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PROBABILITY AS A BASIS FOR ACTION

Introduction

Applied science involves the discovery of so-called physical prop-
erties and laws and the use of these in the fabrication of things to satisfy

human wants. I shall assume that this is to be done at a minimum of human

effort. Does probability theory give us a rational basis for planning and
managing our actions to this end? I propose to discuss this question, and,
subject to specified limitations, to give an affirmative answer,

Our present age has been characteri zedl as "the reign of probability",
It is generally admitted that inference about the world is inherently of the
nature of probability inference, Our every-day as well as owr scientific
judgments are never more than probable, Asked if it is going to rain tomorrow,
we cannot be sure of our answer, Asked what is the ma gnitude of the charge on
an electron or to give some physical law, we likewise cannot speak with
certainty. Confronted with any question, all that we can rationally answer 1is
something like this: "I think that such and such is true”, "I am quite sure
that it is", or "I am almost certain that it is",

From the earliest recorded beginning of the human race, Man has
sought truth, partly perhaps for its own sake but certainly because he wanted
to use the results of his search in guiding his future actions.

It is desirable to keep in mind from the beginning the distinction
between the search for truth and the use of a Judgment assumed to be true, As
we proceed, we shall see that theré are two distinct probability concepts: one,
the probebility or degree of rational belief that a given judgment 1is true;
the other a measure of the expected frequency of occurrence of a phenomenon
within specified limits if the given judgment is true. An extensive critical
record of human endeavoré toward these ends is conteined in the history of the
deve lopment of theories of knowledge and in treatises on the use of knowledge.
One of the outstanding developments holding ow attention today is considered
under the heads, pure and applied science. |Both in the technical and lay

l, Weaver, Warren, "The Reign of Probability™, Scientific Monthl s Nov,. 1930,
Volume 31, pp.457-466.
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literature one finds much said about Scientific Method. There has been as it
were a veritable scramble to epply this so-called scientific method in one
field after smother. One of the first fields to be cultivated in this way was
that of the natural sciences., Now, we hear of the science of history, the
scienc.e of education, the science of agsthetics, the science of economics, and
one of the latest of these "new sciences", the science of management,

When one tries to put his finger on scientific method as a technique,
_he is reminded of his childhood experience in trying to put salt on the bird's
tail, I feel much that way today after having read several treatises bearing
on the subject. Thanks to some of the recent writers and in particular, to
Keynes, Nicod, Ramsey, Broad, Johnson, Lewis, Whitehead, Russell, Eddington,
Eaton, Jeans and Dibble, I have at least been led to a faint appreciation of
the nature of the problems inwlved in establishing a scientific method, Some
of these writers have done more for me: they have led me to focus nmy
attention upon the problems involved in the use of deductive and inductive
logic - particularly the latter.

Admitting the possibility of intuitive induction of facts and laws
of nature but dismissing it on pragmtic groun;ls, there are left for our con-
slderation the proposed techniques of rational induction. I shall try to
indicate the practical significance of the generally accepted conciusion that
the use of these techniques in a given problem can only lead to a probability
Judgmentl. This assumption will condi tion what I have to say about the
establishment of guides to human action in discovery.

We have still, however, to consider the scientific basis for action
involved in the manasgement of human efforts in the application of probability
Judgments. At least in the limited field which § shall consider, the guiding
principle is that which has played so importent a réle in scientific work,
namely, the use of hypothesis. It seems that efficient human action in this
field depends upon the inherent ability of the individual to estabiish in a

given case an hypothesis of the form: If such snd such is true, such ané such

l. By this I mean a j
Judgment to which we can attach
belief less than certaintye. ° @ rational degree of
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a séquence of eventis may be expected to fall within certain limits derivable
by deductive use of mathematical probability theory. It thus becomes possible
to choose limits to the fluctuations within the sequence upon the basis of

the given assumption such that, if the underlying assumption is true, we shall _
not look for causes of variation in the sequence more than some expected

number of times which under existing conditions is considered economical.

To get @y place we must not taeke in too much territory. Perhaps
some of you remember what happened to the cowboy who sauntered into a Texas
barroom and announced that he could lick anybody in the room, Nothing
happened. So the bully, somewhat non-plussed, added that he could lick anybody
in town, Again nething heppened, and he tocok in a little more territory with
the remark: "I can lick anybody in the whole United States". A moment later,
while slowly picking himself up from the corner of the barroom, he was heard
to remark, "That's all right, boys, I just took in a little too much territory"

1 shall try to profit from the experience of the cowboy in this story
and confine my remarks to some of the uses of probability theory as a basis for
action in the restricted field of engineering and manufacturing. What I shall
say has been prompted by a study of a key problem in this field; namely, the

establishment and maintenance of economic standards of quality.

Some Types of Probability Judgment at the Basis of

Engineering Action
We shall concern ourselves here with the following four types of

Judgment:
J. Thing B is of standard quality A.
II. X is the cause of Y,

III. The expected value and standard deviation of a statistical
variable, such as a physical property, are such and such,
respectively.

IV. The law of relationship between Y and X is such and such.
The first type of judgment is of almost universal significance. The
Jjudgment that B is of standard quality is perhaps but the outgrowth of one of

the oldest forms of judgment lying at the basis of common knowledge. In other
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words, it is the kind of judgment that is at the basis of representative
symbolism in which we attempt to characterize for common use any one of &
number of things by some particular symbol, Schematically, of course, we may
represent the situation somewhat as in Fig. 1, in which A is assumed to be the
symbolic representation for the standard of a given kind of thing. Along side
of this we conceive of a thing B which is or is not the sam? as the standard,
or as we say in the present connection, is or is not of standard quality.
Thus A might be the distance between two notches on the platinum iridium bar
kept in Paris and accepted as the standard length of the meter and B might
then be a thing produced in an attempt to reproduce this standard of length A,
'~ Similarly, A might be the accepted standard

STANDARD FOR A THING OF

s e xwo e e of a piece of a given kind of apparatus or
A 6 of some kind of manufactured product as,
Fig. 1 for example, a foodstuff, whereas B would

ther be something supposedly of the same kind.

The practical Judgment at the basis of the use of such a standard is:
B is of standard quality A,

A typical example of the second kind of judgment in which X is judged
to be the cause of Y would be that the chemical impurities present in corrugated
iron are the cause of the corrosion of the iron when used in culverts in a
given locality. Tables of values of the so-called physical constants contain
many Jjudgments of the third kind, whereas all of 1_;he so~called physical laws
whether statistical or functional are illustrations of judgments of the fourth
kind,

As a starting point, it is necessary for us to consider briefly the
meaning of the elements which enter into Judgments of the character just
described. In connection with the type of judgment involving the statement

that B is of standard quality 4, we are apt to think of this statement et first
as applying to the real parts of B end A,
to this problen,

In other words, upon first approach
We are likely to try to conceive of the "reslity" of B as
being of standard quality just as physicists and natural scientists have often
concelved of physies as dealing with the realities of the physical universe.
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We need but read a few of the comprehensive discussions of the sub-
Ject of appearance and reality by such men as Bradley, Broad, Whitehead,
Russell, Joad and others to see that there has been and still exists consider-
able confusion in the minds of philosophers and scientists alike as to the
nature of the difference between appearance and reality., There does seem to
be, however, general agreement among many modern logicians and natural
scientists that there is a certain givenness in an object which gives rise to
the sensations which we experience and interpret in the form of concepts which
are then introduced into empirical judgments. As to the exact nature of this
givenness, there are again differences of opinion, as such writers as Joad,
Eddington, Jeans, Dibble, Broad, Lewis; Stace, and others clearly indicate.
Fortunately so far as we are concerned in this elementary and prectical dis-
cussion, such uncertainties need not cause serious 4ifficulty, because we shall
content ourselves with a consideration of judgments involving concepts which
arise from the direect experience of physical objects.

Even here, however, we ‘meet with one rather serious difficulty in
that the awareness may not always be reduced - at least at the present time -
to what Eddington and others refer to as pointer readings, or as an engineer
might say, measurable quality characteristics of the thing. This is particu-
larly important in the consideration of the first type of judgment. The
Judgment, B is of standard quality A may, and usually does, refer not only to
those characteristics which are measurable lin the physical sense at the present
time but also to the characteristics such as beauty, aesthetic value, etc.,
which play such an important rdle in our appreciation or evaluation of many
manufactured products. We need only turn to the discussion of measures of
value as given so admirably by such mean as Laird, Perry, Carritt and others
to see how far we are at the present time from being able to establish the
quantitative measures of certain aspects of the thing of which we are aware.
In other words, it may perhaps be safely assumed that judgments in such cases
are at least partially subjective, Hence I shall limit my consideration here
to probability judgments in which meter readings or functions of meter readings
become the elements of the judgment. I think that with this limitation we
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can safely assume that there is comparatively general agreement that such
aspects of reality have an objective existence.

