree T . These polynomials are chosen in the following
way in a topdown manner, starting from the root node R. For each node x in the
tree, set the degree dx of the polynomial qx to be one less than the threshold value
kx of that node, that is, dx = kx − 1.

Starting with the root node R the algorithm chooses a random s ∈ Zp and sets
qR(0) = s. Then, it chooses dR other points of the polynomial qR randomly to define
it completely. For any other node x, it sets qx(0) = qparent(x)(index(x)) and chooses

19

dx other points randomly to completely define qx.

Let Y be the set of leaf nodes in T . The ciphertext is then constructed by giving the
tree access structure T and computing

CT = (T , C̃ = Me(g, g)s, C = hs,∀y ∈ Y : Cy = gqy(0), C ′y = H(att(y))qy(0)).

KeyGen(MK,S). The key generation algorithm will take as input a set of attributes
S and output a key that identifies with that set. The algorithm first chooses a random
r ∈ Zp, and then random rj ∈ Zp for each attribute j ∈ S. Then it computes the key
as

SK = (D = g
(α+r)
β ,∀j ∈ S : Dj = gr ·H(j)rj , D′j = grj).

Delegate(SK, D̃). The delegation algorithm takes in a secret key SK, which is for

a set S of attributes, and another set S̃ such that S̃ ⊆ S. The secret key is of the
form SK = (D, ∀j ∈ S : Dj, D

′
j). The algorithm chooses random r̃ and r̃k∀k ∈ S̃.

Then it creates a new secret key as

S̃K = (D̃ = Df r̃,∀k ∈ S̃ : D̃k = Dkg
r̃H(k)r̃k , D̃′k = D′kg

r̃k).

The resulting secret key S̃K is a secret key for the set S̃. Since the algorithm re-
randomizes the key, a delegated key is equivalent to one received directly from the
authority.

Decrypt(CT, SK). The decryption procedure is defined as a recursive algorithm. A
recursive algorithm DecryptNode(CT, SK, x) is defined that takes as input a cipher-

text CT = (T , C̃, C,∀y ∈ Y : Cy, C
′
y), a private key SK, which is associated with

a set S of attributes, and a node x from T . If the node x is a leaf node, then let
i = att(x) and define as follows: If i ∈ S, then

Decrypt(CT, SK, x)

=
e(Di, Cx)

e(D′i, C
′
x)

=
e(gr ·H(i)ri , hqx(0))

e(gri , H(i)qx(0))

= e(g, g)rqx(0)

If i /∈ S, the we define Decrypt(CT, SK, x) =⊥.

20

Consider the recursive case when x is a non-leaf node. The algorithm DecryptNode(CT, SK, x)
then proceeds as follows: For all nodes z that are children of x, it calls DecryptNode(CT, SK, z)
and stores the output as Fz. Let Sx be an arbitrary kx-sized set of child nodes z such
that Fz =⊥. If no such set exists then the node was not satisfied and the function
returns ⊥.

Otherwise, we compute

Fx =
∏
z∈Sx

F
4i,S′x (0)
z

=
∏
z∈Sx

(e(g, g)r·qz(0))
4i,S′x (0)

=
∏
z∈Sx

(e(g, g)r·qparent(z)(index(z)))
4i,S′x (0)

(by construction)

=
∏
z∈Sx

e(g, g)r·qx(i)·4i,S′x (0)

= e(g, g)r·qx(0) (using polynomial interpolation)

and return the result.

Now that the function DecryptNode has been defined, the decryption algorithm
can be defined using DecryptNode. The algorithm begins by simply calling the
function on the root node R of the tree T . If the tree is satisfied by S we set
A = DecryptNode(CT, SK, r) = e(g, g)rqR(0) = e(g, g)rs. The algorithm now de-
crypts by computing

C̃/(e(C,D)/A) = C̃/(e(hs, g
α+r
β)/e(g, g)rs) = M .

3.2 Revocation Schemes

User revocation is of paramount importance for dynamic groups, where the member-
ship status of users to groups is constantly changing. Mediating access control for
dynamic groups can be quite a challenge. In this section, we review the widely used
revocation scheme of Naor and Pinkas [3].

3.2.1 Revocation scheme of Naor and Pinkas

This scheme consists of two phases:

Initialization: The group controller generates a random polynomial P of degree t
over Zp. It sends a personal key < Iu, P (Iu) > to each user u with identity Iu. This

21

process is performed once for all future revocations.

Revocation: The group controller learns the identities of t users Iu1 , · · · , Iut to re-
voke. It then chooses a random r, and sets the new key to be grP (0), which would
be unknown to revoked users. It broadcasts the message gr, < Iu1 , g

rP (Iu1) >, · · · , <
Iut , g

rP (Iut) > encrypted with current group key. Each non revoked user can compute
grP (Iu) and combine it with the broadcast values to obtain grP (0) using Lagrange’s
interpolation.

Lagrange’s interpolation formula for a polynomial P of degree t from its t+ 1 points
x0, · · · , xt, is

P (0) =
t∑
i=0

λiP (xi)

where λi’s are Lagrange coefficients which depend on the xi’s, i.e.,

λi =
∏
j 6=i

xi
xi − xj

. Therefore,

grP (0) = g
r

t∑
i=0

λiP (xi)
=

t∏
i=0

grλiP (xi)

and knowing t+ 1 pairs < Iu, g
rP (Iu) > allows computing grP (0).

3.3 Comparison Criterion

The constraint on an integer attribute At can be represented with the interval [ti, tj],
where [ti, tj] is a range (or interval) denoting the lower (e.g. beginning time) and upper
(e.g. ending time) bounds for the instants in At. On the other hand, in order to realize
comparison-based access control, a user is also assigned a digital certificate (called
access privilege) which includes an integer attribute At. Given a range constraint
[ti, tj] and an access privilege [ta, tb] on the same attribute At, the following criterion
must be satisfied:

Definition 7 Comparison Criterion: Given an access constraint ti ≤ At ≤ tj for the
protected resources and a privilege ta ≤ At ≤ tb in the users certificate, secure data
access control must guarantee that the user can be permitted to access the resources if
and only if [ti, tj] ∩ [ta, tb] 6= ∅.

beginfigure[hbt]

22

t a bt

t i t j

Time

Fig 1: Non overlapping
temporal attribute
(Decryption not possible
with these attribute)

t i t j

t a

t

t b

Fig 2: Overlapping temporal
attribute (Decryption possible
with these attribute)

3.4 Fine-grained Access Control with Comparison

In mathematics, the ordering imposed on a set of elements U is said to be a total
order if and only if every two elements are comparable in U . The set of integers,
ordered usually by ≤,≥ (or <,>) relations, is totally ordered and so are the subsets
of natural numbers and rational numbers. As a result, attributes such as level, time,
and, position, also satisfy the total order, which can be mapped into consecutive
integers. Therefore, we consider the values of these attributes as a countable set
constituted in the range [0, Z], U = {t1, · · · , tT} ⊆ [0, Z]. Based on this ordering
relation on U , an attribute-based access control with comparison operations is defined
as follows:

• A: the set of attributes A = {A1, · · · , Am};

• Ak(ti, tj): the range constraint of attribute Ak on [ti, tj], i.e., ti ≤ Ak ≤ tj ;

• P : the access control policy expressed as a Boolean function on AND/OR logical
operations, generated by the grammar: P ::= Ak(ti, tj)|P AND P|P OR P ; and

• L: the access privilege assigned into the users certificate, generated by L ::=
{Ak(ta, tb)}Ak∈A.

23

3.5 Temporal Access Control Scheme

Temporal access control with user revocation [24] encrypts and stores data in clouds
in such a way that only authorized users are able to decrypt it within a specified time
period(i.e if the comparision criteria fulfill for all the temporal attributes).

3.5.1 Entities involved

We consider a cloud storage system with five types of entities: System Manager, Data
Owners, Data Users, the Cloud Server, and the Proxy Server. The system manager
defines the system parameters. The data owners define the access policy and encrypt
data under these policies before hosting it on the cloud server. The cloud server
stores the encrypted data. The proxy server performs partial decryption. It cannot
calculate the plaintext from the partially encrypted data and is used to outsource
the heavy decryption task from users. The revocation is also delegated to the proxy
server. The data users refer to users who want to access the encrypted data. Thus,
only those users who possess attributes that satisfy the access policy will be able to
successfully decrypt the data but will also require help from the proxy server. Each
user is assigned a user ID along with an access privilege, which contains attributes
along with their time range of validity. We assume that the cloud service provider
(CSP) and proxy server are honest but curious, that is, they will discharge their duty
honestly but will try to deduce as much information as possible based on inputs.

The detail of the scheme will be in the section Scheme-3 of Three Basic Temporal
Access Scheme chapter.

3.5.2 drawback of the Scheme

This naive approach has the following shortcomings:

• It cannot perform the key generation in distributed way. There will be only
one key generation authority who is responsible for generation of key for all the
attribute. So this will become inefficient when number of attribute set is large

• As encryption is directly proportional to the number of attributes by which
the message is going to get encrypted. So there will be a large computation
overhead when the number of attribute is huge. which is really a big problem
for low powered device like mobile phone.

• This scheme does not have any formal security proof

Our proposed scheme overcome all of these three shortcomings.

24

Chapter 4

Three Basic Temporal Access
Scheme

4.1 Introduction

In this chapter, we present three schemes which are basically step by step improvement
starting from the basic temporal access scheme. First, We define basic temporal access
scheme then we will improve that twice by adding extra functionalities.

4.2 Scheme-1:Basic Temporal Access Control Scheme

Here We propose a basic temporal access control scheme to protect and selectively
access data in clouds. This is our first scheme on temporal access control. Our this
scheme encrypts and stores data in clouds in such a way that only authorized users
are able to decrypt it.
There will be two types of attribute.First one is non-temporal attribute for which
a user can decrypt the content as long as the data exist in cloud. And another is
temporal attribute for which data can be accessed within some specific time period.
This scheme is implemented Without any proxy for decryption and without the fa-
cility of revocation.The entities described in 3.5.1 are all involved here except proxy
server. Later on we will see more complicated schemes with extra facilities and extra
randomization on this basic scheme.

25

1. Set
up

4. Request Key

2.
Encrypt 3. Store

in cloud

7. Generate
Key 5. Send Key

8.Decrypt

7.Get
data

6.Request
data

Figure 4.1: A Basic Temporal Access Control Scheme

4.2.1 Framework

A brief description of each of these algorithms is as follows:

• Setup(1κ) → (MK,PK): Takes a security parameter κ as input, outputs the
master secret key MK and the public key PK.

• KeyGen(MK,uk,L)→ SKL: Takes the user ID uk, the access privilege L, and
MK as input, outputs the users private key SKL.

• Encrypt(PK,M,P) → (HP , C ′): Takes a comparable access policy P , pub-
lic key PK and message M as input, outputs the ciphertext header HP and
ciphertext C ′.

• Decrypt(SKL,HP , C ′) → M : Takes the users private key SKL, Ciphertext
header HP , and the ciphertext C ′ as input, outputs the message M .

4.2.2 Construction

We provide detailed implementations of the algorithms mentioned in Section 5.3.1
and present our novel construction to enforce user revocation.

• Setup(1κ)→ (MK,PK)
This is run by the system manager. Let κ be the security parameter. The setup

26

algorithm takes κ (which depends on the application) and outputs the master
secret key MK and public key PK. We use bilinear map S = (G,GT , e(·, ·))
of composite order n = s′n′ with two subgroups Gs′ and Gn′ of G. Random
generators w ∈ G, g ∈ Gs′ , and ϕ, ϕ̄ ∈ Gn′ are chosen. Two random numbers
λ, µ ∈ Z∗n are selected, to implement forward and backward derivation functions.
By Proposition 1, we have e(g, ϕ) = e(g, ϕ̄) = 1, but e(g, w) 6= 1. A hash
function H : {0, 1}∗ → G is used to map an attribute to a binary string which
represents a random group element. A randomly generated polynomial P of
degree c (the maximum number of revoked users) over Zn will be employed
to enforce revocation. Next, this algorithm chooses two random exponents
α, β ∈ Z∗n and outputs the public key

PK = (S, n, g, h, ζ, η, w, ϕ, ϕ̄, λ, µ,H(·)),

where,

h = wβ, ζ = e(g, w)α, η = g
1
β ,

and the master key
MK = (gα, β, n′, P).

• KeyGen(MK,uk,L)→ SKL

Given a user with ID uk
1 and access structure L on a set of attributes S =

{At} ⊆ A, this algorithm chooses a unique τk for each user uk. Assume that
the user uk is assigned a temporal attribute At ∈ L with the constraint At[ta, tb]
and non-temporal attribute Bt ∈ L. This algorithm chooses a random r ∈ Z
and sets the user’s attribute key as

(Dt, D
′

ta , D̄
′

tb
, D

′′

t ,)At[ta,tb]∈Land

(DBt)Bt∈L

where,
Dt = gτkH(At)

r,

D
′

ta = (vta)
r,

D̄
′

tb
= (v̄tb)

r,

D
′′

t = wr,
DBt = gτkH(Bt)

r,

and,

vta = ϕλ
ta
, v̄tb = ϕ̄µ

Z−tb ∈ Gn′ ,

1We assume that each user ID uk ∈ Zl where l = min(s, p′, q′), so that, for every pair (i, j), i 6=
j, ui − uj ∈ Z∗n. As a result, its inverse (ui − uj)

−1, which is needed in the ProxyRekey phase will
exist and the secret can be successfully recovered.

27

Finally, this algorithm outputs the user’s private key

SKL = (D = g
(α+τk)

β , {(Dt, D
′

ta , D̄
′

tb
, D

′′

t)}
At[ta,tb]∈L

, {(DBt)}Bt∈L).

(4.1)

• Encrypt(PK,P ,M)→ (HP , C ′)
Let T be the access tree for the access policy P . Let s be a secret in ZN for
the access tree T , and x, y are chosen such that x + y = qAt(0), which is the
secret share at leaf node corresponding to attribute At. Please refer to Section
4, [12] for a detailed meaning of qAt(0). Given an access tree T , the ciphertext
is composed of a ciphertext header,

HP = (T , C = hs, {(Ēti , E
′

ti
, Etj , E

′

tj
)}
At[ti,tj]∈P

, {(EB′t)}Bt∈P). (4.2)

and a ciphertext C ′ = Me(g, w)sα, where,

(Ēti , E
′
ti
, Etj , E

′
tj

) = ((v̄tiw)x, H(At)
x, (vtjw)y, H(At)

y)

and (EB′t, ¯EBt) = (H(Bt)
qBt (0), wqBt (0)).

