ANNUAL SURVEY OF STATISTICAL TECHNIQUE.
DEVELOPMENTS IN SAMPLING THEORY

By W. A. SHEWHART

INTRODUCTION

It was with considerable hesitation that I accepted the invitation to
write this introductory survey on statistical technique, realizing the
extensive annual additions on the formal or mathematical side and the
serious problems of induction involved in appraising the usefulness of
these formal developments. My experience as a member of a recent
committee of the American Statistical Association on Research in Sta-
tistics had done much to make me sensitive not only to these difficul-
ties, but also to those arising from the divergence of opinion among
statisticians as to what constitutes statistical technique. In fact, two
members of this committee attached to the committee’s report! state-
ments emphasizing the fact that statistical technique in its broader
sense should include not only that of mathematieal analysis, but also
techniques of questionnaire drafting, sampling under field conditions,
tabulation of data, computation, and planning.

One of the first things that I undertook was to survey the rather
extensive literature that has grown up on the application of statistics
in economics and some of the associated sciences, for the purpose,
among other things, of getting a better picture of what economists in-
clude under the subject of statistical technique. Beginning at least as
far back as 1925, the annual addresses? of the past presidents of the
American Statistical Association, including those of Chaddock, Ayres,
Day, Snyder, Wilson, Rorty, and Ogburn, were concerned to a large
extent with the discussion of some. phases of methodology. In 1930 the
program of the annual meeting of this Society contained numerous
papers on statistical methodology contributed by men in various fields.

After reading this series of addresses and papers, together with some
similar ones appearing in other statistical journals, I have become more
convinced than ever that the answer to the question, What is statistical
technique? cannot be given. For example, Ogburn in his presidential
address, 1931, states that statistical method must vary according to
subject matter, and that statistics must be taught in various depart-
ments where it is applied. He also says that, for these reasons, statistics
tends to break up into separate disciplines somewhat as philosophy did.
In others of these articles, we find evidence of somewhat similar beliefs.

1 Cf. Proc. Amer. Stat. Assoc., March, 1932, pp. 252-259.
2 Printed in the March issueés of the Jour. of the Amer. Stat. Assoc., 1926 to
1932, respectively.
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Furthermore, such terms as common sense, logic, judgment, and sci-
entific method, are used by some of these authors as though they were
apart from, and of greater significance than, statistical method or tech-
nique. In fact, Rorty, 1930, states that a statistician should be in-
stinctively and primarily a logician and a scientist in the broader sense,
and only secondarily a user of specialized statistical techniques.

It seems desirable, therefore, that this first review of statistical tech-
nique should attempt to throw some light on the developments taking
placein the conceptual relationship between logic and scientific method
on the one hand, and statistical technique on the other, and should
indicate in a general way the lines of development in attacking those
problems which may perhaps be considered as belonging exclusively to
the field of statistical methodology. This need for unification of the
theoretical-quantitative and the empirical-quantitative approach to
economic problems is emphasized as one of the objectives of the Econo-
metric Society.

THE FUNDAMENTAL PROBLEM OF INDUCTION

Both natural and social scientists are interested in the discovery of
so-called facts, relationships, and causes. Since the existence of such
entities must be induced from observed data, scientists are interested
in gathering, presenting, and interpreting data, both quantitative and
qualitative. This problem is common to the fields of scientific method,
logic (including the theory of knowledge), and statistical method. To
this extent the three fields are closely related.

It is, of course, common to distinguish between two kinds of indue-
tion: intuitive and rational. By mutual agreement, the discussion of
technique in any one of these three fields is usually limited to that
having to do with rational induection. It is also true that modern stu-
dents of induction such as Keynes, Nicod, Ramsey, Broad, Johnson,
Lewis, Whitehead, Russell, and Eddington, as well as scientists in gen-
eral, are in agreement that rational induction can never lead to cer-
tainty. In other words, they are in agreement that no matter how many
data we gather, analyze, and interpret, we can never do more than say
that such and such is probably a fact, or such and such relationship
probably exists, or such and such is probably the cause of some event.

