Contribution of Statistics to the Science
of Engineering

By
WALTER A. SHEWHART, Pu.D.*

INTRODUCTION

THE potential contributions of statistics to the science of engineer-
ing are an important national asset; an asset of interest to all of
us because it makes possible the most efficient and effective use
of natural resources and human effort to satisfy human wants; an
asset, however, that has for years remained frozen and is only now
beginning to be utilized; an asset that can be used to the full only
when engineers and others learn to use it as they have learned,
in the past, to use the product of the scientist.

Much has appeared in the literature to indicate some of the
contributions of statistics to date in the field of engineering and
manufacturing. My object is not so much to review what has
been done as to survey the potential contributions of statistics to
the science of engineering. In doing this, I shall follow the old
advice that the easiest way to reach the top is to go to the bottom
of things, and I shall go to:the bottom of the difference between
engineering with, and without, statistics.

Let us recall how the applied scientist has wrought so many
wonders for you and me to enjoy. He has done much of this with
a comparatively simple but extremely powerful tool, namely,
scientific method based upon the concept of physical laws of
nature that assume perfect or certain knowledge of a set of facts
and then state exactly what will happen at any future time. This
method consists of three essential steps: hypothesis, experiment,
and test of hypothesis. The fundamental difference between engi-
neering with and without statistics boils down to the difference
between the use of a scientific method based upon the concept of
laws of nature that do not allow for chance or uncertainty and a
scientific method based upon the concept of laws of probability
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as an attribute of nature. When viewed in this way, the potential
contributions of statistics become quite simple indeed. Statistically
scientific method is in fact a fundamental discipline that includes
all of the customary scientific method based upon the concept of
exact laws as a limiting case in which repetitive operations of any
given kind always give identically the same results.

All that I shall try to do here is to sketch in broad outline how
the statistician has helped to refine scientific method by over-
hauling and reworking each of its three fundamental steps and
then to indicate briefly how this new tool can be used by the
engineer. In place of hypotheses based on exact laws, the new
scientific method introduces statistical hypotheses. The introduc-
tion of statistical hypotheses makes it necessary to conduct the
experiments in such a manner that the statistical hypotheses may
be tested, and the new method provides means of testing the sta-
tistical hypotheses with which it starts.

Needless to say, scientists have long realized that their dis-
covered “laws” do not always fit observed phenomena exactly.
All that they have claimed is that the scientific method based upon
the concept of exact laws has enabled them to make remarkable
progress in understanding the world and to attain knowledge that
could be used by engineers and applied scientists. Deviations from
the assumed exact laws were simply dismissed as errors by the
pure scientist and allowed for in factors of safety by the engineer.
However, we are now coming to realize that many of the errors
of the pure scientist and factors of safety of the engineer are more
properly designated as factors of ignorance. We are beginning to
see that we must refine our scientific methodology if we are to
minimize these factors of ignorance in the scientific explanations
of the world and if we are to make the most efficient and economic
use of natural resources in the development of things to satisfy
human wants. Statistically scientific method provides the scientist
with an improved tool by which to extend his knowledge, and the

engineer with a means by which to extend his useful service to
mankind.

BASIC ENGINEERING PROBLEM

. Thc. engineer’s. job is to devise and develop the operations that,
if carried out, will produce things that people want.! To do this,

1 This is also the job of the applied scientist in the development of ways and
means of making everything that we use.
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he must be able to make things that have quality characteristics
lying within previously specified tolerance ranges. Hence, a basic
engineering problem is to devise an operation of using raw and
fabricated materials that, {f carried out, will give a thing wanted.
The specified tolerance ranges for the quality characteristics of
the thing wanted define a target for the engineer. He devises an
operation and predicts that, if carried out, it will hit the target,
but, since he does not have certain or perfect knowledge of facts
and physical laws, he cannot be certain that a given operation
will hit its target; in fact the best that he can hope to do is to know
the probability of hitting the target. Here then is one fundamental
way in which probability enters into everything that an engineer
does.

Furthermore, if the thing produced fails to meet tolerance re-
quirements, the engineer is penalized in one way or another. For
example, if the quality of any piecepart fails to meet its tolerance
requirements, a loss is incurred through rejection or modification
of the defective part; if the time-to-blow of a protective fuse fails
to meet its tolerance range, loss of property and even loss of life
may result; if the time-to-blow of a fuse in a shell fails to meet its
tolerance range, the shell may burst prematurely and kill mem-
bers of the gun crew and, in any case, the round of ammunition
will fail to fulfill its function of destruction within the ranks of the
enemy. This means that when the engineer undertakes to use
probability theory it is essential that he thoroughly understand
the conditions under which its use will lead to valid predictions.

In what follows we introduce the term operation to include any
experimental procedure designed to produce a previously specified
result. In this sense, a production process is an operation, and a
method of measuring is also an operation. Furthermore, an en-
gineering operation or a production process may almost always
be broken down into component operations. It should also be
noted that even if only one thing of a kind is to be made, the oper-
ation devised by the engineer for producing this one thing is pre-
sumably capable of being repeated again and again so that the
one thing to be produced may be thought of as but one of a class
of an indefinitely large number of things that might be produced
by repeating the operation again and again at will under the same
essential conditions. In this way we may reduce the basic engineer-
ing problem of devising an operation to hit previously specified
tolerance ranges to one that can be treated statistically, in that
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statistical theory treats of the properties of certain kinds of repeti-
tive operations.

To illustrate, let us consider a simple example in which only
one quality characteristic of a thing is specified, let us say the
length of a piecepart or the time-to-blow of a fuse. Let us symbolize
this quality characteristic by X. The operation for producing a
thing of quality X within specified limits,? if repeated again and
again, would give rise to an indefinitely long sequence of values
of quality X if taken in the order in which the things were pro-
duced, and these may be represented symbolically as follows:

Xl,Xz,...,Xi ...,X,’,...,X,.,X,H_l,...,Xn+k,... (I)

Hence, every operation may be characterized not only by a word
description but also by the characteristics of the potentially in-
finite sequence (1) corresponding to an indefinitely large number
of repetitions. In fact, we shall again and again make use of the
characteristics of such a sequence in what follows. If an operation
is developed to produce only one thing of a kind, then the engineer
is interested only in the first term of this potentially infinite se-
quence (1) but if the engineer is interested in developing an opera-
tion or production process to turn out an indefinitely large number
of things of the same kind, then he is interested in all terms in
this sequence.

In what follows, we shall try to see how statistics can help the
engineer to solve his basic engineering problem of developing an
operation that, if carried out, will produce an object with qualities
that lie within previously specified tolerance limits.

