FOREWORD

This is the third of a series of bulletins issued primarily for the
use of members of the Inspection Engineering Department. Eaoh of these bul-
letins treats of a particular phase of the general subject, "Control of Quality
of Manufactured Product™. An attempt has been made to make the discussion in
edach bulletin as nearly as possible a complete and independent unit so that the
material contained thergin may be used independently of that contained in other
bulletins of the series., On the other hand, however, it is hoped that when all
the bulletins in the series have been issued, they will constitute a unified
treatment of the above subject, divided into the following Parts:

I - Introduction.

II - Presentation of Data by Means of Simple Statistiocs.

III - Basis of Quality Control.

IV - Detection of Quality Variations which Should not Be
Left to Chance.

V - Measurement of Quality.

VI - Quality Standards for Raw Materials,
VII - Economic Control of Quality through Inspection.
VIII - Economic Control of Quality through Design.

IX - Tables and Nomograms with a Discussion of Nomographioc
Treatment of Data.

The order of presentation of these Parts has been governed by the
immediate needs of the department. For example, I.E.B. 1 and I.E.B, 2 ocon-
stitute as it were Parts IV and V of the completed story. The present bul-
letin, I.E.B, 3, constitutes Part II and treats of the subject,"Presentation
of Data by Means of Simple Statistics".

The natural starting point in any engineering or scientifioc investi-
gation is the collection of date and the presentation of information contained
therein. Obviously this constitutes a major problem for the inspection engineer
but, since the problem itself is perfectly general, the discussion has not been

limited to what are customarily accepted as inspection engineering problems,
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so as to inorease the usefulness of the results in other phases of engineering
and scientific work.

Two concepts have been introduced, namely, that of total as contrasted
with essential information. It is true that any scientific or engineering
investigation customarily starts with the collection of data for the purpose of
answering one or more specifio questions. The information contained in such
data and useful for answering a specific question is essential for that question,
However, the information contained in such data and useful for answering all
possible questions, constitutes the total information. Obviously, therefore, we
cannot present the essential information contained in a series of observations
unless we are given a specific question to be answered. We can, however,
consider the problem of presenting the total information contained in a series
of observations without setting up any specific question end since the essential
information in any case cannot exceed the total, ways and means of presenting
as much as possible of the total information contained in a series of observa-
tions by means of simple statistics have been considered,

It is obvious that such information must be presented by means of
symmetrio functions of the data for otherwise the conclusions would depend upon
the order in which the data were taken. Three simple functiions or statistics
of this type, namely, the arithmetic mean, standard deviation and correlation
coefficient are shown to be satisfactory for the presentation of a large amount
of the information oontained in any set of data, particularly where the number
of observations is small. In faot, these simple statistiecs are shown %o con-
stitute, as it were, an almost universal language for the presentation of the
informetion contained in sets of observations on one or more varisbles. One
important novel feature of the discussion is that the presentation of infor-
mation is treated independently of any sampling theory. We consider the signi-

ficance of the average, standard deviation, correlation coefficient and similar

simple statistics derived from observed data only to the extent that they
present information contained in the data.
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CHAPTER I

Introduction

1. Why We Take Data

You go to your tailor for a sult of clothes and the first thing that he
does is to make some measurements; you go to your physician because you are 111
and the first thing that he does is to make some measurements, The objects of
making_measuraments in these two cases are different. They typify the two gen-
eral objects of making measurements now to be considered. They are:

a. To obtain quantitative information.
be To obtain a causal explanation of observed phenomena.

Measurement to attain the first object enters into our overyday life
because everything that we buy or sell is by the yard, the pound or some quanti-
tetive unit of measure. Such measurements are used at every step in the fabri-
cation of commercial products from raw materials to the finished article, Par-
ticularly in the inspection of quality of product does this first function of
measurement play an important rodle.

The second object for taking data is however of even greater import-
ance than the first in the field of research and development because herc we are
in search of physical principles to explain the observed phenomena so that we
may predict the future in terms of the past. For example, the savage of old ob-
served an eclipse of the sun as we do today but he could not foretell as we can
the time of the next eclipse. In the ocontrol of quality of manufactured product
it is one thing to measure the quality to see that it meets certain standards
and. it 1s quite another thing to make use of these measurements to predict and

control the quality in the future.
For exsmple, three typical situations call for causal interpretation.

They are:
A, We note differences in the qualities of a number of the seme kind of
things constituting a group even though so far as we know the gquali-

ties have been produced under the seame essential conditions, we ask
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ourselves: "Why do these differences ocour and is there a major

controlling influence?" 4s & specific case we observe that the

apples on & tree differ in size. Why? MNust such differences be

left to chance, or may they be explained in terms of causes which
oan be found and controlled?

B, Two series of observations of some quality have been taken under
what may or may not have been the same essential conditions. From
an analysis of the data can we determine whether or not the two sets
of conditions were essentially the same? To be specific, two apple
trees of the same kind are treated with differemt fertilizers. Do
the differences between the sizes of the apples on one tree and
those on the other indicate that the fertilizers were assignably
different in their influence upon the size of the apples?

C. We obtain a series of pairs of quality characteristics on a number
of the same kind of thing and from these we are to determine whether
or not there is any underlying causal relationship between these two
quality oharacteristios, To carry through our apple illustration,
we assume that one hundred trees had been treated with fertilizers
whioh are the same except for the nitrogen content. We wish to de-
termine whether or not there is a causal relationship between the
nitrogen oontent and the size of an apple.

These are typical questions, to answer which we need to use observed
data,

2. Objleot of Analysis of Data

Of oourse we take data as just stated to answer certain questions of
either one of the two types. The kind of data that the tallor takes in the
example cited above did not call for much analysis in the technical sense of the
term. Table 2.1 however presents g typical set of raw date which does require
eanalysis. Here we have a series of 1370 pairs of observations on as many tele~

phone poles. One of the series of observations represents the depth of sapwood

X and the other the depth of penetration Y of the oreosote into the sapwood.
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Our object is to extract from the raw data all of the essential infor-

mation contained therein for the answer to questions which may be put in attain-

ing the object for which the data were taken. For example, we might ask the

following questions: How does the depth of sapwood vary from pole to pole?
a#hat is the range of variation? What is the most frequently observed depth of
supwood, the next most frequently observed depth and so on? These answers could
be answered directly from the raw data given in Table 2.1 although to do so

would be quite laborious. Such a vast array of figures in this form cannot

readily be used.
Now we might ask another question. Does the depth of penetration de-

pend upon the depth of sapwood? The unordered array of figures of Table 2,1
would be quite incomprehensible to the average individual wh\en it comes to an-
swering this question. Hence we must consider the available methods of analysis
for reducing such a series of observations to some form in which they may be
used more effectively to serve the purpose for which they were taken. This
necessity is particularly marked when we face the problem of comparing several
sets of observations such as the one presented in Table 2.1 for the purpose of
determining whether or not these sets are significantly different one from an-
other.

3. Methods of Analysis

There are oertain more or less definite methods of analysis whieh are
available for interpreting an originel series of raw data, We shall consider
briefly methods for presenting such data in both tabular and graphical forms
which assist materially in helping us to grasp the significance of the original
series of observations. We shall find, however, that the results obtained in
this way are for the most part qualitative and in this particular, they do not
serve effectively for the comparison of sets of data. To seQure quantitative
reduction of data we must therefore introduce methods for summarizing a series
of values of the quality X by means of a few simple functions which express
quantitatively such things as central tendency, dispersion and skewness of a
distribution of values such as that of either the depth of sapwood or the depth
of penetration presented in Table 2.1. In particular we need quantitative

measures for the correlation between two or more qualities such as the two given



in Table 2,1. We shall find moreover, that there are many ways for ocarrying out
the details of such analyses and that there are many functions which may be used
to measure such characteristics as central tendenocy and skewness, although some
of these are far more effective than others.

4, IEssential Information Defined

The Tact that there is more than one function which would measure the
characteristic central tendency of a distribution of data leads us to consider a
basis for deciding upon the perticular function to be used in a given case. We
shall try to indicate ways and means of choosing that function which in & given

case contains the essential information inherent in the original set of data for

the purpose of obtaining the object for which the data were taken. We shall
understand that the essential informetion, to the best of our knowledge in the
light of available methods of analysis, answers the questions for which the data
were taken so that whatever further émalysis is made it will not add irformation
sufficient to change to a practical extent the conclusions derived from the

study of the data.
Obviously an enalysis of the set of data should provide the essential

information in the most uséful form. These ideas in mind, we proceed to a oon-

sideration of the methods of analyzing data.



CHAPTER II

Presentation of Data by Tables and Graphs

l. General Problem
There are only a few forms in which the raw data with which we have to

deal usually oocur. For example, We may have a series of n observations of the
quality of a single thing, such as n observations of the length of a rod, the re-
sistance of a relay or the capacity of a condenser. 1In a similar way, we may
have a series of n observations representing single observations of some quality
charaoteristic on n different things, such, for example, as the 1370 observa-
tions of the depth of sapwood previously given in Table 2.1. We have, let us sg

n values,

Il. xz. (XX} xi, e xn. (201)

representing, in the one case, n measurements of the same quality on & single
thing and, in the other case, single measurements of the seme quality on n
things.

In a similar way, we may have a series of observations representingn
suococessively observed values of a group of m quality characteristics on some one
thing or observed values of say m different qualities on each of let us say n

things. In either case we have a series of observetions, such as,

Hl’ xlzg XY 111, see xln
le, 122. Xy xzi, L XY Izn
o o ® & o o s o o ¢« @ o o (2.2)

le’ sz, ces Iji’ PP, Xjn.

Xy Xior oo X g4s oee Lnp o

Naturally we always have a certain purpose in accumulating such a
series of data and the object of tabular and graphiocal presentation is to assist

in the interpretation of the raw data in terms of the object for which they were

taken. As already noted, the distribution of values of depth of sapwood and also

tha
t of the depth of penetration as given in Table 2.1 illustrate the first form
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in which raw data may occur. Similerly, the two distributions taken together
illustrate the second form in which raw data may ocour. Partiocularly when we
have such a large number of observations, it 1is very diffiocult to grasp the sig
nificance of the original data, This difficulty may be partially overcome by
tabular and graphicél presentation.

In general, perhaps the most useful form of table for presenting a
single series of observations is that in whioch the original raw data are ar-
ranged or permuted in ascending order of magnitude. In a similar way, a set of
observations measuring qualities on several things may be arranged in tabular
form by permuting the series of observations in ascending order of magnitude in
respect to one of the m quality characteristics and then tabulating the valuea
of the associated characteristics éccordinsly.

Graphical presentation consists of the representation of the permuta-
tion of a single series of n observations arranged in ascending order of magni-
tude or of the pernmfed series of values in respect to one characteristio ar-
ranged in ascending order of magnitude together with the associated values for
. the other characteristics.

We can best make this point clear by considering several examples. We
shell find in so doing that it is practical to present the original date in tab-
ular or graphical form only when the number of observations is small, We shall
also find thet the data presented in tabular or graphical form lead for the most
part only to qualitative conclusions.

2. A Simple Illustration

In Part I we referred to the important problem of correoting data for
errors of measurement and made use of Milliken's measurements of the charge on
an electron as & typical set of data showing the effects of uncontrolled causes
of variation in the observed data. In Fig. 2.la we have the original set of raw
data as ppesented by Millikan.l In "b" of this figure we have this original
series of data arranged in ascending order of magnitude. We see at once how
much easier it is to picture such things as the range of observed variation and
the central tendency of the observed set of data by means of the permuted series

of data than it is by the original series. 1In neh and "d" of this same figure we

- o - ___.._._-_----———-------—-—---------.
- o - -

b g 32/5 where e is the charge on an
1 The originel data were given in terms o
’ electron whereas this table of data has been given in terms of e.



4.781 4.740
4.799 4.747
4,189 4.7¢9
4.792 4.788
6.1 4.761
477 4.164
.17t ‘.

4.7v) 4.704
4702 4.765
4.767 ¢.767
4.164 4.768
&.776 4.76v

4.17) 4.769
4. T0y 6771
& 172 4,771

«.Tuy .77
+.764 4772
4.774 4170
.00 4.774 _——
+.741 4.775 -
4.1 4.770 6. Ope Method of Graphicsl Presentation
4760 4770 o
4. 18D 4.777 g
4008 4777 -
4. o 4.778 ‘e
4.000% .17y |4
4,700 4.779 ©
PR IS ..779 3
4008 4.779 o
6.7 4.7061 ~
. 0v 4.781 °
4.795 4,782 4
67y 4782 2
P Id 4. TS 2 .
bkl 785 -1
: 73'1 :.10:) 4.7 4.78 4.78 4.80 x 10
4.760 4. 788 Values of &
4,703 4. 708
4.740 PO Tt 4, Another Metbod of Grephical Presentation
4.7 4.78%
4.76) 4. 709
4.7 4.790
4,758 4.790
4. 764 4.790
4.6l 4.Tvl
4. 79 4.791
4,710 6. 791 no.z.x-m:m!'smnmm
a7 4.2
W70 4.7wC CEARGE ON AN ELECTROR
$.747 4.7vd
4,769 §.7v7
4,006 4. Tvv
+.77% 4.801
4.765 4.80%
%.790 4.800
+.77? 4.60¢
4.749 %.80%
4,701 4.819
e, Coeerved b, Termuted
Jmia Deta

3. Measurements of Relationship between Qualities

Let us consider two simple types of data

representing relationships between quelity character-

have two of an indefinitely
large pumber of possible
graphical presentations of
the observed results, In

the first of these the

lengthsof the lines &re pro-
portional to the observed
charge on an electron. With
put little aifficully we get
from this figure a fairly
good picture of the range in
varistion in size of the ob-
served values of this charge
but egain we do not get any
definite basis for quanti-
tatively summarizing the re-
sults, Perhaps the more
usual form of representing
such permuted series of
values is that given in
Fig. 2.14.

