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MEASUREMENT 0F QUALITY

PART 1

ROle of Measurement in Inspection Engineering

l. What Measurement Involves

Naturally inspection engineering involves measurement and the sorting
out of the good from the bad but that is not alle It involves the measurement
of the right thing in the right way and the right number of times. It does not
stop here. It involves the use of methods of analysis of data which will yield

all the essential information contained in the data in a form to be of greatest

service to the research, development, design and purchasing organizations in the
better control of quality of product through the weeding out of those causes of
varlation which should not be left to chance.

There is another function of inspeoction engineering, namely, that of de-
tecting whether or mnot quality of product differs signifioantly from economic
standard. It is one thing for a consumer to know simply that a lot of produot
passes certain inspeotion requirements; it is quite another thing for bim to
know that the organization behind that product has applled all modern reseeroh
methods in detecting and eliminating causes of quality variation which need not
be left to chance and has thus arrived at an economic stanhrd.

The rdle of measurement in inspection engineering must be oonsidered in
terms of the following four objects of inspection engineering:

a, Determinsetion of the true quality of a thing by the most economioal
method. This inherently involves such things as the ohoice of the best method
of measurement and the detection and elimination of errors of measurement.,

b, Determination of the true quality of product in the most economicsl

way.
¢. Determination of the necessary steps to obtaln economic standard

quality. v
d., Presentation of inspection information in a form that will indicate

to design, development and research engineers vhat changes should be made 1n

manufacturing methods and indicate to the purchasing engineer lack of control of



the quality of raw material.

2. Object of This Bulletin
The object of the present bulletin is to present a formal solution of

the problem of measurement involved in the attainment of the four objects of in-

spection engineering. In almost every ijnstance a practical illustration is

given in sufficient detail to indicate all of the necessary mumeriocal steps in
the solution of the problem.
In this sense the present bulletin is to serve as a manual of the

theory underlying the establishment of specific methods of measuring the quality
of product,

3. Letermination of The True Quality of a Thing .
Before we proceed with the detailed technical discussion of the problems

which arise in measurement, we shall briefly outline some of them in a non-
technical menner. It is natural that we start with the measurement of a single
quality on a single thing, a simple example of which would be measurement of &
length by means of a meter sticke.

If we make a series of n measurements of this length, we will get n

values, let us say,

Xl. . '12’ e -IIQQ'Xn

where, in general, these values will differ one from another, The first problem
which confronts us 1is to determine from this series of n observed values of the
length some particular function of these values which will give us the most
likely estimate of the true length, let us say, X'.

It is not sufficient, however, to know merely the numerical value of
this estimate; we need to know something about the reliance which we are Justi-
fied 1in placing upon this value. In other words, we must, in some way, indi-
cate the magnitude of the error of measurement. This constitutes our second
problem in the simplest form of measurement.

We shall find that the method of determining the error of measurement
depends upon the size n of the sample. Furthermore, we shell find that three
criteria sovern our choice of the estimate of this error, if we are to assure
ourselves that we have made use of all of the information contained in the

original data and that we have made use of it in the most efficient kmown ways
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This problem of measurement of length however is extremely simple com-
bpared with the majority of those which we meet in engineering work. As an il-
lustration, assume that we wish to determine the modulus of rupture of a tele-
phone pole, the charge on an electron, the coefficient of expansion of a rod or
any one of Q number of such quality characteristics. In such cases the Quality
is determined indirectly through measurement of the properties of the thing for
which the quality is being determined.

.The simplest probdlem of this nature &rises when we know the functional
relationship f between the quality Y under measurement and certain other
characteristios, let us say, X1s» X2seeeXpe Such 2 relationship is indicated
formally by the equatiox.x,

Y = £; (X3, XpeeeXjeeaXy) (1.1

Our problem, of ocourse, is to determine the quality Y with the greatest
precision obtainable at a given cost of measurement. Naturally the error in Y
depends upon the errors in each of the m measured characteristics. Therefore we
must f£ind the functional relationship between the error in Y and those in the
measured charscteristios and then set up certain criteria which will indicate
the minimum error that may be mede by this method of measurement.

In many cases, however, it is possible to measure the quality Y through
some other known functioml relationship between this Qquality and certain other
measurable characteristics of the things represented below by the Z's. For ex-
ample we might have some functional relationship

Y = £ (21, ZgeeeZiesce’y (1.2]
Proceeding as in the previous case, wWe can set down the conditions which will
make the error in Y a minimun when measured in terms of the Z's and then we must
choose between the tvio methods of measuring Y.

Of course there may be even more than two methods of measurement, &
typical illustration of which is the measurement of the modulus of rupture of
telephone poles by the one point, two point and cantilever loading methods.

So far, however, our problem is comparatively simple., We know the
between certain variables and it is a very simple task to

functional relation

choose that method of measurement which will be most satisfactory in a given

case, assuming of course, that we make use of recently developed methods for
»



treating small samples.

So far we have assumed that the functions f; and f2 in Equations 1.1

end 1.2 are known. In the majority of cases, the functional forms such as f

and fp are not known. In fact a large number of the so-called laws of nature

are merely empirically determined functionel relations. To cite a case which we

shall treat in greater detail later, we may consider the resistance of a contact

in a ocarbon microphone. The resistance of such a contact is & function of the

voltage applied across the contact under conditions where, so far as we know, we
have controlled all other variables. To begin with we do not know this func-
tional relationship. If we are to use this relationship as a basis for measur-
ing the resistance of carbon, as is being done in sani—cp'mnercial tests, it is
necessary as a £irst step to determine empirically the most likely relationship
between voltage and resistance, This introduces us to another fundamental prob-
lem, namely, having given an observed set of data, we are to justify our choice
of hypothesis to explain this set of data. )

In general we shall introduce criteria for determining the probability
of the ooccurrence of the given set of data or one less likely {or of some value
of a function of this set of data or one less likely) upon the assumption of a
given hypothesis. Other things being equal, we shall then choose that hypothesis
for which the probability of the observed set of data or of the given_function o
the observed set is a maximum.

The next difficulty in the way of measurement comes when we attempt to
measure someé qQuality characteristic, such as tensile strength of a material, in
terms of some other characteristic, such as hardness or density of the material.
The rirst thing that oconfronts us here is the fact that we know that there is no
functional relationship between the quality ¥ such as tensile strength and such
Qualities as hardness and density. That is to say we know that, given the
numerioal values of hardness and density, the values of tensile strength are not
uniquely determined. All that we have to €0 on in suoch a case is the fact that
there appears to be some kind of a relationship and, in the literature of the

subject, such an apparent relationship is defined as being stochastic,.

Without further discussion at this point we shall rewrite Equations
l.1 and 1.2 in the form:
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Y= ral (xlp xzcooxioooxm) (101')
and Y = rsz (Zl. ZzoonziocoZml) (108')
where in general the subsoript s on the function merely indicates that there 1is

only an epparent or stochastic relationship. The first step in considering the

use of stochastic relationships in measurement is that of reducing these to one
or more functional relationships which express for the purpose in hana all of
the essential information contained in the original sets of data, Having done
this, we must then proceed with steps .quite analogous to those considered abdove
in the case of indirect measurement through a known functional relationship.

4, Determination of True Quality of Product

What has been said of course is just paving the way for the slightly
more complicated problém of measuring the quality of product which, in genersl,
involves the measurement of one or more quality characteristics on each of a
number of things. For example, if we have a thousand instruments of a given
kind, such as relays, and we wish to express the quality of these relays in
terms of such factors as resistence, capeacity and inductance, we would have, all
told, a group of three thousand measurements, assuming that we made only one
measurement of a given quality characteristic on each relay.

Inl the general case where we measure let us say m characteristics on
each of n different things or pieces of apparatus we attain n sets of observa-
tions of m each, such as:

X11s X320 eeeXlises .leg
X231, X225 e .Xai,...Xgm)

N (1.2)

60000000 06 e s BRI

an, an, s QXnigoooXnm)
We may take as our first problem the correction of this group of data for errors

of measurement which arise in measuring any one of the m different character-
istios. Ve wish to obtain our best estimate of the true quality chareoteristics
of each of these n instruments. In other words, we must set up methods for
correcting the observed distributions to allow for these errors of measurement.
Having performed this simple task, we then must consider ways and means
of expressing the information contained in even a very large number of observa-

tions in some simple form such that it will contain all of the essential infor-

mation required to answer the practical problems, for the solutiof of which data
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were taken. This means that we must substitute for the original set of data a

pumber of functions of these data. orf courvse there 1is nothing strange in this

for it is what we do every day when we use &verages and standard deviations in

the comparison of one set of data with another. We shall consider, however,

t
very important engineering problems which cannot be solved efficiently, if at

all, by the simpler methods which are customarily used in reducing a series of
observations to a few statistics.

Formally we shall state our problem in the following ways: Given a
series of observations such as indicated above, Wwe are to find the minimm

number of functions ©y, 83...04...8; such that these functions contain all of
the essential information given in the original data.

5. How To Indicate Whether or mot Quality is Economic Standard

If an engineer could specify raw meterial and production processes so

as to insure the quality of one piece of apparatus being identical with that of
every other pilece, the problem of the manufacture of apparatus in large quanti-
ties ocould be consideradly simplified. However, 1t is of course, realized that
we have little or no hope of obtaining such an ideal; instead it 1is to be ex-
pected that causes of variation in the quality of product will enter at every
step in the fabrication process from raw materieal to the finished product. Ap-
preciating that such causes of variation must of necessity enter in each and
every one of the steps of production, we are confronted with the problem of de-
termining if there be any oriterion to guide us in our judgment of the economic
significance of observed variations in quality;

Obviously it would be of 1little use to consider all of the ways and
means of measuring the quality of product es we have Just outlired above if it
were not possible for us to set down certain conditions which should govern the
variations in the observed measurements provided the quality of product is to be

oconsidered enonomically controlled. This means formally that, having chosen in

a given case k different statistics 6,, 63¢0484..8 with which to measure the

qQuality of product from month to month, we must naturally expect the observed

values of these statistics to differ from reriod to period. We must therefore

introduce some criteria by which to indicate the magnitude of the variations

which may be expected in any one of these statistios, say 64, without these
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variations indicating need for councern about the quality of product. It is this

&eneral philosophy which lies back of the use of control charts in all of our in
spection work. To make our present discussion of the measurement of quality of
any practical value, we must therefore consider briefly the method of setting
standards of quality and then present criteria by which to judge whether or not
Observed measurements of quality at a given period differ significantly from the
chosen standard.

6. [Presentation of Information of Greatest Service In The Improvement of Quslity

After an inspection engineer has taken the above steps to determine the
true quality of product in such a way that he can determine whether or not it is
meeting economic standard, he is confronted with the even more important probdlea

of showing why the quality is not up to economic standard provided he finds that

it is not. In other words, the function of inspection engineering is far brosde

than that of merely measuring the quelity of product, for after all if suob

measurements are to be of greatest use they must lead to improvements in quality
or at least better and more economical methods of obtaining quality of a given
standard. If quality is not satisfactory, it is by no means sufficient to bhave
merely this indication; for such information to be effective it miat ocome to the
attention of the purchasing, design, development or research engineers so that
one or more of these groups may introduce modifications of such a nature as to
lead to the desired control of quality. But, before such information can become
thus effective, it must indicate, wherever possidble, the cause of the laok of
control, which cause may be in the raw material, design, or some step im the de-
velopment processe.

Looked et in a certain way, quality production under present industrisl
conditions is but a gigantic laboratory experiment. When we appreciate bow hard
1t is to control this experiment, we see that perhaps the greatest improvement
in the service rendered by inspection engineering will come in the interpreta-
tion of the results of this great experiment in production in a way to give the
most information to the research end of the organization including developnment,

design and all other departments charged with the responsibility of making prod-

uct of economic quality.
0f course the need for Such information has long been realized as 1is
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evidenced by the extensive field tests which have been introduced in the study

of many major items in a telephone plant. Perhaps too often disappointment has

been felt at the results obtained by such testse On the other hand it is gen-

erally appreciated that in our present state of scientific knowledge there re-

mains a practical necessity of employing such extensive tests,
Quite naturally the problem of interpreting the measurements taken dur-

ing any such field test is a very complicated one. Almost always the quality

which we are interested in is related to certain other factors not in a funec-
tional but rather in a stochastic sense already referred to. In a large part,
the methods of interpreting data obtained under controlled conditions in a
laboratory cannot be used satisfactorily in the interpretation of the results of

field tests, However, there is some hope that in the future we shall be abdle to

obtain far more information than we have in the past. This naturally follows
because remarkable strides have been made within the past few years in other
than engineering fields toward the interpretation of results obtained under con-
ditions where the ocontributing factors camnot be controlled, just as they cemnot
be controlled in the customary field test, and there appears to be no inherent
reason why these same methods cannot be advantageously transferred to the solu-

tion of our engineering problems.

¥e shall now proceed with a detailed discussion of our subject,



PART II

Jirect Measurement of Quality

Summary of Part II

Given a series of measurements, it is shown in Part II that customary
error theory is not a satisfactory basis for the interpretation of data when the
sample size is small; it is shown that in such cases we should tabulate two

functions of these data, namely, the average and the root mean sguare deviation

about this average.

The uses of these two functions in the interpretation of inspection
data are then considered. It is shown that by using certein correction factors
for the observed standard deviation we may estimate the expected probability

associated with a given range about the average X. This is of grcat interest in

our insnection engineering work in the sett;ing ‘0ol stendards.

It is also briefly inaicated how these two functions of an observed set
of data may be used in an estimate of the probability a posteriori that the
average of the universe from which the sample was taken lies within a certein
range subject to certain assumptions, although, in general, we have not found
many inspection problems in the measurement of quality where such information

can be readily applied.

For small samples we are limited to the use of the average and standard
deviation as indicated above, When the sample size 1s large we can make use of
the method of maximum likelihood to find the functions of the observed dats which
contain the essential information presented by the original set of data.

i, Direct Measurement of Quality Defined

Perhaps the simplest {llustration of a direct measurement of quality is
that of a length in terms of a unit of length. Suppose, for example, that you

want to know the length X* of the line AB.

A B

The direct method of measuring this length is to take a unit of length and see

how many times it is contained within the length 4B. If you make a series of n
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measurements, let us say, X), Xgs-eeXqyeeedy, 10 this way, it 1s not likely that

all of these will be identiocal one with another. Now having made such a series
of measurements, what will you give as the length of the line?
with the standard theory of errors, you

of the

Being an engineer and familiar
will most likely answer that your best estimate ¥ of the true length X'

line is the arithmetic mean of the n observations, that is to say,

X
X ==

You will go further and say that it 1s very likely that your estimate X is not

identioal with the true length X'. You will try to get around this diffioculty

by giving some estimate of the error of measurement, as you say, involved in
your determination. If you follow the most prevalent practice you will likely

say that the probable error of your estimte is 6745 o,% where

n

T |x;-X|
o)y = 8453 =1 .

n(n~1l)

Now let us look at this matter a little more closely, Let us ask our-
selves two questions:

a., Are these estimates of the true length and the error of our observe-
tion the most efficient estimates that we can use, that is to say, do they con-
tain all of the relevant information presented in the set of data<®

b. What do we really mean by probable error as calculated above?

Subject to the assumption that the errors are distributed normally, the
answer to the rirst question 1s that the average 1s the most efficient estimete
of X' but the estimate of the probable error given above contains only about 80%
of the essential information contained in the data in respect to the error of an
observation. As inspeotion engineers we cannot afford to throw away any infor-
mation contained within our data because the cost of taking the data is a very

important part of the cost of inspection engineering. Therefore, instead of the

error of the estimate given above, we should use
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subject to the limitations hereinafter set forth. Now let us consider the
answer to the second question,

If ¢' represents the true but unknown standard deviation of the normal
universe of errors, then, as is well-known, 50% of the observed errors may be e»
pected to fall within the range X' + .67450'. Now o' is unknown, and we some-
times find the statement that 50% of the errors should fall within the range
X* % .67450. Again we sometimes find the statement made that 50% of the ob-
servations should fall within the range X + .67450 where

Of ocourse the statement made in terms of X' and o' is true. At least one of the
other statement‘s must be false, Ii; turns out that both are false as is shown by
recent published work of these laboratories.

let us go one step further. We sometimes find the implication that by
taking enough observations, that is, by making the number n large at will, we
can get as close as we pleass to the true length of the line AB. kore speci-
fically, it is sometimes implied in the treatment of practical problems that the
probability P that thé error of the average will be less than any preassigned
quantity € may be made to differ from unity by less than any preassigned positiw
quantity d by making n sufficiently large. This implication leads to ridioculous
conclusions, because none of us believes that the length of the line piotured
above is a real constant length. That very line we believe to be made up of a
swarn of molecules jumping around in a.random manner 1in such a way that the
length of the line ceases to have meaning in the sense implied above.

Now, 1f we do not know exactly what we are talking about when we dis-
cuss the results of the measurement of the simplest kind, we cannot hope to know

what we are talking about in the far more complicated problems which we must

consider in the present bulletin. If, on the other hand, we think this problem
through clearly and rigorously, it will keep us out of pitfalls in the considers-

tion of those to follow. iWhat we have in mind is admirably summed up in the

words of the old song:
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nTf you would take an epsilon,
Knd I should take & delter,

dear old mmthematlos
OurWouldn 't be quite so helter skelter.

But 1if you meke it easy,
By making it gquite wrong,
You'll have to learn it all again -
*Twill take you twice as long."

Let us start with the least difficult problem mentioned above. Let us
admit that the line AB does not have a true length Xt*, What then do we mean
when we say that we measure the length of this line? In most instances we simply
mean thatX'is the expected value of X postulated for a given method of measurement,
the errors ol measurement being assumed to be distributed according to the nor-

mal law about the expected value X'. Under these assumptions, it can then be

rigorously stated that the probability P that the following ineguality will holg,

[x* - X<e,

can be made to differ from unity by less than any preassigned positive quantityd
by making the number of observations large at will. However, after all, this is
really the only thing in which we are usually interested practically. In other
words our conclusions are expressed in terms of measurements of a thing and not
necessarily in terms of the magnitude of the thing itself. When we come to in-
terpret what we mean by the error of measurement we are right up against a real
problem. The interpretation of the significance of an observed error has been
and still is the battleground of contending forces ever since the birth of
probability theory.

let us avoid es much trouble as poésible and, to begin with, get down as
close as possible to bed rock. In the first place, as we have said, the line AB

does not have a true length in the sense often implied. No matter how many

measurements we choose to make of the length AB, even though the errors are dis-
tributed normally, we can never come, through the use of probability theory, to

the state where we are certain that our estimate X of the expected wvalue X' is

identical with X', 1In other words, probability theory can tell us absolutely

nothing unless we first make some postulate and probebility theory can never be

used backwards to prove that a postulate is correct. Enough for what we do not

know end what we ocannot saye Let us see what we can say. Let us take a practi-

cal probdlem and propose a practical answer and then disouss one by one the
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limitations of this answer.

1.1 Illustrative Problem

Five measurements of the length of a small piece-part gave the follow-

ing:
Se242 cms,
Se243 "
G240 %
Se24) "
34238 "

l. What j:s the true expected value X'?

