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A report outlining the results of some recent studies in
the development of an operationally verifiable statisti-
cal methodology and presenting a critical discussion of
some of its potential contributions that are fundamental
in: a) the attainment of economic control of quality, b)
the establishment of tolerance limits, c¢) the presenta-
tion of data in the most useful form, and d) the speci-
f'ication of requirements as to accuracy and precision.
This methodology is fundamentally different from that
based upon the so-called modern statistical theory of
inference in that: it starts with the assumption that a
state of statistical control does not exist in genersl,
instead of with the assumption that it does exist; it
leads to prediction in terms of tolerance limits instead
of fiducial limits; and it takes into account the signi-
ficance of tests for both consistency and reproducibility
instead of only the latter - three requirements imposed
by the practical problem of quality control.

/’__\\"‘
’,‘\QT\CAL ,NQ . '7;

\vl') . ess

Bell Telephone Laboratories, Inc.
Inspection Engineering Department

Issued for use of members of the Department
Nererher 1937



I would almost say: "Show me a uniform product and I will
show you a manufacturer who really understands his processes."
There are two kinds of manufacturing psychology. One which
cannot apply refinements and careful manufacturing control be-
cause of cut market prices. The other which must apply refine-
ments and controls because prices are so cut. The wastage and
improvisations which are the accompaniments of variabllity are
far more expensive than the knowledge and controls which result
in uniformity. It requires a genius to produce uniformity,but
even a politician can be an expert in inconsistency.

C. C. PATERSON, Director
Research Laboratories
General Electric Co.,Ltd.
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INTRODUCTION

"Interchangeable menufecture gives an output better in qualit cheaper in cost
and more useful than would be possible without it. {t constizﬁtes oge of the
greatest contributions of the machine age vveeeees"

J. W. ROE, Professor of Mechanical Engineering
New York University.

The above statement is mede in a very interesting article whieh
leaves off at the point where the present story begins, namely with the intro-
duction of statistical techniques into control theory and practice, It is
pointed out that with the introduction of these newer techniques, mass pro-
duction of interchangeable parts takes a big step forward in achieving its
goal of lower cost and greater usefulness of manufactured goods, Furthermore,
such theory and technique is of necessity characteristicelly different in
certain fundamental ways from that developed for use in fields of research,
Hence there is what we may cell statisticel method from the viewpoint of
quality control in mess production of interchangeable parts. The development
of statisticel methodology from this viewpoint is most likely in its infaency
but progress has been made to such a point that one can at least set down some
of the basie contridutions that such methods meke in the attainment of maximum
advantages inherent in the process of mass production.

By interchengeable menufacture is usually meant the production of
complete machines or mechenisms, the corresponding parts of which are so near-
ly alike that they will fit into any of the given mechanisms. The term rit as
here used is likely, however, to suggest mechanicel or electrical fits as con-
trasted, for exemple, with the substitutability from the viewpoint of quality
of one part for any other part supposed to be the same. In this bdbroader sense,
one piece of a raw or fabricated material should be interchangeable in a
quality sense with any other similar piece of the same meterial. Such a re-

l.Mechanical Engineering, October, 1937, pp. 755-758.,



quirement of jnterchangeability applies not only to engineering materials but
also to foods, drugs and the like.
Schematically we may represent any set of objeots such as similar

pleces or quantities of a raw or fabricated materisl by the symbols

Ol. 02. see 01, se0 o“. ON‘.'l’ see ON"". soe

What is wanted from the viewpoint of interchangeability may then be thought of
es the requirement that one of these parts is for the purposes in question just
as satisfactory as any other. If it were feasible to make the physical objects
symbolized by the 0% identical one with another in respect to all quality
characteristiocs, then the 0's would obviously be interchangeable in use.

Since it was not possible to attain this degree of conformsnce, the
conoept of a go-no-go tolerance was introduced sometime around 1870. For eech
quality characteristic, the requirement was made that this characteristic for
each of the objects, represented by the O's, should lie within specirfied
tolerance limits,

I'-Ll to X-Lz.

Thus far, statistical concepts played no part. In fact it was not until years
later that the need for statistical methodology became apparent. This came in
trying to attain the most economic plan of production within tolerances. Our
story begins at this point.

The first chapter sketches briefly the role of statistics in the
three steps of controlling quality -~ specification, production and inspection -
ocorresponding respectively to legislative, executive and judiciel acts. We see
why, for economic and quality assurance reasons it is necessary to introduce
the concepts of aimed-at value and action or control limits and how these may
be provided through the application of statistical theory. In this way we come
to see the practical importence of the concept of a state of statistical ocon-
trol or homogenity as a oonceptual limit to which one may hope to go in making
efficlent use of materials and plece perts. |

1t tnrng out that the three steps in the control process are cor-
related in such a way that they cannot be taken independently end that the
ultimate goal can only be reached through mass production. This comes about
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because 1t appears that the physical state of statistical control is only
approached graduslly. Moreover, this fact 1s of marked significance from the
viewpoint of statistical methodology in that it indicates the rather extensive
investigations that apparently must be made before one can place much reliance
on inferences from samples based upon the assumption thet the sample has arisen
from a state of statistiocal control. This chapter also considers briefly
three important concepts of statistical control and shows the rdle that these
play in specifylng, producing and judging quality.

In the first ohapter we start with the assumption that tolerance
limits have already been established. In Chapter II we take up the prodlem of
establishing such limits for both controlled and non-controlled statistioca)
states. In many ocases all one has to rely upon is the tabulated values of
physical properties in tables of physical constants which incidentally are
often given in the form

T+aX
for any given quality X. Obviously in establishing tolerance limits it ia
often of great advantage to make the tolerance range a minimum. The seocond
chapter, therefore, considers the problem of establishing limits of variabllity.
In the first place, we find that theoretically this oan only be done with the
maximum degree of assurance after a state of statistical control has been
attained. What is perheps more importent is that even under statistioally
controlled conditions the establishment of a tolerance range is a fundemental-
ly difrei'ent problem from establishing a range of the type usually discussed
ih statistiocal texts and books on the theory of errors. One can at least
under idealized conditions set up a remge of the form X + 4 X that has an
operationally verifiable meaning no matter how small the sample size, s0 long
as it 1s not less than let us say three, and a range for a small sample is
just as valid as a range for a larger sample. The interesting point is, how-

. ever, that the meaning of the two ranges is fundementally different. Satis~
factory tolerance ranges oar be set only upon the basis of comparatively large
samples. This fundamental difference between tolerance ranges and the
fiducial ranges of statistical theory has to the best of my knowledge not been
previously discussed in the literature. Incidentally it is shown that some
solentists make huge errors by confusing the two ranges. If as is found to be
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the customary case, the variability does not satisfy the oriteria of ocontrol,
then the establishment of a tolerance range becomes a much more diffiocult
problem and the best approximation involves not only the application of
statistical techniques but also tests for logiocal consistency with other
pertinent data.

We are more or less naturally led to the problem considered in the
third chapter - the presentation of mes surements of physical properties and
constants. Thus in establishing tolerances we must go from a set of observed
values to an estimated tolersnce. Likewise in judging quality - the third
step in the control process - we have this same general problem of tabulating
great masses of data in a form of quality report that will be most useful.

This is an exceedingly important problem - in fact it is also involved in eny
attempt to summarize the results of research as, for example, 1ln tables of
physical and chemical constants. This problem is usually discussed in the
literature upon the basis of assumptions that do not hold in practice and hence
is not directly applicable. The discussion of this subject must, therefore,
take us beyond customary theory and practice if it is to be applicable. Some
new ground is broken in this chapter <that has & field of application beyond
that of quality control. Here again we are gulded not only by statistical
testa but also by tests of consistenoy.

In order to attain any of the advantages of interchangeability it is
necessary to satisfy three kinds of ceriteria - one for astatistical control, one
for precision, and one for accuracy. The fourth chapter tackles the probdblem
of specifying requirements of acouracy and precision. In the first place, it
1s necessary to consider the confusion of these two terms in the literature and

to show why it is very important in the theory and practioe of quality control

to differentiate between them. Moreover, it is shown that before we can place

much significance on any quantitative measure of precision we must first have
adequate evidence that a physical state of statistical control exists. In this
chapter we are introduced to a oriterion of operational verifiability and a
differentiation between theoretical and practical verifiability, the first of
which plays an important réle in glving meaning to the "intent™ of specifioca-

tions
and the second Plays the role of eriterion in the preparation of inspec-

tion s
pecifications. Much of the disoussion as to accuracy and precision has

a bdbroad
bearing in many fields of sclence outside of quality control.
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In brief, Chapter I starts vhere "exact™ science left off with a oon-
cept of tolerance limits and shows how and why it is necessary to apply statis-
tical techniques in putting two action limits and an aimed-at value detween
these tolerance limits. Chapter II starts a step back of this, namely, with
the consideration of ways and means of establishing tolerance limits. Chapter
11X considera the problem of summarizing data from the viewpoint of testing
hypothesas, so important in setting tolerances and in providing an adequate
running quallity report. Chapter IV closes with a oconsideration of the all im-
portant requirements of mass production of interchangeable parts - acouraocy
and precision and the specification of these in operationally verifiable terms.
A consideration of these four problems-serves td reveal the rapidly expanding
field of appliocation of statistical theory and technique in the ocontrol of
quality in an economiocal way and in a way to provide maximum quality assurance.
Incidentally some of these applications reveal hitherto undescribed but im-
portant characteristics of applied statistical methodology.
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CHAPTER T

STATISTICAL CONTROL

The possibility of improving the ecomomy of steel to the consumer is therefore largely a
matter of improving its uniformity of quality, of fitting steels better for each of the multi-
farious uses, rather than of eny direct lessening of its cost of production,

1l
JOHN JOHNSTON, Director of Research
United States Stesl Corporation

There are three senses in which statistical control may play an im-
rortant part in the control of quality of menufactured product, These are:
(a) as a concept of a statistical state constituting a 1imit to which one may
hope to go in improving the uniformity of quality, (b) as an operation or
technique of attaining uniformity and (c) as a juigment. Here we shall be con=-
cerned with an exposition of the meaning of statistical control in these three
senses and of the rdle that each sense plays in the theory and technique of
economic control. But first we should consider briefly the history of the con-
trol>of quality up to the time that engineers introduced the statistiocal oon-
trol chart technique which is in itself an operation of eontrol.

SOME IMPORTANT HISTORICAL STAGES IN CONTROL OF QUALITY

To give us a perspective from which to view recent developments, let
us look at Fig. 1. That which to a large extent differentiates man from ani-
mals is his control of his surroundings and particularly his production and use
of tools., Apparently the human race began the‘rashioning and use of stone imple-

ments about a million years ago as is evidenced by the crude stone implements

shown to the left of Fig. 1 which were re- 1500000 150000 10000

2 YEARS AGO | YEARSAGO | YEARS AGO 130 YEARS AGO

cently discovered just north of London.

Little progress in control was made, INTRODUCTION

however, until about 10,000 years ago oF

when man first began to fit parts to- INTERCHANGEABLE

gether as evidenced by the holes in the PARTS

instruments of that day shown ;n Flg. 1.

Throughout this long period ap- Fig. 1

1. "The Applications of Science to the Making and Finishing of Steel”,

Mechanical Engineering, February, 1935.
2. This discovery is reported in Man Rises to Parnassus by H. F. Osborne,

Princeton University Press, 1928, The photograph of the stone implements
of a million years ago has been reproduced by permissjon from this most in-
teresting book. The implements of 150,000 to 10,000 years ago have been
reproduced by permission from the fascinating story told in Early Steps 1n
Human Progress by H. J. Peake, J. B. Lippincott and Company, 1933.



parently each man made his own tools, such as they were. As far back as 5000
years ago the Egyptians are supposed to have made and used interchangeable bows
and arrows to a limited extemt. It was not, however, until about 1787 or a hun-
dred and rifty years ago that we had the first real introductioh of the concept
of interchangeable parts. Only yesterday, as it were, did man first begin to
study the technique of mass productionm!?

From the viewpoint of ideology it 1is significant that this first step
was taken under the sway of the concept of an exact science., Accordingly an ate
tempt was made to produce piece parts to exact dimensions. How strange such a
procedure appears to us today, accustomed as we are to the concept of tolerances.
But as shown in Fig. 2, it was not until about 1840 that the concept of a "go"

tolerance was introduced and not until about 1870 that we find the "go no-go"

1
tolerance. PARTS INTERCHANGE-
BEGINNING FIRST FITTED  ABILITY
| . LITTLE, IF ANY, CONTROL OF COINTROL TOGETHERY, INTRO'DIlngcsE_,D
U 1 1
1,000,000 BC 300,000 BC 8000BC 1787
7 ? 7 ?
QUALITY
CONTROL
ex,lxcr Glo GO NIO-GO CHART
} | 11937
1787 Is;to 1870 1924 L
7 ? Pl N
P g & \(\B
Fig. 2 >

“hy these three steps: exact, go, go no-go? . The answer is quite simple,
Manufacturers soon found that they could not make things exactly alike in respect
to a given quality, it was not necessary that they be exactly alike, and it was
too costly to try to make them alike. Hence by about 1840 they had eased away
from the requirement of exactness to the go tolerance., Still too much time was
wasted unnecessarily in trying to stay reasonably close to the tolerance., Then
came the idea of specifying the go no-go tolerance or the range within which the
quality characteristic might vary and still be satisfactory. This was a big for-

ward step because it gave the production men more freedom and brought a still

greater reduction in cost. all he had to do was to stay within the tolerance

1. It
que:ﬁclmb:m :ﬁtidatléat the first six dates shown in Fig. 2 esre given with a
uthorities are not in unanimous agreement as to the exact

dates. I think, however th
to be approximat’.ely corr«.-;ct..at Fhe dates nere shown will be adnitted by ell



Though this step was of great importance something else remained to
be done. The way the limits are necessarily set is such that every now and
then pieces of product are produced with a quality characteristic falling out-
slde the specified range - in other words - defeotive. To Junk or modify such
pleces adds to the cost of production. But to find the unknown or chance
causes of defectives and try to remove them also costs money. Hence after the
introduction of the go no-go tolerance there remained the problem of trying to
reduce the fraction p of defectives to a point where the rate of increass in
cost of control equals the rate of increase in the savings brought about
through the decrease in the number of rejects.

For example, in the production of the apparatus going into the
telephone plant, raw mﬁterials are gathered lliterally from the four corners of
the earth. More than 110,000 different kinds of pieceparts are produced. At
the various stages of production inspections are instituted to catoh defective
parts before they reach the place of final assembly and are thrown out. Here
one finds the problem of determining the economic minima for the sizes of the
piles of defectives thus thrown out.

This problem of minimizing thevper cent defective, however, was not
the only one that remained to be solved. Tests for many quality characteris-
tics - strength, chemical composition, blowing time of fuse, and so on -~ are
destructive. Hence every plece of product cannot be tested for such a charac-
teristic to see if it falls within the specified tolerances. Engineers must
appeal to the use of a sample., But how large a sample should be taken in a
given case in order to give adequate quality assurance?

The attempt to solve these two problems, giving rise to the intro-
duction of the quality control chart technique in 1924, may therefore be taken
as the starting point of the contributions of statistical technique to the
control of quality of manufactured product in the sense here considered.

Fhy after 19002
Why, you may ask, was it something like one hundred and fifty years

from the start of mas5'production'of interchangeable parts to the time of the
more or less intensive study of the spplication of statistical methods in

this field? There are at least two important reasons.
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First, there was the rapid growth in ‘stapdardization. Fig. 3 shows
the rate of growth in the number of industrial standardization organizetions
both here and abroad. The first one was organized in Great Britain in 1901.
Then beginning in 1917 we get a rapid spread of the realization of the impor-

tance of national and even international standards. Fundamentally the output
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of such standardization organizations is specifications of the alimed-at quality
and in certain instances of methods of measuring this quality. But when one
comes to write such a specification, he runs into the two kinds of problems -
minimizing the number of rejections and minimiiing the cost of inspection to
give an adequate degree of quality assurance - discussed in the previous sec-

tion. Hence the growth in standardization spread the realization of the im-

portance of such problems in industry.
Second, there was a more or less radical change in ideology. We
rassed from the concept of the exactness of science in 1787, when interchange-

ability was introduced, to Probability and statistiocal concepts which came into

their own in almost every field of science after 1900, Whereas the concept of

mass production of 1787 was born of an exsot sclence, the concept underlying
the quality control chart technique of 1924 was born of a probable science.
We may for simplicity think of the menufacturer's trying to produce

& plece of product with a quality characteristic falling within a given toler-

an
¢é range as being analogous to shooting at & mark. Now, if one of us were



shooting at & mark and failed to hit the bull*s-eye, and some one asked us why,
we would likely give as our alibi, CHANCE. Had some one asked the same question
of one of our earliest known ancestors, he might have attributed his lack of
success to the dictates of fate or to the will of the gods. I am inoclined to
think that in man& ways one of these alibis is just about as good as another.
Perhaps we are not much wiser in blaming our failures on ohance than our
ancestors were in blaming theirs on fate or the gods. But since 1900 the
engineer has proved his unwillingness to attribute all such fallures to chance.
This represents a remarkable change in ideology which characterizes the develop-
ments in the application of statistics in the control of quality.

Starting with the introduction of the go no-go tolerances of 1870, it
became the more or less generally accepted practice to specify for any given
quelity characteristic X that this quality should lie within specified limits
L1 and Lz, represented schematically in Fig. 4.

QUALITY X | ' 1
Ly L2

Fig. 4

Such a specification is of the nature of an end requirement on the specified

quality characteristic X of a finished piece of product. It provides, as it
ware, & basis on which the quality of & given product may be gauged to deter-
mine whether or not it meets the specification. ZFrom this viewpoint, the pro-

cess of specification is very simple indeed. Knowing the limits L. and L2

within which it is desirable that a given quality characteristioc x}shall lie,
all we need to do is to put these limits in writing as a requirement on the
quality of a finished product. With such a specification at hand, it 1is pre-
sumed to be possible through measurement to classify a plece of product as con-
forming or non-conforming to specification.

As we have seen, however, two difficulties arise with this form of
specification. Suppose that the quality in queation, the blowing time of a
fuse for example, is one that can be determined only by destruotive tests., How
can one give assurance that the gquality of a given plece of product will meet
the specification without first destroying it? Or again, even where the

quality characteristic may bé measured, there is always a certain expected
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fraction p falling outside the tolerance limits. How can we go about ettaining
an economic minimum to this fraction non-conforming? A little reflection shows
that the simple specification of a g0 no-go tolerance is not satisfactory in
such instances from the viewpoint of: 1) Economy, a:md 2} Quality Assurance.

. The story o;}hgw statistical techniques can be used successfully to
attai;x economies and to provide maximum quality assurance has been told else-~
where.l This we shall consider as water over the dam and start here with a
consideration of control from the viewpointsof specification, production, and
inspection of quality. This brings us at once face to Tace with the three
senses in which the phrase"statistical control’ may be used. To illustrate,
suppose we fix our attention on some kind of material, plece part or physical
object which we wish to produce in large quantities. Let us symbolize the
pieces of this product by the letters

OlA, 02' ses 01, seoe ON' oN“'l’ ose oN“'i’ sse (1)

Given a process of production, it presumadbly may be employed to turn out an
indefinite number of pieces. Now let us consider the requirement:
A, The quality of the O's shall be statistically controlled in
respeot to the quality characteristic X.
As an exemple, the O's might be condensers, end the X, a capacity; they might
be pleces of steel and the X might be carbon content; or they might be any

other kind of object and associated quality characteristic. Alongside this re-
quirement. let us consider also the meaning of the statement:

B. The quality of the O's is controlled in respect to the quality
characteristic X.

On the face of it, the only difference between A and B is that in one the wverd

n §
shall Ye" is replaced by "is". The requirement: A, however, is of the nature

t
of a characterization of a state of control whereas B is a judgment whioh may

or ma
¥ not be true. The process or operation of producing the O's is the oper-

ation of
control and may involve the use of statistiocal techniques such as that

of the co
ntrol chart. Let us, therefore, examine each of these concepts of
control in turn.

1. Shewhart, W. A., Economic Copmtral af ot e amome= = = = = = = = ===

v > Economic C
D. Van Nostrand Cm%%_'gi,o{_g%l{anty of Manufactured Product,




THE PROBLEM OF QUALITY CONTROL

When one attempts to turn out pieces of product the
quality characteristics of which will meet specified tolerance
limits, he runs into two difficulties. First, as noted above,
it is general practice to set tolerance limits for a particular
characteristic in such a way that not all pieces of the product
meet the tolerance requirements. Hence there is usually a
fractlon p of any lot of product turned out which does not con-
form to the tolerance requirements and which must therefore be
given special attentlon. The added labor thet this entails,
as well as the fact that some or all of this non-conforming
material may have to be junked, adds to the cost of production
and hence there arises the problem of trying to reduce the
fractionip,non-conforming to a minimum. In the second place,
many of the specified quality characteristics cannot be in-
spected except by the use of destructive tests, - the blowing
time of a fuse or the chemical content of some material, for
example, Hence, without inspecting ell of the product turned
out, we must determine ways and means of giving maximum assur-
ance that the quality of product, if and when tested, will be
found to meet the specified tolerance requirements. These are
two of the practical préblems that originally led to a consi-
deration of the application of statistical theory in quality
control. In this section we shall try to formulate the problem

of control from the viewpoint of these two problems.
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In the first place, how is one to determine how far
it is economically feasible to go in reducing the fraction
non-conforming? To modify it for a given kind of product would
evidently involve some modification of the manufacturing pro-
cess, It is generally assumed thgt there is a limit to which
one may hope to go in reducing the variability in the quality
of a product, representing, as it were, the maximum degree to
which one could expect to go in controlling quality. We might
think of this as a state of maximum control of the physical
cause system involvéd in the production process. It would
obviously be a waste of money to try to reduce variability
beyond this point; but even before it is reached, the economics
of the production process may make 1t wise to consider that we
have gone as far as itiis economically feasible to go in reduc-
ing variations in a quality characteristic. However, the state
of maximum control represents a fundamental limiting state or
control. If in any case the process has not reached this
state, there is something that we can do to modify the fraction
defective without changing the whole process. But how are we
to know whether or not the process has reached this state?

This question obviously leads us to a consideration of a funda-
mental problem, namely, that of characterizing in an operation-
ally definite way what we have termed the state of meximum
control.

Next let us consider the problem of rendering max imum
quality assurance under those conditions where, for economic or

other réasons, it is necessary to rely upon the results obtained
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from a sample. In such instances what we are interested in
doing 1s to make a valid probable inference as to whether or
not a piece or pieces of product not yet tested will, if and
when tested, meet the tolerance requirements in respect to
specifled quality characteristics. Note that we introduce
here the term "valid". It goes without saying that any one
can make a prediction as to the happening of some event in the
future, such as the prediction that not more than a certain
percentage of a given lot of product will be found non-conform-
ing. But all predictions of this character will not be of
equal validity. It is obvious that there are some conditions
vwhich we may set up wherein it seems to be possible to make
valid probable inferences. In the throwing of a coin and
certain problems of drawing chips from a bowl, for example,
it appears that we may use probability theory as a basis for
meking valid predictions, On the other hand, there are many
problems in economics and the social sciences, and even in the
physical and chemical sciences, where it does not seem feasible
to make predictions upon the basis of probability theory with
anything like the validity which one may expect in the case of
drawings from a bowl.

Now if we are to render maximum quallty assurance
in a given case, we should éttémptvto reduce to a minimum
errors involved in prediction. In other words, we must attalin
a state of control of the cause system such that we may be
justified in applying the statistical theory of probabllity

as 8 basis for prediction. But if we are to do this, we must
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find in some way or other operationally verifiable means of
characterizing such a state of statistical control.