Voltage E Current I
in Volts  in Amporss

istics. One is illustrated by the series of date pre- 2 :8?7
sented in Table 2.2, showing the observed current I in lg :]i]é
amperes through a oarbon contact at different voltages :.'IL.g :éi
E. At a glance we see that the current increases with gi :gz
voltage although we cannot see 80 easily whether or not gg :ig
the rate of inorease is constant. Now we may represent gg :205
this series of pairs of observations grapﬁically as in gg :23
Fig. 2.2 and thereby show that there is & possible para- g :gg
bolic functional relationship between the current through ot o

TABLE 2.2



the carbon contact and the voltage across it
over the range of values given in the figure and
hence that the rete of inorease in current with

voltage is not constant. Here the graphical

presentation has an advantage over the tabular. 1ﬁ .
If, however, We were to take another ocar- i . |

bon contact and perform the same experiment, we g :: .

would not in general obtain a series of points f i: .'.

which would fit in with the series given above. g :;a .'.

As an illustration of this we introduce Fige. 2.3 :: .°..

which shows the same Series of points as that pre- -0 ': DI T 0 TR . R R V.

sented in Fig. 2.2 together with a similar series er':":':m

of points observed for another carbon contact. That
the relationship between these two characteristiocs
for one ocarbon contact is different from that for
another is obvious from the figurse but how much thea'e relationships differ is
not so easily expressible either by tables of the observed values or by their
graphical representation.
Now let us introduce a problem of the
second type. 4gain we shall consider two quality

charecteristics of granular carbon. Table 2.3

gives the measurements of the volumes of the pores 1:!: n" L
and the surface areas of twenty-three different ‘: B K
samples of carbon, the volumes being arranged in % .80 S
ascending order of magnitude. Do the associated .": Z

values bear any definite relationship? This is :E: - 39| oz:'
equivalent to choosing the volume X as the inde- j: . o

pendent variable. One form of graphical presenta- °—°—r*!r‘“r$‘;ﬂ:1§"f“‘f‘1fﬂ

ric. .3

tion of these results is given in Fige Sede

Certainly we cannot arrive at any definite
conelusion from the tabular or graphical representa-

tion of these data as to whether or not there is a

definite relationship between the two series of observations. We need a more re-

fined method of analysis than that given by tebles and graphs to measure this



Volume Area
cu.,0ms, 8Q.CmB.
X Y
9 . 667
1.9 .528
3.9 « 538
4.5 .778
4.6 827
4.6 « 543
4,8 «792
4.9 .694
‘.9 .69‘
5.1 804
6.0 .772
7.8 «706
9.6 «750
1.7 +496
14.9 «591
l6.2 «716
17.9 «771
18.2 +489
19.0 +«811
19.2 . 792
19.8 .803
£6.8 .664
44.8 «718
TABLIE 2,3

-0 -

relationship. 4 similar series of pairs of values 1is given

in Table 2.1 but to present this series in either tabular or

graphical form such as that just introduced would be prohib-

i{tive for several obvious reasons.
It is evident that this same general procedure may be
followed in presenting more complicated sets of data where

the independent variable may be related to more than one

other variable. In any such ocase, however, omne of the first

steps is to permute the independent variable and to observe
the ohange in the dependent variable with this given permu-
tation. The graphical presentation of the results involves
the presentation of such & permutation and the series of ob-
servations assoojated with this permutation. The simple

type of problem illustrated by the current vs. voltage across

the contact 1is but a limiting case of the' more complicated

one illustrated by the relationship between the volume and area of granuler care

bon.
4. Frequency Disi;ribution
- :. As previously stated, & simple way
. ‘e . of picturing either of the series of 13M
; e . 4 observations presented in Table 2.1 isto
f w. R arrenge them in ascending order of magni-
% yv . tude. Such an arrangement or permutation
> o is termed a frequency distribution. From
N . . such a tabular arrangement we can obtain
N with but little effort such characteris-
tics of the distribution as observed
CET Y0 Y5 E 5 35 35 <o 45 '

X e« Volume - cu.oms.

Regression Y on X
FIG. 2.4

range and modal or most frequently oc-

ourring value. However, this form of

tabular presentation requires the same

amount
of space as does that for the same date in Table 2,1 and hence is not de

sirable,

To re
duce the amount of space required we can represent this set of
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1370 observations by a series of as many points on a straight line but some of
the points would lie one on top of another and others would lie so close together
88 not to be easily distinguishable, Graphically, it is not feasible, therefore,
to represent such 8 set of values in this waye. Obviously, neither this simple
tabular arrangement nor its graphical representation is satisfactory. We must
look further.

To avoid these difficulties we customarily divide the range covered by
the observations into something like thirteen to twenty equal intervals or cells,

the boundaries of the intervals being so chosen that no observed point coincides

therewith, thus avoiding uncertainty as to which cell a Cell Midpoints
in inches Fregq.
glven value of X belongs. The number of things (in our .
1.0 2
case telephone poles) having a quality X lying within a 1.3 29
1.8 3]
given cell is termed the frequency for that cell, and, 1.8 106
2.2 153
in a similer way, the ratio of the frequency of occur- 2.5 186
. 2.8 193
rence of a given value of X to the total number n of ob- 3.1 188
3ot 151
servations is e relative frequency. The series of rela- Se? 123
4.0 12}
tive freguencies constitutes a relative frequency dis- 4.3 48
' 4.¢ 27
tribution. The frequency distribution of depth of sapwood g.g l;
can in this way be reduced to the tebular form shown in 5.5 1
Table 2.4. By this simple deviee of grouping the original TABLE 2.4
: Distribution of
observations intoc cells, we secure & tabular representation Depth of Sapwood

which is muoh simpler than that originally presented in Table 2.1 but at the
same time we have slightly modified the original data. ¥or example, we oan no
longer determine exactly from the table the observed range. We oan, however, got
& better picture of the clustering of the observed values about a central value
somewhere near the cell whose midpoint is 2.8". Even though Table 2.4 does not
present all of the original results in detail, let us for the moment be catis-
fied in seeing what we have gained not alone, as already indicated, by reducing
the emount of space required and by indicating more clearly the naturs of the
distribution but also by making it possible to present the results more readily
1n. graphical form.

Some of the forms of presentation are shown in Fig. 2.5. In the first
of these the black dots represent ordinates proportional to the cell frequency,

the ordinete for a given cell being placed at the midpoint of that cell. If we
e
T STICAL INST) 770

e .
FR A0 e




- 12 ~

’ FREQUENCY  HISTOGRAM
FREQUENCY DISTRIBUTION FREQUENCY POLYGON
200+
200}
200 o . §
- 150.
2 150 . . 'g 150} F
" * s % 1od
% 100 . . 100} b
ke L ] -1
* 8 5o} 3. 5o
50 o 2 &
) ) Y L ) o4
. e g4 2 1 PO S T A A A L 1 L A ' A 1 44 a4 1 |
ol gy 5 0Ly 2.8 4.0 5.2 16 2.6 40 52
Depth of Sapwood-in. Depth of Sepwood-in. ~ Depth of Sepwood
CUMULATIVE DISTRIBUTION CUMULATIVE POLYGON . CUMULATIVE HISTOGRAM
eoee® . 2
S 1200 * < 1200¢ 4 1200
3 . : ;
hd “
< 800 . S soof S 800t
o . .
be ° 3 g
i 400 . § ao0} § 400r
= . " =
R Y. S Y- R S B S5 58 4.0 5.2 1.6 2B 40 5.2
Depth of Sapwood-in. Depth of Sapwood-in. Depth_ of Sapwood-in,..

PIG. 2.5 - GRAPHICAL REPRESENTATION OF FREQUENCY DISTRIBUTION OF DEPTH OF SAPWOOD OF TELEPHONE POLES
join these points by a broken line, we obtain the frequency polygon. The method
of obtaining the freyuency histogram is clearly indicated by the figure itself.
An ordinate in such graphical representations is termed a "frequency"™, meaning
thereby the freguenoy of occurrence in the associated céll. However, this term
often leads to confusion particularly in physics and{' engineering where it is so
often used in another sense. Hence we shall adopt the practice of ocalling the
ordinates "Number of ____ " such eas, in this case, "Number of Poles". .

Instead of plotting the number in a given cell as an ordinate we may
plot as the ordinate at a given value of abscissa the total number of observa-
tions having a value equal to or less than that of the given valué of abscissa.
In this way we get the cumulative

distribution, cummlative polygon and cumula-

tive histogram also shown in Fig. 2.5. These are often termed ogives. The sug-

gested form for the title of suoh a ocumulative chart is "Number of having

Quality X less than a Given Value". It is perhaps a matter of personal judg-

ment depending upon the situation in hand as to whether the tabular or the
graphical presentation of the frequenoy distribution of Table 2.4 is the more
desirable.

Let us next try to present the data of Table 2.1 in such a way as to in

diocate whether or not there is any relationship between the two quality charac-

teristios, depth of sapwood X and depth of penetration Y. In general, applying
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the same methods as those

used above to obtain the re-

duced frequency distribution, =2 ﬁ 153,285 133 s sy ) 5 I THEN ST
we can obtain the correlation :: ) : :J
table or scatter diagram shown . : ! q»
in Fige. 2.6. The number of =:: . | : ‘ : - ,“'
poles having the depth of sap- :"‘ bl W 0 L I T O 1,""%
wood and depth of penetration :: p ,: : : ,: : : : ':’ 1 ::l
represented by the midpoint of fa.2 ol S L L A R B L I j :4"7‘1‘

[ 1.9) z 1019 |22 |2 |2 | <4 ’ ] ) H i

the rectangle is printed in the

1.6} 5]14 39|34 |45 u. 2 2 10 v » 3 224

reotangle. 1.3 1] 11|36 4889 |51 je0 |29 |13 |10 . 3 [

1.0f 1 i1z 33| 41 42 (80 |27 (22 |1® 1 e 4 ) 1 LA2)

If we were to erect a S

01 15 11313 1| 6 |10 3 1 2 1 ..

parallelpipedon from each rect- - bl e |
1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 2T 4.0 ¢.& 4.4 4.0 b2 55 3
X = Depth of Sepwood 1B 1nohes
r15. 5.6

angle as the base and with a
height proportional to the
pumber in this same rectangle

the resulting figure would be a surface histogram, examples of whioch will be

shown later in the discussion of the errors of an average. We might also con-
struct surface polygons in a manner enalogous to that used in oconstruoting the
frequency polygons.

What does the table or chart shown in Fig. 2.6 tell us about thn rela-
tionship between the two variables therein considered? One thing is certain, -
the distribution of values of penetration in a given column corresponding to a
given depth of sapwood depend upon the depth of sapwoods In other words, knowing
the depth of sapwood, We have some information about the depth of penetration.
We shall be content, therefore, to say for the present that these two qualities
appear to be correlated and that in general the depth of penetration appears to
be greater, the greater the depth of sapwood, The table or ohart of Fig., 2.6
does tell us something but what it tells is qualitative and not quantitative.

For example, it does not tell us how close a relationship exists between the two

gualities.

5. Choice of Cell Boundaries
Why do we suggest the use of from thirteen to twenty cells? This
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oboloce is to a large extent empiriocal.
o ® e
1804
180t ¢ .
: 040
$ 120 o ®
P (o]
3 ) LY
: 'l o o ®
e}
(o]
o o o
> .0 ° oe
S~ a . N . - NN
1.0 2.0 3.0 4.0 5.0

Depth of Sapwood in inches

F16. £.7 - ™e Frequensy Distribution of Table 2.1 Plotted
sith Different Cell Intervals to Show Effect of

Classirioetion on Graphicel Representation

regular the smaller the number of oells.

Experience has shown that when grouped
{n this way we appear to meintain most
of the essential informatlion contained
in the original set of data. To takea
larger number of celis often confuses
the picture and, in particular, empha-
sizes sempling fluctuations, the sige
nificance of which we cannot consider
until Part III, In general other
things being equal, the outline of the
frequency distribution will ve niore

This is illustrated by the two fre-

quenoy distributions of the data of Table 2,1 shown in Fige 247,

6. Further Illustrations

In Part I we introduced certain

problems 'some of which we wish to carry

through in all detail from chapter to chapter so as to illustrate all of the .

steps involved in arriving at practicel solutions.

In this chapter we shall pre-

sent some of the data in tabular form which we preseni;ed in graphical form in

Part I,

For example, Table 2.5 gives the twelve frequency distributions for the

quality characteristic,efficiency, previously shown in the polygons of Fig, 12 of

Part 1. In a similar way, Table 2.6 presents the original data shown in Fig., 13
of Fart I.
. lell Trequency
Lidpoints July  Aug, Sept. Oot. Nov. Dec. Jan. Feb. Mer. Apr. Moy Jume
9.5 1z 1 1 1 2 4 1
o0 1 1 11 3 2 1
. 1 Vi
4 5 12 s o L 7 5 9
-3 ' 0 24 19 15 24
o ey 8 12 59 49 48 52 167 130 16 116
-2.0 168 zsg ;ég 99 157 152 137 125 221 168 146 206
-1.5 249 26 171 179 249 177 195 239 157 171 215
<1.0 208 ssg géa 312 302 359 320 B30 281 241 237 322
0.5 231 13 2 366 327 414 285 309 254 215 243 518
"o s a8 232 1681 117 16z 140 184 152 150 153
0.5 26 2 5 u © 13 27 49 100 106 79
1,0 9 1 2 4 24 10 8
1.5 2 1 1 4
L 1250 1300 1150 1200 1200 1350 1150 1200 1400 1200 1200 1450

TABLE 2.5 - Frequency Distributions
Polygons of Fig. 12,

for Data of Twelve
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Already we have seen that the graphical presentation of these data did

Now we

see that the tabular presentation also fails to provide a basis for e direct and

comprehensive quantitative comparison.

For example, we cannot say from simply

looking at the twelve frequency distributions in Table 2.5 how much these difrfer

in respect to central tendencies and even in dispersions except for observed

ranges.

In the next chapter we shall reduce these as well as other data to oer-

tain simple functions which later will be shown to contain the essential infor-

mation in e more usable form than either the tabular or the graphiocal presenta-

tion,.