&, What is the error of‘measurement ¢' assuming the srror to be
distributed normally<?

Ve propose to answer these two questions by giving certain estimates
and then show how to iiaterpret the significance of these estimstes. In tabdbular

form we propose to give the following information:

No. of Observed Stan-
Measurements n Estimate of X' dard Deviation Estimate of o'
(A) For use with gBE For use
normal law in- w udent's
n n _ tegral. integral.
12111 : z (x3-X)2
X = = = izl o '
n X = 4 = / 5=5 0 =00 040

The correction factor Cy is derived in & manner to be expleined after we have con-
sidered a little further the significance of this estimate of g.

The use of the estimate ¢z0 1s based upon the information originally
presented in the paper, "Significance of an Observed Range", in the Journal of
Forestry, November, 1928. It is obvious from theoretical oconsiderations that the
probability of an observetion falling within the range X t to where X and o are
estimated from a sample should be less than that obtained through the use of the
normal law integral. It is logical that no single constant value ¢z oan be found
such that the probability of an observation falling within the range X % toxo
should be given by the normal law integral,

Stated in another way, if we were to seek for that value of oz suoch
that the expected probability associated with the range Xt tcx0 should de, say

.5, We should expect to be able to find a value of cz to satisfy this condition.
»

In the paper mentioned above, the following two values of ca were tried:
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= /. B
oz = /-ni_l-r and ¢z v n-2

for the particular case of n = 4. It was found there that for an expected probe-

ability of .5, the second value of c3z gave .49 experimentally. This same value
of ox for an expected probability corresponding approximately to the normal law
30 gave .95 instead of .99+,

The experiment reported upon in the above paper, therefore, indicated
that, if we use the first estimate (4) of ', we can make use of this estimate t
give us the expected probability associated with a given raxige subject to the
limitations discussed in that paper. Furthermore, it was shown there that the
same interpretation was roughly allowable for rectangular and triangular uni-
vVerses,

Now let us assume that we want to set down a range X + tcg0 such that
the expected probabillity associated with this range is a given wvalue P. It is
theoretioally reasonable to expect that the cy4 corresponding to a given value of
P can be determined from Student's integral in the following way. ZEnter Student's
tablel for a number of degrees of freedom two less than the size of the sample
and find the value of t corresponding to the given value P. Then, for this par-

tiocular value of probability P

og = t /-i"}i (241)

Experimental results obtained in this laboratory and discussed in more detail in
a book now in preparation seem to justify the use of this method.
Stated in another way, "Student's" integral can be interpreted as

#1vipg the expeoted probability that an average of a semple of size n will fall
within the range

I+t xn_-fI G

where X and ¢ are the observed average and standard deviation in a sample of

size n drawn from a normal universe.

#e mist pause, however,

to note s very definite limitation ‘to this use

- e . e - - - -

e
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of "Student's" integral imposed by the assumption that the universe is normel.
For example, when we assume that it is normal, we assume that it is possibdble to
observe magnitudes larger then any preassigned value. In other udrds. we assume
that the universe extends from - 00 to + ®. In practical problems, however, we
are confident thet the range of possible values of X is limited. Hence as the
probability P approaches unity, the wvalue 04 calculated from Equation 2,1 be-
comes unreasonably large.

However, the expected standard deviation for a =mmall sample is, 1in
general, less than the true standard deviation of the universe of errors of
measurement, even though this universe 1is not a normal one. For this reason,
some ocorrection factor 1s always required. As pointed out in a recent paper (Re-
print B-327) no integral of the "Student" type has been provided for other than a
normal universe. We are, therefore, faced with a situation in which we have no
theory to guide us in the choice of a possible factor similar to that presented
in Equation 2.1 where the universe is not normal. It has been shown experimental-
ly, however, in the paper already referred to {(Reprint B-330), that the faotor o4
does not lead us very far astray even when applied to either a triengular or reoc-
tangular universe, provided at least we do not take values of P in excess of
about .97,

0f course, recent work referred to in I.E.B. 1 makes it possible to ex-
press the moments of the distribution of variance (the standard deviation squared)
of a sample of size n drawn from any universe in terms of the parameters of this
universe., It is difficult, however, to obtain the exact frequency distribution
of the variance from these assumed known moments such that it could be used in a
manner analogous to that in which the normal law 1s used. Lven if we were to use
variance, we would be led into certain theoretical as well as practical diffioul-
ties which would throw grave doubt upon the significance of the small difference
that would likely arise between the results obtained by using variance and those

obtained by using the correction factor cg already discussed.

For the above reasons, it is felt that the factor C3 used in connection

with the normel law integral for values of probability P not in excess of .99 i:

to be recommended where, of course, the interpretation and limitations of this

method as outlined in Reprint B-330 and in the above paragraphs are taken into

account.
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In what has gone before we have stressed particularly the fact that al-

pe to know the expected value X' and the standard deviation

nevertheless we Know quite ac-

though we can never ho

o' of the universe from which we are sanpling,

curately through extensive sampling experiments the expected probability associ-

ated with a given observed range, even though the universe is radically different

fronm normal.

However, if we are interested in knowing the probability that the true

mean of the sampled universe lies within a given range we may still use proba-

bility theory to enswer this question, but the various assumptions that are made

before & numerical result can be obtained must be kept clearly in mind in compar-

ing this use of the theory of probability with the way we have just been using it

More specitically we may sum up the subject matter contained in the
last problem as follows:

A sample of n items has been drawn from & normal universe having an un-
known mean X' and standard deviation o'. Having looked at the sample, what is
the a posteriori probability that the true mean X' lies within a given range say
Xo to X5 + dXpe

Now, the estination of the a posteriori probability in question in-
volves the calculation of two separate provabilities. (a) The a priori proba-
bility of getting from all possible normal universes those having means lying
within X, and X, + dXg, (b) For such normal universes and for any other possible
normal universes, the probability of getting the observed sample.

0f oourse a kmowledge of (a) and (b) involves knowing the a priori dis-
tributions of possible means and standard deviations, any pair of which would de-
fine a normal universe, However, knowing this and making certain definite assump-
tions, the a posteriori probability in question can be calculated and amounts

essentially to this:

The ratio of the number of ways in which we could have obtained the ob-

served sample from normal universes having means lying within X, and X5 + dXp t0
o)

the total number of ways the same sample could have been obtained from normel

universes having means within all _possible ranges,

Na;urally the numerical answer depends ent irely upon the nature of the

general & priori assumptions mede at the beginning and also upon the more detailed
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assumptions that we must meke before a numerical result can be obtained.
Sometimes these assumptions' can be rather easily justified from the
nature of the practioal problem but at other times they may reduce to something
not far from pure guess work, In any case there is no absolute oriterion for se-
lecting from emong the great number of possible answers the one that 1s the best.

2. TFormal Statement of Problem - Large Samples

Let us assume that the errors are distributed in such a way that the
probabdbility dy' of an error x' falling within the range x' to x' + dx' 1s & funo-
tion f*' of the error itself and m parameters. That 1is,

ay' = £* (x'y A], eee A, coo Am)dx’. (2.2)

We find ourselves confronted with two problems:

a. What is the law of error f*'?

b, Knowing the law f', what are the best estimates of the parameters
contained in Equation 2.2%

Having found a way of answering questions a and b, we may substitute
the answers in Equation 2.2, and determine immediately the prodability of a
single observation lying within any speocified range. However, to find what the
error of the average is, we must express bthe law of error of the average in terms
of the parameters in Equation 2.2. Now for large samples the error of the
average can be shown to approach the distribution given by normal law irrespec-
tive of the parameters in Equation 2.2 provided none of these parameters are in-
finite, which condition we shall assume to be fulfilled in our practical probdlems
3. Formal Solution of the Problem - large Samples

Even when the samples are large we must first satisfy ourselves that
the original set of data do not indicate the presence of any assignadle oauses of
variation of the first type as can be done through the use of the four oriteria
presented in the first bulletin of this series, I.E.B. 1. 4 funotional form f
of f£' is then assumed. Speocifically, we assume that

ay = £(X, €1, «+s 81, «uo 8y ) dax (2.3)
1s the probability of an observed value of X falling within the range X to X+ AIX.
Assuming this law to be correct, the probebility of getting the observed series

of observations is obviously proportional to the following expressiom:

n
P= “l (X4, 61. eoe 81, cse em)u i=1,2,¢0em
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g the estimates 8's of the N's is

Ore comparatively reasonable method of choosin

f estimates which make the probability P a maximum; in other

to take that set o

words, to take that set of values for which

_a—z:——=o 1=1,2,...m

984

This rormal method of obteining the parameters 1is sometimes referred to as the

method of maximum likelihood.

Oobviously, however, this set of estimates of the parameters gives &

maximum probability of occurrence of the observed set of data only provided our

function f is correct. We need sone oriterion, in other words, to determine
whether or not this assumption 1is Justified.

This criterion has been provided by the work of Fearson in the so-cglled
x?‘ test. If we break up the original range of observations into u different cells
and let nj, ng, ...,0y be the observed frequencies in the u cells and then,if
we ocalculete from Equation 2.3, the theoretical freguencies, n]'_; né, oo n."l, in
these cells, the differences

ny - n§ i=1,2, ... 1

constitute a group of u correlated variables such that
2 _ 2 (pg - n} )2

2 _——'———-—.— .
i=l ni

From Elderton's original tables we can calculate the probability of obtaining
value of xz as large or larger than that observed, where, of course, we enter his
table with the proper number of degrees of freedom. If this probabllity is very
small, for example, less than ,00l, it is necessary to consider carefully whether
or not we should look for some other function f. Thus briefly we have before us
en outline of the machinery which is availeble for the solution of our problem in
the case of large samples,

The work of Fisher in 1922 showed that the estimates of the parameters
derived by this method of maximum likelihood for the case of large samples lead
to sufficient and efficient estimates, The meaning of these two terms is as
follows. A sufficient statistic is one such that it contains all of the essential

information given by the original set of data for the estimate of a given para

meter in the true law of error. The mosy efficient estimate of a pareameter is ome
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such that in large samples its error of estimste is less than that of any other

estimate.

4. TIllustration of Formel Method of Solution

let us assume that the law of error is normal and that it is therefore

Ziven by the expression

_(x-x)?
1 2o'2
P =4y = T == ° ax

o'y 2
where X' is the true expected magnitude and o' is the true standard deviation of
the error of measurement. Let us apply the method ol maximum likelihood to de-
termine the best estimates of X* and o', If this is the true law of error the
probability of the observed set of observations is
(X4 -X*)2

pg'[gr l_ e 202 dxy 1=1 ...n
=1 0' /2T '

Taking the log of both sides we have

$(x,-x')2
2

log P = -n log v20 -n log ¢' ~ 1=1,2,...n

26 1 ]
The relationship

op A -X* ceoe -X! =
.éz's-a'[(xlx)'r +(an)] o]

gives us the following estimate of X*, namely,

n

X
' i=1 1=1,2

X = ) = Ly,8y ese 1

or, in other words, the arithmetic mean.
Similarly, the reletionship

8 =9
&;t
can be shown to lead to the following estimate of o',

Z(Xy-x')?
t = ——————————
a n .

where we substitute for X' its estimate, the mean of the sample, given above.

0f course in the case of the normal law, the knowledge of X' and o'

gives us all of the desired informa tion.
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PART III

Indirect Measurement of the Quality of & Thing

1. LMeasurement when Form of Function is Known a Priori

Summary of Section 1

In the first section of Part 3 we start with the assumption that the
quality Y to be measured is a known function f of a given set of measurable
characteristics. We then show how to determine, wherever possible, those magni-
tudes of the meacursble cheracteristics which make the error of measurement of Y
a minimur. This provides & method of cémparing different methods of measurement
of & ¢iven quality to see which one inherently gives the smallest error of measure-
ment. Naturally, other things being equal, that method having the minimum error
of measurement will require the minimum emount of inspection to maintain quality
within a civen rangs.

This discussion shows very definitely whet factors an inspection en-
Zineer needs to consider in respect to the mefhc:d of measurement aside from those
items which are customarily taken into accounte.

Let us assume that the quality characteristic Y to be measured is a

known function f of X;, Xp, ... Xy such that

Y = f(xl, Xz, (XN Xm). (5.1)
For example, in the measurement of modulus of rupture of a rectangular

beam by the one-point loe.:ng method, we havé the relationship

)
t

e
bh

Y = Modulus of rupture =

|

2

where ¢ is a constant, ¥ is a force, L is the length between supports, b is the

breadth and h is the height of the rectangular beam. In all such cases Y, here
»

the modulus of rupture, is a quantity which we must measure indirectly through
measurements of certain other physical characteristiocs, in this rarticular ex-
anple ¥, L, b and n. |

Theoretically speaking, of course, we might make F, L, b and h any

value whatsoever. Practically, we do not have such e broad choice, first, because
» d
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there is only a limited range of possibl‘e values of rectangular beams of a given
species of timber and second, there are, in general, limitations involved be-
cause of the excessive cost of the machines required to measure extremely large
beams. Assuning for the time being, however, ‘that modulus of rupture is a con-
stant for e given species of timber and that there are no errors of measurement
in any one of the characteristics F, L, b and h involved in the above functional
relationship, it would be possible to obtain the modulus of rupture of a given
species of timber accurately by using one size of beam just as well as by using
any other size.

In practice, however, none of the factors F, L, b or h can be measured
with absolute precision. In other words, measurement of any one of these factors
is subject to certain errors and the resultant error of measurerment in modulus of
rupture is a function of the errors of measurement of the characteristics 1in-
volved in the functional relationship.

In any practical problem, therefore, we must express the quality Y as &
function of the expected or average values of the X's. Suppose, for example, that
we make a single measurement on each of them different characteristics repre-
sented by the X's. Making use of Equation 3.1, we would obtain a value for the
quality Y. However, sinoce X is subject to error, Y will also be subject to error.
In other words, if we let

Y=Y +y
and Xi= X'y + X4 i=1, 2, «evm
we have as a result of a given set of observations

Y' +y =,f(Xi + xl,....xi + xi,....I‘;1 + Xp)

where y and xj are errors of measurement. In eny giyen experiment, naturally, we

do not know the true values represented by the primes and hence we customarily

take the relationship

-Y_ = f(-il. iz,...ii.-.oim) (:.2)

as forming the basis of nmeasurement, where the X's are the average values found

from measurement, and Y is the quality resulting from these average values of the
characteristicse.

Our problem, therefore, is to express the error of measurement of Y ip
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Ops» of the errors of

terms of the standard deviations @3, 02y «- T4,

measurement in Xy, Xpy eeo Xis oce Ap. To do this let us assume that Equation

3.2 ocan be expanded in a Taylor's series about the point X, Koy eee Xiy oee Zme

As a first approximation we have

m
y = L 84X

i=1
where
of
aj = ((-é;(;)) T, T, ee- I 1=1,2, 0« o,
y=Y - Y:
and -

Upder these conditions it is well-known that the standard deviation a

of the measured quality charactqristic Y is given by the following expression

m
2 2
g = z a v » (5.3)

¢4 being, as stated above, the standard deviation of X;.

Thus o can be expressed as a function of the m mean values and our
problem is then the purely mmthematical one of making ¢ a minimum with respect to
the expected values Xl. T, ..« Xy, «.. Iy. Before proceeding further, however,
we must note that only n~l mean values can be considered as independent variables
because the remaining one must be deteminéd in such a way as to satisfy Equetion
Je2.

For purposes of illustration, then, we may solve for X, from Equation
3.2 and substitute its vaelue in Equation 3.3, thus obtaining an expression for ¢
in terms of X3, Xy, ... %, ... Ty , and the constant value Y.

The necessary condition that ¢ be a minimum now becomes

o« -
axi O. i= l,2,...(n-l) (304)
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These m-l equationsl

together with Equation 3.2 are sufficient to determine the
m unknowns X3, X3, «es Xj, oo Xy

Neturally, it may turn out that no practical set of values Xj,...X;
can be found to make 0 a minimum. Thus, some of them may turn out to be zero,
infinite or imgin'ary, all of which is of little value in practice unless ¢ is
known to be a monotonic decreasing runétion of the m different characteristios
and continuwous in the neighborhood of the X's determined above. In this case,
the choioe of & practical set of X*s which do not differ greatly from the deter-
mined set may yleld a value of ¢ not greatly in excess of its minimum value.

The set of equations 3.4, however, form the first oriterion for judging
whether or not the method of measurement by means of a known functional relation-
ship has been set up so as to provide a minimm error of measurement.

In the general case, we may know of other functionsl relationships be-
tween the quality Y to be measured and certain other qQuantities, Thus, we might
have -

Y=11(2y, 23, oo Ip)
eand similar sxpressions. 4 practical exemple is given by the three formulas ex-
pressing the modulus of rupture as already noted. Our problem then becomes that
of minimizing, if possible, the overall errors by each method end then determin-

ing which of the formulas gives the smallest error at a minimm of cost.

Application of Theory to Practical Problem

Problem 1 ~ In determining the modulus of rupture of pole timber we have the
following three formulas for calculating the modulus of rupture depending upon

the type of mechanical test used.

69.62 L1Fp
@, One point loading: M = 013

52.64 LpFa
b. Two point loeding: M = —__(;—3———
' 2

315.8 LgFz
¢c. Cantilever method: M = —_—

bles in
ve solved Equation 3.2 for any one of the m varia
te 2bvious%ytg: ﬁ%ﬁ: ::l and have substituted its value in Equation 3.3. Eque-
tiﬁssoll could then have been modified to correspc;ndlto ;hzipart;czi_armcgiice

y . However, the final solution o e -
ot independent_variables assumed. Ym would' e eases be the emex

i ese LI
pected valu9§ s ‘2, q .*xia’ indenendent,
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As before F is the force required to break the pole, L is the distance between

supports in a and b and in ¢ the distance from point of application of load to the

point of failure, C is the circumference of break sectionand M is an abbreviaticn‘

for modulus of rupture. The subscripts have been attached to the force, length

and circunference because they are not in general the same in all three cases.
If we are going to break poles to determine the modulus oI rupture of a

certain species of pole timber, which formula will yield the smallest overall

error in the determination of this modulus?
We may of course treat this case according to the above general mode of

procedure oonsidering ¥, L, and C as variables subject to the condition that

M=

]

and arrive at a best value of F, L, and C corresponding to the minimum error in M
However, we may affect a simplification of our problem by taking note of the
following practical consideration. In most cases the taper of the pole is small.
Eence, we may without serjous error assume that C is constant for the three
methods and proceed to find the most efficient way of determining the modulus of

rupture as already outlined in general.

This condition being fulfilled we may represent all three formulas for

determining modulus of rupture by a single equation,

M = KjL;Fy, (i=1, 2, 3)
where
a4
K = e——e
i 03

Prooceeding as in the gemnersasl theory we find

(o) = 2.2 2

2
M 2 2. 2 2
= [/ Z=s oo +K°L%
'/Liz 1 VM9 (11,2,3) (3.5)

Differentiating with respect to Li and setting this derivative equal to
O, we find on solving



from which

GFi
SRV ov-r (1 =1, 2 3).
1%L,

Substituting these values of F; and Ly in equation 2.5 we find

(0y)y (min.) = /ZWSF,or; .