Confining our attention to this aspect of reality as used in the four
types of judgments to which our discussion is limited, there seems to be quite
general agreement smong logicians and scientists alike that the judgments must
be inherently of the nature of probability judgments. Without further dis-
cussion I shall start by making the following three assumptions which incidental.
ly I believe are consistent with much of the recent literature on the subject,

Assumption 1

Judgments or inferences of the types previously designated as I,
I, 111, IV, are never certain.

Assumption 2

If the inference or Jjudgment P is connected to the evidence @
thdugh some probability relation, then there is an objective

rational degree p{) of belisef in P upon the evidence Q.

By convention we shall take unity corresponding to certainty as a
measure of rational belief. If we did not assume the objective existence of
ps in a given case, it is somewhat difficult to see how far we could proceed
toward developing a methodology of arriving at judgments and of interpreting
these in deily use.

Assumption 3

The ob jective degree of belief p.t') in an inference or judgment

P is not an intrinsic property like “4ruth but inheres in the

inference or Jjudgment through some relation to evidence Q.

To point out the significance of this 3rd assumption, which appears
to be consistent with the beliefs of most students of the subject, we need
only call to mind a simple illustration£ We assume that there exists an
objective value of a physical constant such as the charge e' on an electron or
the velocity c' of light. We may find estimates of these constants in tables
of physical constants. For example, Birge:L (1929) gives for the electron

charge e':

e' =(4,770 + 0.005) x 10%° gbs. es. units (1)

l. Birge, Raymond T, - "Probability Values of the General Physical Constants

as of June, 1929", The Physical R
J'uly 1929”pp. l_y}37~¢M@’ VOlum l) N_O. l’
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All that we can say is that his estimate rests upon the evidence which he takes
into consideration. Upon the basis of such evidence and Assumption 2, thére is
some objective degree pé of rational belief in this estimte. Let us compare
with judgment (1) the following proposition:

The true charg on en electron is e' abs, es. units. (2)
Here o' is the unknown magnitude of the cherge. It is obvious that judgment
(1) is only of interest as expressing a result based upon given evidence,
whereas judgment (2) is apriorily certain and requires no statement of
enidence. Of course, (2) like the first law of thought.

A is A

may be claimed to be tautological.

From a practical viewpoint, the mere di fference between certain and
probable inference is significant in that it indicates that we should always
consider a probability judgment in relation to the evidence brought forth in
support of that judgment., In spite of this, how often we find articles dis-
cussing the most probable wvalues of physical constants: how often we find
tables of such constants with no indication as to the source of evidence used
as a basis of the judgment!

Furthermore, it is generally assumed that as more and more pertinent
evidence Q is acquired and teken into account, the degres pﬁ of rat;onal belief
in a given inference or judgment P may increése or decrease, as shown

schematically in Fig. 2. 1y

[
b

The degree of rational
belief p% will not, in
general, be a uniformly
increasing or decreasing
function of the amount of

evidence. Referring to

DEGREE OF RATIONAL BELIEF P

Fig. 2, we conceive of a

v Q

degree of belief pé corres- 0
i
ponding Yo a quantity q'i QUANTITY OF PERTINENT (NFORMATION Q@
of evidence. At least to p “4ﬁﬂ
Fig. 2 |
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myself it is a somewhat shocking commen tary on our ability to proceed towards
certainty to find that this procedure, in respect to degree of rational beliet,
may behave as indicated schematically in Fig., 2. For example, we may approach

as close to certainty as p"’l only to find that with the addition of a compara.

tively small amount of evidence the corresponding degree of rational belief
may be very much different.

This is of fundamental impor tence from the viewpoint of action. Thus
xoyneal emphasizes the point that there must come & time when it is no longer
worthwhile to spend trouble in acquiring more pertinent information, although
there is no available principle to determine how far we should go in increas-
ing the amount of information. In this sense it appears, therefore, that
probability theory does not tell us how close we are to truth in a given induc-

tion and does not tell us how far we should go in collecting data.

Three Kinds of Probability Concepts

We have stated four types of juigments and have assumed that each of
these is such that the judgment itself bears a certein probeble relation toan
accepted quantity of information. We have noted the difference between the
certain inference of formal logic involved in the proposition, "If Q, then
P," and vhat might be termed the corresponding proposition in uncertain or
probability inference, "If Q, then P with a certain degree p.") of probability"”,
Just as there is a formal or normative science of logié dealing with certain
inference, so also is there a partially developed structure of formal or
normative logic dealing with uncertain inference. The degree p{) of rational
belief or probability is, as I take it, a definite concept belonging to the
formal or normative logic of partial belief. I shall refer to this kind of
probability as degree of belief probability. So far as I have been able to
discover, this kind of Probability is almost universally accepted by logicilans.

It appears to have something of the formal standing of such concepts as terms,

propositions, variables, and so on, of formal logic and mathematiecs

Purthermore, there appedrs to be agreement among many, although not

all, logicians that theoretically pt"

e is a quantitatively measurable entity.

l‘ Ke odle
yies, Jele, A Ireatise on Probability , Maemillian Co., 1921, p. 77-

- e e e - =
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1 have so assumed in Assumption 2. There also appears to be agreement that it

is theoretically possible to develop a mathematics using this quantitative de-
gree of belief. Rax;:sey and Keynes are améng those who have made interesting
attempts to construct such a mathematics. There also appears to be universal
agreement among logiclans at the present time that we do not know how to
measure this degree of belief.

Finally it is of interest to note that there is, so far as 1 am aware,
general sgreement that the truth of a probability inference is just the same
as that of a certain inference. In other words, it is assumed that, upon the
basis of information Q, the inference P may be drawn with the degree of belief
p.;, with just as much certainty as a formal certain inference can be drawn,
even though it turn out that additional evidence may lead to certain inference
of the negative judgment,

In the begimning we mentioned the search for truth as one of the
compelling objectives of the human race. Perhaps it is reasonable to believe
that the formal processes of mathematics, symbolic logic, and formal logic,
including both certain eand probable inference‘, have developed largely as a
result of thia search for truth. One gets this impression on reading parts of
a‘freatise on formal logic, such as J., N, Keynes' classic, In other words,
it seems that we desire to make judgments about the physical world in which we
live and we want to make these true or certain judgments. 4s I have already
emphasized, however, we are also concerned with the use of such judgments and
hence we are concerned with the meaning of the formal processes of logic and
mathematics,

We need go back only a comparatively short time to find at least some
mathematicians believing that their subjeot had meaning., It appears that many
comparatively recent philosophers, as for example Kant, accepted as did the
contemporary mathematicians the intuitive character of the "axioms"™ of mathe-
matics and therefore accepted the conclusions or deductions from these axioms
as indicating the way in which things necessarily happen in the world., Of
course, most mathematicians since then have gradually swung over to the belief

so forcefully stated by men like Hilbert and Russell that mathematics is merely
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a game played with meaningless marks on paperX. During the same period, we

find physicists accepting this formal and meaningless character of mathematies,

When we turn, however, to the field of classical formal logiec, in-
cluding ‘the discussion of probable inference, it appears thatlit is only withip
the last few decades that attention has been given to the meaning of logic,

In fact, one needs only to read the Proceedings of the Aristotelian Society
for 1931 to find that there is still being waged a battle between those who do
and those who do not believe that formal logic is meaningless in the same sense
that Hilbert and Russell consider mathematics to be meaningless.

For example, So:sl::.:[ller:L in discussing the tautological and meaningless
character of the law of thought, A is A, of formal logic makes this comment:
"ps sctually used it is by no meams a tautology. For it is used to guarantee
the transition from what is taken to be one case of A to another. Hence it
should be formulated *A' is A, This is so far from being & tautology that we
are disposed to reject it as a monstrous assumption."”

