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Abstract

The problem of football tracking from live video is a difficult one. Successful tracking depends

critically on the ability of the algorithm to balance prior constraints continuously against

evidence garnered from sequences of images. Exact, deterministic tracking algorithms, based

on discretized functional, suffer from severe limitations on the form of prior constraint that

can be imposed tractably. This paper proposes a particle filter based algorithm that enables

to track the ball when it changes its direction suddenly. This algorithm can also track the

ball when it takes high speed suddenly and stops. Our algorithm has shown efficient result

for partial occlusion and small time full occlusion. Our algorithm has ability to track the

ball in spite of Camera movement.
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Chapter 1

Introduction

There are limited applications of computer vision techniques for analysis of sports video [1].

Finding statistics of ball possession by two teams in a soccer match is a challenging problem

where computer vision has a large role to play. As a part of our initiative to calculate ball

possession statistics, in this paper we present a technique to track soccer ball. Of course the

basic tracking scheme is same as it is in any other tracking applications [2] and [3]. However,

the major challenge for tracking soccer ball is partial occlusion, and sudden appearance and

disappearance of the ball while it is being filmed by multiple camera. This results in two

other sub-challenges. The sudden change in soccer ball resolution while it is being filmed

using a camera closer to the ball. And then in the next instant, the ball being tracked using

a camera far away compared to the previous frames. The other major issue is when the ball

is being kicked or passed by a player. The ball can suddenly change its direction of motion

and between-frame motion can be significant and most of the conventional trackers fail in

such situations. The high speed of ball movement often blurs the image of the ball causing

failure of the tracking proposal.

1.1 Objective

Determining ball possession statistics plays the key role for motivating my work. There are

very limited number of applications in computer vision techniques for analysis of live sports

video according to the best of my knowledge. In order to facilitate that one have to track the

players and the ball very robustly and reliably subjected to a variety of challenges mainly

due to multiple moving camera and high speed of the ball. However the small size of the

ball and blurring lead to poor features to build any deterministic model to track the ball

reliably over a long sequence. As a part of determining ball possession statistics as shown

in fig 1.1, I take the challenge of ball tracking in a live video.
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Figure 1.1: Ball Possession Statistics in the course of play

1.2 Related Works

There have been many object detection and tracking framework proposed over last two

decades. Yu et al.[4] classify all the algorithms mainly in four categories: 1) feature based

2) model based 3) motion based and 4) data association based.

In [5] Huang et al. computed ball position in a frame by integrating segmentation based

detection and particle filter-based tracking. However, detection was sometimes failed and

then false positive was tracked in successive frames. This is a common issue of ball tracking.

Imaged ball cannot be differentiated from other objects robustly based only on its appearance

because of their size and the poor features. Yu et al.[4] tried to do ball detection, they

estimate hitting points based on the players position and the hitting sound. This method,

however, is not always applicable.It is really a difficult problem to extract the sound generated

from the targeted object. Junliang Xing [6] tracked multiple players in a sports video by

dual-mode two-way Bayesian inference approach which dynamically switches between an

offline general model and an online. But they don’t get success for ball which is very small

comparing to players.

Seo et al. in [7]use Kalman filter based template matching procedure to track the ball.

They use backprojection to predict possible occlusion. However color-distribution based

template matching suffers from the problem of similar backgound color due to players’ jersey

color and shoe. Yamada et al. in [8] use the idea of trajectory, but restricted to small

trajectories over a small number of neighboring frames used for confirmation. Ohno et al.

[9] estimate the 3D position of ball in soccer game by tracking the players based on their

shirt and pant regions. To extract ball position, position of the player holding the ball is

estimated first by fitting a physical model of their movement in 3D space to the observed
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ball trajectory. But this model is limited to successful tracking in any video sequence filmed

by static camera.

Comaniciu et al. [10] propose mean shift based tracking for non rigid objects seen from

a moving camera. It find the most suitable position in current frame by computing the

similarity between the target model(its color distribution) and target candidates by means

of Bhattacharyya coefficient.In feature based algorithms, some features of the objects are

used to discriminate targets from other objects within a frame. Some algorithms make

use of reference image of the background called the background frame. All objects in the

difference frame are obtained by subtracting the background frame from the current frame,

which are the targets. In [11] the features with the manually labelled targets are used to

train a neural classifier and then the trained neural classifier is used to differentiate the

target from other objects.

Yogesh et al. [12] try to track deforming objects. They formulate a particle filtering

based algorithm in the geometric active contour framework that can be used for tracking

moving and deforming objects. Geometric active contours provide a framework which is

parametrization independent and allow for changes in topology. Jia et al. [13] uses structural

local sparse appearance model which exploits both spatial and temporal information of the

target based on a novel alignment-pooling method.

1.3 Contribution

Due to abrupt motion or sudden change in direction, we rely on a proposal based approach.