Now, 1if

then the method giving the least error in the determination of L is the two poirt
loading method, i.e., the one having the smallest K.
1f, however, O, OFps» OFz are not all the same, as is probably the nore
correct assumption, then we should choose that method which makes oy e minimun
when these three o's are known.
Problem 2 - Now consider the modulus of rupture as determined from small
pleces, Here again we have three formulas depending upon the type of mechanical

test used and these three may be combined into a single formula es follows:

= Eififl (1 = 1, 2, 3)
byhs?
where of course aj is different from the aj used in case of poles. As beforem
is the modulus of rupture of the species, f and 1 have the same meaning es before,
b is the breadth and h the height of the beam tested.
If we try to apply the general method of minimizing oy with respect to
all four variables, we find that the problem does not have a real solution., In
other words this meeans that for no positive set of values of f, 1, b and h doces

on have a minimum value.
In such a case we may use cut and try methods to decrease cm but heving

arrived by this process at certain 1imiting values for the four veriedbles, all

that we can say is that oy for this set 1s less than it is for certain other sets
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that we have tried. However, by making as before certain assumptions about some

of the variables, we cen obtain a quite definite result.

In the practical case the size of the machine may be an important

economic factor in the sense that, if large pieces are to be used, the machine it

self must be made sufficiently large. Hence, let us assume that a machine is

chosen which makes it necessary to keep the force £ and length 1 the same for each

method of test. Under these conditions, what dimensions should b and h have in
each of the three methods of test to give minimum error in measurement of modulus?
Which method is capable of measuring the modulus with least error?

Under these conditions we may set

k
i (L =1, 2, 3).

m = »

by hiz

ahore

Proceeding in exactly the same way, we find

2 )
c 4c
b h
- i 1
(m)y = Xy s, 4 72,6°
1 4
- kio' /_..t + (.—5 6)
:. 4 2 3
5% hy by © 1ny®

provided we assume, &s it 1s reasonable to do, that Opy = Ghi" and both have &
valus g,
Low substituting in Equation 3.6 the value of bi in terms of hy end

setiing the derivative with respect to h; equal to zero, we find

hy = 3 ,/2.liandbi= ki =3/__1
m { 2276 2n
2ky
m(—=)
(m® )
E2nce the minimum velus of Op for the i'h pethog is
2.4/6
4 (2 ks
s né (2 ki <) 4 @2 4/3
1 (=) ¢ = =g 2 B/, 0
ky ( m ) 2(2k 2)2/6 kI75 2 t2
K ? (B K1) t
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This tells us at once that, subject to the assumptions previously set
down, that method will give minimum error for which ki is the greatest and fur-
thermore thet the cross sectional erea for minimum standard deviation for a par-
ticular method is t-l-cn-%-g. 0f course, even in this case, it may not be practical
to give b and h the values which make the standerd deviation of measurement s
minimum. Be that as it may, however, the above discussion illustrates the de-
tails of the methods availeble in comparing indirect methods of measurement in

respect to their inherent errors of measurements

2. Measurement When 7Form of Function is Unknown a Priori

Summary of Section 2

This section of Part 3 outlines the method of procedure to be followed
in minimizing the error of measurement of quality Y which quality is determined
indirectly by measurement of certain characteristios assumed to be functionally
related to the quality in an unknown manner. The problem divides itself into two
parts: (a) the assumption of a functional relationship to be used as a basis of
measurement; (b) the %testing of this functional relationship.

The results are applied to the problem of minimizing the error of
measurement of tensile strength of nickel silver sheet in terms of a measurement
of hardness and gauge number. In this particular instance it turns out that the
reduction in error of measurement over that of the customary method of meoasure-
ment 1is very appre.ciable indeed and in this way indicates the nature of irvesti-
gations to be pursued in the conside‘ration of such things as specifications on
raw materials.

In nany practical cases we are not fortunate enough to know the re-
lationship connecting the variables, and even though we postulete that there iss

functional relationship between a set of X's snd the gquality Y which we wish to

measure, we must find empirically the nature of this functional relationshic:

through a study of observed values.

To obtain & functional relationship f between the two variables, wc

must make & guess OIr hypothesis as to what the relationship actuslly 1s, end

Before prcceeding further, we shall outlire the for-

then test this hypothesis.

mel method of ettack.

Let us assume that we have & series of n observed velues of X and =
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Assume that the function f is expressible in terms of a Taylor's series so that

it ocan be written to a first approximation as & polynomial

Y= ¢ agxt (3.7)
1=0

where o is the number of terms which it is necessary to retain in order to make
our polynomial a sufficiently close approximation to f. Under these conditions,
1f we substitute in Equation 3.7 each of the n pairs of values of X and Y, we
obtain n different ecuations. II as in the usual case, n is greater than c¢+l,

we cannot in general solve the n equations for the c+l coefficients represented
by the a's. What we must do, thererfore, is to reduce this series of n equations
to another of o+l equations, and one way of doing this is to determine the a's in
such a wy that the sum of the squares of the errors in Y is made a minimum,

To this end, let xj be the error in Y for X = XJ i.e.,

i=c 1
x; = ¥; - £ a3 X
R 3
and let
J=n
us= Zz sz

J=1

Then the condition that u, the sum of the squares of the errors be &

minimum with respect to 80s 81s e.e.8, is

ﬂ- = o 1 = 0’1.2000000 (3.8)
da 4

This gives us the desired number of equations, the solution of which will, in
general, lead to unique determinations of the coefficients represented by the
a's.

It will be recalled that the solution which we have thus obtained de-
pends upon the assumption that the deviations, the sum of whose squares are to
be minimized, are those in the dependent variable Y. Of course, we might choose
to minimize the sum of the sgueres of the perpendicular distances of the points
from the assumed curve. This process could be readily carried out provided the

Tunotional relationship is & linear one, but this leads into a discussion which
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will be given elsewhere.

Practical Applications

Figure 3.1 shows tensile strength of nickel silver sheet plotted against

hardness for gauges 14 and 36, It appears l—
—

4

that the curve for gauge 14 could be repre-

sented by a parabola or second degree | -

polynomial 10—t .|

Y = &o + B.lx + agxz (5.9)

100

and for gauge 36, by a linear relationship
Y =ap+ 83X (3.10)

90

Having once mede this choice of

function, the formal process of fitting

these two curves by the least square

Tensile Strength - 1000 1iba. per sq. in

method outlined above can be easily " |
T |
carried through and we will come out with | !
80 : N
[ !
the equation - L ‘
Y = 200251.5471 - 7000.0807X + 52.6559%° L JO ) I ——
Rockwell Herdness B
for gauge 14 and * Geuge 14 Fioxel 3ilver aueet
S e e Al

ric. 3.1

Y == 50358440315 + 7307,9006X
for gauge 36. Computing the values of tensile strength for the six given values
of hardness we get the smooth curve and straight line shown in Iigure CZ.1l.

To the eye, these two curves seem to fit thelr respective points very
closely, particularly the parabola. In fact, computing the standerd deviation of

the points from each of these curves, we find

O (parabola) = 983 1bs. per sq. in. end

= . L] ino
{1line) 4315 lbs. per sq

A mathema ticel explanation for the large standard deviation from the

straight line can be offered in the fact that even thoush the points lie veury

close to the fitted line, thelr vertical deviations from this line are larrc, par

ticularly since the slope of the line is large. Physicelly, however, it rmay meern

one of two things: (a) for & given haerdness, the standard deviation of tensile

strength increases with increasing gauge or {b) the relationship between tensile
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strength and hardness for gauge 36 is not lineer but some kind of curve. Fresent
available date are not sufficient to tell whether or not the former statement is
true. Concerning the' latter, the method for judging how well & particular fune-
tional relationship rits the data is taken up later. A4t present, we are pri-
marily concerned with & discussion of the resulting determination of tensile
strength on the assumption that the curves we have chosen to use are the correct
ones,

Let us see then what degree of eccuracy may be obtained in using these
ocurves to measure tensile strength by meking use of the curve for 14 gauge, Fig.
3.1

Assuming that tensile strength is homoscedastic with respect to hardness
for a given gauge, i.e., the standard deviation of tensile strength from the
ourve is the same farall values of hardness, we obtein a very accurate measure of
tensile strength., Thus, if we select a value of observed hardness, say Xl, we may
associate with it a value of tensile strength given by the curve and the range of
wariation in tensile sirength corresponding to a probability of about .99 is
about 2600 1bs. per sq. in. this range being equally divided on either side of
the curve value. A similar interpretation holds for the straight line correspond-
ing to 36 gauge, only here the measure of tensile strength is must less accurate
the 99> error range being about 13000 lbs. per sg. in. on either side of the line,

These error ranges are much less than those previously obtained and

hence it is now possible to set closer quality limits by means of the Rockwell

Eardness Test than was previously possible without fear of throwing out satis-

factory material. .This result is typical of what it is reasonable to believe can

be done in many other cases of setting quality limits for raw materials.

Thus we see that, by applying the. mei.;hod of least squares in the pre-
vious paragraph, we are able to establish an empirical relationship between the
quality Y, in this oese tensile strength, and a certain measurable characteristic
X, in this case hardness. What we need now is some method for indicating how
good this empirically determined relationship really is,

First Criterion for Judging Method of Measurement

#e shall first show that assuming our guess at the function f is correct
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then the coefficients determined as above by the method of leasi squares are the
best in the semse that they make the 1ikelihood of the occurrence of the given

set of values a maxiyum, subject to the condition tkat the errors are distributed

normally.

Assume that
Y = £(X)

gives us the smooth curve in Figure 3.2 and thet the observed deviations are as

indicated in this figure.

where the 1%} method deviation vy is given by
vy = ¥y - £(Xg)

Let us consider the probability of obtaining T

the set of deviations v;, VoreseeVij 000V, in a series

of n observations. In the first place, we assume that

there is no correlation between the deviation in one x
observation and that in another or in other words, Fi6. 3.2

that the v's constitute a non~-correlated system of wvariables. let us assuwe fur-
ther that the deviations are distributed normally.' Under these conditions, the

probability of getting the observed set of values 1is
n
éhz z Viz

i=1
P=Ce (3e11)

where C and h are constantis,

The most likely set of values of the v's is obviously that which makes
i=n

z V}La a minimum, but the very process of obtaining the empirical relationship by
t:t above method involves meking the sum of the squares a minimum. Fence, under
t'he assumptions which we have made concerning the v's, the coefficients in the
equations already determined by the method of least squares are the same as those
which would heve been obtained by the above method of making the probability of
the observed set of deviations a maximum.

This, however, does not necessarily mean that the chosen function f is

the best, It is only best in the sense that, having chosen the form of the fure-

tion, the coefficients entering into the first approximation of this function end
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derived from the data are such as to make the probability of the observed set of
deviations & maxinmum.

Of course, one might at first suggest that we should try to find that
function £ which would make the sum of the squares of the deviations a minimum.
Obviously, to follow such a suggestion would be & false move, because we could
make this function of the deviations zero by retaining sufficient terms in our
approxization, i.e., as many (constants in our equation) as we have pairs of ob-
servations. However, it is ridiculous to assume that the relationship thus de-
tercined is the true one. In other words, we need some method for allowing for
the fact that another similar set of observations would, in general, not be
identical with the observed set. Stated otherwise, we must allow for the fact
that the closeness of fit as measured by I v2 must be corrected for the effect in-
troduced by changing the number of terms retained in the function f(X).

By making enough observations of each value of X to determine the
standard deviation of Y at each point, we can make use of Pearson's Chil Square
Test provided we allow for the loss of the correct number of degrees of freedom
taken up in fitting the function F(X). Suppose, for example, that Y is measured
et u values of X and that 03, 0g,+¢4.04,.+..0y are the respective standard devia-
tions determined by neasurement at these points. Since there 1s no correlation

between the Geviations in the observed values of Y for one value of X and those

o -

2
o1

This value of xz has u-m degrees of freedom where m is the number of

for another, we have

u
X% =2
1=l(

o~~~

{3.12)

e Mo S St S

parameters involved in the function F(X). When we calculate the probability
;‘/(xz) ol the occurrence of as large or larger values of xz from Elderton's
tadles allowing for the right number of degrees of freedom, we are supposed auto-
matically to take account of the effect of increasing the number of coefficients
used in fitting the function F(X).

The probability of fit P(xz) determined in this way from one function

P(X) may be compared with that obtained in a similar way from another function
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subject to limitations as to interpretation discussed later.

Second Criterion for Judging Method of Measurement

The approximate empirical relationship between Y and X may, in general,
be put into the form
¥ =8 FolX) + ay Fp(X) + ... ay Fy(X) +
ceee + ap F (X)
where Fgo(X) = 1, Fi(X) is a polynomial of degree i in X, i taking on integral

values between 1 end m and the functions of X are orthogonal in the sense that

)N F X B X =O, .

Under these conditions, R. A. Fisher has shownl that the probability of
getting a value of t as large or lax_'ger than that observed 1is given by "Student's
integral previously referred to, where t expresses the error of a coefficient L
and is calculated in the particular way indiceted in the cited reference.

.If, in general, the probability of getting a value of t as large or
larger than that observed is less than .001l, we have reason to believe that there
may be a better choice of regression coefticients., Of course, in such a case we
must decide whether it is more likely that the regression coefficient is {n error
than that the functional form is not properly defined. This, however, 1is merely
& technical point which must be cbnsidered by the analyst and need not concern ue
at the present time. Here, as in part II, extreme caution must be exercised in
interpreting the significance of the test just given particulerly when aj is not
known.

It is sufficient to note that we have in this case a method of testing
the coefficients in an empirically determined formula subject to the conditions
outlined above even though it is not feasible to group the observations into cer-

tain classes as we shall do later where we do not assume the existence of e

mathematical relationship but instead assuné the existence of a stochastic re-

lation.ship between the quality Y and the characteristic X in terms of which it is

measured.

We shall not go into the details of applying this test to a practicel

- o wm = =

1. Fisher, R.A. Application of
Pages 3-18, 19-25.
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example but before we leave the subject we should consider a little further the

importance of what might be termed a third method of testing a functional re-

lationship. In the practical example already cited where we try to find the most

satisfactory relationship for measuring tensile strength in terms of herdness far
#l4 gauge nickel silver sheet, we present a parabola which gives quite a pleasing
appearance of it to say the least. Now even though the two tests Just dis-
cussed indicated this parabola to be a good £it, it is dubious whether we should
oonsider it so looked at from a physical point of view, Common sense suggests
that the results of the Rockwell hardness test should be influenced by the rough-
pess of the surface of the material, Now the lowest point on the 14 gauge ocurve
corresponds to measurements on stock of zero per cent reduction. Henoce 1t is
reasonable to believe that this point should not be included with the others,

This leads to a simplification in the functional form required to fit the remein-
ing points. In fact it appears that a straight line may be used 1if this one

point is eliminated and information given later seems to indicate that instead of
a parabola, two straight lines should be used to cover the range for 14 gauge, it
we are to include material of zero reduction by rolling,

In what we have just said however, we have brought into the piocture the
factor of reduction by rolling which information, of course, is not taken account
of when we consider only the tensile strength wvalues corresponding to ocertain
hardness numbers for 14 gauge.

In other words, we should never rely upon the two tests involving the

use of either xz in fitting a mathematical curve to observed points or of t in

determining the error of a coefficient in an assumed functional relationship un-

less we have first made use of all available a priori information,

3. keasurement Through Stochastic Relationship
Summary of Section 3

In t.he third section of Part 3 we introduce the concept of stochastic
relationship as a basis of measurement and give an outline of the steps to be
taken in making use of it in the measurement of quality with minimum error. Speeci-
fic applications of the principles are made to the testing of tensile strength of

nickel silver sheet in terms of hardness and other characteristics presented in
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one of the recent LREM Bulletins and to the measurement of the physical properties

of aluminum die-castings. Similar applications are found in practically every

phase of our work.

In general, it is shown that a very appreciable reduction in the error
of measurement can be obtained by making the best use of information at hand.
Henoe this part of the bulletin furnishes a background for the development of im-
proved methods of measuring quality, particularly of raw materials, so as to make

possible a mich closer quality control without increasing the cost of inspeotion.

Stochastic Relationship Lefined

let us start with & very simple illustration, namely that of measuring
the tensile strength in terms of hardness where sll that we know about this re-
lationship is the set of observed data presented graphically in Fig., .2

“e

We see that, in general, “the

harder this kind of material is, the *

121

stronger it appears to be. TFor & given

observed hardness, however, the strength 10 .

18 not always the same. In other words,

hardness does not determine one and only 100 .

one value of tensile stirength. Naturally

90

this state of affairs is somewhat attribut-

able to the féct that neither hardness nor
8ol o *
strength can be measured without error.

In this particular case, however, We have
708 .
plenty of a priori evidence %o indicate

Tensile Strength - Thousands of Pounds per Square Inch

that tensile strength is not uniquely de-~

o
termined by hardness even when both the 50 )

5 80 ] 100
Rockwell Hardness B

tensile strength and hardness are measured ne. 3.3

without error. We say that ¥, the tensile

strength, is stochastically related to hardness X in the sense that hardness tells
»

us something about tensile strengthe. Let us emplify the distinction between

stochastic and functional relationshipe.

To do this, let us consider that we have a series of n pairs of values
»
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X Y), XaYp X Y,. We say that Y isa function of X when for a given value of
p S0 .

X the possible values of Y are uniquely determined. The simplest kind of fune-
tional relationship is that for which there is a one to one relationship so that

for any valueé of X there is one and only one value of Y, this wvalue being thus

uniquely determined. In general, of course, the functional relationship may be

a multiple valued one, i.e., for a given value Xj, Y may take on say k different

values Yy4,...Y¥y4s. However, instead of having a functional relationship, we msy

bave the situation represented by the ordinary scatter diagram where certain

pairs of numbers occur more than once. In this case, 8ll that we can say is that

for a given value of X, let us say Xi, there 1is some function of Y, let us say
Ql(Y)dY, which represents approximately the number of Y's falling within the
range of Y to Y + 4dY when X takes on a particular value Xj. The quality Y is
sald to be stoochastically related to the quality X when the frequency distribu-
tion ¢(Y) corresponding to a given value of X is not the same for all values of
X. In the ordinary scatter diagram, this merely means that the frequency dis-
tridutions in the columns are not all the same,

In a leter bulletin we shall have occasion to consider more in detailb
the physical significance of the difference between functional and stochastic re-
lationship. Here we shall see that Y can be thought of as being functionslly re-
lated to X or, in fact, any number of variables when these variables are the in-
dependent causes of Y, whereas Y can be thought of as being stochastically re-
lated to X or any number of variables whenvthis set of variables cannot be con-
sidered as the independent causes of Y. For the present, however, we shall be
interested in the use of stochastic relationship as a basis of measurement and
not in the physiocal explanation thereof. |
Solution of the Problem

Without further discussion let us consider the steps which must be taken
in the use of a stochastic relationship in the megsurement of quality. In our
discussion of this problem it will be necessary to meke free use of statistical
terms used in the theory of correlation.