CSompany 1
ate X on
July 18 32,291 -

21 22,715 1,780
Aug. L 21,978 1,392
8 21,795 1,634

15 16,437 1,723

22 20,510 1,619

29 21,638 988
Sept. 5 22,710 1,184
20,805 1,113

19 20,628 1,917

28 21,982 8867

Octe 3 22,238 1,392
0 22,914 1,895

17 21,835 1,377

24 20,292 1,665

31 20,609 1,469

Nov. 7 20,810 1,802
14 19,996 2,071

21 19,500 1,462

28 18,65¢ 822

Dec. 5 19,632 1,544
12 18,542 1,800

19 18,897 1,183

26 17,343 490

Jan, 2 17,674 688
9 19,423 a70

18 19,200 1,260

25 18,748 1,501

30 18,655 1,325

Feb, 6 19,849 848
21,045 897

20 15,280 1,695

27 18,369 748

lar, 6 17,828 1,301
13 17,836 1,172

20 18,055 1,013

27 17,741 99

ompany 2 3
. o = oy
24,300 1,092 24,245 74¢
26,037 1,007 23,804 766
25,265 1,288 23,357 862
35,122 1,224 23,440 642
24,308 1,818 22,451 1,011
24,701 1,8 28,107 970
25,590 1,119 ;082 719
25,284 1,209 25,080 806
25,076 1,094 22,972 959
25,340 1,828 22,430 151
5,123 ‘941 24,642 756
24,302 1,224 24,128 997
23,873 1,651 24,407 1,249
23,071 1,196 24,328 1,092
22,767 2,005 2146 1,525
21,72 1,477 24,316 - 959
21,616 1,515 24,270 1,015
21,281 1,507 - 23,887 1,144
21,290 1,374 24,008 1,057
22,471 1,310 23,900 501
21,756 1,476 25,105 944
21,014 1,603 25,705 1,087
19,808 1,399 25 949°
19,303 855 27,986 352
10,333 862 23,049 563
21,040 679 24,943 694
21,300 1,132 25,062 = 831
19,897 1,323 24,125 1,107
21,171 1,620 24,599 1,047
21,401 1,189 25,522 780
21 923 1,181 25, 788

462 24,367 1,111
].B 1836 1,554 24,208 929
19,569 1,414 23,834 1,170
19,654 1,466 24,005 1,204
19,862 1,525 25,286 1,247
19,663 1,500 25,408 1,337

n = number produced
Sompany 3

Company 4 Company 5 Compeny 6  Company 7,

1 = I ) 2 I
42,592 - 5,033 - 7,104 - 14,225 1,890
44,864 1,742 5,030 103 6,961 451 13,63 1,223
43,759 2,390 4,957 99 6,773 14,254 1,072
44,323 1,818 4,965 95 6,501 361 13,767 1,205
48,802 3,050 » 174 6,182 13,714 2,565
49,188 2, 4,556 150 6,399 424 13,720 1,382
54,228 1,910 4,388 74 8,272 381 14,400 1,448
52,247 2,383 7,270 41 8,590 325 14,312 1,590
51,304 2,164 4,102 40 6,352 417 14,459 1,842
45,750 2,938 4,559 48 6,141 586 14,387 2,303
49,647 1,603 4,643 95 ,476 315 13,654 1,873
47,562 2,309 4,420 158 6, 396 14,894 1,982
46,308 2,857 4,041 172 6,087 415 14,386 1,962

,580 2,522 3,959 33 6,289 265 15,156 1,787
46,797 3,59 3,864 101 5,940 461 14,095 2,429
47,435 2,596 3,756 75 5,978 403 14,529 2,338
47,226 2,259 3,794 68 6,141 333 14,017 2,304
46,464 2,634 3,775 O 5,769 421 12,817 2,053
47,364 2,187 3,721 63 5,844 377 13,487 2,028

»3, - 3,584 50 5,864 300 12,538 1,002
49,070 2,560 3,447 76 5,916 333 14,152 1,198
47,665 2,928 3,534 79 5,581 528 13,230 2,233
48,749 2,652 3,496 78 5,665 391 11,766 1,681
46,184 1,385 3,292 74 5,085 458 806
47,220 1,062 3,015 11 5,070 292 , 97
50,001 2,211 3,311 26 5,464 331 12,953 1,531
58,816 2,632 3,278 77 5,408 421 12,114 1,512
47,133 2,531 3,189 126 5,177 481 11,875 1,488
48,3 s 3,043 5,241 342 11,467 1,396
52,517 1,885 2,091 106 5,347 277 11,814 832
51,927 2,194 3,749 40 5,174 192 11,905 063
47,925 3,677 2,993 11 5,185 249 11,166 938
49,595 2,520 2,99). 74 5,275 196 K 678
48,3 3,087 69 5,075 333 11,149 1,638
48,714 583 » 49 4,995 285 11,036 1,104
48,576 535 3,040 54 4,997 290 13,222 1,338
47,385 548 2,934 62 4,903 306 18, 522 1,441

TABLE 2.6 - Original Data of Fig, 13

pn = number Tetlumad

£5388285%

)

PR

PG e i N N e et o e b e e b e e
|E~J
3
-

mmt_! .magw
20,661 1,400
20,81x 1,103
20,306 1,300
1,6 1,110
19,837 },61n
80,020 1,558
21,376 0a
1,001 1,104
21,108 96X
1,501, c»m
23, 553

19t nt
23,118 1,000

23,381 osx
23,160 1,2
3,441 woc
23,208 1,080
23,100 1,088
22,4% 1,087
12,333 e9s
24,464 BAS
£2,9% 1,658
23,201 1,104
20,798 476
20,940 1,110
23,748 9%
L2387 1,160
22,707 1,140
22,752 1,319
23,578
32,9% 1,009
16,343 985
21,090  Te9
21,708 1,% 9
21,776 1,0v¢
15,790 1,144
5,621 375
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CHAPTER 111

s i

Presentation of Data by Means of Simple Functions

l. Smle Funotions to be Used

We ocarry over from the previous chapter two specific problems:

a series of n observed values,

x.l. x.z. PP xi, coe xn0

of some quality X to a few simple functions containing the essential .information

a. To reduce

given by the original data.
v, To reduce a series of observed values,

X;;, X120 e+ X190 ooo Xins

Xz X22»

I5s Xy2»

. o o

Xn)» Lo

LN xzi, eo e X2n

e e © & o ¢ o o o

see XJi. es e x.,jn

seo %1' LA x’]nn’

representing n observations of m different quality characteristics to a few
simple functions oontaining the essential information given in the original date

and inocluding measures of causal relationship between the quality characteris-
tics. Table 2,7 presents for ready reference & list of those functions which we

shall consider. Those marked by an asterisk are the more important when con-

sidered from the viewpoint of the theory of quality control and the analytical
interpretation of all kinds of data. Hence they are taken up first ip the dis-
oussion. Many of these functions have & graphical interpretation which ocennot
be fully understood until we have considered frequency curves and surfaces but
we shall try to give in the present chapter an indication of the geometrical

meaning of these terms adequate to give the reader a better initial picture of
what the functions really mean,

2. Fraction p Defective or Non-Conforming

This simple measure of quality was described in Chapter II of Part I.

In general p represents the fraction of the total number of observations lying

between two specified limits. For example, the percent of stale bread returned



Fraction
within
certain
limits

Averages for
measurement of

central tendency

*Fraction
defective

P

1s such & measure of quality.

*Aritimetic Mean
X

Meximum+Minimum
2

Median

Mode

Harmonic Mean
Geometric Mean
Indefinitely

large pumber of
other averages
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Measures of

Measures of

Messures of

Measures of lopsidedness flatness or relationship
dispersion or skewness lurtosis or correlation
*Standard *Skewneas *Rurtosis *Correlation
deviation k ) 2 coefficient
o r
Variance Correlstion
o2 ratio
Mean Partial
deviation correlation
coefficient
Observed
reange Indefinitely
large numder
Percentiles of other
measures
Symmetric
renges
Asymetric
ranges
Indefinitely
large numbex
of other
measures
TABLE 2.7

3¢ Arithmetic Mean as a Measure of Central Tendency

T - ﬁ:'l' X2 +oaet XA teoot xn o =l

n

z

Xy

n

n

By definition the arithmetic mean X of n real numbers Xj, X, ... ) S

oo Xn, is

(2.3)

Carrying through this computation for the 1370 observed values of depth of sap-

wood, we get 2,90" as the arithmetio mean depth.

This particular measure of

central tendency, as thus rigorously defined, depends upon all values of X and

is easily calculated,~ characteristics whioh do not apply to many of the other

means in Teble 2.7.
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To caloulatel the mean with the aid of Equation (2.3)1s somewhat labor-

{ous of course and we oan usually make use ot an approximate method which will

give a sufficient degree of acouracy. This method makes use of the grouped date
as presented in the third column of Table 2,8, Obviously the mean cdalculated
from the grouped data will not in general be equal to that given by equation 2.3
Teble 2.8 {llustrates the details of the method of calculating the arithmetic
mean from the grouped data and in this way we seocure the mean value of 2,914" in

stead of 2,900".

Deviation :
Mid-Cell in Cells Observed
Values from O Frequency
in inches X b4 ¥X
1.0 0 2 0
1.3 1 29 29
1.8 2 62 124
1.9 S 106 318
2.2 4 153 612
2.5 S 186 930
2.8 6 193 1158
3.l 7 188 1316
J.4 8 151 1208
Se7 9 123 1107
4,0 10 82 820
4.6 12 27 2924
L 1370 8741

Py - Zzlyl - %;’,% = 6.380292
m = units per o0sell = .3 inches
Aritimetic mean X = T + m)k, = 1,0 + 1,914088 . 2.914088 inoches

TABLE 2,8 - Illustration of Method of Estimating
—  arithmetic Nean.

4, The Standard Deviation as a Measure of Dispersion

Given a set of n real numbers, X;, Xg, ... Xy, ... X, the standard de-

viation ¢ of this set about its mean velue X is by definition

the numerical work is carried out to more
places than will be t
somt o ntariratation, e Sawsen Tor ading this wil, nowevor arpeer
. 8 n t our use of these ¢ i
methematiocal calculations is based u unotions in the
pon the assumption that th d ob-
servations are considered technicall e group 4
y as a distribution of numbers. To do
m:nt;: mgh: lead to ridiculous and inacourate relationshipsebztveen the
» particularly when it comes to the calculation of correlation co-

efficients and certa
ool in functions of the moments of the distributions soon to
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n - 2
z (X -X)
O = 131

(2.4)

The exact value of ¢ can easily be obtained with the aid of equation 2.4 although
to make the calculation in this way when the size n of the sample is large in-
troduces a prohibitive amount of work. For this reason, as in the case of the

average, we make use of the grouped data and calculate g as indiocated in Table
2.9,

Deviation
Mid-Cell in Cells Observed
Values from © Frequency P
in inches X y Xy Xy

1.0 0 2 0 0
1.3 1l 29 29 29
1.6 2 62 124 248
1.9 3 106 318 954
2.2 4 153 612 2448
2.5 5 186 930 4850
2.8 6 193 1158 6948
Sel 7 188 1316 9212
Je4 8 151 1208 9664
3s7 9 123 1107 9963
4,0 10 82 820 8200
4,3 11 48 528 5808
4.6 12 27 324 3888
4,9 13 14 182 2368
5e2 14 5 70 980
5.5 15 1 15 225

T 1370 8741 65583

m = units per cell = .3 1noches

My = -’%If- = §73L - 6.380292

2
ZyX™ _ 65583 _
lua = —%y— 70 47.870803
2

¢ =m ngl/z = 4798211 inches

TABLE 2.9 - Illustration of the Method of Calculatin
the Standard Deviatlion.
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In general, the further the set of values is spread out about the aver-

a small standard
age, the larger becomes the standard deviation. For example,

deviation indicates that the observed set of numbers 1is closely clustered about
the aritimetic mean whereas a large value of standard deviation indicates that
the pumbers are spread out widely about the arithmetic mean. In the next .
ohapter we shall find out how to interpret this measure of dispersion quantita-
tively as indicating the way in whioh the set of numbers is spread out about
the arithmetic mean. For the time being it must suffice, however, for us to
pioture the signifiocance of this measure &s indicated graphiocally in Fig. 2.8.
This figure shows two distributions
differing only in standard deviation.
5. lopsidedness or Skewness

Given a series of numbers, we
need some measure of the lack of symmetry

of the distributions of the numbers of

this series sbout the arithmetic mean.

M 1a . N TN FTANMMAN MSTISTION ¢ INMICATRD VIGFRASIGN.
T SL5TEIVTIONS LITVLALIG GELY 1N SZAMMND OEVIATION.

The particular function which we shall
use most extensively in our study of quelity control is designated by the letter
k and defined by the expression

n n n 2
L (Xy-X)° X} XX
1el i=1 = _ __4=1 | Pvad
K = n - n _n
n
Obviously k is zero if the distribution
[ ”/ ‘\\ is symmetrical. O0f course, k may be either
\
,,' \\ positive or negative and Figs 2.9 shows
LB 3 I' \ - -1
," \ ; schematically three distributions differ-
! // \\ ing only in skewness
1 6+ Flatness or Kurtosis
f/ \\\
- ric. I.O‘- xm‘ ‘ﬂu‘u;cﬂ:ﬂ Ql.k n.\_‘ The Teader °°n51der1n8 this subject
A MR of L oR

for the first time may begin to wonder
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how many strange functions are to be introduced in the attempt to condense the
essential information to usable form. Thus far we have introduced funotions
which measure the central tendency,
skewness and dispersion of the distri-
bution. Obviously we need to have
some measure of the degree of flatness
of the distribution. One such measure, |
By, techniocally termed kurtosis, is de-
| fined by the following relationship and }

its significance for the time being is

illustrated in Fig. 2.10.