• Decrypt(SKL,L′)→M

Given the private key SKL and a specified L′, this algorithm checks whether,
for every At[ta, tb] ∈ L and At[ti, tj] ∈ L′, ta ≤ tj and tb ≥ ti is true for each
attribute At ∈ L′.
If true, the user computes,

D
′
tj
← fta≤tj(D

′
ta) ·D

′′
t = (vtjw)r

D̄
′
ti
← f̄tb≥ti(D̄

′
tb

) ·D′′t = (v̄tiw)r

Finally, it outputs S̃KL′ as the derivation key for L′.
On receiving the private key S̃KL′ , and the ciphertext header HP , this al-
gorithm checks whether each range attribute At[ti, tj] ∈ L′ is consistent with
At[ti, tj] ∈ P . If true, the secret share qAt(0) over GT is reconstructed as follows:-

28

F1 ←−
e(Dt, Etj)

e(D
′
tj , E

′
tj)

=
e(gτkH(At)

r, (vtjw)y)

e((vtjw)r, H(At)y)

=
e(gτk , (vtjw)y) · e(H(At)

r, (vtjw)y)

e((vtjw)r, H(At)y)

= e(gτk , (vtjw)y)

= e(gτk , vytj) · e(g
τk , wy)

= e(gτk , w)y

As e(g, vtj) = 1 for composite group property.
Similarly,

F2 ←−
e(Dt, Ēti)

e(D̄′ ti , E
′
ti)

=
e(gτkH(At)

r, (v̄tiw)x)

e((v̄tiw)r, H(At)x)

=
e(gτk , (v̄tiw)x) · e(H(At)

r, (v̄tiw)x)

e((v̄tiw)r, H(At)x)

= e(gτk , (v̄tiw)x)

= e(gτk , v̄xti) · e(g
τk , wx)

= e(gτk , w)x

For Bt ∈ L′ is consistent with Bt ∈ P , then the secret share qBt(0) of s over GT

is reconstructed as,

F3 ←−
e(DBt, ĒBt)

e(D′′ t, EB
′
t)

=
e(gτkH(Bt)

r, (wqBt (0))

e(wr, H(Bt)
qBt (0))

=
e(gτk , wqBt (0)) · e(H(Bt)

r, wqBt (0))

e(wr, H(Bt)
qBt (0))

= e(gτk , w)qBt (0)

29

Ft = F1 · F2 = e(gτk , w)qAt (0)

where, e(gτk , vytj) = e(gτk , v̄xti) = 1 because gτk ∈ Gs′ and vytj , v̄
x
ti
∈ Gn′ . Next, the

value of T = e(gτk , w)s is computed from {e(gτk , w)qAi (0)}Ai∈P and {e(gτk , w)qBi (0)}Bi∈P
by using the recursive DecryptNode algorithm described in Bethencourt et al.
[12]. Finally, the new ciphertext header H̃P = (C, T) is returned.

Once the ciphertext header H̃P = (C, T) = (wβs, e(gτk , w)s) is formed, the secret

δ is used to compute D′ = D · η = g
(α+τk)

β g
1‘
β = g

(α+τk)

β .

Let ek =
e(C,D′)

T
=
e(g

(α+τk)

β , wβs)

e(gτk , w)s
= e(gα, w)s.

Finally, the plaintext message is computed by
M = C ′/ek.

4.3 Scheme-2:Temporal Access Control with Re-

vocation Added

This is the extension of the previous scheme where we have added revocation of
authorized user. In this scheme the data owner can revocake any authorized user
from accessing the encrypted content at any point of time. The entities described in
3.5.1 are all involved here except proxy server.

4.3.1 Framework

A brief description of each of these algorithms is as follows:

• Setup(1κ) → (MK,PK): Takes a security parameter κ as input, outputs the
master secret key MK and the public key PK.

• KeyGen(MK,uk,L)→ SKL: Takes the user ID uk, the access privilege L, and
MK as input, outputs the users private key SKL.

• Encrypt phase-1(PK,M,P)→ (HP , C ′): Takes a comparable access policy P ,
public key PK and message M as input, outputs the ciphertext header HP and
ciphertext C ′.

• Encrypt phase-2(PK,MK,RL)→ (H̃P , RIV): Takes the public key PK, mas-
ter key MK, and the revocation list RL as inputs, outputs modified ciphertext
H̃P , which contains the information necessary to enable the data owner to par-
tially decrypt the ciphertext.

30

• Delegate(SKL,L′)→ S̃KL′ : Takes a private key SKL and a specified privilege

requirement L′ as input, outputs a derivation key S̃KL′ , if each attribute in L
and L′ match.

• Decrypt:-1(S̃KL′ ,HP , RIV) → H̃P : Takes a users private key S̃KL′ , RIV and

the ciphertext header HP as input, outputs a new ciphertext header H̃P if L′
satisfies the range constraints of P .

• Decrypt:-2r(SKL, H̃P , C ′) → M : Takes the users private key SKL, Ciphertext

header H̃P , and the ciphertext C ′ as input, outputs the message M .

4.3.2 Construction

We provide detailed implementations of the algorithms mentioned in Section 5.3.1
and present our novel construction to enforce user revocation.

• Setup(1κ)→ (MK,PK)
This is run by the system manager. Let κ be the security parameter. The setup
algorithm takes κ (which depends on the application) and outputs the master
secret key MK and public key PK. We use bilinear map S = (G,GT , e(·, ·))
of composite order n = s′n′ with two subgroups Gs′ and Gn′ of G. Random
generators w ∈ G, g ∈ Gs′ , and ϕ, ϕ̄ ∈ Gn′ are chosen. Two random numbers
λ, µ ∈ Z∗n are selected, to implement forward and backward derivation functions.
By Proposition 1, we have e(g, ϕ) = e(g, ϕ̄) = 1, but e(g, w) 6= 1. A hash
function H : {0, 1}∗ → G is used to map an attribute to a binary string which
represents a random group element. A randomly generated polynomial P of
degree c (the maximum number of revoked users) over Zn will be employed
to enforce revocation. Next, this algorithm chooses two random exponents
α, β ∈ Z∗n and outputs the public key

PK = (S, n, g, h, ζ, η, w, ϕ, ϕ̄, λ, µ,H(·)),

where,

h = wβ, ζ = e(g, w)α, η = g
1
β ,

and the master key
MK = (gα, β, n′, P).

• KeyGen(MK,uk,L)→ SKL

Given a user with ID uk
1 and access structure L on a set of attributes S =

{At} ⊆ A, this algorithm chooses a unique τk for each user uk. Assume that

1We assume that each user ID uk ∈ Zl where l = min(s, p′, q′), so that, for every pair (i, j), i 6=
j, ui − uj ∈ Z∗n. As a result, its inverse (ui − uj)

−1, which is needed in the ProxyRekey phase will
exist and the secret can be successfully recovered.

31

the user uk is assigned a temporal attribute At ∈ L with the constraint At[ta, tb]
and non-temporal attribute Bt ∈ L. This algorithm chooses a random r ∈ Z
and sets the user’s attribute key as

(Dt, D
′

ta , D̄
′

tb
, D

′′

t , R
′

ta , R̄
′

tb
, R
′′

t)
At[ta,tb]∈L

and

(DBt, RB
′′

t)Bt∈L

where,

Dt = gτkH(At)
rP̃ (0),

D
′

ta = (vta)
r,

D̄
′

tb
= (v̄tb)

r,

D
′′

t = wr,

R
′

ta = (D
′

ta)
P (uk)

= (vta)
rP (uk),

R̄
′

tb
= (D̄

′

tb
)
P (uk)

= (v̄tb)
rP (uk),

R
′′

t = (D
′′

t)
P (uk)

= wrP (uk),

DBt = gτkH(Bt)
rP̃ (0),

RB
′′

t = (D
′′

t)
P (uk)

= wrP (uk),

and,

vta = ϕλ
ta
, v̄tb = ϕ̄µ

Z−tb ∈ Gn′ ,

P̃ (0) = P (0) + 1.

Finally, this algorithm outputs the user’s private key

SKL = (D = g
(α+τk)

β ,

{(Dt, D
′

ta , D̄
′

tb
, D

′′

t , R
′

ta , R̄
′

tb
, R
′′

t)}
At[ta,tb]∈L

,

{(DBt, RB
′′
t)}Bt∈L).

• Encrypt Phase 1 (PK,P ,M)→ (HP , C ′)
Let T be the access tree for the access policy P . Let s be a secret in ZN for
the access tree T , and x, y are chosen such that x + y = qAt(0), which is the
secret share at leaf node corresponding to attribute At. Please refer to Section
4, [12] for a detailed meaning of qAt(0). Given an access tree T , the ciphertext
is composed of a ciphertext header,

HP = (T , C = hs, {(Ēti , E
′

ti
, Etj , E

′

tj
)}
At[ti,tj]∈P

, {(EBt, EB
′
t)}Bt∈P). (4.3)

and a ciphertext C ′ = Me(g, w)sα, where,

(Ēti , E
′
ti
, Etj , E

′
tj

) = ((v̄tiw)x, H(At)
x, (vtjw)y, H(At)

y)

and (EBt, EB
′
t) = (ωqBt (0), H(Bt)

qBt (0)).

32

• Encrypt Phase 2 (PK,MK,RL)→ RIV
The data owner chooses a polynomial P of degree c, with coefficients in Z∗n.
Let RL be the revocation list and ui, i ∈ {1, 2, · · · , c}, be the identities of the
revoked users. The owner evaluates the polynomial P (ui) at these points, using
the master secret key MK. If there are less than c revoked users, then the owner
generates random points x and evaluates P (x) such that x does not correspond
to any user’s identity. This ensures that the proxy key RIV is of fixed length.

RIV = ∀ui ∈ RL :< ui, P (ui) >

Now the data owner will calculates

λi =
uk

uk − ui

∏
j 6=i

uj
uj − ui

,∀i, j ∈ {1, · · · , c},

k /∈ {1, · · · , c}

For every attribute At[ti, tj] ∈ P , it calculates

R
′′
ti

= (E
′
ti

)

c∑
i=1

λiP (ui)
= H(At)

x
c∑
i=1

λiP (ui)
,

R
′′
tj

= (E
′
tj

)

c∑
i=1

λiP (ui)
= H(At)

y
c∑
i=1

λiP (ui)
,

RB
′′′
t = (EB

′
t)

c∑
i=1

λiP (ui)
= H(Bt)

qBt (0)
c∑
i=1

λiP (ui)
.

Now the new ciphertext will be

H̃P = (T , C = hs,

{(Ēti , E
′

ti
, Etj , E

′

tj
, R
′′

ti
, R
′′

tj
)}
At[ti,tj]∈P

,

{(EBt, EB
′
t, , RB

′′′

t)}Bt∈P).

Since the user’s private key SKL is blinded by P̃ (0), it additionally needs R
′′
ti

,

R
′′
tj

for decryption. The data owner also computes λk and gives it to the user
with ID uk.

• Delegate(SKL,L′)→ S̃KL′

Given the private key SKL and a specified L′, this algorithm checks whether,
for every At[ta, tb] ∈ L and At[ti, tj] ∈ L′, ta ≤ tj and tb ≥ ti is true for each

33

attribute At ∈ L′.
If true, the user computes,

D
′
tj
← fta≤tj(D

′
ta) ·D

′′
t = (vtjw)r

D̄
′
ti
← f̄tb≥ti(D̄

′
tb

) ·D′′t = (v̄tiw)r

R
′
tj
← fta≤tj(R

′
ta) = (vtj)

rP (uk)

R̄
′
ti
← f̄tb≥ti(R̄

′
tb

) = (v̄ti)
rP (uk)

Rtj = e(R
′′

t ·R
′

tj
, E
′

tj
)
λk · e(D′tj , R

′′

tj
)

= e(vtjw,H(At))
yr(λkP (uk)+

t∑
i=1

λiP (ui))

= e(vtjw,H(At))
yrP (0)

R̄ti = e(R
′′

t · R̄
′

ti
, E
′

ti
)
λk · e(D̄′ti , R̄

′′

ti
)

= e(v̄tiw,H(At))
xr(λkP (uk)+

t∑
i=1

λiP (ui))

= e(v̄tiw,H(At))
xrP (0)

RBt = e(RB
′′

t , EB
′

t)
λk · e(DB′t, RB

′′′

t)

= e(w,H(Bt))
qBt (0)rP (0)

Finally, it outputs S̃KL′ as the derivation key for L′.

• Decrypt Phase 1 (S̃KL′ ,HP)→ H̃P

On receiving the private key S̃KL′ , and the ciphertext header HP , this al-
gorithm checks whether each range attribute At[ti, tj] ∈ L′ is consistent with
At[ti, tj] ∈ P . If true, the secret share qAt(0) over GT is reconstructed as follows:-

34

F1 ←−
e(Dt, Etj)

Rtj · e(D
′
tj , E

′
tj)

=
e(gτkH(At)

rP̃ (0), (vtjw)y)

Rtj · e((vtjw)r, H(At)y)

=
e(gτk , (vtjw)y) · e(H(At)

rP̃ (0), (vtjw)y)

Rtj · e((vtjw)r, H(At)y)

=
e(gτk , (vtjw)y) · e(vtjw,H(At))

yrP (0)

Rtj

= e(gτk , vytj) · e(g
τk , wy)

= e(gτk , w)y

Similarly,

F2 ←−
e(Dt, Ēti)

R̄ti · e(D̄
′
ti , E

′
ti)

=
e(gτkH(At)

rP ′(0), (v̄tiw)x)

R̄ti · e((v̄tiw)r, H(At)x)

=
e(gτk , (v̄tiw)x) · e(H(At)

rP ′(0), (v̄tiw)x)

R̄ti · e((v̄tiw)r, H(At)x)

=
e(gτk , (v̄tiw)x) · e(v̄tiw,H(At))

xrP (0)

R̄ti

= e(gτk , v̄xti) · e(g
τk , wx)

= e(gτk , w)x

For Bt ∈ L′ is consistent with Bt ∈ P , then the secret share qBt(0) of s over GT

is reconstructed as,

35

F3 ←−
e(Dt, EBt)

RBt · e(D′′t , EB
′
t)

=
e(gτkH(Bt)

rP ′(0), wqBt (0))

RBt · e(wr, H(Bt)
qBt (0))

=
e(gτk , wqBt (0)) · e(H(Bt)

rP̃ (0), wqBt (0))

RBt · e(wr, H(Bt)
qBt (0))

=
e(gτk , wqBt (0)) · e(w,H(Bt))

qBt (0)rP (0)

RBt

= e(gτk , wqBt (0))

= e(gτk , w)qBt (0)

Ft = F1 · F2 = e(gτk , w)qAt (0)

where, e(gτk , vytj) = e(gτk , v̄xti) = 1 because gτk ∈ Gs′ and vytj , v̄
x
ti
∈ Gn′ . Next, the

value of T = e(gτk , w)s is computed from {e(gτk , w)qAi (0)}Ai∈P and {e(gτk , w)qBi (0)}Bi∈P
by using the recursive DecryptNode algorithm described in Bethencourt et al.
[12]. Finally, the new ciphertext header H̃P = (C, T) is returned.

• Decrypt Phase 2 (SKL, H̃P , C ′)→M

On receiving the new ciphertext header H̃P = (C, T) = (wβs, e(gτk , w)s), Now

it will compute D′ = D · η = g
(α+τk)

β g
1
β = g

(α+τk)

β .

Let ek =
e(C,D′)

T
=
e(g

(α+τk)

β , wβs)

e(gτk , w)s
= e(gα, w)s.

Finally, the plaintext message is computed by
M = C ′/ek.

4.4 Scheme-3:Temporal Access Control Scheme with

added decryption outsourcing

Here in this scheme I have added decryption outsourcing where a part of decryption
process is outsourced to proxy server or any third party. The proxy will partially
decrypt the content but it won’t be able to decrypt the content fully. So decryptor
can rely on untrusted proxy as well for partial encryption. The entities described in
3.5.1 are all involved here.

36

1. Set
up 4. Request Key

2.
Encrypt

3. Store
in cloud

5. Generate
Key 6. Send Key

Proxy
server

10.Decrypt

7.
Request
proxy

8.Get
data

9. Return
partially
decrypted
Content

Figure 4.2: With user revocation and decryption outsourcing

4.4.1 Framework

A brief description of each of these algorithms is as follows:

• Setup(1κ) → (MK,PK): Takes a security parameter κ as input, outputs the
master secret key MK and the public key PK.