We start as already noted above with the formsl expression of the

stoshastic relationship representable in the following way



- 37 -

Y = fs (xl’ Xs o0 Xp)e
Knowing that such a stochastic relationship exists we must in general teke three
steps:
{a) Postulate a curve or surface of regression,
(b) A4pply certain tests to determine whether or not the values of the
quality Y are distributed in a homo-scedastic fashion about the curve
or surface of regression.
(¢} Apply certain tests for determining whethexr or not the observed set

of data is a likely sample based upon the assumed stochastic relation-

ship and the assumed form of regression.

After these three steps have been taken we must carefully consider
whether or not there are any reasons a priori for discounting the use of the curwe
or surface of regression in determining the expected value of Y associated with
the given set of n characteristics represented by X,, X5 ¢oe Xy. Furthermore, we
must make sure that there are no practical difficulties in the way of using the
curve or surface of regression. Assuming that the three steps have been taken am
that there is no reason for rejecting the results so obtained, we must proceed to
calculate the standard deviation of the quality Y about the curve or surface of
regression obtained as a result of the first three steps.

Although it is beyond the scope of the present aiscussion to enter into
8 consideration of all of the details involved in taking the {irst three steps
outlined above, it is nevertheless advisable to consider a little further the
nature of the procedure which must be followed in practice, For example, because
of practical difficulties involved in the calculation we are generally limited to
the use of curves of regression representable by a series of orthogonal functions
as discussed in & previous paragraph. For several reasons we are customarily
limited to the use of planes of regression.

Customary methods may be used for testing the homo-scedasticity of the
regression provided we allow for the effect of small samples upon the expected
value of the standard deviations. The principles underlying such corrections

have already been sufficiently well considered in Bulletin IEB-1 and Part 2 of

the present bulletin.
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Now we come to a little more careful consideration of step 3. We choose

a form of regression curve or surface and by one method or another (in most cases

the method of least squares) we determine the coefficients in this assumed func-
tional curve or surface of regression based upon the observed data. We may use
either of the methods discussed under paragraph 2 above for determining whether
or not certain funo;.ions of the observed data are reasonable upon the basis of
the assumed functional form of the curve or .surface of regression. We may go
even further and consider the use of certain other tests or criteria, We shall
oconsider one of these which may be used in the case of linear re‘gressionl.

In this case xa becomes

2 2

n,, - T

1-19
X

It is generally assumed that )(2 has u - 1 degrees of freedom. Fisher has also
given other methoda;2 of estimating xz.

Choosing that method of estimating xz most suitable to the problem in
band and following the scheme outlined by Fisher, we could calculate the proba-
bility of obtaining as large or a larger value of xz upon the basis of the as-
sumed form of curve of regression. This method could naturally be extended to
the plane of regression. If the probability of obtaining as large or larger
value of x2 than that observed is less than ,001 we might assume that the use of
t i1s curve of regression was not justified and in that case, continue our search
for another. 1In the interpretation of the results of this criterion however, we

must proceed with extreme caution in its use.

As above indiceted, we are treading upon the kind of shifting logical

sand that we have already met in Part II. In this interpretation we must remem-

ber that as a limiting case corresponding to one degree of freedom the )(2 test
breeks down to the normel law and we have already seen how carefully we must
hedge our conclusions in respect to the probability associated with any speci-

fied reange about the observed average measured in terms of the observed standard

- -
L I e T T T S e - . e - - -
- e e s e wm = W w = -

1, TFisher, R.A. "The Goodness of Fit of Regression Formula™, J
: our 1
Statistical Society, Volume LXXV, July, 1922, Page 603, ’ urnal of foya

2. These will be discussed in detail in Part IIX

I of the -
trol now under preparation. book on Quality Con
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deviation. Not only must we be cautious on this ground but also we must take so-
count of the fact that a hypothesis which is not true might give a smaller value
of x with the observed data than a hypothesis which is true. Furthermore, there
are other limitations to the use of x which must be carefully considered.

With these facts in mind we might be tempted to say that the test is of
little value for the purpose in hand. But, before we jump to this oonclusion,
let us remember that if we throw out the xa test, we also throw out the normal
1aw% Let us not therefore throw away the test completely unless we have something
better to put in its place,

Practical Applications

Obviously the field of application of the results of this section of
Part III as well as of the previous two sections, is very extensive indeed, This
method of attack has already been applied in the testing of physical properties
of timber and those of certain other raw materisls such, for example, as are dis-

cussed in some of the LRM bulletins. The initial results which have been ob-

tained to date indicate that in certain instances the above methods when applied

to available data reduce the standard deviation of measurement in some instances

by more than 50% of that obtained by the customary method and thus make possible

without additional labor the control of quality within linits which mAy be less

than 50% of those now in use, Naturelly, these results suggest a very important

field of investigation in the development of methods for specifying the gquality

of rew materials and product in general within narrower limits without increas-

ing the cost of inspection. In what follows we shall not detail all of the

steps,
We take as a first illustration the measurement of quality, teneile

strength of aluminum die-castings, in terms of density and hardness. The data

for this study were furnished by Mr. H. 4. Anderson, Chairman of the Committes

on aluminum die-castings of the american Soclety for Testing katerials end are

presented in the two scatter aiagrams of Fige 3e4e
One of these shows the stochastic relationship between tensile strength

and hardness in Rockwells of sixty die-castings. The other scatter diagrem shows

the corresponding rela'tionships between tensile strength and density for these

- e = e . .. . e wm e = e meeeo=
- o m m am e @ wm e @ w = e
- e e e e o = oa ae = e

1. See Part III of the book on Quality Control.
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Tensile Strength - psi
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FIG. B3e4 —~ ALUMINUM DIE CASTING SPECIMENS

same specimens. The lines of regression of tensile strength upon hardness in
one cese and of tensile strength upon density in the other are shown in these
figures. The distributions appear to be almost homo-scedastic and the results
of the application of step 3 seens to justify the assumption that it is reason-
able to assume linear regression., Under these conditions we might use either
hardoess in Rockwells or density as an indication or measure of the tensile
strength of the specimen. Through the use of such a test 1t would be possible
to measure the tensile strength of the specimen without breaking it. The stan-
dard deviation of such e measurement, however, depends upon the scatter of the
observed points about the line of regression and for the Rockwell test the stan-

dard deviation is 2,894 pounds per square inch whereas for the density test 1t
is 2,987 pounds per square inch. Roughly speaking, one of these tests would be

as good as the other,
If, instead of using one or the other of these lines of i'egression, we

make use of the plane of regression of tensile strength upon the density and

baraness and celculate the standard deviation from this plane, we find that it

is only 1,384 pounds per square inch. In other words, a knowledge of density

and haraness enebles one to specify the tensile strength of a die-casting within

8_renge approximately one half of that within which it may be specified if only

one of these measurements is known.

We see at once from an inspection viewpoimnt
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how much more accurately the quality of product may be ocontrolled through the
use of these two variables than it can be through the use of only one. A some-
what similar result has been obtained in the study of the physical properties
of certain timbers,

We must not conclude, however, that the use of a regression surfece in-
volving more than one stdchastically dependent variable always leads to the best
method of measurement. To illustrate this we shall return to & consideration of
the measurement of tensile strength of nickel sheet already discussed at some

length in this bulletin, kaking use of the datal presented in Tabtle 3.1, we have

TABLE 3.1

Tensile Rockwell Hardness Per Cent
Strength 100 Kg. Red. by Nos. Gauge

psi 1/16" ball Rolling Hard Number

Xy 2 X3 Ly
66,100 5346 0 0 14
81, 300 87.6 22.6 2 14
93,400 92,8 37.2 4 14
103,400 9640 47,8 6 14
108, 600 97,9 58.8 8 14
114,300 99.1 6843 10 14
65,100 51.1 0 0 16
85,600 8906 21.6 2 16
97,400 93,8 40,1 4 16
104, 500 2606 5143 6 18
111,400 98,9 60,8 8 16
114,500 99.7 6746 10 16
65, 300 5046 0 ) 18
81,100 85,3 19.4 2 18
97,400 93,4 37.6 4 18
103, 600 94,9 50,9 ) 18
110,400 96,8 6241 8 18
115,000 98.8 6648 10 18
67,600 56.2 0 0 20
80,700 85,0 19.9 2 20
96, 300 90,9 , 35.4 4 20
107,200 94,6 51.4 6 20
109,500 95.3 6l.4 8 20
113, 600 9647 67.8 10 20
74,600 6746 0 0 22
83;600 83.4 16.5 2 22
98, 700 91.3 37.8 4 33
107,000 94,0 49.6 g o
112,200 95,5 60-3 10 o
113, 500 9640 68,

- e e e m w m = e = = =~ - ==
- . e = e = m = e - - -

1. See General Apparatus Development Bulletin No. 8, Issue 1, Kov. 2z, 1927.
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Tensile Rockwell Hardness

Strength 0 .
§1 2
66,900 60.6
94,900 90,6
98,700 90,9
107,000 93.4
112,400 9545
116,200 96.6
65, 200 57.9
85,000 8643
108, 200 94.2
106, 600 9343
112,600 95.4
114,700 96.2
64, 500 59.8
83,300 84,9
102,800 92.4
116,300 9643
111,500 95.4
116,400 9643
65,300 5642
77,500 80.6
95, 600 89.2
107,500 94,0
119,500 97.1
115,100 9647
67,000 55.1
76,800 71.5
91,200 83.0
102, 400 90.4
112,600 93.4
122,200 97.6
66,200 6644
86, 200 7547
96,300 79.1
100, 500 81.0
109,200 83,3
115,900 87.2
69,400 7849
83,200 81,5
96, 500 81,6
102,700 83.1
104,100 82,9
111,100 84.9

Per Cent
Red. by Nose. Gauge
Rolling Hard Number
0 0 24
19.4 2 24
34,9 4 24
49,1 6 24
58.8 8 24
6849 10 24
0 0 26
21.9 2 26
35,8 4 26
46,3 6 26
6042 8 26
67.4 10 26
0 0 28
20.3 2 28
38,5 4 28
51.4 6 28
5844 8 28
68.0 10 28
0 0 30
18.4 2 30
3549 4 30
45,4 6 30
5941 8 30
6647 10 30
0 o} 32
17.0 2 32
3446 4 32
49,1 5) 32
6045 8 32
66,9 10 32
0 0 34
2345 2 34
40,0 4 34
50.0 6 34
61.1 8 34
68,3 10 34
0 0 36
23,0 2 36
3543 4 36
45,0 6 36
577 8 36
67.1 10 36

caloulated the equations of certain curves and surfaces of regression as indi-

cated in Table 3,2 below and in each case
quality Y from the given curve or surface
tions in pounds per square inch are given

see that they very all the way from 3,129

found the standard devietion of the

of regression. These standard devia-

in the third column of the table.

pounds per square inch to 166,000

We



- 43 a

TABLE 3.2

SUMMARY OF STUDIES OF RELATIONSHIPS BETWEEN

ENST

IC

STRENG AND CE 0

NIC S1

Curves or Surfaces

CHARACTERISTICS OF
CKEL-SILVER

Standard Deviation
From Curve or Sur-

Relationships of Regression face of Regression
TeSe (Xl) vs, Hardness (Xg) X = ~2927.8347 + 1410,7024 7,627
xz + 16,0687 xz .
TeS. vs. Nos.Hard (X3) | X; = 46,732 + 6354 Xz -
303 X,2. 166, 535
TeSe vs. Gauge (X ) X = 96585 + 1,7 X4 17,252
o3 Tio- 3T
T.S. vs.(Hardness (Xp) | x1 = a_]; (—]ﬁ——lg’-%} x5 3,908
(Nos.Hard (Xz) 2 1-rp3 3,129 (Hard-
ness » Re-
S § grls'rlzrzsg X3 duction)
e3 1 - rpz?
c Tyo =T 4T
TeSe vs.(Hardness (X;) | x; = -c—]-'- 2_.1;2___141%) xp
(Gauge (Xy4) 2 1-ro4
-Tyor
» o1 (QA7R2T24) 4 £,131
94 ( 1-rp4°)
031 (T13-T14734)
TeS. vs.(NoseHard (X3) | x = 5 2—-————————2—) X
(Gauge (Xy) S 1~ Taq
o (ry4-Ty3Tzg) 5,683
tE ) > 9
4 ( l - r34
o1 ¢ 2y _ -
TeSe vs.(Hardness (Xg) (8 x = T, (Fel (1-r34”) 5,84
(NoseHard (Xsz)
(Gauge (14) oz (rsl-r34r4l) +
T24 (1‘311'43-1‘41)31,3
%1 ~Taalao)
- -0,—3- (1'21 (ra2=-raqTyz
- (rz}-Taeral) + T24
(r31r4z-rszr41)g x3
o
g %rzl (r3zrgs3-raz)
4
- (rgyraz-Tsy) * Te3
(TayTyoTaolan) ) %4
1 TpaTpy
A= |Tgz 1 T34

4o T43 1
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pounds per scuare inch, Based upon the standard deviation elone it would appear

that the best method of measurement was in terms of the plane of regression of

tensile strength upon hardness and per cent production. We find, however, that

the distribution is not homo-scedastic, hence we cannot make direct use of this

plane of regression. It is obvious therefore, that extreme caution must be exer~

cised bere in the use of this plane. Possibly we would not meet this difficulty,
if it were possible to use a plane of regression of tensile strength upon hard-
ness and density but the data for such a determination are not available, What
we must conclude in this case 1is, therefore, that perhaps the best method of
measuring the tensile strength of nickel silver sheet is that already discussed
in paragraph 2 above.

Enough has been said to show that when we are called upon to measure
some physical property Y in terms of certain other variables stochastically re-
lated thereto we must carefully consider the results obtained by carrying out
the steps of analysis outlined above and in this way arrive at the most satisfao-
tory and practicel measure. Before leaving this subject however, it may be of
interest to consider the various lines of regression bef.ween tensile strength
and bardness for nickel silver sheet when the originel data are grouped accord-

ing to numbers hard. These lines of regression are shown in Fig. 3.5 and the

standard deviationsof tensile strength -

120}
determined from these lines are on the ;

_—z

average less than 3000 lbs. per square

£3
g
$ 110} * o °
inoh. 5 2 y
a
(o}
For the case of zero numbers g lj&g’—“—‘“—“ o 08 °°
w 100 o g
bard tie standerd deviation from the line § ° /
g 5 ¢ . o o 2 ®
of regression is about 2100 pounds per “ ® xlfi)n . “o
_ e
a o0 Regre:sion °
square inch, but in general the standard g
(] o
=3
deviation determined in this way for 8 °
, 80} o ©
numbers hard greater than zero is con- 4 °
£ .
sicerably larger than the figure just &
@ 7rob
stated. Moreover numbers hard are in s o N *
2 *e,
general not accurately known. &
60
It seems, therefore, as a re- 50 50 5 1] ) 15

Rockwell Hardness B

sult of our studies on nickel silver FIG. 3.5
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sheet that, subjeot to further study, we should measure tensile strength as

follows. For zero numbers hard use the line of regression (the lowest line in

Fige 3.5) of tensile strength on hardness obtained by allowing the gauge to vary
from 12 to 36,

In all other cases use the line of regression of tensile strength on

hardness fora given gauge, the numbers hard varying from 2 to 10.

The set of calibration lines whioch would be obtained under these ocondi-
tions would appear schematically as in Fige 3.6,

! 4 / Of course further studies may reveal
!

= /' // / the necessity for using higher order re
2 / // !
& / // /  gression, in which case the lines in
a | ! ]
s B / Fo ~/ Fig. 3.6 should be replaced by curves,
3 AN
%. // '/" / / At present it appears that the best way
< 100 | !
2 ;o /-/ of measuring tensile strength of niokel
" / / /
E /I ,_-/ // / silver sheet indirectly through measurs
?, 920 i/ .
E ,//-" // ment of other physical characteristics
& !
' // // is as stated above.
2 o 14 !/
H i 1!
3
&

od , N

Lf;O 60 70 80 0 100

Rockwell Bardness "B"

All Gauges - 2ero Hardness
—_———— Gauge 34
- — Gauge 32
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PART IV
nachine Measurement of Quality

Sunmar

Evidence is presented to show that certain methods now followed in
calibrating some of the machines used in measuring quality of product may intro-
duce errors so as to give an entirely misleading picture of the quality., A
definite method is outlined for celibrating and meintaining these machines so as
to remove this difficulty and thus secure adequate quality control.

A memorandum giving detailed steps in the application of the method out-
lined above to transmitter and receiver testing machine is now under preparation
by Mr. P. S. Olmstead,

1. Criteria for lachine

Many important machines used in the measurement of quality of telephone
equipment depend upon the use of such a stochastic relationship. Examples of
such machines are those for measuring burning and efficiency of transmitters and
the eftficiency of receivers., The same type of macﬁine problem would arise if we
were to try to ocalibrate a hardness testing machine in terms of tensile sirength

Let us start by considering a practical illustration. I¥ig. 4.1 presents

zi1 e |e8]2 163 o4je3(30|22| 6 | 1|1 1 e .
. l - - the scatter diagram of a machine
{ -
[ 1 . . .
R 1 measure, in this case agitated re-
o IR T ‘
. 16 1|8 1o 13 sistance in ohms, of transmitters
1.0 , 1 \ 1 1|36 |7 8|22 |11 26
P R S L R RS A 5 whose efficiencies are represented
0 o ’ 1 ﬁ 1 7| M| 302818 8| 3 ,E__FF,, 11 9 :
. lz BT EUINEIEIE YA L o9 by the ordinates of the scatter
-1.0| L. 1 Y 318 a8} 28/ 33! 33} ¢ 12 4.< 1 nell d . A N
s co *5 W seine N;_}Aj} 2 59 lagram. The practical problem in
P -2,0f L. ' .1! 18 | 44 ae},&v 4 Lg o] 2 207 R
i o e r}”{;u wjw| 7% 1 - Tied this case is to consider the use
3 -3.0) )/f(‘}{ |38} 47/10|10/20| 31 2| 1 1 107 of th .
E i (w|molslisleld] e e agitated resistance as a
L B I Je[mimmiiseie]s)e | hid mea sur .
P ?,;,7 Dont N o] e of the efficiency. This
5.9 M sls|siz|1 1 114l
R S e | 18
o ; 1“)71« | ) particular set of data was taken
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1 - 5| &% @ very early stage in the de-
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R T 3 ve
; 4 J{ ‘» | ]3] lopment of machine measurement
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% % e 80 10 1% 140 160 1% % zzo; ticlency and is used here only
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FIG. 4.1 to illustrate the methods involved
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in determining whether or not a Proposed machine measurement is desirable.

In this partiocular instance a group of 1497 transmitters were selested
at random from product, measured for efficiency Y and agitated resistance X. The
observed distributions in respect to efficiency Y and resistance X are given at

the borders of the scatter diegram and are shown graphically in Fig, 4.2

Two re-
quirements are some- | s 4.00( o 0o
times placed on the § 300} gm» ‘e
machine, They are: g aoo[ .,o“ gaoo . °.
(1) That the 3§ oe o* S 100 ..
machine throw out bad = e e 0;7‘;'“‘"5 - 4‘0‘: P ‘b:',;o“m‘,g
product, that is to Efficiency in DB o o Agitatod Resistance in ohms

say, in this case, in-
struments having an éfficiency below some limiting value Yy,
{(2) That 1t detect lack of control of product.
Obviously a perfect machine would be one such that the meter deflection is funo-
tionally instead of stochastically related to the measured quality.