BASIC CONTRIBUTION OF CLASSICAL
STATISTICAL THEORY

Basic Statistical Hypothesis. As a background for viewing the con-
tribution of statistics to the solution of the basic engineering prob-
lem, we may state the fundamental hypothesis of applied classical
statistical theory in the following way:

Hypothesis 1. Some repetitive operations exist that obey laws of
probability. These are called random. The probability that such a
random operation will give a previously specified event, as for example,
the occurrence of a value of X within a previously specified tolerance
range, 1s a definite number associated with that event.

* Or any operation of measurement of some objective quality characteristic. -

4



If we know the law of probability or chance that controls a given
operation, we may use the mathematical distribution theory of
the statistician to describe how statistics of samples of size n given
by successive repetitions of such an operation will be distributed.
Likewise, if we know that an observed sample has been given by
a random operation, the statistician has established valid rules of
procedure for using the sample as a basis for estimating the param-
eters in the law of probability underlying the random operation
that gave the sample. In other words, the applied mathematical
statistician has provided us with rules for making valid predictions
if we know the law of probability and with efficient rules of dis-
covering the functional form of such a law, including the values
of the parameters, if we simply know that it exists.

Of course, the work of the mathematician is purely formal; for
example, what he calls the operation of drawing samples of size n
at random consists essentially of acting upon some given mathe-
matical law of chance or distribution function in accord with
previously specified mathematical rules. Hence, if such a statistical
hypothesis is to be of any value in engineering or applied science,
it is necessary to know what is meant in an operationally verifiable
manner by drawing at random. This necessitates our study of the
second or experimental step in a statistically scientific method.

Basic Statistical Experiment or Operation of Drawing at Random. Un-
less an experimentalist knows what it means to draw a sample at
random, he is notin a position to make use of statistical hypotheses
because he cannot get the data with which to make valid tests of
them and, having accepted a statistical hypothesis as valid, he
does not know what kind of events he can predict with validity.
Without such knowledge, he would be somewhat like a physicist
who knew all about mathematical physics but did not know how
to distinguish and measure the physical properties appearing in
his equations. For example, an engineer may wish to select a
random sample of 50 pieces of a new kind of product from the
first 1,000 pieces produced. Very often he will ask under such con-
ditions if he can take every twentieth piece as it is produced. Some-
times the engineer will propose other schemes but, in general, it
is found that none of those proposed can be used with much
assurance of giving a random sample. Hence the starting point
in the use of statistical theory is a clear understanding of what is
to be taken as the meaning of a random operation.

Let me begin with a description of two operations that I shall
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choose to call random.? Let us assume that we have N physically
similar chips on each of which is written a number and that these
N chips are placed in a bowl. A blindfolded experimentalist thor-
oughly mixes the chips in the bowl, draws a number, and has his
assistant record the number. The chip is then returned to the bowl
and the blindfolded experimentalist, after thorough mixing of the
chips, again draws one and has the number recorded. This ran-
dom operation of drawing a number can theoretically be repeated
again and again under the same essential conditions so as to give
an infinite sequence like (1).

The other important operation for our present study is the fol-
lowing one of randomizing a finite set of N numbers. In this case
the blindfolded experimentalist follows the same procedure as
described above except that he does not return a chip to the bowl
after it has been drawn. The ¥ numbers drawn in this manner
may be written down by the assistant in the order drawn. The
operation of putting the N chips in a bowl, thoroughly mixing
them, drawing them one at a time, and writing the numbers down
in the order observed, may be repeated again and again at will
so that the result of the operation of drawing one sequence is but
one of the infinite number of sequences that might be obtained
by repeating the operation again and again.t As an example,
Fig. 1a records one such random drawing of the 144 values of
thickness of inlay given in Table 1.

Of course, you will note many elements in my description of
the experiment that are not operationally definite. What, for ex-
ample, are symmetrical chips? What is thorough mixing? How
can the experimentalist maintain all other conditions essentially
the same? However, this kind of indefiniteness in the operation of
drawing at random is much the same as exists in defining any
experimental procedure.

The engineer without statistical training is likely to ask what

? A more comprehensive discussion of the difference between the mathematical
concept of random and the operationally verifiable meaning of random has recently
been given elsewhere.

Cf. W. A. Shewhart, Statistical Method Jrom the Viewpoint of Quality Control, Grad-
uate school' of the Department of Agriculture, Washington, D. C. From the more
technical viewpoint there presented, the two random operations here may be
treated as one. For our present purpose they can best be considered separately.

See also t.he discussion of what the mathematician defines as random in the paper
by Prof. Wilks, also contributed to this symposium.

¢ Of course there would only be ¥ different possible orders.
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TABLE 1
Thickness in Arbitrary Units of Inlay on 144 Relay Springs

55 13 45 27 33 59 43 24 43 52 39 62
72 3t 38 36 36 45 26 30 28 42 g8 50
93 37 23 18 34 41 2 28 38 53 49 70
5¢ 38 58 43 59 47 17 71 28 53 38 6o
30 43 52 10 75 38 28 57 23 42 35 36
41 38 35 26 59 56 51 37 18 20 35 65
40 36 50 8 43 39 19 43 39 43 22 50
45 21 50 53 41 57 42 58 52 17 30 75
31 30 23 39 57 22 35 33 43 39 24 9
25 34 68 47 59 43 3 62 31 48 67 6
30 36 353 48 48 33 27 27 36 58 54 8o
23 41 26 34 42 20 27 26 42 59 43 88

there is of significance to him about the sequence in Fig. 1a. Well,
the answer is that there is something about that sequence that is
of very great importance to him. In the first place, most sequences
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obtained by a random operation possess certain characteristics
that almost no sequence of results from repetitive engineering
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operations is found to possess until after assignable causes have
been eliminated through the application of the operation of sta-
tistical control. Furthermore, if anyone not an experienced statis-
tician were to try to write down a lot of sequences of 144 different
numbers or if he were to try to arrange the 144 numbers in Table 1
in what he would instinctively call random order, most of these
sequences would fail to possess the characteristics possessed by al-
most all of the class of sequences obtained by drawing the 144
numbers again and again at random as described above.’ Many
of my colleagues have told me that their first real feeling for the
meaning of a random operation came after they had tried to
juggle with their eyes open, as it were, a set of numbers into what
they would instinctively call random order only to find that the
sequences thus obtained did not possess the characteristics pos-
sessed by most of the sequences obtained by drawing from a bowl
with their eyes shut.® Before we can go further in characterizing
the quantitative differences between such sequences, we must
consider first the problem of testing a statistical hypothesis and
later that of testing the hypothesis that an operation is in a state
of statistical control.