It is significant that in the rebort of a symposium on formal logic
in the Proceedings of the Aristotelian Society for 1931 there 1; indicated a

partial agreement at least to the separation of logic into formal logic and
ugseful logic. It is of eveﬁ greater interest to note that five papers b} the
men teking part in this symposium, published in Mind for the current year,
indicate a still closer agreement on the need for some such division. When
one considers the stimulating critieal discussions ;n this subject by such men
as Lewis, Keynes, Ramsey, Nicod and Russell, for exsmple, it is difficult to
see how one can even consider the question of the need for such a division as
being open to further discussion.

When, however, we consider some of the recent discussions of men like
Jeans, Eddington, and Dibble from the field of natural science, and Joad, Cohen
and others from the field of philosophy, we find that the question as to
whether or not mathematics has meaning is again being thrown open. Similarly

we find a few prominent mathematicians like Brouwer within the last few years

- e o e
- e e =
.

1. Schiller, F.C.S., "The V
Tens 1955, o 5:,5_71. alue of Formal Logic™", Mind, Vol. XLI, No. 161,



-1 - W, A, SHEWHART'S COLLEGTEAN

raising the issue between intuitionism and formalisml. It is desirable, there-

fore, to keep in mind throughout the following discussion the distinction
between mathematics and deductive and inductive formal logic, 1nc1‘uding
certain and probable inference, considered as a game played with meaningless
marks on paper, and the use of such formal techniques which can lead, upon the
basis of Assumption 2, only to probable inferences or judgments of types I,
I1I, II1I, IV,

I should pesitate to emphasize this point beforie this audience if 1t
were not for the fact that we find so much loose talk about levels of signifi-
cance, degrees of certainty, accuracy, and so on, in some of ocur very best
treatises on probablility and statistical method. For example, I read in the
latest edition of what I consider to be one of the best books on modern
statistical method: -"It will be seen from the table that for any degree of
certainty, we require higher values of t, the smaller the values of n.” On
the same and following pages is the discussion of the significance of. the
mean of a small sample in which the author concludes, upon the basis of a
sample of 10 patients each of whom were treated by two drugs, that the effects
of the drugs were different. He says: "For n = 9, only one value in a hun-
dred will exceed 3.250 by chance, so that the difference between the results
is clearly significant."”

Is the practical man to conclude from such a discussion that a
significant difference established upon the basis of a sample of 2, the small-
est sample size given in the table referred to in the previous paragraph, is
just as significant as one éstablished upon the basis of a very large sample,
let us say 1000 or perhaps 10,0007 Suppose a doctor reads the conclusion
that the difference between the effects of the two drugs is clearly significant.
Is he to pay any attention to the fact that this judgment is based upon a
sample of 107 If the 10 patients constitute a random sample from some normal
and homogeneous population in respect to the effects of the two drugs
"Student's™ theory as here usgd in the cited illustration tells us sometaning

Just as definite for small samples as for large. This point I shall illustrate

1. "Intuitionism andé Formalism", Bulletin of the American Methematical

Society, Vol. 20, 1913-14, p. 81,
“x 1AL INST v




later. The trouble is that as here used, wé are not sure that the assumptions

We need to ask ourselves, therefore, what degree of rational belief
justified under the con-

apply.
that the assumptions are true in the present case is

ditions. In other words, if we have evidence sufficient to justify such an
assumption before a sample 1is taken, we can then justify a prediction about
any size of sample, but if all we have to justify such a prediction is the
sample itself, then a sample of 10 certainly does not give us & very satis-
factory basis.

We are brought at once to consider in what way we may use Jjudgments,
I take it that our general object of trying to acquire knowledge of one kind
or another is that we may use it in predicting something about the future.
For example, we seek a law or relationship between two variables in order that
we may make use of this law in gulding future actions, Similarly we try to
measure physical constants, such as the charge on an electron, in order that
we may have the results of such measurements as a basis for guiding future
action. In other words, having arrived at a judgment of any one of the four
types, we proceed to act as if this judgment were true, at least until
further data necessitates a modificatibn of the Jjudgment.

Now, it follows from what we have already sald that since we can
never be certain of our inferences or judgments involving pointer readings or
physical meaéurements, we can never hope to predict with certainty what may be
expected, In fact it is generally assumed that no two experimental or ob-
servable conditions are exactly the same, so that all that we can hope to do is
to try to recognize physical states of affairs ﬁsually characterized by some
such phrase as "the same essential conditions",

For example, we conceive that certain physical constants, like the
charge on an electron, or the velocity of light, are truly constant. However,
the only kind of observable constancy even here, is that wherein we try teo
maintain the same essential conditions of measurement., All that we can hope

t
0 do under such condi tions, therefore, is to obtain some kind of technique

which will emable us to predict what we may expect to get in the future in

some understandable way from the viewpoint of probability
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Under such conditions it is found useful to adopt the following

assumption, thus introducing the concept of statistical probability:

Assumption 4

If a sequence of events happen under the same essential conditions,
where an event is characterized in terms of m quality characteristics,
X1y, X29605 Xiyeey Xmy, then the ratio p of the number of events in
the sequence of n such events having characteristics falling within
the respective rengesl Xj + dXj, Xp + AXpseeey Xf * AXyye00y Xy + AXp
to the total number n of such events, approaches a definite limit
p' as the number n increases indefinitely. This limit is a statis-
tical probability.

Fomally we have

Li.mS P = p!

n—>

(3)

where LimS stands for a statistical 1limit which is characteristically differ-

ent from a mathematical limit in that we never reach a value n, of n such that

for n > ny, the difference |p - p*| vecomes and remains less than some pre-

viously assigned positive quantity e.

Perhaps the simplest example of such a sequence is one in which each

event can happen in only one of two mutually exclusive ways.as in the throw

of a coin, the event being the throw of a head, let us say. An observed

approach of the ratio p of the number of times a head was thrown in n throws

to the number n for a sequence of one thousand throws of a penny is shown in

Fig. 3.
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to X“ + dX-I-
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It is generally agreed, of course, that another experimental sequence of this
kind made even with the same coin and by the same person wquld not be exactly
the seme as that indicated in Fig. 3, although it might be. Furthermore,
there is no clear way of defining formally what we mean by "the same essential
conditions".

It appears that all we can hope to do under such circumstances is
to try to set up some apriori basis for calculating the number of times that
we may expect an event to happen in a sequence of n trials made under con-
ditions which we assume or postulate to be essentially the same. Equipped with
such an hypothesis we can proceed to examine the series of events as they
bappen and try to satisfy ourselves as to whether or not they appear to
happen in a way consistent with the belief in the assumption of the existence
of the same essentisl conditions. Associated with this concept of limiting
frequency as statistical probability, there is the mathematical framework
of the calculus of probabilities and distribution theory.

In the last few paragraphs we have gotten a glimpse of what I like
to think of as three kinds of probability: degree of belief probability,
statistical probability, and mathemmtical probability. As I have indicated,
there is no general agreement as to the meaning of degree of belief probability
There are those like C, S. Pierce, Ramsey, and others who see a way of inter-
preting this kind of probability as a kind of statistical probability,
However, Ramsey at least makes very clear the inherent limitations to this
» 1nterpretatidn although we shall not attempt to discuss the issue at this
time, The concept of statistical probability is useful in the sense that it
gives a basis for forming and using hypothetical estimates of the expected
number of times a given event may be expected to happen in a series of n
trials., In this sense it has meaning. Of course, there may be a mathematical
technique associated with the use of either degree of belief or statistical
probability concepts. Furthermore, in the statistical case there ére generally

two recognized kinds of mathem tical techniques depending upon the two methods

of estimating the rrobability, of which we shall say more shortly. In one

case the mathematics treats of fre quen cies whereas in the otker case it treats



of combinations and permutationsl.

DISCOVERY - METHODS OF ARRIVING AT PROBABILITY JUDGMENTS

In this section let us consider briefly some techniques of useful
logic which may be used to guide our action in the search for truth or, more
specirfically, in increasing the rational degree of belief in some one or other
of the four types of judgment under consideration. Specifically let us con-
sider some ways in which these principles help us to give practical answers to
the following questions: What are good data? How meny times shall an observa-
tion be repeated, or how many measurements? How make efficient use of data?
How lay out experiment in such a way as to minimize humen efrfort to attain
a given degree of rational belief in a judgment? At least six importent
techniques of drawing useful inferences call for cc?nsideration:

l. Analogye.

2. Simple multiplication of instances.
3. Elimination.

4, Principles of insufficient reason and balanced
causation.