The end of research in this sense is the establishment of a judgment
that such and such is a fact, relationship, or cause, in which we can
believe with a certain degree of rational belief or probability. We shall
assume that if the inference or judgment P is connected to the evidence
@ through some probability relation, there is an objective rational de-
gree p,’ of belief in P upon the evidence Q. To the extent to which this
assumption is justified, the ultimate object of research in any field is
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the establishment of the rational degrees of belief to be associated with
such judgments.

Furthermore, it is generally agreed that the objective degree of be-
lief p3’, in an inference or judgment P, is not an intrinsic property like
truth, but inheres in the inference or judgment through some relation
to the evidence Q. In other words, we are not justified in saying that
s’ is the degree of rational belief or probability in the judgment P.
We must add that this is the degree of rational belief upon the evi-
dence Q.

Limiting ourselves to the quantitatively measurable characteristics
of a phenomenon, it is customary to distinguish conceptually between
the phenomenon which exhibits under presumably identical conditions
the same magnitudes of physical characteristics, and the phenomenon
which under presumably identical conditions exhibits stability of the
measurable characteristics only in the statistical sense. For a consid-
erable period of time phenomena in the field of physics were assumed
to behave in accord with the first concept. Contrasted with the “‘exact-
ness’’ of physical science there grew up the concept of the “inexactness”
of most phenomena in the field of social science, and in such other
fields, for example, as biology and psychology. For example, in the first
edition of Yule's elassic, An Introduction to the Theory of Statistics,
1910, he characterized inexact phenomens as those arising from a mul-
tiplicity of causes, and stated that statistical methods are those
adapted to the elucidation of quantitative data affected to a marked
degree by such a multiplicity of causes.

Perhaps it is traceable to such distinctions, made not only by Yule
but by many other writers before and since, that many have come to
consider that statistical methods have to do with only a limited class
of data, and that they are not necessarily and inherently associated
with scientific method as such. Today, of course, we appreciate as
never before that even in the field of physies, it is not possible to dupli-
cate phenomens exactly. Accordingly, in all fields of science we have
been forced at one stage or another to introduce the statistical concept
of constancy, involving the following assumption: If a sequence of
events happens under the same essential conditions, where an event
is characterized in terms of ¢ quality characteristics X1, X,, - - -,
X, - -+, X., then the ratio p of the number of events in the sequence
of n such events having characteristics falling within the respective
ranges X1 +3dXy, Xo+3dXe, - - -, Xi+3dX,, - - -, X, +3dX,, to the
total number n of such events, approaches a definite limit® p’, as the

3 Of course, this limit is inherently different from a mathematical one in that
we never reach a value no of nsuch that for n 2 n;, the difference | p ~p’| becomes
and remains less than some previously assigned positive quantity e.
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number 7 increases indefinitely, where this limit is termed a statistical
probability.

That things are not reproducible in the exact sense of the older nat-
ural sciences, complicates the problem of induction, and at the same
time opens up a new field of investigation which seemingly should be
considered as the field of statistical methodology, or technique. From
this viewpoint we readily distinguish three characteristic statistical
problems: specification of objective distributions, deduction of distri-
butions of statistics of samples of size n drawn at random from a given
specified universe, and statistical induction.

In other words, instead of assuming the objective constancy of any
variable X observed under essentially the same conditions, we assume
an objective probability distribution which may be either continuous
or discontinuous. For the purposes of illustration, let us assume that
the objective probability distribution is a continuous function f* of X
and m’ parameters, or, in other words, that the statistical probability
dp that an observed value of X will lie within the range X +3dX is

dp =f, (X, )\1', )\2’, < A DdX. (1)

The variable X may, of course, be an observed regression coefficient
or estimate of a parameter in a physical law as well as a direct measure-
ment. A fundamental problem is the discovery or inference of (1) from
an observed set of data.