Based on information in the current and the previous frame, we put forward a set of dynamic

proposals for possible location of the soccer ball in the next frame. The proposals are made

based on a concept similar to particle filters. We then propose a novel strategy to select the

winner particles among the different proposals. The proposal is based features collected from

the ball, namely, the color, edge gradient and shape measure. An iterative scheme weighs

each proposal point based on the likelihood of the proposal to lie on the contour of the ball

in the next frame.
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Chapter 2

Methodology of the proposed

approach

Mainly, our soccer ball tracking algorithm consists of following four steps: (a) initialization

of first two frames, (b) prediction of the measurement space, (c) weight assignment of the

potential points, and (d) resampling of the potential points. The prediction step defines a

dynamic model that generates a set of potential points, which are called particles. These

particles are possible potential points on the edge of the soccer ball in the frame where we

are searching for the soccer ball. In the weight assignment step, we are assigning weights

to the predicted particles. Finally, in the resample step a collection of winners are selected

from the generated particles at the last stage based on the likelihood ratio of the particles

to fit a soccer ball model.

2.1 Initialization

In the proposed tracking model, we assume that at any instance, to predict the ball position

in the current frame, we have the information about the position of the ball in last two

frames. In order to facilitate that, ball position at first two frames in any video sequence

need to be initialized. We initialize the ball position at any frame by choosing the centre of

the ball and any point on the contour of the ball. These two informations are sufficient to

capture the shape of the circle-like ball.

Figure 2.1: Block diagram of the proposed football tracking algorithm
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Figure 2.2: Construction of measurement space: (a) and (b): Circle representing the ball at
i-1 and ithe frame. The centre of the ball is at O and O′ respectively. (c) The position of
the ball in frame i+1 after translation by (d, 0). The translated circle is at center O1. (d)
The measurement space constructed by rotating the translated circle with center at O1 with
radius d.

2.2 Prediction

In the proposed tracking model, we assume that at any instance, the information of the soccer

ball for previous two frames are available. The points which are located on the contour of the

circle-like ball, are termed as landmark points. Our main objective at any instance is, given

a set of landmark points on the known ball positions on previous two frames, we predict

a set of landmark points on the current frame. Let Figs. 2.2(a) and (b) represent the ball

position at frame i-1 and i respectively. Let the distance between the centres of the ball

positions, O and O′ in frame i-1 and i respectively, be d. Let us assume a measurement

space at frame i+1 centred at a distance d from position O′. Let us define this centre of

measurement space be O1 as shown in Fig. 2.2(c). We are assuming that the radius of the

ball at O1 is same as that of at O′ and the radius of the ball is known a priori. The locus

of O1 in a circular path centred around O′ with radius d gives the measurement space. For

discrete representation of the measurement space, we have selected l number of locations on

the locus of point O1. Therefore, at every b location out of total l positions, we can define a

circle whose center is rotated at an angle θb with respect to positive x-axis. Finally, we term

the dynamics of giving translation by (d, 0) and rotation by angle θb as T 1
θb

. These circles

are shown in Fig. 2.2(d).

We now have to select a set of particles or landmark points. For ease of understanding,

let us assume that there are only three landmark locations. The soccer ball locations upto

frame i are known and these points are shown in Fig. 2.2(a) and (b) with ×. Let (x1, y1),

(x2, y2) and (x3, y3) are these three landmark points in frame i. Our task is to select landmark

points from the measurement space of the i+1 frame. Given a discrete locations b on the

locus of O1, angle θb, particles or landmark points on the ball positions at b can be calculated

after applying appropriate rotation transform to (x1, y1), (x2, y2) and (x3, y3). Again, these

landmark points are shown in Fig. 2.2(d). Landmark points (xi, yi) for a possible ball location
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in Fig. 2.2(d) at an angle θb is stored in a configuration matrix M θb
(i+1). Each row of M θb

(i+1)

represents each landmark point location on circle rotated at an angle θb in measurement

space corresponding to frame (i+ 1). Thus for all the possible ball locations in Fig. 2.2(d),

the universal configuration matrix Ω is formed after concatenating M θb
(i+1) for all b discrete

locations.

The proposed measurement space captures movement of the ball in every orientation.

Suppose the centroid of the ball is moving at the direction #»v . Then corresponding unit vector

is #»v /‖( #»v )‖. Along this direction we get position of the center of the circle(the translated

circle we are rotating) which is d #»v /‖( #»v )‖. We also get new landmark point locations on

the circle of r radius around the transformed center(d #»v /‖( #»v )‖). So we can capture the

boundary of the circle containing moving ball in the third frame by this measurement space.

The proposal above is subjected to an assumption. Given, video frame dimension as r × c,
d ≤ min( r

2
, c

2
), which is very much practical.

In the next section, we utilize universal configuration matrixM(i+1) to weight the selection

of likely ball location.

2.3 Weight Assignment

Before presenting the Weight Assignment strategy, we need to understand the tracking frame-

work. The tracking model is based on second order Markov model which is detailed next.