Basic Test of Statistical Hypothesis. To determine whether any
operation such as that of drawing from a bowl, as illustrated by
the data in Fig. 1a, gives a sequence with the characteristics of
one defined as random by the mathematician, we may choose
one or more of the indefinitely large number of criteria that have
been or may be established mathematically. If the operation gives
a sequence that fails to meet the chosen criteria, the hypothesis
is rejected, but if it meets the criteria, the hypothesis is accepted.
Needless to say, no experimental test will prove or disprove a

® Since there are |V different possible orders in which N numbers may be drawn,

one might argue that any arrangement whatsoever that one chooses to make of
the ¥ numbers is a random arrangement in that it would be one of the possible |V

orders obtained by a random operation of drawing. The important point to note
is that I do not speak of a random number or a random arrangement except in
the sense of a number or arrangement given by a random operation. What I am
contrasting is the class of arrangements given by the operation of arranging the
numbers in what one intuitively may feel is a random manner with the class of
arrangements given by the random operation of drawing from a bowl. For a more
comprehensive discussion of this point cf. Shewhart, op. cit.

¢ The reader may wish to try for himself different orders of the data in Table 1

and sec if his trials pass the three criteria considered later in discussion of statistical
control theory.
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statistical hypothesis, and in fact the test thereof constitutes a rule
of behavior that must be justified upon the basis of extensive experi-
ence showing that in the long run we shall not be too often wrong.
In fact, the test of any statistical hypothesis is subject to the follow-
ing two kinds of errors known as errors of the first and second
kinds: (1) sometimes the hypothesis will be rejected even though
true and (2) sometimes the hypothesis will be accepted even
though false.?

Experience reported in the literature from many different
sources justifies the conclusion that we may use with confidence
the deductive distribution theory of the statistician to predict the
distribution of any observed statistic of samples of size n or of any
one of the many characteristics, such as lengths of runs-up and
runs-down, of the infinite sequence of numbers that we may expect
to get by repeating again and again without limit the operation
of drawing a number from a bowl. Certain other operations as,
for example, the use of tables of random sampling numbers also
give results that have been found by experiment to possess the
properties predicted by the mathematical statistician.

Such studies show that a few specific kinds of operation exhibit
properties described by the mathematical statistician as random.
The ability to randomize a set of numbers or a set of objects by
means of some distinguishable physical operation provides the
scientist with a powerful technique for making valid predictions,
and we shall now see how this can be used by the engineer.

Four Uses of the Basic Contributions of Classical Statistical Theory.
(1) Obviously the method of testing a statistical hypothesis can
be used for testing the hypothesis that a sample assumed to be
random came from an assumed law of chance, or it can be used
to test the hypothesis that two samples, both of which are random,
came from the same law of chance. Such is the nature of statistical
tests of significance of observed differences between two or more

7J. Neyman and E. S. Pearson have contributed many important papers on
testing statistical hypotheses starting with one in Biometrika, July 1928, “On the
Use and Interpretation of Certain Test Criteria for Purposes of Statistical Infer-
ence.” Some of their latest contributions are given in Statistical Research Memoirs,
Vol. 1, 1936, and Vol. 2, 1938, Cambridge University Press, London, Also see
“On the Problem of the Most Efficient Tests of Statistical Hypotheses,” by J.
Neyman and E. S. Pearson, Philosophical Trans. Royal Society of London, Series A,
Vol. 231, pp. 289-337. It is to be noted that all such tests depend upon the assump-

tion that the sample used in testing is random. Later in testing the hypothesis of
statistical control, we start with testing the hypothesis that the sample is random.
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samples of data, but it should be noted that these tests are valid
only if the samples tested are produced by random operations.

(2) If one after another of the operations of the engineer, such
as an operation of measurement of some physico-chemical prop-
erty or that of producing a given kind of product, could be shown
to satisfy the hypothesis that it obeyed a law of chance then each
such law and the estimates of the parameters therein could be quite
simply obtained by means of well-established statistical proced-
ures. Thereafter an engineer would be justified in using the dis-
tribution theory of the statistician in predicting the outcome of
any future repetitions of that operation with the same degree of
assurance that he has in using statistical distribution theory in
predicting the outcome of future drawings from a bowl universe.
This constitutes a goal highly to be desired from the viewpoint of
design, for then it would be possible to use mathematical distribu-
tion theory in establishing the economical overall tolerance limits
in terms of those for raw materials and pieceparts.

However, as long ago as 1924, abundant evidence, since sub-
stantiated on an even larger scale, was obtained to show that
few, if any, operations of the engineer obey laws of chance, even
when carried out under presumably the same essential conditions.
Two courses of action were open. One was to use available statis-
tical technique as a curative measure in the sense of screening the
product obtained by repeating a given production operation when
this operation does not obey a known law of chance. The other
was to develop a statistical technique to be used as a preventive
measure in the sense of providing a means of detecting and elimi-
nating assignable causes of variability that need not be left to
chance. »

(3) Next, then, let us see how classical statistical theory pro-
vides a means of screening the results already obtained by repeat-
ing an operation, as in the production of a product of a given
kind. The basis for the technique lies in the empirically estab-
lished fact that the statistician has justified the use of certain opera-

® Needless to say, in practice we can never be sure that an operation obeys a law
of chance.

® Cf. Economic Control of Quality of Manufactured Product, W. A. Shewhart, New
York, D Van Nostrand and Company, 1931; Statistical Method from the Viewpoini
of Quality Cfmtrol, W. A. Shewhart, Graduate School of the Department of Agricul-
ture, Washington, 1939; and The Application of Statistical Methods to Industrial Stand-

ardization and Qualitv Control, E. S. Pearson, British Standards Institution, London,
1935.
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tions, like drawing from a bowl or from a set of random numbers,
by means of which to randomize a set of objects. With this opera-
tion of randomizing, one may break up any quantity of product
into a number of lots and establish the most economical plan of
sampling these lots to insure both that the producer’s risk of hav-
ing a lot of satisfactory quality rejected will not exceed some
previously specified value and that the consumer’s risk of accept-
ing a defective lot will not exceed some previously specified value
irrespective of the quality of the product in the different lots.
These producer and consumer risks correspond to the errors of
the two types always involved in testing a statistical hypothesis
and were introduced into commercial use within the Bell System
as early as 1925 in the development of sampling plans for screen-
ing product.1

(4) Too much emphasis cannot be laid upon the practical im-
portance of the fact that tests of statistical hypotheses are strictly
valid only for random samples. This fact is taken into account in
the design of sampling plans for screening, and it must also be
taken into account in designing an experiment to test the signifi-
cance of observed differences in the results obtained by submitting
the results obtained by one operation to different subsidiary oper-
ations. For example, a given kind of product may be subjected
to laboratory or field tests under different conditions. Unless the
operation of producing the product obeys a law of chance or, in
other words, is in a state of statistical control, it is necessary to
randomize the samples submitted to the subsidiary operations in
order to obtain a valid test of the significance of the observed
differences. If this is not done, observed differences between the
results of two or more subsidiary operations may have arisen from
assignable differences in the results of the first operation. Applica-
tion of the operation of randomization is particularly important
in the comparison of new designs, new materials or alloys, study
of contact phenomena under different conditions, corrosion of
materials under different atmospheric conditions, and field trials
of equipment, to mention only a few.!!