FIG. £.10 - ITLLUSTRATING USE OF 8, A8 MEASURE Of FlATHRM OF L3TRImvion

z (x -0 2
B, = 2L E —2 )
n
(2, X -1)2§
(2.6)
v n 4 n 13 n 2
= z z Ii
P Y I C P S
n n n '

7 Calculation of Funotions
Let us see how simply the calculation of the above functions can bde

carried out. 4gain we shall use for illustrative purposes the distribution of
depth of sapwood. For convenience wa introduce a new term, namely, the moment
of the distribution. By definition the jth moment, ;u 3* of a set of n values
about the giv_ren origin is

n

z

i=1
lu.j = T (207)

and, similarly, the jth moment of this same set of data about the arithmetio
mean X is

n

z (Xi-X)j

i=1 2.8
uj = o) . ( )
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on (2.8) the formulas for the standard deviation, skewness and
heet of Table 2.10. The details

By means of Equati

kurtosis reduce to the forms shown in the data 8
of the analysis involved are

presented here so clearly that

e INSPECTION ENGIOEERING
pEcTED
we need make no further oom- o ANALY3IS SHEET
L oF
e
ment, "
g cews  [PEVIATIONG  ops. FRE
8. Measure of Relationship i s et | reea | yx yx Y% Xt %“
———ms E X L
.850
5 1.0 ° 2 0 ) 0 o .19
As engineers and g T s Le180— 29 29 29 29 29(2.1
i ) 1.8 i":gg 2 62 | 124 248 498 S9g[4.5
1.8 o= 3 106_| 518 954 2862 8566( 7.7
scientists we are eoocustomed g e 2.050F——T10a T 612 | za4s T slechi T
£
5] 2.5 2'250 5 186 | 930 4650] 23250 11 .
6 2. = [ 193 | 1158 | %948 4 14.0
to think of two things being | 3. 22807 Igs | 1316 9212 _ 6448a]  451388)3.7
o 5.a 122501 g1 | 1208 | ee64| _ 77312] 618496110
related when we oan express 9l 3.7 9 123 | 1107 | 9963  89667] 807003 8.9
o 4.0 e300 82 | 820 8200 52000] __820000] 5.9%)
MR ey I 48 | 528 | 5808  esees| 702768 3.
one as a mathematiocal funo- 2 yorrr BE 27 | 324 | sees| 46656 9872 1.9
M 4,9 5‘050 B 14 | 182 | 2 307 99854] 1,02
] | 20501, 5 70 280 13720 19 .
tion of the other. For ex- o 5.5 |2=2901; 1] 1s 225 3375 50628 .0
16] = 16 .
emple, if a physiocal quality 7 =
19
Y is related to another 20
z 1370 | a741 | e5583| 949977 501723
quality X we think of’ the re- 5741':-“““:-0 3(6.380202)= 2.914088 798211 _ 021565
- . xBemgl . + O+, . =2 .
ettt R R kit wfen S7oopsTy
lationship being expressible o683 re Lt -5(2.660704) = 798211 g, gy 5TI0ELL 015049
T £ .
wmmewm| us sa0077f, g | 4.613423 _  .244025 .
in the simple form o 44 osk S -rerassosy - ofk-[ ooaseo UL
i T St i BT R
Y = £(X), (2.9) o | #oeoo £1:870805 - 40.708126 = 7.262671
——]
meaning thereby that for propseetsls 401.443066 - 916.289104 + 519.45946) = 4.615423
S trripip st D062 - 218248-10245,295030+ 11692 « 384081-4971 .45456T=157.6518%2
every value of the independ- Seevirallll IRV WO 7.079344 “*"82?,333
povy | \ 3oy = 2040721
fmwers 4t g ulpyo sttty 137 . 851832-3.5681339+ ,029167=134 , 299660 34,0 2198554
ent variable X, Y is deter- ="' Using uncorrected upsO=.802895.  Mode = X - ko/2=2.818337 soe 2397071
: TABIE 2. :
mined by the simple function AR 810

f. If we again direct our

attention, however, to the scatter diagrem representing the observed values of

depth of penetration Y and depth of sapwood X, we see that for a given value of

X thers are in general several values of Y. In Tact, as we have already noted,

there appears to be a general relationship between these two characteristics but

we must discover some method of measuring this relationship,

If, for example, the depth of penetration is related to the depth of

sapwood, the kmowledge of the depth of sapwood should give us some information

as to the depth of penetration. We must leave for later discussion a considera-

tion of general measures of relationships of this nature, For the time being be



X = Depth of Sapwood

Y = Depth of Penetration

(1) (2) (3) (4]} (1) (2) (3) (4) (1) (2) (3) (4)
X 4 n mXY| X Y ny mIY | x ) 4 ny mXY
1.0 7 1 <70 3.1 7 10 21.70 | 4.0 3.4 S 68.00
1.0 1 1.00 1.0 22 68.20 3.7 1l 14.80
1.3 4 1l «52 1.3 40 161.20 | 4.3 1.0 4 17.20
o7 15 13.65 1.6 42 208.32 1.3 4 22.36
1.0 12 15.60 1.9 36 212.04 l.6 7 48.10
1l.3. 1l 1.69 2.2 24 163.68 l.9 ? 57.19
1.6 4 2 l.28 2.8 6 46.50 2.2 6 56.76
o7 1)1 12.32 2.8 7 60.76 2.5 7 75.25
1,0 33 52.80 3.1 1 g.61 2.8 4 48.16
1.3 11 22.88 3.4 o7 3 7.14 3.1 ] 66.65
1.6 5 12.80 1.0 15 51.00 3.4 3 43.86
l.9 7 13 17.29 1.3 29 128.18 3.7 1 15.91
1.0 41 77.90 1.6 28 152.32 | 4.6 o7 1 3.22
1.3 36 88.92 1.9 22 l142.12 1.3 S 17.94
1.6 14 42.56 2.2 a7 201,96 1.6 ] 36.80
1.9 2 7.22 2.5 11 93,50 1.9 3 26.22
2.2 Y- 1 .88 2.8 12 114.24 2.2 3 30.36
o7 11 16.94 - 3.1 2 21.08 2.5 1l 11.50
1.0 42 92.40 ‘ D4 2 23.12 2.8 3 38.64
1.3 48 137.28 3.7 o7 1l 2.59 3.1 3 42.78
1.6 39 137.28 1.0 10 37.00 3.4 2 3l.28
1.9 10  41.80 1.3 13 62.53 3.7 1l 17.02
. 2.2 2 2.68 1.6 21 124.32 4.0 2 36.80
2.5 o4 1l 1.00 1.9 24 168.72 | 4.9 1.0 1 4.90
.7 14 24.50 2.2 28 237.92 1.6 3 23.528
1.0 50 125.00 2.5 11 101.7% 1.9 1l 9.31
1.3 59 191.75 2.8 7 72.52 2.2 1 10.78
l.6 34 136.00 3.1 4 45.88 25 2 24.50
1.9 19 90.25 3.4 4 50.32 2.8 2 27.44
2.2 7 58050 4.0 07 2 5060 5.1 l 15019
2.5 2 12.50 1.0 e 8.00 3.7 2 36.26
2.8 7 6 11.76 1.3 10 52.00 4.3 1l 21.07
1.0 37 103.60 1.6 10 64.00 | 5.2 l.0 1 5.20
1.3 51 185.64 1.9 g 68.40 3.1 1 16.12
1.6 45 201.60 2.2 15 132.00 3.7 1 19.2¢
1.9 28 117.04 2.5 12 120.00 4.0 1 20.80
2.2 18 110.88 2.8 14 156.80 4.8 1 23.92
2.9 12 84.00 3.1 2 24.80 | 5.5 2¢5 1 13.75

2.8 2 15.68
n = 1370

IXTn, = 6765.77

ZXYn)
n

= 4,938518

ZXYny =
= -Xx

=

XY~ 4.637654

OxOy * ' -498779

. 4,938518 - 4.637654
—a0aT%

T

498

3 603201

TABLE 2.11- CALCULATION OF CORRELATION COEFFICIENT
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content to accept the so-called correlation coefficient r defined in the follow-
ing way.

n
I XY
i=1 1 -9
. n
Txy ox0y

(2410}

The method of calculating this ocorrelation coefficient is illustrated in Table
2.11. We shall see later that the value of r must lie between +1 and -1,
9, Some Applications

Thus far we have introduced and defined certain simple functions which,
when caloulated for a given series of observations, will be shown to contain the
essential information. If the series of observations consists of n observed
values on each of m different quality characteristics, four simple functions are
required to express the essential information contained in the distribution of
eaoh oharacteristioc provided the sample size n is large and only two simple
funotions provided the sample size n is small in addition to -EL@;E correla-
tion ocoeffiocients. In each of these cases, it is understood that the sample
size n is known.

Ve may meke use of these functions in expressing the essential informe-

tion oontained in data previously introduceds For example, Table 2.12 presents

the essential information ocontained in some of the previously given series of ob-

servations.

10. Other Measures of Central Tendency

In general the average of a series of values, X1y X3y e.e X4, X, 1s
defined as a number greater than the least and less than the greatest when all of
the values of X are not equal and equal to the common value of X when all of the
n values of X are equal. In this ocase the arithmetic, harmonic and geometric
means are simple examples. Obviously there are an indefinitely -large number of
averages or, in other words, functions satisfying the abové conditions. Any one
of these averages measures in a way the central tendency of a group of observa-

tions. Three averages other than the arithmetic mean are often used in engineem

ing work. They are the median, MeXimum X + Minimum X
LM

., and mode, If we arrange

the zeries of wvalues of X in their order of magnitude, the value of X below which
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W ow oa K

Aug.

- 235 ~

1300 1150 1200 1200 1350 1150 1200 1400 1200 1200
-1.250 ~1,368 ~le325 -1.504 -1.512 -1.400 -1,505 -1.765 -1,550 -1.%01
872 «673 «623 <713 638 «710 754 «.9283 «985 921
~e439 785 -.770 ~.541 -,490 ~e573 =M7 -.353 -,093 -.161
3.287 4.854 4.208 3,143 3.025 3.673 4,566 3.331 2.837 8.390
e - Twelve Frequency Distributions of Teble 2.5
Yoltege Current
n = 58 n 17 17
T = 47022020 o.5.u. b3 27 .42
o = 01497 x 10" Pe.a.u. 14 .29
: r= 093
b - Dats Shown in Fig. 2.1 ¢ - Data of Table 2.2
Yolums Ares Sepmcod  Penotration
n 23 23 n 1370 1370
X 1.9  .693 b3 2.91 1.50
9.9 108 o .80 <82
T = 009 k .24 1.08
By 2.88 4.18
r = .603
4 - Data of Table 2.3 e - Data of Table 2.1
(1) (2) (3) (4) {5) (e) (7) (8) () (10)
n 19854 21701 24169 48570 3825 57686 13214 50006 21722 21390
X  .0663  .0616 .0%81 .0452 .0199 ,0620 .1l170 .0378 .0490 ,0482
g .00177 .00163 .00123 .00094 .00226 .00317 .00280 .00085 ,00147 ,00130
x- Zpo/In wherse E : {-p
B = average n

¢ = vpa/n

? ~ Data of Table 2,6

TABLE 2.12 - ESSENTIAL INFORMATION CONTAINED IN SOME OF
. THE PREVIOUSLY GIVEN SERIES OF OBSERVATIONS

e

~1.577

-.108

2,519
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there are as many values in the series as there are above, 1is by definition the

median. In either grouped distributions or in the cese where n is even the

median must be determined by interpolation. The modal value of X is naturally

that value of X whioh ooours most frequentlye These three averages calculated

for the series of fifty-eight observed values of the charge on an electron are

Median oharge = 4.785 x 10710 ¢,s,u.

“ﬂxo Char e ; Minimum Char e = 4'775 X 10-10 Ces8Sels

Modal charge = 4,779 x 10710 e.s,u.

In the same way we might define and calculate any number of other mean
values. Under certain conditions several of these mean values calculated for 2

given distribution may be identical. For example, if the distrivution is uni-
Maxe X + Min, X
2

modal and symmetriocal, the arithmetic mean, median and are all

equal. In general, however, as in the case just stated, these values &are not the
same., Therefore, 1t is natural that en engineer should want to know which of
the mean values should be used in a given case.

Naturally the labor involved in calculating one mean value may be quite
Maxe X + Min, X
2

different from that in calculating another. For example, the
can readily be determined almost by observation even fhough the number n values
of X 1s large whereas this is not true for the arithmetic mean. The modal value
of X cannot, however, so easily be determined. If one tui'ns to any one of a
number of excellent elementary treatises on the theory of statistics, he finds
an extended discussion of the relative advantages of the diff.erent mean values..
Suoh information is illuminating indeed but as engineers we are perhaps more
concerned with the fundamental question as to whet mesn will besf serve our pur-
pose in the ma jority of cases arising in the problems of quality control, In
succeeding ohapters we must justify our acceptance of the arithmetic mean as
being the most useful measure of the central tendency of a series of observa-
tions partioularly when that measure is supposed to contain the essential infor-
mation required in solving the problems of quality control,

1l. Other Measures of Dispersion

The most important measure of dispersion other then the standard de- 4

viation is the mean deviation u defined for the case of n values of X by the
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expression
n
121 IXI-I[
B o= 5 (2.11)
where as usual ] [ represents the absolute value of a quantity. In fact, the

use of this measure is often suggested because it is usually assumed to dbe

"easier to calculate.

All velues in the following table are multiplied by 10-10
X = 4,7804655

x |x-X| X | x-X| x |x-Y]
4,740 ,0404655 4,775 .0054655 4.789 ,0085345
4,747 0334655 4,776 .0044655 4,790 ,0095345
4,749 ,0314655 4,777 20034655 4.790 .0095348
4,758 ,0224655 4,777 0034655 4.790 ,0095345
4,761 .0194655 4,778 .0024655 4,791 ,0105345
4,764 ,0164655 4,779 0014655 4,791 .0105345
4,764 ,0164655 4,779 .0014655 4,791 ,0105345
4,764 .0164655 4,779 0014655 4,792 .0115345
4,765 40154655 4,779 +0014655 4.792 ,0115345
4,767 ,0134655 4,781 o0005345 4,795 .0145345
4,768 ,0124655 4,781 40005345 4,797 ,0165345
4,769 40114655 4,782 ,0015345 4,799 ,0185345
4,769 ,0114655 4,783 0025345 4,801 ,0205345
4,771 0094655 4,783 ,0025345 4,805 ,0245345
4,771 ,0094655 4,785 ,0045345 4.808 ,0255345
4,772 ,0084655 4,785 ,0045345 4.808 0275345
4,772 ,0084655 4,785 40045345 4,809 ,0285345
4,772 ,0084655 4,788 40075345 4.810 ,0295345
4,774 ,0064655 4,788 ,0075345
4,775 ,0054655 4,789 0085345 p +8850000

Mean Deviation p = —E—-}}'—x-l— - —‘—Q%%QQ = ,01181 e.s.u.