SPECIFICATION

The problem of specification is essentially that of fixing upon the
functional form f’ involving the m’ parameters of unknown* magnitude
to be used as a hypothetical basis for the solution of the other two
problems—distribution and induction. In other words, it is the second
step in the application of scientific method involving observation, hy-
pothesis, deduction, and experimental verification. Obviously, the
scientific investigator must in any field construct a mental model of
phenomena he observes, and then test its consistency with itself, and
its concordance with the results of further experiment. An hypothesis
so conceived is not something fixed, but something subject to change
if at any stage in an investigation the experimentalist becomes con-
vineed that the observed data are not consistent therewith.

This concept of the r6le of hypothesis has thoroughly permeated the
field of natural science—particularly the field of physics. However,
only within the last few decades has it begun to influence the work of
the statistician, as may be illustrated by reference to the treatment of

¢ Of course, as a basis for some statistical inferences we assume both the form
f" and the parameters to be known.



frequency curves in texts on applied statistics. Such treatments often
start by discussing methods of collecting and tabulating observed fre-
quency distributions, and of summarizing these in terms of measures
of central tendency, dispersion, and skewness, as though these proc-
esses were entirely separate from interpretation. Obviously, however,
the interpretation of an observed distribution will depend upon
whether or not there is justification for believing that it was produced
at random from a constant system of chance causes. Furthermore, the
statistics to be used in summarizing the observed data in respect to
central tendency, dispersion, and similar characteristics, will depend
upon the assumption adopted in respect to the constancy of the chance
cause system and the functional form of the objective distribution
function. The older treatment of frequency curves was more from the
viewpoint of graduation of observed distributions than from that of es-
tablishing the necessary hypothetical basis for testing the assumptions
of constaney of the underlying chance cause system and of giving effi-
cient ways of summarizing the essential information which recent de-
velopments in statistical technique emphasize.

One of the earliest attempts at specification is that having to do with
the establishment of the so-called law of error. Later the development
of generalized frequency curves was attacked from several directions®
by Gram (1879), Thiele (1889), Charlier (1905), Pearson (1895), Edge-
worth (1896), Fechner (1897), and Bruns (1897). Out of these efforts
belonging to the nineteenth century have crystallized two general sys-
tems—Pearson’s system of closed curves and the Gram-Charlier open
series. During the last two decades, however, there has been no ma-
terial development from this angle except by way of appraising the
comparative advantages® of these two major systems of specification.

By taking enough terms in the open Gram-Charlier series, we may
theoretically secure a perfect fit to an observed distribution, but even a
superficial knowledge of the fluctuations to be expected in a series of
observed frequency distributions of samples of a given size taken under
essentially the same conditions leads one to question the significance
of closeness of fit thus obtained. It was not until 1900 that statisticians
were given the necessary tool in the form of Pearson’s x? test to enable
them to test the hypothesis that an observed distribution could have
arisen from some specified universe with known parameters; not until

5 Cf. Rietz, H. L., Mathematical Statistics (Chicago: The Open Court Pub-
lishing Company, 1927), Chap. 111.

¢ One such interesting appraisal is that of J. F. Steffensen in Some Recent Re-
searches tn The Theory of Statistics and Actuarial Science (Camb. Univ. Press,
1931), pp. 35-48. He gives reasons for believing that Pearson’s curves are pref-
erable.



later that the x? test was extended to allow for estimates of the param-
eters from a sample.

DISTRIBUTION

In order to test the hypothesis that one or more values of a variable
taken under presumably the same essential conditions constitute a
random sample from a postulated universe, it is necessary to have de-
duced the nature of the variation that may be expected from observa-
tion to observation, or from some function of a group of observations
to the same function of another group, so that the observed may be
compared with the theoretical variability. Now, it is customary to at-
tach significance to both confirmation and infirmation as a basis for
inference. However, there is little object in studying confirmatory evi-
dence unless we can feel assured that we have succeeded in maintaining
the same essential conditions and that the observed values are free
from constant errors.