Let us assume that we have the specification for
some particular kind of apparatus, fabricated material, piece-
part, or physical object, which we wish to produce in large
quantities. Suppose that we have before us for consideration
a given process of production capable of turning out an un-
limited number of pieces of the given kind of product. We
may symbolize these by

6 0 L RN O

l’ 2’ N) 0N+l) LR ] 0N+i’ s 00 (1)

It should be noted that the description given above of a state
of maximum control and also of a state of statistical control
refers to the state or condition of the cause system in the
production process. In fact, any attempt to control leads one
to think of this cause system as the means by which our con-
trol is effected. The object of attaining control, however,
has been stated in terms of the product turned out by the pro-

cess of production.

STATISTICAL STATE OF CONTROL

Physical State of Statistical Control

let us start with the concept of state of maximum
control mentioned in the previous section, How is one to
know when such a state has been attained? This concept seems
to be related quite closely to another which is described by

the phrase "the same essential conditions” in the literature
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of exact sclence. Now the phrase, same essential conditionms,
seems t0 be applied wherever the experimentalist decides more
or less intuitively that he has gone as far as he can in find-
ing and removing causes of variability in his results. Such
a criterion, however, cannot serve to characterize in an ob-
jective way the state of meximum control. In fact, the test
is subjective and -depends wupon the experimentalist, as is evi-
denced by the fact that usually net all authorities will agree
that a2l conditions have been maintalned essentlially the same.

There is a certain type of phenomena, however, where
most authorities do agree that fluctuations in the observed
phenomena must be left to chance or unknown causes. 1 have in
mind the drawings of numbers from a bowl., Thus, if we have,
let us say M,,physieally similar chips,and if we write some
number on each of the M chips, place the chips in a bowl, and
draw successive samples of n chips one at a time with replace-
ment and thorough mixing, I think there will be almost unani-
mous agreement that the complexion of such samples is beyond
human control. Such a seriei of drawings perhaps approach as
closely as we can go today in characterizing in an operation-
al way an example of what we have termed a physical state of
maximum control.

This fact early suggested that experiments be per-
formed to determine whether or not sequences of results of
repeating such operations as making measurements and producing
pieces of product under the same essential conditions satisfied

certain criteria that drawings from a bowl satisfy. In almost



every instance among a very large number of trials, negative
results were obtained. In such cases it was usually found pos-
sible to find and remove one or more assignable causes of varia-
tion until the resultant variation seemed to satisfy the
criteria satlsfied by drawings from a bowl. For such reasons,
therefore, fluctuations in samples drawn from a bowl of chips
seem to give a means of characterizing the state of maximum
control in terms of the observable results produced by such a
state.

Next let us consider the problem of characterizing
the conditions under which we may expect to make valid predic-
tions by means of probablility theory. For some time at least,
particularly in the theory of errors, there has been a tendency
to assume that the application of probability theory is Jjusti-
fied when the experimentalist has reached the state which he
describes by the phrase "the same essential conditions”.
Likewise, much of small sampls theory Iin modern statistiocs
seems to imply the assumption that when the experimentelist
has obtained his dsta under presumably the same essential con-
ditions, he may without hesitency make predictions as though
the cause system had been reduced to a state of statistical
control.

It should be noted that in general no requirements
are explicitly stated in such applications of error theory and
small sample theory as to how many observations are to be made
prior to concluding that the conditions are essentially the

same, nor are there in general any eriteria imposed upon the
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date - particularly if they are few in number - except that they
represent observations that the experimentalist judges to have
been made under the same essential conditions. This is pretty
much like saying that when the experimentalist has gone as far
as he thinks he can go, then he can expect t0 make valid predic-
tions by probability theory.

In quality control work it has been found that we are
not, in general, justified in assuming that predictions made
under such conditions will prove valid. In fact, they are
likely to be considerably in error. In the following chapters
this same conclusion seems justifled, even in the case of some
of the most refined physical measurements, Hence it is that
quality control engineers have been forced to seek further for
conditions characterizing the physical state of control than
any subjective criterion that the data have been obtained under
the same essential conditions, in order to know when to expect
applications of probability theory to lead to valid conclusions.

The drawings from a bowl, however, also serve as an
example of an experiment carried on under a physicel state of
statistical control, in the sense that such drawings produce
results which satisfy the probability laws of statlstics as
closely as any experimental results known today. These facts
suggest that unless fluctuations in an observable phenomenon
satisfy criteria satisfied by drawings from a bowl, one is not
justified in applying probaebility theory.

What is more important, however, is the fact that

the observed data must not only satisfy certain criteria but



that there must be not less than a certain guantity of data

available,



February 3, 1938

Mathematical State of Statistical Control

By this phrase I shall refer to the abstract mathe-
matical theory used in describing the observable phenomena
characterizing the idealized physical state of statistical
control. TFor example, let us consider a production process
which is capable of turning out an indefinitely large number
of objects which we may symbolize by

01’02,'. 01,0. 0N’0N+l"' 0N+i’.0 02N’°2n+1’.. 02N+i,.. okN..

Iet us consider successive lots of size N and let us assume
that the number of pieces non-conforming in these lots are

respectively

PlN, pgN’ ee PiN, se e pkN e s (2)

One of the simplest and yet most fundamental problems is to
characterize the distribution of such a sequence of values
found non-conforming in & way that we shall choose to say
represents the idealized physical state of statistical con-
trol. This is done, of course, by saying that in such a
state the probability of finding 0, 1, 2, S, ... N, conform-

ing in a lot of N is given by the terms of the point binomial
N(p'+a*)¥, (3)

where p' is some unknown constant and where p' +q' = 1.
The constant p', of eourse, 1s termed the mathematical pro-

bability of a piece of product conforming in such a case



and q' 1s the probability of a piece of product not conforming.
We may, however, approach this problem in a little
different way. To illustrate, let us confine our attention to
a single quality characteristic. For example, let the sequence
X,X, o X, ..., X ,....X , ... (4)
l 2 i N N+1 N+i
represent the observed values of a quality characteristic of
the inrinlte sequence ofr pieces that a civen process may turn
out. %e may then ask ourselves ror a characterization or such
a segquence of numbers corresponding to an idealized physical
state of statistical control. One way, of course, of approach-
ing this problem is to assume that there is for such a state
in a given case a characteristic but unknown function f(X)
such that the mathematical probability dp that a piece of pro-
duct will have a quality éharacteristic X lying within the
interval X % 1/24X is given to a high order of approximation

by the expression
dp = f(X)ax. (5)

In practice, however, all that one ever has is a sequence of
observed values of the form of either (2) or (4), whereas the
theoretical distribution functions (3) and (5) characterize
corresponding infinite sequences,

Now, of course, if one knew that he was dealing with
a situation that could be characterized by the distribution
theory associated with a characteristic function such as
either the point binomial br a continuous frequency distribu-

tion, he could then use distribution theory to calculate in
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a mathematically rigorous way the nature of sempling fluctua-
tions that migh; be expected in samples of any given size and
for an unlimited number of different kinds of functions of the
numerical values contained in the samples. We are perhaps
justified in considering that suech distribution theory provides
us with an indefinitely expansible means of characterizing so-
called sampling fluctuations, derivable in terms of formal
rules of mathemétics. The nature of the distribution function,
however, is known to depend, in general, upon the functional
form £ of the characteristic distribution function. Further-
more, the form of the function is unknown as well as the para-
meters. What is far more important, however, from the viewpoint
of our present discussion is the fact that we do not know, in
any given case, whether or not probability theory is applicable
in the case at hand. This leads us naturally to our next point
of considering the customary method of explaining how one may
hope to relate, as it were, a given physical state and the
associated ideal characteristic distribution function such as
either (3) or (5), for example.

Statistical Limit as a Bridge between the Physical and Mathe-

matical States of Statistical Control

Let ei be a parameter in the equation of the chara-
teristic distribution function. It is possible to find some
statistic 01 of , let us aay the first n values, of an observed
sequence of measurements of quality such that the statistical
limit of 91 approaches 81 as n is made to approach infinity,
or symbolically

n-»>00
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So far as I am aware, however, the concept of statis-
tical limit cannot be used mathematically, at least in the sense
of the ordinary concept of limit. What then is the significance
of such a limit concept? Given any observed sequence represent-
ing the measurements of gquality on a series of objects produced
by a given process, it certainly is not possible to show that
this sequence approaches in any accepted mathematical sense some
limiting value. It may be helpful to consider an example of

such a statistical approach to a limit.



STATISTICAL STATE OF CONTROL

Let us approach our discussion of the concept of statelot control
from the practical angle. We have alréady noted how engineers have gone from
the concept of exact to the use of go, go no-go, and finally go no-go plus
control chart for economic and quality assurance reasons. Fundamentally what

is wanted is:

a. A rational way of predicting that is subject to minimum errors,

and

b. Minimum variabllity in quality at a given cost of production.

VWe might then think of the 1deal of uniformity of quality being characterized
as that physical state satisfying requirements & and b. But how are we to
know when such a state has been attained?

One might answer, of course, that this state is attained only dy
doing the best we can to control conditions of production so that they remain
"egsentially the séma". Ali of us know how often this phrase enters into dis-
cussions of measurefients in the so-called exact sciences. In fact, the phrase
seems 10 be used to describe an idealized state which is tacitly assumed to
satigfy requirements of the type a) and b) stated above.

Now in order to satisfy the condition of predictability, it is neces-
sary to introduce some postulate involving probability. Hence it is but
netural to think of a chance cause system controlling variation in quality in
such a way that the probability dp of producing a plece of product with the
quality X lying within the range X + 1/2 dx is to a high order of approximation

given by an expression of the form
dp = f£(x) dx. (2)

where £ is some mathematical function. Such a system of causes might be thought
of as defining a statisticael state of control which would satisfy requirement
(a).

Error theory and much "small sample theory™ in modern statistios
seem to make applications which tecitly involve the assumption that when a
sclentist has obtained his data under presumably the same essential oconditions

he may without hesitation meke predioctions as though the conditions for equa-



tion (2) to hold were satisfied. There are, in general, no requirements as to

how many observations are to be made prior to concluding that the conditions

are essentlally the seme, nor are there any eriteria imposed upon the data (ir
they are few in number) that are available except that they satisfy the condi.

tion that in so far as the experimenter knows they were taken under the same

essential conditions .l

Thus far the statistician as a statistician has not contributed very
‘much to the picture. True enough, equation (2) might be thought of as belong-
ing to the field of statistic33 but if one looks critically at the context in
which it appears, he sees that it is used in & description of a physlcal chance
cause system, the very nature of which is assumed to be unknown. In fact, so
far as this system is thought to be synonymous with conditions which are
essentlally the same, the causes are supposedly unknowable.

The condition would be radically different if the statistician could
write down a sequence of numbers which would characterize once and for all what
a statistically controlled state of causes might be expected to glve. Ist us

assume for a moment that this were possible and that

8 S

1° 2 X Si, esce Sn, Sn+l, X Sn*i coo (5)

represented such an infinite sequence with which we might compare any observed

sequence,
H’ Xz’ L N Xi’ LA N ] Xn’ %+1’ se e %+1' L X 2 (4)

The sequence (3) might then be thought of as a fairly definite quantitative

description of a physical statistical state in terms of the sequence of num-

bers which that state would broduce,
the statistician,

This certainly would be a problem for

With the same assumptions in mind, let us consider the problem of

comparing an observed sequence with the standard sequence representing a
statistisally controlled condition,

Theoretically we might conceive of ways of

1. 0f course, if the are £
trouble is thet tﬁereeshgglénbgugg;:’ quireneny upoild, be wmbor to be s

as we shall see in the next ckapter, Tequirement upon the mumber to be taken



comparing the whole of an observed sequence with the standard. WUhet is wanted
from a practical viewpoint 1s, however, a criterion or set of criteria that the
first n members of an observed sequence must satisfy in order to bve reasonably
sure that the remeinder of the sequence will have the characteristics of the
standard sequence (3). This problem is fundamentally different from that of
constructing the standard sequence (3) which is a problem for the mathematiocal
statistician. However, the Justification of any proposed solution of the
problem of setting up oriteria that will work reasonably well on the basis of
an examination of the first n terms of an experimental sequence must in the
last analysis rest upon empirical evidence. The field of quality control in
mass production offers undoubtedly the best "proving ground™ known today for
testing out the validity of the chosen techniques in that the nredictions of
today are almost sure to be tested tomorrow, and those of tomorrow, the next
day and so on indefinitely. Whether or not there have existed or may exist
physical states of control that give a sequence resembling the assumed stendard
sequence can only be determined experimentally.

Now let us return to the statistician's problem of writing down the
standard sequence (3) for comparison. Even though we assume & perfectly defi-
nite functional relationship in equation (2) there is no unique wey of writing
down a comparison sequence. There are, instead, an indefinitely large number
of ways in which such a sequence may be characterized in terms of an indefinite-
1y large number of different statistics and methods of breaking up the sequence
into subsamples. In other words, we have here all of the results of what 1s
generally termed the mathematical theory of distribution to which contributions
are being added daily. Personally, I like to look upon the theory of distri-
bution as p:r:'o.viding an indefinitely lerge reservoir of criteria by which one
might characterize a sequence which in turn we might think of as characterizing
the observables of a physical state of statistical ocontrol. It should perhaps
be added that the nature of the characterization provided by distribution
theory depends upon the functional form f in equation (2). In this cdnnection,
it is fortunately true that the characteristics in terms of certain statistics,
such, for example, as the arithmetic mean and the fraction within specified
limits, is practically independent of the functional form r, at least over a
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very wide range.
Before passing on to a consideration of the operation of approaching

the assumed ideal state of statistical control, let us consider another very
important characteristic of the concept of the distribution or sequence given
by such a state. We say that under such conditions we may find certain
statistios of a sample of n which approach in the sense of a statistical limit,
Limg, certain constant values as the semple size n is increased indefinitely.
Thus for a given statistic &; we say

Limg @4 = 6';. (5)

n-> 00
Even in the case of the existence of a statistically controlled state, we need
to find the perameters in the functional relationship, and so far as we are
here concerned the practical significance of the concept of statistical limit
seems to be that it implies that the only road to improvement in an estimate of
a parameter through the use of even the so-called most efficient statistic is
to inorease the sample size n - that 1s, by the method of repetition. In the
face of this, however, statisticiansas a rule neglect to tabulate the sample
size n, the importance of which we shall see in the later chapters.

So far as I am aware, the concept of statistical limit cannot be used
mathematically and in fact constitutes a non-mathematical characteristic of the
state of control. In this sense it constitutes pretty much, as it were, the
postulate of an operational rule of inference depending upon sample size. That
is to say, 1f it were feasible to find a standard sequence (3), it would still
be neocessary to add the postulate of statistical limit to characterize what is
customarily meant by a state of statistical control.

Physically perhaps the nearest approach one can get to the nature of
a statistical limit 1s with drawings with replecement from an experimental
universe writtenon a series of "physically similar" chips.

Fig. 5 is one such
observed approach which may serve to illustrate some of the points which can

well be emphasized in trying to get at an understanding of the concept of

statlstical limit as here presented., The distribution in the bowl was approxi-

m Y] a ‘
ately normal.and symmetrical about zero as an arithmetic mean. The ordinate
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of each polnt is the observed average for the sample of size corresponding to the

abscissa of that polnt. It 1s of interest to note how the observed average swings

back and forth about zero which is sometimes spoken of as the theoretical limit.
1.8
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Fig. S

Strictly speaking, zero would be the theoretical 1imit only if the chips vere phy-
sically similar, a fact which we can never know with certainty. Do we know that
this average approaches some value X' in the sense of a statistical limit in this
particular case? No matter how many observations we take, I do not know how we
could answer this question with certainty.

One might ask if this approach satisfies that symbolized formally by (5).
I know of no way of checking this statement m‘ an operatibnally definite way any
more than I know of any way of checking once and for all a sequence in an opera-
tionally definite way to see if 1t represents a s‘tatistical state. I1If we assume
that the dotted curve in Fig. 5 approaches a limit, the most practioal signifliocanoce
of this oconclusion is that we ara tacitly adopting as a rule of operation that an

average of n observations 1s to be taken in preference to n-1, let us say.

Of course, one might always wish to reserve judgment in a given case
until he had compared the sequence of observed values with a set of criteria
chosen arbitrarily to test whether or not the numbers are to be accepted as hav-
ing arisen from a statistical state. But as noted above, there is no a priori
and unique rule for choosing such a set of ocriteria. Hence in my own work, I

prefer to say that drawings with replacement and thorough mixing from a bowl
characterize a physical state of statistical control representing the limit

=120 e TICAL INe T Y
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to which one may hope to g0 'in attaining valid predictability and a state where
the one making the drawings as prescribed cannot do anything to control the
1imits of observed variability - that is, it satisfies criteria a) and b} with
which we started. It must, howsver, be kept in mind that logically there 1is
no necessary or formal apriori connection between such a physical statistical
state and the indefinitely expansible concept of statistical state in terms of
mathematical distribution theory. There is, of course, abundant evidence of
close similarity if we do not question too eritically what we mean by close.
What is still more important in our present discussion 1s that if this similar-
ity did not exist in general and we were forced to choose between the formal
mathematical description and the physical description, I do not see how we
could get around looking for a new mathematical description instead of looking
for a new physical description for the latter is what we apparently hawve to
live with. It is the practical man®s good fortune that mathematical distribu-
tion theory seems to check so closely what he gets in drawings from an axperi-
mental universe. As an indirect result, distribution theory must become the
stock in trade of the control engineer.

The importance of considering in detall some of the more or less
obvious points in this section will, I hope, become clearer as we proceed to

discuss the other two senses = particularly that of a judgment - in which

statistical control is to be considered.

STATISTICAL CONTROL AS AN OPERATION

In the beginning we noted the steps taken in going from the concept

of en exact rit based upon the concept of an exact sclence to the concept of
tolerances, Fig. 4.

At this point statistical theory stepped in with the concept of two
limits A and B which we shall term action or control limits, and which 1lie, in
general, within Ll and L,. These limits are designed to be such that when the

observed quality of a plece of broduct falls outside of them, even though the

observation be still within the 1limits L) and Lp, 1t is desirable to look at
th

e manufacturing process in order to discover and remove, if possible, a caust
o

f variation which need not be left to chance. In other words, whereas 1imits



Page 11, Second paragraph

What then is the force of the concept of statistical
limit from the viewpoint of human action? So far as I see,
it simply constitutes, as it were, a basis for a rule of action
which in the absence of any better rule we accept as a method
of acting under conditions where we assume that we have an
ideal physical state of statistical control such as represented
by a bowl. That is to say, if we accept the limiting process
in such a case, it 1s pretty much equivalent to accepting, in
general, a statistic 91 calculated from n41 observations in
" preference to the same statistic calculated from n observations.

Even though one were to accept such a method as being
perhaps the best thing to do in the case of samples drawn from
a bowl, he would still be left in the dark as to what to do in
a given case where the very question which he 1s trying to an-
swer is: Does the observed sequence arise from a physical
state of statistical control? Are we Justified, for example,
in assuming that a statistic calculated from n+l observations
is to be preferred over one calculated from n observations?

We might, of course, answer this question by saying
that if the sequence appears to arise under the same essential
conditions, then such a procedure is justified. But we have
already called attention to the fact that experience shows
thet such sequences do not, in general, satisfy certain cri-
teria that samples from a bowl satisfy. Hence it appears that
the concept of a statistical 1imit as a bridge by which we may

pass from the physical state of control to its mathematical



description does not serve to get us over the real difficulty
of determining whether or not in a given case an observed
sequence arises from a physical state of statistical control.
In other words, we need to find some kind of an operation
that 1s perfectly definite and verifiable that could be ap-
plied to an observable portion of an infinite sequence even
when taken under presumably the seme essential conditions
that may be used to differentiate those cases where we may
expect to make valid application of probabllity theory from
those for which such application does not seem justified.
This leads us, in other words, to a consideration of what

we shall term the operation of attaining a state of statis-

tical control,
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I.1 and I.2 provide a means of gauging product already mede, action limits A and
B provide a means of directing action toward the process in order that the
quality of product not yet made may be less variable on the average.
Furthermore, the statistical theory of quality control introduces the
concept of another point C lying somewhere betwesen the action limits A end B
which is the expected or in a certain sense the simed-at value of quality in an
economically controlled state. We should perheps pause a moment to note the
significance of the point C from the viewpoint of design or the use of material
thet has already been made. Let us take, for example, a very simple case of
setting over-all tolerances. Suppose we start with the concept of the go no-go
tolerance of 1870 and wish to fix the over-all tolerance for n pleceparts as-
sembled in such a way that the resultant quality of the n parts is the arithme-
tic sum of the qualities of the parts.' An extremély simple example would be
the thickness of a pile of n washers. The older method of fixing such a tol-
erance is to take the sum of the tolerances on the pleceparts., This 1s gener-
ally many times too large from the viewpoint of economy. The efficient way of
setting such tolerances is in terms of the concept of the expected value and
the expected standard deviation about this value. In other words, the concept
of expécted value is of fundsmental importance in all 4design work in which an
attempt 1s made to fix over-all tolerances in terms of those of pleceperts.
Thus we see how, starting with the simple concept of a go no-go
tolerance in a specification as illustrated in Fig. 4, it ls necessary in many
cases® for economy and quality assurance reasons to jintroduce certain action
limits A and B and also a certein expected value C to be used in design
formulae. The situation corresponding to the simplest case is shown sohematioc-

elly in Fig. 6. Statistical theory alone is responsible for the introduction

1 | :
QUALITY X : et
: i c |
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L A ° L2
! Fig. 6 _ _ _ . _ .- e e e oo - .
LIt should be ;o;.ea,—o} -c;o;.rse, that if there is no economic or quality assur-

-no-go tolerance, statisti-
ance reason for going beyond the concept of the go-no-g oo hat élthough e

be no

to add. Likewise, it should hough
gz%iggeggi%gsAngggiggmay l1ie within the'tolerancedlimgg Iéhgixdcg _produet
alveady produced and found within the limits Lj and 2,18 sl *linits 4 and
conron}x’xigg elthough outside A andB:L Bx“?fggrm:vgz 8,

B do not apply as a gauee o= =77
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of the concept of action limits A and B and the expected value C.

In the sense that the use of such statistical technlques introduces
a modification in the operation of control,they constitute an "operation of
statistical control®™. Their use serves &s an operation directed toward attain-
ing a state of statistical control in the sense of the previous gsection. They
are means to the end of obtaining a state where mathematical distribution
theory may be applied with the same assurance of validity as it can be applled
to the drawings from a bowl.

For our present purpose, we may divide this objective into two parts:

1. To detect and eliminate mssignable ocauses thereby attaining

a statistical state.
2. After attaining a statistical state, then to attaln the desired
characteristics of the frequency distribution of guality.

In more descriptive terms this is like trying to reduce quality varlation to a
point where the observed values of quality behave as though they were values
written on physically similar chips in a bowl and drawn with replacement and
thorough mixing. Having attalned this condition it is then necessary to find
the characteristics of the distribution of numbers in the bowi.l Applied to
a problem such as securing uniformity in respect to some quality characteristic
X of steel, the end result of the two steps would be to establish the frequency
distribution of this under an attainable state of statistical control.

Whether or not it is possible to attain the first part of this ob-
Jeotive can obviously only be settled in an empirical way. In the first place,
what criteria shall be used in the process of control? We must choose from
emong the indefinitely large number of criteria that would be necessary, as we
have seen in the previous section, to characterize a statistical state, one or
et least a few simple enough that they cen be used in practice. PFurthermore
the oriterion or criteria chosen must take into account two kinds of errors:
®)+ Looking for assignable causes when they do not exist.

e2. Overlooking evidence of the existence of assignable causes.

1.This second step is considered in some detail in Chapter II.



-15 -

At least one such criterionl has been found to work quite satisfuctorily as a
control operation, in those fields where it has been tried.

One important practical question is: How much data need be taken be-
fore we can rest assured that a state of statistical control has been attained?
No one can say how much will be required before we begin to get a fairly long
run of samples indicating control, However, after preliminary investigations
have been made to check on the effect of what the experimentalist in charge
considers to be assignabie causes and he has, as it were, reached the end of
his rope in eliminating these, then not less than 25 samples of four or per-
haps more than 250 samples of four are ordinarily required for test in a ocon-
trol chart for averages before one can with much confidence conclude that he
has reached a state of control. It will be shown in the next chapter that
approximately the same total sample size, 100 to 1000, is required for giving us
adequate information about the frequency distribution even when it arises under
a state of statistical control.