10 Cf. “Method of Sampling Inspection,” by H. F. Dodge and H. G. Romig,
The Bell System Technical Fournal, Oct., 1929.

11 The contributions of R. A. Fisher (see references to follow) are of partlcular
importance in such studies. A simplified treatment of the elementary principles is

given in Field Trials: Their Layout and Statistical Analysis, by John Wishart, School
of Agriculture, Cambridge, England, 1940.
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It is important for the engineer to keep in mind when reading
all the literature on the randomization of the results of the first
operation, that the validity of the tests for significant differences
between the effects of different kinds of subsidiary operations rests
upon the condition that the latter must be in a state of statistical
control although this limitation is not explicitly stated. Hence, to
be sure of the validity of tests of significant differences in the effects
of subsidiary operations, we must first show that these operations
are in a state of statistical control. This caution is necessary be-
cause otherwise an engineer may accept the results obtained from
small samples at their face value.

By and large, classical theory treats of random fluctuations. It
is a theory that tells how phenomena in nature would happen if
they happened at random as do the results of drawing from a
bowl and certain molecular phenomena treated in kinetic theory
and statistical mechanics. It tells us how to discover such laws of
chance if they exist and how to use them for purposes of valid pre-
diction when discovered. It tells us how to make valid test of the
hypothesis that a random sample came from a given universe or
two random samples came from universes that have certain char-
acteristics in common. It also provides us with a very important
experimental operation of drawing at random that can be used
in drawing random samples from the results of repetitive opera-
tions already made.

It is not, however, a theory designed primarily to tell us whether
or not observed phenomena happen at random; or how to attain
a state of statistical control (or randomness) of the cause systems
underlying the operations of the engineer if these are not already
in such a state. Whereas classical statistical theory gives us a very
useful curative operation of randomizing results already obtained
by a repetitive operation, control theory attempts to give us a
very us‘.eful preventive operation of modifying the cause system
underlying a physical operation or production process until it be-
comes random in the sense of being in a state of statistical control.

BASIC CONTRIBUTION OF STATISTICAL
CONTROL THEORY

That an ounce of prevention is worth a pound of cure holds for
the application of statistics. For example, if a manufacturing
process can be made to produce a quality of product distributed
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in accord with a law of chance, one can then establish oncﬁand
for all with the requisite degree of assurance by means of a suffi-
ciently large sample, the probability ¢’ that the quality of a piece
of product will lie within any previously specified tolerance limits
L, and L,. Now, it may be shown rigorously that if one knew this
probability ¢’, sampling of lots would not tell us anything more
about uninspected portions of the lots than we knew before we
sampled them.’2 Hence ¢f we could attain this idealized condition, ,
the necessity of sampling would be completely eliminated and
there would be no need of applying a screening process. Moreover,
if it can be shown under such conditions that it is not possible to
modify the manufacturing process further by simply removing
assignable causes, then it follows that we have also minimized the
percent to be rejected because of failure to meet the tolerance re-
quirements. Let us now see how we may approach this idealized
condition with its associated advantages.

Basic Hypothesis for Statistical Conirol Theory. Perhaps, in simplest
terms, the fundamental hypothesis is that even though the occur-
rence of an engineering operation exhibiting a state of statistical
control is as rare as the proverbial hen’s tooth, it is feasible and
often desirable to establish a scientific method of modifying an
existing operation until it obeys a law of chance. We shall consider
the hypothesis of control in three parts, the first of which is:

Hypothesis Ila: The maximum attainable degree of validity of pre-
diction that an operation will give a value X lying within any previ-
ously specified tolerance limits is that based upon the prior knowledge
that the probability of this event is q' or more generally upon the prior
knowledge of the law of chance underlying the operation.

This part of the hypothesis is in line with the definite abandonment
of the causal laws of classical physics and chemistry in favor of an
indeterministic theory that includes the idea of probability in the
ultimate laws. It is also in line with current theories of knowledge
of the world in that no way has yet been devised for arriving at
certain knowledge. So far as the statistical theory of control is con-
cerned, no special attempt is made to justify this part of the funda-
mental hypothesis. Instead it is simply taken over from modern
physics and modern log1c As suchit represents the 11m1t1ng knowl-
edge to which an engineer may hope to attain in giving assurance

12 For an amplification of this point, see the paper contributed to this symposium
by Captain Simon.
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thaf his engineering operations will give results lying within speci-
fied tolerance ranges.

Hypothesis 1Ib: The maximum degree of attainable conirol of the
cause system underlying any repelitive operation in the physical world
is that wherein the system of causes produce effects in accord with a

law of probability.
Such a state of control has been termed a statistical state of control.
The hypothesis that such a state represents the limit to which one
may hope to go in controlling a given operation by finding and
removing a few assignable causes of variation was originally sug-
gested by the second law of thermodynamics and its interpretation
in kinetic theory and the theory of statistical mechanics. In much
the same way that entropy measures the degree of run-downness
of a physical system at a given energy level, so the degree of ap-
proach to a state of statistical control measures the run-downness
of the cause system underlying a given operation. In much the
same way that it would take a Maxwell Demon to reverse an other-
wise irreversible process, so it may be shown by a study of chance
cause systems that it would take the equivalent of this Demon to
modify a cause system already in a state of statistical control with-
out changing, as it were, the whole operation and hence the whole

system of causes.

On many occasions, I have heard an engineer say on reaching
a state of statistical control of some operation that, without chang-
ing the kind of operation, he was going to decrease the range of
variation still further by simply asking the men performing the
operation to take greater pains to reduce the variability, but I
have not yet witnessed one case where such effort succeeded. Hence
the engineer is pretty safe in taking the state of statistical control

as a limit to which he may go in reducing the tolerance range for
that particular operation.