As anillustration, we may consider the measurement of an objective
constant such as the charge on an electron. The literature certainly
reveals the tendency of the physicist to emphasize first of all the need
for gaining assurance that the observations are free from constant er-
rors, and that the differences between observations are not significant.
In fact, the physicist seldom tabulates more than five or ten observa-
tions after he has satisfied himself that he has maintained the same es-
sential conditions and eliminated constant errors. Of course, Millikan
in his original report on the measurement of the charge on an electron
presented fifty-eight values, but his final estimate was based upon a
comparatively small group because he felt that the others gave evi-
dence of bias.

Since it is essential first to determine whether or not observed dif-
ferences are significant, it is apparent that the technique of testing the
hypothesis of constancy must be such that it can be used in testing
significant differences between small groups of observations, if it is to
be of much importance to the research man who realizes, as does the
physicist, the lack of significance of multiplication of instances until
assignable differences and constant errors have been eliminated, in so
far as it is humanly possible to do so.

Keeping this situation in mind, we are in a position better to appre-
ciate the practical significance of the developments in distribution
theory taking place since 1900. Although prior to that time, statisti-
cians were using various measures of central tendency, dispersion,
skewness, kurtosis, and correlation, nevertheless comparatively little
was known about the distributions of such measures for samples of
any given size n drawn from even such a simple specified universe as
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the normal distribution. Of course, the distribution of the averages of
samples had been known for a long time prior to 1900; so also had the
distribution of the standard deviations been discovered by Helmert in
1876, although this work was overlooked by most statisticians until
some time after it was rediscovered empirically in 1908 by ‘“Student,”
and rigorously in 1915 by R. A. Fisher. It remained for theoretical
statisticians of the present century to deduce the distribution functions
of various statistics as a function of sample size n, first under the as-
sumption that the samples had been drawn at random from the normal
law, and then to investigate the effects of functional forms of the uni-
verse upon the distribution of these statistics.

It should be emphasized that the object of such studies is not to re-
move the necessity of taking so-called large samples, but rather to put
into the hands of the research man a useful tool for detecting significant
differences applicable to small samples of observations which the care-
ful scientist recognizes must be done before significance can be attached
to large samples.”

Since 1900, exact distribution functions for any sample size for many
statistics of samples drawn from a normal universe have appeared in
rapid succession, largely at the hands of R. A. Fisher and his associates
at the Rothamsted Experimental Station. Preliminary studies have
been made, in particular by Rider and by Egon Pearson and some of his
associates, to determine the effect of the functional form of the universe
upon the distribution funetions of some of the more important statis-
ties. An excellent survey of much of this work up to 1930 has recently
been given.? Similar reviews by Irwin for the years 1930 and 1931 have
appeared in the Journal of the Royal Statzstzcal Society for 1931 and
1932, respectively. Prospective students of this subject will find the
extensive bhibliographies of Rider and Irwin of great help. It may be of
interest that Irwin lists 89 articles appearing in 1931.

Not only has marked progress been made in deducing exact distribu-
tion functions of many important statisties, but also in showing how
many of these distribution functions are related to four compara-

7 On this important point, Egon Pearson makes the following pertinent com-
ment: “Crities of small sample theory are inclined to argue, “What can you infer
from two samples of five? Give us two samples of 100 and we may tell you some-
thing!” They do not realize that the distinction is often not of this kind at all.
The comparison lies between a technique which ean deal with both (a) 40 samples
of 5 (or even 100 of 2), and (b) 2 samples of 100, and a technique which can
only deal accurately with (b).”” “A Survey of the Uses of Statistical Method in
the Control and Standardization of the Quality of Manufactured Products,”
read before the Royal Statistical Society, December 20, 1932.

8 Rider, Paul R., “A Survey of the Theory of Small Samples,” Annals of
Mathematics, Second Series, xxX1 (October, 1930), 577-628.
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tively simple distributions, namely, the normal law, Karl Pearson’s x?,
«“Itudent’s’’ ratio of the error of the average of a random sample drawn
from a normal universe to the observed standard deviation, and R. A.
Fisher’s variable z, defined by the relation €% = (s;%/s,?), where 52 and
592 are estimates of the variance of a normal population derived from
two samples from that population. Largely to the work of R. A. Fisher
do we owe this contribution, and as early as 1924 he gave the following
table® to indicate the applications of the four chief cases of the z dis-
tribution:

1 11 IT1 v
Normal
curve x? Student’s z
Many sta- Goodness of fit of Mean Intraclass correlations
tistics frequencies Regression co-  Multiple correlation .
from large Index of dispersion efficient Comparison of vari-
samples for Poisson and  Comparison of ances
Binomial samples means and  Correlation ratio
Variance of Normal regressions Goodness of fit of re-
samples gressions

Since 1924, Fisher, Hotelling, Egon Pearson, McKay, and others
have succeeded in relating certain other exact distributions to one or
the other of these four.