• KeyGen(MK,uk,L)→ SKL: Takes the user ID uk, the access privilege L, and
MK as input, outputs the users private key SKL.

• Encrypt(PK,M,P) → (HP , C ′): Takes a comparable access policy P , pub-
lic key PK and message M as input, outputs the ciphertext header HP and
ciphertext C ′.

• ProxyRekey(PK,MK,RL) → PXK: Takes the public key PK, master key
MK, and the revocation list RL as inputs, outputs the proxy key PXK, which
contains the information necessary to enable the proxy server to partially de-
crypt the ciphertext.

• Convert(PXK,HP , uk)→ (λk, {(R
′′
ti
, R
′′
tj

)}At[ti,tj]∈P , RB′′t Bt∈P): Takes the proxy
key PXK, ciphertext header HP , and user ID uk as input, outputs components
needed to unblind the user’s private key SKL.

• Delegate(SKL,L′)→ S̃KL′ : Takes a private key SKL and a specified privilege

requirement L′ as input, outputs a derivation key S̃KL′ , if each attribute in L
and L′ match.

37

• DecryptProxy(S̃KL′ ,HP) → H̃P : Takes a users private key S̃KL′ and the ci-

phertext header HP as input, outputs a new ciphertext header H̃P if L′ satisfies
the range constraints of P .

• DecryptUser(SKL, H̃P , C ′)→M . Takes the users private key SKL, Ciphertext

header H̃P , and the ciphertext C ′ as input, outputs the message M .

4.4.2 Construction

We provide detailed implementations of the algorithms mentioned in Section 5.3.1
and present our novel construction to enforce user revocation.

• Setup(1κ)→ (MK,PK)
This is run by the system manager. Let κ be the security parameter. The setup
algorithm takes κ (which depends on the application) and outputs the master
secret key MK and public key PK. We use bilinear map S = (G,GT , e(·, ·))
of composite order n = s′n′ with two subgroups Gs′ and Gn′ of G. Random
generators w ∈ G, g ∈ Gs′ , and ϕ, ϕ̄ ∈ Gn′ are chosen. Two random numbers
λ, µ ∈ Z∗n are selected, to implement forward and backward derivation functions.
By Proposition 1, we have e(g, ϕ) = e(g, ϕ̄) = 1, but e(g, w) 6= 1. A hash
function H : {0, 1}∗ → G is used to map an attribute to a binary string which
represents a random group element. A randomly generated polynomial P of
degree c (the maximum number of revoked users) over Zn will be employed
to enforce revocation. Next, this algorithm chooses two random exponents
α, β ∈ Z∗n and outputs the public key

PK = (S, n, g, h, ζ, η, w, ϕ, ϕ̄, λ, µ,H(·)),

where,

h = wβ, ζ = e(g, w)α, η = g
1
β ,

and the master key
MK = (gα, β, n′, P).

• KeyGen(MK,uk,L)→ SKL

Given a user with ID uk and access structure L on a set of attributes S =
{At} ⊆ A, this algorithm chooses a unique τk for each user uk. Assume that
the user uk is assigned a temporal attribute At ∈ L with the constraint At[ta, tb]

1We assume that each user ID uk ∈ Zl where l = min(s, p′, q′), so that, for every pair (i, j), i 6=
j, ui − uj ∈ Z∗n. As a result, its inverse (ui − uj)

−1, which is needed in the ProxyRekey phase will
exist and the secret can be successfully recovered.

38

and non-temporal attribute Bt ∈ L. This algorithm chooses a random r ∈ Z
and sets the user’s attribute key as

(Dt, D
′

ta , D̄
′

tb
, D

′′

t , R
′

ta , R̄
′

tb
, R
′′

t)
At[ta,tb]∈L

and

(DBt, DB
′

t, RB
′
t, RB

′′

t)Bt∈L

where,

Dt = gτkH(At)
rP̃ (0),

D
′

ta = (vta)
r,

D̄
′

tb
= (v̄tb)

r,

D
′′

t = wr,

R
′

ta = (D
′

ta)
P (uk)

= (vta)
rP (uk),

R̄
′

tb
= (D̄

′

tb
)
P (uk)

= (v̄tb)
rP (uk),

R
′′

t = (D
′′

t)
P (uk)

= wrP (uk),

DBt = gτkH(Bt)
rP̃ (0),

RB
′′

t = (D
′′

t)
P (uk)

= wrP (uk),

and,

vta = ϕλ
ta
, v̄tb = ϕ̄µ

Z−tb ∈ Gn′ ,

P̃ (0) = P (0) + 1.

Finally, this algorithm outputs the user’s private key

SKL = (D = g
(α+τk)

β ,

{(Dt, D
′

ta , D̄
′

tb
, D

′′

t , R
′

ta , R̄
′

tb
, R
′′

t)}
At[ta,tb]∈L

,

{(DBt, RB
′′
t)}Bt∈L).

• Encrypt(PK,P ,M)→ (HP , C ′)
Let T be the access tree for the access policy P . Data owner will do the
encryption of data.
Let s be a secret in ZN for the access tree T , and x, y are chosen such that
x+ y = qAt(0), which is the secret share at leaf node corresponding to attribute
At. Please refer to Section 4, [12] for a detailed meaning of qAt(0). Given an
access tree T , the ciphertext is composed of a ciphertext header,

HP = (T , C = hs, {(Ēti , E
′

ti
, Etj , E

′

tj
)}
At[ti,tj]∈P

, {(EB′t)}Bt∈P).

(4.4)

39

and a ciphertext C ′ = Me(g, w)sα, where,

(Ēti , E
′
ti
, Etj , E

′
tj

) = ((v̄tiw)x, H(At)
x, (vtjw)y, H(At)

y)

and (EB′t, ,
¯DB′) = (H(Bt)

qBt (0), wqBt (0)).
In case the message size(|M |) is huge we will apply hybrid encryption where
the data owner choose a random symmetric key syk ∈ Z and compute C ′ =
syk ∗ e(g, w)sα and the ciphertext of the message will be C̄ = M syk and C̄ will
be added to HP .

• ProxyRekey(PK,MK,RL)→ PXK
The data owner chooses a polynomial P of degree c, with coefficients in Z∗n.
Let RL be the revocation list and ui, i ∈ {1, 2, · · · , c}, be the identities of the
revoked users. The owner evaluates the polynomial P (ui) at these points, using
the master secret key MK. If there are less than c revoked users, then the owner
generates random points x and evaluates P (x) such that x does not correspond
to any user’s identity. This ensures that the proxy key PXK is of fixed length.

PXK = ∀ui ∈ RL :< ui, P (ui) >

• Convert(PXK,HP , uk)→
(λk, {(R

′′
ti
, R
′′
tj

)}At[ti,tj]∈P , {RB′′t }Bt∈P)
RL will be stored in a hash table of proxy server. Every time revocation happen
the data owner inform proxy and it will update the RL accordingly. Given the
proxy key PXK, ciphertext header HP , and the user ID uk, the proxy calculates

λi =
uk

uk − ui

∏
j 6=i

uj
uj − ui

,∀i, j ∈ {1, · · · , c},

k /∈ {1, · · · , c}

For every attribute At[ti, tj] ∈ P , it calculates

R
′′
ti

= (E
′
ti

)

c∑
i=1

λiP (ui)
= H(At)

x
c∑
i=1

λiP (ui)
,

R
′′
tj

= (E
′
tj

)

c∑
i=1

λiP (ui)
= H(At)

y
c∑
i=1

λiP (ui)
,

RB
′′′
t = (EB

′
t)

c∑
i=1

λiP (ui)
= H(Bt)

qBt (0)
c∑
i=1

λiP (ui)
.

Since the user’s private key SKL is blinded by P̃ (0), it additionally needs R
′′
ti

,

R
′′
tj

for decryption. The proxy also computes λk and gives it to the user with
ID uk.

40

• Delegate(SKL,L′)→ S̃KL′

Given the private key SKL and a specified L′, this algorithm checks whether,
for every At[ta, tb] ∈ L and At[ti, tj] ∈ L′, ta ≤ tj and tb ≥ ti is true for each
attribute At ∈ L′.
If true, the user computes,

D
′
tj
← fta≤tj(D

′
ta) ·D

′′
t = (vtjw)r

D̄
′
ti
← f̄tb≥ti(D̄

′
tb

) ·D′′t = (v̄tiw)r

R
′
tj
← fta≤tj(R

′
ta) = (vtj)

rP (uk)

R̄
′
ti
← f̄tb≥ti(R̄

′
tb

) = (v̄ti)
rP (uk)

Next, this algorithm chooses a random δ ∈ Z and computes

S̃KL′ = {D̃t, D̃
′
tj
, ˜̄D′ ti , Rtj , R̄ti}At∈L′ , {D̃Bt, D̃B

′

t, RBt,}Bt∈L′ , where,

D̃t = Dt · (gH(At))
δ = gτk+δH(At)

rP̃ (0)+δ

D̃
′
tj

= D
′
tj
· (vtjw)δ = (vtjw)r+δ˜̄D′ ti = D̄
′
ti
· (v̄tiw)δ = (v̄tiw)r+δ

D̃Bt = DBt · (gH(At))
δ = gτk+δH(Bt)

rP̃ (0)+δ

D̃B
′

t = D
′
tj
· wδ = wr+δ

Rtj = e(R
′′

t ·R
′

tj
, E
′

tj
)
λk · e(D′tj , R

′′

tj
)

= e(vtjw,H(At))
yr(λkP (uk)+

t∑
i=1

λiP (ui))

= e(vtjw,H(At))
yrP (0)

R̄ti = e(R
′′

t · R̄
′

ti
, E
′

ti
)
λk · e(D̄′ti , R̄

′′

ti
)

= e(v̄tiw,H(At))
xr(λkP (uk)+

t∑
i=1

λiP (ui))

= e(v̄tiw,H(At))
xrP (0)

RBt = e(RB
′′

t , EB
′

t)
λk · e(DB′t, RB

′′′

t)

= e(w,H(Bt))
qBt (0)rP (0)

Finally, it outputs S̃KL′ as the derivation key for L′.

• DecryptProxy(S̃KL′ ,HP , uk)→ H̃P

41

On receiving the private key S̃KL′ , and the ciphertext header HP , this algo-
rithm checks whether the user uk is present in the hash table RL. If not then it
will check each range attribute At[ti, tj] ∈ L′ is consistent with At[ti, tj] ∈ P . If
true, the secret share qAt(0) over GT is reconstructed as follows:-

F1 ←−
e(D̃t, Etj)

Rtj · e(D̃
′
tj , E

′
tj)

=
e(gτk+δH(At)

rP̃ (0)+δ, (vtjw)y)

Rtj · e((vtjw)r+δ, H(At)y)

=
e(gτk+δ, (vtjw)y) · e(H(At)

rP̃ (0)+δ, (vtjw)y)

Rtj · e((vtjw)r+δ, H(At)y)

=
e(gτk+δ, (vtjw)y) · e(vtjw,H(At))

yrP (0)

Rtj

= e(gτk+δ, vytj) · e(g
τk+δ, wy)

= e(gτk+δ, w)
y

Similarly,

F2 ←−
e(D̃t, Ēti)

R̄ti · e(
˜̄D′ ti , E ′ti)

=
e(gτk+δH(At)

rP ′(0)+δ, (v̄tiw)x)

R̄ti · e((v̄tiw)r+δ, H(At)x)

=
e(gτk+δ, (v̄tiw)x) · e(H(At)

rP ′(0)+δ, (v̄tiw)x)

R̄ti · e((v̄tiw)r+δ, H(At)x)

=
e(gτk+δ, (v̄tiw)x) · e(v̄tiw,H(At))

xrP (0)

R̄ti

= e(gτk+δ, v̄xti) · e(g
τk+δ, wx)

= e(gτk+δ, w)
x

For Bt ∈ L′ is consistent with Bt ∈ P , then the secret share qBt(0) of s over GT

is reconstructed as,

42

F3 ←−
e(D̃t, ĒBt)

R̄Bt · e(˜̄DB′ t, EB′t)
=

e(gτk+δH(Bt)
rP ′(0)+δ, (wqBt (0))

RBt · e(wr+δ, H(Bt)
qBt (0))

=
e(gτk+δ, wx) · e(H(Bt)

rP̃ (0)+δ, wqBt (0))

RBt · e(wr+δ, H(Bt)x)

=
e(gτk+δ, wx) · e(w,H(Bt))

qBt (0)rP (0)

R̄Bt

= e(gτk+δ, wqBt (0))

= e(gτk+δ, w)
qBt (0)

Ft = F1 · F2 = e(gτk+δ, w)
qAt (0)

where, e(gτk+δ, vytj) = e(gτk+δ, v̄xti) = 1 because gτk+δ ∈ Gs′ and vytj , v̄
x
ti
∈ Gn′ .

Next, the value of T = e(gτk+δ, w)
s

is computed from {e(gτk+δ, w)
qAi (0)}Ai∈P and

{e(gτk+δ, w)
qBi (0)}Bi∈P by using the recursive DecryptNode algorithm described

in Bethencourt et al. [12]. Finally, the new ciphertext header H̃P = (C, T) is
returned.

• DecryptUser(SKL, H̃P , C ′)→M

On receiving the new ciphertext header H̃P = (C, T) = (wβs, e(gτk+δ, w)
s
), the

secret δ is used to compute D′ = D · ηδ = g
(α+τk)

β g
δ
β = g

(α+τk+δ)

β .

Let ek =
e(C,D′)

T
=
e(g

(α+τk+δ)

β , wβs)

e(gτk+δ, w)s
= e(gα, w)s.

Finally, the plaintext message is computed by
M = C ′/ek.

In case of hybrid encryption the user will first get the symmetric key syk =
C ′/ek and then it will calculate messgage M = C̄syk−1

43

Chapter 5

Our implementations

5.1 Introduction

In this chapter we have presented two novel schemes which are the improvements of
last scheme described above. In the scheme-4 we have added two phase encryption
for encryption cost improvement and in the scheme-5 we have added the feature of
distributed key generation above scheme-4.

5.2 Scheme-4:Temporal Access Control with added

two phase encryption

Here we propose a modified version of temporal access control scheme to protect
and selectively access data in clouds with two phases of encryption called online-
offline encryption which is introduced here for the first time in CPABE with shamir
secret sharing scheme. In this new variant of attribute-based encryption to reduce
computational load during encryption we did some preprocessing of ciphertext before
the access structure and the message is known to us.

5.2.1 Framework

A brief description of each of these algorithms is as follows:

• Setup(1κ) → (MK,PK): Takes a security parameter κ as input, outputs the
master secret key MK and the public key PK.

• KeyGen(MK,uk,L)→ SKL: Takes the user ID uk, the access privilege L, and
MK as input, outputs the users private key SKL.

• OfflineEncrypt(PK,L)→ Cρ: for each attribute (if any) i.e. L =
{Ak(ta, tb)}Ak∈AT

⋃
{Bk}Bk∈AN data owner will generate intermediate ciphertext

Ca and C ′a where a ∈ L

44

Cloud

1.Offline Encrypt

2. Get access
structure

3.Online Encrypt

Data
owner

• OnlineEncrypt(PK,M,P) → (HP , C ′): Takes a comparable access policy P ,
public key PK and message M as input, outputs the ciphertext header HP and
final ciphertext C ′.