Hypothesis Ic: It is assumed that some criterion or criteria may be
found and methods developed for their application to the numbers ob-
tained in a sequence of repetitions of any operation such that whenever
a failure to meet the criterion or criteria is observed, an assignable
cause of variability in the results given by the operation may be dis-
covered and removed from the operation. It is_further assumed that, by
the removal of a comparatively small number of causes, a state of sta-

tistica{ control is approached where the results of repetitions of the
operation behave in accord with a law of chance.
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The development of an operation of statistical control and its use
in justifying hypothesis IIc is an empirical contribution of mass
production because only in such a process would it be economi-
cally feasible to make the wide range of trials of experimental
techniques for the purpose of finding one that works satisfactorily.

Let us now consider the requirements in the way of experi-
mental data for attaining control. '

Basic Experimental Data for Aitaining Control. Let us consider the
second or experimental step in the scientific method of using con-
trol theory. The crucial difference between the experimental
technique in control work and that in applying the classical theory
of statistics to provide a screen is that in control work we pay
attention to the condition C; under which an operation gives a
value X;, whereas in the screening operation we ignore this con-
dition; in control work, the experimentalist must keep his eyes
very much open, but in screening product he must, as it were,
keep them blindfolded; and in control work, interest centers in
controlling the product not yet made through modification of the
underlying cause system, but in the screening process, interest
centers in the product already made.

To symbolize this situation let us rewrite sequence (1) and at-
tach to each value X; its associated symbol for condition C;. Also
let us divide the sequence into two parts representing that already
observed and that observable in the future. Then we have

Xy, Xoy oo s Xoooo s Xiv oo oy Koy | Xosty e o e s Xotty o -«

I N

G G C; C; C. Crp1 Crir (2)
Past Future
Present
The screening process applies to the X’s of the past and eliminates
the information contained in the C’s through the operation of
drawing samples at random. It also completely ignores the results
of future repetitions. In contrast, the control process focuses atten-
tion on both the X’s and the C’s of the past in the hope of detecting
and removing assignable causes in the (s of the past so that these
causes will not enter into future repetitions of the operation. Of
course, in practice the screening and control processes may be
carried on simultaneously and the data obtained in the screening
process may also be used for the purpose of detecting lack of con-
trol. For example, inspection samples of lots taken in the order of
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their production have long been used in some industries in apply-
ing the operation of statistical control shortly to be described.

Just as the batter must keep his eye on the ball first to make a
hit and afterwards to determine what to do, so does the experi-
mentalist have to keep his eye on the condition underlying the per-
formance of any operation first to be able to apply this information
most effectively in testing the hypothesis that he can do something
to change the condition, and afterwards to determine what to do if
the test is positive. By keeping his eye on the condition associated
with each of n repetitions of an operation, the engineer may dis-
tinguish the following three situations:

(1) In the absence of any a priori reason for distinguishing be-
tween any two conditions, he may judge them to be essentially
the same as may be symbolized by the equivalence

C;=C, (3)
Operations of drawing with replacement from a bowl illustrate a
situation where the experimentalist is practically forced to con-
clude that the conditions are essentially the same from drawing
to drawing. However, even under such circumstances, it is possible
to arrange the results obtained by repeating an operation again
and again in the same order as the operation was repeated.

Now, if the repetitions of the operation do not obey a law of
chance or, in other words, do not arise under a state of statistical
control even though the experimentalist considers them to be
essentially the same, as symbolized by (3), the sequence of values
of X, when taken in the order that they were observed, is not likely
to pass the criteria of randomness established by the statistician.
In fact, the order of observation in such instances provides the
only quantitative basis for testing the hypothesis that the observa-
tions came from a state of statistical control, and in practice it is
usually found that this order indicates lack of randomness. Hence
the statistical control engineer should insist that the record of the
order of repetitions be preserved even though the experimentalist
judges the conditions to be essentially the same.

(2) The engineer may have a priori reasons for believing that
the conditions do not remain essentially the same, as can be sym-
bolized by

C i = Cj. (4_)

F_‘or example, he may surmise that there are erratic effects or pos-

sibly trends superimposed upon the effects of a law of chance. In
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such a situation, the experimentalist may be in a position to
suggest certain ways of ordering the results of n repetitions of an
operation, independently of the magnitudes of the associated
values of X, and solely upon his knowledge of the conditions under
which the observations were taken, in order to reveal, if present,
trends or erratic effects that he considers likely to exist.

For example, in some recent work, interest centered in attaining
a state of statistical control of the variation in thickness of a rolled
inlay of contact metal on a particular kind of relay spring. These
springs were cut from a long strip and there were a priori reasons
for expecting both trends and erratic effects in the thickness along
the strip. Hence the springs were numbered in the order that they
were cut from the original strip so that the measurements of thick-
ness on the individual springs could be arranged in the order of
their original position in the strip. These observations have already
been given in Table 1. The order in which the observations were
arranged along the strip is that of the table, beginning at the left
and reading down the columns. The set of 144 ordered measure-
ments is given in Fig. 1b and shortly we shall see how useful this
experimental order is in giving clues to the presence of assignable
causes.’® Hence, because of the importance of order, the statistical
control engineer must insist that the experimentalist suggest orders
in which to arrange the results of a series of n repetitions when he
does not have any a priori reason for believing that any two repe-
titions have been carried out under the same essential conditions.

(3) The engineer may have a priori reasons for believing that
the conditions may be divided into rational groups such that
within each group the conditions are essentially the same but such
that the conditions for each group are not essentially the same as
those for any other group. In this situation, the engineer must
insist that the experimentalist indicate the groupings and also the
observed order within each group so that this order as well as the
differences between the groups may be tested for indications of
assignable causes.

Thus far we have considered three kinds of information that the
statistical control engineer needs to know about the conditions
associated with the repetitions of an operation so as to make the
quantitative results useful in testing the hypothesis that the opera-

131 am indebted to my colleague, Mr. E. B. Ferrell, for permission to use tl}esc
data and for many helpful suggestions and criticisms about the scope of applications
of a statistically scientific method as treated in this paper.
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tion is in a state of statistical control. However, the contribution
of the statistician does not necessarily end with the attainment of
such a state, because even then the variance and hence the eco-
nomic tolerance range may exceed the desired value.

Accordingly, it may be desirable to change the whole operation
or some part thereof. For example, even though the variations in
the thickness of the inlay of contact material shown in Fig. 1b were
found to have risen from a state of statistical control, the variance
might still be so large that many units of product would have to
be rejected in assembly. Under such conditions, there would be
no use trying to find and remove assignable causes of variability
because these would have presumably been removed. If because
of too large variance, the whole operation of producing the inlay
is to be changed, the job is primarily one for the engineer, but if
only some of the component parts of the operation such as the
kind of inlay or fuse metal used, the rolling process, method of in-
serting the inlay, or heat treatment of the material are to be
changed in order to reduce the overall variance, the statistician
may be of great service in showing how to obtain at minimum cost
the data necessary for analyzing the total variance of the opera-
tions into the component parts associated with the component
parts of the operation of production.!