2. Assumptions Involved

It will be assumed in what follows that there are errors of measurement
in both the quality Y and the machine measure X, In other words it is assumed
that, if the same instrument is tested for efficiency several times, the meesure
of this efficiency, will have & certain standard deviation which we may represent
by Oy,. Similarly, if this instrument is tested several times by machine, the
readings given by the machine will be found to have a certain standard deviation
Gxee+ Furthermore, it is assuned that thg expected efficiency of a transmitter is
stochastically related to the sxpected machine measure of this efficiency. Under
these conditions it 1s obvious that were it not for the fact that there were

errors of measurement in both Y and X, the scatter diagrem of Fig. 4.1 would have

a slightly different appeersnce but cn the other harnd it would still remain s

scatter diagram and not & functional relationship between the two variabdbles con-

sldered., This méanS, in other words, that all instruments having an efficiency Y

will not have the same machine measure X
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3, Calibration of Machine

Let us assume that the group of transmitters, in this case composed of

1
1497 instruments, is a random sample of controlled product. It has been the

practice to adopt some functional relationship between the meter deflection X and

the eftioiency in d.b. so as to calibrate the meter deflection directly in terms

of effiociency. One customary method of doing this hes been to @dopt the line of

regression of & quality Y on the measure Xo If We Were to adopt this line for

the oase of the data given in Fig. 4.1 we would get the distribution shown in

Fiz. 4.3, In other words, all of the trensmitters would appear to heve efficien-

cies within the range -3.3 to -.25 whereas the actual efficiencies were observed

to extend over the range -8 to 3.0.
It has slso been suggestied that in-

stead of using this line of regression we

« 400
° o should use & line which bisects the angle
© 300} .
§ between the two lines of regression. I1f
L]
5.
é 200F ‘. we were to use this line we might get a
S 100} ° distribution with an increased range as
. [ ]
‘:% n A A i 1A_: i .LJL " A Shom in Fig. 4.4.
-8 -6 -4 -2 0 +2
Efficienoy in DB In the first place we should note
FIG. 4.3

that both of these suggested methods of

calibration introduce difficulties be-

~ruse they indicate that the range of variation in the instruments is different
from vwhat 1t really is, The first line does have this to its credit, namely,

that the meter reading obtained in this way does give the expected or average

value of efficiency associated with a

5‘°° given value of X. Furthermore, the

%m ‘. standard deviation of the error of

gm . * . measurement introduced by using this

“ oo . line is cY(l-rz)l/z. Obviously if r is

é.; o o ' ‘. N smell there is little gained by using
R -;iffici-zncy n 4 this line. The second line, however,

TIG: 4.4 even may give an efficiency associated
______ R _With & given value of X which does not
1. Control is used here in the tampmima . T T === i
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occur, &s is readily seen from the figure. Oof course, if it were true that there

was & direct functional relationship between the quality Y end measurement X when

the errors of measurement were excluded, we would have some justification for the

use of a line such as the second one indiocated above, because under the conditions

which actually exist the errors of measurement of both the efficiency and machine
reading are such that a line drawn as indicated above would be approximately that
obtained by the method of least squares where we minimize the distanoce of all the
points in the scatter diagram to this line,

Enough hes been said elready to show that a machine calibrated by sithar
one of the two lines indicated above would not perform the first function of the
machine, namely, to throw out instruments below a certain level. Jn teot it is
easily seen from the scatter diagram itself that there is no method available for

using a meter deflection X to accomplish this ende In other words, it is not

possible for a machine based upon a stochastic restraint to achieve this objeot of

measurement. Let us turn, therefore, to & consideration of the extent to whioh
such a machine can be used in controlling product.

The first step to be taken is to insure by methods presented in the
first bulletin of this series that the assignable causes of variation in quality
of product have been removed and then to choose & representative sample from whidh
we mey set up, as per the method suggested in the reprint on quality controll,
the specification of the distribution of product as measured in terms of the meter
deflection X. In the present example, assuming that we had not additional infor-
mation, we would take the distribution of the 1497 wvalues of X given in the
scatter diagram of Fig. 4.1 as representing standard product. We would then es-
tablish a quality control chart in the standerd way using the parameters of this
distribution as a basis for the chart. Formally this amounts to accepting a dis-
tribution, let us say &'(X) to be teken &s standard. Now so long as the dis-
tribution of product does not change sufficiently from that given by ¢'(i} so
that it may be detected by the control chart method, We may assume that the
product is being controlled satisfactorily in respect to the quality Y in which

we are reslly interested. If, however, the observed distribution from time to

l. Loec. Cit.
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time differs from &'(X) by more than may be -attributed to chance, this fact in-

dicates the possibility of laock of control of the quality
Such variations in X are necessary to indicate lack of

of the product in re-

spect to the quality Y.

control in Y but they are not sufficient, because it is possible for the dis-

tribution of X to vary by more than can be attributed to chance without at the
same time implying that the quality Y has changed.

Before leaving the subject of calibration we must consider briefly some
of the errors introduced by not choosing a random sample by which to calibrate

the maohine. Such a method would be justified provided there was a functional re-
lationship between the quality Y and the meter deflection X when both had been
ocorrected for all errors of measurement. This condition, however, does not exist

as we have already noted. Hence in general, if we choose other than & random

sample, we shall obtain a correlation coefficient different from the true correla-

tion which exists. In several instances coming to our ettention, this particular
practioe has been employed in such a way as to give a much higher correlation

than that which really existed between the quality Y and the meter deflection X in
a random sample. When such a correlation coefficient is used for establishing the
line of regression to be used as a calibration curve, this line no longer neces-
sarily measures the expected value of the quality Y in terms of & given value of
meter defleotion X. In other words, this particular calibration curve loses some
of the advantages that it would have if the true correlation existing between
them were used as a basis for determining this line. For this reason, it seems
highly desiradble that careful consideration be g€iven to the methods of calibrat-
ing the machines which are used as a basis for the measurement of quality., Of,
oourse, this diffioculty is removed if the suggestion made above is followed,
namely, to use the meter deflection X as the basis for detecting quality changes

4. )Maintenance of Machine

There are obviously several means of checking the maintenance of a ma-

chine. One of these customarily used, of course, is to select a group of trans-

mitters whioh are kept as standerds. The machine reading on any one of these
transmitters should differ from the original value accepted as a standard for the

machine by not more than an amount which must be left to chance (I.E.B. 1).
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5 Zrrors of Measurement
It 1s well-known of course that the correlation r, between the observed
Y end the observed X is less than the correlation r between the values of the

quality and the meter reading when corrected for errors of measurement. Thess

two functions are related one to the other as follows:

6y O
r =Yoo Yo
°x %y
In general, therefore, the observed correlation r

Ty

° is always smaller than the
true correlation. By increasing the number of observations of Y and X on a

single instrument we can increase the observed correlation. The fact that r is
in general larger than r, does not help us, héwever, in using the correlation
between single pairs of observationsv for controlling the quality of product, If
we are to improve our method of measurement by teking more than one observation
on each instrument, the amount of improvement can be caloculated by means of the
above relationship, between r and rq.

In the case of transmitters the standard deviation of measurement oy,
(by means.of the ear) of the efficiency ¥ is practically the same as the standan

deviation oy of the efficlency of transmitters and hence in that particular test

°x

r, == g T

° T %%
Hence T, becomes & maximum when the error of machine measure Oy, is zero and is

then equal to ,7071r.
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PART V

Measurement of Quality of a Number of Things

Summary of Part V

In Part V we point out that, having taken a series of n observations
on each of m different characteristics X3, Xz, e+ Xi, ¢++ Xm; the essential
information contained in the observed results is expressible for the most part
in terms of the averages and standard deviations of the characteristics together
with the correlation coefficients between sets of observations on different
characteristics. Starting at this point we show how information expressed in
terms of averages, standard deviations and correlation coefficients can be used
in setting standards of quality and detectihg lack of control of quality of
manufactured product. »

l. PRasis for Measurement

In the general case we assume that the quality of a single thing is

determined by, let us say, m different characteristics
Xl, Xz LI Xi' e Xm
The quality of a group of n things in terms of these m characteristics gives

the following information:
X1 Xays oo gy oo Xy

Lar Xops eev Kypy eoe Ko

. . e oo o LI ) .
. . ceoe o LI IR 3

Xln, in, LAY Xin’ s e &J]]ﬂ

In the simplest case where only one characteristic X is measured on

each of n things, the quality of the group of n things may be thbught of as a
frequency distribution of values of X along the axis of X. In a similar way

1
the quality of a group of n things,

isties,

expressed in terms of m different character-

may be thought of as a frequency distribution in m dimensions.l

e - .- - -— -
—— - - -
S e e S - - - .- - -
- - -
- — - - - - - o -

1. This concept of qu
troLm. P ality is amplified in Part I of the book on "Quelity Con-
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Theoretlcally speaking, the quality of a group of n things in respect

to single characteristic X can be represented by n points along the straight

line, i.e., in one dimension. In a similar way the quality of n things in re-

spect to m different characteristics can be represented by n points in an m-

dimensional space. 1In any practical case, of course, if the number n is large,

it is very difficult indeed to appreciate the significance of such a set of n

points. Particularly is this true when we come to the problem of considering

the significance of the difference in the gualities of two groups of similar

things. What we need in this case is obviously certain functions of these

quality characteristies which will summarize, as it were, the essential infor-

mation contained in the original data. Hence the measurement of the guality

of a number of things reduces down to the problem of finding certain simple
functions of an observed set of quality characteristics which may be used for
the purpose of specifying the quality of a group of n things.

Considered from an abstract point of view, it would be a difficult
task indeed to find functions which would always contain the essential infor-
mation in any given set of data. Most of us perhaps would be inclined to give
up the search for such a function, because a little study soon reveals that a
particular funetion can satisfy this requirement only under very limited condi-
tions.

It turns out, however, in the study of control of quality of manufac-
tured product that the problem is somewhat sirplified becauss, in general, as
shown elsevhere,1 there are two equations of condition which meke it possibdle to
proceed with some confidence in the setting up of ways and means of measuring
the quality of a number of things for the purpose of Quality Control. These
conditions are:

For a controlled product in respect to a single characteristic X,
the probability dy that a single thing will have a quality X within the range

X to X + dX can be approximated closely by

- = - ————————
- ———— - = -
- -—--—-———--—---—----——

Quality Control.
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X X X for the controlled process, o
where x = (X - X'); X' is the expected quality A

istribution of
being the standard deviation, and k being the skewness of the dis

d product in
this controlled product. Similarly we assume that for a controlled P

single thi
respect to m different cnaracteristics, the probabillty dz that a sing ng

hin the range Xy to X; + dXj,
will have a quality Xy, Xp, - Kys ooe X wit 1

X, to X5 + dXy eee X to Xy + axy is given by the following expression:
2

( 2) R X3 X
4 [ ] o Y

dz = Ce . dxl'dxz’”. dxm

= Ce dxl, dIz, ee o dx[n (5.2)

l 1‘12 ss @ rlm
ral l aee er
R b d
r31 1'52 XX rSm
Tm1 Tho vee 1l

and R4y and R“ are the minors obtained by striking out the ith row and ith
column and the ith row and jth column, respectively, of the determinate R, %5

is the sum for every value of i, I, is the sum for every pair of values of 1
and §.

It will be recognized at once that xz in equation 5.2 is the general-

ized form of the function which we have already met so often in particular

guises in this bulletin. Equations 5.1 and 5.2 give us a clue to the nature of

the functions which must be used in the measurement of a quality of a number of

L YT T Y T R X X SRy Ty
O R A S T 0 e e = e e T S - o T G - T G o - - e - -

1. For a description of )(2 function as given abov
sophical Magazine S.5, Vol. I, lQOO,gpage ls?l.e' se¢ Pearson, Karl, Frilo-
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o4 = standard deviation of Xi

T3y § = correlation between the ith and Jth variabdble

and

characteristics X; and Xj.
Broadly speaking, measurement of quality of a number of things is used
for one or the 6ther of two purpeses:
(a) We may start out with n sets of m characteristics derived
from measurement of n things and attempt to specify
standards for each of the m characteristics, or in other
words from the observed sets of data we may try to
establish the set of parameters required in one or the
other of Equations 5.1 and 5.2,
(b) Having specified the standard of quality of a given
product in terms of either Equation 5.1 or 5.2, we
measure the qual_ity of product to see if it differs
significantly from that of standard qualityl.
In either case thé following requirements should be met. The functions
of an observed set of data must be efficient® and satisfactory estimates of tke
following functions of quality characteristics of controlled product:

The expected value X! for the ith characteristic Xj,

i
Standard Deviation Ui'. for the ith characteristic Xy,
Skewness kj'_ for the ith characteristic X.i,

Correlation Coefficient rj'.:j between the ith characteristic X; and the
jth characteristic Xj.

In this we have introduced the prime notation since our use of Equations 5,1
and 5.2 in quality control work is, for the most part, on the assumption that
the parameters  are known. We shall refer to our estimates of these parameters
by the corresponding symbols 'X'i, o;. k; and T4

If the sample size n is large, we have little or no trouble in esti-
mating these parameters. In all cases with which we deal in practice, perhaps
the most satisfactory estimate of X' is the arithmetic mean of the n values of

i
Xj. When the sample size n is small (certainly when it is not over 25) we must

1. Reprint B-277 "Quality Control™.
2. Book on Quality Control, Part III.
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make correction for the fact that the expected standard deviation in sample

in general, be less than the true standard deviation of the popula-

size n will,

tion from which the sample was taken. This general subject has already been

discussed in considerable detail in Part II of this bulletin and all we need to

do at the present time is to translate that discussion into terms of our present
problem by merely remembering that we may consider a value of X in the discus-
sion of Part II from a mathematical viewpoint in identically the same way as we
consider a value of X in our present discussion. We mdy use an estimate of
skewness derived from the sample for the purpose of specification provided the

sample size from which it is determined is not less than 500. In general the

coefficient of correlation rjj derived from a small sample must be corrected for

size of samplel. The type of corrections that we apply to the functions derived

from the observed set of data depend entirely upon whether we are using these

functions in the specification of standards or for the other purpose of deter-

mining whether or not the gquality of a given set of n things differs significant-

ly from standard.

In any case, we need the following information contained in a set of
data:

1. The number n of things measured for the quality characteris-

tic X4.

2. The average Xy.

3. The root mean square deviation gy

4. The correlation coefficient Tij.

5. The skewness k, if n 2 500.

In what we have just said, we do not in any way mean to limit our
analysis of data simply to the use of the stated simple functions. Rather, it
is to be understood that the above functions constitute the minimum number re-

quired to express the information contalned in a set of data, at least for

most purposes of quality control. More specifically, it should be made a defi-

nite practice in most investigations to arrange to have sets of data obtained in

& way that these simple functions can be readily calculated. Starting with

these results we ocen then make use of the data with perhaps a minimum amount of

l. Veys and means of d
iy cocans o oing this are presented in Part III of the book on

- .- -
- ORI e o - -~ = - e
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effort and at the same time secure the maximum amount of information.

In vhat has already been said we have arrived at what may appear to be
a somewhat empirical method of determining whet functions of an observed set of
data shall be used to express the quality of a number of things, It is true;
of course, that anyone who stops to follow through the references cited will
come away with a feeling that the method is not so empirical as it might appear
before due consideration has been given to the two fundamental problems involved
in quality control; that is, the setting of standards of quality and the deter-
mination of whether gquality vériations from this standard are significant.

Under these conditions it is believed to be worth while for us to con-
sider briefly some of the ways in which we have made use of the above simple
functions of the data for the purpose of solving some very important problems
which have come to our attention_ within the past few years.

2. Practical Applications - Setting Standards

A, Physical Properties of Aluminum Die Castings

We have already had occasion to call attention to the work now in prog-
ress in one of the Committees of the American Society for Testing Materials in
the determination of the physical properties of aluminum die castings. This
problem is not peculiar to the work of this particular Committes. Quite the
contrary, it is the problem which confronts every one of these Coonmlttees hav-
ing to do with the specification of standerds for the quality characteristics
of raw materials, In fact, similar problems have been brought to our attention
by two other Committees of the American Society for Testing Naterials and by
different members of our own organization who have the problem of setting stand-

ards on quality characteristics. Naturally, this problem falls in the domain of

Inspection Engineering, because without knowledge of the standards of quality

for a given kind of material, it obviously would be impossible to inspect the

quality of product to determine whether or not it was significantly different

from the standard quality.
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ey | e S | miek | 2R
Company in s. pe . .
A 30120 55.3 2.627
B 25680 51.1 2.575
c 29248 50.7 2.58%5
D 30496 70.2 2.700
E 28900 49.4 2.669

TABLE 5.1 - Data: Alloy #

In Table 5.1 we give the original observations in respect tq three
quality characteristics, tensile strength Xj, hardness X, and density Xz of alu-
minum alloy #4. This particular alloy happens to be the one which is used in
the present desk stand. We may consider Table 5.1 as being typical of the ways
in which the original results should be presented. From these data it is neces-

sary for us to arrive at certain values which ‘we are willing to accept as stand-

ards for these three characteristics.

As soon as the analyst receives information such as that presented in

Table 5.1 he should proceed in the following way.

First, he should make sure to £ind out from the engineers who have had

to do with the taking of the data and the setting of the specifications on the

material and all others concerned if they have any reason whatsoever to believe

that the observed values of the quality characteristics have not been taken

under a controlled Constant System of Chance Causes as defined, for example, in

IEB-1, If the engineers in charge answer that the data have not been accumula-

ted under such a condition, it remains for them to define further how they

would group the data taken under one set of constant causes so as to distin-

guish it from the data taken under another set of constant causes, 1In other

words, the analyst must demend to know all of the apriori information before he

Yentures to add much to what the engineer can do.

This point cannot be empha -
sized too much.
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Let us assume now that we have received the answer of the engineers in

charge that the data of Table 5.1, to the very best of their knowledge, has been

accumulated under a constant system of chance causes. It is then the duty of

the analyst to test this postulate. Ways and means for doing this are discussed

at length in I.E.B. 1.

In the present case samples of the alloy were furnished by each of the
five companies to each of eight different testing laboratories, thus making a
total of 40 tests on each alloy. We need not g0 through all the details of ap-
plying the criteria of I.E.B. 1 to the set of data given in Table 5.1 because
the method of doing this has been given adequately in Bulletin I.E.B. 1. Suf-
fice it to say that it is necessary to determine whether or not there is any
indication of assignable causes of variation between the testing laboratories
and also between the companies furnishing samples. In practically every case
which was investigated we did come out with positive indications of assignable
causes of variation and in certain meetings of this Committee the nature of the
mfrvs‘u likely causes of such variation were suggested by members of the Committee.
If we were to follow through all of the steps, therefore, in taking account of
our findings in respect to assignable causes in this particular instance, it
would be necessary for us to exclude certain of the data presented in Table 5.1.
For our present purpose, however, since we are merely interested in illustrat-
ing the method of setting the standards of quality after having taken the two
steps previously mentioned for finding whether or not assignable causes are
present, we shall assume that the data of Table 5.1 failed to indicate in any

way whatsoever the presence of assignable causes of variation.