• ProxyRekey(PK,MK,RL) → PXK: Takes the public key PK, master key
MK, and the revocation list RL as inputs, outputs the proxy key PXK, which
contains the information necessary to enable the proxy server to partially de-
crypt the ciphertext.

• Convert(PXK,HP , uk)→ (λk, {(R
′′
ti
, R
′′
tj

)}At[ti,tj]∈P , RB′′t Bt∈P): Takes the proxy
key PXK, ciphertext header HP , and user ID uk as input, outputs components
needed to unblind the user’s private key SKL.

• Delegate(SKL,L′)→ S̃KL′ : Takes a private key SKL and a specified privilege

requirement L′ as input, outputs a derivation key S̃KL′ , if each attribute in L
and L′ match.

• DecryptProxy(S̃KL′ ,HP) → H̃P : Takes a users private key S̃KL′ and the ci-

phertext header HP as input, outputs a new ciphertext header H̃P if L′ satisfies
the range constraints of P .

• DecryptUser(SKL, H̃P , C ′)→M . Takes the users private key SKL, Ciphertext

header H̃P , and the ciphertext C ′ as input, outputs the message M .

45

5.2.2 Construction

We provide detailed implementations of the algorithms mentioned in Section 5.3.1
and present our novel construction to enforce user revocation.

• Setup(1κ)→ (MK,PK)
This is run by the system manager. Let κ be the security parameter. The setup
algorithm takes κ (which depends on the application) and outputs the master
secret key MK and public key PK. We use bilinear map S = (G,GT , e(·, ·))
of composite order n = s′n′ with two subgroups Gs′ and Gn′ of G. Random
generators w ∈ G, g ∈ Gs′ , and ϕ, ϕ̄ ∈ Gn′ are chosen. Two random numbers
λ, µ ∈ Z∗n are selected, to implement forward and backward derivation functions.
By Proposition 1, we have e(g, ϕ) = e(g, ϕ̄) = 1, but e(g, w) 6= 1. A hash
function H : {0, 1}∗ → G is used to map an attribute to a binary string which
represents a random group element. A randomly generated polynomial P of
degree c (the maximum number of revoked users) over Zn will be employed
to enforce revocation. Next, this algorithm chooses two random exponents
α, β ∈ Z∗n and outputs the public key

PK = (S, n, g, h, ζ, η, w, ϕ, ϕ̄, λ, µ,H(·)),

where,

h = wβ, ζ = e(g, w)α, η = g
1
β ,

and the master key
MK = (gα, β, n′, P).

• KeyGen(MK,uk,L)→ SKL

Given a user with ID uk
1 and access structure L on a set of attributes S =

{At} ⊆ A, this algorithm chooses a unique τk for each user uk. Assume that
the user uk is assigned a temporal attribute At ∈ L with the constraint At[ta, tb]
and non-temporal attribute Bt ∈ L. This algorithm chooses a random r ∈ Z
and sets the user’s attribute key as

(Dt, D
′

ta , D̄
′

tb
, D

′′

t , R
′

ta , R̄
′

tb
, R
′′

t)
At[ta,tb]∈L

and

(DBt, DB
′

t, RB
′
t, RB

′′

t)Bt∈L

1We assume that each user ID uk ∈ Zl where l = min(s, p′, q′), so that, for every pair (i, j), i 6=
j, ui − uj ∈ Z∗n. As a result, its inverse (ui − uj)

−1, which is needed in the ProxyRekey phase will
exist and the secret can be successfully recovered.

46

where,

Dt = gτkH(At)
rP̃ (0),

D
′

ta = (vta)
r,

D̄
′

tb
= (v̄tb)

r,

D
′′

t = wr,

R
′

ta = (D
′

ta)
P (uk)

= (vta)
rP (uk),

R̄
′

tb
= (D̄

′

tb
)
P (uk)

= (v̄tb)
rP (uk),

R
′′

t = (D
′′

t)
P (uk)

= wrP (uk),

DBt = gτkH(Bt)
rP̃ (0),

RB
′′

t = (D
′′

t)
P (uk)

= wrP (uk),

and,

vta = ϕλ
ta
, v̄tb = ϕ̄µ

Z−tb ∈ Gn′ ,

P̃ (0) = P (0) + 1.

Finally, this algorithm outputs the user’s private key

SKL = (D = g
(α+τk)

β ,

{(Dt, D
′

ta , D̄
′

tb
, D

′′

t , R
′

ta , R̄
′

tb
, R
′′

t)}
At[ta,tb]∈L

,

{(DBt, RB
′′
t)}Bt∈L).

• OfflineEncrypt(PK)→ (Cρ)

For each temporal attribute At ∈ L generate two random number ρAtx ∈ Z
and ρAty ∈ Z then calculate:-

Ēti = (v̄tiw)ρAtx

E
′
ti

= H(At)
ρAtx

Etj = (vtjw)
ρAty

E
′
tj

= H(At)
ρAty

And for each non temporal attribute Bt ∈ L choose random number ρBt ∈ Z
EB′t = wρBt

¯DB′ = H(Bt)
ρBt

So the initial ciphertext generated in Offline will be :-

Cρ = ((Ēti , E
′

ti
, Etj , E

′

tj
)
At[ti,tj]∈P

, {(EB′t, ¯DB′)}Bt∈P). (5.1)

• OnlineEncrypt(PK,P ,M)→ (HP , C ′)

Data owner will do the encryption of data.Let T be the access tree for the
access policy P . The algorithm first chooses a polynomial qx for each node x

47

(including the leaves) in the tree T . These polynomials are chosen in the fol-
lowing way in a topdown manner, starting from the root node R. For each node
x in the tree, set the degree dx of the polynomial qx to be one less than the
threshold value kx of that node, that is, dx = kx−1. Starting with the root node
R the algorithm chooses a random s ∈ Zp and sets qR(0) = s. Then, it chooses
dR other points of the polynomial qR randomly to define it completely. For any
other node x, it sets qx(0) = qparent(x)(index(x)) and chooses dx other points
randomly to completely define qx.Please refer to Section 4, [12] for a detailed
meaning of access structure and threshold.

For every temporal attribute calculate ρAt such that ρAt = qAt(0)−(ρAtx +ρAty),
where qAt(0) is the secret share at leaf node corresponding to attribute At .
And for every non-temporal attribute Bt choose ρ′B such that ρBt +ρ′B = qBt(0)
Given an access tree T , the ciphertext is composed of a ciphertext header,

HP = (T , C = hs, Cρ, {ρAt}At[ti,tj]∈P{ρ
′
B}Bt∈P). (5.2)

and a ciphertext C ′ = Me(g, w)sα,

In case the message size is huge we will apply hybrid encryption where the data
owner choose a random symmetric key syk ∈ Z and compute C ′ = syk∗e(g, w)sα

and the ciphertext of the message will be C̄ = Encsyk(M) where Enc is any
symmetric key encryption according to user’s choice.
Then C̄ will be added to HP .

• ProxyRekey(PK,MK,RL)→ PXK
The data owner chooses a polynomial P of degree c, with coefficients in Z∗n.
Let RL be the revocation list and ui, i ∈ {1, 2, · · · , c}, be the identities of the
revoked users. The owner evaluates the polynomial P (ui) at these points, using
the master secret key MK. If there are less than c revoked users, then the owner
generates random points x and evaluates P (x) such that x does not correspond
to any user’s identity. This ensures that the proxy key PXK is of fixed length.

PXK = ∀ui ∈ RL :< ui, P (ui) >

• Convert(PXK,HP , uk)→
(λk, {(R

′′
ti
, R
′′
tj

)}At[ti,tj]∈P , {RB′′t }Bt∈P)
RL will be stored in a hash table of proxy server. Every time revocation happen
the data owner inform proxy and it will update the RL accordingly. Given the
proxy key PXK, ciphertext header HP , and the user ID uk, the proxy calculates

λi =
uk

uk − ui

∏
j 6=i

uj
uj − ui

,∀i, j ∈ {1, · · · , c},

k /∈ {1, · · · , c}

48

For every attribute At[ti, tj] ∈ P , it calculates

R
′′
ti

= (E
′
ti

)

c∑
i=1

λiP (ui)
= H(At)

ρAtx

c∑
i=1

λiP (ui)
,

R
′′
tj

= (E
′
tj

)

c∑
i=1

λiP (ui)
= H(At)

ρAty

c∑
i=1

λiP (ui)
,

RB
′′′
t = (EB

′
t)

c∑
i=1

λiP (ui)
= H(Bt)

ρBt

c∑
i=1

λiP (ui)
.

Since the user’s private key SKL is blinded by P̃ (0), it additionally needs R
′′
ti

,

R
′′
tj

for decryption. The proxy also computes λk and gives it to the user with
ID uk.

• Delegate(SKL,L′)→ S̃KL′

Given the private key SKL and a specified L′, this algorithm checks whether,
for every At[ta, tb] ∈ L and At[ti, tj] ∈ L′, ta ≤ tj and tb ≥ ti is true for each
attribute At ∈ L′.
If true, the user computes,

D
′
tj
← fta≤tj(D

′
ta) ·D

′′
t = (vtjw)r

D̄
′
ti
← f̄tb≥ti(D̄

′
tb

) ·D′′t = (v̄tiw)r

R
′
tj
← fta≤tj(R

′
ta) = (vtj)

rP (uk)

R̄
′
ti
← f̄tb≥ti(R̄

′
tb

) = (v̄ti)
rP (uk)

Next, this algorithm chooses a random δ ∈ Z and computes

S̃KL′ = Ddel, {D̃t, D̃
′
tj
, ˜̄D′ ti , Rtj , R̄ti}At∈L′ , {D̃Bt, D̃B

′

t, RBt,}Bt∈L′ , where,

D̃t = Dt · (gH(At))
δ = gτk+δH(At)

rP̃ (0)+δ

D̃
′
tj

= D
′
tj
· (vtjw)δ = (vtjw)r+δ˜̄D′ ti = D̄
′
ti
· (v̄tiw)δ = (v̄tiw)r+δ

D̃Bt = DBt · (gH(At))
δ = gτk+δH(Bt)

rP̃ (0)+δ

D̃B
′

t = D
′
tj
· wδ = wr+δ

Ddel = gδ

49

Rtj = e(R
′′

t ·R
′

tj
, E
′

tj
)
λk · e(D′tj , R

′′

tj
)

= e(vtjw,H(At))
ρAty r(λkP (uk)+

t∑
i=1

λiP (ui))

= e(vtjw,H(At))
ρAty rP (0)

R̄ti = e(R
′′

t · R̄
′

ti
, E
′

ti
)
λk · e(D̄′ti , R̄

′′

ti
)

= e(v̄tiw,H(At))
ρAtx r(λkP (uk)+

t∑
i=1

λiP (ui))

= e(v̄tiw,H(At))
ρAtx rP (0)

RBt = e(RB
′′

t , EB
′

t)
λk · e(DB′t, RB

′′′

t)

= e(w,H(Bt))
ρBtP (0)

Finally, it outputs S̃KL′ as the derivation key for L′.

• DecryptProxy(S̃KL′ ,HP , uk)→ H̃P

On receiving the private key S̃KL′ , and the ciphertext header HP , this algo-
rithm checks whether the user uk is present in the hash table RL. If not then it
will check each range attribute At[ti, tj] ∈ L′ is consistent with At[ti, tj] ∈ P . If
true, the secret share qAt(0) over GT is reconstructed as follows:-

F1 ←−
e(D̃t, Etj)

Rtj · e(D̃
′
tj , E

′
tj)

=
e(gτk+δH(At)

rP̃ (0)+δ, (vtjw)
ρAty)

Rtj · e((vtjw)r+δ, H(At)
ρAty)

=
e(gτk+δ, (vtjw)

ρAty) · e(H(At)
rP̃ (0)+δ, (vtjw)

ρAty)

Rtj · e((vtjw)r+δ, H(At)
ρAty)

=
e(gτk+δ, (vtjw)

ρAty) · e(vtjw,H(At))
ρAty rP (0)

Rtj

= e(gτk+δ, v
ρAty
tj) · e(gτk+δ, w

ρAty)

= e(gτk+δ, w)
ρAty

50

Similarly,

F2 ←−
e(D̃t, Ēti)

R̄ti · e(
˜̄D′ ti , E ′ti)

=
e(gτk+δH(At)

rP ′(0)+δ, (v̄tiw)ρAtx)

R̄ti · e((v̄tiw)r+δ, H(At)
ρAtx)

=
e(gτk+δ, (v̄tiw)ρAtx) · e(H(At)

rP ′(0)+δ, (v̄tiw)ρAtx)

R̄ti · e((v̄tiw)r+δ, H(At)
ρAtx)

=
e(gτk+δ, (v̄tiw)ρAtx) · e(v̄tiw,H(At))

ρAtx rP (0)

R̄ti

= e(gτk+δ, v̄
ρAtx
ti) · e(gτk+δ, wρAtx)

= e(gτk+δ, w)
ρAtx

For Bt ∈ L′ is consistent with Bt ∈ P , then the secret share qBt(0) of s over GT

is reconstructed as,

F3 ←−
e(D̃t, ĒBt)

R̄Bt · e(˜̄DB′ t, EB′t)
=

e(gτk+δH(Bt)
rP ′(0)+δ, wρBt)

RBt · e(wr+δ, H(Bt)
ρBt)

=
e(gτk+δ, wρBt) · e(H(Bt)

rP̃ (0)+δ, wρBt)

RBt · e(wr+δ, H(Bt)
ρBt)

=
e(gτk+δ, wρBt) · e(w,H(Bt))

ρBtrP (0)

R̄Bt

= e(gτk+δ, wρBt)

= e(gτk+δ, w)
ρBt

Ft = F1 · F2 = e(gτk+δ, w)
(ρAtx+ρAty)

where, e(gτk+δ, vytj) = e(gτk+δ, v̄xti) = 1 because gτk+δ ∈ Gs′ and vytj , v̄
x
ti
∈ Gn′ .