TABLE 2,13 Illustration of the Method of Calculati
The Nean Deviation; Data of Figure 2.1

Table 2.13 shows the method of calculating the mean deviation for a series of
observations, in this case the charge on an electron., We shall seelas we pro-
ceed, however, that this measure does not deserve the prominence that has al-
ready been attributed to it in this paragraph except for the faot that it 1s a
measure often used in the theory of errors and, therefore, familiar to engineers.
For this reeson it is importent that we show later just why this particular

measure should not be used because of {ts inefficiency in presenting the essen-

- - - - . -
- e wm w e W e e = @ - e -

- e W = w w m = = -

—- - s = w = = e o e -

1. This will be given in I.E.B. 4 constituting Pert I1I of the complete story,
»Gontrol of Quality of Manufactured Product”.
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By dividing the standard deviation o by the average X we get the co-

efficient of variation which expressed in percent is ;%QE' - This measure is
often used because it indicates in a seemingly practical way the relative im-
portance of the dispersion expressed in terms of the average. Another measure
{s the observed range, namely, Maximum X - Minimum X. For example, this measure
is used extensively in some books® and often in scientific journals. It has the
advantage of being easily calculated end easily understood, although we find
that 1ittle elsme ocan be said for it.

Having urrenged a series of n values of X in ascending order of magni-
tude and determined the value Xj, such that the percentage S of the n values of
X are less than X;, then X; 1s termed a ‘percentile., ihen S = .25, S = .59 and
S = ,75, the ocorresponding values of X; are termed the first quartile, second
quartile or median and third gquartile respectively. The range between any two
percentiles is often used as a measure of dispersion and in particular the semi-
interquartile range.

Obviously the sum of the absolute valups of any given power of the de-
viations of the observed series of observations from the arithmetic mean can be
teaken as a measure of dispersion. Of this group of measures there is obviously
an indefinitely large number and all of them are zero when the dispersion is
zZero,

In a similar way we might have an indefinitely large number of measures
of dispersion in terms of either symmetrical or asymmetrical ranges.

#hat measure of dispersion shall we use in trying to record the essen-
tial information contained in a series of observations? Why are we justified in
using the standerd deviation previously suggzested in this chapter? These ques-
tions must be answered as we proceed along with similar questions regarding our
ohoice of each and every function proposed for use in the analysié of data,

For convenience in future reference we tabulate below some of the
poasidble indefinitely large number of measures of dispersion for the series of

fifty-eight observed values of the charge on an electron.

- e = e e -
- - e - e e e = = W e

l, See for example, "Timber, Its Strength, Seasonin

H, S. Betts, published by McGraw-Hill, 1919. g and Grading", by



Standard deviation = ,01497 x 10-10 e.s.u.
Mean deviation = ,01181 x 10-10 e,s.u.

Observed range, Max., X-Min. X = ,07000 x 10-10 e,s.u.
Semi-interquartile range = ,01850 x 10-10 e,s.u.

These will be used in later discussions,



- 30 -

CHAPTER IV

e e ittt

Presentation of Data by Frequency Curves

1. The Problem
Once more let us recall that there are two iypes of data to be pre-
sented, one of which is in the form of a series of n observed values, Xl, Xz,

sets of n obser-
cos Xyy o een X of some quality X and the other is a number of se

vations on each of m quality characteristics. For the moment let us recall

that there are two purposes of taking data,- (1) The presentation of facts, and
(2) the interpretation of the observed data in terms of causation. Obviously
the presentation of facts requires the presentation of the original observations
or else the presentation of a few simple functions which in turn may be used to
reproduce the original observations. The total information contained in a series
of observations or a number of series of observations‘ is obviously that expressed
{n the observations themselves. The essential information, on the other hand,
may or may not equal in amount the total information, )

In most problems of quality control we are interested in extracting
from a series of observations the essential information conteined therein. It
must be remembered, of course, that before we can decide in a specific caée
whether or not a given group of simple functions containsthe essential infor-

metion we must have before us a clear cut question to be answered.

A simple illustration may serve to make this point clear. ‘Gomg back
to our 0ld illustration of the tailor, if he wanted to make suits of clothes for

& certain group of ten individuals, it would be necessary for him to know the

measurements of each of the ten individuals. On the other hand, if he merely

wanted to purchase the goods from which the 8uits were to be made, he would need

only the average amount of cloth per sult. 1In the first case the essential

information is the total information; in the second case, it is only that part

of the total information contained in the simple function
L]

the sverage. It is
at once apparent, therefore,

that we cannot set down any absolute criterion by
which to aetermine whether or not = given set of functions contains the

essential informetion, for what is essential information in the answer to one
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&uestion need not be the essential information in the answer to another, We
can, however, get a kind of upper limit to the amount of information contained
in the simple functions derived from the set of observations by seeing how muoh
of the total information is contained in the given group of functions, In what
follows, therefore, we shall try to see just how far we can go in expressing
the total information in terms of a few simple functions, it being evident of
course that in most cases the essential information required is actually much
less than the total information,

The method of attack will be somewhat as follows: We shall introduce
the concept of frequency curve or function f(X) assumed to be such that

b

}‘ (X, Nys Mg een Ry, ees Ap)EX (2.12)
a .

gives approximetely the number of observed values of X lying within the range
X =a to X = b, where the A's are certain parameters to be determined from the
observed data. It is obviocus that these parameters must be symmetric functions
of the observed set of dJata because the order in the original set should in no
way affect the function. Now it is & well-known fact in algebra that symmetric
functions can all be expressed in terms of sum functions, as they are called,

where the sum functions are defined as

Sl'-'xl +xz+...+xi+...+xn
_ 2 2 2 2
Sz ‘Xl + xz + LA "'Xi"' e *Xn
= vd J J J
Sj-—xl +X2+ ...+xi+...+xn

2 9 @ 5 8080 C S L T N S 0 SLEELEILEICSEST OO TOSDS

These particular sum functions, when divided by the number n have been given a
particular name, moments. For example, _ﬁ]; is the average or first moment of a
distributioh about the origin. Similarly %2- is the second moment about the
origin. In this way we are led in a rational way to the particular choice of
function in which we have already tried to express the information contained in
a series of observations. We shall find that in general no frequency function

£(X) can be found to satisfy the integral (2.12). In fact we cennot even
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o
express an upper limit to the error (other than 100%) with which any known

function can be used in expressing the total number of observations iying within

a given specified interval a to b.
We shall come to see that in general we cannot express the total infor-

mation by means of a frequency function involving the estimates of the parameters
derived from the observed data. In such cases, if we wish to express the total
{nformation contained in the series of observations, the only thing that we can
do is to present the original series in toto.

On the other hand, we shall get acquainted with a very remarkable

relationship. If we write the integral (2.12) in the form

+b
rf(x, Kl’ Kzg LI Li’ LN ) hm)dX’
X-v

indicating that the integral is to be extended over a symmetric range about the
average ¥, we find that we may express an upper bound to the error of approxi-

mation to this integral which is ‘absolutely independent of the original series

of observations. In fact it is this very theorem which will form the background

for many of the most important methods to be derived in the discussion of

control of quality in future chapters.

Returning no¥ to the integral (2.12), a little consideration reveals

certain difficulties lying in the way of finding the very important kind of

function contained therein. Common sense dictates that the functional form

representing one series of observations will, in general, be different from that
representing another, unless possibly a ve}y general type of function could be
found. The importance and practical significance of this problem of searching
for soms almost miraculous function having the property of satisfying (2.12) has
inspired numerous researches during the last three centuries and out of these
extensive labors come a few very important and far-reaching results, Some very

general forms of frequency function have been found which, as we shall see, come

quite close to, even if they possibly do not attain the goal of expressing fre-

quency distributions in terms of a single funetion involving a specified small

number of
parameters. On the other hand, however, these functions do not
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satisfy our present requirementior simplicity.

Before we venture far afield in the way of ‘generalizations, let us
acquire a few simple working principles which more them likely will help us to
reduce most frequency distributions coming to our attention to simple function-
al forms thet can be used in answering most of our practical problems.

Technically _speakin.g, our problem of representing the information con-
tained in & series of n observed values of a quality X is divisible into two
parts,- (a) determination of ihe form of the function £(X), and (b) caloulation
o_f the estimates 8's of the parameters A's in terms of the observed data.

We shall first consider two simple forms of function, one of whioh
involves only two parameters and the other three parameters. 1t will be found
in the one case that the estimates of the parameters will be taken as the
average and standerd deviation of the original set of observations and in the
other case, the parameters will be expressed in terms of the average, standard
deviation and skewness of the observed set of data.

2. The Normal lLaw Function

Let us get acquainted with perhaps the simplest useful function now on
the market, as it were. Simple though it is, it helps us to grasp the signi-
ficance of the average and standard deviation of a given series of observations
in the way of expressing the information contained in the observations. This
function is often referred to as the Normal Law although it is sometimes known
as the Gaussian or. as the lLaPlacian Law. Formally it is expressed by the

relation

£(X) = sz © , (2.13)

where X and ¢ are the two parameters. ﬁight now we are not going to worry over
some/ of the proposed reasons why this normal law happens to be so useful. These
may be more appropriately discussed in Part III(I.E.B.4).

Obviously this function is symmetrical about the parameter X so that
¥ is-the arithmetic mean of the normal distribution of X. Furthermore,

+Q0
{ (x - 2 £(X)axX =0
t-m ’
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normal distribution
the parameter o is the standard deviation of the
and hence e

of X.

’ itutin them
rage and standard 63913t10n Of this SQb Of -Values by subst 8
of thQ ave

between
th ormal funotion to see how closely the inbegral of this function be e
in en

mate number of ob-
any given limits cen be depended upon to give us the approxi
few doubis as
served values of X witbhin these 1limits. ©Of course, We may have &
to what may actually happen when we take such a bold step but first let us do it
)
to th
and then reason later why it so often gives so close an spproximation e
truth. -
As 8 specific illustration, let us make use of the 1370 observed values
tain the values of the
of depth of sapwood given above in Table 2.4. To obta u |
{ntegral of the normal law over any given range, We may make use of Teble 2.14.

For example, if we let x = X - X, the normal law function may be written in the

- e wm w = W w -

form 2
- gi' x
o(z) = 1__ e where z = -
ovarl
1
2 -Ez
Table of Values of F(z} = J——%'L e az
] z  F(z) z  Pz)
. FiD) 2 Pzl @ M2 z  P(z) z  Pz) z Flz) .z PFz) z (z)
0000 3850 1.50 . .80 . 2.10 .4822 2.40 .4918 2.70 .4966
%0 . 3 T s O e 113 tace 1io) liBis 1090 igoas 0D aozE 240 .20%0 B luver
O 0080 133 Ias et .ssed .08 .31z 1.7z .3080 1.52 .4360 1.08 .4006 £.12 .4080 5.48 4923 2.72 4368
.02 . et es | ‘98 . . .13 .4834 2.43 . 3 .
2387 .93 .3238 1.23 .3007 1.53 .4370 1.83 .4864 2.1
o e % 30 A IE380  [04 [376c 1.4 13925 1.04 .4992 108 .4671 534 L4958 o.as 4987 5.74 .4970
. 4970
.95 .3290 1.25 .3944 1.55 .4395 1.85 .4670 2.15 .4842 2.45 .4929 2.75
O e I3 il e dtas i3t (3315 1ips .3ves 1.8 .se0e 1.88 4080 2.16 4846 2.4 4301 2.7 .49
ot . et 87 2488 .57 44168 1.87 . a7 . .47 . W77
07 L0%79 .37 143 .67 . 197 13340 1.27 .3980 1.5 1.87 4693 217 .4850 2.47 .4933 2.77 4972
108 0319 .38 .1481 .68 .2618 .98 .3365 1.28 .3997 1.58 .4430 1.88 . .18 . . S
109 L0389 .39 .1518 .80 .EOA® .99 .3389 1.20 .4015 1.59 .4441 1.89 .4706 2.19 .4858 2.49 4936 2
4975
0. .00 3414 1.30 .4032 1.60 4452 1.90 4713 2.20 .4861 2.50 .4938 2.80 .4
A0 3% A it M Rens 100% 13638 1 ioe An -4463 1.91 .4720 2.3 4865 2.51 4840 2.6 4975
12 .04T@ .42 .1628 .78 .2643 1.0% .3402 1.3Z .4066 1.62 .4474 1.92 . 22 . 2.52 4342 2.82 4976
143 (1664 .73 .2673 1.05 .3485 1.33 . 1.63 .4485 1.93 .4732 2.23 .4872 2.53 . 63 .
R UIOYEN t-t IS 3 S+ S s B4 1064 .4495 1.94 .4736 2.24 .4875 2.54 .4045 2.94 4978
78
<45 L1737 76 2734 1.06 3632 1,35 4115 1.65 <4506 1.95 .474¢ 2.25 .4878 2.55 4946 2.85 .49
16 1085¢ 48 1795 7o lores 1.06 .scer 138 413 1.66 .4518 1.96 .4750 2.26 .4881 2.56 .4948 2.86 .4979
A7 L0670 .47 .180B .77 .2794 1.07 .3577 1.37 4147 1.87 .4526 1.97 4758 887 4584 .57 4949 2.57 4360
(10 0714 .48 .1844 .78 .2823 1,08 .3599 1.38 .4162 1.68 .4535 1.98 . 28 . .58 . 88 .
e 07ee 145 18 (% iees 1109 :3% 1.39 4178 1.69 .4545 1.99 .4788 £.29 .4890 2.59 .4952 2.59 4961
B0 L0793 .80 1910 .80 .BBBZ 1.10 .3644 1.40 4193 1.70 .4555 2.00 4775 2.30 .4893 2.60 .4954 2.90 .4962
.21 .083% .81 .1960 Bl .2011 1.11 .3665 1.4) .4208 1.71 .4864 2.01 4778 2.3 .4098 5.61 .4055 5.01 .4062
.82 .0871  .OF .1980 .G .2039 1.1 .3687 1.42 .4222 1.72 .4573 2.02 .4783 2.52 4099 5.65 4056 5.0 .4983
23 0910  .B) .2020 .83 .2068 1.13 .3708 1.43 .4237 1.73 .4582 2.03 .4788 2.33 .4901 5.03 .4058 5.0 4980
‘24 0949 .54 .2084 .84 2906 1.14 .3720 1.4 4251 1.74 .459L 2.04 4793 5.34 .4008 5.64 4950 5.94 .4964
(25 0967 .80 .2089 .65 .3024 1.15 .3749 1.45 .4265 1.75 .4599 2.00 .A798 2.35 .4906 2.65 .4960 2.95 4984
+28 1086 .86 .2123 .80 .30B1 1.16 .3770 1.46 .4279 1.76 .4608 2.0 .4503 2.36 4900 5.66 4961 .00 4955
27,1084 .57 L2187 .87 .3079 1.17 .3790 1.47 .4202 1.77 .4617 2.07 4808 2.37 .4011 5.87 .4962 .97 .4085
<28 .1103 .08 .2191 .80 .3106 1.18 .3810 1.48 .4306 1.78 4828 2.08 .4813 2.38 4014 5.68 .4985 2.08 4986
+29 L1241 .D9 2224 .80 3133 1.19 .3830 1.49 .4310 1.79 .4633 2.0 .4817 2.30 .4918 5.5 4905 5.0 .4086
3.00 4987 3.60 .4999
3.10 4991 3.70 .499%
3.20 4993 3.80 .5000
3.30 .4995 3.90 .5000
2.40 4957 4.00 .5000
3.50 .4998
TABLE 2.14
e e e e e e e et e e e e me e e - - - - _ _
1. Calculated from tables given by T