2.3.1 Tracking Framework

Suppose we have information on the first n frames. That is, we know the centre and radius

of the soccer ball till nth frame. We denote the ball as a circle at the nth frame as Xn. To

predict the position of the ball in (n + 1)th frame, the aim is to grow such a sequence of

circles based on a prior dynamics p(Xi+1|X0:i) where i ∈ {1, 2, . . . , n}. The prior dynamics

is expected to retain the properties of the circular region representing the ball. Based on

homogeneous second-order dynamics with some probability function q, we define

p(Xi+1|X0:i) = q(Xi+1|Xi−1:i),∀i ≥ 2. (2.1)

Now we will discuss about q.

2.3.2 Dynamics q

Suppose we are given information(i.e. the circle containing the ball) of i consecutive frames.

Based on these circles we have to locate the ball in (i + 1)th frame i.e we have to fit the

best circle around the ball. In the proposed algorithm, based on dynamics q, we predict the

(i+ 1) th frame circle based on the information of i, (i− 1) th frame information. We take

the dynamics of step length 2. The definition of the second-order dynamics q(Xi+1;Xi−1:i)

amounts to specifying an a priori probability distribution on direction change θb ∈ (0, 2π].
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One of our aim is to find the curve of the ball i.e. the edge of the ball. The smoothness of the

curve(edge of ball) can be simply controlled by choosing this distribution as Gaussian with

variance σ2
θb

per length unit. For steps with length 2(As our dynamics is second order) the

resulting angular variance is 2σ2
θb

. In order to allow for abrupt direction changes at the few

locations where curve of edge of the ball have been detected, we mix the normal distribution

with a small proportion ν of uniform distribution over [−π
2
, π

2
]. The dynamics finally reads :

T 1
θb

(V ) = Vθb∀V ∈ S1,

where T 1
θb

has been defined in section (2.2) of particle creation. q is :

q(θb) =
ν

π
+ (1− ν)N(θb; 0, 2σ2

θ) (2.2)

Statement: Given information (that is, centers and radii of all circles that contain the

ball) up to n frames at a time, the probability p(X0:n) satisfies following relation.

p(X0:n) = p(X0:1)
n∏
i=2

q(Xi;Xi−2:i−1). (2.3)

The proof of the above relation is as follows:

p(X0:n) = p(X0 ∧X1.... ∧Xn)

= p(Xn ∧X0.... ∧Xn−1)[p(A ∧B) = p(B ∧ A)]

= p(Xn|X0.... ∧Xn−1)p(X0 ∧ .... ∧Xn−1)[p(A ∩B) = p(A|B)p(B)]

. = p(Xn|X0.... ∧Xn−1)p(Xn−1|X0 ∧ .... ∧Xn−2)....p(X2|X0:1)p(X0:1)

= q(Xn;Xn−1:n)q(Xn−1;Xn−3:n−2)....q(X2;X0:1)p(X0:1)

= p(X0:1)
n∏
i=2

q(Xi;Xi−2:i−1)

2.3.3 Data Model

The evidence supporting the measurement that a predicted contour is in the vicinity of

the “true” contour containing the ball, is defined as the data model. The data model is

represented as p(Y (u)|X0:n). Intuitively, Y represents collection of features derived from

pixel at image location u.

Formally, Y : Ω→ <3. Y (u) is defined as Y (u) = (Y1(u), Y2(u), S ′(u)), where u is a point

in Ω (universal configuration matrix).

Y1 : Ω → <, Y1(u) = I(u), where I(u) represents the intensity value at gray scale at

u ∈ Ω.

Y2 : Ω→ <, Y2(u) = |∇I(u)|.
S ′ is the shape measure defined as S ′(u) = S(M θb

(i+1)), where
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S(M θb
(i+1)) =

√√√√ k∑
p=1

2∑
q=1

(M θb
(i+1)[pq]−

¯M θb
(i+1)[q])

2. (2.4)

The M θb
(i+1) is a (k×2) is a configuration matrix which contributes the point u in universal

matrix Ω, M θb
(i+1)[pq] represents the element of pth row and qth column of the matrix M θb

(i+1).

¯M θb
(i+1) =

∑k
p=1M

θb
(i+1)

[pq]

k
. The above defined S is a size measure [14].

Definition(Size Measure): Let A = {X | X is a matrix }. The size measure g : A→
<+

⋃
{0} defined by g(aX) = ag(X) where a is any positive scalar.

Statement:

S which is defined above is a size measure.

Proof: To prove the above statement we have to show that for any scalar a ≥ 0

we will have S(aM θb
(i+1)) = aS(M θb

(i+1)) where M θb
(i+1) is a configuration matrix. We have

S(M θb
(i+1)) =

√∑k
p=1

∑2
q=1(M θb

(i+1)[pq]−
¯M θb
(i+1)[q])

2; where ¯M θb
(i+1) =

∑k
p=1M

θb
(i+1)

[pq]

k
. a is a

positive scalar.Then consider the matrix aM θb
(i+1). So each entry of the matrix aM θb

(i+1) is

aM θb
(i+1)[pq].