We shall close this section with an example of what can be done in
practice., Tig. 7 shows such a control chart test for averages of 136 sucesa-
slve samples of 10, The quality characteristic is blowing time of a certain

kind of fuse. Of course in the preliminary survey assignable causes were in-
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Fig. 7
dicated and removed. This chart is here included as typlcal evidence that
once we attain a condition of control as judged in this‘way under limitations
as to sample size indicated above, this condition seems to continue. The
points remain within the control limits almost as well as though they had been
obtained from samples from a bowl! That such an apparent state of control can

be attained under commercial conditions is all the more impressive when in the

1. See Criterion I in book by Shewhart, W. A., Loc. Cit.
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next chapter we compare Fig. 7 with a similar one representing some of the most

precise measurements of physical sclence.

JUDGMENT AS TO STATISTICAL CONTROL

This aspect of statistical control is of vital importance from &
practical viewpoint. Iet us start with a consideration of the meaning of the
statement:

The quality of this product is statistically controlled.

let us first ask ourselves how we would go about trying to show in
the specific case whether this statement is true or false, keeping the level
of discussion on a practical plane. Vhat, in other words, would be our opera-
tion of verification? There is, however, a second aspect to be considered -
do we believe the statement will be found true? Anyone can make Such a state-
ment in respect to % given product irrespective of whether or not he has any
grounds for believing the statement true. Obviously the operation of checking
the statement can only take place at some future time. However, the evidence
lies in the past. Schematically we have:

Evidence Operation of checking or verifylng
Past Future

Present

Both the evidence and the operation of wverification are important aspects of
the practical meaning.

Let us assume that the means of producing the product im question
are such that en indefinitely large number of pleces of this kind of product

can be made and let us represent as before the quality characteristic under

consideration by the symbol X. As slready noted, the objeots might be any

one of the almost countless different kinds of plece parts or materials pro-
du
ced in industry and the quality X might be eilther chemical or physical. By

r
°‘_’e5t§“§ :’h_e_ process of operation again and againl, we would get an indefinite

1. For pra T T T T I T T TS s sms e e s s - - - o= = ==
Do cgss"’gicicﬁﬁpoie of simplification, it is here tacitly assumed that the
Bt conmey” machi t; iisuch as to make but one object at a time. In practice,
out more than ome ; iecle(e%% to '3e a whole battery of machines which may turn
be extended to Covar Product at a time. The treatment here given can

his
the fundamental points hergazgﬁs}_)ggrég .unnecessarily involved to illustrate
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ly long sequence,

X, X3 e X, ... X, Xpeys  cor Ky oeee (4)

Now, of course, one making such a stetement might simply refer to the operation
*

of control and the results obtained in the past, but even then the usefulness

of this information would only be in the sense of making possible valid opera-

tionally verifiable predictions as to the future. One very important class of

predictions have to do with predicting the qualities in one or more subgroups
in the sequence (4). These subgroups correspond, of course, to what are
customarily termed lots. Another important class of predictions have to do
with the process or operation of production. For example, it is assumed that
if the process - chance causes of variability in product - is in a physical
state of statlistical control, then one cannot hope to find and remove any more
assignable causes. To try to check this statement would involve trying but
being unable to find any assignable causes, no matter how long one searched
for them.

Now the first point I wish to make is that neither of these opera-
tions as stated is experimentally definite in the sense that they can be
carried outlin e fixed time. In the Tirst case, we need to set up definite
criteria to be met by specified limited portions of the sequence. In the
second case, we need to state definitely what shall be the nature of the tests
to be performed and the requirements to be met by the data thus obtained in
order thet we shall agree that the assignable causes have been eliminated.

As the next point, let us note the effect of having to choose a
specitic set of criteria in order to make the meaning definite in a practical
as compared with a theoretical sense. Ve hgve seen in the discussion of the
state of statisticel control that there is an indefinitely large number of
criteria required to specify the sequence arising from a statisticel state.
Therefore, any crosen set of criteria must be an incomplete means of checking
operationally what we mean by & statistically controlled state.

Let us next consider a little more carefully what is required of the

criteria. Obviously they must be in terms of the numbers rcpresenting the

numerical magnitudes of the qualities of the objects produced by the process in
erica
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For exemple, such a sequence should satisfy what I have termed
rages of samples of four dreawn with replacement

question.
Criterion I, let us say for ave

from a normal "bowl-universe". That 1is, 1if
Yl, Yz, oo o Yi. oo e Yn’ Yn'.'l’ LN ] Yn+i ce o (6)

be such a sequence, only approximately three out of a thousand of the averages

of ordered samples of four should fall outside the dotted limits. TFig. 8 shows
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an experimental check for 100 samples of four. Writing down requirements that
a given sequence should satisfy is comparatively simple. The real job is to
choose the sequence of X's to represent the process - the statistician might
say, choosing how the subsamples to be used in a oriterion are to be taken.
For example, let us take the case considered above where the engineer or
solentist has decided that he is doing the seme thing again and again under the
same essentiaml conditions. The control chart technique specifies that the
8squence for test shall be taken in the order in which the physical things wers
made. If no requirement were made, s0 that the sequence might be taken any wey
whatsoever, then the criterion would be practically worthless. ¥For example, the
sequence of measured qualities in this case would Perhaps in general be that of
the measurements of the objects taken from some storage bin. If the mixing in

t
he process of going to the storage bin is thorough, the chance of deteoting

lack of control is Practically zero. 4s a graphic illustration of what would

be expected to happen in such a case let us look at Fig. 9, a) and b). The
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tirst of these shows a control chart for 51 averages of four when the gequence
wes that of the order of production. Fig.9b shows what happened when the num=-
bers in the first sequence were placed on chips in a bowl and then drawn one at
8 time., Thus we See as the third point that the problem of giving operational-
1y verifiable meaning to statistical comtrol in practice is two-fold:

(a) The specification of the way the sequence to be used in any

chosen criterion shall be obtained, and
(b) Choice of oriterion (6r criterial.

Thus far we have been considering ‘simply the method of ochecking the

Prediction implied in the statement that a certain quality characteristio is

statistically controlled. Now let us turn our attention to the evidence re-

quired for believing such a statement. For example, if this statement were

zade simply upon the evidence that the scientist or engineer thinks he 1is

operating under the same essential conditions, one could expect that in practio-
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ally no instance would the statement be found true as judged by any oriterion

such as Criterion I. In fact it appe&rs that it is only after the statistical

control technique has been applied in practice that the state of control is
reached in any apprecliable number of cases.

If, on the other hand, one had before himself the record showing how,
let us say by some definite control chart technigue, assignable causes of
variability had been found and eliminated until finelly it had been possible
to obtain a sequence of at least 1000 objects whose qualities taken in the order
of production of the objects satisfies Criterion I for averages of samples of
four, he could be quite sure that future product would satisfy any similar
oriterion. That is to say, the number of times one would find himself in error
when making judgments upon the basis of this amount of evidence would be a ver)
small percentage of the total number of trials, whereas it would be practically
1004 if judgments were made solely upon the evidence that the conditions had

presumably been maintained essentlally the same.

SIGNIFICANCE OF STATISTICAL CONTROL

Let us first consider the significance of the effect of the study of
ways and means ofiattaining and meintaining statistical control of quality
upon statistical methodology. As we have tried to show in the discussion of
the state of statistical control, there is a purely formal and mathematical
theory of distribution which may be taken as characterizing a purely formal
atate of statistical control which may or may not be, so far as the formal
theory is concerned, descriptive of any state attained in practice. Then thers
is the concept of a physical state of statistical control, which represents the
limit to which we can go in attaining valid predictability and minimum vari-
ability. uality control studies have shown that there is good reason to
believe that suoh @ physical state can be attained and when attained it has
shown that observables or. this state satisfy ocriteria ﬁsed in describing the

formal state.

In the customary application of statistical theory we assume, of
course, that
» that there 1s a physical state giving samples showing the ocharaocter-

istic .
8 of those formally considered in distribution theory. wWhat control

studies hav
© shown is that such physical states are indeed rare occurrences,st
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least in physiocs and engineering,end furthermore thet they do not, as 1t were,
come into existence without first applying certain operations of control and
until comparatively large numbers of preliminary data have been taken in the
process of detecting and removing assignable (or findable) causes of variability.
In this chapter, we have of course considered the problem of control only from
the viewpoint of attaining valid predictability and minimum variability in a
measured quality X. 1In other words, we have neglected the matter of acouracy
which will be considered later. We shall then find still more evidence to in-
dicate the need for golng through a definite operation of statistical control
before applying statistical theory which assumes the existence of a state of
statistical control. _

Next let us conslider the significance of the study of statistioal
control from the viewpoint of the control of quality. Let us recall the three
steps of control: Specification, production and judgment of quality. On the
older concept of an exact sclence these three asteps would be independent. One
could specify what he wanted, some one could take this specification as a guide
and make the thing, and an inspector or quality judge oould measure the thing
and see if it met specifications. A beautifully simple picture!?

The whole picture is, however, radically different Just as soon as
we admit that we have only a probable science. Even when we limit ourselves to
trying to stay within tolerance limits, it is necessary for economic reesons and
for attaining maximum quality assurence in all cases including that where tests
are destructive, to introduce the concept of action limits A and B and the
aimed-at value C, Fig. 6. But in order to specify C we must first apply the
operation of statistiocal control. In fact the value of C must really come from
Step IIT and after suitable action 1imits A and B have been established in
Step II. But these cannot be set without knowing something about at least the
tolerance 1imits that are specified in Step I. I think it is partioulerly
significant to note that the third step cannot be taken by simply inspecting
the quality of the objects as objects but instead they must be inspected as an
ordered sequence in relation to the production proceés and for reasons dls-

oussed in the previous section. In fact these steps must go, as it were, in
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a cirole instesd of a straight line as shown schematigally in Fig. 10.
STEP I .y STEPT 3 STEPIL ____

oLDb

NEW
Fig. 10

From the viewpoint of specification, it is of interest to note that
for the meaning of control to be operationally definite, not only must certain
eriteria of control be chosen but also the operation of selecting objects
whose guslities are to be tested by the criteria must be specified. The choice
of oriteria to be used as a method of verifying the state of control cen be
made without reference to a product but the method of specifying the sequence
of values to be used in the chosen criteria cannot in general be set down with-
out reference to the results obtained in production, Vhat is still more im-
portant, the intent of any such specification implies a certain degree of
assurance that the quality of product will be found to satisfy this set of
criterls, particularly when the product cannot be given a 100% test. Here agein
without a knowledge of the results of prior attempts to control quality one cer
not specify in a perfectly definite way just how much data are required and just
the sequence in which these data shall be used in applying control criteria to
glve the quality assurance intended by the design specification. For these

reasons, it seems necessary that operationally verifiable control requirements
and requirements gs to how much and how data shall be obtained to provide
adequate quality assurance can only be set down in Step IIT by one having his
eyve both on the intent of design requirements and upon the accumulated results

to date
indicating the degree to which a state of statistical control has been
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epproacheds Hence the design specification must be supplemented in Step IIT by"
inspection specifications pfoviding adequate data and satisfactory criteria of
control for each type of product.

Furthermore, since the running record of past results must play such
an important part in judging the degree to which control has been attained, it
is necessary for Step III to provide such a continuing record or quality re-
porte The mathematical theory of distribution characterizing the formal and
mathematical congept of a state of statistical control constitutes an unlimited
storehouse of helpful suggestions from which practicel criteria of control must
be chosen and the general theory of testing statistical hypothesis must serve as
& background in gulding the methods of meking a running quality report that will
glive the maximum service as time goes on.

To attain economic control and maximum quality assurance, statisticael
theory and techniques must enter every one of the three steps in the control of
quality. In this way they make possible a very important potential contribution
of mass production to scientific industrial progress. Incidentally we have
seen that this potential state of economic control can only be approeched as a
statistical 1imit even after the assignable causes of variability have been
detected and removed. Control of this kind cannot be reached in e day. It ocan-
not be reached in the production of product in which only a few pleces are
manufactured. It can, however, be approached scie_ntifioally in a continulng

mass production.
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CHAPTER II

HOW ESTABLISH LIMITS OF VARIABILITY

many ctions the engineer of the future, in my Judgment, mst of necessity
deal Sih:l: :nnmch mndi::e certain and i?re intimate knowledge of the materials withtwmh‘.’:.:h ::‘owzrks
then we have been wont to deal with in the past. As & result of this more in ebo W, :dge
his structures will be more refined and his factors of safety in many directions are g.ng 0
be less because the old elements of uncertainty will have in large measure disappeared.

FRANK B. JEWETT, President
Bell Telephone Laboratories

Broadly speaking, the problem to be considered here is that of con-
trolling quality of manufactured materials and piece parts so as to provide
the engineer of the future with the knowledge necessary in order that he may
set his tolerances so as to make the most efficient use of materials and still
meintain adequate guality assuresnce. To begin with, we should clearly aif-
ferentiate between this problem and that which I have discussed in the liter-
ature under the title of economic control of quality of manufactured product.z
In general, the latter starts with the assumption that tolerance limits on
each specified quality characteristic have already been set. This means that
for any given characteristic X there are certain limits Xl and Xz such that
the quality X of each plece of the product is supposed to lie within this
range. e shall speak of a piece of product with a quality X meeting this
requirement as conforming in respect to the specification of X and likewise,
& plece of product not meeting this requirement shall be spoken of as non-

conforming. Now, of course, non-conformance usually implies rejection or at

least modification of the part in question., Hence it is of economic import-

ance to minimize the number of pieces non-conforming., Here then we have the
problem of economic control within specified tolerance limits on the piece,
There is, of course, another aspect to this problem of manufacturing to tol-
erance limits on each piece when the inspection test is destructive and where
it 1s necessary to have a very high degree of assurance that the quality of

the plece conforms to tolerance requirementseven though it cannot be tested.

- . e e - -
- - - -
e
- W am w m e -
- - -

2. Shewhart, W.A. loc. cit,



- 25 -

1t was for the purpose of effecting economies in production and of attaining
paximum quality assurance at & given cost that the quality control ochart tech-
pique involving the introduction of the concept of two action or control limits
and en expected value was introduced in 1924,

The problem with which we shall be concerned in this chapter is,
however, that of choosing the tolerance limits themselves which in the appli-
cation of control chart theory are assumed to be given by the design speci-
tication. Again considering the three steps in comtrol, specifiocation, pro-
duction and judgment of quality, the problem of setting tolerance limits comes
under step X. However, for reasons emphasized in the previous chapter, in
order for these limits to be practically attainable, they must be set with an
eye on what can be attained in eommereial production. uite naturally en-
ginsering practice has alw'a,ys taken into account the necessity of stating
tolerances that are thus consistent with what it is bélieved can be done in
practice., Furthermore this was done with marked success for many years before
any one perhaps even thought about applying statistical techniques in the pro-
cess of control. The object in this chapter is to consider briefly some of the
fundemental aspects of the problem of setting tolerances and to indicate some
of the potential contributions as well as inherent limitations of the appli-
cation of statistical theory to its solution.

To fix the problem to be considered, let us conflne our attention to
a single quallty characteristic X. Three typical cases arise in practioce as
{llustrated schematically in Fig. 1l. Let p represent the probability of

1 1_p l
T.l=o Lz
1 1-p 4
Fig. 11

& value of X falling outside of tolerance limits 'L, and Lp. The problem may

then be thought of as establishing tolerance 1imits in such a way that
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where p' is some given value. The first of the cases shown in Fig. 11 corres.

ponds to the requirements for mating parts. In addition to the requirement
(7) we may also wish to require that
R = (Lz-Ll) must be a minimum,

As an illustration of a tolerance range with only an upper limit to
be set we might teke the requirement that the blowing time of a fuse shall not
be greater than L, geconds. Likewise there are many examples of a requirement
in the third form suoh as, that the tensile strength of the steel strand shall
not be less than L,. In either of the last two cases there is inplled some
value of p'. For example, 1in setting safety factors it is desirable to make
p*=0.

our object in this chapter may now be a little more definitely de-
fined as that of trying to determine at least some of the potential contri-
butions and inherent limitations of the épplication of statistical theory in
the establishment of the tolerance limlts L, and Ly in each of the three cases.

PROBLEM FROM VIEWPOINT OF STATISTICS

The problem as thus stated appears to have many of the ear marks of
the so-cmlled statistical problem of estimation - a subject to which a great
amount of attention has been given by theoretical statlsticians and students
of error theory. Hence one might expect that all the engineer needs to do in
order to improve his technique in setting tolerances is to become acquainted
with the available theory of estimation. We shall find, however, that such
an expectation is not justified, but in making this statement, we are getting
ehead of our story.

Let us suppose that we wish to use malleable iron in some design in

which we are interested and therefore want to set tolerance limits on tensile

strength. Ve naturally turn to the engineering literature for data obtained

under practical conditions to be used as a basis for estimsting our toleranoces:

In the report of a recent symposium on mallesble iron we find the results of
S000 tensile strength tests on malleabla iron

...... test bars made by Enrique 'Ibuoeda

1, Symposium on Melleable ITon Cestimee  mohedohod i oo o = =< -
Mat., Vol. 31, 1931, pp. 317-2?%1133’ published in Proc. smer. Soc. Testing
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for the Melleable Iron Research Institute, the bars having been taken over the

period froe May to November, 1930, from "random" heats of the companies com-

prising the membership of the Institute. These dats are pPresented ‘1n Table l.
Tensjle Strength of 5000 Malleable Iron Bars

Range of Values Observed

‘ Normal Law
1bs. per sq. ine Distribution Distribution Difference
Under 45,000 0 0 0
45,000 - 45,999 1 0 1
46,000 - 46,999 2 1 1
47,000 ~ 47,999 3 5 2
48,000 - 48,999 8 22 14
49,000 -~ 49,999 23 77 54
50,000 - 50,999 289 210 79
51,000 - 51,999 ’ 472 448 24
52,000 - 52,999 739 744 5
53,000 - 53,999 927 963 38
54,000 - 54,999 967 970 3
55,000 - 55,999 758 762 4
56,000 - 56,999 481 466 15
57,000 - 57,999 230 222 8
58,000 - 58,999 72 82 10
59,000 - 59,999 19 24 5

Over 60,000 9 5 4

Table 1

Here we have a very respectable looking uni-modal frequency distribution. 1In
faot when one graduates this distribution with the normal law (column 3 of

Table 1) and plots the results, he gets Fig. 12. It may seem quite reasonable

IOOO"

e OBSERVED DISTRIBUTION
800 —— NORMAL LAW .

600

FREQUENCY

2001

N

45000 48000 51000 54000 57.000 60,000

TENSILE STRENGTH —-L8./5Q.IN.

Fig. 12
therefore to think of this distribution of 5000 observed values as & "random”
sample of a "hypothetical .universe" which the produotion proocess is ocapable
of giving if allowed to function indefinitely. Simce the oloseness of fit

betweem the theoretical graduation and the observed distribution as measured
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by a xz = 90,23 is not very good, the theoretical statisticlan may argue thst

the hypothetical universe is not normel. For our present purpose, however, we

are not concerned with the functional form of the universe but merely with the

assumption that the universe exists. Ir it exists in this customary statisti-

oal sense, then it would appear that the problem of setting tolerances reduces
to a statistiocal problem of estimation. Our problem from this angle is there-
fore two-fold: a) to examine the justifioation, in general, of the assumption
that a statistical universe exists and b) to consider the technique of setting
tolerances when the assumption is Justified.
There is, however, another aspect of the subjeot of setting tolerances

which we must investigate and we can perhaps approach this best through an il-
justration of the way the problem arises. Suppose we wish to make use of pure
iron in some way that requires us to set tolerances on its density. Accord-

1 of physical properties and find the

ingly we turn to an authoritative table
density given as (7.871 £ 0.002) gms/cms. This example is taken as typlcal of
the case where the available information upon which to base estimates of tol-

erances is given in the form

X £ &X.

Among other things, we must examine the mesaning of this range as customarily
given and see what relation it bears, if any, to the tolerance range. If we
turn to the literature of modern statistices, we find much emphasis placed
upon the fact that ranges of type (9) can be established upon the basis of
modern small samples that are just as valid as are those based upon lerge
samples. Now, of ocourse, a tolerance range can also be put into this form in
80 far as its numerical aspects are concerned. Hence the engineer rightly
wants to know if the statisticians have found a royal road in the sense that
it can be based on estimates from small samples. We shall find an abundance
of confusion on this point even in the literature -of statlistiocs. The fact
that the meaning of the range which is valid in the sense of so-called modern

small sample theory turns out to be different from the meaning of the toleranot

- . - > e w e - -
-----------------------'----'.'

1. Physicel C Pure
ngland, Sggf“‘“’s of Metals, The National Physical Laboratory,



-29 -

range should be of considerable interest to statisticians as such as well as to
engireers.
From the viewpoint of presentation much is to be gained by starting
with the simplest case where we know that the sample of data with which we
start was drawn one at a time with replacement from an experimentally’ nomal
universe.
HOW ESTABLISH TOLERANCE LIMITS - SIMPLEST CASE
Let us assume that we have drawn a sample of n values xl'xz""xi’"'%

froz a normal universe. The problem to be considered first is that of setting
up a tolerance range X = Ly to X = L, that will include let us say (l-p')N =

oSN of future drawings from the bowl, An engineer might wonder why we
choose (l-p')=,5 whereas in practice it is more likely to be less than .Ol.
We choose this value of p' because several books in science and in error theory
seel to tell ome Just how to establish 1; and L, in this case. For example,
one outstanding treatise of 1937 on a particular branch of physics has an
eppendix discussing acouracy and precision. The authors give eleven measurs-
ments of a length and calculate the arithmetic mean X of the sample and the
probable error e of a single observation in accord with classic error theory.
They then state in effect that 1f a further series of n measurements are made
under the same conditions, it is an even chance that the mean of the second

series of n observations will differ from the mean of the first series of 11

measurements by more or less than ® . This certainly looks to the uniniti-

L%
ated 1ike just the solution to his problem assuming that he wants a limiting

range corresponding to a probability of 1/2. , Of ocourse, the impliocation is
that ranges for any probability could be set up in an analogous manner with
proper allowance for the magnitude of the probability p' that is chosen.

Sometimes seeing is more convincing than reading an argument. Henoce

let us see what might happen to one who followed such a rule. For this pur-

pose, I drew from a normal universe in a bowl the sample of eleven measure-
X «3226
mnts shovn in Teble 2. The average X and probable error are .0091 and 3

respsctively., Now let us set up tolerance limits for a probability of 1/2

o T T T e Tabte 22, of my Heonon Quality
1. Ses, for example, page 165, Table 22, of my %:ogomic Control of gu
of Manufactured Product, for such a distribution.



and sample size of n = 4.
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According to the previous paragreph, such limits
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would be ,0091 t ,1613.

Acoording to the authors of the text under consider-

ation, we should expect to find fifty per cent of samples of four to have av=-

erages lying within this range.
if such a prediction is valid.

Well, let us take 100 samples of four and see
Fig. 13 shows the results of one such test.

We were led to expect 50% within the 11m1ts_7 .moogq,f .;613 shown by dott_ed lines,
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We find 27%1 The prediction of 50% within limits wasn't valid}

I am reminded of the old jingle: When a doctor mekes a mistake', he

buries it; when a judge makes a mistake, it becomes the lew, and so on. I

would add: When scientists such as the authors of the book referred to and

many others make such a misteke, no one seems to challenge it; but’ when an in-

dustrial statistician mekes such a mistake, woe unto him for he is sure to be

found out and get into trouble. For example, in establishing tolerances one

can rest assured that he will hear about it ir apprecliably more than the ex~
pected peroentage are found outside of limits and furthermore he can rest

assured in most instances that any such tendency will be discovered beocause

hundreds, thousands angd sometimes even millions of pleces of product are made

per month.