+ C. Fry, "Probability snd

Its Engineering
Usea™, with permission of the author.
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The method of obtaining the empirical distribution is adequately illustrated in

the data sheet of Table

with the theoretical
one, Column 8, we see
that there is a very
close correspondence.
Now there is something
quite striking in the
fact that a knowledge
of the average X and
the standard deviation
o of the observed set
of 1370 values of
depth of sapwood when
used in this particu-

lar way in the normal

2.15. Comparing the observed distribution, Column 9,
G . 1 3 4 5 . v [ L]
ceiL pEVIATIONS z )
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> 0000 | . . ;
5.65 | 2 o 4997 . ] )
z .9992 | 1368.9 , 1370 . 1370 |

TABLE 2.15

function makes it possible‘for us to estimate so closely the number of observed

values of X lying within any given limits.

In other words, we see that the

statistics, average and standard deviation, introduced in the previous chapter

appear to contain a large amount of the information presented in the 1370

observed values of depth of sapwood in the sense that they make possible a

close approximation to the observed distribution.

This is so important that we

tabulate in Table 2A.16 observed and theoretical frequencies corresponding to

certain ranges often used in analytical work,

Theoretical

Observed

Range
T+ .era50 Xt
50.00% 68.27%
47 .45% 66 +57%
2.55% 1.70%

Difference

T+ 20
95,45%
85.91%

.46%

X + 30

99.73%
99.945%
«20%

TABLE 2.16 - How Closely the Average X and Stendard Devlation ¢ for
the 17370 Observations of Depth of Sapwood Contain the

Total Information.
the observations should lie within the range

Note that theoretically almost all

X t 30,
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0f ocourse we cannot expect such a close agreement between theoretical

and observed frequency distributions i the observed distribution is not approxi-

mately symmetricsl and at jeast unimodal. This suggests that we use some fre-

o skewness oY lopsidedness of the observed disiri-

quenoy function sensitive t
bution and quite naturally we take one jnvolving the measure of skewness k intro-
duced in the previous chapter.

3. The Second Approximation

The second approximation w11l be defined as follows:

2
X
i |,k x_ 2 (2.14)
f(x) = sgm© 1 -3 (5 :-3;5)

where x = X - X.
Or writing it in terms of z = %—, , the corresponding expression i8

2

_Z . 3
Q(Z)'-;lme z 1--§(z--z-5-).

?rom this expression we readily obtain

z ‘ 1 . Z;' | '%2'
- = pp— - 1 - - 2
of(x) dx= © j‘z(z) daz j‘om e dz -k Py 1-{(1-2%e

= Flz) - k£(2)
where F{z) and f{z) are given in Tebles 2.14 and 2.17.

Table 2.18 gives the details of fitting the second approximation to ‘the

observed distribution of depth of sapwood. A comparison of the observed and
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TAELE 2,18

theoretical distributions in this table show that there is very close corres-
pondence between the two. Suppose then that we plot the distribution of the
observed set of 1370 values of depth of sapwood and then see how closely the
curves derived from the two theoretical distributions used above aotuaily rit
the observed points. This is done in Fig.2.ll. —Obviously the second approxi-
mation makes possible a little

closer approximation to the 200r

original distribution than that .

obtained through the use of the '::;150-

normal law. It should be noted, Eloo-

of course, that a table calcu- :;

lated for the second approxi-- so}

mation similar to Table 2.16

would be identical with it o =ty T T

_ Depth of Sepwood in inches
because the integral of the

¢ Observed points
------ Theoretical ocurve (Normal lLaw)
" hd (2nd.Approximetion)

normal law between the limits
-z, and +z, is identical with FIG. 2.11
the integral of the second approximation between the same 1limits.

4, Why the Arithmetic Mean X end Standard Deviation o Always Contain a large

Part of the Essential Information

Given the arithmetic mean X and standard deviation o of a set of
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normal law inte-
observed values of some quality X, we have sSeenl how to use the e

gral to secure an approximate estimaste of the number of values of X within eany

specified range X t 20. In the 11lustrative problem that we chose we found this

estimate to be close indeed, but there are obvious reasons why the degree of
approximation may not be so good in another case. For example, the application
of the normal law integral implies the assumption that the observed values are
distributed in accordance with the normel law function with an average X and
standerd deviation o equal to those of a given set of n observed values of X.
In no case is this assumption rigorously satisfied,- the theory
applies to a continuous distribution whereas the observed one is necessarily
discontinuous and the theory applies to a special symmetrical unimodal distri-
bution whereas the observed distribution is seldom symmetrical even though it
be unimodal. To what extent then are we justified in assuming that the average
X and standard deviation ¢ contain much of the total information given in the
original series of observetions in respect to the number of values of X within
any symmetrical range X + zo? The ingenious work of the Russian statistician
Tchebycheff comes to our aid in answering this question, He gives us a
beautiful and very general theorem the proof of which can be framed in the

simplest kind of elementary mathematics as we shall now see.,

Given any set of n observed values expressible in the frequency distri-
bution

Xl, Xz R ...Xm

Pn, pzn) ey pin’ cos Pmn

where pyn represents the number of values of X

i’
then
m
b ¢ E pyn Xi mn
= %L-———— = % p:X
i=1 iy
1Zy Py° |
and

r =2
£ 181 pin(xi-x)
15 P1®

Let Pzn denote the number of values of X such that x

= (X =-X) does not
exceed numerically zo

where z > 1 -
y and n Pzn.denote the number of values of x
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.that do exceed zo.

Now we may write

) 2 2
o - BiPsXy + Topyxy

where El denotes summation for all values of x1 which do not exceed z0 and T

2
denotes summation for all values of xy which do exceed zo. Since all values
of pix? ere either positive or zero,

> 2
0'2 s Ezpixi .
Obviously, therefore,
> 2
0'2 = Ezpiz sz
since all values of Xy included in the summation 22 are greater than zo.
But = -
u Ezpi 1 Pz’
hence 3 (1~ Pz) zzoz,
or 1 2 (l'PZ)ZZ’
< N
(1-2,) 5%, (2,15
VA .
and 2 - _1_ 16
Pz - 1 22 - (2. 5

Now Pz ié Jjust the thing we want to get from a knowledge of the
average X and standard deviation ¢ of the n observed values of X. We see that
no matter what set of observed values we may have, the number of these values
Pzn lying on or within the range X # zo is equal to or greater than (1 -z%)n

whereas the number (1 - Pz)n lying without this range cannot be greater than

1.
z
We are now in a place to see just how accurately a knowledge of the

average and standard deviation of a series of observations gives us the total
information presented by the series itself. Let us recall the two purposes
of taking data, namely, that of obtaining a series of observations as
quantitative information and that of obtaining soino causal interpretation

of the data. The essential information in the first case is obviously
completely given by the frequency distribution itself whereas in the second

case, it will be found later that the essential information does not necessarily
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require the knowledge of the exact frequency distribution.

If a distribution is quite asymmetrical and cannot be represented by
the second approximation, we have not, as far as we have goné, any general
method for representing the observed frequency distribution from a knowledge of
the average, standard deviation and skewness of that distribution. We can,
aowever, with the aid of Tchebycheff's theorem, show just how close we can come
to estimating the number of observed values within any given range X %+ 20 from
a knowleage of the average and standard deviation alone where 2z 1s greatfer

than unity. For example, in Fig. 2.2 the ordinate represents the fraction of

"‘.4
5
% —

observed values within the range ¥ + zo. If we know, for example, the average
and ’
standard deviation of a series of lumbers, no matter what the series is
we can say that not less than 1 -.1? ' ,
z

f these numbers have
e Vvalues on o
the range X + z0. The function 1 - * within

o
L is given in F
n in . 2.
that for z = 2 the numb 2" ig. 2,12 and here we see
number of observed values on or within

range 18 not less then .7500 g the corresponding

I ' ’
n a similar way for z = 3 the number on or
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within the range X + 30 is not_less than ;8889 n and for the case of z = 6, the
number on or within the obrresponding range is not less than .9722 n.

A little study of 'Fi'g'. 2.12 reveals some rather startling information.
We see that we_cannot make a mistake of more than 25% in estimating the pro-

portion of observations that will fall on or within the range of the average

plus or minus 20, Similarly we cannot make a mistake of more than about 11% in
making a corresponding estimate for the range X + 30, and so on. The depth of

the shaded area for a given value of 2 indicates the upper limit to the pro-
portional amount of total 1nformatioﬁ given by the original series and not
included in the average and standard deviation, in respect to a symmetriocal
range about the éverage; Hence if we are interested in a range ocorresponding
to a value of z equal to or greater than about three, we see that the average
and standard devietion quite accurately gilve the required information. So long

then as the information to be derived from the set of data involves a symmetri-

cal range in the sense of the present discussion, we see that the average and

standard deviation contain a large part of the total information. We shall

f£ind leter that these same two parameters of a given set of data contain a
large amount of the essential information for the causal interpretation of the
set of data. When, however, the essential information involves the total fre-
quency associated with any specified asymmetrical range, the average and
standard deviation cannot be felied upon so implicitly. In such cases we must
make use of more functions of the original data and use these functions as
parameters in more compli;cated forms of frequency curves.

Before entering upon the discussion of these complicated frequenocy
curves, however, let us recali here certain empirical information whioch indi-
cates that the actual difference between the information contained in the
average and standard deviation in respect to the frequency corresponding to a
symmetrical range is not as great as that indicated in Fig. 2.12. 0f the
thousands of problems coming to our attention we have never found & frequency
distribution where more than 2.5 percent fall outside the observed average plus
ox; minus three times the observed standard deviation. This you see is only
about 1/3 of the maximum possible eri'or that can be made in estimating this

percentage as indicated by Fig. 2.12.
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mates of Perameters in Either of Two

5, Presentation of Data by Means of Esti

ceneral Frequency Functions

We recall that our object,

is to present at least in a practical sense,

the total information contained in the set of

a function fr{X) which is such that

as stated at the beginning of this Chepter,

by means of a frequency function,

data, or in other words, to find

b u
£(X)dX = number of observed values of X lying within
the corresponding interval.

a

We have shown that under certain very special conditions, we may

express the total information contained in the set of data by means of the

normal law f{requency function.

Also, we have seen that under more general con-

ditions, we may attain the same end by the use of a somewhat more complicated

rfunction known as the Second Approximation.

Under more general conditions than

those yet considered, recourse must be had to still more complicated frequency

functions if we are to present the total information given by the set of data.

’

We shall present now two general methods of solution, which, for a

rather wide variety of types of observed distributions, serve the purpose

already stated.

Inasmuch as the use of these two frequency functions now to be con-

sidered, have oconsiderable in common, we may best compare by a diagram their

mathematical expressions and the outline of the method of procedure followed in

each case.

GRAM CHARLIER SERIES

Given an arbitrary frequency
function f(x) (x is the deviation from
the mean of the distribution) continu-
ous and finite in the intervel - 1o
+® and which vanishes at x = + o, to
determine the coefficients a., a Yo ey
8,s1+++ in such a way that 0 1

ao@o(x)’alwl(x)*oO’Bnq’n(X)"‘ooo
gives the best approximation to £(x)

in the sense of least squares,
where

?O(I) - -;]ﬁ.e EEE

and 9,(x) 1is the n'h gerivative of
Qo(x)o

PEARSON SYSTEM OF CURVES

Assume that Y = £(X) is a continu~
ous unimodal function of X which
vanishes together with its derivative
at the limits of the frequency range.

Such assumptions suggest that Y

be defined by a diff
of the form y | erential equation

ay _ ¥(X+4d)
bo + le + b2X2+...

The constants 4, b by, bgye.
gge to be determined frgx’n tl]i; mgl’nents
' the given frequency function Y.