S(aM θb
(i+1)) =

√√√√ k∑
p=1

2∑
q=1

(aM θb
(i+1)[pq]− a

¯M θb
(i+1)[q])

2

=

√√√√a2

k∑
p=1

2∑
q=1

(M θb
(i+1)[pq]−

¯M θb
(i+1)[q])

2

= |a|

√√√√ k∑
p=1

2∑
q=1

(M θb
(i+1)[pq]−

¯M θb
(i+1)[q])

2

= |a|S(M)

Thus S is a size measure.

We are assuming:

p(Y (u)) ∝ [p(Y1(u)) + p(Y2(u)) + p(S ′(u))]

= C[p(Y1(u)) + p(Y2(u)) + p(S ′(u))]

Where C is normalization constant.

Hence p(Y (u)|X0:n)=C[p(Y1(u)|X0:n) + p(Y2(u)|X0:n) + p(S ′(u)|X0:n)].

We also approximate measurements on Ω as an independent spatial process

p(Y |X0:n) =
∏
u∈Ω

p(Y (u)|Xn−1:n) (2.5)

Each individual likelihood in the product of (2.5) is either termed as pon, if we consider the

given condition (given X0:n) or is termed as poff , if the given condition is not there.
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Figure 2.3: (xki , y
k
i ) is position of the landmark point in i th frame. After giving dynamics

we get its new position (xk1i , y
k1
i ) = u. ∇I(u)⊥ has made angle ψ(u) with the line joining

(xki , y
k
i ) and (xk1i , y

k1
i )

So, we can write (2.5) as:

p(Y | X0:n) = p(Y |Xn−1:n)

=
∏

u∈Ω−Xn

poff (Y (u))
∏

u∈(Ω
⋂
Xn)

pon(Y (u)|Xn−1:n)

=
∏
u∈Ω

poff (Y (u))
∏

u∈(Ω
⋂
Xn)

pon(Y (u)|Xn−1:n)

poff (Y (u))

we consider l = pon
poff

, which denotes point-wise likelihood ratio similar to the likelihood

ratio defined in [15]. Based on l, we resample the particle set which will be discussed in the

next subsection. So the above equation becomes

p(Y | X0:n) =
∏
uεΩ

poff (Y (u))
∏

uε(Ω
⋂
Xn)

l(Y (u)). (2.6)

2.3.4 Likelihood ratio estimation

Most data terms for our football tracking algorithm are based on the spatial gradient in

intensity or RGB space, and shape measure. To use before mentioned attributes as part of

our measurements, we must capture its marginal distributions both off the circle containing

football in previous frames (poff ) i.e when we are not considering the given circles containing

football and pon when we are considering the given circles containing the football.

The first marginal poff can be can be empirically captured by the distribution of the

norm of the gradient, pixel value and shape measure of the measurement space Ω. In our

experiments, these empirical distributions were always well approximated by an exponential

distribution with parameter λ (amounting to the average norm for the attribute gradient

over the measurement space Ω ), which we take as poff . Let u ∈ Ω.

poff (u) ∝ e−
∇I(u)
λ +

e−I(u)

√
2πλ

+ e−‖(u−c)‖.

Where c is the center of the last frame.
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For pon, it is difficult to learn it a priori. We assign normal distribution for color, i.e. Y1

pon(Y1(u)|Xi−1:i) =
e−(d2)/2σ2

√
2πσ2

where d is the euclidean distance between the intensity (i.e. color) of u intensity of the ball

in gray scale. Thus the minimum the difference of the intensities will be, the probability

would be maximum.

Next we discuss on the probability distribution assigned for gradient of the pixel.The

empirical distribution of the gradient over an outline of interest appears as a complex mixture

filling the whole range of values from 0 to a large value of gradient norm.In the absence of an

appropriate statistical device to capture adaptively this highly variable behavior, it seems

better to keep the data likelihood pon as less informative as possible.Now,Our aim is to give

two different distribution function for different potential points, which are most likely to lie

on the edge of ball and very less likely to lie on the edge of the ball.

In order to facilitate that, we define another function ρ : Ω → {0, 1} to assign different

probablity distribution to a point in Ω. Thus,

pon(Y2(u)|Xi−1:i) =
ρ(u)

π
+ (1− ρ(u))N(ψ(u); 0,

σ2
ψ

|∇I(u)|
).

Depending on the value of ρ whether it is 0 or 1 the above equation will assign distribution

to the corresponding point. Thus, if the point is more likely to to lie on the edge, uniform

distribution will be assigned to it, otherwise a normal distribution will be assigned, where

ψ(u) is the angle referred in Fig.2.3.