5. Consistericy with body of accepted empirical knowledge
or "theory".

6e Prineciple of maximm likelihood

I shall touch upon that part of each technique which my limited
experience has shown to be significant. I fully appreciate thet I do not know
many“of the ramifications of wvhat is customarily characterized or discussed in
the literature under these six headings, and I am sure thet I have likely
failed to comprehend up to the present time the significance of many of the
comments of such writers as Keynes, Nicod, Eaton, and Johnson, on the points
involved, Also I share what appears to be the opinion of many that these
six techniques, as treated in the literature at least, are not wholly independ-
ent one of the other.
Analogy

When we make the judgment, B is of standard quality A, it is true
that in order to get anywhere, we must interpret the quality of the standard

in terms of physical properties that can be measured or sensed. From a

1, Cf, Dodd, E,L., "Probability as expressed by Asymptotic Limits of Pencils

of Sequences"™, Bulletin of the American Mathemmtical Soclety, Vol. 36,
1930, pp. 299-305.
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practical viewpoint we must sti1ll further limit ourselves to & finite number
of such properties, although the usefulness of the judgment will depend 10 a
large extent upon whether or not the likeness in respect to the specified
qualities carries with it & likeness in respect to unspecified qualities of
importance., Whaet we wish to be able to infer is something like this: If 4,
the standard of comparison, is assumed to have m properties of importance
from the viewpoint of use, of which only n may be specified in the present
state of our icnowledge, and if B is found to conform to the stendard A in re-
spect to these n qualities, jt follows thet B will probably h{ave the rem2ine
ing (m-z) properties, the probability becoming greater as {(m-n) approsches zero.
The need for some method of estimating the degree of rational belief
to be associated with a givem inference of this kind is particularly great in
the specification of a tentative standard to be used in the early stages of
production of product in accord with this standard. Suppose, for example,
that it has been past practice to make some piece-part from some well-known
material having & set of n properties specified as a basis for a stendard.
Suppose that it is found that a new kind of alloy has these same n properties
and can be produced much more cheaply thean the kind of material previously
used. Immedliately the involved problem arises as ‘o whether or not the new
meterial, if substituted for the old, may later be found to have some as yet

unkpnown and undesirable property or properties, such, for example, as rapid

deterioration in service. In what way may we use the technique of analogy to

tell us something about the degree of rational belief- that we may put in the
Judgment that if B is of standard quality in respect to the n specified charec-

teristica, it will also be of standard quality in respect to the (m-n) other

importent characteristics? In this question I, for one, strike a snage.

W
e must keep in mind that premises which taken together have a pro=-

bab 3
111ty p] end a probeble inference which would confer on its conclusion the

probability pé if these premises were certain,

will confer on its conclusion
the probabilityl pi pé.

That is, for example, starting from premises which

- e S e W e . ® e e -

l. This 1is supposed true fo
mobebilitibos T both statistical ang degree of belief



taken together give a rational degree of belief p‘"l to the Jjudgment, B is of
standard quality A, upon the basis of B and A being certainly alike in respect
to n of a possible m-n quality characteristics and a set of measurements on
the n characteristics which confers on the conclusion that B and A are alike
the probsability p]'az, then the probebility of B being of standard quality A is
but p{’l p{) o

I em inclined to believe, however, that the appreciation of the
existence of this snag, as it were, is an essential element in the equipment
of the one who writes an engineering specification in that it forces him to
appreciate as perhaps nothing else will the possible waste of engineering
effort in trying to attain an uneconomically high degree of rational belief
in the judgment that B is of standard quality in respect to some one or more
quality characteristics where he appreciates that he cannot be certain of
having specified all important characteristics.

Simple Multiplication of Instances

The particular aspect of confirmation to which I wish to direct
attention is that which lies at the basis of the justification for making more
than one measurement under what the experimentalist is willing to assume to be
the same essential conditions. >I personally feel that one of the most
important characteristiecs of the human mind, at least insofar as the particular
field we are considering here is concerned, is what appears to be its ability
when properly trained to sense ~ snd often to sense correctly in the light of
future evidence - what appear to be the same essential conditions. Turn to
the history of experimental science in the field of physics and I believe that
we will find almost universal agreement that a trained experimentalist in a
particular part of this field finally reaches a stage where he is willing to
assume that the only way he can approach closer and closer to the objective
value of the thing being measured is by increasing the number of observations.
Under such condiiions Assumption 4 constitutes the logical basis for determin-
ing how many measurements to make as soon as one has made up his mind as to
g

now he hopes to get in the statistical probability sense to the obJjective true
"

value.



Teke as a simple case the measurements of the charge on an electron
as made by Millikan, Assuming that at the time this set of measurements was
taken, Millikan was willing to assume that he had arrived at the state where
the only way he could approach closer to the true objective value was by
inoreasing the number of observations, then it follows upon the basis of
Assumption 4 that by taking a series of observations xl,xz,..,xn there exist
certain statistics or symmetric funections of the n observed values such that
for any one of these statistics 84> let us say, there exists a statisticsl

limit,

lims e =e' , (4)
n—>

where e' is the objective charge on an electron. Fig. 4 shows such a statis-
tical sequence for the successive averages of 1, 2y 3, «e.« 58 observed values,
This postulated law of statistical approach for the case of the average has

been available for use as a basis for

- action in discovery of this type
e certainly ever since the time of Lapla
: . '.". ...--.-““.. Ry and Gauss. In other words, it has
ém ._.....“....-,"' : been generally recognized ever since
am} , then that the approach in this
b N statis tical sense is inversely pro-
NUMBER of UEASUREMENTS ( <\i portional to the square root of the
Fige 4 X

number of observations, assuming, as

both Laplace and Gauss did, that the distribution of errors is normal., As a
result of later studies it has been shown that such approach is characteristic
for the average for all kinds of distribution of errors where the occurrence
of an infinite error is assumed to be impossible, an assumption which we almC\)St
certalnly have a right to make in practical work.,

The concept of statistical limit underlying the approach to truth
through multiplication of instances under the same essential conditions gives us

basis for determining how many measurements should be taken in the sense which
I shall discuss in more detail in a later section,
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Elimination

As a basis for the application of the technique of confirmation by
simple enumeration, it was assumed that this technique may be applied only
after a state has been attained wherein differences in observed velues may be
assumed to have arisen under the same essential conditions, or as one might
say, under the same constant system of chance causes. Figuratively speaking,
if we are on the right track to truth, a study of the technique of simple
enumeration simply tells us how fast we may expect to approach truth,

In all of this, however, there is that one little word if, the same
bothersome if that thwarted our uncritical acceptance of the previously
mentioned conclusion that the effect of two drugs is clearly significant. In
all such cases our interpretation is certain if the assumptions are true.

As every physicist and engineer is well aware, it is usually a long time
before one succeeds, to his own satisfaction and the satisfaction of his
colleagues, in eliminating assignable or findable causes of variability. About
a century ago, Mills attempted to provide a technique for discovering assign-
able causes of variation which he hoped would lead to certainty in respect to
en induction. He gave us the well-known five methods; namely, agreement,
difference, concomitant variations, joint method of agreement and difference,
and the method of residues, More recent students of the subject, of course,
have more or less generally agreed that the methodology provided by Mills in
these canons of indut;.tion can only lead to probable 1nferencel.

In general, these methods considered ;cogether as a technique
emphasize the fact that the process of discovering and eliminating assignable
causes of variability increases our degree of belief in the resultant accepted
cause of the event in a more or less orderly menner. Thus in the process of
measuring a physical quantity, such as the charge on an electron, if it were
possible for the experimentalist at the beginning to specify all of the
possible sources of such constant error and if he could then eliminate with

certainty each one of these possible sources, he would, by this process, have

l. One of the most interesting elementary treatments of this particular phase
of the subject, from the viewpoint of probebility inference, is provided by
Eaton in his General Logic, New York: Scribners, 1931.




gotten himself on the right track toward truth where all that he would need to

d to approach as close as he wished would be to apply the technique of con-

firmation by simple enumeration, sub ject, of course, % the statistical nature

of this approach. The trouble is, however, that here again we have that Word

if, and we do not have what Whitehead calls an ultimate ground upon which to
base a rational degree of belief in the judgment that the chosen set of n
possible sources of constant error constitute all of the sourcese.