Observed Corrected Corrected
Standard Standard Standard
Physical Property Average Deviation ¢ Deviation cgzo Deviation cyo
Tensile St, X ' 059.372
1bs, per sq. in. 28888.8 1704 .3763 2200.3403 1059.3721
in maces X2 55.54 7 .6891 9.9266 4.7792
Density X3 .02977
grams per cc. 2,6312 .04790 .06184
Sample Size n
Tio = 5449 flz = .20
Ty = 6604 315 = ,27
rzs = .6791 1‘23 = ,27

TABLE 5.2 ~ Analysis of Data: Alloy #
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Starting at this point the analyst prepares the information given in

ady discussed in Part
Table 5.2 where s and c, are the correction factors already

II of the present Bulletin. This table also includes the correlation coeffici-

ts corrected for the
ents ryo, Ty3, and Tog and the values of these coefficien

size of samplel.
Now, we come to the problem of interpreting the results in Table 5.2

as finally given by the analyst. Having no information other than that pre-
sented in this table and subject to the limitations already set forth, we ac-
cept the averages, il' ‘x‘z and 'ia, as representing our best estimates of the ex-
pected values ii, ié and ié of the corresponding physical characteristics. 1In
a similar way, subject to the conditions already stated, we assume that the cor-
rected standard deviations cg o4, 63 Op and cg o3 represent estimates of stand-
ard deviations of the properties, tensile strength, hardness and density, re-
spectively. In other words they may be taken as a measure of the variability
of these three characteristies. More specifically we make the following asser-
tion in the light of information already presented in Part II of this Bulletin:
The a priori expected probability associated with the range Xj * t ¢z oy is
given by the normal law integral with no greater error than that indicated in
reprint B-330. '

Similarly, we may state, upon the basis of both theory and experiment,
that subject to the assumption that the distributions of the physical properties
are produced under controlled conditions such that the distributions themselves
are normal, the expected probability associated with the range 'fi Tt Cy Oy is
given by "Student's" integral sc long as t is not made larger then that corre-
sponding to a probability of about .97,

Similarly, we may state, upon the basis of both theory and experi-

ment, subject to the conditions of the Previous paragraph, that on the average

the fr X, X X
e fraction P of the expected values, Xi, Xé and X‘%, will not differ in abso-

lute valu X, X e
e from the averages Xl, Xp and ‘{3 of the respective samples by more

T e e T m e ca - e .o
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c =
5 Yn -1

and P is obtained from "Student's" integral for a given value of t.

The corrected values of r, that is, F15, ¥13 and ¥p5, can be used in

a way -sumilar to that in which the corrected sigmas, cg 01, €3 0p and cgy LY
havé been usedl.

B. Standard Modulus of Rupture of Telephone Poles

Practical Situation - Let us consider another important protlem in the

setting of quality standards. For several years the accepted moduli of rupture
for the four important classes of telephone poles have been those shown in
Column 2 of Table 5.3. These figures were probably set upon the basis of tests
made on sawn timbers. Within more recent years the question has arisen as to
whether or not these previously accepted figures are satisfactory standards,
There are some who feel that the figumes are too low and others who feel that
they are too high.

Previously |lore Recent-

Accepted ly Proposed Possible

Standard Standard _______Standard
_ X o c30
Southern Yellow Pine  5000-5100 6800 8164 1453 1468
Western Cedar 5000-5100 5600 5787 1032 1057
Eastern Cedarxr 3600 3600 3538 880 889
Chestnut 5000-5100 6000 6761 1204 1226

TABLE 5.3 - Modulus of Rupture in psi.

These previously accepted values for the modulus of rupture were
early brought into question because it was argued that tests on sawn timbers
might give results different from those on full size poles. Hence within the
last few years several pole tests have been made to provide additional data uas
a basis for reconsidering the previously accepted standards., 4 preliminary re-
view 6f these new data by some of the engineers in charge of the work led to

proposed standards given in the third column of Table 5.3.

1. This statement is subject to limitations which will be set forth in Part
III of the book on Quality Control.
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It was shown by those interested in the design of pole lines that the

acceptance of the proposed new standards would give an annual saving running in-
to hundreds of thousands of dollars.

At this point in the study the original pole test data were submitted

for statistical analysis to determine whether Or not the more Trecently proposed

values were completely justified in the 1ight of available experimental infor-

pmation.
Formulation of Practical Problem - Let us look at the figures in

emtap—

Column 2 of Table 5.3. Are we supposed %o 1ntei‘pret the previously accepted
standards to mean that every southern yellow pine, western cedar or chestnut
pole will have a modulus of rupture between 5000 and 5100 psi and that every
eastern cedar pole will have a modulus of rupture exactly equal to 3600 psi?
If these figures cannot be interpreted in this way, what is their interpreta-
tion? This is the kind of question that immediately comes to the mind of the
analyst. Obviously the method of giving a standard in the form presented in
column 2 of Table 5.3 is open to the very serious criticism that it does not
make possible an answer to this question and, without knowing the answer to
this question, we cannot make the most satisfactory use of available informa-
tion. #hat we should do in this case, as we have already pointed out, is to
give our best estimate of the expected value together with an adequate measure
of the dispersion about this expected value which can be used as a basis for an
estimate of the expected number of poles having a modulus of rupture within any
€iven range.

The criticism levelled at the previously accepted standards may also
be levelled at the more recently proposed standards given in Column 3 of Table

5.3.

Results Obtained to Date - In our previous discussion of the method of
setting standards,

we have been careful to point out that in every instance the
first step that sheuld be taken is to obtain all available a priori information
which would make possible the division of the original data into rational sub-

groups in the sense that it is reasonable to believe that the sub-groups could

have come from different constant systems of chance causes. The next step is

t
o record the number of observations, average, and standard deviation for each
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of the rational sub-groups of data. We may then use the correction factor Cq
for the observed standard deviation and be able'to say, subject to the limita-
tions previously set forth in this bulletin, that not less than 95% of the poles
may be expected to have moduli of rupture within the range of the observed aver-
age 'ii plus or minus 3"5"1 for the ith rational sub-group.

gt the initial stage of the analytical investigation no a priori in-
formation could be obtained to make possible sub-division of the original data
into rational sub-groups. Initially, then, we were forced to assume that all of
the tests on a given species of pole came from a constant normal system of
chance causes, Upon the basis of this assumption, the results presented graph-
lcally in Fig. 5.1 were obtained. The two groups of standards are also shown in
this figure, We see at once that neither

group of standards are located in the same

98 Obasrvalivne
0,0 « le8d

way in respect to the distribution of mod- ‘. um’
Ll
ulus of rupture. dogt . *30ye T
7 i'v S R (I § QS T
2

Modulus of Rupture in thousands of lbs. per sg. In.
SOUTHERN YELLOW PINE

Later investigation gave an

a priori basis for the division of the

43 Otservetlions
o . 1087

original data into certain rational sub- I o707 ?

1 -3030 OMSU

groups, One such sub-group was that con-
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tained are presented in Table 5.4 and are L S0q0 ,,oa,%‘z
shown graphically in Fig. 5.2. Here % 31,:25 LIRS AR SN R 1N U
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8 1 1 ted stends.
= Pr Accepted standard
Naturally, an engineer is inter- 51 Reoently Proposed Stardard

rFIG. 5.1

parison of the different species.

ested in the corresponding standards for

various cther rational sub-groups and some

of this information has already been secured. For example, it is found tnst cer-
tain of the poles which must be treated before being placed in line lose upwards

of one thousand pounds in expected modulus of rupture. Sufficient has been said,
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however, to indicate that for every ra-
tional sub-group of the data we should
give at least the average X, standerd de~
viation o and corrected standard dgvia-
tion czo and not merely some single
figure such as given in Columns 2 and

3 of Table 5.3 since such figures do

not bear any previously known definite
relationship to the distribution of the
quality characteristic.

Now, let us go a little further
to point out what should be an even
better way of setting a standard inthis
case. For example, moisture content is
an assignable cause of variation. Little
can be done, however, in the study of the
original data such as that considered in
connection with Table 5.4 because the

method of measuring moisture content is

Y X < 239
29 8752 1374 1424
9 5912 793 900
5 3070 392 506
55 6786 1251 1274

TABLE 5.4 - Saturated Untreated Poles -
Possible Standards.

In a more recent work on the study of modulus of rupture of lodgepole

pine,

attempt was made to relate the two factors,

tent,

factors is presented in Fig. 5.3,

the error of measurement of moisture content was somewhat reduced and an

modulus of rupture and moisture con-

The scatter diagram showing the observed relationship between these two

Vie see at once that this relationship is not
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functional but instead is sto-

chastic. Further study re- - ] i BED | Y j !

vealed that the regression in % o000 - ‘ l

this particular case could not %m N . T ; |

adequately be represented by a -g o i

straight line. However, the 3 1 NS R ‘

data definitelv indicated that %m L bl .

the expected modulus of rupture ; : o Y

depends upon the moisture con- 2 o 1 ' | 1 : . .

tent. Now an engineer in o ‘ i 1 . |
TR TR W W B H h w W w W w e e o

charge of building a line in a Motsture Content ia Parosnt

ris. 8.3

dry area could afford to use a much higher modulus of rupture than an engineer
designing a line in which the same kind of poles were to be used in a wet area.
It is proposed, therefore, in a problem such as this, that we try to establish,
by means previously discussed in this bulletin, curves of regression between
modulus of rupture and moisture content and then determine the standard devia-
tion of the observed data about this accepted curve of regression. Quality
standard then would be presented in terms of the equation of this curve involv-
ing the averages, correlation coefficients, and possibly higher moments, and
the standard deviation about this curve.

We should, perhaps, call attention in more detail to one particular
type of question which arises in setting certain standards, particularly in so
far as the preceding discussion bears upon it. For example, we may be called
upon to set a standard for modulus of rupture for Southern Yellow Pine Poles.
Now in general, four different classes of Southern Yellow Pine Poles are dis-
tinguished one from another; namely, Loblolly, Shortleaf, Llongleaf and Slash,
Evidence is at hand to indicate that each of these subdivisions of Southern
Yellow Pine Poles may be significantly different, one from the other. It is
well recognized, however, that very serious practical difficulties arise when

one triés to draw a close division line between the four subgroups. In fact,

certain experienced timber men claim that it cannot be done. The fact remalins,

however, that observations on pole strengths of timbers have becn divided inte
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four groups bearing the names indicated above and that some of these groups are

significantly different from others. This fact jndicates the presence of assign-

able causes which should not be left to chance.
4ssuming then, for the sake of argument, that the four subgroups are

admitted to be different, how shall we set a standard for Southern Yellow Pine
Poles so as to include all four of the subgroups. Obviously there are a very
large number of anawers to this question in the sense now to be explained. If
we were to examine & group of n poles and all that we knew was that they were
Southern Yellow Pine, it i3 obvious that there are a very large number of ways in
which the poles might have been divided among the four subgroups. It is obvious
that the standard deviation of modulus of rupture for a sample of size n of
Southern Yellow Pine Poles will depend upon the way in which the sample is sup~
posed to be divided among the subgroups. Therefore, we can not, in general,

set standards for Southern Yellow Pine as a group unless we mean by that stand-
ard that a certain previously assigned percentage of the poles shall be obtained
from each of the four subgroups.

In practice it may not be possible always to make sure that in the
future & certain fixed percentage of poles will be drawn from each of the sub-
groups but 1t may be possible to estimate roughly what this percentage should be
so that a standard may be set subject to the limiting assumption as to the way
the poles are supposed to be divided emong the four subgroups. Obviously it is
necessary in proposing such a standard that we make sure that the individual
who is to make use of the standard fully appreciates that the proposed standard
only holds under the definite assumption that a certain fixed percentage of
poles {s to be taken from each of the subgroups.

C. Standard for Depth of Sapwood

He choose this third problem because it indicates certain features not

previously considered in either of the other two. Some time ago, 1370 Southern

Yellow Pine Poles wers shipped to one treating Plant and, before treatment, the

depth of sapwood on each pole was determined by one measurement on each pole.
This experiment gave us a series of 1370 observativons of sapwood of Southern

Yellow Pine Poles which we might use in setting the standard for depth of sap-

wood of Southern Yellow Pine Poles.
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The frequency distribution of these results is presented in Table 5.5
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TABLE 5.5

together with the detailed steps of the analysis involved 1in the calculation of
moments and the application of Criterion 3, I.E.B. 1, for determining whether or
not there are any indications of the presence of the assignable causes of varia-
tion. The observed and theoretical distributions are presented graphically in

Figure 5.4. As seen from the data sheet, the value of X2 was 10.84 correspond-
ing to a prob‘ability of rit p = .54. It will be recalled that a probability of

fit greater than .00l is to be taken as not indicating the presence Of assifnable
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causes of variation although

it will be remembered also
| that it is quite possible
o 160t that this test may fail to
é detect assignable causes
9 | although the conditions
§ 80r under which such failure
g night take place are not
4of very likely in most practi-
oL-l-.lS‘ S W B v R o S v e cal problems. Since in the
Depth of Sapwood - in. present case we had no way
® Observed Points of subdividing the 1370 ob-

Theoretical Curve (2nd. Approx.)

servations into rational
Flg. 5.4 subgroups we must rely upon
the use of Criterion 3 and conclude that we have no indication of the existence
of assirnable causes of variation. Hence we take the following information as
rerresenting the standard for depth of sapwood of Southern Yellow Pine Pole.
Estimate of expected value 2' is average X = 2.91"
Estimate of standard deviations ¢' is Ca0 = .798"
Estimate of skewness k' is k = L,24
Now, we should call attention to two points in con.néction with the ac-
ceptance of these standeards. In the first place we should consider the bearing
of the previous section having to do with the setting of standards for Southern
Yellow ine Poles as a group when it is assumed that this group of poles may be
rationelly subdivided into at least four subgroups. In the ‘first place the
standard as presented abpve could be accepted as a standard for the depth of
sapwood of Southern Yellow Pine Poles made up of four subgroups in the proportion
that these subgroups existed in the original series of 1370 observations. It is
of course true that this standard might even have a broader significance., For
exemple, it 1is possible that the subgroups do not differ significantly in re-
spect to depth of sapwood although it is doubtful thet this is actually the sit-

uation.

In the second place the contention may be made generally that we can-

not measure accurately the depth of sapwood. One reason for this is that it is
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very difficult to establish any sharp line.of demarcation between sapwood and

heartwood. In other words, there is an element of Personal judgment in deciding
on the depth of sapwood. In addition to this the depth of sapwood is deter-
mined for each pole on the basis of a single observation although it is recog-

nized that the sapwood in general is not the same over the butt section of the

pole where it is customarily taken. Hence, each of the 1370 observations were

subject to error. This leads us to a consideration of the effects of error of

measuremgnt which will be taken up in detail in Part 6 of this bulletin. It is
sufficient to say here, however, that we may use the standard suggested above as
the basis for still further correction which will take into account the standard

deviation of the error of measurement. 1In general, it 1s reasonable to assure

that this error of measurement is distributed symmetrically and hence that it
does not influence either our estimate X of the expected value X' or our esti-
mate k of the skewness k'. On the other hand, the standard deviation of the
true depth of sapwood is most likely less than Cz0 given above. In fact, as we
shall see in Part 6 our best estimate of the true standard deviation o, ' is

T
given by the following relation

/ 2 2
UT' <. (CSG) 'UE

where GE is the standard deviation of the error of measurement.

3. Applications in the Control of Quality

A. Control of Treatment of Telephone Poles

The quality of a number of things, as we have already seen, may be
. used in two ways for control purposes. For example, we may compare the quality
of a group of things with that of another group of the same kind to see if they
are significantly different or we may compare the yuality of a group of things
with standard quality for that kind of thing to see if the difference between
them is significant. 1In the treatment of telephone poles it 1s necessary to
have several plants located in different sections of the country so as to keep
the freight cha';rges as low as possible; Naturally, one of the functions of in-
spection is to determine whether or not the treatments given at one plant are

assignably different from those given at other plants.
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indi ity of
In the past, two characteristics have been used to indicate quality
*

0il contained in
treatment, - depth of penetration and the amount of creosote or

d to our
a cublc foot of sapwood. Some time ago the following problem was calle

oles of a
attention. Each of seven plants had been sent a number of telephone p

g the poles had
civen kind for treatment, and the depth of penetration for each of P

we were
been rieasured at each of the plants. Making use of this information

supposed to determine whether or not the plants were significantly different in
respect to the quality of treatment as measured by depth of penetration.

Naturally the method of procedure in such a case is to apply Modified
Criterion I, I.E.B. 1, to determine whether or not there are any indications of
the presence of assignable causes of variation. The application of this test
gave a positive indication of the existence of assignable causes. A lityle
consideration of the physical problems involved indicated that we should ex-
pect to find that the depth of penetration depended very definitely upon the
kind of poles submitted to a given plant in addition to the inherent quality of
treatment which that plant was capable of giving.

For example, one of these factors which we should expect to influence
the depth of penetration is the depth of sapwood. If the depth of penetration
does depend upon the depth of sapwood, it is obvious that in any comparison of
different plants it is necessary that we consider not only depth of penetra-
tion but also depth of sapwood of the poles delivered to a given plant. In
general, we can say that, if there are several quality characteristics, say
Yis Xp, oo Xy, Wwhich influence the depth of penetration, then it is necessary
to take all of these factors into consideratién in comparing the gquality of
treatment given by one plant with that of another. Following the general
method of attack outlined in the first section of Part V of this bulletin, the
comparison of the.quality Oof treatment given by the different plants requires
@ knovledge of the average and standard deviation of each of the m quality
characteristics, and of the coefficients of correlation between them. This
general problem of adequately comparing the qualities of treatment given by
different plants is far from being solved up to the present time although we
may outline some of the steps which have been taken to date so as to indicate

the method of procedure to be followed in studies of this nature.