The practical importance of being able to relate the exact distribu-
tion functions of many statistics to a comparatively small number of
distributions is that it reduces the number of tables required for testing
hypotheses in respeet to various statistics. For example, it was pointed
out by Fisher in 1924 that the distribution of the ratio of the observed
variance s? for a sample of 7 drawn from a normal universe with stand-
ard deviation ¢’ to the square of the standard deviation ¢’ is distrib-
uted as x?, where x2?is put equal to n,5%/¢’2, and where n, is the number
of degrees of freedom, being one less than the size n of the sample.

Thus, for example, we might ask the question : In a sample of sixteen
drawn from a normal universe, what is the probability of occurrence of
an observed standard deviation 20 per cent greater than the unknown
true standard deviation of the parent population? Karl Pearson!®
solves this problem through the use of his tables giving indirectly the
integral of the distribution of the standard deviation and obtains the
probability 0.08329. We may, however, make use of the relationship of

°“On a Distribution Yielding the Error Functions of Several Well-known
Statistics,” presented at the International Mathematical Congress, Toronto,
Canada, 1924. This paper outlines the framework around which Fisher’s Statis-
tical Methods for Research Workers has been built.

1 Tables for Statisticians and Biometricians, Part I, page civ.
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x* to the ratio n1s%/¢'? and through the use of the well-known x2, P
tables obtain directly the probability 0.0834.

STATISTICAL INDUCTION

A. Estimation—Assuming that a sample is a random one from a
population of a given functional form but with unknown parameters,
there arises the important practical problem of estimating the magni-
tudes of the parameters. Thus for the case of one variable specified by
(1) where f’ is assumed known but the A”’s are assumed to be unknown,
we have the problem of estimating the A\”’s from the available informa-
tion Q. Now, of course, we may limit Q to the evidence given by the
sample, or we may include in addition as a part of Q evidence available
before the sample was taken.

In 1922, Fisher!! proposed three criteria of estimation: (a) The eri-
terion of consistency, which states that when applied to the whole
population, the derived statistic should be equal to the parameter; (b)
The criterion of efficiency, which states that in large samples, when the
distributions of statistics tend to normality, that statistic should be
chosen which has the least probable error; (¢) The criterion of suffi-
ciency, which states that the statistic chosen should summarize the
whole of the relevant information supplied by the sample. This cri-
terion of sufficiency is interpreted by Fisher as meaning that if A’ be
the parameter to be estimated, ©;, a statistic which contains the whole
of the information as to the value of \;’ which the samples supplies,
and O, any other statistic, then the surface of distribution of values
©. and Oy, for a given value of A/, is such that for a given value of
©.1, the distribution of ©;, does not involve \;. The researches of
Fisher have led him to the conclusion that an efficient statistic can, in
all cases, be found by what he terms the method of maximum likeli-
hood, assuming no other information than that the sample has been
drawn at random from a population of given form but with unknown
parameters.

When a sample is so large that it would be generally agreed by stu-
dents of the subject that the information given by the sample over-
shadows all pertinent information available prior to the taking of the
sample, these criteria, I believe, are generally accepted as constituting
a rational basis for deciding upon estimates of parameters. On the
other hand, as previously noted, it is generally agreed by students of
induction that any induction or judgment should be consistent with all
available pertinent information. Certainly, in the case of small samples,
this generally recognized criterion must be considered in conjunction

1 Trans. Roy. Soc. of London, Series A, Vol. cexxir, 309-368.
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with those for the consistency, efficiency, and sufficiency, of an estimate
based upon a sample. Recent discussions bearing upon this general sub-
ject have been given by Molina and Wilkinson,'* Karl Pearson,'* and
others. In fact, Pearson introduces in contrast with the “most likely”
estimate based solely upon a sample, what he calls the “most reason-
able’” estimate which takes into account prior information. In this
connection, Pearson argues that in almost all cases there is some, even
though vague, a priori experience existing that should be used, to-
gether with the information given by the sample, in finding what he
calls a most reasonable estimate.