If some one of the component variances is significantly larger
than the others, then it may be most economical to change, if
possible, the corresponding component of the operation of pro-
duction. In any case, the technique of analysis of variance makes
it possible to estimate the maximum reduction in total variance
that may be expected as a result of changing any component of
an operation in a state of statistical control even though no sub-
stitute for this component is known at the time. It is very impor-
tant, however, for the engineer to note that, in accord with
hypothesis IIb, the problem of reducing the variance in the results
of an operation already in a state of statistical control by changing
one or more of the component operations is a fundamentally
different’® problem from that of eliminating assignable causes

1f The principles underlying the design of efficient experiments for analyzing
variance have been set forth by R. A. Fisher and his co-workers. See, for example,
Statzmca{ Meihods for Research Workers, 7th ed., 1938, and particularly The Design
of E"x[ynmmts, 2nd ed., 1937, Oliver and Boyd, London. Also see The Methods of
Statz.vtm3 by L. H. C. Tippett, 2nd ed., Williams and Norgate, London, 1937
for applications in the cotton industry. ,

15 This signiﬁcant practical difference has, in general, been overlooked by many
students of statistical theory.
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without changing the component part of the operation such as
kind of inlay used, the rolling process, and the like in the example
considered above.

When assignable causes are present, the engineer may reason-
ably expect to find and eliminate these without changing the pro-
duction operation or any of its component parts. For example, if
assignable causes of variation are present in the process of produc-
ing the thickness of inlay on relay springs as shown in Fig. 1b, the
engineer may find that they could be removed by further adjust-
ment of the controls of component operations of rolling, heat
treating, and the like. When assignable causes are shown not to
be present, and it is found that one of the component operations,
say the rolling operation, contributes a large share of the variance,
it will usually be most economical to secure a reduction in variance
by changing this component operation, perhaps by using another
type of rolling mill.

Enough has been said, I hope, to indicate some of the things
that an experimentalist must do in taking and recording data if
he is to obtain data that can be used efficiently in testing the hy-
pothesis of statistical control and in analyzing the total variance
under controlled conditions into its component parts or, in other
words, if he is to make progress in the removal of assignable causes
of variability that need not be left to chance in almost every field
of science and engineering, thereby extending the potential use-
fulness of raw and fabricated materials.

Even in the face of this situation, however, it is still customary
engineering practice to neglect the importance of order and in-
stead group together into a frequency distribution all data whether
C;=C; or C=-C, and irrespective of whether or not subgroups of
conditions might be suggested. Then most likely engineers will
use the average of this distribution and in addition they may pos-
sibly plot the distribution as a frequency curve or ogive.

For example, in making field studies on new materials or de-
signs, studies of the electrical properties of contact materials, or
the corrosion of materials, the engineer’s faith is likely to be pinned
on the averages of large numbers of observations whereas such a
procedure is almost sure to mask the very differences that he is
looking for. In fact, we shall shortly see that where there are
assignable causes present, as soon as we group data together we
are almost certain to destroy thereby all clues to the presence of
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these causes, the effects of which must be eliminated before we can
make valid comparisons of materials, designs, and the like.

Basic Test of Statistical Control Hypothesis. The test of the hy-
pothesis that a technique can be established for approaching a
state of statistical control must be empirical. One sets up criteria of
control and then searches for and eliminates, if possible, the causes
producing the deviations that fall outside the limits fixed by the
criteria. If such search reveals the presence of assignable causes
and if, as these are removed, one approaches a state where the
criteria of control are satisfied, we accept this evidence as an em-
pirical justification of the hypothesis.

A satisfactory technique for attaining a state of statistical con-
trol has been described in considerable detail elsewhere!® and con-
sists of the following five essential steps that are referred to in
control theory as the operation of statistical control:

(1) Specify in a general way how an observed sequence of n
data is to be examined for clues to the existence of assignable
causes of variability. For example, it is essential that the order in
an observed sequence always be tested for randomness whether
Ci=C;or C=C,.

(2) Specify how the original data are to be taken and how they
are to be broken up into subsamples upon the basis of human
judgments about whether the conditions under which the data
were taken were essentially the same or not.

(3) Specify the criterion of control that is to be used and indi-
cate what statistics are to be computed for each subsample and
how these are to be used in computing action or control limits for
each statistic for which the control criterion is to be constructed.
Three of the conditions that such criteria should satisfy are as
follows: the limits in the criteria should be as nearly independent
as possible of the functional form of the law of chance when the
state of statistical control is attained; the criteria should in so far
as possible minimize the error of accepting the hypothesis when
false and should keep the error of rejecting the hypothesis when
true less than some prescribed value fixed by economic considera-
tions; 'and the criteria should indicate as closely as possible the
condition under which the assignable causes enter the operation
and as much as possible about the nature of these causes.

(4) Specify the action that is to be taken when an observed
statistic falls outside its control limits. The general action required

18 Statistical Method from the Viewpoint of Quality Control, loc. cit.
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is to look for assignable causes whenever the criteria are not
satisfied.

(5) Specify the quantity of data that must be available and
found to satisfy the criterion of control before the engineer is to
act as though he had attained a state of statistical control.

To illustrate the role played by statistical criteria in the process
of detecting and removing assignable causes of variation and to
show how important it is not to group data together so as to de-
stroy all possibility of ordering them in terms of the conditions
under which they were taken, let us see what happens when cer-
tain of these criteria are applied to the two sequences of Fig. 1.
Will the criteria tell us anything about these two sequences that
we cannot see by just looking at the sequences themselves? To
comprehend the significance of order, it should be kept in mind
that the data in Fig. 1a are the same as in Fig. 1b except that in
Fig. 1a they appear in the order drawn from a bowl. Anything
that we can find out about the presence of assignable causes by
studying the order in Fig. 1b is thus lost just as soon as this original
order is destroyed by grouping the data together. Will the criteria
of control indicate the presence of assignable causes of variation
in both Fig. 1a and 1b? Of course, we know that if they give an in-
dication of such causes for the drawings from a bowl (Fig. 1a),
this will likely constitute a false lead because experience shows
that we should not expect to find any assignable causes in the
operation of drawing from a bowl, particularly when carried out
by an experienced observer.