Now to define the function ρ, first we have to define a threshold for each frame. This

threshold for current frame is calculated based on the average gradient difference for all

landmark points on the contour of the ball on last two frames. Suppose we have M number

of mathematical landmark points set for frame (i − 1) and i. We denote the mathematical

landmark point set by {(xki−1, y
k
i−1)}Mk=1 for the frame (i− 1) and {(xki , yki )}Mk=1 for the frame

i. Thus the threshold for frame (i+ 1) is calculated as :

THi+1 = 1/M
M∑
k=1

||∇I(xki−1, y
k
i−1| − |∇I(xki , y

k
i )||

Let (p, q) be a point of configuration matrix in the (i+ 1)th frame corresponding to the

same point (xki , y
k
i ) in the ith frame. Now ρ(p, q) = 1, i.e. (p,q) point is more likely to lie on

the edge of the ball in the (i+ 1)th frame if

||∇I(p, q)| − |∇I(xk1i , y
k1
i )|| ≤ THi+1.

Otherwise, ρ(p, q) = 0.
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Now we assign exponential distribution for shape, i.e. S ′, as

pon(S ′(u)|Xi−1:i) = e
− d1
max(ri−2,ri−1)

where d1 is the euclidean distance between u and center of last frame circle; ri−2 and ri−1

are the radius of the circles in (i− 2) and (i− 1)th frames respectively.

Finally the pon of the data model is combined as

pon((Y1(u), Y2(u), S ′(u))|Xi−1:i) ∝
ρ(u)

π
+ (1− ρ(u))N(ψ(u); 0,

σ2
ψ

|∇I(u)|
) +

e−(d2)/2σ2

√
2πσ2

+ e
− d1
max(ri−2,ri−1)

Thus the likelihood ratio for a point in the configuration matrix can be computed as

l = pon
poff

, which is deduced up to a multiplicative constant.

Now we derive how likely our predicted circle can circumscribe the real ball based on

Y (u), the collection of features derived for pixel at image location u. We call it posterior

density p(X0:n|Y (u)).

Statement:

pn(X0:n|Y ) ∝ p(X0:1)
n∏
i=2

q(Xi;Xi−2:i−1)
∏

uε(Ω
⋂
Xn)

l(Y (u)) (2.7)

Proof: Here we are concluding the above statement:

p(X0:n|Y ) =
p(X0:n ∧ Y )

p(Y )

=
p(Y |X0:n)p(X0:n)

p(Y )

∝ p(Y |X0:n)p(X0:n)

Substituting the expression of p(X0:n) from (2.3) and expression of p(Y | X0:n) from (2.5)

we get:

p(X0:n|Y ) =
p(Y |X0:n)p(X0:n)

p(Y )

∝ p(Y |X0:n)p(X0:n)

∝ p(X0:1)
n∏
i=2

q(Xi;Xi−2:i−1)
∏
u∈Ω

poff (Y (u))
∏

u∈(Ω
⋂
Xn)

l(Y (u))

∝ p(X0:1)
n∏
i=2

q(Xi;Xi−2:i−1)
∏

u∈(Ω
⋂
Xn)

l(Y (u))

So the statement is proved.
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2.3.5 Weight(probability) giving strategy

Our football tracking algorithm is based on recursive computation of posterior densities of

interest. From (2.6) we construct the following recursive relation :

pi+1(X0:i+1 | Y ) ∝ pi(X0:i|Y )q(Xi+1;Xi−1:i)
∏

u∈(Ω
⋂
Xi+1)

l(Y (u)), i ∈ {1, 2, .., n}. (2.8)

Though we have analytical expression for l and q but this recursion cannot be computed

analytically. There is no closed form expression of the posterior distributions pi. We approx-

imate posterior pi by a finite number of points(Say M number of points ) {xmi }Mm=1, here

xmi are of the form (r cos(θ), r sin(θ)) and their probability or weight are {pmi }Mm=1. Now we

have to generate particles(possible landmark points on the contour of the ball so that we

can create the (i+ 1) th frame circle) from the distribution pi+1. The generation of samples

from pi+1 is then obtained in two process.

Now we discuss the prediction step. Suppose we give X1, X2, .., Xi. Based on these

information we have to predict Xi+1. At first we have chosen landmark points. Then we

create measurement space in (i + 1)th frame around the location of center of ball in ith

frame. Every point of the universal configuration matrix Ω is chosen by sampling from the

proposal density function f(xi+1;xm0:i, Y ) over Ω.

If the landmark points (xm0:i)m are fair sample from the distribution pi over Ω then the

extended landmark point (xm0:i, x
m
i+1)m are fair samples from distribution fpi over Ω. Since

we are seeking samples from distribution pi+1 indeed, so we will go for importance sampling

principle. Now we are describing the principle. [16] Suppose p(x) ∝ π(x) is a probability

density from which it is difficult to draw samples but for which π(x) can be evaluated [as

well as p(x) up to proportionality]. In addition,let xi ∝ q(x) i = 1, 2...Ns be the sample that

are easily generated from a proposal q(.) called an importance density. Then, a weighted

approximation to the density p(.) is given by:

p(x) ≈ ωi

Ns∑
i=1

δ(x− xi);

where ωi ∝ π(xi)
q(xi)

. δ is Delta-Dirac measure. We use this to approximate a probability

mass function as probability density function. In our case, the sample landmark points are

weighted according to ratio pi+1/fpi [normalized over the number of rows in configuration

matrix]. The resulting weighted landmark point set now provides an approximation of the

target distribution pi+1. This discrete approximating distribution is used in the second step

of selection where we will draw some landmark points with replacements from the previous

weighted set. The new set will be distributed according to pi+1. The landmark points with

smallest weights are likely to get discarded by this selection process, whereas the ones with

large weights are likely to get duplicated.
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Figure 2.4: Resample Prediction of ball position in (i+1)th frame (a) Measurement space as
a set of sample points. (b) Resampling k points from each quadrant (k = 5). (d) Predicted
circle as the ball in (i+ 1)th frame.