This argument certainly has weight, because in a practical case we
seldom, if ever, know a priori that a sample has been drawn at random
from a universe of given functional form, and it usually works out in
such instances that before a practical man is willing to believe that the
given method of measurement will lead to the sought-for objective
value as a statistical limit simply through increasing the size of the
sample, he has already formed some judgment that the objective value
lies within some agreed-upon range and experienced what he considers
a rational degree of belief in this judgment that must certainly be con-
sidered when interpreting a small sample.

In any case, however, a knowledge of the distribution of a given sta-
tistic as a function of sample size enables the experimentalist to deter-
mine the relative significance of increasing the number of observations
under statistically controlled conditions, and shows that, at least for
efficient statistics, the degree of precision attained is inversely propor-
tional to the number of observations. Furthermore, a knowledge of the
distribution in any given case enables one to appreciate the significance
of the variability introduced in the process of sampling. As an illustra-
tion, suppose we are given a sample of four known to be drawn from
a normal universe of unknown average X’ and standard deviation ¢’.
Based upon this sample, what shall we take as estimates of X' and ¢’?
The knowledge that for all practical purposes the observed standard
deviation for a sample of four may vary all the way from zero to more
than twice the true standard deviation ¢’ must of necessity make one
cautious in placing too much reliance on any estimate based solely
upon a sample of four.

B. Testing hypotheses.—Given a random sample Z, an important
problem is that of determining whether or not it is likely to have come
from a certain population = which may be either completely or par-

12 “The Frequency Distribution of the Unknown Mean of a Sampled Uni-
verse,” Bell System Tech. Jour., virr (Oct. 1929), 632-645.
13 Loc. cit., pp. elxxi—clxxx.
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tially specified. Two distinet methods of approach are open: (a) To
start from the population 7 and seek the probability that a sample =
should have been drawn therefrom; (b) To start from = and seek the
probability that = is the population sampled. Two recent papers! by
Neyman and Egon Pearson break new ground in providing a critical
basis for developing and using statistical criteria. In treating the first
of these two methods they note two important requirements: (1) We
must be able to reduce the chance of rejecting a true hypothesis to as
low a value as desired, (2) The test must be so devised that it will re-
ject the hypothesis tested when it is likely to be false. Pearson and
Neyman were the first to emphasize the latter point and to provide a
criterion or test which takes both into consideration.

In two later papers® they extend their studies to the problems of
two and & samples. In the case of two samples they fix upon the set of
admissible hypotheses concerning the populations 7, and s from which
two samples Z; and Z, have been drawn, restrieting this by the further
assumption that w; and e are both normal. They develop a test for the
hypothesis H that 7; and m, are identical. They then show how R. A.
Fisher’s z test may be used in testing the hypothesis H, that the two
samples 2, and Z, have come from unknown normal populations with
the same variance but with means having any values whatsoever. Simi-
larly, they show that if it be assumed that the populations 7 and -,
besides being normal, have the same variance, the “Student’” ¢ test is
the appropriate one for testing the hypothesis H, that the means of
these populations are the same. They then argue that their criterion
for testing hypothesis H is more crueial than tests of H, or Hs taken
separately although they point out that in many problems the hypoth-
esis to be tested will present itself in one of the two forms, either H,
or Ho.

These results are of fundamental importance in testing for assignable
causes of variation or lack of homogeneity, which tests should always
be made before one places too much significance on the contributions
of a single sample no matter how large. The importance of this work,
however, is not alone in the new criteria provided, but also in the fact
that these papers present an exeellent critical introduction to some of
the philosophical and logical, as well as the mathematical, problems
involved in developing rational techniques for testing hypotheses.