It would, of course, be unfair for the engineer to judge the contri-
bution of statistical theory from experiences such as the one Just considered
which falls to take account of the important recent contributions to statisti-
cal theory which overcome some inherent limitaf,ions of the older error theory.
I heve in mind, in particular, the work beginning with "Student's® publicationl
in 1908 of tables for the Probability Pz that the mean of a small sample of n,
drewn et random from a population following the normal law will not exceed in
the algebraic sense the mean X' of thét Population by more then z times the
standard deviation of the sample. Let us therefore see if this fundamental
contribution to the theory of the error of the mean helps us to solve the prac-
tical problem of establishing tolerance limits for the ideal case of a normal
bowl universe. First we shall try to determine Just what the theory enables
one to predict in a valild way. Interpreted in an operationally verifiable way
this theory simply means, among other things, that given a normal universe
whose average X' and standard deviation o' are unknown, we can make the valid
prediction that if we drew a series of N such samples of size n from the given
population and calculate ranges 3{1 t 20; where Ii and ¢, are the average and
standard deviation of the ith sample of size n, then PZN of these ranges may
be expected to include the average X' of the universe. If the universe is an
experimental one where the theorstically true value X' can be obtained, then
such a prediction can be checked,

For emmple, Fig. 14 shows a series of 100 such ranges for n = 4;

40 for N = 100; and 4 for n = 1000, where P, = +50. The theoretical value

I' in this case was zero and is shown by the heavy central line. The flgure
shows that the peroentages_ of ranges including zero are 51, 45, and 50, the
éxpected value P, being 50. This constitutes an excellent check between theory
end experiment for different size sgamples. '

Thus we see how it is possible with the aid of "3tudent?!s" theory,
to make predictions about ranges in the sense of Fig. 14 that are Just as
valid for small samples as for large. It enables one to make velid predio-

tlons about a series of ranges of the form

' 3 908
1, "The Probable Error af the Mean", Biometrika, V6l. VI, Part 1, 1908,

PP. 1=25,
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calculated from a sequence of samples of size n .drawn from a normel universe,
where fi and o4 are the observed average and standard deviation respectively of
the ith sample,.

Now let us consider the problem of establishing a tplerance range for
the normal bowl used in getting the data presented in Fig. 14. As before, let
us assume that we do not know the parameters of the normel distribution in the
bowl. Our problem is to set up a range X = Ll toX = L2 such that the proba-
bility of drawing a value X from the bowl that will lie within this range is
soms previously specified value p*'. As a special case let us take p* =.5.

It is of course, assumed that the only way we can find out anything about the
normal universe in the bowl 1s through drawings with replacement. This hypo-
thetical case corresponds to a practical case where it i3 known that the pro-
duction process constitutes a normal statistical state but the parameters are

unknown.

Obviously the starting polnt is to draw a sample of n values of X

from the bowl. To make the problem specific let us assume that we draw the

following sample of four

1.7, 0.2, 1.4, 0.5
How shall we set up the tolerance limits Ll and Lz?

I think it will be generally and perhaps unanimously agreed among

statisticlans §hat our best estimate of such a range can be put in the general
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torn X £ tos It is obvious, however, that no matter what rule is adopted for
computing such a range, the range computed will seldom correspond to a proba-
bility p* = 5. It 18 also obvious that the problem of establishing a valid
tolerance range is fundamentally different from the problem solved by "Student",
rgtudent *s® theory tells how to make valid prediotions about how meny times a
geries of ranges may be expected to include a theoretically true value, where-
a8, in order to establish a valid tolerance range, we must be able to make a
valid prediotion about how many times future observed values may be expected

to fall within a range computed from a sample of n.

The fundemental difference between what we might term the "Student”
type of rangé and the tolerance range is so important that we are perhaps
justified in examining the nature of this difference a little more carefully.
For the special case where Pz = ,5, the "Student™ type range is sometimes
called the probable error or the equi-bet range. In this sense, this range
is 1ikely to be confused with the probable error range of the olassic theory

of errors which for averages of samples of size n would be Xt -‘7—1 where
vu

¥t and o' are the true average and standard deviation respectively of the uni-
verse., If we knew this range, we could make the valid prediction that 50% of
future averages of samples of size n would be found to fall within this range.
In fact, if we knew Xt and o' we could set up a valid tolerance range for any
value of p* for any experimentally normal bowl universe. The probable error
range in the "Student" sense is entirely different because the probability

P = .5 refers not to future averages of n lying within a range determined

z
from the sample but to a series of ranges determined from samples of size n

including the true value X' of the universe.
Now let us see what we must do in order to set up a tolerance range
for which we cen meke a prediction which 1s valid within limits that are

practical. For this purpose let us choose p* = .9973 because this is roughly

of the megnitude customarily desired in engineering practice. of course if

X Xt ', Let us see what
% knew X' and ¢!, the desired range would be X* & 3¢

/B 8
happens if we take as a range Xx3 a=r Fig. 15 shows 100 such range
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for as many samples of 4 drawn from an experimental universe; 40 ranges for
40 samples of 100 and 4 ranges for 4 samples of 1000. The dotted limits are
¥' + zo' or the true velues as one would say. On this figure hangs a tale of
great practiocel importance.

If one were to go through life setting 99+% tolerances by the method
indicated above on the basis of samples of 4,even when drawn from a pedigreed
normel universe, he would sometimes get a range including very small percent-.
ages. For example, the second range in Fig. 5 includes only 12% instead of
the ideal 99+%, Furthermcre he would seldom get ranges approximesting very
closely to symmetry. Even on the average the ranges thus set up would not
include the ideal 99+% but something less. The average observed for 1000 such
ranges 1is 9%5,

0f course, it 1s theoretically possible to choose a value for t that
will cut out on the average the idesl value 99+% but in that case the errors
of the separate ranges would be inereased on the average. There are many de-
tails of interest that might be considered but for our present purpose it 1s
sufficlent to call attention to the fact that experimental ranges have a
tendency to hug closer to the ideal limits the larger the sample size used in
computing the limits,

This fact is of great practical importance. It shows that if we

wish to reduce the chance of meking an error of a given size in estimating the

probability associated with chosen tolerance limits. there is no roval
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"mall sample road” of doing this. Rven under the simple conditions here as

suned, we can improve our estimate only by inoreasing the sample size n,
Gertainly even under the ideal conditions here assumed » Viz., normal bowl
upiverse, one would not be likely to be satisfied with a semple size less than
1000 and certainly not less than 100 if he were trying to set tolerance limits
thet would insure the most efficient use of engineering materials. That is to
say, even if the properties of materials and manufactured product were in a
state of statistlcal control to begin with, it would still be necessary in
ofder to acquire the more certain and intimate knowledge required for setting
the most efficient tolerances, to have a semple of at least 100 and more likely
1000 or more.

Another very important point for us to note is that there is no way
under the shining sun to form an estimate of the errors that might be made in
adopting a tolerence range of the form X i to unless we know the sample size
o from which it was computed.

HOW ESTABLISH TOLERANCE LIMITS -~ PRACTICAL CASE

Thus far we have considered the method of establishing tolerance
linits, assuming that the world were a bowl of chips. Under these conditions
we can only increase our knowledge upon which to base our estimates of toler-
anoe limits through the process of taking more data - a larger sample as it

were, The problerh is purely statistical in character in the sense that any

sample of n observed values may be considered as a sample of an indefinitely
long sequence of numbers satisfying the requirement that they come from a

statistical state of control. Schematically we have:

Xy4Zpy o0t Xy 770 Ky nerr 77 Kperr 770 (8)
Sanmple Universe
Past Future
Present

How to set up tolerance limits L, and Lz upon the basis of the sample, and how

to determine the errors that may be expected depending upon the 8
ematical statistlclian cen contribute more than

ample size n

13 a problem to which the math
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any one else, assuming, of course, that the physical state of statlistiocal con-
trol represented by the bowl can be characterized by the mathematics of dis-
tribution theory characterizing the concept of a statistical state of control
in the sense already discussed in Chapter I. In fact, there is presmbly
nothing that an experimental scientist can tell a statisticlan about haw the
n numbers arose that contributes to the work of the statistician beyond the
statement that they were drawn from a bowl. Thus we see that in so far as
the state of statistiocal control represents the limit to which one can hope
to g0 in attaining uniformity of quallity of product, the problem of setting
the most efficient tolerances reduces in the end to & purely statistical
problem,

Now let us ask how often in the practical field 1s one Justified in
assuming upon the basis of a small sample of data that the conditions have been
maintained essentially the same in the sense that one would be Justified in
meking predictions such as indicated above? A mathematiclan obviously ocannot
answer this question. We must appeal to experience for an answer, but in
analyzing and interpreting the experience the statistician and scientist must
cooperate in a way which we shall now consider briefly.

To meke our problem a little more specific, let us assume that we
are given a set of sixteen measurements, Table 3, of a physical quantity and
that we wish to set up tolerance limits for such measurements, What should be

6.683 6,88L 6,676 6.678 6,679 6.672 6,661 6.661
6.667 6.667 6.664 6.678 6.671 6.675 6.872 6.674

Table 3

our first step? Shell we call in a statisticlen and ask him to proceed as if
the sample had been drawn from a bowl, or shall we first consult the sclentist
who took the measurements and ask him some definite questions and, if so, what
shall we ask him?

The procedure which some engineers, scientists and statisticians
follow is to make a distinction between the observations of the highly skilied
and technically trained research worker and the kind of data with which an
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engineer must often work. There is a tendenoy to place a kim of halo around

the data Of Tesearch as though they Tepresent the very last word on the matter,
In fect the physicist or chemist often disdains to take more then five or ten

observations as though there were nothing to gain by taking more - that is he
nay eppear to base his conclusions on small samples.

In contrast the engineer
usuelly wants a lot of' data. Now of course, it is true that if all assignable
oauses of variability have been removed or, in other words, if the amall (or
large) semple of the research man 1s such as one might draw from a bowl, then
the statistician should be best able to make valid predictions upon the basis
of this sample.

As noted in Chapter I, solientists have a habit of saying when they
think they have done an excellent Job measuring some physicel constant or
property that all the measurements were made under the "same essential ocon-
ditions®, The statistician as a rule not knowing any too much scfence and the
sclentist not knowing any too much statistics, the two have often gotten to-
gother and agreed, as it were, that the phrase "same essential conditions"
can be taken as a pass word between the two groups.

From this viewpoint then, one might conclude that it would be suf-
ticlent for us in considering the data of Table 3 to ask if they had a good
research pedigree. Then, if they were approved by a men of outstanding
authority in the field from which the data came, we might be tempted to turn
the problem over to the statisticiamn to tell us what he could upon the
assumption that the 16 data constituted a sample from a bowl of ohips.

The same people who might agree to this procedure for the case of

data of research would likely question the application of the same prooedure
the basis of consider-

malleable

to the problem of setting tolerance limits solely upon

ing the 5000 observed values of tensile strength of test bars of

to
{ron castings, Table 1, as a sample from a bowl universe. If you were

the same
give them an argument, they would likely point to the fact that in

aken, there were summary figures
amples of similar

refersnce from which these 5000 data were b

glven in the form of means, maxima and minima for large 8



tests from seventeen different sources. These data are presented in Table 4,

Tensile Strength

Investi~ ib. per sq. in.

gator Maximum Minimum Average
No. 1 59 000 45 000 54 000
No. 2 58 500 53 000 56 250
No. 3 56 880 50 000 52 460
No. 4 55 850 47 850 52 890
No. 5 62 140 54 400 57 920
No. 6 62 860 52 150 56 350
No. 7 56 000 50 000 53 000
No. 8 58 000 50 000 55 000
No. 9 61 300 49 000 55 000
No. 10 59 800 50 000 53 970
No. 11 60 600 46 600 52 670
No. 12 58 000 50 000 53 000
No. 13 62 000 51 000 53 000
No. 14 56 640 45 500 51 170
No. 15 61 500 45 000 53 710
No. 16 58 000 50 500 55 500
No. 17 56 160 50 480 52 830

Average Tensile
Strength ... 54 040

Table 4
The total number of tests summarized in Table 4 is upwards of 20,000. In spite
of the fact that the averages of the two sets 54,040 1lb. per sq. in., and
54,030 1b, per sq. in,, as well as the resultant ranges, are not very differ-
ent, I think that both statisticlans snd engineers would agree that it is
pretty likely that the chance cause system behind the 5000 test values is not
free from assignable causes and hence that these values cannot be considered as
e sample from a bowl.

Now, let us look at some of the series of data taken in pure science
to see if they appear as if they had been drawn from a bowl, Let us in fact
look at the soientists'record in measuring three of the seven fundamental con-
stants of physical soience, namely the velocity of light C, gravitational con~

stant G, and Planck®'s constant h. Certainly such measurements may be expeocted

to be among the elite of all physical measurements. Fig. 16 shows the
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fluctuation in the accepted values over the past yearsl. The three ordinate

N O —
870 ‘a0 ‘90 ‘00 ‘10 ‘20 *30 1940

Fig. 16
scales are not shown as the object here is simply to indicate in a readily oom-
narable way the variations in time in each of the three sets of measurements,
0n the face of the evidence here presented it might be argued that, for the
velocity of light ¢, the measurements seem to be approaching asymptotically
to some fixed value. This type of argﬁment hes, in fact, been advanced by
Bavink2 as indicating the more or less ordered way we approach perfect knowl-
edge in physies. The other two curves, however, constitute quite a contrast.
Bach ends at approximately the level it began. Physiclsts are pretty gen-
erally in agreement that in each of the three cases the observed range of
variation is indicative of the existence of "constant™ errors. If, however,
we examine some of the points at the extremes of the ranges shown, we still

find evidence consistent with the hypothesis that there are assignable causes

of variability present.

771, Nov. 17

1. “The Velocity of Light", R. T. Birge, Nature, Vol. 134, page 771, ’

1934, "On tge Valu%s of the Fundamental Atomic Constants", Stezzzozw June
Friesen, Proc. Royal Society London, A, No. 902, Vol. 1621'1 pg;-tiols on' ’
1937, The values of G for 1395 and 1896 are taken from the

Gravitation in the Eleventh Edition of the ERg olo ;digo___-——-?;‘tggnig;;ugﬁ“"
are the values which the author of the article, The 1927 and 1930 values are

most 1ikely to b rrect at that time {1910). 192
those élfvlg 1: tzecgmithsonian Physical Tables, %953, ;;hill\.le ggdlgggﬁflﬁi ’
is obtained from "Fundemental Physical Constants”™, Dy H. He -, g
Ser. 7, Vol. XXII, p. 624, October, 1936.
«, London
2, Bavink, Bernhard, The Anatomy of Science, G. Bell and Sons, Ltd., Lo R
1932, - -
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For exsmple, let us take the cage of the last determination of the
?

velocity of light shown on the chartl. Here is a case where the total number ¢

repetitive observationsis large - 2885 in fact. If these readings could be con-

sidered a random semple from & normal bowl of chips with an average equal %0 the
true velocity of light, we could be pretty sure that 99.7% of all future ob-
servations would fall within the renge of the average 299,774 plus 3 times the
observed standard deviation. But as is almost always the case where large

samples are avallable, the sample does not give much evidence of having come
from a normal universe. Fig. 17 compares the observed distribution with the
fitted mormal ourve. The XZ test tells us that the probability of getting e
deviation from normality (as measured by Xa, of course) as large as oX larger

2
than that observed, is too small to be read from the tables of X“, Hence in

oo

»
o
3

® OBSERVED DISTRISUTION
NORMAL DISTRIBUTION

NUMBER OF OBSERVATIONS
~
'3
°

obsa . . . \
299,725 299,750 299775 299,800 299825 5

VELOCITY OF LIGHT IN KILOMETERS PER SECOND

Fig. 17
this case, if one wished to set up valid tolerance limits on future observations

of the velocity of light, he would be unwise to use a rule based upon the assumy
tion of normality.

But - and this is the most important question - are we justified in

belleving that these data constitute a random sample from a constant system of

chance ocauses of variation? Suppose we let the data speak for themselves when

Successive groups are plotted in the form of a control charta, Fig. 18. The

chance of an average going outside the dotted limits if the samples come from

1.
gcgiéggn{nA.A., Peage, F.G., and Pearson F., "Measurement of the Velocity

op. 2ongy D @ Pertial Vacuum", Astrophysical Journal, Vol. 82, 1935,

2. Criterion I as described on 30 / ) Ty
» 9 of
Manufactured Product is herepused. Eecnomie Control oL suallty of
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e constant oause system is of the order of magnitude of ,003. Hence the fact

that four points in a total of forty-six fall outside is indeed not very likely

299,800
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> 299,740
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Fig. 18

on the assumption of constancy of tﬁe cause system of variation.

wWhat is the practical significence of this fact for our present story?
It is simply this: 1Vhereas there is safety ln numbers in setting tolerance
limits on the basis of a sample from a bowl, that same degree of safety does
not exist when samples are not so drawn. My own experience has been that when
a set of past data behave as they do in Fig. 18 1t never pays to Pin onets
felith in numbers alone.

Now let us look at another point - this time the maximum point shown
on the G curve. This value 6.670 x 1078 om® g'l sec~? is that given by Heyll.

It was derived from the three sets of measurements shown in Table 5 correspond-

ing to experiments using platinum, gold end gless spheres. The value given by

Gold Platinum Glass
6.683 6,661 6.678
6.681 6.661 6,671
6,676 6.667 6.675
6.678 6,667 6.672
6,679 6.664 6.674
6,672
3 =1 2

Table 5 - Velues of G in units of 1070 om® g™ sec”
Heyl is obtained by weighting the results obtained with gold spheres by one

third = and the others by unity. These results are shown graphically in
nvinoe ourselves that such

- - > a e W @ - > =

Mg, 19. Certainly we need no refined tests to ¢O

-'---v—---——-————--—-——

1. Heyl, Paul R., Journal of Research of Bureau of Stendards, vVol. 5, 1930,
pp. 1243-1290.
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a set of data is very unlikely upon the assumption o’r a constant system of
chance causes being the source of the observed variability. For example, Heyl
says: "The different results obtained with the various materials used for the
smell messe3 are yet to be explai;xed , but evidence is given that this differ-
ence is not to be asoribed to the nature of the material™, The polnt I wish
to stress is that here again we have a sample of measurements among the most
elite of pure science that do not seem to behave like drawings from a bowl of
chips.

Now let us return to the question under discussion. Given the dats
of Table 3, shall we first call in a statistician or shall we seek out the
scientist who 1s an authority in the field from which the data came? It would |
seem that evidence for lack of control of the measuremenﬁs of the constants ¢,
G, and h might serve to shake our faith in taking the scientist's judgment thet
the conditions have been maintained essentially the same as a satisfactory baslt
for turning the data over to a statistician to be considered simply as a samplt
from a bowl. In fact, as the reader may have already noted, the sixteen mea-
surements of Table 3 are the same as those of Table 5, except for a constant
multiplier! In the light of such experience in the investigation of available
data in the field of physical science and from my experience in the study of

semples of measurements of quality in engineering, I feel that before one shi-
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turn over any semple of data to the statistician he should first ask the gojen-
tist or engineer for evidence of statistiocal control. The statiastioian's work
begins, &8s 1t were, after the scientist tells him whether or not the sample has
arisen under statistically controlled conditions. The case is something like
the old story about the Irishmen Pat who had been in this country only a few
monthe and in the meentime had located a job as a hod-carrier when his friend
Mike arrived. "Pat" says Mike "And what are you doing"? To vwhich Pat answered:
"sure an' I have an easy jJob. I carry the bricks up four flights of stairs and
the man up there does all the work™. In much the same sense the sclentist must
carry his data through several control criteria before handing them over to the
statistician,

But there still remains the question as to how to set tolerance limits
even when the chance cause system 1s not in a state of control. Certainly the
engineer must set tolerances and the scientist must form estimates of ranges
within whiph measurements of physlcal constants and properties may be expected
to lie even when conditions do not give evidence of control. All that we have
attempted to show thus far is that this isn't a problem to be turned over to
the statisticlan to solve on the assumption that the available data can be
treated as a sample from a bowl,

HOW ESTABLISH TOLERANCE LIMITS -
FURTHER CON3IDERATIONS

As a starting point for what follows, we need to look somewhat more
oriticelly thean we have done thus far to the requirements that tolerance limits
mst meet in the process of mass production of interchangeable parts. Thus far
we have spoken only of tolerance's' expressed in terms of measurements of some
quality characteristic X, it being tacitly assumed, as 1t were, that one thing
or piece part may be substituted for another if the measurements of both parts
fall within the presoribed tolerance limits. Obviously, however, this con-
dition may be satisfied and one part still not be interchangeadble with another
for the simple reason, as we Say, that the measurements mey be in error.

Strietly speaking, therefore, we need to differentiate between the oustomarily

sccepted oconcept of true value X' of a physical quality and a measurement X of



this true value. Thus if we have two objects 01 and 0y, We customarily assume
that the true values Xi and Xé of the quality characteristic Xt must lie with-
in some tolerence range

X' =L, to X' =1, (9)
in order for the objects to be congidered as interchangeable., Likewise the
physioal state of statistical control would be expressible in terms of a se-

quence of numbers representing true values, =~

xi'.’ xé’ seee xi veee x‘ll, xx')*l XXX x:ni, ceee (10)

Let us look a little more closely at the concept of a true value X',
How 18 one to know whether or not the true value of the quality characteristie
1lies within a given range? If one cannot knowingly discover the true valus
then of what practical use is the concept? In answer we shall see that it gives
rise to a class of operationally verifiable criteria which are quite distinet in
certain oharacteristics from those used in the operation of statistical control,

To begin with, let us note that corresponding to every concept of a
measurable quelity X* such for example as length, there are usually at least
several ways of measuring the quality in question. Por exemple, some of the
ways of measuring length are: a) use of ordinary rule, b) micrometer, ¢) trav-
eling miocrosoope, d) triangulation and so on indefinitely. Let us represent
the meagurement by any such set of methods by the symbols xl,xz, L Ki, ser,
Presumably each method can be repeated again and egain at will so that cor-
responding to eny true value X' there are potentially as meny infinite se-

quenoces as there are known methods of measuring. Schematically we have:

(K10 Tzt Kygy 0t gy Ty, 0t g ot
(xal’ xza’ e xgi’ see xzn, x2n+l, ess Izn+1 soe

rS> (DIIIIlIIIIIIIIIIiiiiiiin @
Xiqs Loy *°° Xﬁ_. ces Lo xin'l-l’ s ximi e

L * L d * . L] L] . . L] L] .
.

L4 . L] . L] * .

LA A ® & & & T e e 9 e & o+ e @

Where the symbol 2 stands for the operational meaning of X°*,
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Customarily we tacitly assume that in order for the set of sequenoces

to constitute a measure of the true value X', it igs necessary that each sequence

represent & statistically controlled condition and that the statistical limits

of the sum of the first n terms of any ome of the Sequences be equal to the
statistioal limit for each of the others or that

! cee oo e
xl xé’ 21: (12)
In practice it is customary to chooss one of the methods of measure-

ment a8 a standard method for which we would have the potentially infinite se-
quence, let us say

sl, Szl LN Sil coeoe Sn’ Sn+1' eee Sn+1’ XX (13)
to set 1t off from the others. Obviously this sequence in order to serve as
8 basls for comparison should be a random one in the sense that it is repre-

sentative of a state of statistical comtrol. Requirement (12) then reduces to
X -3 (L =1,2, == 1 --0) (14)

Let us pause for a moment to examine some of the propmsed standard
methods of measuring let us say length. In this case the character of the
reference standard is either some arbitrarily chosen physical objeot suoh as
the Imperial Standard Yard and the International Prototype meter or some
netural phenomenon such as the velocity of light.