71 -

- 5388843 $88A8 QN NARRELRFLEEIRERIZEBRLANSRERARUBEREER SEBERAYRIBERY YRRESHSERINRRIRBIBRARIEIERERIEY

AR A A i e e S e e R e e N B I R A HE Aol A A A AN S [ IR AR N R R R N R I R LRI
!30\.\.1\-1\!\.\-12!1\.1\‘211111‘!11l< PRI B IS L 5 B0 lllllll\.lﬂlll’llll’1071111971110- P e e L R R K I L R R ]

~ 2282398883233835423448R0I2dY " A8534 wwwammm..mwwu:wxwwmowwwwmmmuwwam(wm SREE-FEBEFLEE2YIERS $38BENIIRRRERT

0\.4!!'.!533533!!?!!!133‘ P L R R I 21!\1!!151\.!?3!!1!1\\n01\22\7..“1 Hr et erranrenaaNrNnNana

» 388888883382383838r22 $8228838RS223328BANIRERAINERIALIZAZREERT mwowwowwmowwwowwowmowwuwwwmwwuw 83888ERRI

k] R A R A e e P R i e A S M RN N I ] e e % TR > el e R R
1\;1110!)\.111!\.!!1!1\.001!111!!\.1\.1111\.11111111!0111101\.31ll!3'110\4!1111011101215210101!)21!11!011!

wi SRSRBSBRSSRIRRIIRAZREZET 2223839288285R822882838R8838 88R388IRIBINBBREZZIRAS 293222328341 RREEREEZERER

e e s e e e At e et e s eate

32.3!1112131!3‘52332335411412‘2!32!5!3!!!33'.!52‘1212!55131353!31!‘!312331322214051421323343131323

- $3828888883833838R3 8RB383883% nwwwwwwowuwwonww&owmwuommomnmwwwwwwuwwwwmwwsw $8883R3833RRBRBQERLAZRAR

“ 2 s 0 0 o 0 i i A A A R N L N I N R R R R A N L A N 4 IR PR IR 228 hAsan (R R
211010“11\.31\.\.11\‘\.\.111\&20\.0.-O\A\A\L\az3!0\51\.\.13\.222111\.02‘.11110‘1!!111111112111023111\‘02!222212111122

883 CgPRR22832R288825833R3288 R R3R3BRI2380RERREEIT 28889330 8RRIZIZEY 8283833388808 RAZS 3888183888

° s o o e s 8 s 8 8 b 8 8 e 8 e 8 s e s 8 s s 4 &0k a0 e a s s ¢ s e a0 LI IR 1Q1ew s s s 0 8 8 o8 A .

L3
‘22151233!3‘13312!(!.23‘53\.25122‘3‘631221323!:3312’-12‘2’.3321323‘22333322332‘13“3312‘3333355332253

» 898CRRRRR8S3ERLS33R883998823888852388R8238R3883 283333388828 wwwwwmmwmwwwwﬂwmmwmuwwmwswwwowsmmoww&uwsnow

1211219.\.131101!10!11122001010\-1120\.1011\.12002121111021011111!0011202111212011110111111212021121122

0 mwwwwmwwuw&uwomuawwemm.:wwwwmwwwwwwwmwwmmwwamnwwwowwmmmuwwmowwwmowmbwowmww 282288833883 IRIYRIRERE

45!!323318231331\.3‘8232222121211122321222433313322‘!3312253222122023233322332422221312323332232222

 CSSREB883883283228333888R838833RERNILEEAR SRE3823288KR]3RAQRI8RYS 8382883888383 3338 B8R RRERRARVRREIR

B RCEE] “ e o = e e e e s m e » e e = e »
°1110l1111\.001121221122o\.o..\4201‘.\.111122112\.2120101011’-111212‘110\401o3213111112132111221221111111121

W 8838823388838 mwow&mmwwwwmwomowuowo&awwwuw wwwmwuwmmMwmwwwwwwO&mwmwswwowwww 2R82RRERIRIRQLRABERRRER

> a e " e 8 8 5 4 0 o 8 s 8 o e ®

133321223223112323232335!2233222‘233‘3323333522224‘2‘211‘3353222283‘23323222354322‘332322352222252

) SR3889%388338888338 99889 R88358398898 3580882883383 88282R838R88388888338%87 2853238988358 RIRRIBREALRY

e s s 8 0 0 8 00 ...o.-o.-..—.-.-o.......oo-o-..o.-.o-o.-..o.o. s 8 s s b @ o.u o e s o

11100111210101111111110121011011011211112211111211102011022030112112110121110332212110111110012211

w1 88RS5828383 33232883R8883885888 mmmwwmw&wwswsuwmwwmmm&mwwwommwswswwmsmmwmwwoww5Mwmmwwuuwwgwwwmwwwwwwm

2223221351‘2253222222139—32212323121‘32113224322329—22522312-015133254‘131453222343253311222251323322

Bl wmxwwﬁ%ommwmmmwmmsww%wwmomwowmx S8888238% wmomwwwwwwwww5wwmﬁ9&1mmmmmwmw5wm%%wmmwwmsww_%%m_wmwwwwwmw

112110211211111111111123122202101\.1011121210212111012110022110011111111111002222112231101011201211

“ BS838RIBIRRRSZBRILER wwwmomvmwmwmwmomva%1mﬁ%wmwwmwwmwwwmwwmmmmwwmwumw 22RRILIBLE 2288282888887

225335223323215122212244333213212225322322222155221233221222222332222212251132342353422&3054513322

> mumwomwo&ammmwwmﬁw ﬁwm%mMmemwmoawmomuowwwm wwmmon1wwmmmm1mmuammwma%wmm 883288 RARSRARIRRVEALRIAGRA

x.%msm%w Wﬁowowom%mmwwwm 888R8%3 wmmwwwwmﬁmwm wmmmww%mmmwwﬂﬂwmmommwwwom&%mwowwwwwmm%.MMMMM&M%MWM@
33232222253221453223324322253353211535525514323452223252532222545351552222232234225342223324223133
m%%mo%wwommmwmmmW%% owwsm&o%wwmwmmm%m%mwmw%wommmm WwwﬁmmmwmmmmmWMMMm.m&mMMmMMMMMMMﬁﬁﬁMMﬁﬁMMﬁMMWMMM
LLLL&&&LIIllOlOl0211LL&L&1111221mmLLal21112111111500L21121112123111111211210212122111101221011111L

~« 88R2884828388838R883 MM%Wmmwmmw%wmm%%wswwﬁwwwmmmowmw5mwmmmmmmmmmm&&mmmmm&%mmMMMMM&MMW&MM@M@M%M@MN%M%
3142321221222525225231524255’-452 12321533332253535125425232222342122223143222131552251122525234232

.\ 5339%%99399935E 85 ENE9S5888R9 8592902 RSEEA359ESE0 NNy NgEaTAIREYANEARLeeUIRRTRAARILRTARIRAL
21221112021100122111010101121ﬂvlo2001010121111101110110‘.111325124252101110210112012.*102101111111211

Y RReEEe e Ne9ARRANREERiASSEa48R <A A8RERRAR5AAS49R85REENRSE9ERERRRR12ERE90Y8949RRRaRRSARIARE
21422113151222235322155322422‘3122252212322235233521122522533344435‘.151153312542533324222512222322
omwmomwwmsmWIm%omvmwmﬁ%wwmw%mmmmwwmw%%mwmmwm%%meMNwmmmmm.mmmm&&mmmmmmmmmmmmmmmMMM%MMMMMMM&MMMMMMM
2011&L&L1212112211112OleL&&lm&Lmhllllo2121201LL1L1LL111111101121310101010112012111011111121211122
wwwmwwwwowwwmmmmwmmwommmm%wwwwwmwwmmw%%m%m%ommm memwW%MMMM%mm%mmwmmmmmMM@MMmmMﬂﬁmMMMMﬁ&MMMmmMMM
3242331225133342332231&31&&&%&&&1&2533152424235.&LL&&&L&maaemmsssazlz32251225224221223222253532225

> wSW4mwmwwm%wwwmw w%%%wowwmmm%mmmwmm%%moswwwmm%w%mwmﬁ%wwmmm&wmmmmmwmmNM%MmMMM&&&@%MMMMM%MM%M&M&MM
11210llllllllllllllllmm&&lah.mhmhzhlz1OOLl0lhhmzhl&LmLmhhsLllhlz2311111111011111011111331121111021

o RRuashRRReRaAReREAAEAEA NTaRAAAEEg3ReREERa 0 33RREERAS8RE9EERRN29RIANAENNEREIRALINALIRA2RALRATIY
324513122322335\ 3342322‘52‘123‘33‘52431132233213313232153422332‘3‘22251352221224221152452255223232

. HE358958898084380A53797SRERSN5R8 5934998325 59395996505883289909493559988978898894888133899885593
111212111121115111111115011‘-21‘.011‘22111211‘.220111111011101112121210121111220102310122221121102011

\ 33ERSRRaESEENERRARESRRAEAARA358EEsR RAERReARRRANANARE80gES8EASRERR2RRANAASERERINIIANARRENINAAAAR
525353132252223125‘222“22313331425242252552521232232231112423552341135242422244425242322352123222

. 53448E433289989394392999554889593484495299199990998299948890992998239450890901R99RARAA2ATRIRALAN
11121111121111210100110112.*1021111311o1011o1201111211111111010155110121110100121110112232302211021

« 33%844188774932888 225 AaRarATEEasaRARE ARz ANTqannE ataqAgnaAEINARTNaTIILNAT2AITAAIRINLA0802088

TABLE 5.6



- 72 -

In the first place it was of interest to determine whether or not

. b o
there was any experimental evidence indicating correlation between the depth o

sapwood and depth of penetration in a homogeneous group of poles of a given

species. A short time later we obtained experimental information which made

such a study possible. The data in’this instance consisted of 1370 pairs of

observations of depth of sapwood and depth of penetration in a group of as many
telephone poles of the same species as had previously been investigated. So
that the reader may not only follow the line of argument but understand some

of the steps which may be unfamiliar, we shall outline in some detail the

method of analyzing these data,

The originel results are presented in Table 5.6. One of the first
things to do, of course, is to make sure that the group of poles was homogene-
ous in respect to depth of sapwood., In other words, it was necessary to deter-
mine whether or not there was any indication of the presence of assignable
causes of variation in the depth of sapwood within the group of 1370 poles.

Ylow this particular group of poles 1s the one used above in establishing a
standard depth of sapwood where it is shown that the data give no indication of
the existence of assignable causes of variation.l

Table 5.7 gives the necessary detalls required to calculate the cor-
relation coefficient between depth of sapwood and depth of penetration. By
means of analysis we arrive at the following figures which are supposed to
€ive the essential information contained in the original data in so far as we

are immediately concerned: 2
X
O'X = .80 "

2.91 inches

¥ = 1,59 "

(¢4 = .62 "
Y
rYx = .60 "

----------—-_—---------------—-----_--———--

1. It will ve shown in Part III of the boo

been any evidence of assignable causes of variati
_ on, there would have been
:ciame Teason to believe that any observed correlatior’l d4id not necessarily in-
. Itcate that sapwood was a controlling factor.

. was necessary to make further investigation to d
:g: stochastic relationship between Y and X was linear. The details of
the: ;re presented in Part III of the book and need not be considered fur-

ere, since they indicated that what we are about to say is justified.

k on Quality Control that, had there
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X = Depth of Sapwood Y = Depth of Penetration
(1) (2)  (3) (4) (1)  (2) (3) (4) (1) (&) (3) (4)
X Y n nXyY X Y n nXyY x Y n nXy
1.0 R 1 .70 | 3.1 .7 10 21.70 2.0 3.4 5 6400
1.0 1 1.00 1.0 22 66.20 3.7 1 14.80
1.3 o4 1 .52 le3d 40 131.20 4.3 1.0 4 17.20
15 13.65 1.6 42 208.32 1.3 4 22.36
1.0 12 15.60 1.9 36 212.04 1.6 7 45.16
. 1.3 1 1.69 2.2 24 163.68 1.9 7 57.19
1.6 o4 2 1.28 2.5 6 46.50 2.2 6 56.76
g 1 12.32 2.8 i 60.76 2.5 7 75.25
1.0 33 52.80 3.1 1 g9.81 2.6 4 48.16
1.3 11 22.88 | 3.4 7 3 7.14 3.1 5 66.65
1.6 5 12.80 1.0 15 51.00 3.4 3 43.86
1.9 J 13 17.29 1.3 29 128.18 3.7 1 15.91
1.0 41 77.90 1.6 28 152.32 4.6 7 1 3.22
1.6 14 42.56 2.2 27 201.96 1.6 5 $6.80
1.9 2 7.22 2.5 11 93.50 1.9 3 26.22
2.2 o4 1 .88 2.8 12 1l14.24 2.2 3 30.36
711 16.94 3.1 2 21.08 2.9 1 11.50
1.0 42 92.40 3.4 2 23.12 2.8 3 38.64
1.3 48 137.28 | 3.7 .7 1 2.59 3.1 3 42.78
1.6 39 137.28 1.0 10 37.00 3.4 2 31.28
1.9 10 41.80 1.3 13 62.53 3.7 1 17.02
2.2 2 9.68 1.6 21 124.32 4.0 2 36.80
2.5 o4 1 1.00 1.9 24 168.72 4.9 1.0 1 4.90
7 14 24.50 2.2 28 227.92 1.6 3 23.52
1.0 50 125.00 2.5 11 101.75 1.9 1 9.31
1.3 59 191.75 2.8 7 72.52 2.% 1 10.78
1.6 34 136.00 3.1 4 45.88 245 2 £4.50
1.9 19 90.25 3.4 4 50.32 2.8 2 27.44
2.2 7 38.50 | 4.0 o7 2 5.60 3.1 1 15.19
2.5 2 12.50 1.0 2 8.00 3.7 2 36.26
2.8 o7 6 11.76 1.3 10 52.00 4.3 1 21.07
1.0 37 103.60 1.6 10 64.00 5.2 1.0 1 5.20
1.3 51 185.64 1.9 9 68.40 3.1 1 16.12
1.6 45 201.60 2.2 15 132.00 3.7 1 19.24
1.9 22 117.04 2.5 12 120.00 4.0 1 £0.80
2.2 18 110.88 2.8 14 156.80 4.6 1 £3.92
2.5 12 84.00 3.1 2 24.80 5.5 245 1 13.75
2.8 2 15.68
n = 1370
IXYn = 6765.77 X¥ = 4.637654
XY = .498779
5 4.938518 oxSy
~ 2222 . XY _ 4.938518 - 4.637654 _ _¢om00)
r O'XUY .4987179

TABLE 5.7 - CALCULATION OF CORRELATION COEFFICIENT
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ason
3ince the correlation coefficient is as large as it is, we have Teas

netra-
to believe that there is a stochastic relationship between the depth of pene

. s in a re-
tion and depth of sapwood., Furthermore, since, as we have pointed out 1 P

vious footnote, further analysis of the data revealed that the regression was

linear, we may make use of the correlation coefficient thus obtained to give us

the line of regression,

= a -X
Y -%Y rYx oy (x-X),

and this equation becomes upon substitution of the values:
Y = .,472209 X + .215401

Fig. 5.5 shows how closely this line of regression fits the observed

means of the columns.

This concluded the first step

in the investigation which showed quite

g o definitely that one of the quality char-
::; . acteristics which must be considered in
3 .

f . the comparison of the quality of pene-

tration as given by different plants was

cepih

Y e

. the depth of sapwood.

Soon we had occasion to make

1 B 3 4 S5

% = bepth of Sepwood - in. use of this information in the further
Regression Y on X

gresaton ¥ on study of quality of treatment. In this
Pig. 5.5 case we started with the information pre-

sented in Fig. 5.6 which shows the scatter diagrams of depth of sapwood vs.

depth of penetration for groups of the same kind of pole submitted to the seven

different plants, In line with the results previously obtained it was neces-

sary to reduoe these data to the averages, standard deviations and correlation

coefficients presented in Table 5.8. Imnediately we note that there is quite a

wide variation not only in the average depthsof penetration but also in the

average depths of sapwood. Naturally we would look to see if the depth of sap-

wood is the controlling factor in producing an assignable difference in depth

of penetration. ZEven a little 1nvestigation of the information presented in
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X = Depth of Sapwood in inches
Y = Depth of Penetration in inches

No. of Ko. Of Y o. r
Company | poles | Borings X °x b4 Y
1 48 350 3.5611 | 6060 _ 1.8%32 . %3?_ . 245'57"03
9 3.1552 | .6922 | 2.0 . 7091 .
% %g ﬁ——'%s 2.8959 | .6667 | 1.7016 | .5925 <4913 |
4 47 | 323 3.3963 | .7098 | 2.0655 | .7153 .1584 |
5 1) 346 3.6107 | .5935 1.9642 | .6865 -.1815 |
8 50 241 3.4012 | .5987 | 2.0820 | . 7546 .4181 |
7 50 346 3.1650 | . 6385 1.6832 | 6568 . 5855 |
Total 343 2161 3.3242 | .6863 1.9053 | .6911 .3926
— — =
¥oy = -6422 dy .6720 *er- 2656

¥Weighted Average
TABIE 5.8

Table 5.8 revewels that this is not the case. Then the next logical step is to
consider tne control charts of the type given by Criterion I modified, I.E.B. 1,
for the averayes, standard deviations and correlation coefficients. These are
rresented in Flg. 5.7. Immediately we get an indication that there is some
assignable cause of variation in the correlation coefficient itself. With this
information at hand, an attempt was made to find what other information the data
yielded which might indicate the nature of some of the assignable causes of var-
iation. Along with the data presented in Fig. 5.6, other data were given indi-
cating the number of poles of a given depth of sapwood which were penetrated.

An examination of these showed that the frequency distribution in a column array
of a scatter diagram including not only saturated but also unsaturated poles was

cf the general nature indicated in Fig. 5.8.

Upon the basis of the kind of Teasoning presented in I.E.E. 1, in con-

nection with Criterion 3, we see at once that the existence of this type of dis-

tritution indicates quite clearly the presence of an assignable cause of differ-

ence in the poles other than depth of sapwood. In this connection Fig. 5.9

shows the ratio of the number of saturated to the total number of poles having a

€iven depth or sapwood for each of the seven different companies, A rather
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interesting observation cen be made that this ratio remains comparatively large

even for poles of very deep sapwood, although, of course, we must allow for the
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Depth of Penetration at a Given Sapwood Thickness

FI1G. 5.8

T ——

ctrer than depth of sapwood.

fact that the ratlos for very
high or very low depths of sap-
wood are based upon only & very
small number of poles and hence
are subject to very large samp-
ling fluctuations. The informa-
tion presented in this figure,
however, gives still further
evidence of the existence of

assignable causes of variation

As a result of this study, what then are we in a position to say in

the light of the information presented above?

Fas
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3
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! b e e
1.0 2.3 4.0 5.3
Depth of Sapwood - in.
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Depth of Sapwood -in,
COMPANY 3

We can say quite
groups of poles of a given

depth of sapwood and depth

e b b A L
1.0 2,5 4.0 5.5

Depth of Sapwood - in.

COMPANY 2
. A WY
Depth of Sepwood-in.
COMPANY 6

FIG.
definitely that,

kind, there is a

5.9

Depth of Sapwood - in,

- 5.5~

L] . 1] . . . . .
Depth of Sapwood -~ {n, Depth of Sepwood - in.

COMPANY 3 ) COMPANY 4

Depth of Sepwood ~in,
COMPANY 7 TOTAL

at least for certain homogeneous

very definite correlation between

of penetration, making it necessary for us to con~
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sider depth of sapwood along with depth of penetration in comparing plants in

respect to the quality of their treatments. Furthermore, the information pre-

sented In Fig. 5.7 indicates quite conclusively that there are other at present

unknown assignable causes (or perhaps you might say assignable characteristics
of telephone poles) which it is necessary to tabulate before an adequate com-

rarison of the treatments at different plants can be made.