Next, the value of T = e(gτk+δ, w)
s

is computed from {e(gτk+δ, w)
qAi (0)}Ai∈P and

{e(gτk+δ, w)
qBi (0)}Bi∈P by using the recursive DecryptNode algorithm below:-

51

We now consider the recursive case when x is a non-leaf node. The algorithm
DecryptNode(CT, SK,x) then proceeds as follows:
For all nodes z that are children and all z are leaf node of x, it calls DecryptN-
ode(CT, SK,z) and stores the output(Ft for leaf node with temporal attribute
and F3 for leaf node with non-temporal attribute) as Fz. Let Sx be an arbitrary
kx-sized set of child nodes z such that Fz 6=⊥. If no such set exists then the
node was not satisfied and the function returns ⊥. Otherwise, we first compute
(e(D, h)/ζ) · e(Ddel, w)
= (e(g, wβ)α+τk/β/e(g, w)α) · e(g, w)δ

= e(g, w)τk · e(g, w)δ

= e(g, w)τk+δ

Then it will calculate recursively:-

Fx = e(gτk+δ, w)
∑
z∈Sx ρAt

∏
z∈Sx F

Mi,S′x (0)
z , (where i=index(z) S ′x = index(z) : z ∈ Sx)

Note that in the R.H.S in the first term ρAt is mentioned assuming it is tempo-
ral attribute. But in case of non-temporal it will be ρ′Bt . For simplicity we are
using ρAt for the rest of the equations. So
Fx =

e(gτk+δ, w)
∑
z∈Sx ρAt

∏
z∈Sx e(g

τk+δ, w)
(ρAtx+ρAty)Mi,S′x (0)

= e(gτk+δ, w)
∑
z∈Sx ρAt · e(gτk+δ, w)

∑
z∈Sx (ρAtx+ρAty)Mi,S′x (0)

= e(gτk+δ, w)
∑
z∈Sx (ρAt+ρAtx+ρAty)Mi,S′x (0)

= e(gτk+δ, w)
∑
z∈Sx (qAt (0))Mi,S′x (0)

now qAt(0) = qparent(z)(index(z)) = qx(i)
So the above equation will be:-

Fx = e(gτk+δ, w)
∑
z∈Sx qx(i)Mi,S′x (0)

= e(gτk+δ, w)
qx(0)

(5.3)

(using polynomial interpolation).
Now suppose for all non-leaf node x whose children are also non-leaf node sup-
pose z the value of Fx will be :-∏

z∈Sx Fz
Mi,S′x (0)

=
∏

z∈Sx e(g
τk+δ, w)

qz(0).Mi,S′x (0)

= e(gτk+δ, w)
∑
z∈Sx qparent(z)(index(z)).Mi,S′x (0)

= e(gτk+δ, w)
∑
z∈Sx qx(i).Mi,S′x (0)

= e(gτk+δ, w)
qx(0)

,
And as mentioned before in online-encrypt phase qR(0) = s where R is the root
node so for root node the Fx will be e(gτk+δ, w)

s
,

. Finally, the new ciphertext header H̃P = (C, T) is returned.

• DecryptUser(SKL, H̃P , C ′)→M

52

On receiving the new ciphertext header H̃P = (C, T) = (wβs, e(gτk+δ, w)
s
), the

secret δ is used to compute D′ = D · ηδ = g
(α+τk)

β g
δ
β = g

(α+τk+δ)

β .

Let ek =
e(C,D′)

T
=
e(g

(α+τk+δ)

β , wβs)

e(gτk+δ, w)s
= e(gα, w)s.

Finally, the plaintext message is computed by
M = C ′/ek.

In case of hybrid encryption the user will first get the symmetric key syk =
C ′/ek and then we will calculate messgage M = Decsyk(C̄)

5.2.3 drawback of this scheme

One major limitation to the this scheme is that the user must go to a trusted party
and prove his identity in order to obtain a secret key which will allow him to decrypt
messages. In this case, each user must go to the trusted server, prove that he has
a certain set of attributes, and then receive secret keys corresponding to each of
those attributes. However, this means we must have one trusted server who monitors
all attributes who keeps records of drivers licenses, voter registration, and college
enrollment. In reality, we have 3 different entities responsible for maintaining this
information (the RI DMV, the RI Board of Elections, and the University office),
so we would want to be able to entrust each of these to a different (and perhaps
not entirely trusted) server. Also it will reduce the overall time complexity of key
generation as parallaly key will be generated for different attribute subset by each of
the keyGen authority. Sahai and waters first propose the scheme of multi-authority
attribute based encryption in [20] to deal with this problem. In our next scheme we
fit the idea of [20] in our online-offline temporal access scheme.

5.3 Scheme-5: Distributed Access Control Scheme

We propose a new variant of previous temporal access control scheme where key
generation can be done in distributed manner by different key generation authorities.
Here each authority will generate key for a specific subset of attributes and then a
central authority will consolidate all the subset’s keys and make a central key. So
basically in this scheme the key generation will be done in a distributed fashion
making the scheme more scalable, time efficient and secure.

5.3.1 Framework

A brief description of each of these algorithms is as follows:

53

1. Set
up

4. Request Key

2.
Encrypt 3. Store

in cloud

Key gen
Authority 1

Key gen
Authority
2

Key gen
Authority 3

6. Generate
Central Key

5. Gather Sub-
keys

7. Send Key

Proxy
server

11.Decrypt

8.
Request
proxy

9.Get
data

10. Return
partially
decrypted
Content

Figure 5.1: Temporal access control with Multi-Authority key generation

• Setup(1κ) → (MK,PK): Takes a security parameter κ as input, outputs the
master secret key MK and the public key PK.

• KeyGenm(MK,uk,Lm)→ SKLm
Key generation authority m take the master secret key user id and the subset of
attributes for which it need to generate the key. Then it will generate the key
for the set of attributes which are the intersection of Lm and user uk’s attribute.

• KeygenCentral(PK, τk0)→ SKL)
Central authority will first get all the τkm = Fsm(uk) and then calculate secret
key gτk and add gτk to the central secret key for user k which is SKL.

• OfflineEncrypt(PK,L) → (Cρ): Here data owner will take the public key and
the set of attributes by which message will be encrypted. Then it will generate
intermediate ciphertext from that and wait till it get the access structure and
plaintext.

• OnlineEncrypt(PK,M,P)→ (HP , C ′): Once the access structure and plaintext
is become available, a comparable access policy P , public key PK and message
M as input, outputs the ciphertext header HP and final ciphertext C ′.

• ProxyRekey(PK,MK,RL) → PXK: Takes the public key PK, master key
MK, and the revocation list RL as inputs, outputs the proxy key PXK, which
contains the information necessary to enable the proxy server to partially de-
crypt the ciphertext.

54

• Convert(PXK,HP , uk)→ (λk, {(R
′′
ti
, R
′′
tj

)}At[ti,tj]∈P , RB′′t Bt∈P): Takes the proxy
key PXK, ciphertext header HP , and user ID uk as input, outputs components
needed to unblind the user’s private key SKL.

• Delegate(SKL,L′)→ S̃KL′ : Takes a private key SKL and a specified privilege

requirement L′ as input, outputs a derivation key S̃KL′ , if each attribute in L
and L′ match.

• DecryptProxy(S̃KL′ ,HP) → H̃P : Takes a users private key S̃KL′ and the ci-

phertext header HP as input, outputs a new ciphertext header H̃P if L′ satisfies
the range constraints of P .

• DecryptUser(SKL, H̃P , C ′)→M . Takes the users private key SKL, Ciphertext

header H̃P , and the ciphertext C ′ as input, outputs the message M .

5.3.2 Construction

We provide detailed implementations of the algorithms mentioned in Section 5.3.1
and present our novel construction to enforce user revocation.

• Setup(1κ)→ (MK,PK)
This is run by the system manager. Let κ be the security parameter. The setup
algorithm takes κ (which depends on the application) and outputs the master
secret key MK and public key PK. We use bilinear map S = (G,GT , e(·, ·))
of composite order n = s′n′ with two subgroups Gs′ and Gn′ of G. Random
generators w ∈ G, g ∈ Gs′ , and ϕ, ϕ̄ ∈ Gn′ are chosen. Two random numbers
λ, µ ∈ Z∗n are selected, to implement forward and backward derivation functions.
By Proposition 1, we have e(g, ϕ) = e(g, ϕ̄) = 1, but e(g, w) 6= 1. A hash
function H : {0, 1}∗ → G is used to map an attribute to a binary string which
represents a random group element. A randomly generated polynomial P of
degree c (the maximum number of revoked users) over Zn will be employed
to enforce revocation. Next, this algorithm chooses two random exponents
α, β ∈ Z∗n and outputs the public key

PK = (S, n, g, h, ζ, η, w, ϕ, ϕ̄, λ, µ,H(·)),

where,

h = wβ, ζ = e(g, w)α, η = g
1
β ,

and the master key
MK = (gα, β, n′, P).

Define a psudo-random function F : Z∗n ∗ Z∗n → Z∗n∗ Also Choose seeds s1, · · · ,
sM for for all the M authorities.Also choose τ0 ∈ Z∗n as the master key for central
authority which will be used to combined all the authority’s decrypted content.

55

• KeyGenm(MK,uk,Lm)→ SKLm
Authority m will execute this function for the attribute set Lm. Note that
user uk’s whole attribute set is divided into some disjoint sets Lm for all the M
authorities. Given a global user with ID uk and access structure Lm ⊆ L on a set
of attributes S = {At} ⊆ A, this algorithm generate a unique τkm = Fsm(uk)
for user uk. For simplicity we are denoting τkm simply as τk till the end of
DecryptProxy phase.
Assume that the user uk is assigned a temporal attribute At ∈ L with the
constraint At[ta, tb] and non-temporal attribute Bt ∈ L. This algorithm chooses
a random r ∈ Z and sets the user’s attribute key as

(Dt, D
′

ta , D̄
′

tb
, D

′′

t , R
′

ta , R̄
′

tb
, R
′′

t)
At[ta,tb]∈L

and

(DBt, DB
′

t, RB
′
t, RB

′′

t)Bt∈L
where,

Dt = gτkH(At)
rP̃ (0),

D
′

ta = (vta)
r,

D̄
′

tb
= (v̄tb)

r,

D
′′

t = wr,

R
′

ta = (D
′

ta)
P (uk)

= (vta)
rP (uk),

R̄
′

tb
= (D̄

′

tb
)
P (uk)

= (v̄tb)
rP (uk),

R
′′

t = (D
′′

t)
P (uk)

= wrP (uk),

DBt = gτkH(Bt)
rP̃ (0),

RB
′′

t = (D
′′

t)
P (uk)

= wrP (uk),

and,

vta = ϕλ
ta
, v̄tb = ϕ̄µ

Z−tb ∈ Gn′ ,

P̃ (0) = P (0) + 1.

Finally, this algorithm outputs the user’s private key

SKLm = (D = g
(α+τk0

)

β ,

{(Dt, D
′

ta , D̄
′

tb
, D

′′

t , R
′

ta , R̄
′

tb
, R
′′

t)}
At[ta,tb]∈L

,

{(DBt, RB
′′
t)}Bt∈L).

• KeygenCentral(PK, τk0)→ (SKL))
Central authority will first get all the τkm = Fsm(uk) and then calculate secret

key gτk = gτk0−
∑M
m=1 τkm and add gτk to the central secret key for user k. So the

central secret key will be :-

SKL = (
M⋃
m=1

SKLm , gτk) (5.4)

56

• OfflineEncrypt(PK)→ (Cρ)

For each temporal attribute At ∈ L generate two random number ρAtx ∈ Z
and ρAty ∈ Z then calculate:-

Ēti = (v̄tiw)ρAtx

E
′
ti

= H(At)
ρAtx

Etj = (vtjw)
ρAty

E
′
tj

= H(At)
ρAty

And for each non temporal attribute Bt ∈ L choose random number ρBt ∈ Z
EB′t = wρBt

¯DB′ = H(Bt)
ρBt

So the initial ciphertext generated in Offline will be :-

Cρ = ((Ēti , E
′

ti
, Etj , E

′

tj
)
At[ti,tj]∈P

, {(EB′t, ¯DB′)}Bt∈P). (5.5)

• OnlineEncrypt(PK,PmMm=1,M)→ (HP , C ′)

Data owner will do the encryption of data.Let Tm be the access tree for the
access policy Pm. The algorithm first chooses a polynomial qx for each node
x (including the leaves) in the tree T . These polynomials are chosen in the
following way in a topdown manner, starting from the root node R. For each
node x in the tree, set the degree dx of the polynomial qx to be one less than
the threshold value kx of that node, that is, dx = kx − 1.
The algorithm first chooses a random s ∈ Zp Starting with the root node R of
each access tree Tm and sets qR(0) = s. Then, it chooses dR other points of the
polynomial qR randomly to define it completely. For any other node x, it sets
qx(0) = qparent(x)(index(x)) and chooses dx other points randomly to completely
define qx.Please refer to Section 4, [12] for a detailed meaning of access structure
and threshold.

For every temporal attribute calculate ρAt such that ρAt = qAt(0)−(ρAtx +ρAty),
where qAt(0) is the secret share at leaf node corresponding to attribute At .
And for every non-temporal attribute Bt choose ρ′B such that ρBt +ρ′B = qBt(0)
Given an access tree T , the ciphertext is composed of a ciphertext header,

HP = (T , ECA = ws, C = hs, Cρ, {ρAt}At[ti,tj]∈P{ρ
′
B}Bt∈P). (5.6)

and a ciphertext C ′ = Me(g, w)sα.

In case the message size is huge we will apply hybrid encryption where the data
owner choose a random symmetric key syk ∈ Z and compute C ′ = syk∗e(g, w)sα

57

and the ciphertext of the message will be C̄ = Encsyk(M) where Enc is any
symmetric key encryption according to user’s choice.
Then C̄ will be added to HP .

• ProxyRekey(PK,MK,RL)→ PXK
The data owner chooses a polynomial P of degree c, with coefficients in Z∗n.
Let RL be the revocation list and ui, i ∈ {1, 2, · · · , c}, be the identities of the
revoked users. The owner evaluates the polynomial P (ui) at these points, using
the master secret key MK. If there are less than c revoked users, then the owner
generates random points x and evaluates P (x) such that x does not correspond
to any user’s identity. This ensures that the proxy key PXK is of fixed length.

PXK = ∀ui ∈ RL :< ui, P (ui) >

• Convert(PXK,HP , uk)→
(λk, {(R

′′
ti
, R
′′
tj

)}At[ti,tj]∈P , {RB′′t }Bt∈P)
RL will be stored in a hash table of proxy server. Every time revocation happen
the data owner inform proxy and it will update the RL accordingly. Given the
proxy key PXK, ciphertext header HP , and the user ID uk, the proxy calculates

λi =
uk

uk − ui

∏
j 6=i

uj
uj − ui

,∀i, j ∈ {1, · · · , c},

k /∈ {1, · · · , c}

For every attribute At[ti, tj] ∈ P , it calculates

R
′′
ti

= (E
′
ti

)

c∑
i=1

λiP (ui)
= H(At)

ρAtx

c∑
i=1

λiP (ui)
,

R
′′
tj

= (E
′
tj

)

c∑
i=1

λiP (ui)
= H(At)

ρAty

c∑
i=1

λiP (ui)
,

RB
′′′
t = (EB

′
t)

c∑
i=1

λiP (ui)
= H(Bt)

ρBt

c∑
i=1

λiP (ui)
.

Since the user’s private key SKL is blinded by P̃ (0), it additionally needs R
′′
ti

,

R
′′
tj

for decryption. The proxy also computes λk and gives it to the user with
ID uk.

• Delegate(SKL,L′)→ S̃KL′

Given the private key SKL and a specified L′, this algorithm checks whether,
for every At[ta, tb] ∈ L and At[ti, tj] ∈ L′, ta ≤ tj and tb ≥ ti is true for each

58

attribute At ∈ L′.
If true, the user computes,

D
′
tj
← fta≤tj(D

′
ta) ·D

′′
t = (vtjw)r

D̄
′
ti
← f̄tb≥ti(D̄

′
tb

) ·D′′t = (v̄tiw)r

R
′
tj
← fta≤tj(R

′
ta) = (vtj)

rP (uk)

R̄
′
ti
← f̄tb≥ti(R̄

′
tb

) = (v̄ti)
rP (uk)

Next, this algorithm chooses a random δ ∈ Z and computes

S̃KL′ = {D̃t, D̃
′
tj
, ˜̄D′ ti , Rtj , R̄ti}At∈L′ , {D̃Bt, D̃B

′

t, RBt,}Bt∈L′ , where,

D̃t = Dt · (gH(At))
δ = gτk+δH(At)

rP̃ (0)+δ

D̃
′
tj

= D
′
tj
· (vtjw)δ = (vtjw)r+δ˜̄D′ ti = D̄
′
ti
· (v̄tiw)δ = (v̄tiw)r+δ

D̃Bt = DBt · (gH(At))
δ = gτk+δH(Bt)

rP̃ (0)+δ

D̃B
′

t = D
′
tj
· wδ = wr+δ

Rtj = e(R
′′

t ·R
′

tj
, E
′

tj
)
λk · e(D′tj , R

′′

tj
)

= e(vtjw,H(At))
ρAty r(λkP (uk)+

t∑
i=1

λiP (ui))

= e(vtjw,H(At))
ρAty rP (0)

R̄ti = e(R
′′

t · R̄
′

ti
, E
′

ti
)
λk · e(D̄′ti , R̄

′′

ti
)

= e(v̄tiw,H(At))
ρAtx r(λkP (uk)+

t∑
i=1

λiP (ui))

= e(v̄tiw,H(At))
ρAtx rP (0)

RBt = e(RB
′′

t , EB
′

t)
λk · e(DB′t, RB

′′′

t)

= e(w,H(Bt))
ρBtP (0)

Finally, it outputs S̃KL′ as the derivation key for L′.