First let us consider the requirement of randomness or statistlocal
constancy of the standard sequence (13). Here we are back to the problem of
setting up a statistical control technique and the choice of operationally
veritiable oriteria for control in the sense considered in Chapter l. 4s we
have seen, in order to attain this objective the statistician must provide the
solentist with all mathematical distribution theory that is necessary in order
to make possible the choice of the most efficient control oriteria for the
perticular case in hand. The laymen might, of course, expect that 1t would be
quite simple to set up such & standard series. A glance, however, at the con-
trol chart record, Fig. 18 for the measurement of the velocity of 1ight should

t to-da
be sufficient grounds for believing that there apparently does mot oxis d
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any rendom comparison series of observations for the measurement of length based -

upon the concept of a natural constant.
Now let us see what the situation 1s ‘for comparisons in terms of ar-

bitrarily chosen physical standards. Some very interesting results have re-

oently been given1 by J. E. Sears, guperintendent of the metrology department
of the National Physical Laboratory. In addition to the Imperial Standard Yard
there are in existence at least four Parliamentary copies. Table 6 shows the
observed differences in millionphs of an inch between the length of the Imperial
Standerd Yard I and the copies P.C. 2; P.C. 3; P.C. 5; and P.C. VI. Sears
olaims that the observations on P.C. 3 in 1876 and those on P.C. 3 and P.C. $
in 1892 are suspect and hence he argues that according to the results shown

in this table the lengths of the bars P.C. 2, P.C. 3 and P.C. 5 have remained
in close agreement with that of the standard. However, he points out that

not only the evidence given in Teble 6 but also other evidence which he cites
Difference ég Millionths of an Inch

Comparison 1852 18 1886 &ESE

P.C. 2 =1 +21 +36 - +6 - -23 =19 39

P.C. 3 -1 -33  +57 - +55 - =49 =61 =111

P.Ce 5 =1 =55 «33 - +70 =~ -43 =23  -47

P.C, VI-1I - - -3 - =192 =215 =217 =234
Table 6

indicates that P.C. VI contracted over this period in an exponential menner 8o
as to approach the asymptotic value of =228 x 10~0 inoh which it would seem that
the bar had now reached. 8ears points out thet the bar P.C. VI was made several
years after the others and argues that perhaps the reason why the change in
length is noted only in the case of P.C. VI is that the others had reached &
stable state before the measurements in the table above were taken. Of course,
another explanation might be that the earlier bars, including the Imperial
Standard, might have been shrinking at the same rate. ~

For our present purpose, the only roint I wish to make is that there
1s some evidence for believing that the arbitrarily chosen physical standard

L I T

1. Sciencge Progress, Vol. XXXI, Oct. 1936, pp. 209-235,
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of length cannot be assumed to give a random test series at least until several
years have elapsed and the results of intervening tests have been studied,
yhat 18 still more important is that, from an operational viewpoint, the faith
that we have in any suoh standard series comes about in effect by comparing

goveral series which for theoretical reasons of a physical nature we believe

ghould give the same results. Thus, measurements by the atandard I, as well

a8 by any one of the oopies is capable of giving an infinite sequence. Hence

corresponding to measurements by the five standard bars we would have five so-
quences of the form shown in (15).

8120 8329 °*° 8345 °°° B35, Bypuys 000 Bypy ot
‘321' Sp2s *°" Sp5s °°° Spps Sppaae 0 Sgpyy vt

O DR (18)

sil’ Siz’ oee Sii, eoe sin! sin+1’ see Sin+1 eee

® ®© & ¢ & & ¢ o & & & o 9 e s e o @

The concept of being able to make duplicate coples of a standard 1s therefore
in & sense a requirement that the copies be interchangeable in terms of the se-
quences (15) which characterize them in an operational way,

Now let us ask: what is the essential difference between the opera-
tional representation of X' in (11) and that in (15)? The answer is that, from
8 theoretical viewpoint, any one of the methods of measuring showa in (11)
night be chosen as a standard. If it were, there would be the question of pro-
duoing dupliocete standards and we would have a sel of sequences of the type
(15) for each method or, in other words, for each sequence in (11).

From the viewpoint of statistlcal theory, however, the requirements
on the sequences in (11) are different from the requirements on the sequences
in (15)s For those in (11) and (15) we have the requirement (12) but for those
in (15) we have the much broader requirement

evoe = m ovee 16
r(s) as = rl(sl) dsl - fz(sz) dsz = rl(si) dsi (1e)
which is supposed to symbolize the requirement that the sequences in (15) may

8ll be considered rendom samples from the same universe.
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But if we are going to make the most efficient use of material, we
must close up on the tolerances as far as it is economical to go. In this pro.

cess, we must make use of two kinds of statisticel oriteria: a) thoge involved

in the operation of control and b) those required to test the consistenoy of
the sequences used in giving operationally definite meaning to the true value
X' sohematically illustrated in (11) and (15). Criteria under (b) are ob-
viously those for testing significant differences in averages end for testing
whether it is reasonable to believe that a given set of sequences came fron
the same state of statistical control. In other words, progress toward the
ultimate goesl of efficient use of raw materials by reducing tolerances to

an economic minimum will necessarily involve extensive use and requiremesnts
of tests for signifiocant differences.

Rmphasis, however, should be placed upon the fact that in the use of
statistical tests for significance it is necessary to use large enough samples
to reduce to a satisfactory level the risks of making errors in judgments.
The reason for such action is similar to that for going to a sample of
100 to 1000 in trying to establish a tolerance range, even in the simplest case
of drawing from a normal bowl, as was pointed out in the discussion of Fig. 15
Also I think it is significant from the viewpoint of applying statistical
theory, to note how extensive the series of measuremesnts apparently have to
be before we can hope to gain much from trying to analyze a set of data as
though it were a sample from a bowl., For example, in the beginning of any
investigation involving the measurement of any "true"™ value there are usually
only a few methods of measuring known. At least in the field of physical
and chemical soience, the requirement of consistency between the results ob-
tained by different methods has been a powerful influence in directing atten-
tlon to the so-ocalled constant errors. It would appear thaf;, in general, it
is of little velue to make very large numbers.of measurements by any one

method until 1t has been found to give results that are more or less oonsist-

ent with those of other methods. If, however, a large number of measurements

are to be made as, for example, in the measurement of the velocity of light,
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it would seem that much would be gained by applying statistiocal oriteria of
sontrol for detecting assigneble ocauses of varliability for in no other way oan
we apparently reach the state of statistical control and maximum valildity in
prediotion,

Someone may ask why go further than scientists have gone in trying
to attaln rendom sequences of physical measurements satisfying the oriteria
(12) and (16)? The answer would seem to be that, in just the same way as in-
justriel applications of scientific principles have brought more and more
gtringent requirements as to accuracy in measurement, so will any further
steps toward attalning maximum efficiency in the use of materials bring with
them requirements on the method of measurement as to state of statistical con-
trol and maximum consistency both of which will necessitate the extensive use
of statistioal theory and technique,

From what has been said in this chapter, it would appear that we
mst have a much more intimete knowledge of the properties of materials than
we now have if the engineer of the future is to be able to minimize tolerances
and thereby attein maximum efficiency in the use of materials, Furthermore
it must be apparent that this ideal cen only be attained by the application
of statistical theory in establishing oriteria for control and other oriterias
for testing consistency of data, When a state of statistical control is

reached the method of setting up the tolerances becomes & purely statistiocal

problem,
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CHAPTER ITX

R

PRESENTATION OF THE RESULTS OF MEASUREMENT

OF PHYSICAL PROPERTIES AND CONSTANTS

A Worthy Goal:
When you cen measure what you are speeking about and express it in numnbers, you know

something about it, but when you camnot measure 1it, when you cannot express it in numbers,
your nowledge is of a meagre and unsatisfectory kind.

Lord Kelvin
But:

sesne k'nowifg begins and ends in experience; but it does not end in the experience in
which it begins.

C. I. Lewis
Harvard University
In the previous chapters, we have seen that the three steps in at-
taining economic control of quality are dependent one upon another, ZFor
example, we have seen that the problem of establishing tolerance limits thai
will make possible the most efficient use of materials can only be solved in
the light of information obtained in the second and third steps of productim
and inspection or judgment of quality. In addition, there must be taken into
acoount all pertinent data available in scientific and engineering literature
and particularly those acoumulated by standerdizing bodies such, for example,
as the american Socilety for Testing Materials. Iiterally thousands upon
thousands of measurements are available in many instances while at other times

we may have only & few. In both cases, however, the attempt is made to set 1)

a tolerance range,
K= I.l to X = 1'2
for any quality X such that in the course of production the probability p of

producing a plece of product with the quality outside these limits satisties
thes condition )

ls “Experience and Meaning", The Phil. Review, Vol. XLIIT, page 134, Merch 18
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where p' 1s some arbitrarily chosen value. Broadly speaking, this involves the
»

problem of trying to summarize all pertinent information in the form of a range
It oK.

This is perhaps the simplest type of problem of presentation of

data, viz., the presentation of a series of n measurements xl, xa, "’xi’

o L;, of some physical constant or of some quality characteristic of a matere
ial such as the density of pure iron, tensile strength of steel, or the like.
It ig, of course, very common practice to summarize and report the results of
such measurements in the form

X (17)

or X+ XX, (18)
For example, I find in the Smithsonian 'I‘ablesl the density of pure iron at
ordinary temperature given as
7.86 gm/om°.
Likewise, I find in another recent and authoritative 1‘.able2 the density at ap-
proximately the same temperature given as
(7.871 + 0.002) gm/cm®.

The problem of presentation of experimental data may be considered
from one or the other of two viewpoints; a) from that of one who has some ex-
perimental results of his own or of others to present as sclentific "faota"
independent of how or for what purpose such facts may be uaed, and b) from that
of one who wants to use such results previously presented. For example, on the
one hand the worker in the field of ®pure® science wants to present his own
tindings as objective faots. Likewise soientists often attempt to bring to-
gether the experimental facts obtained by others in the form of tables.® on

The Smithsonian Institu-

S ®Eem e e e B @mm e W M oW e e = o= W os ==

1. Smithsonien Physical Tables, 8th revised Editionm,
tion, 1933, p. 160,

2. Physical Constants of Pure Metals, The National Physiocal Laboratory, Londom,
1936, p. 6.

3, For example, The Smithsonian Tables of Physical Constants; ;h:uggt::‘g::ﬁ::l
Critical Tables; Engineering Handbooks; Committee Rep or:s o Chemiocal
as the Amerlcan Society for Testing Materials, the American
Society, and the like.
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the other hand, professional men and engineers from many fields are typloal of
those who want to use the results thus presented.
We may, for example, pursue a subject such as physios or chemistry

for what they are in themselves. In this sense we may study the structure and

properties of materials; measure the fundamental constants of nature and dis-

oover the "laws" of soience. As an artisan, however, we approach such subjects

in an entirely different way - we have for example bio-physics, bilo-chemistry,
egriocultural physics and chemistry, engineering physics and chemistry, and so
on. Nevertheless, the "scientific facts"™ are presumably the same whether

viewed by the pure scientist or the artlsan. For example, the velocity of

1light o, the gravitational comstant G, or any one of the seven so-called funda-
mental constants of nature is presumably independent of whether the observer is
a pure or an applied soientist. In fact, tables of physical and chemical prop-
erties are apparently supposed to present the known facts for all.

Conceptually, of course, the density of pure iron in the units
ohosen is some single value which could be expressed in the form (17). If we
ocould discover this true value with certainty, we could put it down once and
for all a8 a fact. In practice, however, we cannot knowingly discover this
true value - we can simply make measurements and draw inferences from the
measurements thus mede. Use of data involves the making of valid predictions
or inferences about the future. From the viewpoint of such inferences, the
original data constitute evidence and not facts. For example, there are three
important aspeots of knowledge from the viewpoint of presentation of data for
use. These are sohematiocally illustrated in Fig. 20.

Original Data as Inference or
Evidence E Prediction P

Degree of Belief Py in
Prediction P based on

Evidence E.
Fig. 20
To illustrate the practical significance of considering the probles

of presentation of data from these three aspects let us oonsider the density of
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8 glven abo
pure iron as g ve in the form (7.871 + 0.002) gn/om®. Does the range as

given provide us simply with & summary of the data or is 1t intended as an in-

terence or prediction based upon the data? As a sumuary of the data, it might
constitute evidence for several different inferences but, if it is intended as
an inference, it may or may not be valid. Now in establishing tolerance ranges
eand perticularly when one tries to reduce the range to an economic minimum, it
is necessary to be able to establish inferences in the form of tolerance ranges
that will be found valid. Much the same situation maintains in trying to

render valid judgments about quality. It is therefore essential that we con-
sider carefully the nature of the evidence that must be available in order to
be able to render valid predictions or inferences in the form of tolerance
ranges, for example. Obviously, however, there is nothing in a summary in the
torm of X + AX that indicates whether or not tolerance limits or other infer-
ences derived therefrom may be expected to be wvalid.

In what follows I shall try to show that under no conditions is a
sumary in the form of X + AX alone an adequate basis for drawing valid infer-
ences as to tolerance ranges or for rendering valid judgments as to the range
of variability to be expected in quality fluctuations. Under certain condi-
tions which are inherently statistical in nature, evidence in the form of
X + AX, together with the sample size, is adequate provided we have other evi-
dence that these conditions have been fulfilled. In general, however, we shall
see that such a summary is far from adequate - in addition we must have evi-
dence as to the state of control of the quality and evidence as to whether or
not the observed data are consistent with other pertinent data.

For example, let us turn to a table of physical constants such as
the Smithsonian 'l'ables.l On pages 103-107, we find approximately 130 ranges
tabulated in the form X + AX. Are inferences of a given kind drawn from these
ranges of equal validity? Under what conditions and for what form of inference

wuld i1t be possible to set down.such a set of ranges that would have equal

validity?

Ever since the time of Gauss, error theory has been used extensively

1. loe. cit.
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Several attempts have
1

in summarizing data in the form of a range X + AX.
been made to apply some of the more recently developed statistical techniques,

2
Such applications have, however, been recently questioned by Norman Campbell®,

3 It is hoped that the following discussion will throw

von Friesen”, and others.

some 1ight on the question as to the role statistical theory may be expeoted to
play in establishing suoh ranges.

Briefly then our problem is to consider ways and means of summariz-
ing a series of observations in such a way as to make possible valid inferences
in the form of tolerance ranges and quality judgments of a certain character.

PACING SOME PRELIMINARY DIFFICULTIRS

Let us look at the tabulated densities of pure iron in the forms
(17) and (18) above. What do they mean? One camnot expect to use such inform-
ation intelligently unless one can answer this question. Is the "true"™ density
7.86 gn/oma? Or does the true density lie somewhere within the range (7.871 t
0.002) gn/mn3? No one knows the answer to such questions. Some one may sug-
gest that the probability is p that the true value lies within this range. But
what does this mean? Obviously, if one could discover the true value, he would
find that it simply either did or did not fall within this range. As Bridgmen
has pointed out,4 there does not seem to be any method of verifying the proba-
bility of a single event such as we have here.

When data are tabulated in the form X + AX there seems to be pretty
general agreement in calling X an estimate of some true value. Now what about
OX? Let us look at some of the things it is called in recent literature:

1. Probable error5 5

2. Estimate of probable error

- - - =
e R T T T S o O

1. Deming, W.E. and Birge, R.T. "On the Statistical Theo of Errors," Rev. of
Mod. Phy., Vol. 6, No. 3, July, 1934. i '

2. Campbell, Norman, "The Statistical Theo of Errors," ) A
Soo., Vol. 47, pp. B00-809, 1935. id " £E0. of the Fiys.

3. Sten von Friesan, "On the Values of Fundamental |
Atomiec Constants, Proc. ROy,
Soo. Lon., Series A. No. 902, Vol. 160, pp. 424-440, June 1937.

4. Bridgman, P.W., "Statistical Mechanics,” Bull. Amer. Math. Soc., Vol.

XXXVIIY, #4, 1932 . -
University ﬁress’,lgge.zﬁ 245. The Nature of sical Theory. Princeton

5. Many ourrent articles and tables.



- 57 -

3. "Even-bet" error.l

4. Estimate of reasonable limit o 2
5. Degree of uncertainty: f error.

Is the practical significance of AX the same irrespective of what it 1s called?

For example, suppose we look up the recorded velocity of light in

vacwo. Teble 7 gives values in units of 100 om/seo suggested by threes author-

ities after making surveys of the literature as of the dates given.

¢ 5
Birge (1934 Bond” (1936 von Friesen® (1937)

2,99776 £ 0.00004 2.99'785 t 0.00005 2.9978 + 0.0002

Table 7

The ranges here given are Trespectively termed from left to right
*even-bet”, probable error, and reasonable limits of error range. In what
sense do these three kinds of range differ? What useful purpose, if any, does
one range serve a practical man that the other two ranges do not serve?

Next let us pass on to a consideration of another difficulty; viz.,
that different analysts using the same set of data do not always arrive at the
same values of X t+ AX even though they call them the same. Schematically the
situation may be represented as follows:

Original Data in Hy

the form of n observed ——m—> (X = AI)1
Values.

H
vhere —1—> represents the operation of going from the given data to the

tebulated range (X + Ax)i for the person Hy. Since this operation of deriving

a glven kind of range, as, for exahple, the probable error range, is not the same

1. "0n the Values of Fundamental Atomic Constants", by R.T. Birge, The Physical
Review, Vol. 52, No. 3, 241, August 1, 1937.

tants®, Proc. Roy.
2, S. von Priesen, "On the Values of Fundamental Atomlic Cons , y
Sos., Lon., Series A, Vol. 160, Dp. 424-440, June 1937.

3 International Critical Tables, First Edition, 1926, page 17.

¢. “Mhe Velocity of Light", Nature, Vol. 134, page 771, Nov. 17, 1934.

. 624-
5. "Fundamental Physical Constants", Phil. Mag., Series 7, Vol. xxii, pp. 6
632, Ootober 1936.

_____—_L_———————-’

Series A, No. 902, Vol. 160, pp. bility in the
The subs;ript § in Bond's result is sipposed to indicate varia y
tirth decimal place.
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for all operators or analysts and since, in general, the range depends upon the
operation used, it is pretty difficult to see how a tabulated range can be used
as a basis of valid prediction without first knowing the operation. For exam-
ple, the value of X appearing in the range (X * &X)3 is very often the arith-
metic mean of the n observed values; 1t is just as likely, however, to be a
weighted mean of some kind where the weighting and the choice of mean depends
upon the analyst. Likewise the 4X is often derived in many different ways as,
for example, from the mean deviation, standard deviation, range and certain
other statistics of a sample. Then too there is no universally used technique
for getting a AX from a given statistic. Finally, it should be noted that
speoial grouping of the data is often followed.

For example, Fig. 21 shows the recorded ranges for several different
determinations of the velocity of light as given in a recent art;lcle.l The

length of the vertical line in each case 1s proportional to the recorded range.

One might be tempted to compare these ranges visually and conclude that

300,200r
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solentista have been doing some pretty good work in olosing up on the range

within the last few years. But when one looks at the original data and finds

that the operation of getting the ranges have not been the same in each case -

in faoct that they have been very far from the same - how can he justify any

l. "Values of Fundemental Atomi
¢ Constants", by S. vo
Soo. London, Series 4, No. 902, Vol. 160" pp. 424-24§f1§3§2: s P
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Perhaps it is not out of place here to give an example of how such

tabulated ranges are sometimes compered in the literature. In a recent paper

1l
by Eddington™, he puts the question: Suppose I have ocoasion to use Planck's

sonstant and I find in referemce books two determinations,

hx 1027 = 6.551 + .013

b x 1027 = 6.547 + .008.

issuming that these are to be taken at their face value, which one shall I
choose? He argues that the latter i1s the more useful to him because it 1imits
h to a narrower range and hence will lead to sharper conclusions.

Before commenting on this example let us consider another which in
many ways at least is very similar and let us see if the same line of argument
wuld 1ikely be used. Suppose that an engineer is interested in building a
pole line and he has before him the following modulus of rupture figures on two
kinds of poles, expressed in the same units:

Specles A: 5340 + 2252

Species B: 5365 + 1803
Assuming that these data are to be taken at their face value, which species
should be ohosen? Should the engineer choose the latter on the assumption that
poles of this species will be found on an average to have about the same ten-
sile strength as the others and to show a smaller dispersion? Suppose now that
the engineer finds out that although the limits were set in the same way for
Ytk species, there were over 2000 poles for species A and only five for
speoies B, Would the choice now remain the same?

Going back to the illustration given by Eddington, I em not sure
vhat the expression "Assuming that these are to be taken at their face value"
tovers. Assuming, however, that the choice is valld upon the basis of this
conditioning phrase, I do not recall having seen amny practical exemple where I
would feel free to make the cholce suggested. In other words, I do not know

ied. This
of any instance where such a qualifying assumption would be justifie

. of the Phy.
1. Eddington, A.S. "Notes on the Method of Leiggssquares" Proc y
Soe., Vol. 45, Part 2, #247, pP- 271-282, .
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is certainly true for the ranges shown in Fig. 21 and similar ranges tabulated
for the fundamental physical constants.

Thesge are but typical of the difficulties that are continually oom-
ing to my attention in the course of my every day work and also in the course
of my work as Chairman of the Joint Committes on the Development of Statistical
Applications in Manufacturing and Engineering sponsored jointly by certain
scientific and engineering s,ocieties.l Scientists and artisans alike have long
looked to the theory of errors and least squares to throw 1light on the problem
of presentation. With the developing emphasis during the last few decades upon
statistical theory and its applications in one field or another, it has been
quite pnatural that these developments would also be expected to shed light on
the problem. I hope to show as we proceed some of the important ways in which
statistical theory may be used to advantage in considering the problem of
presentation. It will, however, be necessary to call attention to some funda-
mental and, so far as I know, unsolved difficulties, the solution of which
seems to fall cutside of anything we may hope to obtain from the application of

formal statistical theory, at least as it is ordinarily considered.

SOME FUNDAMENTAL CONSIDERATIONS

Let us assume that we have a set of N normal "bowl-universes® for
which we kmow the expected values Xi, Xj, ... X}, ... Xg. Given samples
Dys Dy eee Dy, «es Dy from the respective bowls, we have seen in the previous
okapter how "Students'®” theory enables us to caleulate a range for each bowl
suoh that piN of the ranges thus calculated may be expected to inoclude the cor-
responding values Xj, X, ... 'fi, cee f!" Such a range we shall call a
fiduoial range and such a prediction we shall symbolize Pl' Similarly we have
also seen how we may, by taking a large enough sample from each bowl, estab-

lish ror each bowl a valid tolerance range. The establishment of such & ransez

we shall refer to as a prediction, P,. In what follows we shall be primarily

1. The American Society of Mechanical Enginee he
ing Materials, the American Statistics neers, the American Society for Test-
al Association ti-
cal Sooiety, and the Institute of Mathe Sioal statiszlizs{\merican Mathema

2. These two kind
tively of Chap:egflgx:edictions are illustrated in Figs. 14 and 15 respec-



- 61 -~

soncerned with the tolerance prediction Pz but shall contrast it with the otHer

type Py which has been considered so extensively in recent literature.
It is obvious that the measurements denoted by the X's may -be
measurements of the quality X for a set of objeocts or a series of measurements
of a physical constant.
Next we should note the sense in which we shall consider that a

serles of measurements of some quality oharacteristic differs from a serles of

drawings at random from an experimental bowl. The series of n numbers in the

two cases representing a series of n observations may be identical ana repre-

sentable in such a case by

X1’ X2’ oo X1, L] % (19)

In the case of the bowl, the whole of our information is contained in the set

of n numbers as numbers. In the case of the n physical measurements, however,

the situation is fundamentally different as schematically illustrated bdelow,
¢, ¢ Cy Cp

(20)

X, Xy e Xis oee X,
where for each X there is an associated physical condition, all of which may or
may not be "essentially the same."
Now as we pointed out in a previous chapter, it is very common praoc-
tice in summarizing data, particularly the measurements of research such as
those on the velocity of light - to assume that the conditions are essentlally
the same, which assumption we may symbolize by the expression

. (21)
Ci = cj »

it belng kept in mind that the C's do not represent numbers but "conditions” in

”
the sense we use that term in the phrase, "the same essential conditions.