Using the expression (7) of pi+1, the ratio pi+1

fpi
becomes ql

f
. Now the weight reads:

πmi+1 ∝
q(x′mi+1;xmi−1:i)l(Y (x′mi+1))

f(x′mi+1;xm0:i, Y )
(2.9)

with
∑

m π
m
i+1 = 1. It can be shown that the optimal proposal pdf is f = ql/

∫
xi+1

ql

from [17], whose denominator cannot be computed analytically in our case. The chosen

proposal pdf must then be sufficiently “close” to the optimal one such that the weights do

not degenerate (i.e., become extremely small) in the re-weighting process.

2.4 Resample

Now we discuss resample of those particles and circle construction. Let in the configuration

matrix we have M rows, i.e. total particle number is M . We will resample 4k points from

M points. 4k � M . We first draw co-ordinate system taking ith frame circle center as

origin, x axis of image as x axis and the vector orthogonal to x axis as y axis. Then from

each quadrant we resample k points based on likelihood ratio l. If in some quadrant does

not have k many points then we resample all points. Then we find out weighted center of

mass of all 4k resampled particles according to following equation.

xi+1 =

∑4k
j=1wj ∗ xj∑4k

j=1wj

yi+1 =

∑4k
j=1wj ∗ yj∑4k
j=1wj

(xi+1, yi+1) is co-ordinate of the centre of the predicted ball position in (i+ 1)th frame.

From this predicted centre we calculate the weighted mean distance of these 4k resampled

points, which give the radius of the predicted ball.

Thus the predicted circle for frame (i+ 1) is constructed based on ball position in frame

i and frame (i− 1).
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Algorithm 1 Football tracking algorithm

Given Information(circle): {Xi}ni=1 where Xi represents the circle of radius r
containing the ball in frame i.
Landmark point selection: for j = 1...m, select landmark point on the last circle
xj = (r cos θj, r sin θj), j = 1...m.
Prediction: 0◦≤ θk ≤ 360◦, T 1

θk
(xj) = xjθk∀θk; k ∈ {1, .., n1}, ∀j ∈ {1.,m}.

Weighting: Total particle setN = mn1. We denote all particle set {xm1:n}Nm=1. Compute:

πmn+1 =
Kq(θk)l(Y (x′mn+1))

ρ(xmn )
π

+(1−ρ(xmn ))N(θk;0,2σ2
θ)

with K such that
∑N

m=1 π
m
n+1 = 1.

Resample: Total resampled particle 4k.
Draw axis taking center of Xn as origin. from each quadrant,Draw top k sample point
having maximum the discrete probability {πkn+1}k over {1, 2, ..N}.
Predicted circle: Find center of mass(C.M.) of all 4k points. Find distance(d) of all

sample points from C.M. Find dmax, dmin. r = (dmax+dmin)
2

.
Draw circle with C.M as center and r as radius.

19



Chapter 3

Experiment and Result

Here, implementation details of the system and experimental results will be presented. We

first give a short description of the sports video data used in the experiments. Then, we

illustrate ingredients(Likelihood ratio, Dynamics q, Proposal Sampling Function f ) used for

our football tracking algorithm. Then We evaluate our algorithm with Ground truth and

compare with color based mean shift non rigid object tracking algorithm.

Figure 3.1 shows the measurement space creation in 114th frame based on the distance

between the centre of already detected ball in 112thand113thframe. The resampled paricles

and the predicted ball position are also shown in same picture.

Figure 3.2 is the case where inspite of having partial occlusion of the ball in both

152ndand153rd frame, the proposed algorithm is able to capture the ball in 154th frame.

3.1 Dataset and Ground truth

One of the motivation of this work is to track football in a live football match. The video

data used for our experiment is directly collected from the [18]. This dataset consists of

723 frames each of resolution of (720× 1280). In this dataset one team jersey is white. So,

it is difficult for any algorithm to track small white ball based only on color information.

Camera movement also creates challenge to track football. It makes ball tracking critical by

background subtraction method. We also collect another video dataset [19]. In this dataset,

only 623 frames contain effective play. Here also each frame has resolution of (720× 1280).

Here no team has white jersey. We manually label the ground truth of position of the ball

in each frame. We compare our algorithm with the representative work in [10] which deals

with the problem of non rigid object tracking based on mean shift and color histogram.