The disadvantage of this system

for our burpose is that the
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b
Under these conditions, it can S YdX can seldom be obtained and
be shown that a

recourse must be had to quadrature

~1)0 B0 et formulas.
8, = .(_I;Ll_.‘f_ I £(x)H._(x)dx
n n
— -0
where
n n-2

H (x) = ogn - n(:21- ;gn_z +ees

n Pu(X)
= (1) sET

From the definition of ay,
it is seen that the coefficients
an, n=0,1,2,.. are determined in
terms of the moments of the given
function.

The great advantage for our
purpose of this way of expressing
£(x) is that the

b
J. f(x)dx can readily be obtained.
a

. In what follows‘we shall give, in connection with the mathemetical
details involved in the use of these two systems, only those which seem to us
essential to & clear understanding of the method of using either one of the
two forms of representation. The tables given near the end of this section
indicate how well either of these two functions represent, 1in a particular
example, the total information contained in the data.

Use of Gram Cherlier Series

There are several ways of determining the coefficients a, of this
series, and we shall choose to illustrate that one which makes use of the
biorthogonal property of the functions Hh(x) and epm(x) introduced above.

Assume that the function £(x) can be expanded in a series
£(x) = ag@qy(x) + a;9,(x) + a9,(x) + ... ¢
ancpn(‘x) + eee (2.17)
where ¢,(x) and cpn(x) are defined as above.

Then, if the series (2.17) converges uniformally in the interval -

to + oo,
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+
+00 @®

+@
j. f(x)H _(x)ax = ag J (X Hy(x)ax + ay j o, (x)H (x)dx +
-00 . -0 -®
+00 +00
+ J @ (x)H (x)dx + ... +a, T¢n(1)ﬁn(x)dx +..0 - (2:18)
ay _oom n 1
where -
n (n-1) n-2 {n-1){n-2){n-3) x
Hpix) = ;:2"5 - algd 'ozln-z‘ + B 2.4 24
n-6 9. (x)
_ n{n-1) (n—2)éx.1;::>t)5(n—4 n-5 ::n»6 ¢ vee=(-1)B cp: gy
‘#e shall show that
+@
j Pn{x)H (x)ax = O, (m # n),
-0

+@

I

_yy1
Pu{xIH (x)dx = '—(—l—lﬂ—&— » (m =n).
[e 0}

Henoce all the terms on the right of (2.18) vanish except the one in
e, and this term hes the value

a (-1} (o
ozn

Therefore, solving for the coefficient, we have

.1)B g2n p*®
% b n j f(x)Hn(I)dx n = 0,1.2,...
-0

Conaider first m > n:

Integrating by parts, we have

+00 +Q0

* +00 _+00
.( Pm(X)H (x)dx = I Hp(xld[g,,(x)] = H,(x) 9, ) (x) ._J‘ "Pm-l(x)H'n(x)dx
- - -0
+®
'-j ‘Pm_l(x)ﬁ;l(x)dx,
-00

since Hp(x)ep_4(x) 18 a polynomial of degree (n+m-
Such a product always vanishes at x =
Polynomial,

1) in x multiplied by Polx) e
t oo independent of the degree of the
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Repeating the process, we find

+Q0 +0
- J Py (XIHp(x)Ax = - [ Hi(x)d [ ,(x)]
- -0
+00 L+ +00
= -H (x) 9 _o(x) + j Py XVH(x)ax = | o, (x)H](x)ax.
-00 -0 -®

Continuing the process, we would get finally

+00 +0

J‘qvm(x)nn(x)dx = (-1)“*1[ Opp 1 (DE Y ()ax = o,
-00 -Q0

since Hn(x) is a polynomial in x of degree n.
ir m=n, we find

+00 +m

j‘ P, (x)H, (x)dx = (-1)® E epo(x)Hg(x)dx.
_a). -0
Now
+Q0
Hg(x) = % and J‘ fpo(x)dx =1,
-
Therefore

+
n
ax = (-1)8 —= .,
f PpimE R = (-1 =5

-00
If m < n, we may proceed as follows:
By definition

+00 + +00

I o (NH (x)ax = (-1)7 X H (x)H, (x) gfx)dx = (-1)77 J 9 (X (x)ax.
-w .

-00 =00

By repeated integration by parts, this last integral reduces to

+0

(-1) 2m+n+l J‘

(m+1)
q’n-m-l(x)Hm (x)ax

-00

which has the value zero, since Hi(x) i1s a polynomial of degree m in x.

Formally then, it is now merely a matter of grinding out as many

coefficlients a, as we desire and substituting their values in Equation (2.17),
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For example,

+® +©

= j' r(x)Ho(x)dx = “ r{x)dx = 1
- ‘-

89

where £{x) 1is taken to be a relative frequency distribution.

+00
= - | flx}xdx = 0,
-0

8

since the mean of the distribution is chosen as the origin.

1) -
%—z-z"?) dx 0,

8 +00 3 5 3
o (x5 _Bx)yp . - B3 _ ko
o5+ % | {Zg - o e - - -5

@ ° 0 0 0 08I0 P e P08 0B 0000000000000 00e0008800000000 %0 )

x® n(n-1) x2°2 -1) (n-2) (n-3) x"
f—‘[ £(x) [?— g%x_)_ }n-z + )é!?4 o= 02n 4+... dx.

Continuing in this way, we shall find that

. P qex 2%, &t g (8 exz,,x*u o ( Bs)( 1o, 108 2 )
fix) "0‘”[ 5 (ot o8 P (s T Ok SR (T e o)
é H M 6 4 e =
e 9 (aq 4 ,76)( x° _15x° 45 15 {
IR R 1=l s b R (8:29)

where k, @, By, Ky Mg, etc., are moments or functions of moments of the given

distribution f(x).

Before passing on, it is of interest to note that, if we cut off the

series (2.19) at the term in qas(x), we have

_ X2
1 20”2 3
£(x) = —==¢ -k (x_x¥)
LACT [ 2 (07 %)

the Second Approximation (2.14) already discussed; and cutting off the series
at wo(x) we have the Normal Law funetion,
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Thus we see that the First and Second Approximations are really approx-
imations to a series definition of f(x).

Returning now to (2.19) we may considerably simplify this expression by

measuring x in units of o, i.e., x = 20. We then have

£(z)

2 9,(2) [1 - -é (3z -2°) +-§ (Bp-BN3 - 6274+ 24

{101: - —gg( 15z + 10z° - 29

i

230-15;+-—5-;(-15+45z2-15z4+z“) . } (2.20)

el

= L 9,(2)- L‘Pa( z) + ;—1&- (By- 3) 94(2)

V9 Y3 93
2 (10k 5) oz) + —= lz0-15 2 + 28) o (2)e.. (2.21)
* ol A IR T (0 T 38 e

2
Z
- th
where (PO(Z) = —}-—-rz_n e 2 , and qJn(z) = the n’" derivative of vo(z). This gives

the ordinates of the function f£(z) in the most convenient form for computation
since the values of cpo(z), q:s(Z), etc. have been tabulatedl over a wide range
of values of z,

However, there are two things that must be taken into consideration in
the use of such a frequency function to represent an observed set of data. The
first is that the computation of terms on the right of (2.21) even as far as
‘Pe(z) becomes very laborious, and second, 1f we decide on a given degree of
accuracy, we must insure that the terms neglected are those which do not affeot
the accuracy of the desired result. For example, it has been shown that as a
First Approximation, we may use the term in q>o(z) alone._ As a Seoond Approxi-
mation, we ﬁny use the terms in (po(z) and ?3(z). As a Third Approximation, we

2
should use the terms in 9,(z), 95(2z), ®4(2) and ¢,(z) and so on.

- - - - e - e e e e e e - -
- wr Em e e e m e e em o = = - -
- e e w w e e e e

1. James W. Glover, "Tables of Applied Mathematics in Finance, Insurance,
Statistics".

2. Further discussion of this matter is given in a recent book "Probability
and its Engineering Uses" by T. C. Fry.
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Of course, these approximations are just those given before in terms

of x only now the variable has been changed to z. We shall use Jjust such
combinations of terms in the example, to be given later.

Let us recall now that we started out to obtain a function which,
when integrated over any given range, would give us the number of observations
lying within the corresponding range, Or in short, give us the total information
given by the set of data. To this end, we return to equation (2.17) and

integrate term by term, 1i.e.

b b b b
Jr(x)dx = a, Iq)o(x)dx'ral f@l(x)u +eee t Ay ?n(x)dx +erenas
a ’ a a a

The expressions on the right can be integrated a’t once in terms of the

original variable x, since by definition

b b
jqﬂn(x)dx =en (x| .
a a

However, as in the case of the ordinates of f£(x), it will be found convenient

from the standpoint of computation to express this integral in terms of the

variable z = % .

Making the necessary substitutions, we find,

p < A z E;
- a 1 -
Lr(:)a: UJ‘;‘(z)dz = joe dz - 16‘- [’Tlﬁ -(l-zz) qao(z)]

. L - _59 1 u
Ta (Bg-3) (32-2°) %plz) + T 210k - ;g-; Ea-eza + zh 9o(2) -f—2=n']

R TR S P 3__5
ls_{ ot T B T192 #1027 - 2%) o (2)

qm,m‘l:

or if an approximation for the ordinates of £(2) involves only terms of the
order of ¢,(z) end ?e(2)
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Jeree - p ] T - ¥ i o)

[ [V}
-1 (p.-3) 9.(z) +-= {30-15 —% . _6) teee (2.228
+ Ba-3) 95(z X -4 8 ?g(2) ( )

'

Also since

Zo Zp 2
1‘ f(z)dz = j f(z)dz-J‘ £(z)dz
zl 0 0

we need only the value of integrals of the form (2.22).

Example - Application of Series to Point Binomial (.9 + .1)100

The given function f(z) now becomes the ordinates of the Point
Binomial

(@ +p)% = (.9 + .1) 100

and the o, k, p,, etc., appearing in Equation {2.21) are the same constants

found from the given Point B:Lnomial.l Hence in using (2.21) to compute approxi-

mate ordinates for the Binomial, we should first calculate the coefficients of

9o(2), 95(z), etc., which are independent of z.

Making use of the general expression2 for the moments of the Point

Binomial about the mean value pn, we have at once

pn = 10 = mean value of Binomial distribution,

62 = pon =9,
k = 122 = 2666667,
k= - ,01481481,
0|3
B,-5
Bp = B.0511111, ~f— = -0007098765

1. We choose this distribution because the results obtained not only
11lustrate the method of presenting in terms of parameters for a Gram
Charlier series the informetion given by a distribution but also because
the results will be made use of in Part III.

2. To be developed in Part III,
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i =

1 (z0-15 ba __5.; = ,000325057
a6 { ¢ o

Equation (2.21) now takes the simpler form

£(z) = .3333333 ¢,5(2z) - .01481481 t'ps(z) + ,0007098765 cp4(z)

+ ,000325057 cps(z) + eee (2.23)

Since the functions cpo(z), q>5(z) , etc. have been tabulated by Glover,
Equation (2.23) presents a fairly easy means of computing the approximate
ordinates of the given Point Binomial.

Table 2.19 is arranged in such a way that the degree of approximation
obtained by using only the terms in cpo(z); those in Q)O(Z) and cps(z); those in
9olz)s q>3(z), q>4(z) and QG(Z) of (2.23) may readily be seen by comparing each

with the
actual
: 7 8 ] (10) (11) .
w15 i3 i8] o) {6 (1) LN — 2L opdinates
.3 W u Approxi~ Appnxi# Approxi-
- phe I B SR (o)) 2) | =iei0-154, 280y (2)| mation wetion | mation
pnex| 2= 3 S | Fea(a) | Zog 0 2) | G15(20-157 T 1 Ps (4) whis) ] tadetsy | tsea®  of the
+(6)e(7)
Point
| -0 ~3.3333| .00081 | -.00062 00007 00000 L00061 | =.00011 | =.00004 40000
-y -3.0000 | .00148 | -.00118 00009 -.00014 00148 00030 | 400026 0003
P I ~2.6667| .00%0 | -,00186 00009 -.00085 00380 00195 | .00169 0016 Binomial
sl -y —2.3338| .0087¢ | -.00222 ~+00000 -.00045 00874 00652 | 400607 40089
ol -6 | ~aioc00| .o1600 | -.00160 ~+00019 ~.00019 01800 01640 | .oL60OZ +0169
s -5 -1.0667| .osme | .oooss -.00042 00081 03316 05801 | .03380 0339
of -0 | -1i3333] losesr | loome 200082 00124 ~05467 .05863 | 105936 0536 given in
wl 3 | vioooo| Lososs | Loom7 -.00034 J00226 -08066 (08785 | 100876 0869
o -2 - Leeer ] li0e8 | Lo0e0s 00012 .00022 10648 A5 | .11488 .1148
1 I - .s3as| asm | Loosme 00063 -.00125 212679 amr | 13055 1304 column
e}« o| .1:9 | .oo000 000885 -.00195 13298 A% | .az188 1319
ul sss3| L1zem | -.0028 00063 -.00125 232679 Jdz00 | 31979 1199
1 I3 6667 | .10648 | -,00806 «00012 00022 +10648 409842 09876 .0988 ( 11)
| 3 1.0000 | 08086 | ~.00m7 -.00034 00126 408066 07349 | o741 +0745 .
v 1.3338 | Lo0e87 | -.00396 -.00082 0124 05467 0507 | .05143 0513
N 1.6667) 03316 | -.00000 -.00042 +00051 03516 03261 | .03270 0527
) oe £.0000| .01800 | .00180 -.00019 4200019 01800 0190 | .01922 0193 Ina
It IR 8.3333] L0087 | .ooxe2 ~.00000 -.00045 £00874 0186 | L01081 0106
Y 2.6867| .00%0 | 00188 00009 -.00035 ~00380 00865 | 00539 0054
wl 0 3.0000| .oc14s | 00118 00009 ~,00014 00148 00266 00261 40026 similar
” 10 3,3333| .0000) 400062 +00007 +00000 +00081 +00113 00120 20012
al n 3.6667| 00016 | .00027 400004 .00005 00016 00045 | .0008B2 40005
n Y 4,.0000 +00004 +00010 +00002 «00004 «00004 «00014 «00020 Q002
ul a3 4.8333] o000 00003 50001 100002 00001 00004 | .00007 ~0001 way, we
ul e e.ee67| 00000 | .oo001 400000 00001 00000 00001 | .00001 0000
may use
TABLE 2,19
Equation
(2.22)

after putting in the values of the constants to calculate the approximate sum of

the ordinates of the Point Binomial between any given limits

Thus,
2 2

Z Z
e B
aJ;r(z)az = Le 4z - ,04444443 (.3989423 + ?5(2))

"+ +002129623 9,(z) + .000975171 P5(2) + aon... (2.24)
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Table 2.20 indicates how accurately the integral of the function £(z)

gives the proportion of the observations of a Point Binomial distribution lying

within a given range. The nieaning of column (4) will be explained later.