’
From the viewpoint of prediction in the physical ocase, both the X's

unless the C's satisfy ocondition {(21)

educes to the bowl

and the C's must be taken into account,

r
In which case they may be neglected and the practical case

seen, however
tase and thus becomes a purely statistical problem. We have ’ »
the set of X's when

ts
that even in the case of refined physical measurements,
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orllered in time do not, in general, satisfy the control chart criterion. From
the viewpoint of presentation, therefore, it appears that we are seldom Jjusti-
fied in handling a set of data as though they constituted a sample drawn from
a bowl unless we have evidence that they also satisfy certain criteria of
statistical control. Hence if an engineer or scientist be given predictions of
either type Pl or P2 without knowing whether or not the data satisfy the ori-
teria of control, he is in no position to determine how much belief he should
place in the predictions which, of course, would be valld 1f the conditions are
such as maintain in the case of the bowl. Since one is not interested in pre-
dictions that he doesn't know whether or not to believe, it would seem to fol-
low that in tabulating and summarizing data it is necessary to provide evidence
as to whether or not the observed values satisfy some criterion of control in
the sense of the previous chapter.

Furthermore, one is seldom interested In the measurements as such
but instead is interested in what they tell about some so-called objeoctive true
value. Operationally this means that the prediction in terms of one method of
measurement must be consistent with predictions in terms of other kmnown methods
of measuring. Hence in trylng to determine the degree of belief to place in
predictions of types P1 and P,, in so far as they reveal objeotivity, one needs
to have evidence as to the degree of consistenoy.

It follows from such general considerations that the presentation of
physical data (20) should not be treated the seme as the presentation of data
drawn from a bowl even when the practical data arose under a state of statis-
tical ocontrol and are consistent with other pertinent data. Evidence for
believing that the physical data arose from such a state and are consistent
with other pertinent data is necessary before one reading the presented results

can determine how much belief he should place in the predictions.

Now we are in a position to take up the matter of summarizing data
in eaoh of several cases

diffiocult.

» starting with the simplest and working up to the most

To begin with, it is desirable to distinguish between two fundamen~

tal oonditions: a) when the n Observed values are known to arise under a state

of statistical control and b) when we do not know that the data arose under
such conditions.
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DATA FROM STATE OF STATISTICAL CONTROL

Perhaps our nearest approach to such a state of control 1s that of
drawing with replacement from an experimental bowl-universe. We shall at least
assume that an experimental semple from a bowl satisfies the requirement that
the order in which the numbers are drawn is of no significance from the view-
point of prediction, or, in other words, that the whole of the information or
evidence given by a sample of n from such a bowl is contained in the frequency
distribution of the numbers.

To begin, we should differentiate between the problem of summarizing
the set of numbers as numbers and that of summarizing them for the purposes of
msking a specific kind of predicton. It is often desirable in order to save
space, to try to summarize a frequency distrlibution of n finite numbers in
terms of a set of m numbers, 91, 82, oo em, where m < n and the ©'s are deter-
nined from the sample. The ideal aimed at is to secure a set of numbers, @'s,
such that one could go from the ©'s to the X's as well as going from the X's to

the ©'s. This idesl we may represent schematically as follows:

Xy, Xpy oo Kgy oe0 X 2 ©,, 0,5, ... ©,. (eg)
Now, of course, unless m=n it is not feasible to attain this 1deal.
I, however, we tabulate the arithmetic average X and the root mean square
deviation ¢ of the n numbers along with the sample size n, we can always look
backward from the summarized results and say with oertaintyl that not more than
n
P
values of X are outside the limits
X+ to -
frequency distribution of the six-
8.661; 6.661; 6.664; 6.667;

For example, let us consider the
teen numbers given in Table 3 of the previous chapter:

X . 6.681; 6.683.
6.667; 6.671; 6.672; 6.672; 6.674; 6.675; 6.676; 6.678; 6.679; 66515

. - of this set
Given only the average X = 6.672 and standard deviation ¢ -0061

- -
- - an e
- - - -
- - -
- - o - . e s s > = ==
- e o = e

l. Cf. Tochebycheff's Theorem, page 95, Eeznomic Contr
Menufactured Product, by W. A. Shewhart.
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of 16 numbers one ocould say with certainty without ever having seen the origi.

nal distribution that not more than 16 of these numbers lie outside the limits
t2

Y+ toe 6.672 £ t X .0061. Tohebycheff's theorem applies as a desoription of

the distribution observed in the sample, irrespective of how the numbers are

distributed so long as they are all finite. In this sense it is a remarkable

theorem, but, of course, it does not allow ome to differentiate between dis-

tributions having the same Z, o, and n. Hence if the use of the data summar-

ized in the form of 8's involves inferences which depend upon the distribution
of the numbers in the sample it is always necéessary to go beyond the three
statistics n, X and o in the process of summarization.

Thus far we have considered the problem of summarizing the data from
the visewpoint of being able to go from the summary in terms of the ©'s back to
the original distribution. This phase of the subjJect is seldom if ever con.
sidered by statistioians, because the assumption 1ls customarily made that we
simply wish to go from the sample to the "population" or "statistical universe*
whioh in the case of a sample drawn from a bowl would simply be the true dis-
tribution of numbers in the bowl. Schematically the situastion is as illustra-
ted in Fig. 22. In other words, if the distribution in the bowl can be approx-

: 'fl(X)dX

Estimates

vli :PZO ¢oe wi’ s 00 q)m

e —— — = — — of the parameters

— — — — —

£,(X)ax

= e e — —— ——

of the distribution

in the bowl

— P

T a— — o—

Fig. 22
imately represented by a continuous frequency function y = £(x) involvingm

parameters, the statisticien usually conceives of his problem as estimating
these parameters.

From the viewpoint of presentation, the point I wish to make is thet

t
he statistically #bestn estimate depends upon the assumed form of the function

r. F
Oor example, let us consider estimates of the standara deviation o' in the
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bowl. These can usually be expressed as a funotion of the standard deviation

g of the semple. Thus if f(x) is normal, the estinmate customarily acoepted as

the best is / i%l' 0. But for some other forms of f(x) the estimates expressed
as a funotion of ¢ would be different. Thus in order to meke estimates we must
tirst elther know or assume as known the form f(x) of the distribution in the

bowl. For different functional forms these may, as it were,

be different paths

from the sample to the estimates. Much the same situation holds for Predio-

tions in terms of fiducial and of tolerance ranges. Henoe, in general, if a

sample from a bowl is summarized in terms of estimates, Prr Pao voe Pgs coe Py
of parameters or in terms of predictions without stating the assumption made as
to £(x), there is no way of using the information ocontained in the summarized
form as a basis for making other estimates upon the basis of other assumptions
vhich for one reason or another it may be desirable to make at some later time.
Except in the case which almost never ocours in practice where the funoction

t{x) is xnown, the justification for any assumed f(x) must rest either upon the
evidence provided by the semple or upon that and prior experience. Henoce the
assumption as to f(x) is always subject to change with additional informationm,
but if the past information given by s sample is availeble only in the form of
estimates, we cannot meke use of this information in meking other estimates.
Hence in commercial work at least it is often desirable to summarize data in
terms of a set of ®'s that will give the most informatlon possible about the
distribution in the sample and that do not involve any assumptions about the
distribution in the bowl. In gemeral, it is possible to choose the ©'s in the
fomm of symmetric functions that quite satisfactorily meet these requirements.
Then one oan use tabulated data in quality reports and the like to test various

assumptions. We may summarize what has just been said schematically as follows:

ri(x)

Xy, Xy oo Xy ooe Ky > 97,05,000 6y > P1s P2eeer Fs o (23)

ri(x) > Predlotions Pl,?l?2

where the ——> 1s supposed to picture one method of going from the semple to

©'s and the £y(x) S y ways of going from ©°s to either the @'s or the P's

depending upon the choice made by the analyst.
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Now let us proceed to a consideration of some speclal cases.

Case I. Distribution in Bowl Normal

To make the problem concrete let us consider the following sample of
four:
1.7; 0.2; l.4; 0.5
The best way to summarize such a sample in terms of ©'s is to take

e, =X = .950 and €, =0 = .619

Since in this case the distribution in the bowl is normal, 1t is completely
determined in terms of the average X' end standard deviation o' of the distri-

pution. Now the best estimates of these are usually considered to be:

¢l-f-.950 and @2-/%56- .715

nStudents' " theory enables one to calculate the flducial range correspond ing

to any previously chosen value of probability p in the form:
Xzxto

where t can be determined from tables.

A tolerance range may also be set up in terms of X and o, as we saw
in the previous chapter, but one cannot judge from the tabulated tolerance
range alone how valid it is. To arrive at an estimate of its validity, we must
know at least,

X, ¢, and n.
Hence even in the simplest case we should tabulate the sample size if the data
are to be used at any time in establishing tolerances. The striking thing is,
however, that in this simple case of drawing from a normal bowl, we do not need
to tabulate more than X, ¢ and n irrespective of the size of the sample.

Case II. Form of Distribution in the Bowl Known but Not Normal

Let us start with & consideration of what can be donme with the sum-
mary of the information contained in the sample in the form of the average X,

standard deviation o and sample size n of the sample. Suppose we use these

statistics to establish fiducial ranges by the same mathematical rule that we

used in the case of the samples from a normal distribution. Should we expect
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sppreciably the same degree of validity in ranges thus set up as ¢
we found in

the oase of the normal law?

Pig. 23 shows 100 fiducial ranges for a probability of .5 for three

forms of experimental universe: normal, rectangular and right triangular. Th
. e
ranges in order to be valid should include the corresponding true values in th
e

bowls on an average of 50 times in 100, with a deviation from this ratio no

greater than can be attributed to sampling fluctuations.
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The record of inclusions as seen from the figure are:

Normal Rectangular Right Triasngular
51 56 68
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These results illustrate how the degree of belief in a prediction of type P

must depend upon the state of our knowledge of the shape of the universe even
when they differ no more from pormality than the two here chosen,

It would be diffioult to stress the practical significance of this
point too much. If every time one had a sample of 4 from a bowl, he were to
mske a prediction of type Pl corresponding to a probability of .5, in just the
way he would if he knew the universe to be normal, he might at least expect to
be off something like the difference between .50 and .68. In the case of so-
called "multimodal™ universes the errors might even be much larger.

Under such conditions, I do not know of any better way to summarize
a sample of n observed values from a bowl than in terms of X, ¢, and n if we
are limited to three numbers in the summary. But the point that should be
stressed is that in presenting data in such summary form for the use of others
one certainly would not be justified in simply giving X, o, and n if he also
knew the functional form f of the distribution in the bowl, because the one who
mey later use the data may thereby be led into serious pitfalls. In such a
case one should give:

X, o, n and f.

One should note, however, how inefficient such a summary may be

from the viewpoint of setting tolerance limits for values of p of the order of

magnitude of .003 or less. Suppose, for example, that we have given:

X = -.0028; 0 = .9663; n = 1000; £ is right triangular.

I 4o not know of any way of setting up such a tolerance range in terms of such
a summary that would approach in validity, one that might be set up on the
basis of the observed distribution in the sample of 1000 shown in Fig. 24,
For example, I think almost everyone will agree that tolerance limits -1.4 and
2.6 would satisfy the requirement. It is interesting to ocontrast with this
example of setting tolerances, that of setting the same tolerance limits upon
the basis of a sample of 1000 from a normal bowl. In Fig. 15 of Chapter II,

we saw how successfully this could be done in terms of simply X and ¢. As was

pointed out in Chapter II, it 1is necessary to have a large sample - perhaps

even 1000 - before one feels justified in trying to set minimum tolerance

limits even when it is known that the sample is from a normal bowl. For cer-
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tain functional forms of the universe, even larger samples would be required.
In the present state of our knowledge of the theory of estimation and the
establishment of valid ranges of variability - partioularly tolerance ranges -
in terms of a few ©'s, I feel that one is not justified in trying to summarize
samples of the size required as a basis for establishing valid tolerances in
this way unless he knows that the universe is normal.

Case IIT. Form of Distribution in Bowl Unknown

Whereas in the previous case it is a pretty difficult problem to
summarize the information given by a sample in terms of ©'s unless the universe
from which the sample came is normal, it is obviously much more difficult to do
80 when the form of the universe is unknown. As pointed out above, we must
now the form of f in order to make a valid prediction. But if we do not know
f, we must assume a form upon the evidence given by the sample.

To ifllustrate, let us consider the following sample of eight drawn
from a bowl

1.7; 10.7; .2; l.4; 10.0; 10.4; 0.5; 10.6
How would you summarize these numbers? Would you be satisfied with X, o and n
85 a basis for determining how much bellef Py you would have in a prediotion of
type P; of the type that would be valid for a sample from a normal universe?

. 25'
Suppose we plot these eight values on a straight line, Fig
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rig. 25
I assume that no one would have as much faith in such a prediction of type Pl
where all he knows about the universe in the vowl is that given by the sample
shown in Fig. 25 as he would have if he knew the universe were normal.

Anyone familiar with even elementary sampling theory,appreciates the
fact that a comparatively large sample - something like a sample of 1000 or
more - must be available even when drawn from & bowl before one can place much
reliance in his judgment as to the functional form f of the~distributiop in the
bowl, particularly if one is interested primarily in the talls of the distribu-
tion. Furthermore, such a person is familiar with the serious diffilcultles of
trying to judge the form of the distribution when the only information avail-
able as to the distribution is in a set of statistics, ©'s. Hence, from the
viewpoint of summarizing a sample drawn from a bowl in which the form of the
distribution is unknown, it does not - at least in engineering’ work - and
particularly the setting of tolerances - appear desirable to give a summery in
the form of ©'s. This is particularly true if the sample is large. If we sy~
bolize by f, the observed distribution in the sample then it appears that it i
desirable to present

fo’ X’ and 0o .

Some General Comments from the Viewpoint of Practice

In practice the statistical state of control represented by drawing

from a bowl is the limit approached in the process of removing assignable

causes of variability. It is therefore the condition for which tolerances 04l

b
e set in such a way as to make possible the most efficient use of materials.

H
ence 1t 1s significant to note in the light of discussion of this section the
following points:
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1. Even after we have attained a state of statistical control a compara-

tively large sample is required in order to provide a basis for making
valid predictions,

2. A summary of a set of n data in the form of a rénge X + AX 13 not in

itself sufficient grounds for establishing a tolerance range. In all
cases 1t 1s necessary to record the sample size n.

S. When the functional form f of the universe 1ig known, we should give

at least X, o, n and f, and sometimes it is desirable to inolude the

observed distribution fo in the sample. When the funoctional f of the

universe is unknown, we should give at least £y, X end o.

Some comment should perhaps be made at this point as to what may
seem to be a conflict between these three suggestions and the current practice
of tabulating on the one hand and the tendency of modern statistics toward the
use of small samples and the emphasis on the advantages of summarizing data in
terms of eofficient statistics. The conflict is more apparent than real. The
differences arise primarily because of the varied uses to be made of the tab-
ulated results. In practice we are not justified in assuming a statistically
controlled state, in general, and in finding assignable causes of variability
smali samples can be used to advantage. For the purposes for which such
samples are used, the information can usually be summari zed satisfactorily in
terns of X, ¢ and n. However, in order to minimize tolerance limits it is
desirable that we know the distribution funetion for each quality characteris-
tis in terms of either:

£, (x) or £(x) dx,

where fo(x) stands for the observed distribution in a sample of at least 1000
and f(x) symbolizes a satisfactory approximation in the form of a oontinuous
function.

PRESENTATION OF DATA - CUSTOMARY CONDITIONS

In the customary case, a sample of n observed values of some quality

m a state of
or some .physical constant do not give evidence of having arisen fro

’ measurement are
Statistical control. Observed values obtained by one method of

tained by other
Usually found to be assignably different from similar values ob

the problem of
Bethods of measurement. Such a state of affairs complicates P
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trying to summarize data far and beyond the camplications found in the differ-

ent cases of summarizing a sample of data from a bowl. Furthermore, the

problem of presentation as considered in this section cannot be solv?d by the
statisticlan acting alone as was the case in the previous section,

Case IV - Need for Evidence as to State of Control

Let us assume that we are given a sequence of n measurements,xl, xz
eee Xy «oo Xpof some quantity X. We have alreedy noted that to every X, there
1s a condition C, in the sense that we use the term condition in the phrase
"same essential conditlions". Every X, has its handle G_,L

X, - C

and both must be taken into account from the viewpoint of summaerizing datsa.
Broadly speaking, the scientist or engineer must take account of the C1 and the
statistician must be responsible for handling the X's at least in the limiting
case where the X's behave as though they came from a state of statistical con-
trol. Now, of course, there is in general no quantitative way of expressing
Cy+ All we can perhaps hope to do is to depend upon the scientist to suggest
hypotheses about the conditions - in particular that certain of them are essen-
tially the same. For example, I presume that Heyl's measurements of G in the
appropriate units might be set down in the form shown in Table 8. From the

viewpoint of a statistician, this would constitute an hypothesis to be tested.

Gold Platinum Glass
6.683 - C 6.661 -~ C 6.678 ~ C
6.681 - ci 6,661 - cg 6.671 - C°
6.676 - ClI 6.667 - CZ 6.675 - Co
6.678 - ¢l 6.667 - C 6.672 - Co
6.679 - cl 6.664 - C2 6.674 - CO
6.672 - cl 2 .3

Table 8~ +

e

If, however, the scientist chose to present such a set of data as though the C's

were all the same, the contributions of the statistician would be limited by

such a form of presentation., Of eourse, even under these conditlions, the

statistioien can test this hypothesis if the data are given in the sequence in

which they were taken. It mey be of interest to know that taking these 16

measurements in the order in which they were presumably observed and applying

Criterion I for control, we get no evidence of lack of statistical control,
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whereas when the data are given in the form of Table 8 one is almost certai
n
that they did not arise under a condition of statistiocal control

Here we have
a good 1llustration of the importance of the C from the viewpoint of tabula

tion.

In general, one seldom if ever finds that the first n measurements

of a physical quality or constant (or the quality X of the first n rleces of
product turned out by a given process) satisfy Criterion I for control. The
state of statistical control is only approached through the process of discov-

ering and weeding out assignable ceuses. . This faot coupled with the faot that

experience indicates that the set of assignable causes can be found and removed
is significant from the viewpoint of presenting data in that evidence of
essignable causes found and removed from time to time adds to the belief that
one has in the end results representing a state of statistical control.

For example, Fig. 26 shows a control chart for 16 averages of 4
neasurements on a running sequence of 64 measurements of resistance on as many

pleces of a new kind of product. This evidence is consistent with the assump-

AVERAGE RESISTANCE IN 102 MEGOHMS
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Fig. 26 T v

tion that a state of statistical control has been reached. Now, let us look at
8 similar chart shown in Fig. 27 which gives the averages for the first 51

samples of four. Given this additional information together with the statement
that certain assignable causes were found and removed from the process between
the time the date in Fig. 27 and those in Fig. 26 were taken, I think one's be-

state 1s
lef that the data of Fig. 26 represent a statistically comvrolled

viewpoint of
strengthened. This fact is of particular importance from the Viewp



- 74 -

s2r ‘ b
sof-——g— T ¢
asl- ¢

46} ® o°

@
44l% . oo o
a2t

40— — — —0— —

asl- ® * &
36l °

|
L i J 1 L 1 L L . K
34 1 30

0 10 20 40 °
SAMPLE

Fig. 27

AVERAGE RESISTANCE IN 102 MEGOHMS
(J
U~

keeping a running report on quality as a basis for judging quality, in so far
as it shows how such a report may indicate progress toward the attainment of a
state of control even though such a state has not been attailned,

In the process of testing data for evidence of control, I have shown
elsewhere why it is desirable for the scientist or engineer to divide the

original data into comparatively small groups which he thinks arose under the
same essential conditions. These are then tested for control by some criterion

involving in general the use of the average X, standard deviation o, and sample

size n of each subgroup. Suppose, however, that one wished to continue the

study of the resistance of the new kind of material considered above until he

had sufficient evidence for setting valid, minimum tolerance limits. Beginning

at about the data shown in Fig. 26 and oontinuing on until a sample of some-
thing like one thousand is reached, the data should be kept in the form of a

frequency distribution, for reasons set forth in the previous section.' Here,

in other words, we see the difference between summarizing data for getting
evidence of control and summarizing data apparently c.oming from a s1;;fe of

statistical control for the purpose of Providing a basis for establishing tol-

erance limits that will make possible the most efficient use 6f material.

There is, however, another problem which we should consider, namely

that of setting tolerance limits when no attempts at statistical control are

b L
eing made In this case, and for more or less obvious reasons, the maximum

and {mum }
min observed values play a very significant role in enabling an engineer
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to set tolerance limits that will take in most of the product, although such
limits do not permit of making the most efficient (but not necessarily the

nost economic) use of material. Particularly is this true if a large number
of measurements representing a wide range of conditions are avajlabla. PFor ex-
ample, the 20,000 measurements of the tensile strength of malleable iron from

17 different sources shown above in Table 4 of Chapter II constitute a good
example. There are reasons which we need not go into here for presenting the

average also so that we may say that under such conditions the following

statistics should be tabulated

Max., Min., X, and n,

if we are limited to four.

Y

fase V. Need for Evidence as to Consgistency h

Let us consider as an 319?1.,’}3» the setting of tolerance limits on the
measurement of a physical constant such as the velooity of light. As previous-
ly pointed out in Chapter II, the problem is the same analytically as that of
setting tolerance limits on the true value of quality of pleces of produoct of
a given kind. It is true, of course, that the tolerance limits on a quality
mst take into account not only the variability of the "true™ quality but also
that of the method of measurement. Hence the problem of setting tolerances on
the measurement of a presumably constant value of a given quality always con-
stitutes a part of the job of setting tolerances on a quality characteristio.

Suppose that one is given in the appropriate units the average X,
standard deviation o, and sample size n for the measurements of the velocity
of 1light previously considered:

X = 209,773.85; o= 13.37; n = 2885

Let us also assume, although contrary to fact, that these data satisfy
Criterion I of control and that the distribution is approximately normel.
Would we be justified in using this set of data alone as a basis for setting
tolerance limits for the measurement of the velocity of 1ight? Obviously the
answer to this question is "No", if by measurement we are to inolude measure-
ment not only by the method used in this case but also by other methods admit-
ted by scientists as having a just claim for consideration.

For example, let us compare this set of measurements with another set
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1l
of 651 more recently reported by Anderson. Fig. 28 shows™ control charts

2
placed end to end for the two series and constructed as best one can from the

data as recorded. The striking thing to note is that the two averages are sig.
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rig. 28 - Measurement of Velocity of Light - A) By Michelson, 8) By Anderson

nificantly different. For example, Anderson's data give:

X = 299,764.15; o = 14.96 and n = 651,
The ratio of the observed difference in averages to the estimated
standard deviation of this difference 1s

T, - X,
—&355 = 15.23.

It is indeed very unlikely that a difference so large as this would arise as a
result of random sampling. Incidentally, I think it is this general type of
experience in which it is found that different test methods appear to give
assignably different results that leads scientists to stress the importance of
cheoking for comsistency between measurement by different methods rather than
to stress repetition of the seme measurement a great many times,

Obviously the kind of evidence that one would want to have before
trying to set a minimum tolerance raage in a given case would be the maximum

observation given by the method producing maeximum values in general and the

1. "Measurement of the Velocity of Light in a Partial Vacuum", by Michelson,

Pease, and Pearson, Astroph sical Journal, 82

phy 1935 (2885.5 observations)
"A Measurement of the Velocit of Ol . ’
8, July, 1937 (651 observations). ~ C U7 W O. Anderson, Physical Revier

2. Anderson records avers,

ge deviation for each sample: th 1n‘ the
control chart equal the mean deviations multiplli)ed,by Je 1'8\‘172 .s ueed

i
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pinimum value for the methoqd producing minimum values. One would also want to

know perhaps the number of different methods of Measurement that hed been tried
because "constant errors” have in the past usually been discovered through the

use of different methods of measurement. If ope takes the time to look baok

through the literature in physics, let us say, for a period of some twenty

years or more, he will find quite a variation in the accepted values for many

of the constants there tabulated. The same is true for measurements of the

atomic weights in chemistry as is illustrated in Table 9 which shows the accep~
ted values relative to oxygen = 16.00 for the dates 1931 and 1936.