It so happened that during the time these analytical results were be-
ing obtained, one of the engineers interested in this work did visit several of
the plants entering into the investigation presented above. He came back with
several a priori suggestions as to the assignable characteristics of poles and
assignable causes of wvariation in the method of treatment which serve to ex-
Plain several of the significant fluctuations beyond the limits in the control
charts of Fig. 5.7, although the investigation up to the present time is far
from complete in the sense that not all of these significant variations have
been accounted for. The point which we wish to make in this connection is that
the method of analysis as presented above naturally led to the assunption of
the exispence of assignable causes of variation in treatment other than those
previously suggested and the direct engineering work up to the present time has
definitely justified the conclusions based upon the analysis. Quite naturally,
even more significant results could have been obtained had we had to begin with
the a priori information which is now available so that groups of data coming
from each of the different plants could have been rationally sub-divided in a
way that is not now possible since the records were not kept in a form to
make such sub-divisions possible. This illustrates the point which should
always be kept in mind by inspection engineers, namely, that far greater use
can be made of data where to begin with, rational hypotheses are available so
as to make possible the tabulation of the date in rational subgroups. It seems
reasonable to believe that we can look forward to even more applications of the

simple functions outlined above for examining the control of gquality when engi-

neers in charge of experimental investigation become more familiar with the im-

portance of recording data so that they may be divided into rational subgroups.

As stated above, not only depth of penetration but also quantity of
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treatment.
oil or creosote absorbed is used as a measure of the quality of

mherefore it may be of interest to consider briefly here an outline of the study
which has been made to determine whether or not the amount of oil or creosote
absorbed is correlated with the depth of sapwood. The data representing the com-
bined results for the seven companies presented in Fig. 5.10 make such a study

possible. The anslysis of these gives a correlation coefficient of .zZl.

1} a| s |16 | 3| a9 |ea|ar|sr|oee| 22| 7 [ 5 | If we interpret this small
j - ! 'l yalue of correlation coefficient as in-
-1 - -
"I S N : - : dicating lack of correlation, we would be
AN 1
; i : 1] justified in considering the results pre-
Py x|
Tfam“ RN Ve 1 s sented in the control charts of Fig. 5.11
PR S AN
PG N T O I ] as indicating the existence of assignable
R —t- -
5;“ i i T > " causes of variation in the treatment of
TR 6! 6| sl 2] 2} 2 1|
4 , oles, as measured by the extraction of
-éz;.t | s 9 |12 |14 |14 |24 4 4 1 76 P 4
:,u. Pl s e a0 fee sz |nn| a| ¢z |5 0il, that cannot be explained in terms of
q R jpyupe| o 5 11 |% the depth of sapwood. In other words,
A;{‘ z 1 4 bi ki 3 5 1 28 5
{ boh i these results point to the fact that in
" R 3
‘} " ] b ;| the comparison of different plants in re-
ot vt 1n 1w sPect to quality of treatment there are
Fig. 5.10 assignable factors which should be known

tul which up to the present time are not known. In other words, these results

definitely indicate that in the study of the treatment of telephone poles there

are asriznable causes of variation as yet unknown which should not be left to
chance,

-
T

7. fontrol of Quality of Aluminum Die-Castings

We have already had occasion to refer to some of the results which
have been obtained to date in one of the committees of the Américan Society for

Testinr Materiels charged with the investigation of the physical properties of

aluminum die-castings, One of the particular properties which is of interest is

tbat of tensile strength. This in turn is stochastically related to at least

two characteristics of the material, namely, hardness and densit;r

We have no intention of doing more than indicating how some of these
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results are being analyzed and how the
13- ¢ results of the analysis are being used.
12 For example, Table 5.9 presents the ana-
';11:—__~____—_~_0—“_—‘ lytical results obtained in connection
§m ¢ with a certain group of the data divided
< . ° into rational subgroups as indicated in
9"‘“‘.“‘_"‘_“— _________ the table, Confrol charts for these
g various quantities, similar to those pre-
sented in Fig. 5.7, gave very definite
; 5 . indication of the presence of assignable
g ______.___———.———-— causes of variation. These results when
E - reviewed by some of the members of the
g e °« committee were expleined in terms of what
g ’ : appeared to be possible assignable causes.
12 3 1 5 & 7 The significance of these re-
Companies

- tha
Extraction of O1l per cu. ft. of Sapwood sults is for the most part this, - that

Fig.

5.11 80 long as the data analyzed in this way

indicate the presence of assignable causes of variation, there is reason to be-

Xl = Tensile Strength in pounds per sqguare inch

X, = Hardness in Rockwells "E"
X; = Density in grams per cubic centimeter

at 25 °C.
Aversge Standard Deviation Correlation Coeffisient
Company X X X 0y Op O3 *1p rya Tps

c 33399 ,167 |68.4917] 2.66642 | 2664.958 [10,19448 1,08294 | .683 | <160 | .421
8331 | .876 891 | .819

D 28215,6833 |68,0250] 2,65542 | 4317.552 [14.48937 |.083 .

G B0312.667 |66.5667| 2.63250 | 2187,992 |10,17264 |.11334 | 714 | 786 | 801

v 33150 .167 |7641167| 2.68942 | 39544095 {11,08090 (.07664 | «716 | .858 | .622

5 34269.000 |69,9250| 2.74850 | 2715.022 | 9.88147 |.09073 | .806 | . 637 | .562

TABLE 5.9

lieve that much more work should be done in specifying the method of making the

alloys before we can expect to get a controlled product.
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FIC. 5.12 - ROUND SPECTMENS ALUMINUM DIE-CASTING

Pig. 5.12 presents graphically some of the results which have been of
particular interest to the members of this Committee., It shows the regression

between some of the various factors presented in detail in Table 5.9. Even a

casual observation indicates that there are large variations in the slopes of

the regression lines and assignable differences in these slopes are easily shown

to exist by means of Modified Criterion I of I.E.B. 1., Just to cite one par-

ticular instance, we note that the regression in the upper left hand corner be-

tween tensile strength and density indicates very low correlation. The likely

assignadble cause of this result, as proposed by members of the Committee, is

the existence of blow holes in the castings. This is merely indicative of the

way this information is being used by members of this Committee.
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PART VI

Correction of Data for Errors of Measurement

1. How to Correct Data for Errors of Measurement

In a previogs part we have considered the problem of mea suring the
quality of a number of things in terms of the observed values of Quality oharao-
teristicss Obviously these measurements, like all others, are subject to errors
of measurement. Now in reporting on the results of measurements of quality, it
1s very essential indeed that our quality reports reflect the true quality of
product as nearly as we can attain to this, instead of merely the observed
quality of product.

In Part I we started with the simplest concept of measurement, namely,
that involved when we measure something in terms of its own yardstick. In that
discussion we see imposed the necessity for always considering not only the esti-
mate of the expected valus X' of the measured characteristic X but also of the
error or standard deviation of measurement ¢'., We may state, therefore, as a
simple principle which should be mede general practioe in all inspeoction en-
gineering work that we should always obtain the best estimate o of the error of
measurement o '. Numerous instances have been found within the last two or three
years where it has been impossible to obtain any adequate estimates of this
error of measurement primarily because no estimate had ever been made and the
original data which would have made possible such an estimate had been destroyed.
This is particularly true in connection with the study of the qualities of raw
materislss It should be made & principle that, whenever measurements are taken
for a definite purpose, every single observation and not merely averages of

groups of observations be tabulated.

Passing on to Part II, we have considered the problem of estimating the
error of measurement of the quality Y expressed in terms of m different charao-
teristics X3seeeXg,eoeXisoeeXms DY the relationship

Y = £(Xy, X2seeeXiseeoXm)-
We found there that to minimize the standard deviation of the quality ocharacter-

istic Y, it is necessary to know the standard deviation of each of the m different
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oharacteristics. Here again in an impor tant application of available theory we

find it necessary to have recorded every single measurement on every character-

{stic. 1In this case it should be remembered that the standard deviation of the

quality Y 1s given by the expression

/o of ) - (6.1)
oy = 7121 af Uf a4 ‘(dxi) ZyoeeoIp

to a first approximation. Equation 6.1 is generally known as the law of propa-

gation of error.

Also in Part III we considered the methods of minimizing the error of
measurement of quality through the use of curves and planes of regression. In
general, i1t was showm that the stendard deviation SY of the quality Y measured

from the line of regression is

Siztilarly, for the plane of regression of Y on the m characteristics,

2
n
T Er- (ajx1 "+ agXz + ... + amxm)]
sy = i=1
n

where y and X),Xg,...Xy are devietions from their respective mean values and n

is the number of sets of observations. The standard deviation from the general

curve of regression is

E el

SYB 5

where f(X) represents the regression curve fitted to the data and n is the number

of pairs of values of X and Y,

Under the conditions of practice, it can be stated as a universal factl
that: The standard deviation of the error of measurement of an average of n ob-

served values of quality Y derived in any way whatsoever is

l. This 1; true assuming only finite u
T of tin easeun qualitl; c(mtro]"niverses as will be pointed out in Part
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Hence by taking the average of a number n of measurements we may decrease the
error of measurement in any quality characteristic on a single thing by increas
ing the number n.

Now of course, when we pass over to the meassurement of qQuality of a
number of things we find, as already stated, that even in the ¢implest ocase, we
meke use of three different functions of the observed set of data representipg

quality characteristics on n different things. These are the average Xl.

standerd deviation ¢4 and correlation coefficient Ty s where the meaning of
these is that given in Part V.

Now any estimates such as those just mentioned derived from the ob-
served measurements will be subject to the errors of measurement of the respec-
tive variables. The general method of correcting for these errors of measure-
ment has previously been discussed.:L Here it was shown that, if a charaoter-
istic X is measured by a method subject to error, then the observed standard
deviation 6, of a set of n observed valuss of X on as many different things of

the seme kind will be given by the following relationship

Cg = o’.% + g (6,2)
where up is the standard deviation of the true quality X and og is the stendard
devistion of the errors of measurement. In general, Wwe must solve this ex-
pression for the standard deviation ogq of the true quality characteristic X.

In a similar way the correlation coefficient r, between any two sets of
observed values will be related to the true correlation r between the two quali-
ties in the following way:

3 - (6.3)
= Q o o
Ly %2q

ter-
where 610 and dzo are the observed standard deviations of the quality character

r

deviations of the
istics X; and Xp respectively and GlT and O'ZT are the stendard de

true values of these quality characteristics.

Therefore, any report on the quality of a number of things should always

be corrected by means of Equations 6.2 and 6.3 as was pointed out in the publica-
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2, Special Applications

Few relationships are required more often in the measurenent of quality

than those given above in Equations 6.1 and 6.2. Nuwerous instances have arisen

slerc we have had to make use of these in correcting measurements of quality of

both raw materiels and finished producte In fact, &s previously pointed out,

thes® relationships are made the basis of corrections in the presentation of our

inspection reports on the true quality of product. We shall now briefly review

some of the applications of these formulas to the study of a typical special
problam in the testing of pole timber for modulus of rupture.

Suppose we have & pole whose modulus of rupture we wish to determine.
One way is to break it by one of the three methods deseribed in Part II of this
bulletin and thus measure the modulus Y directly. Tﬁe other is to take a number
n] of small clear specimens from the pole and break these using the average of
these n; tests as a measure X of the modulus. There are severeael reasons why it
1s cheaper to test a reasonable number njy of small clears from & pole than it is
to test the pole itself by breaking.

The problem, however, is not quite so simple as it looks, because we
must first show that there is a definite relationship between Y and X and that
the comparatively large variation in the modulus of rupture of small clears from
the sapme pole does not so reduce the efficiency of the small clear method of
measurement as to compensate for the extra cost of measurement by pole test
method. Some of the considerations now to be reviewed have been influential in
bringing the laboratories to their present position of Placing greater reliance
in the results of the pole test method than in those of the small clear method
as a basis for setting standard strength figures for telephone poles at least
at the present stage of the development of the two tests.

Suppose that we were to break n poles and thus determine their moduli
of rupture Y;, Ys,...¥p, and then that we were to break ny small clears from

each of the n poles thus getting n sets of values as shown schematically in

Table 6.1, where X3» L35+ +.X,, are the averages of Dy tests on pole 1, n; tests

on pole 2 and s0 on respectively. Assume for the time being that all of these

tests could be made on poles and small clears at the seme moisture content We

would get some stochastic relationships as shown schematically in Fig., 6.1
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NPunoltzr Small Clear Specimens Pole
Test 1 jTest 2 | Test 3 Test D) | Av Test
1l xll XIz 13 ’ . . . . xlnl xl Yl
2
n xnl an Xng . e . . . xnnl Xy Y,

TABLE 6,1 - Modulus of Rupture - psi.

Assuming the regression to be linear,

we could use the line

g b
¥ - 8
Y - ¥ =r,5 (X-X) a
XO -
3
as in the earlier parts of this bulletin shere & e
1 [ ]
Oy, is the observed stendard deviation of f and °t
* .
ey L ]
Uxo is the obaerved standard deviation of the g‘ o * . ]
*®
averages X;, Xp;e+sXy of Table 6.1, and ry is s e o
. g [ ] o
the observed correlation coefficient. 'g
Fow, of course, the standard deviation 4

Modulus of Rupture - Small Clear Metbod

Gxois made up of two parts, such that
¥IG. 6.1

a 2
o o 2 EX
%o = Xp * D,
1 of the expected values

where GX’I‘ is the estimate of the standard deviation 01-'1‘

obtained by the small clear method and GEX is the estimate of the standard de-

viation o, of the measurements on small clears from & given polie.

In some of our cooperative studies with members of the Forest Products

laboratory it bas been possible to obtain estimates of the standard deviation
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such
°E;_ for certain species of timbers although this work has not progressed to

a state that these values can be given as standards. We have available, however,

a series of recent tests on small clears taken from lodgepole pine poles which
we can use to illustrate the method involved in calculating the above mentioned

standard deviations.

In this series of measurements sixteen poles were used and a number of
small clears from each pole were broken. The number of clears from each pole,
the average modulus of rupture of these and the observed standard deviation of

the ueasurements are presented in Table 6.2 We see at once that the average

Number Observed Standard
Number of Pleces Deviation of Tests on
of from each Average Small Clear Specimens
Fole Pole Modulus of Rupture from one Pole in psi
50 17 12139 1195
51 19 12034 1889
52 20 '+ 8972 1576
53 8 11263 1592
54 17 10063 1907
S5 17 11089 1657
56 22 11385 1590
57 16 10518 1139
58 27 11982 1484
59 15 9553 1635
60 19 11586 1145
61 18 13388 1313
62 19 11389 2452
63 16 11894 1150
64 18 11604 934
67 22 13466 2109
11395
Av. 1548

TABLE 6.2 - Data Showing Variebility Among Observed Values of
Modulus of Rupture of Small Clears from the Same Pole,
standard deviation, giving equal weight to that of each pole, 1is 1548 psi. This
obviously may be taken as & reasonable estimate of the standard -deviat.ion 0g, of
measurement by the small olear method of lodgepole pine pole's. )

Returning now to Equation 6.3 we see that for the case of lodgepole

pine poles, making use of the above data,

O'Y )
R ! 1
To e r< g5 T
o “o

where only one clear t
y is tested for each pole ang GYTE Oy 1in this case. Ob-

viously the observed correlation will be much less than the true correlation
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unless we make nj appreciable, that is unless we test several small cleare from

each pole. We see at once that the standard deviations of the values of Y about

the line of regression given by the relationship

is almost as large as GYO unless the correlation coefficient r 1s very near unity.

Now the standard deviation of the averages in Table 6.2 is 1168 psi and
from this we get a value for UXT equal to 1097 psi., From a series of pole tests
on the same species we zet a value for UYO which is less than 1000 psi. In
other words it appears that GYo is likely not greater than GX’I‘ which is a very
importent fact indeed. Stated in another way the standard deviation by pole
tests is possibly less than the standard deviation of averages of nj small clear
tests per pole even when n] —>» o , This leads us to ask how many poles no
would have to be tested by the small clear method, nj; clears to the pole, in
order to give a standard deviation of the average of the nyng tests equal to
the stendard deviation of n pole testss, Under the above conditionslit follows
that the approximate relationship between n, njy and ng is

S (1 + .l.)
n ngo n}

Plotting n; as abscissae we may represent as ordinates the number of
poles ny tested by the small specimen method expressed as a ratio of the number
n of poles tested by the pole method.

For exemple, we see that if it has been decided to test five small
pieces from each pole we would bave 1o test by the small test method 1.2 times
the number of poles tésted by the pole method. Now, if we are going to break

100 poles to estimate the modulus of rupture of the species, we would have to

test five specimens from each of 120 poles to get the same precision as would be

obtained from the 100 pole testse. In a similar way we may find corresponding

values of n and ny, for any desired value of nj.

- v wme w w @ wm W= e e

- e m om ow wm w = e = -

L * O .
1. Specifically this assumes that GYT =0y E
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71G. 6.2 - RELATIVE NUMBER OF POLES TESTED

BY THE TWO METHODS CORRESPONDING

TO A GIVEN PRECISION

The erficiency (usually ©X-

pressed in per cent) of the small

specimen method of test as com-
pared to the pole method is de-
fined by the ratio -x{lz-. For ex-
ample, 1f 1t 1s necessary to test
twice as many poles by the small
specimen method as by the pole
test method to get the same pre-
cision we would infer that the
small specimen method of test
were only 50% efficient. In other
words, the efficiency of the small

test method as compared to the

pole mathod will be expressed by the inverse of the ratio of the respective

nunber of poles teasted by the two methods.

In general then it will be enlightening to graph the function

Efficiency = EE. =
2

1o}

o}

g

q

g .1

w4

é Y ¢ g
2}

e S
1+ njy

¥1G6. 8.3 - IRHERENT INEFFICIENCY OF SMALL

SPECIMEN METHOD OF TEST

Fig. 6.3 makes the efficiency
situation very clear, Thus if

ny = ¥ the chart shows that the

_s{nall specimen method is only
‘about 837 efficient, and only as

- ny becomes large do we approach

very closely the efficiency of the
Pole -test method.

Of course this whole dis-
cussion applies only to lodgepole
Pine poles at a gilven moisture
content assuming that the modulus
of rupture of small clears is in-

dependent of the section of the
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pole from which they are teken. Even under these coniitions we see that the
smll clear method is not very efficient even assuming that the correlation bde-
twveer the modulus of rupture of poles by Pole test method and the expected modull
of rupture for small clears from the same poles 1s large.

Going further we find that it is not practically possible to measure
poles and clears from the same pole at the same moisture content and that we do
not have sufficient information to meke rossible a correction for moisture con-
tent., Fﬁrthemore we find that the modulus of rupture for small clears taken
from a pole is not independent of the section of the pole from which they are
taken, In this situation 1t is evident that error corrections would become ex-
tremely complicated and uncertein, at least until such time as we have obtained
much more definlte information than we now have even after cooperative studies
with members of tfxe Forest Products IAboratory about the effect of moisture on
modulus of rupture of both poles and smell clears and the way in which the
modulus of rupture of small clears very throughout the pole.

"For these reasons it is believed that pole tests must dbe relied upon,
at least at the present timé, %o furnish date as & basis for establishment of

stenlerd velues for modulus of rupture of telephone poles.

CLEAHARYS COLLBOTION
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