It is usually assumed that this general mocess of elimination
arfords the best method of increasing our degree of rational belief in the
resultant judgment based upon the series of observations made after we have
convinced ourselves that we have succeeded in eliminating assignable causes,

The history of experimental physics Justifies the assumption, I
believe, that it is only through comparqtively extensi ve researches, in
general,. by different men, in different laboratories, by different methods,
that the degree of belief that a given method of measurement will give the
true result as a statistical limit approached through simple increase in size
of sample, becomes large enough to justify teking comparatively large numbers
of measurements by any one method.

Now, of course, all of us realize the difficulties involved in apply-
ing the canons of Mills because of the statistical nature of many of the
variables that must be nandled in the practical problem, even though this
point, so far as I know, was not considered by Mills himself. As a result, it
becomes necessary to develop and apply statistical criteria for detecting
assignable causes. I have.recently discussed elsewhere2 at some length this
phase of the subject in relation to engineering problems. I wish here to
emphasize again the point there made that the application of such tests in-
volves a choice of statistical test, a choice of method of estimt.fng the
Parameters entering that test, and a choice of limits to be used. The

necessity for making such choices simply introduc es another source of un-

1, ¥wh Y
itehead, A.N., Process snd Reality, New York: Macmillan Co., 1930

2 Shewhart, W.A, - Economni.
oho ¢ Cont C
New York: D, Ven Nostrang mﬁ%’%g%).%ﬂ.&x of Manufactured Product,
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certainty in addition to those long considered in the application of the

principle of elimination where it is not necessary 1% appeal to statistical
criteria.

What guide t action does probability theory give in the process of
elimination, perticularly when we appeal to the use of statistical criteria?
In the first place, for reasons which I have given in the sbove reference,
such criteria should never be made the sole basis for judgments as to whether
or not assignable causes are present. To illustrate, let us consider the
oldest criteria of this type, namely, those proposed in the literature as a
basis for rejection of observations. These are usually based upon the assump-
tion of a normal law of errors in which estimates of the expected value X!
and standard deviation ¢' derived from the sample are substituted. One such
rule is that of Wright amd Hayford quoted in mamy books on theory of errors
and least squares. As quoted by Bruntl it is: "Reject each observation for
which the residual exceeds five times the probable error of a single observa-
tion., Examine carefully each observation for which the residual exceeds 3.5
times the probable error, and reject it 1if any of the accompanying conditions
are such as to produce lack of confidence"., Expressed in terms of standard

deviation the rejection limit is 3.373.

Personally I 4o not believe that en observation should ever be reject-
ed upon the basis of application of such a criterion alone. Assume for the
sake of argument that the aversge X and stendard deviation o of a sample of n
observations are taken as estimates of X' and o' respectively. Under these
condi tions we may say: If the errors are distributed normelly sbout X' = X
with a standard deviation ¢' = ¢, then the mathematical probability of an
observation falling outside the range (X' + 3.373 ¢') is ,00076., Were I
certain that the assumptions involved in the if were justifled, I would not
need to go further because I would already know the expected value X' to be
equal to ¥. So soon as we throw open the question as to the degree of ration-

al belief in the assumption of normality end the assumptions X' = X and

- - = -
---------—--—--—----—----’---—--—--.

1. Combination of Observations, Cambridge University Press, 1923, p. 132,
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o' = g, we get into deep water, as previous snd later discussion clearly indi.

cates. In other words, We cannot be certain - in fact most of us will agree

that we are much less than certain - that the probability of getting an

observation outside these limits is .00076, In addition, we must keep in mind
\

that there is nothing apriorily sacred about the choice of 3,373 ¢' or any

other multiple of o' as a basis for establishing such limits,.

For such reasons I would consider using such a criterion only to
assist me in picking out those observations which I should particularly
scrutinize. Rejection or retension of the observation would be based upon the
results of such serutiny. My colleague, T. C. Fry, states as his rule of
rejection: "Discard observations only when you are convinced they are bed;
never simply because you are not convinced they are good", To this rule I
heartily subscribe,

There is another difficulty with applying formally any test such as
that of Wright and Hayford, although I fail to find any discussion of it in the
literature. If we were to reject an obsefvation only when it fell outside
the renge X + 3.373 g, it is obvious that unless the number of oh;servations is
at least 15 no observation would ever be rejected, This follows at once from
Tchebycheff's theorem that at least (1 - T,’;?;l‘gz) n of the observations lie
within the range X + 3.373 o¢.

0f course much the seme line of argument as that concerning tests
for re jection of observations applies to the results attained by application
of any criterion to test for significant differences. If, for example, a
sample of a new kind of alloy msde by one producer, when compared with a
similar sample from another producer, is found upon the basis of some accepted

criterion to be significantly different, as we often say, this simply means,

that the difference is such that if such and such assumptions made the basis

of the criterion and the methods of estimating the parameters therein are

t
rue, then we have a right to expect a difference as large as that observed

only once in so often.

N
OW, upon the basis of a given set of assumptions, it becomes

o
Possible to calculate quite rigorously the expected number of times that the
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observed phenomenon will fall outside the limits of the oriterion and hence be
the cause of action leading to the search for trouble, even though the trouble

is not there. The justification of the assumptions underlying the use of such

a criterion is a matter that rests entirely, so far as I see, upon the engineer
or scientist making use of the criterion, in just the same way that the justi-
fication of the methods used in eliminating assignable causes of variability

in the msasurements of the charge on en electron by a given method must be left

to the experimentalist. 1In other words, put in e more popular way, éuch

eriteria enable a good scientist or good engineer to do his work efficiently
and this efficiency becomes of real economic significence in such a field as
the control of quality of manufactured product.

The criterion to be used in a‘ &iven case should be the most efficient
one to catch the kind of trouble that the engineer or scientist believes to be
present in his particular case. In other words, the engineer tries to set up
a criterion that will catch the kind of trouble that he thinks is present in a
particular case and he will use probability and statistical theory to enable
him to put such limits on the c¢riterion as will keep him frém wasting too much
time looking for trouble of the kind he thinks may be there, if this particular
kind of trouble is not there.

I think enough has been said to indicate the differénce between the
use of criteria for detectio'n of assignable causes of variability in the sense
which I have found useful, snd the use of criteria quite similar mathematically
as a basis for re jection of observations or, in a more general case, as a
basis for deciding whether or not a population is homogeneous. In the first
case the use of such a criterion is but a step in the process of arriving at
a final judgment whereas, in the second, it is to a large extent made the
basis of the final judgment as in the previously conéidered statement that the
effects of the two drugs are significantly different.

Insufficient Reason and/or Balanced Causation

I shall content myself in this connection with the statement of the

following assumption which forms a basis for such computations:
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Assumption 5

If an event can happen in eny one of se'?‘eral mtually exclusive
ways, all of which are equally likely, and if a certain number of
these be called favorable, then the ratio of the number of favor.
able ways to the total number of ways 1is equal to the probability

p' that the event will turm out favorablye.

It seems to me that this assumption either explicitly or implicitly
underlies all of our applications of probability theory as a means of predict.
ing the future. It is, of course, one of the basic postulates of the calculus
of probabilities, and, so fer as I see, it is involved in one way or another
in sampling theory in some such concept as homogeneity, random condition,
or same essential conditions. As Ca.mp:L has recently pointed out, this probda-
bility is generally used to pierce the veil of the future. Thus, as a simple
{llustration, assuming that the probability of throwing a head is one-half,
apriori probability may be used to tell us much asbout a sequence of throws,

In such a simple case, howevwer, the practical man is liable to lose sight of
the fact that there is a mathematical framework and at the same time a degree
of rational bellef that this framework applies in the particular case., Just
ags soon as the practical man appreciates this situation he sees that the funds-
mental problem involved in the application of the mathematics of probability
is the establishment of a satisfactory rational degree of belief in the under-
lying assumption involved in some such phrase as "equally likely", "random",
"homogeneous", or "same essential conditions".

"I'he need for laying emphasis on the degree of rational belief
aspect of applications of probability is of particular interest when we try to
interpret or evaluate the significance of a sample. For example, in our dis-
cussion of the approach to truth by repetition, we introduced the concept of
"same essential conditions", which simply means that the probability of an
observed value of a variable falling within a given range is supposed to

remain constant throughout the series of measurements. When this condition 18

maintained, we appear to approach some objective value in a statisticsl Limit

sense. Following this discussion, however, we considered briefly the very

--—--------—---s—

l. Camp, B.H., "Definitions of Probability".