• DecryptProxy(S̃KL′ ,HP , uk)→ H̃P

On receiving the private key S̃KL′ , and the ciphertext header HP , this algo-
rithm checks whether the user uk is present in the hash table RL. If not then it
will check each range attribute At[ti, tj] ∈ L′ is consistent with At[ti, tj] ∈ P . If

59

true, the secret share qAt(0) over GT is reconstructed as follows:-

F1 ←−
e(D̃t, Etj)

Rtj · e(D̃
′
tj , E

′
tj)

=
e(gτk+δH(At)

rP̃ (0)+δ, (vtjw)
ρAty)

Rtj · e((vtjw)r+δ, H(At)
ρAty)

=
e(gτk+δ, (vtjw)

ρAty) · e(H(At)
rP̃ (0)+δ, (vtjw)

ρAty)

Rtj · e((vtjw)r+δ, H(At)
ρAty)

=
e(gτk+δ, (vtjw)

ρAty) · e(vtjw,H(At))
ρAty rP (0)

Rtj

= e(gτk+δ, v
ρAty
tj) · e(gτk+δ, w

ρAty)

= e(gτk+δ, w)
ρAty

Similarly,

F2 ←−
e(D̃t, Ēti)

R̄ti · e(
˜̄D′ ti , E ′ti)

=
e(gτk+δH(At)

rP ′(0)+δ, (v̄tiw)ρAtx)

R̄ti · e((v̄tiw)r+δ, H(At)
ρAtx)

=
e(gτk+δ, (v̄tiw)ρAtx) · e(H(At)

rP ′(0)+δ, (v̄tiw)ρAtx)

R̄ti · e((v̄tiw)r+δ, H(At)
ρAtx)

=
e(gτk+δ, (v̄tiw)ρAtx) · e(v̄tiw,H(At))

ρAtx rP (0)

R̄ti

= e(gτk+δ, v̄
ρAtx
ti) · e(gτk+δ, wρAtx)

= e(gτk+δ, w)
ρAtx

For Bt ∈ L′ is consistent with Bt ∈ P , then the secret share qBt(0) of s over GT

is reconstructed as,

60

F3 ←−
e(D̃t, ĒBt)

R̄Bt · e(˜̄DB′ t, EB′t)
=

e(gτk+δH(Bt)
rP ′(0)+δ, wρBt)

RBt · e(wr+δ, H(Bt)
ρBt)

=
e(gτk+δ, wρBt) · e(H(Bt)

rP̃ (0)+δ, wρBt)

RBt · e(wr+δ, H(Bt)
ρBt)

=
e(gτk+δ, wρBt) · e(w,H(Bt))

ρBtrP (0)

R̄Bt

= e(gτk+δ, wρBt)

= e(gτk+δ, w)
ρBt

Ft = F1 · F2 = e(gτk+δ, w)
(ρAtx+ρAty)

where, e(gτk+δ, vytj) = e(gτk+δ, v̄xti) = 1 because gτk+δ ∈ Gs′ and vytj , v̄
x
ti
∈ Gn′ .

Next, the value of Tm = e(gτk+δ, w)
s

is computed from {e(gτk+δ, w)
qAi (0)}Ai∈P

and {e(gτk+δ, w)
qBi (0)}Bi∈P by using the recursive DecryptNode algorithm below:-

We now consider the recursive case when x is a non-leaf node. The algorithm
DecryptNode(CT, SK,x) then proceeds as follows:
For all nodes z that are children and all z are leaf node of x, it calls DecryptN-
ode(CT, SK,z) and stores the output(Ft for leaf node with temporal attribute
and F3 for leaf node with non-temporal attribute) as Fz. Let Sx be an arbitrary
kx-sized set of child nodes z such that Fz 6=⊥. If no such set exists then the
node was not satisfied and the function returns ⊥. Otherwise, we first compute
(e(D, h)/ζ) ∗ e(e, w)δ

= (e(g, wβ)α+τk/β/e(g, w)α) ∗ e(e, w)δ

= e(g, w)τk ∗ e(e, w)δ

= e(g, w)τk+δ

Then it will calculate recursively:-

Fx = e(gτk+δ, w)
∑
z∈Sx ρAt

∏
z∈Sx F

Mi,S′x (0)
z , (where i=index(z) S ′x = index(z) : z ∈ Sx)

Note that in the R.H.S in the first term ρAt is mentioned assuming it is tempo-
ral attribute. But in case of non-temporal it will be ρ′Bt . For simplicity we are
using ρAt for the rest of the equations. So
Fx =

e(gτk+δ, w)
∑
z∈Sx ρAt

∏
z∈Sx e(g

τk+δ, w)
(ρAtx+ρAty)Mi,S′x (0)

61

= e(gτk+δ, w)
∑
z∈Sx ρAt .e(gτk+δ, w)

∑
z∈Sx (ρAtx+ρAty)Mi,S′x (0)

= e(gτk+δ, w)
∑
z∈Sx (ρAt+ρAtx+ρAty)Mi,S′x (0)

= e(gτk+δ, w)
∑
z∈Sx (qAt (0))Mi,S′x (0)

now qAt(0) = qparent(z)(index(z)) = qx(i)

So the above equation will be:-

Fx = e(gτk+δ, w)
∑
z∈Sx qx(i)Mi,S′x (0)

,

Fx = e(gτk+δ, w)
qx(0)

,

(using polynomial interpolation).
Now suppose for all non-leaf node x whose children are also non-leaf node sup-
pose z the value of Fx will be :-∏

z∈Sx Fz
Mi,S′x (0)

=
∏

z∈Sx e(g
τk+δ, w)

qz(0).Mi,S′x (0)

= e(gτk+δ, w)
∑
z∈Sx qparent(z)(index(z)).Mi,S′x (0)

= e(gτk+δ, w)
∑
z∈Sx qx(i).Mi,S′x (0)

= e(gτk+δ, w)
qx(0)

,

And as mentioned before in online-encrypt phase qR(0) = s where R is the
root node so for root node the Fx will be e(gτk+δ, w)

s
,

Now for M different authority as mentioned earlier τk will be different. For
authority m τk is τkm
Now calculate

T = e(ECA, gτk)
M∏
m=1

Tm (5.7)

= e(ECA, gτk)
M∏
m=1

e(gδ+τkm , w)s (5.8)

= e(ws, gτk0−
∑M
m=1 τkm)e(ws, g)

∑M
m=1 (δ+τkm) (5.9)

= e(ws, g)τk0−
∑M
m=1 τkm+

∑M
m=1 τkm+M∗δ (5.10)

= e(ws, g)τk0+M∗δ (5.11)

(5.12)

. Finally, the new ciphertext header H̃P = (C, T) is returned.

62

• DecryptUser(SKL, H̃P , C ′)→M

On receiving the new ciphertext header H̃P = (C, T) = (wβs, e(gτk0+Mδ, w)
s
),

the secret δ is used to compute D′ = D · ηMδ = g
(α+τk0

)

β g
Mδ
β = g

(α+τk0
+Mδ)

β .

Let ek =
e(C,D′)

T
=
e(g

(α+τk0
+Mδ)

β , wβs)

e(gτk0+Mδ, w)
s = e(gα, w)s.

Finally, the plaintext message is computed by
M = C ′/ek.

In case of hybrid encryption the user will first get the symmetric key syk =
C ′/ek and then we will calculate messgage M = Decsyk(C̄)

63

Chapter 6

Complexity Analysis

In this chapter, we analyze the performance of our proposed scheme. First, we de-
scribe the notations used in our complexity analysis. We go on to consider each
algorithm and analyze both its computational as well as communication complex-
ity. We show that the complexity of our scheme is consistent with comparison-based
encryption and is thereby efficient.

6.1 Notations

We use a number of notations to denote the time taken for various operations in order
to concisely represent the complexity of our scheme. Those are present in table 6.1:

6.2 Complexity comparision in form of table

We have used abbriviated terms for each of the five scheme in the diagrams and table.
They are the following:-

• KPABE : The scheme of Key Policy Attribute Based Encryption ([2])

• CPABE : The scheme of Cipher Policy Attribute Based Encryption ([1])

• CBABE : The scheme of comparision Based access control ([6])

• TAABE : The scheme of Temporal Access Control ([24])

• OOABE : Our scheme Scheme-4: Temporal Access Control with added two
phase encryption

• MAABE : Our scheme Scheme-5: distributed Access Control Scheme (added
Multi-Authority key generation)

64

Table 6.1: Notations

Symbol Description
(ET/E1) time taken for exponentiation in the group GT/G1

(MT/M1) time taken for exponentiation in GT/G1

DT time taken Division in GT
SZp time taken for sum in Zp
MZp time taken for multiplication in Zp
SA number of leaf nodes in the access tree
SAt number of temporal attributes among the leaf nodes in the access tree
SAn number of nontemporal attributes among the leaf nodes in the access tree
SD set of all attributes by which decryptor is going to decrypt
SDt set of temporal attributes by which decryptor is going to decrypt
SDn set of non-temporal attributes by which decryptor is going to decrypt
P Time required for pairing operation
H Time required for hash using H
Penc complexity of internal node required for encryption
|m| size of the message

|GT |/|G1|/|Zp| Size of the group GT/G1/Zp
|τ | size of the access structure
|γ| size of the attribute set
au Number of authorities in case of Multi-authority attribute based encryption

65

Table 6.2: Comparing computational complexity of key generation with other scheme
Scheme Key generation cost

CPABE [12] SAt(2E1 + M1 +H) + 2E1 + Sz1 + Dz1

CBABE [6] 3E1 + Sz1 + Dz1 + SAt(3E1 + M1 +H + 2Mz1)
TAABE [24] 3E1 + Mt + SAt(6E1 + M1 +H) + SAn(2E1 + M1 +H)

OOABE Same as temporal access control
MAABE (OOABE)/au+ Sz1(au+ 1) + E1

Table 6.3: Comparing computational complexity of encryption with other scheme
Scheme Offline Computational Complexity of encryption Online Computational Complexity of encryption

KPABE [2] SAE1 + ET + MT

CPABE [12] ET + MT + E1 + SA(2E1 +H) + Penc+ SA
CBABE [6] E1 + SAt(4E1 +H + 2M1) + Penc+ SA + SAtSz
TAABE [24] ET + MT + SAt(4E1 +H + 2M1 + Sz) + Penc+ SAn(H + 2E1)

OOABE SAt(2R + 4E1 +H + 2M1 + Sz) + SAn(H + 2E1) Penc + SzSA + E1 + MT + ET
MAABE complexity of OOABE complexity of OOABE +ET

Table 6.4: Comparing decryption complexity with other scheme
Scheme Delegete DecryptProxy DecryptUser

KPABE [2] PSD + ETPenc + DT

CPABE [12] PSD + ETPenc + 2DT + P
CBABE [6] ETPenc + 2PSD DT + P + E1 + M1

TAABE [24]
SDt(7E1 + 10M1 +H + 4P + 2ET)+

SDn(2M1 + E1 +H + ET + 2P) + E1 + M1

SDt(3MT + 4P + 2DT)+
SDn(MT + DT + 2P) + Penc 2DT + P + E1 + M1

OOABE Time comlexity of Temporal access scheme
Time comlexity of Temporal access scheme +

2P + DT + MT + SZSDt +O(SDT)MT Time comlexity of Temporal access scheme

MAABE Time comlexity of Temporal access scheme
Time comlexity of OOABE +

P + MT (au+ 1) Time comlexity of OOABE +Mz1

Table 6.5: Comparing Ciphertext size or communication cost with other scheme
Scheme Ciphertext size

KPABE [2] |GT |+ |G1|SA + |γ|
CPABE [12] |GT |+ |2G1|SA + |τ |
CBABE [6] |GT |+ |G1|+ 4|G1|SA + |τ |
TAABE[24] |GT |+ |G1|+ 4|G1|SAt + 2|G1|SAn + |τ |

OOABE size of temporal access scheme ciphertext +2|Zp|SA
MAABE size of OOABE ciphertext +|G1|

6.3 Comparing Complexity comparision in the form

of graph

We did complexity analysis on computer with Intel Core i3-5010U CPU @ 2.10GHz*4
with 4 GB of RAM and Ubuntu 14.04 using JPBC library We used two type of bilinear
map. 1st one is type-A(prime order with q = 512 and r = 160 bits) for CPABE
and KPABE and other is type-A1 (composite order pairing with 2 prime and size
of each prime is 512 bits) for comparison based encryption, Temporal access based
encryption, Online-offline temporal access encryption and Multi-Authority temporal
access encryption.

66

The assumption here are:-

• as there is no non-temporal attribute in comparision based ABE so we are as-
suming that there is no non-temporal attribute in temporal access control ABE,
online-offline ABE and multi-authority ABE as well for better understanding.

• In case of multi-authority ABE the number of authority we are assuming is 3.

• The set of access trees by which we have done the experiment is put on https://

github.com/ayanDas-isi/TemporalAccess/blob/master/StructureVsTimeTaken.

txt

• Also the code for generating these graphs from the attribute set is put on https:

//github.com/ayanDas-isi/TemporalAccess/blob/master/cpabeTimeTest.

zip . Anyone interested can have a look at this link.