International Atomic We ights

Relative Atomic Weight

Oxygen = 16

Element 1931

Arsenioc 74.93 74,91
Cesium 132.81 132.91
Columbium 93.3 92.91
Todine 126.932 126.92
Krypton 82.9 83.7
Lanthanum 138.90 138.92
Osmium 190.8 1961.5
Potassium 39.10 39.096
Radium 225,97 226.05
Ytterbium 173.5 173.04

fol. 2 From Table 595, Smithsonian Physical Tables, 8th ed., Ed. by Fowle,
1933, Washington, D.C.

1
ol, 3 Published by the Journal of the American Chemical Society, vol. 58",
1926,

Table 9
From the viewpoint of establishing a tolerance upon such measure-
Rents, it therefore appears that the following information provided by the
tvailable data are of major importance:
Maximum, Minimum, and K

were K is the number of different methods involved. Certainly not very much
information is provided by a weighted average and an estimate of a so-called
Probeble error so long as the results given by different methods are assignably

s of the
iitferent. Perhaps in this case more than in any other, the name

e that statisti-
sclentists are also a necessary factor. It would seem therefor

ting evidence
%l theory does not contribute much to the technigue of presenting

e not statistically
Uon which to base a tolerance renge under conditions that ar

Mf’”h
.MVM
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controlled. However, if for some reason Or other it becomes necessary to closs

up on such a tolerance range by detecting and eliminating all constent errors,

statistical tests for significant differences would bscome a necessary tool in

the process.

NOTE ON THE TABULATION OF PHYSICAL PROPERTIES

Thus far in the disocussion, emphasis has been laid upon the problem
of tabulating data as a basis for establishing a tolerance range. Let us look
now at the ocustomary practice of tabulating a range X + AX, as in the ocase of
the Smithsonian Tables. It is my understanding that certain scientists main-
tain that aspproximately 50% of the tabulated ranges should include the corres-
ponding true values. As already pointed out earlier in this chapter,. I .do not
see how such a true value is operationally verifiable. All that we can ever
hope to do is to take further measuréments by one or more methods, But so soon
as we think of the problem from thisl viewpoint it 1s the oconcept of tolerance
range and not that of fiducial range that becomes of importance.

Suppose, however, that one could discover the "true™ values in some
way. At least such an assumption is operationally justifiable in the theoret-
ical sense. A prediction Pl that 50% of the true values would be found to lie
within their respective ranges 1s valid only if the data used as a basis for
setting the ranges constitutes a random sample from a normal universe. In
other words, the conditions under which the samples were taken should be in a
state of statistiocal control and the observed values should be free from con-
stant errors, neither of which condition is likely to be found in practice.
Under such conditions what justifiocation would we have in expecting such a pre-
diotion to be valid? 1If it is subject to error, what information do the data
give as to the magnitude of this error? Unless one can anawer these questions
satisfact..orily, he yvill not likely place much confidence in the validity of
such ranges.

Agaln let us consider another common bractice of tabulating the
probable error of the average and not of a single observation. The dominating

idea 18 that by making the sample size larger and larger we are getting closer

and closer to the true value X' in the same way as we do when taking the aver-

e of
a8 & sample from a bowl. For example, if we take the standard deviations
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' ¥ill you Plesse emphssize this point, implied in your Tues: 7 lscture,
on the use of small samples:

A small sample may vzlidly bBe msed to test the existence of g given
characteristic in the population sampled, say the fraction Acfoctive, btut it
msy not be vaiidly used to determine the fraction defective in the population,

Thus we may, under certain condiiions eslculate the chance of occurrence
of a particular fraction defecctive im a small sample from a papulation with
specified fraction defective., W2 may not, in genersal, hovever, estimate the
fraction defective in the povulation from that of the small azmole; cortainly
ve may not attach any ;robability statement to such an estimate.

I may throw six dice once and validly test the existence of a 1/6
probability of the occurrsuce of a Yome", but I may not armue tiat sslely
because there were three "ome's" in my set of six dice that the chance of the

occurrencs of a "one® 1s 1/2, or any particular value.
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of the averages for the two sets of 2885 ang 651 observations of the velooity

of 1ight shown in Fig. 28, we have
(40046 and .0230) km., sec-}

respectively, and this in the face of the fact that the observed difference in
1

grerages 18 9.70 km. sec . PFurthermore as we have seen, both sets of data

give evidence of lack of control. Under such conditions what use could be made

of a range in the form X £ 4X where you know that 4X is an estimate of probable
srror but you do not know the samp}.e'sige n, for this is usually omitted from
tabulations? In any case it would‘,'be' much more useful to tabulate
X, cand n

and then one could estimate the probable error not only for ﬁhis sample size
it for any other.

Now, of course, in the customary case the estimates of probable
error are derived by combining measuremsnts by different methods and by special
groupings. Certainly if one were going to check predictions made in this way
he would have to make further measurements and the predictions would hold, in
general, only in the case that each of the samples of data used in the check
were made up from data obtained by the different methods used in getting the
original estimate and in the same proportion. Such a form of sample is, how-

ever, exceedingly artificial in character.

SUMMARY COMMENT - SIGNIFICANCE IN QUALITY CONTROL
Now let us try to gather together some of the pertinent conclusions
and indit;ate the importance of these from the viewpoint of keeping a running
Qality report that will form an adequate basis for giving quality assurance

and for minimizing tolerances.

We started this chapter with two quotations: In the words of Lord

n
Kelvin, "When you can measure what you are speaking about and express it &

ing we
nmbers, you know something about it." So it is in science and engineering

brk and ex-
1y to measure the physical qualities of the things with which we wor

ledge. But
Iress the results in numbers X * «X as though that constituted knowledg

ents. That set
back of that pair of numbers there is a set of data or measuren
ing begins in this

Know
of data constitutes a bit of experience. The process of
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experiende but it does not end there. This experience is but a bit of history,

£ knowing ends in experience but an experience in the future -
r sets of data yet to be taken if you please. The process

The processQ

another set or othe

of knowing does not end in the pumbers X + AX. From the viewpoint of knowing,

the numbers are either a part of a prediction or a part of the evidence on

whioh a prediction is made. We shall now review the four ways in which numbers
obtained in measurement enter into a report.

As Original Data

Three ways are available for presenting a series of n measurements

Xy, Xoy oo X, of a physiocal quality or constant:
l. lxl, fa, ceos fi’ coe lli“ and H.
c1 °a ci cn

2. BSequence ordered in time.

3. Observed frequency distribution, fo(x),
where the C's stand for oconditions in the sense of the phrase "the same essen-
tial conditions”, and H stands for the person judging the conditions. The C's
cannot be expressed in numbers. The person H can only provide hypotheses about
the C's which may be tested in terms of the X's. If the scientist judge H
Judges the conditions to be the same, the preceding discussion shows that the
data should be tabulated in the form of a sequence, permitting of a check on
the assumption in terms of the n values of X, by means of Criterion I or some
other oriterion of control. If such data are tabulated only as a frequency
distribution, they then become statisticsl and not physical measurements. Only
if we knew that the data arose under a state of statistical control would we be
Justified in presenting original data in this way. This represents the limit-
ing state beyond which human judgment or insight as to the causes of variation
cannot go. Since, however, as we have seen, most data show evidence of lack of

oontrol, theyshould always be presented by the experimentalist H iy either One

or the other of the first two forns.,

1, In the lay sense in which this term is used.
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Ag ©'s

The ©'s a3 we have seen stand for funetions of the original data

tast are indepefxdgnt of any hypothesis as to the functional distribution f of

the "universe” of which the data may be considered a sample. The ©'s summarize

some of the characteristics of the original frequency function £ _(x), and
[} ’

tierefore are limited in the same way as £ (x) is limited. The sample size n

should always be given. Sometimes the average X and the standard deviation gof

the distribution fo(x) are sufficient. Sometimes instead of ¢ we should tabu-

late the maximum and minimum observed values and sometimes £,(x) should also be

glven.

As 9's and P's

‘The 9's as we recall are estimates of universe parameters and
although derived from the original data, involve an assumption as to the func-
tional distribution of the universe from which the original n values of X are
assumed to come. They differ from the ©'s in the fact that although for one
set of X's there can only be one set of ©'s, there can be many sets of ¢'s
depending upon the assumptions made. The ¢'s in this sense constitute inter-
pretations or predictions of a certain kind based upon the original data. The
8's do not involve interpretations. They constitute a partial summary of the
lumerical facts completely presented by fo(x)-

The predioctions Py and P, involving fiducial ranges and tolerance
ranges are still more involved forms gfm_’gxterpretation- Reasons are presented
for believing that the conditions la}tv;ndity for P, are seldom satisfied.

As Evidence

.

can make predictions, but only a wise man can make valid

onesy, ﬁenoe a prictical man is always like the proverbial man from Missouri in

been
respect to a prediction until he sees the evidence. Three factors have

' t H who 1is
stressed in addition to the human element represented by the scientis \

ented by the
responsible for the hypotheses about the physical conditions repres
('s. These are

ize n.
1. Quantity of informatlion as represented by sample siz

ignable
2. Evidence for control including a history of the asslgn

caugses found and removed.
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3. Evidence for consistency.

What role does the statistician play in the problem of presentation?
The answer 1s thet he is a co-partner with the scientist or engineer as long s

the latter judges the C's to be different. When the scientist or engineer is

ready to give up the ghost and says that c1 = Cj - the conditions are essential.

ly the same, the statisticlian steps in. He begins as a doubting Thomas and

tests for statistical control which he seldom finds. If, however, he does find

the oconditions apparently controlled as they would be in a statistical state,
then he and he alone is in a position to make the requisite valid predictionms,
Finally, let us ask: What has all this to do with quality control?
In the first chapter, we got a picture of the inter-relatedness of the three
fundamental steps in control. There and also in the second chapter we saw the
need for a record of quality measurements not only from the viewpoint of giving
quality assurance but also from the viewpoint of providing in the end an ade-
quate basls for establishing tolerance limits that will make possible the most
efficient use of materiels. Such information must be made available in a
running report. In so fer as the principles considered in this chapter are
applied in the production of such a report, one has gone as far as possible in
making full use of the available data. In the preparation of such a report,

the engineer and statistician must play cooperative roles.



CHAPTER IV

SPECIFICATION
or
ACCURACY AND PRECISION

The concept 1s synonymous with the corresponding set of oporat:lona.l

P. W, Bridgman
Harvard University

The successful operation of cotton mills is likewise becoming a business of
precisions

ROBERT B, WEST, President
Riverside and Dan River Cotton Mills

INTRODUCTION

We are told that necessity is the mother of invention. It is true
that when man became a measuring animal he had to adopt standards of length,
mass, and the like, Commerce and industry called for the legalizing of cer~
tain standerds end the establishment of methods of measuring with requisite
acouracy and precision in terms of such standards. Likewise, the introduction
of interchangeability about 178? necessitated acocurate measurement and the in-
vention of gauges. The steady increase in the acocuracy of interchangeable
parts produced under menufecturing conditions has led to the invention of
standard length gauges with 00001 inch tolerances and pushed the accuracy of
test methods out to ,000001 inch.® Both pure and applied science have pushed
farther and farther the requirements of accuracy and precision.

Applied science, particularly in the nass production of interchange-
tble parts, is becoming perhaps even more exacting then pure science in oer-
It undertakes to meke large pumbers

tain matters of acouraocy and precision.

of things of a given kind with specified degrees of these fac
Feilure to meet the requirements may mean
Such specifioca-

tors, such as

souracy of 1% or precision of 1%.

rejection and accompanying inorease in the cost of production.

definiteness in
tions may become the basis of contractual asgreement, and any in

- -
- om -
e e m m eeeme e owom W m om e o~ = =

1, The Logic of Modern Physics, The Macmillan COe,

2 Cf. Gauges and Fine Measurements, by F. H. Rolt, Tne
IDndon. 9 9’ o . ] p. .

NeYe, 1928, p.5.
Macmillan Company,
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the meaning of the terms accuracy and precision used therein or methods of

measuring the same may lead to misunderstandings and even legal action. The

development of modern methods of mass productibn to specification is the mother

of many changes in our concepts and use of the terms accuracy and precision,

The object of the present paper is to set forth some of these changes necessi-
tated by economic production practices.

For example, let us consider a spscification of the form:

A) The acocuracy of the test method shall be * 14.

B) The precision of the test method shall be * 1%,
Under such conditions when is one justified in saying:

a) The acouracy of this test method is * 1%.

b) The precision of this test method is * 1%.

Now suppose that a consumer mekes the specification A and B end a
producer mekes the claim a) and b). How would you as an independent and un-
biased observer or scientific jJudge, as it were, proceed to verify the pro-
ducer's statement a) and b)?

I suppose a layman has the right to assume that if anyone ever at-
tempts to say just what he means and mean Just what he says, perhaps that one
should be a scientist or engineer when specifyilng accuracy and precision and
when making statements such as a) and b) involving these terms. What we shall
have to say, therefore, is of interest not only as a consideration of the
special problem of specifying accuracy and precision but as a consideration of
the 1imit to which one may hope to go in saying just what one mesns in a way
that I» subjeoct to verification - something that is basioc to all specification.
For example, I think it will be readily admitted that the 1imit to which we oan
€0 in speocifying the quality of a physical thing in a verifiable manner certeir-
1y depends, among other things, upon the limit to which we can go in specifying
one simple quality characteristic, such as length, density, or the like, of
that thing in terms of quantitative measurements of such quality character-
istics.

At the begimning, therefore, it is perhaps well that we adopt some

oriterion by which we shall judge the meaning of the terms acouracy and pre-
cision.



=85 =

OPERATIONAL CRITERION OF MEANING

This is not the place to discuss the bresent status of the operation-
gl theory of meaning. It would be difficult to say just where such a theory
pad its origin dbut it would perhaps be generally admitted that it represents
the development of the theory and technique of saying what we mean and meaning
wiat we say in a way that is subject to verification. Thus in the theory of
errors and the theory of statistics we introduce such terms as true value,
squelly likely, population, population paremeters, random, and the like. For
example, in the theory of errors we generally postulate e true value X* of the
thing being measured and define the error e of an observed value X by the
squation

e = X* « X. (24)

Fow admittedly we do not know X* and perhaps can never know it. For example,
it the measurement X is an observed value of the velocity of 1ight and I make
the statement that this particular value is in error by a certain amount, how
would one proceed to verify this? The difficulty in doing this is apparent.
In the form in which the operational theory of meaning was first
given broad consideration, the basic principle or criterion of meaningfulness
seems to be the following: the meaning of a statement is the method of 1ts
verifications This is much the same criterion as Bri.dgnan1 adopts in his
logle of Modern Physics, 1928, and also is the form adopted by so-called
logical positivists up to that time. In this sense, therefore, terms such as
true velue, equally likely, and the others listed above, would be considersd as
meaningless unless some one could devise means of verifying them. From the
viewpoint of such a criterion, some argue that any statement about the prob-

ability of a single event such as the turning up of a head in the throw of a

toin is meaningless., For example, let us consider the statement: The prob-
hrow
411ty thet the penny whioh I hold in my hend will turn up head when I %

. the
it, 1s 1/2. Let us contrast this statement with the one: When I throw

toss
benny which I hold in my hand, it will turn up heads. Now suppose that I tos

a
the penny and it turne up heads. I have in a certain sense verified the secon

L Loc, cit.
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statement but in what sense have I verified the first one? It 1s diffiocult to

say in so far as a single event is oconcerned,

verifiable meaning.
Under these conditions, there is today an increased effort on the

that the word probable has any

part of many writing in the theory of probability and statistics to eliminate,
4in so far as possible, terms which are troublesome in the sense here under cop.
sideration. For example, somel recent books define probability without using
the term equally likely. In this way they attempt to reduce the theorems of
probability to formal mathematicse In general, however, Just so soon as we
eliminate such terms from discussions in the analysis of data, we tend to elin-
inate the terms which are intended to suggest at least the applicability of
mathematics to practiocel problems. If, in the fleld of experience, we cut
loose, as it were, from the use of all terms such as true value, random, and
the like, which cannot be experimentally verified in a rigorous and absolute
sense, we might seemingly hope to make statements which are subject to experi-
mental verification. If, for example, we write apecifications of accuracy and
precision in such experimentally verifieble terms, it would presumably dbe
possible to state without ambiguity what is meant in a way that could be veri-
fied. Such a possibility has, as already noted, a very important appeal to
those charged with the writing of specifications. To be more specific, it
might appear feasible to write a specification of the form A mentioned above,
nemely, the acouracy of the test method shall be 1%. Any statement such as
(a) or (b) above involving the term is usuelly implies, I think, something
about the characteristics of the test method not yYet experienced, It involves,
in other words, a prediction and is not simply a report of a past verification
which can serve simply as history, as it were. In this sense such & statement
may or mey not turn out to be false. The practical signifisance of a statement
©f such a character obviously depends not simply on the form of the statement
but upon the belief that we may place in the validity of the statement.
Another objective, of course, in adopting the operational theory of
meaning is to eliminate from scientific discourse terms which have a purely

le See for e
Pross, lgmmpas. le, Elements of Probabilit by Levy and Roth, Oxford Unive
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emotive meaning, such, for example, as the words "good"™ and "truth™ and the

Thus we often see in the discussion of the analysis
qf data comments that such and such = formula applies only to good data

phrase "hard cold facta"™.

Also

I suppose that
those who try to popularize soience or who try to advertise some new product

we run across such phrases as ™the truth of the matter is that",

are most often accused of using terms primarily of emotive signiricanée.
Students of the operational theory of meaning have within recent

years, of course, begun to appreciate some of the serious pitfalls in trying

to reduce scientific writing to a consideration of terms that can in practice

be verified. They have, accordingly, broadened the meaning of verification to

include so-called theoretical verification. Under thess conditions we shall

take the following as a criterion of meaning as & background for considering
accuracy and precision:

Every sentence in order to have definite cognitive meaning must
be theoretically verifiable or confirmable as either true or false
upon the basis of evidence theoretically obtainable by carrying out
a definite and previously specified operation in the future. The
meaning of such a sentence 1is the method of its verification.

It 1s hoped that enough has been said to suggest at least the nature
of the fundemental problem involved here in trying for the sake of definiteness
to break away from the ™objectivity™ of the physical world except in so far as
it can be expressed in terms of operationally verifiable characteristics. It
vould appear that such a path might lead to an authoritarian choice which
would have some at least of the cheracteristics of authoritarian statements in
general. A question which we must keep in mind, therefore, is: how far can
one attempt to go in attaining the ideal of an operationally veriflable speci-
fication without including in the specification some person or group of per-
sons and the experience which they must have had before making the specifica-
tions that are to be adopted.

CONCEPTS OF ACCURACY AND PRECISION

ot LSRRI e s e s

These two terms have been and contlinue to be used by all technical
people in the discussion of both pure and applied science - they are among the
most common in scientific literature. But try to f£ind out just what elther
term ;neans or the difference between them and, as 1s s0 often true with terms

wo
of common parlance, the meanings are not quite oclear cut. In fact, the t



terms are given as synonyms in some of the best dictionaries.

Books on the theory of errors and the theory of measurements also
use them often as synonyms. The author of one of the most widely known books
on the precision of measurements, however, vemoans the fact that the two terms
are used thus carelessly and indj.:;cr:l.minaw.:ely.:l By precision or precision
measure of a result he refers to what he terms the best numerical measure of
its reliability which can, as he says, be obtained after .eliminating or cor-
recting for all knmown sources of error. By the accuracy of a result he refers
to the degree of concordence between it and the true value of the quantity
measured. These definitions, however, introduce several terms and phrases such
as "reliasbility" and "concordance" which are not adequately explained.

Obviously, if the terms accuracy and precislon are synonymous, one
cannot readily see any difference between the specification of an accuracy of
1% end a precision of 1%, If, on the other hand, we were to adopt the
definitions made by Goodwin we would first have to define reliability and con-
cordance and numerical measures of these before we could make intelligent
specifications. It would appear, therefore, that one of the first things to
be done 1s to decids whether or not the concepts are, as it were, synonymous.
I personally feel that the concepts which these two terms try to define are
fundamentally different in so far as they have applicability to the affairs
of every-day life in engineering and science. We shall, however, a little
later see that these terms have tended to become confused in the literature of
the theory of errors and statistics because of certain assumptions that have
been made to simplify the theoretical problem. Abundant evidence will be men-
tioned to show that in practice there is little justification for believing
that the assumptions hold and hence there is 1little reason for confusing the
two concepts from the viewpoint of practice.

Etymologically the term "accurate" has a Latin origin meaning "to

t
ake pains with" and refers to the care bestowed upon a humen effort to make

it what
at 1t ought to ve. Likewise, "accuracy” in common dictionary parlance

implies freedom
from mistekes or exact conformity to truth., "Precise", on the

other h
and, has its origin in a term meaning "cut off", brief, concise. Like-

- . . - .
I L I L
- e - -

1. Goodwin, H. M., Precision of

Hil] Measurements and Gra hical Methods, McGraw-
:ompanY, New York, 1913, DPpe7=8,

- -
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wise, precision is supposed to imply the property of determinste limitations or
that of being exactly or sharply defined.

In what follows, therefore, I shall teke as & starting point the
following distinoction:

1, Accuracy in some way or other involves the concept of a difference between
what 1s observed and what is true,

2 Precision involves the concept of reproducibility of what is observed.

Let us see what can be done to reduce this broad distinction to more
definite terms.

Let us consider two very simple cases - one where the true value is
unknown and the other where the true value 1is said to be theoretically known.
As an example of the first ocase, let us consider the process of measuring the

line AB with, let us sey, an engineerts scale graduated to 0,01". Ten measure-

A B

nents of one such line in this menner gave the data in Table 10.

4.000 34996 3.996 34990 34994
34996 3,994 3,994 34992 3,992
Table 10

Obviously the procedure of measuring the line in this way could at least
theoretically be repeated again and again giving an infinite sequence of num=-

‘bers:

Xl, Xz, soe Xi see Xn, }%1"’1’ ]%._._2, soe Xn_'_i eee (25)

As an example of a case when the true value is said to be known
theoretically, let a, f, ¥y be the three angles of any triengle measured in de-
grees. lLet X represent the sum of these angles. Then the true value X' of X
i{s said to be 180°., In practice, however, if a, B, ¥ are measured w_ith, let
us say, a protractor, then the observed sum X will in general be found to 4if-

fer from the true value X'e An actual experiment involving the measurement of

the three angles of ten triangles gave the following results:
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Q) (2) (3) (4) (5)
Tri e o B —_— a+ g +
1 14,3° 15.1° 151.0° 180,4°
2 51,1 54.9 7440 180.0
3 1845 1646 145.,0 180.1
4 48,0 60e2 7240 180,2
] 515 3645 92,5 180.5
] 77.0 45.2 5843 180.,5
4 9e5 2946 140.6 179.7
8 24,5 35e1 120.4 180,0
9 l4.4 152.5 13.0 179.9
10 1642 147.3 16.3 ‘ 179.8

Table 1l

The numbers in column five reading from top to bottom constitute e
sequence such as (25).

Let us consider the concept of accuracy in the case where the true
value X' is given theoretically. Let us lay off on & line a number represent-
ing this true value Fig. 29, Then let us locate on this line two oﬁher points
I-I'-Llandx-](' *Lzo

X=X, Xt X = X1+dp

My
L}

Fig. 29

Accuracy with reapect to the range 'X'—Ll to X'+ly, has to do with the clustering
of the numbers in a sequence of type (25) within this range.

Before considering further the concept of accuracy in this example
let us consider the corresponding concept of precision. Let X' be the average
of the numbers constituting the sequence, Locate this average and two other

points X = X*-4; and X = X'+l, on a line Fig, 30. Let us assume & case where
the theoretical true value X' is not equal to X'.

;t b

L -l

Xeed,

i"‘"‘l
Figo 30

Precision has to do with the clustering of the numbers in a sequence
of meas X X
easurements within the range X*-2, to X'+ Ls.