May, 1932. American Mathematicel konthly,




diffioult prodlem of elimination or assignable causes of variability so as to

arrive at a condition where we could approach, in the statistical sense, sone

objective value.

When we come to consider the simplest case of sampling, such as
taking a finite sample from an assumed homogeneous lot, we again must focus
our attention upon the need for Justifying our belief that the lot is homo-
geneous, It 1is easy to do this, of course, if we can do something which is
equivalent to shaking the lot but, as I have pointed out elsewherel at some
length, in a particular case it is not often so easy to do this, Thus there
are many kinds of manufactured product which we cannot thoroughly mix, as it
vere, and in such cases, of course, the sampling problem becomes much more
involved than in the simple case of sampling from a homogeneous lot.

As all of you know end as I shall try to emphasize in a succeeding
section, a sample by itself means little =nough when taken under homogeneous
conditions, and when not taken under homogeneous conditions, it means much
less. It was the appreciation of this fact that early led some of us in the
engineering field to lay emphasis on the need for finding out more about the
caugses of lack of homogeneity so that we could divide the product into rational
sub-group 2. To do this, of course, amounted to laying emphasis on the
problem of elimination as discussed in the previous section.

It i3 of interest to note that the application of eriteria for
detecting assignable csuses of variability in applying the process of elimina-
tion leads to certain economies in the processes of production, One of the
most important economic consequencea of such work, however, is that it gives
us the kind of positive information about a given product which we need to
have so that we can set up specifications for economic standards and thus

attain a product whose component piece-parts, including raw material, may be

divided into homogeneous groups, thus meking possible efficiert design in terms

-----
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l. Shewhart, W.A., "Random Sampling", Bell Telephone Lahoratories Monograph
B-576.

¢ ¢+ such division is

2. The term rational is introduced here to emphasize tha

’ not based solely upon numerical criteria but involves the element of
rational judgment at every step.
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of the inherent variabilities in the homogeneous gIoupsSe.

Consistency With Body of Accepted Empirical Knowledge or "Theory"

There seems to be quite general agreement among logicians that one
of the most important ways of increasing the degree of belief in an empirical
judgment is to show that it is consistent with the general body of knowledge in
that particular field. Consider, for example, the measurement of Planck's
constant, the velocity of light, and the charge on an electron, whose objective
values we shall denote by h', ¢', and e', resrectively. There is, of course,
the following theoretical relationship between these quantities:

hie’ . 137, (5)

2ne!
Sir Arthur Eddington, for exemple, in his latest discussion of this relation-
ship states that he believes that the value 137 is there obtained.by pure
deduc tion employing only hypotheses already accepted as fundament'al’ in wave
mechanicsl. If we accept the hypotheses of wave mechanics and LEddington's
conclusions, Eq. 5 becomes a condi tion which the measured values of the con-
stants must satisfy.

Let us consider a little further some of the problems involved in
trying to estimete the degree of rational belief contributed by tests of con-
sistency with previously obtained empirical knowledge. To do this we shall
take the problem of measuring the charge on an electron. As a result of

Millikan's measurements up to 1917 he gives as his estimate

e' = (4.774 % 0,005) x 10%° aps. es. units. (6)

For the time being, we shall assume that (6) may be taken as a symbolic

statenent of the judgment that the Objective charge e' on the electron lies

within the range there indicated. Now in accord with Assumption 2, there is

e degree p{)l of rational belief in this judgment. We do not know the magni-

tude of this degree of belief but we may represent it schematically on a
scale of belief as in Fig. 8

e T

» Proceedings of the R i
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Now, &as a result of considering the data available in 1929, Birge,
as already noted, gives g corresponding judgment

o' = (4.770 # 0.005) x 10%° abs. es. units, (1)

Similarly, in 1932,
considering the data then available, Birge gives a Judgment

where (1) is to be interpreted in the same way as (6).

o' = (4.7688 + 0.0040) x 1010 aps. es. units. (7)

Thus we have before us for consideration three empirical judgments., Judgment
(6) is based upon Millikan's data in 1917, judgment (1) upon Millikan's date

of 1917 together with similar measurements up to 1929, and judgment (7) upon

all of the data up to 1932. In other words, we have three judgments and three

quantities of infomation, let us say Q,s, Q,l, and Q.7, respectively.

Let us cgnsidefr first the question: How is our degree of rational
belief in judgment (6) based upon information Q6 modi fied through consideration
of information Q,l and Q,, respectively. In accord with Assumption 2 there is a
degree of rational belief in judgment (6) for each of these three quantities of
information. Let us call these pt')l, p]':,z, and p.l')s respectively, For example,
l(ilikanl himself in 1930, meking use of information Q‘l’ again arrives at
judgment (6). What would be the relative positions of p.!')l, pl')z, end pés if
indi cated schematically in Fig. 57 I am still looking for an answer to this
question.

Now, there is another question, the answer to which is of practical
significance: What are the relative magnitudes of the degrees of bellef
corresponding to the three judgments (1}, (6) amd (7)? I am still looking for
an answer to this question.

If we assume that Eq. 5 is a condi tion in respect to the general body
of knowledge which must be satisfied by the three constants, h', ¢!, and e’,
vhat effect does this piece of information have upon each of the rational
degrees of belief which we have Jjust been considering, because it surely must
have some effect in accord with our assumptions? I em still looking for an

answer to this question.

- e = & = o_.--...—-—-—--—--—-_—-—————--—--
- - e

l. "Most Probable 1930 Values of the Electron and Related Constants®,
Physical Review, May 15, 1930, pp. 1231-37,
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The questions we have just considered in respect to the relative

magnitudes of rational belief based upon aveilable techniques of induction
are, I believe, about the simplest kind of practical questions of this

character which we may raise, When we come to consider some of the more

complicated problems involved in trying to determine our degree of rational
belief in a law of relationship the problem becomes far more complicated. This
is particularly true when one attempts to weigh the significance of the
assumptions underlying the mathematical techniques involved in reaching
judgments (6), (1) and (7), including the choice of functional relationship,
In this connection, as most of you know, there always has been and
still remains a real issue among scientists who have looked into this question,
as to how much significance can be attached to the difference between such
techniques. Thus Birge makes use of the method of least squares. Milliken,
on the other hand, arrives at his result by a process involving graphical
determination. Harold Jeffreys in an article which has just come to my desk
guggests a method of modifying the theory of errors to account for small sample
sizes and to take into account apriori hypotheses as to the distribution of the
standard deviationl. Now, the application of the methods of Birge, Millikan,
and Jeffreys to the seme set of data such, for example, as Millikan'®s 1917
data, would lead to three judgments of type (6) upon the basis of the same set
of data, that is we wuld have three ranges based upon the same set of data.
The question that bothers me is: Which one of these methods should I use,
admitting, of course, that there is some importance to be attached to the fact
that an analytic one always leads to thé same results in the hands of differ-
ent individuals, while the graphical one does not. In other words, associated
with the three judgments of the type (6) obtained through the application of

these methods to the same set of data, in accord with Assumption 2, there are

three different degrees of rational be lief, but the question as to the relative

magnitudes of these three seems to be far more involved than the corresponding

questions which we have already considered. Whenever I ponder over such

questions I remember Lord Rayleigh's remark that the theory of errors was a

l. "Theory of Errors and L g
east S
Series 4, Vol. 138, No. A-854?u;§?s;’,7_£{oceedin 2 of the Royel Soclety,
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good thing to read up on and then forget, and I can Sympathize with the lay
engineer or scientist attempting to arrive at judgments of the types (8),

{1}, and (7), when he is faced with the problem of trying to choose from among

such techniques e&s even the simpler ones we have Just considered in connection
vith the names of Milliken, Birge, and Jeffreys.