3.2 Discussion about some parameters

We have described dynamics of the particle in section 2.2 and discussed about the data

model in previous section and the data model is chosen, it remains to devise a proposal
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Figure 3.1: (a) Detected ball position in 112th frame. (b) Detected ball position in 113th
frame. (d) Measurement Space in 114th frame. (e) Resampled particles in 114th frame. (f)
Predicted circle in 114th frame.

Figure 3.2: (a) Detected ball position in 152th frame. (b) Detected ball position in 153th
frame. (d) Measurement Space in 154th frame. (e) Resampled particles in 154th frame. (f)
Predicted circle in 154th frame.
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Figure 3.3: Performance evaluation when the ball suddenly changes its direction with high
speed, (a) Ground truth result, (b) Result of mean shift algorithm based on color histogram
matching, (c) Result of our football tracking algorithm

sampling function f which is as much related as possible to ql under the constraint that it

can be sampled from.

Here we are creating 36 new circles(as we have taken θb = 10◦). So, we got 360◦

10◦
= 36.

We have selected 15 landmark points on the first two frame circles containing the ball. So

total number of point on all 36 circles are 15 × 36 = 540. We also included the landmark

points detected on the last frame circle. So, total points in the measurement space Ω are

540 + 15 = 555. Here typically ν = 0.05 and M = 555.

In resampling step, we are reampling 15 points from each quadrant based on their likeli-

hood. Thus centre of the ball in current frame is predicted from these 15×4 = 60 resampled

points.

3.3 Comparative Results

We first conduct experiment to analyze the performance of our algorithm. The experiment

is carried on tracking ball in different critical situation like sudden velocity change of ball,

frequent change of ball’s direction, frequent camera movement. We also make experimental

environment critical by taking jersey color of one team white. Many players wear white

shoe. So,shoe also looks like football from long distance. It becomes difficult to track the

ball when a player wearing white shoe takes the ball then pass it. We run our algorithm

over 721 frames of the video to measure the relevant performance metric.

We take frame 61 to 92 as our experiment frame of dataset [18]. In these frames the

football changes its orientation suddenly. In Fig.3.3(a) we are showing our ground truth

result where we manually label the ball with yellow circle. In Fig.3.3(b) we run Meanshift

algorithm based on color histogram [10] which fails to track the ball when it changes it’s

direction suddenly. The sudden change in direction is also captured in graphical plot 3.4,

which is successfully tracked by our proposed method whereas the competing method fail to

track the sudden change in direction. Basically, mean shift is a procedure for locating the
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Figure 3.4: Graphical plot indicating sudden direction change of the ball.

Figure 3.5: Performance evaluation when partial occlusion occurs, (a) Ground truth result,
(b) Result of mean shift algorithm based on color histogram matching, (c) Result of our
football tracking algorithm

maxima of a density function given discrete data sampled from that function. It is useful

for detecting the modes of this density. So when the ball is in touch with a player with

white shoe then it is unable to track the ball based on the mode of color based probability

distribution function. In Fig.3.3(c) we run our football tracking algorithm which perfectly

tracks the ball though it suddenly changes its direction with high speed. It has the ability

to track the ball when it changes its direction suddenly as we give a weight on the shape of

the ball.

In Fig. 3.5(a) We take frame 391 to 407 as our experiment frame of dataset [19]. In

these frames the football gets partial occlusion by player. In Fig. 3.5(b) we are showing our

ground truth result where we manually label the ball with yellow circle. In Fig. 3.5(b) we

run Meanshift algorithm based on color histogram [10] which fails to track the ball when

partial occlusion occurs. This is because for partial occlusion number of pixels on the ball

is too low to track the ball based on color component. In Fig. 3.5(c) we run our football

tracking algorithm which perfectly tracks the ball though partial occlusion occurs. This is

because we give attention to the size and shape of ball and we assign weight based on size
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Figure 3.6: Performance evaluation when short time full occlusion occurs, (a) Ground truth
result, (b) Result of mean shift algorithm based on color histogram matching, (c) Result of
our football tracking algorithm

Figure 3.7: Performance evaluation when there is other white objects, (a) Ground truth
result, (b) Result of mean shift algorithm based on color histogram matching, (c) Result of
our football tracking algorithm

and shape of the ball.

In Fig. 3.6(a) We take frame 420 to 425 as our experiment frame of dataset [19]. In these

frames the football gets short time full occlusion by player. In Fig. 3.5(b) we are showing our

ground truth result where we manually label the ball with yellow circle. In Fig. 3.6(b) we run

Meanshift algorithm based on color histogram [10] which fails to track the ball when partial

occlusion occurs. This is because for full occlusion we can’t get ball’s color pixels. Then it

is not possible to keep track the motion of ball. So once color based algorithm fails to track

the ball the error occurs in next frames and it can’t be rectified. In Fig. 3.5(c) we run our

football tracking algorithm which perfectly tracks the ball though full occlusion occurs. This

is because our measurement space captures movement of the ball in any direction. In the

measurement space suppose the ball gets full occlusion for a small time. When it reappears

in the measurement space then our algorithm can capture the balls based on features which

we take.