If we view acouracy and precision in this way,

1t is obvious that for
a sequence in which

Xt = 2!' (26)

or where the theoretical value X' is the same as the average X' of the sequence
14

the concepts of accuracy and precision become the same if the method of measur-

ing the oclustering effect is made the same in the two oases. The ocustomary

theory of errors measures the clustering in the seme way and in effect assumes

that equation 26 1s satisfied. Hence it 1s that the two terms are often fused

into one and the same meaning.

' Let us for the moment take as a measure of clustering the frection Pt
of the numbers in a sequence falling within the chosen range. Then we might
conceive of comparing two sequences of measurements of the same true value X'
in respect to accuracy coi-responding to a chosen interval by comparing the
corresponding fractions of numbers falling within this range. In the case
where ¢ = Ll is chosen equal to &2, it is sometimes convenient to speak of the

agcuraocy for a chosen value p* as the ratio

percent accuracy = % x 100. (27)

Such an accuracy expressed as a percentage, however, is obviously dependent
upon the value of p! chosen, Presumably we may define precision in much the

same way as

percent precision = % x 100, (28)

wvhere the precision as thus given corresponds to a chosen value of p's Eque-
tions (27) and (28) constitute the basis for defining accuracy and precision in
percentage. It should be noted that if the true value X' is equal to the ex-

1l
pected value X', then the percentage measures become the seme.

umed in the literature of the theory of errors
e &:Og:eoﬁyigo:gmﬁfi?%'agit also that the distribution éndgl;ga:ig:eg??
is random and follows the normal law of error with sta:dagasure B O raoy
Then the probable error which is 6745 o' 1s taken ae 2 xg e O andard
and h* = 1 1is taken as a measurse of precision, o' belng

deviationdc:fﬁe law of error. Here again perhaps weifi.:gea?g:g::tggso%e )
why the two concepts are often taken es synonymousd a?d he iarion o".’
cause they are both expressible in terms of the stan



- 92 =

SOME CRITICAL COMMENTS

We started out to find what it means in a verifiable manner to
specify that the acouracy shall be 1% and the precision shall be 1%. 1let us
try out the concepts of accuracy and precision as defined by equations (27) and
(28). 1In order to verify the requirement as to accuracy, we must be able to
£ind 1 and X' and must be given the value p's Likewise for precision we must
be able to find 4 and X' and must be given p'. In 8o far as such concepts are
used in practice, however, there is more tacitly involved than is explicitly
stated. For example, the fraction p' of the numbers in a sequence between any
two arbitrarily chosen limits is referred to as & probability with the implice~
tion that the sequence is one to which the concept of probability may be
applied, or in other words, that the sequence is a "random" one, The assump-
tion that the meaning of such a requirement for accuracy 1s operationally
veririable at least in a theoretical sense involves the following specifioc
assumptions:

8y That the value p' is given,.

ase That the value 4 can be Ifound.

aze That it is possible to set up an operationally definite

oriterion of rendomness.

a e That the value X' can be found.
Likewise, for the case of precision the following assumptions are involved:

bj. Seme as 8.
b, Same as age
bze Same as age
b4e That the value X' can be found,

In respect to the assumption a), there is no difficulty because it involves an
arbitrary choice, Given an infinite sequence there is no theoretical difficulty
in finding a value of 4 such that the range X' + 4 will include the fraction
1-p’ of the numbers in the sequence, provided of course that X' be knovm.

Let us now look at assumption az. In what sense is there an oper-
ationally definite coriterion Such that if a given sequence meets this criterion,
we oan say with certainty that the sequence is rendom? We considered this

qQuestion in the first chapter when discussing means of characterizing the



sequence produced under conditions of a state of statistical control, It was
pointed out that there is an indefinitely large number of criteria for such a
sequence, most of which are not even known at the present time because every
new development in statistical distribution theory adds to the possibilities,

This situation constitutes a theoretical difficulty. There is, however, an-

other and perhaps even more fundamental difficulty here involved., Let us

assume, for example, that such a criterion could be found, and that we had an

infinite sequence before us. The fact that this sequence satisfies the

criterion does not mean that, if the numbers in the sequence were written on
chips, these chips were thoroughly mixed and then drawn one at a time without
-replacement thus forming a new sequence, this new sequence will also neces-
sarily satisfy the criterion. Nevertheless the concept of random implies that
this second sequence is a random sequence of the same set of numbers as the
 firste

Now coming to the fourth assumption a,, I do not know any operation
by which we can even theoretically find the true value X's I think this will
be admitted for any measurement such as that of the length of a line AB. How=-
ever, someone may point out that in certain probvlems such as the measurement
of the sum of the angles in a trisngle, there appears to be & theoretical
value, We should keep in mind in this case that the claim that the sum of the
angles of a triangle is 180° rests upon the choice of & particular set of
postulates, For another well-known set of postulates the sum is theoretically
greater than 180° and for still another set, the sum is theoretically less
than 180°." Hence there are inherent theoretical difficulties in the fourth
assumption.

Passing to the case of precision, we have the same theoretical dif-
ficulty in the third assumption b; as we did in az because the assumptions are
the same. Theoretically, however, I do not see any difficulty with assumption
by, because there is nothing to hinder one from taking more and more terms in
e given sequence. True it is that we could never reach the end of the
sequence but we at least can visualize a process of approaching the end of the

X' one does not
sequence whereas, in the case of trying to find a true value

even know that he is on the right tracke
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Obviously there are jpsurmountable practical difficulties in all ex.
cept the assumption that p' is given. For example, &, and b, although theo-
retically verifiable are not verifiable from a practical viewpoint. It would
teke a whole flock of Methusalah's to count even one infinite sequence!

In the light of such considerations, we must conclude that there are
some formidable theoretical as well as practical difficulties in trying to use
the concepts of percentage acouracy and precision expressed in equations (27)
and (28), if we are to require that the meaning is to be operationally
definite. If we were to consider the problem of making definite statements in-
volving the use of these concepts, we would run into still more complications
because such statements must be probeble inferences. Let us, therefore,

approach the problem from a different engle.

OPERATIONALLY VERIFIABLE CONCEPTS OF ACCURACY AND PRECISION

Introductory Comments - In the example of measuring the line AB as con~

sidered above, we may think of the process of measurement as an operation
generating the sequence (25). There are two aspects of such an operation that
are fundamental for our present purposes: a) one is the actual physical oper-
ation of measuring employed by an observer, and b) the other is the potentially
infinite sequence, If we are to find any quantitative measure of accuracy and
preoclsion, it must of course be in terms of chosen characteristics of such a
sequenoce.

Let us think for a moment in terms of this sequence, Customary
theory assumes that it is random. However, we must have some practical and
operationally verifiable oriterion of randomness in the sense considered in the
first chaepter. Fundamentally this means that & sequence must satisfy certain
oriteria of statistical control in order that we mey be justified in assuming
the existence of a constant probability as is done in customary practice and
in order that we may make valid predictions based upon a semple in the same wey
that we would base predictions on a sample drawn from & bowl-universe. We have
seen, however, that only a few, if any, sequences usually assumed to be random
satisfy such criteria. It follows that, in so far as randomness can be inter-

preted operationally in terms of criteria of statistical control, it seems

that the essumption of rendomness in customary error theory is seldom valide
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Hence customary measures of accuracy and precision based upon the assumption of

‘randommess or the existence of a statistical state of control are seldom justi-
fied in practice.

Even under conditions where the operation of measurement is not in a

state of statistical control, we need to have some information about the repro-

ducibility and accuracy of the method. From the viewpoint of reproducibility,

about as far as we can hope to go in the general case 1s to establish a toler-
ance range In the sense discussed in the second chapter,

satisfied with trying to set up a range

That is we must be

X-Ll to X-Lz

such that the probability p of falling outside this range does not exceed some

specified value p*'s We shall later return to see just what this statement

means operationslly.

Next, however, let us consider for a moment the matter of accuracy.
Let us look again at the simple case of 4msasuring the length of the line AB
with an engineers scale. Associated with the use of each such scale there is
potentially a sequence such as (25)s Likewlise there are many other potential
sequences corresponding to other methods or operations of measurement, Now 1t
is obvious that if the line AB has a true length X* and 1f different methods of
measuring actually measure this length, then there should be some kind of con-
sistenoy between the reéults obtained by the different methods. In this way
the assumption of a true value more ‘or less naturally leads us to impose the
requirement of consistency on the results obtained by different methods of
neasuring and in this way, we come to think of acouracy in terms of certain
observeble aspects of consistenocy.

All that has been done thus far in this seoction is to point out that
an operational approach leads one to think of precision in terms of a tolerance
range and to think of accuracy in terms of consistency. Much remains to be
done in order to attain operationally definite eriteria for these two concepts.

Measurement from the Operationsl Viewpoint - It is significant for what
follows that thers are two aspects to an operation of measurement, one which is
quentitative in character and onme which is qualitative and represents the
condition associated with the quantitative aspect. A part of the qualitative
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condition C is physical in character and a part is "human” in so far as it
depends upon the operators Schematically for each X arising :!.n an observable

sequence, we have:

/N

Physical Human

Fige 31

To illustrate a little more definitely the difference between the two compon-
ents of C, we may think of the potential sequences of type (25) corresponding
to the use of different engineers scales by the same operator in measuring the
length of a line, or of the set of sequences obtained by a group of operators
using the same scale, The first point I wish to meke is that in trying to fix
upon operationally verifiable criteris we must in the end take into account the
two aspeots of an operation as indicated in Fig. 3l.

Next let us consider simply the potential sequence of X's associated
with any method of measuring. In the first place, we should note that, since
such a sequence is potentially infinite, we cannot have a measure of either
acouraoy or precision that can be verified in practice and at the same time
involve a characteristic of the whole sequence. On the other hand, no matter
how many measurements one has made in the past by a given method = in other
words, no matter how large a sample n of an infinite sequence one has examined
the part of the sequence of interest is almost always a part not yet observed.

Thus there are the three parts of a sequence shown in Fig. 32 that call for
attention.
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Hence 1f one is to characterize accuracy and precision of a given sequence in a
way that can be checked experimentally and in a finite time, such characteriza-
tion must apply to the central portion of the sequence as shown in Fig., 32, TFor
example, this rules out from the viewpoint of practical verifiability, state-
ments involving the concept of a statistiocal limit. In fact, all estimates
applying to characteristics of the infinite sequence are outside the region of
practical verifiability.

Now we are in a position to say something definite about requirements
appearing in specifications as to accuracy and precision and also statements
about accuracy and precision, such as we considered above in the introduction.
As to the requirements, they must in order to be practically verifiable involve
only the central portion of the sequence, Figs 32, Likewise statements in-
volving accuracy and precision are of the nature of predictions which can only
involve this same portion of the sequence if they are to be verifiable in a
practical sense., Such predictions, of course, may Or may not be valid and our
degree of belief in their validity will depend in part upon the evidence pro-
vided by the sample of n.

Next let us consider a little further the subject of consistency. In
this case, as we have already seen, we have for consideration a set of potential

sequences instead of just one, which may be symbolically represented as fol-~

lows:
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Operationally each sequence may be thought of as the one shown in Fige. 32, 1In

Fige 33

this case, however, each sequence not only is infinite, but there are potential-
1y an infinite number of different segquences. To make the meaning of accuracy
operationally verifiable in a practical as contrasted with a theoretical sense,
the oriteria of consistency must be limited to the set of numbers in the en-
oclosed area of Fig. 33, it being kept in mind that the wvalues of { and k may be
chosen at will, PFor example, one method of measurement may be chosen as &
astandard of comparison and hence in Fige 33 there would be only the standard
sequence and the one to be compared with the standard,

Now we are in a place to note an essential cheracteristic of any
operational oriterion that is practically verifiable. Its use must by defini-
tion lead to a two-fold classification - yes or no = of any sequence, Hence
for reasons which we have previously considered, its use cannot serve to verify
a probability. For example, let us consider the concept of a tolerance re-
quirement on the single observations in a séquence such as (25), We conceive
in this case of two values X = L, and X = Ly such thet the probability of fall-
ing outside the interval L, to L, is less than some specified value p's Now,
if we apply such limits to an observable part of a sequence, we can only observe
that the fraction of the numbers in this portion of the sequence falling outside
Of the tolerance limits 1s either less than, equal to, or greater than p‘'e.
Obviously this fact does not verify any probability statement.

It is of interest to note that we may think of tolerance limits on all
the numbers within the enclosed area of Fig. 33 instead of applying the concept

to numbers within the region of practical verifiability in a single sequence.
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In fact, it is much this concept that 1s often applied in discussing errors of
measurement of some physical constant, except that in this case the tolerance
limitg are set on the averages of the parts of the separate sequences shown in
Fig, 33 within the enclosed area,

Criteria for both acocuracy and precision may be expressed in terms of
limits on functions of the single observations instead of expressing them in
terms of the single observations themselves, For example, in the case of
accuracy, we may compare the operationally verifiable portions of the sequences
for averages, variances or any one of many other functions. If ¥ be any such
function, the criterion to be verified 'by looking at the part of the sequences
within the enclosed area, Fig. 33, is of the nature

¥y V<V o (29)

where V3 and VY, are two previously assigned tolerance limits.

From the viewpoint of statistical theory, it is significant thaet the
concepts of accuracy and precision lead to the .use of tolerance limits and not
fiducial limits, when we try to set up operationally verifiaeble criterisa.

Specification of Accuracy and Precigion - The question naturally arises as
to how the limits \yl and \]Iz shall be set. If the specification is to be veri-

fiable in the practical sense, the first step is to specify the portion of the
sequence (32) or of the sequences (33) that is to be taken in the process of
verification. The second step is to specify the mnction ¥ and the limits \]Il
and \}'2. Theoretically, of course, the tolerance limits ﬂrl and \112 may be set
at will, However, as pointed out in the last chapter it 1is necessary from a
practical viewpoint to insure thaet it is feasible to meet them. Particularly
in the case of measuring devices, the limits \lll and V¥, may be expressed as a
percentage of the average of the numbers to be taken in the process of veri-
fication. Or sgain one‘ may specify that the ratio of the standerd deviation
- (or some other measure Of dispension) of the set of numbers obtalned in the
process of verificetion to the average of these numbers shall not be greater

than some specified value. It should be noted, however, that such a method of

speclifying a tolerance range is not so desirable when there are assignable

causes of variation present as when these have been removed. Tolerance limits



may, however, be specified by other methods irrespeoctive of whether or not
assignable ceuses are present. If, however, it is desirable to try to attain a
statistically controlled or random state of variability, it may be desirabdle to
specify an operationally verifiable criterion of control. The control oriterion
as thus used is like a tolerance range in that it constitutes simply a basis for
olassifications In this case it may be desirable to take into account the fact
that all members of the same sequence may not be taken under what even appear
as the same essential conditionsand the specification may require a special

grouping to take advantage of this information.
JUDGENT OF ACCURACY AND PRECISION

Let us consider the statement: The accuracy (or precision) of this
test method is 1%, Such a statement is of the nature of & prediction resting
on previous evidence. The degree of rational belief py, (or assurance) that one
may place in a predioction P inheres in its relation to the awvailable evidence E,
If a prediotion is expressed in terms of an operationelly verifiable require-
ment such as that considered in the previous section, then its validity may be
cheoksd at will,

It should be noted, however, that the process of verlfying a predic-
tion in the sense just indicated does not verify the statement in which the pre-
diction ocours. The sentence or statement that the accuracy (or precision) of
any experimental procedure is such and such must be viewed from the three
aspects of knowledge considered in an earlier chapter., That is we must consider
the diagram:

Evidence — ___ Prediction
E P

N\

Degree of Belief
1
Py
where p'b is a so=called objective degree of belief.
Solentific statements are always probable only as contrasted with
statements in mathematics and logic that are of a deductive character and hence
are certain. Deductive statements are either right or wrong and may be veri-

fied once and for all by using the agreed-upon formal rules. For example, let



- 101~

us consider a statement about methematical acouracy,

In elementary mathematics we learn that if we let Y be the cirocumfer-

ence of a circle and r the radius, then y = 27 r, Later we are given weys by

which we may caleculate N to as many decimal places as we wish. In this way we
find thatl

T = 3.14159 26535 98793 23846 26433 83280

to 30 decimal places. Of ocourse, these 30 places do not give us the exaot
value of T - the exact value is transcendental and cannot be written down. We
know, however, that it lies between the value given above and that value Plus
10-30, In other words, we know that the maximum possible error we could make
by taking W as given by Eq. 6 would be less than

1

I300000000000000000000000000000

| # - true value or 1 | < 10~30

Put in still another way we can say that N as given above is accurate
within less than one part in 1050. Every time that I is caloulated to 30 or
more decimal places we oan be certain that, barring mistakes, the first 30 deci-
mal places will be those given above. That statement sbout accuracy is true
for all time, so long as we accept the rules of computation.

Let us now contrast with this statement ahout mathematicel accuracy,
a statement #bout the accuracy of the measurement of the sum of the angles of
a triangle based upon the evidence provided' by the ten observations in Table 11
and assuming that 180° is the theoretically true value, Assume that we wish
to state the accuracy in terms of a tolerance range on single observations that
will include, let us say, 99% of the next 1000 measurements by this seme

method. Let us assume that the percentage accuracy in this case is to be

stated as “8°°° Where 46 is to be derived from the data, and 180° £ A0 is

[

Part II
l. cf. Pearson, Karl, Tgbles for Statistician: and Bfmetiigign:;thod o’

Lon
page 262, published by University o £ Infinite Series, K. Knopp,

evaluating M see Theory and Application o R
English :ganslation, Blackle ang Ton, Ltd., london, 1928, Ppe252-254.

Iy .y
The number N has been computed to 700 decimal places.
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the tolerance range criterion for accuracye The concept that there is an ob-
Jeotive degree of rational bellef pt') is of importance in much the same way
that the concept of true value has been shown to be important above. The con~-
oept of p'b is, as I see it, translatable into the concept that thers is a
*"best™ way of setting up the value 4 9, given the ten observed values in Table
10e The process of verifying a given method of setting up a 46 would consist
in testing out different methods of obtaining a A® <from samples of ten obser-
vations and not by the means which would be used in f'inding out if a particular
value of A9 derived from this semple of ten is justified. This fact is of
great practical importance in that 1t shows why anyone making statements about
acouraoy and precision upon the basis of given evidence is responsible for
trying to make the best possible statements, In the light of the discussion in
the second chapter about setting tolerance ranges, 1t is evident that in trying
to make the best prediction we must first apply some prac'tical operation for
testing for control. If evidence of control is found, the problem of finding
the best method is statistical in character, but if evidence of assignable
oauses is found, the best method is more involved.

Xmportance of wuantity and Kind of Evidence - The fact that accuracy and

precision from an operationally verifiable viewpoint is of the nature of a
tolerance instead of a fiducisl limit is of outstanding importance in that
even under ideal oonditions of drawing from a normal distribution in a bowl,
the validity of a prediction depends upon the number of observations. Whereas
statements involving predictions in tems of fiducial limits are, under such
1deal conditions, just es valid for small samples as for large ones, this state
of affairs does not hold for predictions in terms of tolerance limits,
Furthermore, in trying to judge the validity of a statement about
aocouracy and preocision, we must not only consider the quantity of information
but also the available evidence as to how meny assignable causes of veriation
have previcusly been found and eliminated. Finally, we must try to weigh the
human factor entering through the condition C constituting the qualitative
aspect of en operation, Fig. 32. Hence 1t is that the judge of sccuracy and

precision must always present his evidence in making statements involving
these terms.
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Why Acecuracy and Precision Should not be Confused - It would seem trite

+

© stress the significance of the difference between accuracy and precision if
these were not so thoroughly confused in the literature. For exemple, let us
consider the simple case of trying to make a statement involving these two

concepts and based upon the ten measurements of the length of a line, Table 9,

by one method. So far as I see, one could say something with justification

about precision but not about accuracy.

In general, reproducibility is as much different from consistency as

day from night. The nature of the detea that must be available in order to maks

valid predictions for precision is not the seme as that for accuracy, and the
methods of verifying predictions in the two cases are different. ILikewise, the
beat method of making a prediction in terms of Precision mey under certain
conditions become purely statistical in character whereas this is never true
for accuracy. In racf, we can under ideal conditions aspproach closer and
closer to the "objective" wvalue of precision simply by the process of repetition
whereas we oan perhaps never hope to discover any simple road liks this to
follow in approaching acouracy, because we must always depend so largely upon
human ingenuity in discovering different methods to be used for comparison pur-
poses.,

Specification in Relation to Judgment ~ It is perhaps desirable to stress

the intimate relationship between the method of stating the requirements as to
acocuracy and precision and the effort in time and money that will be required
in obtaining a satisfactory degree of assurance that apparatus and mechanlsms
passed in the process of inspection will live up to the requirements. For this
reason if no other, it is desirable for the specification requirements to be
stated in experimentally verifiable and definite form. On the other hand, it
is difficult to do this once and for all, because the requirements in order to
be satisfactory from an econamic viewpoint must be such as can be met without
undue cost. Under such conditions it may in certain instances be desirable to
leave the specification in simply a theoretically verifiable forms It is for
this reason that specification and inspection engineers find it necessary to
cooperate in their efforts to attain accuracy and precision. FProgress in this
direction should materially increase with a broeder understanding of the

operationally verifiable signiricance of these terms end the relation of pre-
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diotions in these terms to the process of providing adequate inspeotion,

SOoME CONCLUDING REMARKS IN RESFPECT TO STATISTICS
Our brief excursion started with a consideration of the state of con-

fusion in which the terms acouracy and precision stand in the literature today.
Though definitions of these terms in classic theory make them different in that
the first involves the concepts of true value X' and the second involves the
ooncept of expected value X', this differenceis often confused in that later in
the development of tho theory it is assumed that X' = X', The first of these
terms is operationally verifiable in the theoretical but not in the practical
sense, The second term is not even theoretically verifiable until we trans-
late it into the oconoept of oo'nsistency which permits of an arbitrary choice of
operationally verifiable tests for oconsistency, though complete verifiability
is still not attainable. In all cases, the customary meanings of accuracy and
precision are made to rest on the condition that a state of statistical control
exists and this can be translated into an arbitrary choice of oriteria for con-
trol whioh practice has shown to function satisfactorily. Customary theory
leads to the use of fiducial limits which are not operationally verifiable
where the true value X' is unknown., To obtain operational verifiedility, it
beocomes necessary to introduce a tolerance limit type of oriterion, the valid-
ity of which depends upon the weight of 1nromation. (as, for example, sample
size) in a way entirely different than is the case for fiducial limits. In
this way we ocome to see the importance of large as oontrasted with small sem-
ples. TFinally, we have seen that since, in general, the oriteria for statisti-
cal oontrol are not satiaﬁed i.n»g_nactice, we are seldom in a place to use
customary theory whioh ;ls. b&b‘e'a upon"t.‘ne :a,s;mption of randomness.

inherent difference g‘,’rom the. vi.ewpoint oi'adperational verification between a
specified requirement &or qcouracy and(on pr&oision and a statement involving
these terms. The former is mbjeat,te"veriﬁoation. The seoond involves the
concept of a prediction resting upon stated evidence through s degree of belief
type of probability. The concept of an objective degree of rational belief
p'b is translatable into an operational technique for discovering the _llc;_s_ﬁ pre-
diction in terms of tolerance limits upon the basis of given evidences In so
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faF¥ as verifiablility for a statement is attainable it includes the technique
of verifying @ specificational requirement and an additional technique for com-
paring methods of setting the tolerance limits.

What rOle does statistical theory play? It can with the introduction
of operationally verifiable concepts be made to play s very 1mportant roles In
this form it furnishes us the mathematiocal distribution theory required for con-
trol criteria, and powerful tests for judging the state of consistency includ-
ing application of tests for significant differences, and the technique of the
analysis of variance, Under controlled oonditions the problem of setting
eriteria for precision is purely statistical and that of setting oriteria for
sccuracy 1s at least partly statisticale In faot statistical theory as we have
seen furnishes us the background for the development of all of the practical
techniques to be used although under normal conditions this theory must be
supplemented by other techniques which do not depend for their validity upon
improving inference through repetition.
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