In the light of such considerations, there is a need for revision in

the statements found in many practical treatises on the theory of errors and
the theory of statistics. I cannot take time here to give more than one
illustration although it would be easy to extend this list., I shall choose ny
illustration from the last paper which has come to my desk deeling with the
application of the theory in industrial science. In the conclusion of this
article after discussing some of the recent work of "Student", R, A, Fisher
and others, the following sta‘bemant; are made: "Statistical theory provides
him with a measure of the accuracy of his result. When only & small number of
determinations have been made the chemist finds he cannot be so sure of his
final result. He finds, however, a range of values within which the true
result most probably liese e....."” I must confess in the light of the dis-
cussion immediately preceding that I am not able to state the range of values
within which a true result, such as the charge e' on an electron most probably
liess For exemple, I fail to see how statistical theory will provide me with
& measure of the accuracy of Milliken's result. In brief, I believe that such
& claim takes in too much territory and in so doing is harmful because it puts
before the practical man an objective which sooner or later,upon the basis
of our present knowledge of statistical theory,must be re jected.
Ihe Principle of Maximum Likelihood

Anyone who has seen an accident, listened to a group of witnesses
tell the judge how they think it all came about, observed the judge weigh the
evidence and give the final decision, has witnessed the application of the
Principle of meximum likelihood. In other wrds, given an observed event,
there may be several alternative ways of accounting for it, We often try to
choose that explanation or theory upon the basis of which the given event is

most likely, as we saye. Of course, if one considers critically the signifi-
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cance of the terms "most likely" or "most probable", etc., used under such
condi tions, he will find that they do not all mean exactly the same thing., 1I
do not, however, wish to consider this particular phase of the sub ject here
but rather to turn for a moment to the sigaificeance of a statistical estimte

of a parameter determined by the method of maximum likelihood as defined by

R, A, Fisherl in the following terms:

"If in eny distribution involving unknown .parame ters hi, 7‘.‘.'3, Lé cony

the chance of an observation falling in the range 4X be represented by
f(XQ ki O Né [+ XY ké o ooo)dx

then the chance that in a sample of n, ny fall in the range dxl, ng in the

range axz, and so on, will be

ne & )%p
-(-ﬁ-i;;-)- 2r(xp, Moy Nyos Mo ...)dxpg .
The method of maximum likelihood consists simply in choosing that set of values
for the parameters which makes this quantity a‘mﬁximm, and sinee in this
expression the pareameters are involved only in the funetion r,‘we have to make
Z(log ) a maximum for variatons of hi O Lé O 7«..3 O eseo”
The method was introduced and used much earlier by Gauss but has been studied
at length by Fisher in several recent papers.
Let us consider a very simple problem. The following sample of four:
1.7
«2

l.4
S

2

is the first of a series® of 1000 such samples drawn from an experimentally

normal universe. Subject to minor corrections allowing for the fact that no
experimental distribution can be rigorously continuous, the distribution in
the bowl from which this sample was drawn is fixed by the two paraemeters X!
and ¢' in this particular case where Wwe know the distribution to be normsl.

1. "On the Mathematical Foundati ' Irans
ons of Theoretical Stati "
Roy. Soc. of Lond,, Series A, Volume 222, pp, 509-56;?1;%322: thil. Iraps.

2. Shewhart, W.A., Op. Cit. p. 442,
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Let us consider the problem of estimating X' and ¢' from the sample.,
The a priori provability of getting a sample of n values XX

under the assumed condi tions is

. &

( o (Xl-'f')2+(x2.f-)2f.,,+(%_z.)2

"‘éznc'g ° = . (8)

Whittaker and Robinsonl, using the method of maximum likelihood,
take as estima tes those values which meke (8) a maximum and in this way get
from the two equations,

Q1. = 0 ana L. = o (9)
oL! do*

the estimates,
Xt =X and ¢' =¢ (10)

where X is the average and ¢ is the standard deviation of the sample,
If instead of applying the method of maximum likelihood to (8) we
apply it, as Irwin recently suggested, t the distribution f(¢), we get

gl= ./ﬁp_-_-I o . (11)

Substituting the observed value of ¢ in (10) and (11), we get respectively:

c' = g = ,618 aﬁd o' = 1,155¢ = .714.
Granting for the sake of argument thet the mathematical basis for (11) is
better than for (10) as some maintein, the practicing statistician is still
faced with the problem of deciding how good such an estimate really'is or
perheps better, what it means? Before considering this question, however let

us throw into the ring certain other proposed -estimates.

For example, some have suggested as an estimate the solution of
gft{e) . 0
c ?

G"/?‘%-O's

where f{¢) is the distribution function of the observed standard deviation.

from which we get
(12)

- - o= -
- on e e e e m m e e G G es W o Gv B A W e» e e &

1. Celculus of Observations, Blackie and Son, London, 1924, pp. 186-187.
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To these estimates we might add those expressed in terms of the mean deviatin

of the sample as these are often recommended in treatises on theory of errors

and in engineering handbooks. There is also a group of estimates based upon

inter-quartile and other ranges.
To get on with our argumen t, let us assume, however, that we could

eliminate estimates not based upon some multiple of the observed standard
deviation on the score of efficiency. We have then left for consideration

various estimates of ¢' all of which can be written in the form

s X = cot
where ¢ 1is a constant depending upon the particular choice of the basis for
our estimate. ,
Of course, we know the a priori distribution function for the standard
deviation of samples of n drawn from a nommal distribution. For n = 4, this

distribution expressed in terms of ¢' is shown in Fig. 6.

180 - [ ]
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0075 0.37 Ms??,«NDA%g?gevmﬂlbzrzsa 1.575 La7s signific ance of any estimate based
- /& A3 Ck\b
Fig. 6 9 upon the observed stendard deviation
of the previously mentioned sample, All that we can really say is that the

observed standard deviation .618 is ome from the distribution shown in Fig,. 6
lying roughly within the range zero to 20's Since we can say no more about
the observed ¢ itself in its relation to the set of possible ¢g's, it seems

to me that we can say no more than that avout a multiple of g. In other words

we are forced to face the fact that o from a small sample is just ¢ from a

small sample,

It may be helpful to others as it has been to myself to consider the

si
gnificance of the di fferent estimates in the very simple case where M samples

of four hav
ave been drawn from Presumably as many different universes., Consider-



- 33 -

ing only estimates (10), (11) and (12), we would have the following
series:

three

1 1.1550, l.4142¢g)
O2 1.155¢, l.41420,
T 1.1550y, l.4142qy.

Assume now that it so happens that the M universes are the same, that is, they
are all normal with the same parameters X' and o'y, although this fact is not
known to the investigator. Which of the three sets of M estimates of ¢' would
have given us the greatest percentage of estimates within a narrow range o't
bo'? Obviously the answer is set (12) and not the maximum likelihood sets,

Ify however, Ac' is increased sufficiently, the snswer becomes set (10).

Now, of course, we may approach this problem by maeking use of Bayes!
theorem as recently set forth in an interesting article br Molina anad
Wilkinson.l ‘Making use of their method and assuming that one may choose an
apriori distribution function satisfactory to the given case, one may calculate
the probability distribution of the unknown mean. Even here, however, we must
at some place or other choose estimates of X' and ¢g'« In the case of estimates
of o' these are usually if not always expressed as multiples of the observed
standard deviation o. Here again, however, we mist recognize the fact
presented in Fig. 6 that for samples of 4, an observed ¢ expressed in units of
o' may lie anywhere within a range of approximately O to 2¢'.

To all such methods discussed at length in the.literature we must
add a host of others less well defined. Thus in the case of the sample of
four-I might argue as follows:

I have never known of an experimental normal universe that was not
chosen symmetrical sbout zero., In the second plsce it is obviously much more
simple to construct such a one than any other. It is reasonable to believe
that an experimentalist will try to have as many cells as possible and yet not

have an excessive number of chips. Furthermore, because of simplicity, there

l. "Frequency Distrivutions of the Unknown lean of a Sampled Universe",
Bell System Technical Journsl, October 1929, pp. 632-645.
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are advantages in choosing the standard deviation o' as unity and marking thy
abscissae in terms of o'. All of this is based upon previous experience,

Looking at the sample, we find that the four values are consistent
with the hypothesis that cell intervals are in tenths. If they represent ,l,
then to cover the range X' + 3¢' would require 61 intervals, and such a dis-
tribution, as can easily be shown, would require about 1000 chips. All of
this seems reasonable. If the intervals were, say, in .Olc', the number of
ohips required would be several thousand and hence difficult to use experi-
mentally.

Now, assmﬁing that o' » 1 and X* = 0, the probability of getting a
sample whose average is not greater in absoiute value than the observed averag
.95 1s .66. The observed awersge is not unreasonable on this hypothesis.
Furthermore, it is unreasonabdle to expect that the average Xt is identical with
the observed awerage .95, Hence we might comnclude that Xt = 0, ¢' = 1, whereas
X = .950 and ¢ = .618.