67

https://github.com/ayanDas-isi/TemporalAccess/blob/master/StructureVsTimeTaken.txt
https://github.com/ayanDas-isi/TemporalAccess/blob/master/StructureVsTimeTaken.txt
https://github.com/ayanDas-isi/TemporalAccess/blob/master/StructureVsTimeTaken.txt
https://github.com/ayanDas-isi/TemporalAccess/blob/master/cpabeTimeTest.zip
https://github.com/ayanDas-isi/TemporalAccess/blob/master/cpabeTimeTest.zip
https://github.com/ayanDas-isi/TemporalAccess/blob/master/cpabeTimeTest.zip

68

69

Chapter 7

Security proof

7.1 Security for collusion privilage attack

We depend on the confidentiality of r to guarantee the security of scheme against
collusion privilege attacks. For sake of clarity, we only consider the collusion attacks
by two adversaries to analyze all possible cases. For example, two users, ua and ub ,
intend to transfer the uas a range attribute

Dt = gτaH(At)
rP̃ (0),

D
′

ta1
= (vta1)r,

D̄
′

tb1
= (v̄tb1

)r,

D
′′

t = wr,

R
′

ta1
= (D

′

ta1
)
P (ua)

= (vta1)rP (ua),

R̄
′

tb1
= (D̄

′

tb1
)
P (ua)

= (v̄tb1
)rP (ua),

R
′′

t = (D
′′

t)
P (ua)

= wrP (ua),

to ub’s range attribute

Dt = gτbH(At)
rP̃ (0),

D
′

ta2
= (vta2)r,

D̄
′

tb2
= (v̄tb2

)r,

D
′′

t = wr,

R
′

ta2
= (D

′

ta2
)
P (ub)

= (vta2)rP (ub),

R̄
′

tb2
= (D̄

′

tb2
)
P (ub)

= (v̄tb2
)rP (ub),

R
′′

t = (D
′′

t)
P (ub)

= wrP (ub),

70

7.1.1 Case 1.1

One possibility is to extract gτa and H(At)
rP̃ (0) from Dt . And to form a private key

like :-

Dt = gτbH(At)
rP̃ (0),

D
′

ta1
= (vta1)r,

D̄
′

tb1
= (v̄tb1

)r,

D
′′

t = wr,

R
′

ta1
= (D

′

ta1
)
P (ua)

= (vta1)rP (ua),

R̄
′

tb1
= (D̄

′

tb1
)
P (ua)

= (v̄tb1
)rP (ua),

R
′′

t = (D
′′

t)
P (ua)

= wrP (ua),

We call it CPA-1(chosen plaintext attack). For CPA-1 we will prove the following
theorem :-

Theorem 1 Given a TA(temporal access) cryptosystem over the RSA type elliptic
curve system SN , It is impossible to extract the values gτa or H(At)

rP̄ (0) from the
user’s key SKL if computational Co-Diffie-Hellman assumption holds.
This theorem shows that the colluders cannot forge a new key by exchanging gτa and
H(At)

rP̄ (0) from some known private keys.Hence our scheme can resist the CPA-1
type attack.

Proof of the theorem is given at the end.

7.1.2 Case 1.2

For CPA-II attacks, the attackers try to replace all the ta1 , tb1 by ta2 , tb2 , where
ta2 < ta1 < tb1 < tb2 . However, the confidentiality of r and r’ can guarantee the
security of scheme against this attack in terms of the following theorem (see the proof
in Appendix B)

Theorem 2 Given a multi-tuple (N,ϕ, λ, ti, (ϕ
r)λ

ti) over the RSA-type elliptic curve

system SN , where r ∈ Rz. It is intractable to compute (tj, (ϕ
r)λ

tj
) with tj < ti for

all PPT algorithms under the RSA assumption.

Proof of the theorem is given at the end.

71

7.2 Security for KS-CDA attack

Security for KS-CDA Attacks In addition to collusion attack, chosen derivation-key
attack (CDA) is a more easy-to-implement approach to break our TA scheme, in
which the adversary only needs to eavesdrop the channel via the proxy server. In this
way, the adversary gain some knowledge from the stolen derivation keys, and attempt
to forge a new private-key with the help of a known private-key which it get from the
proxy server. Our scheme can prevent the CDA attack from two aspects:
1) the derivation key is formed from the users unique identity τk, so that other users
cannot use this key according to Theorem 1, and 2)More randomization is added by
adding a new random variant σ into the derivation key to wrap the original private
key under the Diffie-Hellmen assumption. Hence, we prove that our scheme is KS-
CHA secure under the Bilinear co-CDH assumption as follows:

Theorem 3 Given a RSA-type elliptic curve system SN = (N = pq,G,GT, e(·, ·))
with order n = sn′ , CBE cryptosystem over SN is key secure against chosen derivation-
key attacks (KS-CDA) under the Bilinear co-CDH assumption on G even if the secret
s and n’ is known.

Proof of KS-CDA resistance

Assume that there exists a PPT algorithm A that can breaks this problem over SN
with the known s, n’ . Given a Co-CDH problem (G1, G

x
1 , G2, G

y
2) → Gxy

2 in G, we
can construct an efficient algorithm B to solve this Co-CDH problem according to the
algorithm A as follows: (1) Setup: B follows the Setup algorithm to get the elements
(g, h, ξ, λ, µ) and then sets w = G2, ϕ = Gk1

2 ∈ Gn′ , ϕ̄ = Gk2
2 ∈ Gn′ , where α, β, k1, k2

are known to B, s | k1 , and s | k2 and z = logG1G2 is unknown to B. Therefore,
B sends PK = (SN , g, h, ζ, w, ϕ, ϕ̄, λ, µ) to the adversary A and H(·) can be obtained
by the random Oracle query of B.
(2) Learning: A chooses a range attribute At and query Delegate algorithm with the
polynomial number of users uk1 , ..., uks with any time interval Ati [tki , tk′i] ∈ L .
For each query, B chooses two random τi, δi and Hi ∈ G and sets ri = y, and then
computes
D̃ti = (gτi , H(At)

ri)δi = (gτiGxy
2)δi = Hδi ,

D̃′tki
= (vtkiw)riδi = (Gyk1λ

tki

2 Gy
2)δi = (Gy

2)δi(k1λ
tki+1)

D̃′tk′
i

= (vtk′
i

w)riδi = (Gyk2λ
Z−t

k′
i

2 Gy
2)δi = (Gy

2)δi(k2λ
Z−tki+1)

and sends these derivation keys S̃KLi = (D̃ti , D̃
′
tki
, D̃′tk′

i

) to the adversary A. Note

that, H(At) = Gx
2 and SKLi is anonymous for B because τi is unknown.

(3) Challenge: B chooses two random τ , r and defines ri = r∗/z which is unknown
by B. And then it computes D∗ = g(α+τ∗)/β,

72

Table 7.1: Comparison with bsw Scheme

Scheme Ciphertext

bsw’s Scheme g(α+τk)/β gτkH(At)
r wr

our scheme g(α+τk)/β gτkH(At)
r (vta .w)r

D∗t = gτ∗H(At)
r∗ = gτ∗(Gx

1)r∗,

D′ti
∗ = vti

r∗ = G
k1λtir∗/z
2 = Gk1r∗λti

1 ,

D′∗tj = vtj
r∗ = G

k2λ
Z−tj r∗/Z

2 = G1
k2r∗λ

Z−tj
, Dt

′′∗ = wr∗ = G2
r∗/z = G1

r∗ .

Hence, B sends SKL = (D∗, (Dt
∗, D′∗ta , D

′∗
tb
, Dt

′′∗) as a challenge private key to A,
where L = At[ti, tj].
(3) Response: If the output of algorithm A is (Li, SKLi),
where SKLi = (D∗, (D∗ti ,D′∗tki

, D′∗t′ki
, Dt

′′∗)) and Ati [tki , tk′i] ∈ Li, B checks whether

the equations D′∗tki
= G2

yk1λtki ,

D′∗tk′
i

= G2
yk1λtZ−k′i ,

Dt
′′∗ = Gy

2 and e(G1, D
∗
ti
/gr

∗
) = e(Gx

1 , G
y
2) hold. If not, B repeats step (1), Else, B

computes Gx
2y = D∗ti/g

∗
and returns it as output. The output of algorithm B is valid

because the input of A satisfies D∗ti = gr
∗
Gxy

2 .
This means that the algorithm B is a PPT algorithm to solve Co-CDH problem only
if A is also a PPT algorithm. But we know that the Co-CDH problem is hard for any
PPT algorithms, hence this contradicts the hypothesis.

7.3 Security against SS-CDA attack

When a service provider tries to reveal the encrypted contents, it can explore potential
security issues of our scheme. First, we consider the ciphertext-only attack. We will
present our TA scheme is as strong as the bsws scheme. In order to demonstrate
that the cloud service providers cannot compromise the ciphertext without private
keys, we compare the difference between the ciphertext of our scheme and that of
bsw scheme in Table 1.

It is easy to find that the different between them is merely the value vrta which
is introduced into ciphertexts. In fact, our scheme is compatible with bsws CP-
ABE scheme for string-based matching. Hence, our scheme can be considered as an
extension of bsws scheme in this point. Thus, our scheme remains the same security
properties as of bsws scheme, i.e., semantically secure against chosen plaintext attack
(IND-CPA).This means that the cloud service providers cannot obtains the contents
of ciphertexts without the knowledge of private keys. Next, we analyze whether the
derivation keys S̃KL′ observed by the adversary (or proxy) increase the adversarys

advantage against our scheme. Although S̃KL′ are delegated from the private key
S̃KL, it cannot be used to decrypted the ciphertexts because

73

1) they contain only part of information of the private-keys, and
2) the random number δ is used to avoid revealing the decryption information to
the adversary. In order to verify the validity of this method, we prove that any
(polynomial) number of derivation keys observed by the adversary cannot increased
the advantage of attacks under the Bilinear co-CDH assumption. This theorem is
described as follows :

Theorem 4 Given a RSA-type elliptic curve system SN = (N = pq,G,GT, e(., .))
with order n = sn′ , TA cryptosystem over SN is semantically secure against chosen
derivationkey attacks (SS-CDA) under the Bilinear co-CDH assumption on G even if
the secret s and n’ is known.

7.3.1 Proof of SS-CDA resistance

Proof. Assume that there exists a PPT algorithm A that can breaks this problem over
SN with the known s,n’. Given a Bilinear Co-CDH problem (G1, G

x
1 , G2, G

y
2)→ Gxy

2 ,
we can construct an efficient algorithm B to solve this Co-CDH problem according to
the algorithm A as follows:
(1) Setup: B chooses a random integer θ and defines α = xy, β = θ/z , wherez =
logG1G2 is unknown. B chooses the random integers λ, µ, k1, k2to computes g = Gn′

1

, h = wy = Gθ
1, w = G2, ζ = e(Gx

1 , G
y
2) = e(G1, G2)xy, ϕ = Gk1

2 , and ϕ̄ = Gk2
2 , where

s|k1 and s|k2. So that B generates PK = (SN , g, h, ζ, w, ϕ, ϕ̄, λ, µ) and sends it to A.
H(·) can be obtained by the random Oracle query of B.
(2) Learning: A can send the polynomial number of delegate queries with any time
interval Li = Ati [tki , tk′i]. For each query, B chooses the random τi, δ, ri and computes

D̃ti = (gτi , H(Ati)
ri)δ = G1

δτiG2
δkiri ,

D̃′tki
= ((vtkjw)ri .wri)δ = G2

δri(k1λ
ki+1),

D̃′tk′
i

= ((̄vtkiw)ri .wri)δ = G2
δri(k1λ

(Z−ki)+1),

where H(Ati) = Gki
2 and ki is random integer. Finally, B returns

SK ′′Li = D̃ti , D̃
′
tki
, D̃′tk′

i

Ati [tki , tk′i] ∈ Li to A.

(3) Challenge: B sets s=y and chooses a random a and G2
b = G2

y/G2
a, where

ws = G2
y and s=a+b. Such that, B computes hs = (G1

y)θ, and Ēti = (v̄ti .w)a =
(G2

a)(k2µ
Z−ti + 1),

E ′ti = H(At)
a = (Ga

2)ki ,

Etj = (vtj .w)b = (G2
b)(k

λtj
1 + 1)

E ′tj = H(At)
b = (Gb

2)ki .
B outputs H∗P = (τ, hs((Ēti , E

′
ti), Etj , E

′
tj)At[ti,tj]∈τ) as the challenge ciphertext to A.

(4) Response: A outputs a session key ek to B, and B also output it as result. If the
output of algorithm A is valid, B is also valid because ek = e(gα, ws) = e(G1

xy, G2) =
e(G1, G2). This means that the algorithm B is a PPT algorithm to solve Co-CDH

74

problem only if A is also a PPT algorithm. But it is well-known that the Co-CDH
problem is hard for any PPT algorithms, hence this contradicts the hypothesis

7.4 Security against revoked user

Suppose one user uk has a range attribute A[ti, tj] but it has been revoked in tp where
ti < tp < tj . Now suppose he want to get access to the encrypted content and hence
he need the derivation key. Meanwhile the revoked list PXK will be updated and he
will be in revoked list.
Now when proxy want to form

λi =
uk

uk − ui

∏
j 6=i

uj
uj − ui

,∀i, j ∈ {1, · · · , c},

k /∈ {1, · · · , c}

for revoked user uk he won’t be able to form any of the λi because of the missing
part uk

uk−ui
and so he cannot calculate P(0) . So derivation key formation will not be

possible.

7.5 Security against attack by the user with non

overlapping time duration with ciphertext

Suppose a user is having the attribute At[ta, tb] and the ciphertext policy is having
the range attribute At[ti, tj] and the range of these two is non-overlapping . That
means either ta > tj or tb < ti then it won’t be able to calculate the some of these
four values:-
(D
′
tj
, D̄

′
ti
, R
′
tj
, R̄
′
ti

) according to RSA assumption (Theorem 2).

75

t a bt

t i t j

Time

Fig 1: Non overlapping
temporal attribute
(Decryption not possible
with these attribute)

t i t j

t a

t

t b

Fig 2: Overlapping temporal
attribute (Decryption possible
with these attribute)

7.6 Security against derivation key attack by col-

lusion

We depend on the confidentiality of τk + δ and rkP̃ (0) + δ to guarantee the security
of scheme against collusion privilege attacks. For sake of clarity, we only consider the
collusion attacks by two adversaries to analyze all possible cases. For example, two
users, ua and ub , intend to transfer the uas a range attribute

D̃t = Dt · (gH(At))
δ1 = gτa+δ1H(At)

r1P̃ (0)+δ1

D̃
′
tj1

= D
′
tj1
· (vtj1w)δ1 = (vtj1w)r1+δ1˜̄D′ ti1 = D̄

′
ti1
· (v̄ti1w)δ1 = (v̄ti1w)r1+δ1

D̃B
′

t = D
′
tj1
· wδ1 = wr1+δ1

into ub’s range attribute :-

D̃t = Dt · (gH(At))
δ2 = gτb+δ2H(At)

r2P̃ (0)+δ2

D̃
′
tj2

= D
′
tj2
· (vtj2w)δ2 = (vtj2w)r2+δ2˜̄D′ ti2 = D̄

′
ti2
· (v̄ti2w)δ2 = (v̄ti2w)r2+δ2

D̃B
′

t = D
′
tj2
· wδ2 = wr2+δ2

7.6.1 Exchanging τa

If τa and τb can be exchanged then attackers will be able to get the key for extended
temporal attribute ranges.but both τa and δ1 ∈ Z so τa + δ1 ∈ Z is a random number
and also rkP̃ (0) + δ is a random number. So the problem reduced to the problem of

76

CPA-1 attack the proof against which is shown in theorem-1

7.6.2 Exchanging range attribute

Another possibility is user try to replace range attribute of (D̃
′
tj1
, ˜̄D′ ti1) by (D̃

′
tj2
, ˜̄D′ ti2)

where ti2 < ti1 < tj1 < tj2 .
Note that as δ1 and r1 are random so δ1 +r1 is random also δ1 +r1 ∈ Z is also random
and similerly for Another user . So the problem reduced to Theorem 2 of CPA-2
attack.
Note that even if both user able to collude derivation key it still need to collude the
private key as well to access the encrypted content fully.

7.6.3 Security against derivation key attack by 2 revoked
user’s collusion

Suppose 2 revoked user ua and ub having the range attribute (tai , taj) and (tbi , tbj)
try to collude at time tc where the revocation happens for both user before tc where
tc < taj and tc < tbj
The parts of the secret key they need to collude (Rtaj

, R̄tai
, RBta) and (Rtbj

, R̄tbi
, RBtb).