In Fig. 3.7 We take frame 437 to 457 as our experiment frame of dataset [19]. In these

frames the football passes through the white line in the ground. In Fig. 3.7(a) we are showing

our ground truth result where we manually label the ball with yellow circle. In Fig. 3.7(b)

we run Meanshift algorithm based on color histogram [10] which fails to track the ball passes

through the white line in the ground. This is because the color of ball matches with the lines

in the ground. In Fig. 3.7(c) we run our football tracking algorithm which perfectly tracks

the ball though partial occlusion occurs. This is an example where our algorithm tracks the
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Figure 3.8: Precision Plot.

ball based on shape. Here gradient of edge pixel of ball and white line are almost same due

to same background. Based on the shape of the ball we successfully track football when it

passes through white line.

3.4 Performance Evaluation

Our main goal is to assess the effectiveness of our proposed algorithm over the state-of-the art

algorithms particularly for ball tracking. When an algorithm loses track of the target object,

it may resume to track after failure if there exists a re-detection module, or if it locates the

target object again as the object reappears at the position where the tracking bounding

box is. If we simply average the evaluated values of all frames in an image sequence, the

evaluation may not be fair since a tracker may have lost the target in the beginning but

could have tracked the target successfully if it were initialized in a object state or frame.

Following the above principle, here we use two widely used metric for tracking evaluation.

3.4.1 Precision Plot

One widely used evaluation metric for object tracking is the center location error, which

computes the average euclidean distance between the center locations of the tracked targets

and the manually labeled ground truth positions of all the frames. When a tracking algorithm

loses track of a target object, the output location can be random, and thus, the average error

value does not measure the tracking performance correctly. The precision plot addresses this

issue by showing the precision, defined as the percentage of frames whose center location

error(CLE) are smaller than a threshold, against the CLE threshold. However, the center

location error only measures the pixel difference and does not reflect the size and scale of

the target object. In Fig 3.8 we have compared our method with color histogram based

meanshift algorithm. Our method has shown good performance because we have used color,

edge and shape of football respectively as our features. Precision Score at Center Location

Error Threshold of 40 also carry significant performance indication. The relatively high

CLE, as shown in Fig 3.9, indicates that the tracker doesnot completely lose the track of

the ball. In this frame, CLE for our propose algorithm is 38. Thus it can be possible for the
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Figure 3.9: Yellow circle is the ground truth at frame 124 of dataset [18]. Blue Circle is the
predicted circle by proposed algorithm at that frame yielding CLE of 38.

Figure 3.10: Success Plot.

tracker to track precisely at subsequent frames. Whereas at more higher CLE, the tracker

completely loses the target, hence start to predict random erroneous location at subsequent

frames.

3.4.2 Success Plot

For completeness of the evaluation, the another important metric we use is the Area Under

the Curve(AUC) derived from the success plot of tracking algorithms. This is known as

success plot. Suppose we have a region Rt tracked by our tracking algorithm. We also

have ground truth region Rg. By |Rt| we denote the number of pixels in that region. Given

Rt and Rg the overlap score is defined as

Oscore =
|Rg

⋂
Rt|

|Rg

⋃
Rt|

.

Then, the success rate of a tracker on a sequence is the percentage of frames whose overlap

score Oscore is larger than a given threshold. By varying the threshold from 0 to 1, one can

generate the success plot, and the area under curve(AUC) can be derived afterwards. In

Fig.3.10 we have shown our success rate. Our success rate is so high as we have used weight

assignment technique of particle filter and we resample coordinates based on the pointwise

likelihood ratio. We also take shape and edge of the ball as our features with the color

feature which makes our algorithm more accurate than color histogram based mean shift

algorithm.
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Figure 3.11: Precision Score of different tracker at CLE Threshold of 10.

3.4.3 Accuracy Table

The precision score at Centre Location Error Threshold of 10 of different methods are com-

pared with the proposed algorithm in the table 3.11. The sub-sequences are cropped from

the original two dataset [18] and [19]. However the number of frames in each sub-sequences

are shown in the second coloumn of the table 3.11.
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Chapter 4

Conclusion

The proposed approach uses a probabilistic dynamic feature based approach to track ball

in any direction based on likelihood calculation for each sample point. However significant

between frame motion and camera movement has also been handled to a certain extend by

the construction of dynamic measurement space. Prior weightage on the shape measure of

the ball also makes it possible to track the ball successfully upto a extend even in its blurred

deshaped position owing to high speed of the ball.

During the course of work, a variety of optical flow based method has been tried to

estimate the speed of the ball from the variation of intensity distribution. But all of these

methods fail to produce any competitive result due to significant between frame motion.

From that point of view, any spatial variation of the features have not been utilized. However

it always provide a scope of work to implement it. This will lead to correction of optical flow

vector under the constraint of moving camera and thus can create a more robust tracking

model for small object tracking.
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