Although I have for the most part confined my discussion to the
problem of estimating o' of the normal distribution in the bowl, somewhat
similar remarks could be made about the methods of estimating the average X',
Even in this very simple case, where one is given & priori that the universe is
normal, I think every student of the subject appreciates the difficulties
involved in trying to justify a given choice.

Under these conditions does sampling theory serve in any way as a
guide to action? My emswer is "yes™ in that, first of all, it leads us to be
cautious about what we say based upon the evidence given by a ssmple alone,
even though it be dramn under such ideal conditions as here considered, unless
the sample size is large enough, But how large is large enough? The answer
to this question depends upon the circumstances in hand, Fig. 7 shows the

approach of the expected value of observed stendard deviation ¢ in a sample
of n to the objective g' of the universe,

terms of ¢' within

together with limits expressed in

whioh approximately 99% of observed o¢'s of samples of size

nad '
rawn from a normal universe may be expected to lie. I have found this to

be one of the most helpful pictures to keep in mind when trying to determine
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how meny measurements to take in a given case. It is interesting to sse how
repidly these limits approach the true ¢' as-a function of sample size n
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In a practical case of sampling, we seldom, if ever, know in the sense
of the previous simple experiment that the universe is normal. Furthermore,
the thing under measurement is usually some objective wvalue and there is always
the question as to the existence of assignable causes of variability such as
constant errors and erratie fluctuations in the measurements. A4s an lllus-
tration let us assume that instead of drawing a sample out of a bowl, we are
making a series of measurements of the charge on an electron. In this case,
as previously noted, we must first try to establish a reasonable degree of
rational belief in the assumption that assignable causes of variability have
been eliminated; that the errors of measurement are distributed normally about
the objective value and that the measurements have been taken under random
condi tions., It usually works out in stich instances that before a practical
man has come to the place where he is willing to believe in the assumption
thet a given method will lead to the objective value in a statistical sense
simply through repetition of results, he has already been led to meke some sort
of judgment that the objective value being sought for lies within some agreed-
upon renge and to experience what he considers to be a rational degree of
belief in this judgment which is not much jnereased by taking more them 5, 10,
or 15 readings by a single method, as anyone can justify for himself from dis-
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cussions such as those givem by Birge and others on the measurement of physical

quantities.
At this point we should consider briefly the meaning of probable

error as used in the literature. Thus the estimate of a physical quantity \!
is of ten expressed in the form of

A= ANte, (13)
where ¢ is an estimate of .6745 7%—: s o' being the objective value of ithe
stendard deviation of the error of measurement. Confining our attention to
the simplest kind of problem, let us consider the meaning of such an estimte

based upon the previously mentioned sample of 4 drawn from a normal universe,

»Student™ in 1908 derived the distribution of

X -X

IR emuspantas——

c
as a function of sample size. Upon the basis of this work it follows that
before any samples of a given size n are drawn, we may say something about a
sequence of such samples. In other words, Student succeeded in calculating
the probability that the mean X of a sample of n, drawn at random from the
normal population in the bowl, will not exceed in the algebraic sense the
mean X' in the bowl by more than z times the standard deviation in the sample.
Thus takiné the _case'n * 4, we may say apriori befoi'e‘a sample is drawn,
that the probability is .50 that the difference |X' - X| for a sample of 4 will
not be greater in absolute value than .44¢g.

Stated in another way we may say before any samples of 4 are drawn

that if we draw a sequence of M such samples eand if after the M samples are

drawn we set up the M renges X; + 440y, Xy + 44055 e.. Xy * <440y We may

expect 504 of these ranges to include X', Fige 8 is such a series of ranges

constructed for the first 100 samples of four drawm from the same normal
universe from which the previously mentioned sample (the first semple in this

series) was drawn. Now the X! in the bowl is 0.0 and we see thet 51 of the

100 ranges include this value - a close check on theory.
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In the simple case where we have M seamples known to be drawn from M
different normal universes "Studemt's" theory enables us toc set up a range
upon the basis of each sample such that the expected number of universes whose
true aversge values lie within the associated remges could be made any -fraction
of M that we please. It should be noted that rstudent's" theory, however, has
to do only with a sequence of samples. |
Enough has been seid to indicate the meaning of estimate (11) when
used in "Student'sa" theory but this use must be kept separate in our minds

from the use of an estimate to tell something about the universe from which
the sample is taken,
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Incidentally it is of interest to note that this same distinction
exists independent of sample size., Thus 1f we take samples of 1000 from the

previously considered normal universe and set up a range

oy
Ja-1

X, % .6745

for the ith sample, where 1 takes the values one tom, the number of such
samples, then we may expect, before we have taken any such samples, that 50%
of the ranges thus established will include the point X* = 0., Making use of
avallable data, Fig. 9 shows such ranges mmr four samples of 1000 each. For
" sake of comparison this is drawn to

the ssme scale as in the case of ranges

gu ‘ . ‘ | o established upon the basis of "Student's"

% ° i theory. In the first place as is to be
i expected the width of the ranges is

- much less but it is interesting to note
T T i L s : that only two of the ranges include
Pig. 9 FJaen the true value X' = O, Dame Fortune

happened to be good to me in this particular case making a close check between
theory and practice!

In other words, if we know that we are sampling from a normal

universe, apriori distribution theory enables us to set up ranges, such as I
have just been considering, that may be expected to include the true value in

the bowl any given fraction like .50 of the number of times that such samples

are drawn, independent of the size of sample. Upon the basis of theory and

experimental evidence, such as we have Just considered, it seems reasonable
that we may entertain the same degree of belief in such a prediction in the
case of small samples as we can in the case of large samples, It is very

important though to note the significemce of the size of sample in closing up,

as 1t were, the renges. TFor this Teason it seems %0 me that such a rénge

should always carry with it a statement as to the size n of semple to which it
applies,

When, however, I focus my attention upon the problem of estimation
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and ask myself, after a sample of a given size has been taken, what is the
value of the two parameters of the population in the bowl, I immediately
confess that I d not know the answer, If I were faced with the necessify of
having to make a decision as to the estimate of the parameters in the bowl,
upon the basis of information that I now possess about experimental sampling,
and upon the basis of the information given by the previously considered
sample of four, I should teke as estimates X' equals zero and ¢' equals unity,
for the reasons which I set forth earlier in this section. In all cases in
trying to answer a question of this type I am in asgreement with the conclusion
of Molina and Wilkinson, expressed in their article previously referred to,
that the data given by the sample silould be considered together with a.il other
available information. Of course, this cannot always be done in the compara-
tively simple way 1nyolv1ng the use of Bayes' theorem. -

In the last few paragraphs, of course, we have limited our discussion
purposely to the simplest kind of problem where it is knownea priori that the
distribution is normal and that the series of observations are free from
assignable causes of variability. When we step over into the practical field
where we must -take these factors as assumptions, the problem naturally becomes
much more difficult and our estimate of the degree of belief that we may
entertain in the und’erlyiné assumptions must be.eome the controelling factor in

our analysis and interpretation of a given set of data.

CONCLUSIONS

I have tried to indicate the significance 6f keeping in mind always
the difference batween certain and probable inference. Furthermore I have
stressed the significance of distinguishing between the problem of estimating
the degree of rational belief in the assumptions underlying the prediction
based on probability theory and the problem of predicting if we were certain
that the assumptions were satisfied in a given case.

In a very general way, such & survey of the cqgtribution of probabil-
ity theory as a guide to action indicates the need for giving attemtion first
to the problem of eliminating or segregating assignable causes of variability

until we have arrived at a state where we may rationally justify the use of



the calculus of probabilities and distribution theory in predicting what may

be expected to happen. The field of industrial science, and particularly that

having to do with the production of finished goods to satisfy human wents,
offers an exceptional opportunity for the development of importent applications
of probability theory. Here we set out to do a thing &again and again within

limits that are economical. A consideration of probability theory serves as a

guide in establishing efficient ways of eliminating assignable causes of
variability and of specifying economic stendards and control methods, /In
doing this, use is made of meny important mathematical contributions in the
calculus of probability and statistical theory. Although there are several
sorkers in this field in America, England, and Germany including such men as
"Student", E., S. Pearson, Tippett, Plaut, Daewves and Von Mises on the other
side of the water, it is my firm conviction that we have on_ly just scratched
the surface of what appears to be a veritable mine of important epplications

of probability theary in securing efficient human action in engineering and

manufacturing,.

W, A. SHEWHARY'S COLLECHRN

LeuTTh:
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