But in order to get these attribute values both need to form P(0). And in order to
get P(0) user need to form λi where i ∈ Revokedlist.
where

λi =
uk

uk − ui

∏
j 6=i

uj
uj − ui

,∀i, j ∈ {1, · · · , c},

k /∈ {1, · · · , c}

But for 2 of the users uk will be in the revoked list so both won’t be able to form any
of the λi for the missing part uk

uk−ui
. So none will be able to form (Rtaj

, R̄tai
, RBta)

and (Rtbj
, R̄tbi

, RBtb) so collusion is not possibile.

7.6.4 Security against derivation key attack by one revoked
user and one non-revoked user collusion

Suppose one revoked user ua and one non revoked user ub having the range attribute
(tai , taj) and (tbi , tbj) try to collude at time tc where revocation happens at time tr
where tbi < tai < tr < tbj < tc < taj .
Note that the CPA-2 attack is possibile because of the above inequality.
Now collusion needed for (Rtaj

, R̄tai
, RBta) and (Rtbj

, R̄tbi
, RBtb) as well .

77

But user ub won’t be able to calculate (Rtbj
, R̄tbi

, RBtb) as tbj < tc so collusion is not

possibile.

7.7 Security against derivation key attack by the

previous derivation key

Suppose a user uk is having a valid derivation key dk and at some point of time
revocation happen for uk. Now after revocation he can’t be able to form derivation
key.
Now if he send the previous derivation key dk to the DecryptProxy phase the proxy
will first check if that user is currently in the RL by searching in hash table RL. And
it will find the uk in RL so it will stop decrypting.

7.8 Proofs of CPA attack

Proof of CPA-1 attack resistance Proof. First, let gτk = wξ,H(At) = wk, vta =
wk1 and v̄tb = wk2 in G, so we use the same generator w to denote SKL as Dt =
gτkH(At)

r = wξ+kr, Dta = vrta = wk1r, D̄tb = v̄tb
r = wk2r, and Dt = wr ∈ G. Such

that, we convert the theorem into the problem: it is intractable to extract the values
(W ξ, wkr) from (w,wr, wk, wk1 , wk2 , wk1r, wk2r, wξ+kr). It is obvious that two unknown
k1, k2 have no concern with this problem, such that the above problem is reduced into
(w,wr, wk, wξ+kr)→ (wξ, wkr) .
Assume that there exists a PPT algorithm A that can breaks this problem. Given a
Co-CDH problem (G1, G

x
1 , G2, G

y
2)→ Gxy

2 , we can construct an efficient algorithm B
to solve this CoCDH problem according to the algorithm A as follows:
(1) B invokes the algorithm A on input (w = G1, w

r = Gx
1 , w

k = Gy
2, w

ξ+kr = Gz
2),

where z is a random integer;
(2) If the output of algorithm A is (R1, R2), B checks whether two equations R1.R2 =
Gz

2 and e(G1, R2) = e(Gx
1 , G

y
2) hold. If not, B repeats step (1);

(3) B computes Gxy
2 = R2 and returns it as output. The output of algorithm B is

valid because the input of A satisfy- fies r = x,wkr = (Gy
2)r = Gxy

2 = R2, e(G1, R2) =
e(G1, G

xy
2) = e(Gx

1 , G
y
2) and Gz

2 = wξ+kr = R1.R2

This means that the algorithm B is a PPT algorithm to solve Co-CDH problem only
if A is also a PPT algorithm. But it is well- known that the Co-CDH problem is hard
for any PPT algorithms, hence this contradicts the hypothesis.

Proof of CPA-2 attack resistance Seeking a contradiction, we assume that there
exists a PPT algorithm A that can get a (tj, (ϕ

r)λ
tj

) under above input (N,ϕ, λ, ti, (ϕ
r)λ

ti),
where tj < ti . We can use the algorithm A to construct a PPT algorithm B that

78

can break the RSA problem over elliptic curve: given the public-key (G, N, e) and a
ciphertext C to compute the plaintext M = Ce−1

. The algorithm B is described as
follows:
(1) Given a RSA problem (G, N, e), B invokes the algorithm A on input (N,ϕ, λ =
e, ti, C), where ti is randomly chosen in integer set and ϕ = Cr′ is a random element
in G.
(2)If the algorithm A returns a solution (tj, R), B first checks if Rλti−tj = C and
ti − tj − 1 >= 0 . If not B repeats step (1);

(3) B computes M = Reti−tj−1

∈ G in terms of Rλti−tj = C = Mλ, and return the
ciphertext M.
In the algorithm B, we cannot know the secret r = 1/λtir′(mod n’) for unknown
n’ (because of the actual difficulty of factoring large number N = pq), even though
ϕ = Cr′ and r’ is known. This means that the algorithm B is a PPT algorithm to
solve RSA problem only if A is also a PPT algorithm. But it is well-known that the
RSA problem is hard for any PPT algorithms, hence this contradicts the hypothesis.

7.9 Security against the online offline encryption

scheme using shamir’s secret sharing

Theorem 4 The online/offline CP-ABE scheme is selectively CPA-secure with re-
spect to Definition 2.2 in [21] under the assumption that the security scheme CPABE
of [6] is a selectively CPA-secure CP-ABE system.

Proof. To prove the theorem, we will show that any PPT attacker A with a non-
negligible advantage in the OO-ABKEM-Exp experiment against the above scheme,
which we will denote

∏
OO = (Setup, Extract, OfflineEncrypt, OnlineEncrypt, De-

crypt), can be used to break the selective CPA-security of the CP-ABE security
scheme of [21], which we will denote

∏
CP = (SetupCP , ExtractCP , EncryptCP , DecryptCP),

with a PPT simulator B. The simulator plays the role of the challenger and interacts
with A in OO-ABKEM-Exp with security parameter k and the universe of attributes
set to U = Zp .

Initialization Initially, B receives an access structure τ from A and gives it to the
CP challenger.

Setup Next, B receives the public parameters PK = (SN , g, h, ζ, w, ϕ, ϕ̄, λ, µ) from
the CP challenger and passes them to A unchanged.

Phase 1 The secret keys are the same in both schemes, so any key generation
request from A is passed to the CP challenger to obtain the key. The condition here

79

is that the requesting key should not satisfy the access structure τ .

Challenge B chooses two distinct, random messages m0,m1 in the CP message
space and sends them to its CP challenger, and receives back a challenge ciphertext
CTRW = (τ, C = m ∗ e(gα, w)s, (EB′t = wρBt ¯DB′ = H(Bt)

ρBt) for all At ∈ U). where
m is either m0 or m1.
Here we will show for non-temporal attribute Bt and the game will be same for
temporal attribute Aty and Atx then selects random blinding values ρ′B ∈ Zp such
that ρ′B + ρB = qBt(0) and computes the ciphertext as (τ, CTCP) followed by :-
CTOO = (CTCP , ρ

′
B for all attribute B)

To see why this is a correctly formed ciphertext, one must plug these values back
into the decryption equation, worked out in steps for the correctness section, and see
that the blinding values all cancel out. Next, B guess which message was encrypted
τb ∈ 0, 1 and computes keyguess := C/mτb . Finally, B then sends to A the tuple
(keyguess, CTOO).

Phase 2 B proceeds as in Phase 1. One added restriction is that it cannot issue a
decryption query on the challenge ciphertext CTOO

Guess Eventually, A outputs a bit τa .
If τa = 0 (meaning that A guesses that key guess is the key encapsulated by CTOO),
then B outputs τb .
If τa = 1(meaning that A guesses that key guess is a random key), then B outputs1τb
. The distribution for A is perfect. Thus, if A has advantage in the OO-ABKEM-Exp
experiment, then B breaks the CP CP-ABE system with the same probability.

80

Chapter 8

Future Work and Conclusion

Although our proposed scheme provides an efficient way to manage two-phase encryp-
tion , multi-authority key generation with user revocation and temporal constraints,
we believe there is still scope for improvement in terms of the number of computations
performed in the steps of each algorithm. Also we are using here composite ordered
pairing which is costly compared to prime order pairing. So in future we will try to
replace composite order pairing with prime order pairing. . We also intend to provide
a single formal security proof for our scheme to demonstrate that it is secure.

In conclusion, it has been a challenging project and we are proud of the outcome of
this project. Our objective was to design an all-encompassing novel scheme and we
are happy to say that we have succeeded through our endeavors. As the idea and
construction is novel, this thesis is likely to become a publication. As my first original
work, this thesis will always be cherished by me throughout my life.

81

Bibliography

[1] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based en-
cryption. In IEEE Symposium on Security and Privacy, pages 321-334, 2007.

[2] V goyal, O Panday, A Sahai, B Waters.Attribute-Based Encryption for Fine-
Grained Access Control of Encrypted Data,Theory of Cryptography Conference,
page 515-534, 2006.

[3] M. Naor and B. Pinkas. Efficient trace and revoke schemes. International Con-
ference on Financial Cryptography,1–20, 2001.

[4] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. In
Advances in Cryptology (CRYPTO’2001), volume 2139 of LNCS, pages 213-229,
2001.

[5] S.D. Galbraith and J.F. McKee. Pairings on elliptic curves over finite commuta-
tive rings. In 10th IMA International Conference of Cryptography and Coding,
Cirencester, UK, December 19-21, 2005, Proceedings, pages 392-409, 2005.

[6] Y. Zhu, H. Hu, G. Ahn, M. Yu, H. Zhao. Comparison-Based Encryption for Fine-
grained Access Control in Clouds. Proceedings of the second ACM conference on
Data and Application Security and Privacy,page 105–116, 2012.

[7] S. Jahid, P. Mittal, N. Borisov. EASiER: Encryption-based Access Control in
Social Networks with Efficient Revocation. In Proceedings of the 6th ACM Sym-
posium on Information, Computer and Communications Security (ASIACCS’11),
ACM,pages 411-415, 2011. .

[8] A. Shamir. How to share a secret. ommunications of the ACM, 22(11), pages
612-613, 1979.

[9] K. Yang, Z. Liu, Z. Cao, X. Jia, D. Wong, K. Ren. TAAC: Temporal Attribute-
based Access Control for Multi-Authority Cloud Storage Systems, IACR Cryp-
tology ePrint Archive,volume 2012, pages 651, year 2012.

[10] S. Yu, C. Wang, K. Ren, W. Lou. Attribute Based Data Sharing with Attribute
Revocation. In Proceedings of the 5th ACM Symposium on Information, Com-
puter and Communications Security (ASIACCS10), ACM, 2010, pages 261-270.

82

[11] A. Sahai and B.Waters. Fuzzy identity-based encryption. In EUROCRYPT,
pages 457-473, 2005.

[12] B. Waters. Ciphertext-policy attribute-based encryption: An expressive, effi-
cient, and provably secure realization. In Proceedings of the 4th International
Conference on Practice and Theory in Public Key Cryptography (PKC11),
Springer, pages 53-70,year 2011.

[13] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Proceedings of the 13th ACM
Conference on Computer and Communications Security (CCS06), ACM, pages
89-98, 2006.

[14] A. Beimel. Secure schemes for secret sharing and key distribution. DSc disserta-
tion, 1996.

[15] Y. Zhu, H. Hu, G. Ahn, D. Huang, S. Wang. Towards Temporal Access Control
in Cloud Computing. In Proceedings of annual IEEE international conference on
computer communications (INFOCOM 2012), pages 2576-2580, year 2012.

[16] S. Yu, C. Wang, K. Ren, and W. Lou. Achieving secure, scalable, and fine-grained
data access control in cloud computing. In INFOCOM, 2010 Proceedings IEEE,
pages 19. Ieee, year 2010.

[17] J. Li, X. Chen, J. Li, C. Jia, J. Ma, and W. Lou.Fine-grained access control
system based on outsourced attribute based encryption. In Computer Security -
ESORICS 2013 - 18th European Symposium on Research in Computer Security,
Egham, UK, September 9-13, 2013. Proceedings, pages 592609, year 2013.

[18] S. Hohenberger and B. Waters, Attribute-based encryption with fast decryption.
In Public-Key Cryptography - PKC 2013 - 16th International Conference on
Practice and Theory in Public-Key Cryptography, Nara, Japan, February 26 -
March 1, 2013. Proceedings, pages 162179, 2013.

[19] T. Jung, X. Li, Z. Wan, and M. Wan. Privacy preserv- ing cloud data access
with multi-authorities. In Proceedings of the IEEE INFOCOM 2013, Turin, Italy,
April 14-19, 2013, pages 26252633, 2013.

[20] M. Chase. Multi-authority attribute based encryption,Theory of Cryptography
Conference, page 515-534, year 2007.

[21] M. Green, S. Hohenberger, B. Waters. Outsourcing the decryption of ABE ci-
phertexts. In Proceedings of the 20th USENIX Security Symposium. USENIX
Association, volume 2011. number 3, year 2011.

83

[22] K. Yang, X. Jia, K. Ren. DAC-MACS. Effective Data Access Control for
Multi-Authority Cloud Storage Systems. In Cryptology ePrint Archive, Report
2012/419, year 2012.

[23] S. Zhang and P. Chen and J. Wang. Online/Offline Attribute Based Signa-
ture. In Broadband and Wireless Computing, Communication and Applications
(BWCCA), pages 566–571, year 2014 Ninth International Conference.

[24] N. Balani and S. Ruj. Temporal access control with user revocation for cloud
data, IEEE 13th International Conference on Trust, Security and Privacy in
Computing and Communications.pages 336–343, year 2014.

84

	Introduction
	Introduction
	Our Contributions
	Thesis Outline

	Preliminaries
	Secret Sharing
	Threshold Secret Sharing
	Shamir's Secret Sharing Scheme

	Access Structures
	Access Structures
	Monotone Access Structures

	Bilinear Maps
	Bilinear Maps
	Composite Order Bilinear Maps

	Forward/Backward Derivation Functions
	Cryptographic Construction of FDF/BDF

	Related Work
	Ciphertext-Policy Attribute-Based Encryption
	Algorithms
	Model
	Construction

	Revocation Schemes
	Revocation scheme of Naor and Pinkas

	Comparison Criterion
	Fine-grained Access Control with Comparison
	Temporal Access Control Scheme
	Entities involved
	drawback of the Scheme

	Three Basic Temporal Access Scheme
	Introduction
	Scheme-1:Basic Temporal Access Control Scheme
	Framework
	Construction

	Scheme-2:Temporal Access Control with Revocation Added
	Framework
	Construction

	Scheme-3:Temporal Access Control Scheme with added decryption outsourcing
	Framework
	Construction

	Our implementations
	Introduction
	Scheme-4:Temporal Access Control with added two phase encryption
	Framework
	Construction
	drawback of this scheme

	Scheme-5: Distributed Access Control Scheme
	Framework
	Construction

	Complexity Analysis
	Notations
	Complexity comparision in form of table
	Comparing Complexity comparision in the form of graph

	Security proof
	Security for collusion privilage attack
	Case 1.1
	Case 1.2

	Security for KS-CDA attack
	Security against SS-CDA attack
	Proof of SS-CDA resistance

	Security against revoked user
	Security against attack by the user with non overlapping time duration with ciphertext
	Security against derivation key attack by collusion
	Exchanging a
	Exchanging range attribute
	Security against derivation key attack by 2 revoked user's collusion
	Security against derivation key attack by one revoked user and one non-revoked user collusion

	Security against derivation key attack by the previous derivation key
	Proofs of CPA attack
	Security against the online offline encryption scheme using shamir's secret sharing

	Future Work and Conclusion