14 “On the Use and Interpretation of Certain Test Criteria for Purposes of
Statistical Inference. Parts 1 and 11,”” Biometrika xxa (July and December 1928),
175-240 and 263-294.

15 ¢“QOn the Problem of Two Samples” and “On the Problem of & Samples,”
Bull. de I’ Académie Polonaise des Sciences et des Lettres 1930, pp. 73-96, and 1931,

pp. 459-481. -
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In trying to appraise contributions in statistical technique, we must
keep in mind that the ultimate judgment or inference cannot be stated
with certainty, and that even though we were in a place to give an
accurate estimate of the degree of rational belief p,” associated with a
given judgment, this degree of rational belief is based upon certain
evidence Q. Anyone passing upon the significance to be attached to a
judgment based upon a given set of data must, of course, attempt to
wetgh'® the significance of each of the contributory quantitative and
qualitative elements going to make up the pertinent information Q.

SoME IMmpORTANT Books oN TECHNIQUE, 1931-32

L. Tables for Statistictans and Biometricians, Part 11, edited by Karl
Pearson. London: Cambridge University Press, 1931. 512 pages.
England 33s, export $7.30.

Contains not only the tables issued in Biometrika during the past
seventeen years, but also 250 pages of valuable and critical discussion
of the use of these tables.

2. The Methods of Statistics, by L. H. C. Tippett. London: Williams
and Norgate, Ltd., 1931. 222 pages. 15s.

An excellent introduction to many of the recent developments in
statistical technique made possible through developments in distribu-
tion theory during the past three decades.

3. Contributions to the History of Statistics, by Harold Westergaard.
London: P. 8. King & Son, 1932. vii+280 pages. 12s. 6d.

Valuable as a survey of the evolution of statistical technique up to
1900.

4. Statistical Methods for Research Workers, by R. A. Fisher. 4th edi-
tion. London: Oliver & Boyd, and New York: G. E. Stechert & Co.,
1932. xi+307 pp. 15s.

Revised and enlarged edition, bringing up to date the survey of

R. A. Fisher’s major contributions to statistical technique from 1912
to 1932.

5. An Introduction to the Theory of Statz:stz'cs, by G. U. Yule. 10th edi-
tion. London: Charles Griffin and Co., Ltd., and Philadelphia: J. B.
Lippincott Company, 1932. xv4434 pages. 12s. 6d.

Principal item of revision is that of bringing the excellent bibliogra-
phy in this classic up to date.

18 Cf. Keynes, J. M., A Treatise on Probability (New York: Macmillan Co.,
1921), p. 77 et seq.
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6. Bustness Statistics, by Riggleman and Frisbee. New York and Lon-
don: McGraw Hill Book Company, Inc., 1932. xix+707 pages.
$4.00.

Part I gives an interesting introduction to statistical methods in re-
spect to techniques of gathering, tabulating, and presenting data, and
calculating averages, index numbers, dispersions, and other simple
statistics, in so far as this can be done without giving due consideration
to the developments of the present century as here reviewed in respect
to the problems of specification, distribution, and induction. Part 11,
comprising approximately one-half of the book, constitutes an exeellent
introduection to some of the complex business and economic problems
faced by the industrialist.

The student of statistical technique will doubtless find it interesting
to start with Westergaard’s history, review Yule’s interesting sum-
mary and the practical discussions of applied technique in the field of
business as presented by Riggleman and Frisbee. He will note the
emphasis on techniques of collecting and presenting data, and those
of ealculating certain eharacteristics of observed data. If now he stud-
ies the above-mentioned texts by Pearson, Fisher, and Tippett, he will
experience a definite change in emphasis and will begin to appreciate
that the rational interpretation of data depends not only upon a knowl-
edge of the statistical techniques involved in testing statistical hypoth-
eses, but also that the techniques of collecting and presenting data in-
herently depend upon the techniques and the hypotheses that are going
to be used in the interpretation thereof.
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