As a starting point, let us apply the control chart criterion based
upon averages of successive fours.”” Fig. 2 shows what happens:
No false lead is given for the drawings from the bowl, Fig. 2a, but
the presence of assignable causes of variation in thickness is indi-
cated, Fig. 2b.

7 For a detailed statement of the method of constructing a control chart, sec
Economic Control of Quality of Manufactured Product, loc. cit., pp. 309-313. It s.hould
be kept in mind that, for reasons that I have given in the literature, it is desirable
to use small subgroups as is here done. See, for example, Chapter 1 of .Statutzcal
Method from the Viewpoint of Quality Control, loc. cit. Of course, th? practical man
wants to know what is a small sample, and to him it may be of interest to know
that in much of my own work, particularly in laboratory research, I have fou.nd
it desirable to use where possible subgroups of size four. One reason for not using
a larger sample is that, as we shall soon see, runs of seven or more are very unlikely
for a statistically controlled process. Hence, if we are to be sure that at least one
subgroup will be completely within a run of seven, we should not use a subgroup
larger than four.
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Next let us see if other criteria may be found that will tell us
something about the nature of assignable causes to be expected.
For example, do you detect any evidence of causes producing
trends in the data of Fig. 1b? Is there a downward trend atthe
left and an upward one at the right? Or would you expect to find
that the assignable causes are of the type that produce discontinu-
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ous and erratic shifts in the expected values? Is there any evidence
for believing that both kinds of causes are present? It should be
kept in mind that we seek answers to these questions so that we
may be better able to detect and remove the assignable causes.
Recent studies covering a broad field of research problems have
shown that two very simple criteria may be used successfully in
helping to distinguish between causes prodiicing trends and those
producing discontinuous and erratic effects. A complete report on
the application of such criteria cannot be given here and it must
suﬂiu; to indicate in broad outline the simple nature of these
criteria and how they have been found to work. Basically, what is
done is to note two kinds of runs in any sequence: runs up and
down and runs of numbers above and below the average of the
sequence where runs up and down are defined as follows. In any
sequence, certain numbers are greater than either of their im-
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mediate neighbors and form, as it were, maxima in the sequence.
In a similar way, we have minima. A run-down is the interval
between a maximal number and the next succeeding minimal
one, and the length of run-down has been defined in the literature
as the number of numbers involved, including the maximal and
minimal numbers. Corresponding definitions hold for runs-up.
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In Fig. 3 where the data of Fig. 1 are replotted, runs-up are shown
by solid lines connecting observed values, and runs-down by
dotted lines. Also in Fig. 3 the points above the average of the
sequence are filled in and those below are not.

W. O. Kermack and A. G. McKendrick’® have recently given

18 «“Tests for Randomness in a Series of Numerical Observations,” Proc. of Roy.
Soc. of Edinburgh, Vol. LVII, pp. 228240, 1937. If the total number of observed
runs up and down be ¥, these authors show that the expected number of lengths
2, 3, 4 . . ., are 0.6250000V; 0.2750000N; 0.0791667N; 0.01 72619N; 0.0030506;
0.0004547N and 0.0000587.N. See also R. A. Fisher’s note, “On the Random
Sequence,” in the Quarterly Fournal of the Royal Meteorological Society, July, 1926,
p. 250. Of course, the probabilities here given apply to a frequency distribution
of runs in an infinite sequence. By making use of results given by Kermack and
McKendrick in a paper, “Tests for Randomness in a Serics of Numerical Observa-
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the probability of a run of any length / occurring in an observed
set of N runs up and down from any infinite random sequence in-
dependent of the law of distribution of the variable. Likewise,
W. G. Cochran?® has recently given a formula for deciding whether
sequences of similar meteorological events, such as runs of con-
secutive wet months, may be expected under a state of statistical
control. If the result of an operation must be either E, or E,, and
if we know the probability p that an operation will give the event
E,, and the probability (1 — p) = ¢ that the operation will give
the event E,, then Cochran’s work gives the expected number of
runs of length 7 (counting runs of both E; and E,) in any sequence
of m repetitions of the operation. If now we call X the average of
a sequence of m observed numbers and if we call event E; the
occurrence of a number in the sequence greater than X and event

E, the occurrence of a number less than X, we may use Cochran’s
theory to compare the observed number of runs of any length r
with the corresponding theoretical number to be expected upon
the assumption that the observed fraction of the numbers greater
than the average X is equal to the probability p that the under-
lying cause system will give a value of X greater than the number
X, considered simply as a number and not necessarily as the
average.®

Now, if the assignable causes simply produce erratic shifts in
the expected values, it is not likely that the distribution of lengths
of runs-up and of runs-down will be much disturbed, but such
shifts will tend to give extra long runs of numbers above and below
average. However, if the assignable causes produce trends with

tions,” Proceedings of the Royal Society of Edinburgh, Vol. LVII, Part III, No. 17,
pages 352-356, it may be shown that there will not be appreciable differences in
this frequency distribution so far as we are here concerned with its use even though
we are dealing with an observed distribution of runs from a finite sequence of
144 numbers.

1 Cf. “An Extension of Gold’s Method of Examining the Apparent Persistence
of One Type of Weather,” in Quarterly Journal of the Royal Meteorological Society,
Vol. LXIV, pp. 631-634, 1938. The number of runs of length r of the events E;
and E; out of m trials is

Jmr = 2(67q + p¢7) + (m—r—1) (p7¢*+-p*q") when 1 < r < (m—1)
where p + ¢ = 1.

% Of course, one might arbitrarily choose any value X; and any value p and use
Cochran’s theory. to compare the observed number of runs of length r both above
and below .Xx with the corresponding theoretical number to be expected upon
the assumption that the probability of occurrence of a number greater than X, is p.

24



slopes large in comparison with the fluctuations produced by the
superimposed causes acting at random, the distribution of lengths
of runs-up and runs-down will be disturbed. Likewise, the distri-
bution of runs of numbers above and below the average of the
sequence may be somewhat modified.

Of course, we should expect close agreement between theory
and experiment for the lengths of runs of both kinds in Fig. 3a,
but since the control chart Fig. 2b gave evidence of the presence
of assignable causes, we may expect discrepancies between theory
and experiment for the lengths of runs in Fig. gb. The data for
such comparisons are given in Table 2. As expected, there is close

TABLE 2

Drawings from bowl Measurements of inlay thickness

Runs above and Runs up and  Runs above and Runs up and

below average down below average down
———  Ob- Ex- ——— —  Ob- Ex-
Length  Ob- Ex- served pected Ob- Ex- served pected
of served pected fre- fre-  served pected fre- fre-

runs number number quency quency number number quency quency

I 42 36 29 36

2 18 18 65 61 13 18 53 57
3 10 9 22 27 3 9 28 25
4 4 4 10 8 5 4 7 7
5 4 2 1 2 o 2 2 2
6 o I o o 4 1 I o
i o 1 o o 4 X o 0
8 <] o o o I o o 0

agreement for the drawings from the bowl. For the sequence of
thickness measurements, there is excellent agreement between
theory and experiment for the distribution of lengths of runs-up
and runs-down but not for lengths of runs above and below aver-
age.?t These results constitute good evidence for believing that
the assignable causes underlying the measurements of thickness
in Fig. gb do not produce trends such as might be produced by
lack of symmetry in the rolls but simply produce discontinuous
and erratic shifts in expected values of thickness such as might be
produced by slippage at the cleavage planes of the crystals in the
inlay.

N}c;t only does the application of these criteria to the observed

21 Of course, the total number of expected runs above and below average will
not usually be the same as the corresponding number of observed runs.
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order indicate the presence of assignable causes and give a clue
to their nature, but it also indicates when the assignable causes
enter. For example, we see from the table that runs above and
below the average of length greater than 7 are very unlikely,?
and all we need to do is to note where these runs occur, keeping
in mind that such indications are subject to errors of the first and
second kind as described above.

Since all of this information about assignable causes is lost just
as soon as we group the data together in the form of a frequency
distribution, as is so often done by the engineer, we see how very
important it is to pay attention to order in taking and recording
data. For example, years of experience have shown that Nature
almost never gives us a sequential order that passes even the con-
trol chart criterion and is almost certain not to give us one that
passes all three criteria and that the failure to meet such criteria
almost always is traceable to an assignable cause. Yet, if we were
to take these same data without reference to observed order as
might be done by shaking them up, drawing them at random,
" and then applying the three criteria, almost all of them would
slip through the net, thereby failing to indicate the presence of
assignable causes that must be detected and removed in order
to attain the advantages of a state of statistical control.

Since, as noted above, experience has shown that one can al-
most always find and remove assignable causes when indicated
by such criteria and thereby approach a state of statistical control
beyond which it is not possible to go except by some fundamental
change in the operation itself, we have good grounds for accepting

the 'basic hypothesis of statistical control theory as stated at the
beginning of this section.

SUMMARY OF POTENTIAL CONTRIBUTIONS OF STA-
TISTICS TO THE SCIENCE OF ENGINEERING

. Thc? basic contribution of statistics to the science of engineering
1s an improved scientific method to fit the world of probability in which we
live. Classical theory contributes the hypothesis of a repetitive
operation obeying a law of chance, the knowledge of which com-
bined with the knowledge of formal mathematical distribution
theory enables an engineer to make valid predictions of the out-

_ "The expected number is actually 0.5682 instead of the rounded value of unity
given in Table 2.
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come of future repetitions of the operation. Statistical control
theory contributes the hypothesis that it is humanly possible to
remove assignable causes of variability in the repetitive operations
of the engineer until such operations approach a state of maxi-
mum control and obey laws of chance, a knowledge of which
provides maximum assurance that the results of repeating an
operation will fall within previously specified tolerance limits. To
test these two hypotheses, statistical theory provides the necessary
experimental techniques outstanding among which are (a) the
operation of randomization and (b) the operation of statistical
control.

Broadly speaking, statistical theory treats of repetitive opera-
tions and provides the engineer with a method of regulating such
operations to his best interest. Fundamentally, the engineer’s job
is to devise operations that, if carried out, will give results within
previously specified tolerance limits. Sometimes the operation, like
that of building a bridge, is to be carried out only once or at most
a few times, and sometimes the operation, like that of mass pro-
duction, is to be carried out an indefinitely large number of times.
Inherently, all such operations are potentially repetitive, and in
this sense, differ only in the number of repetitions carried out. It
has long been recognized that one of the most revolutionary prin-
ciples ever introduced into manufacturing was that of interchange-
ability dating back at least to Eli Whitney in 1798. The introduc-
tion of that principle prompted the engineer to consider the
advantages of introducing repetitive operations into production
processes, and the contribution of statistics to engineering may be
thought of as a means of maximizing the advantages to be attained
by interchangeability.

The basic contributions of statistics to scientific method make
possible the attainment of the following objectives that are not
otherwise attainable and that are of interest to all of us:

(1) Even before a repetitive operation has reached a state of
statistical control, the application of statistical theory makes pos-
sible the establishment of sampling plans that will screen at mini-
mum cost the output of such an operation so as to meet previously
specified tolerance requirements and previously specified producer
and consumer risks.

(2) The use of statistical theory provides efficient experimental
techniques based upon the operation of randomizing th? resul‘ts
obtained from one operation or production process that is not in
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a state of statistical control before submitting them to two or more
subsidiary operations or treatments for the purpose of comparing
the effects of these subsidiary operations, as in the case of field
tests and the like. Such a procedure minimizes the chance of con-
cluding that observed differences in the effects of the subsidiary
operations are significant when in fact they came about because
of assignable differences in the results of the first operation.

(3) The operation of statistical control provides an experimental
technique for minimizing tolerance ranges and maximizing the
assurance that the product turned out by a given process will meet
its tolerance requirements. Such an operation makes possible the
most efficient use of limited quantities of raw material and pro-
vides the maximum degree of refinement attainable by any pro-
duction process. Preliminary studies indicate that the operation
of statistical control also provides a useful technique for eliminating
assignable causes of variability in certain kinds of human effort
as, for example, typing and other forms of transcription. Both
strategically and commercially, industrial groups and even na-
tions often need every increment of efficiency in the use of limited
quantities of raw materials and human effort that can be provided
through the application of the operation of statistical control.
Likewise they often need maximum refinement in quality through
elimination of assignable causes, not only in pursuit of the arts of
peace but also in time of war. As one example, the attainment of
maximum homogeneity and hence minimum tolerance ranges in
the properties of raw and fabricated materials may extend the
potential carrying capacities of ships in the air and on the sea.
Needless to say both the engineer and the consumer of the en-
gineer’s or manufacturer’s products stand to gain through the
increased assurance that the products will be found to meet their
tolerance requirements. \

(4) The operation of statistical control provides a technique for
modifying and codrdinating the three fundamental steps in the
process of mass production, namely, specification, manufacturing,
and inspection, so that the maximum number of pieces of product
having a quality within specified tolerance limits can be turned
out at given cost. It does this by showing how to minimize the
cost of inspection and the cost of rejection. ' .

In conclusion it may be said that statistical theory plus mass
Prosiuction provides a means of maximizing our physical comforts
in time of peace and our strategic factors in time of war.
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