(1) (2) (3) (4)

b
b £{x)d
Renge Limits  of f(z)az b 100 I o R
X x a T{.9+.1) Pearson Type
A t0 B 8 to b Gram Cherlier Series & Curve(Quadrature)
10 - 13 0 - lo «41520 +4249 +4489
10 -~ 18 0 - 20 52790 .5282 .5732
10 - 19 0 - 30 94670 5468 «95993
7 - 13 -0 = +0 .+74814 .7590 . 7544
4 - 16 =20 = +20 «97076 9717 .9654
l - 19 «30 - +30 99797 .9981 . 9968
7 - 19 ~0 = +30 87964 .8809 .9040
TABLE 2.20

The values in columm (2) were obtained by linear inter-

p:lation with first differences in tables of (po(z), q>3(z),
ete.

The values in columm (4) were obtained by the Trapezoidal

Rule except in the case of the third value where Simpson’'s
Rule was used.

Use of Pearson Type Curve

It can easily be shownl that the constants in the Pearson System of

curves as defined in the above diagram can be determined in terms of the moments

of the givendistribution Y = f(X})s The resulting differential equation can

then be integrated to give the equation of the given frequency function.

However, for the particular object in hand - that of fitting e Pearson
type curve to a Binomial distribution - it will be found much more convenier
first to integrate the differential equation and then to determine the constants
in this equation by the ™method of mome):n:s".‘la

It will be shown later that if we take as the differential equation of
the given function

dY _ Y{X+d
= = -B-é-T:B)-i (2.25)

l. See next chapter.

2. To be discussed in the next chapter.
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the type of curve resulting from integrating this equation may be expected to

fit the Point Binomial distribution.
First transfer the origin to the point (-4,0) by setting

x=X+d.

Then, the differential equation becomes

% - = _'_EL_. .
o Y0 \x= by+ byx
Integrating this equation, we find

t

b '
log ¥y = %- -l-)%- log (byx *bo) + log ¢

1
]
_ 2
2
X ( by ) ’1
-F1+log(1+:5-,-x) "’1083’0:
0
where Yo is a new constant of integration,
b
x b2
by (, . P1)
Y=y, 1l +—x
0 ( b )
0
11 bo
Now set b—l = = b and -S-I = 4, Then the equation of our frequency

function becomes

in which the origin of x is at (-4,0), the mode of the frequency distribution
Y - f(X) .

It is now merely a matter of mathematical detail to determine the

constants Yor» and d, To determine Yo» We have the condition that

o
I "‘l‘yo"-bx (1+FHM ez - n

-d

where N equals the total frequency.

To evaluate I, set

- - = ® = -
- - e e e e e -
- . e . e wm e .
- e @ @ w e e
- e = -

1. To avoid introducing a ne
is not necessarily %he sax:el::tggav;(}" 1s used again although its value
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Then, the integral becomes

00
_ bd -bd x bd
I=4d
e yO j € 1l Xl d.xl
0
and after setting bd Xy = X,, We have
bd 00
I dyo e ~xy bd 4
Bl ® "% &

0
From Pierce's tables #48l1, we find

ebd
I = Qyo W T'(bd+l) = X

from which

bd+1
Yo = N(bd)

ae®drpary)

We shull apply the method of moments to find the remaining constants

b and 4 and %o do this, it will be found convenlent to obtain first a general

expression for the moments of this frequency curve about the start of the

curve and then transform these moments, by means of well-known relationships

given in the next Chapter, to moments about the mean value of the frequency

function.

Denoting by 1My the ith moment of the frequency function about the

start of the curve (-4,0), we have

¥, % bd
1H4= -I?-j o "% (1 + -ﬁ‘-) (x*rd)1 dx,

which in terms of the variable Xy becomes

Yo bd ,i+1 ¢O-dXy bg 4

W ° d ‘l‘ e X dxl,
0

or in terms of the variable Xy equals

00
Yo ba ai+l o 2y ax, .
T bad+i+l
(vd) d+i+1l 2

Applying again the same formula from Plerce's tables and putting in

the value of Yo already found, we have

b ___I‘(bd+1+1) .
"1 pip(pa+1)
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© are
ilence, the first three moments about the start of this curv

1 ['(bd+2) _ 2%:; ,

1*1 T B r(pa+1)

- 1 D(ba+3) _ L_ (pa+2)(bd+l),
12 ¥ Zr(ba+rl) B2

b, = L L(bd+4) _ 1 (pnaiz)(pda+2)(ba+l).
173 3 r(bd+l) 3

Denoting by Hy the moments of the frequency curve about the mean of

the distribution, we have the well-known relationships to be developed later,

u1=0,

2
Mg = qHg = 1M1

3
Mz = qHz =3 1Ky Mg + 2 187 .

From these last equations, we have at once
Uy = Eé;—l and
b
- 2{bd+1)

be

Hence, the simultaneous equations which determine b and d are

Ha

% L, - ba-1 = o,

% u, - 2va2= o,
from which
b = z—u—z- and
3
a2 ¥
Lls 2u.2 .

To fit this Pearson curve to the Point Binomial, we must substitute

for the moments of the frequency funetion,

the like moments of +the Point
Binomial (q+p)®

» and these moments are given by

o =

kg = pan ,

“s = ran (g-p) = ko3,
and therefore

b='§_c and
a =29 _ko
k 2 °
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Hence, We have for the final equation of the fitted ourve the following

4
¥ -4a
(¢ _ )k X2 2
= e l+ ) .
o (4 -kz)rgfg% ¢ ¥E-k

To fit this distribution to the Point Binomial (.9+.1)1°C we recall
that in the differential equation form of the Pearson Curve with which we

started, the mode of the curve was at

X = -d
or at x = 0 in the x coordinate.

Now the modal wvalue and also the mean value in this Binomial distri-

bution is
pn = 10

and this value will therefore correspond to x = 0 in the fitted curve. With

this fact in mind, Table 2.21 shows a convenient form for computing the

ordinates ..l {2) 3) (4) is) (6) n () {9) (%)
logy =
X x (log yo}
of the (0f Pinordel) (Of Frequency 1* I _ K (& _ )y 2x .2 100
Curve) X 2 log(3s) e ) ko (6)logrge ¢ (7) y (.9e.1)
fitted 0 -10 54751 1.7383921 15.5461635 25.0 10.8673825  5.830%549 .000034 000G
1 -9 259276 1.7728789 134518592 22.5 9.7716263 4.30244 .000PBE  .COGY
2 -8 +63801 1.8048275 .26 20.0 8.6856900  3.0296363 .00LYL  .OC16
curve and 3 -7 .68326 1. 10, 65 17.5 7.600153¢ 3.5080582 ,00DBYE 009
4 -8 72851 1.8624355 8.309614 15.0 6.5144175 E,0410078 .010990  .0139
for com- 5 -5 77576 1.8886063 7.8454961 12.5 5,4286813 £.4012083 .OZS1B® 089
8 -4 +81800 I1.9132839 5.2089355 10.0 4.3420480 £.0700094 .04T743  .Otes
4 -3 66425 1.0366294 4.4093209 7.9 2.2572080 2.083346 .OT6483  .0RG9
aris 8 -2 +90950 1.9568027 3.7236492 5.0 2.1724725 1,0:23806 .108s81  .1le®
p on 9 -1 95475 19798697 2.8009058 2.5 1.0867383 1.1016711 .1263%8  .13C4
1 o 1.00000 0.0000000 0.0000000 o 0.0C00000  1,1270280 .133977 1319
with th u 1 1.04525 0.0192202 1.0619161 -2.5 -1.0867363  1,10308Y .l26@ES  .11o%
e 12 2 1.09050 0.0376257 2.0788199 -8.0 -2.1714725  1.0343763 ,1082%Y  .00AM
18 3 1.13575 0.0552828 3,0543747 -7.8 -3.E670088 2.9P41M8 .06300s  .0747
actual u 4 1.16100 0.0722499 3.9918070  =10.0 ~4.3420450 £.7708909 050689  .0313
ctua 15 5 1.22824 0.0865755 4.8937904  -12.9 -5.4860813  Z,5021440 .039097 .0
18 8 1.27149 0.1043130 5.7632038  -15.0 -6.5144175  £.375%047 .OEBYE3  .Clet
1 7 1.31674 0.1195000 6.60237%0  -17.5 -7.6001538 £.1208501 .0lB4ee .08
ordinates 18 8 1,36199 0.1341739 7.4131080  -£0.0 -8.6868900 3.8048409 .007140  .0OG4
19 9 1.40724 0.1483682 8.1973431  ~2R.5 -9.7716263  3.50I%457 .00B5YL  .00P8
of ¢ 20 10 1.45249 0,1621131 6.9567488  -26.0  -10,8673025 3.2264182 001864 .00
he 21 11 1.49774 0,1754364 9.6028011  ~27.5  -11.9430068 4.876y912 .000788  .0008
2z 12 1.54299 0,1863631 10.4070613  -30.0  ~-13.0286350 ¢.5052588 .OOO3MO  .0OOR
P 23 13 1.5682%4 0,2009161 11.1006145  -32,5  -14.11487135 &.11%07s1 .0OO1S0 0001
oint 2% 14 1.63348 0,2131138 11.7745276  -26.0  -16.2003076 5,9012089 .0000BO  .0000
25 15 1.67673 0,2249809 12.4301047  =27,5  ~16.2B60438 5.2711ve8 .0000190  .0O0CC
6 1.72308 0,2365323 13.,0680096  =40,0  ~17.3717600 6,6236885 .00000Y .00
Binomial. :3 iv 1.76923 0,2477843 12,6900826  ~42.5  -18.4575165 63508062 .00000f 0000
% 18 1.81448 0,2687522 14.2060891 45,0  -19.5432825  7.8798388 .000001  .0OCO
29 19 1.85073 0,2694499 14.8971070  -47.5  -20.6200886 7,547 .000000  .0000
To %0 20 1,90498 0,2796904 15.4639448  -50.0  -B1.7147250 8.,678848% .000000  .0000
obtain the pm.l, q=.9 n=100, 0 =3 k = .266667
.1, .
20 _ kW . 2.1 » 55, -2 = .2,5
integral Z-5F -2 & 1 = 55.25 : wl
e tni Yo = 183977 1og yo = T.1270289
o]
8 TRBLE 2.21

Pearson curve between the limits already considered, in the case of the Cram

Charlier Series, we must make use of quadrature formules, since no ready means
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lable.
of integrating this function between finite limits is avai

Applying the suitable quadrature formula to be used 1in each case, we

find approximate expressions for the integral of this function taken between
correaponding ranges as given in column (4) of Table 2.20.
6. Presentation of Information in Terms of Higher Moments

To one covering this ground for the first time, it must come as some-
what of a surprise to see how much information is actually tied up in the two
simple funotions or statistios, the average and the standard deviation of a

distribution of numbers. To the same individual it must come as somewhat of a

shook to see that the use of higher moments does not in all cases give us a
proportional incresese in the amount of information. This same individual now
begins to appreciate the significance of the statement made in the previous
chapter that the average and standard deviation are perhaps the two most useful
statistics by which to present the information contained in a series of numbers.
We have gone far enough to see, however, that under certain conditions precti-
oslly the entire amount of information contained in & series of data can be
presented by the first four moments, although in such cases it is necessary to
know the funotional form uf the frequency distribution in which these four
moments are to be used as estimates of certain peremeters occurring in that
distridbution.

Quite naturally it is impossible for us to do more than vriefly indi-
cate in outline, ss we have done, the more importent methods for making use of

frequency curves which in turn fix certain parasmeters to be estimated from the

date so as to contain the greeter part of the total information in the original

set of date. To give a detailed treatment of the manner of wusing either one of

the two general methods of Presenting the information contained in a set of data

through the use of moments interpretable in g given frequency curve would

reguir ;
qQ e a good sized book. Enough has been saig, however, to show definitely

the rather remarkable bower of the methog in certaj

the particular case (+9+.1)100, Similarly
*

it will pe interesting to observe
the frequency curves Presented in Fig A

£+13, showing how accurately the total
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esented by the first four moments of en observed set of data

son type curve for the particular distribution there

{nformation is pr
and the appropriate Pear

presented. The solid lines in this figure show the Pearson type curve fitted to

the observed points, represented by the black dots in the figure.

These curves were drawn from data presented by Elderton in his book,
"Frequency Curves and correlation®. In the lower part of the figure sre shown .
the points on the p,pp plane (where p; is the square of the skewness k|. In
other words, knowing only g, and g, we would be led by Pearson's method to the
choice of the frequency curve appropriate for representing the total information
contained in the set of data to the degree of approximation shown graphically
in this figure.

It is no small trick, however, to go through the necessary technical
details required in fitting one of these frequency curves. Furthermore, past
experience indicates that an engineer who attempts to follow what may appear to
be such & universal method may meet with some disappointment when he finds that
many distributions observed 1in engineering work have not been successfully
risted by means of any one of the given types of frequency curves. What then
do these results give us definitely in respect to our present problem of
presenting engineering information in terms of simple functions or statistics
calculated from the set of n observed values of some quality X%

First of all we must keep in mind the significance of the average and
standard deviation derivable through the use of Tchebycheff's theorem. If we
are to go beyond this point in the presentation of fascts through the use of
simple statistics, it 1s necessary that we give some kind of & frequency curve
involving these statistics as parameters provided we are interested in using
these statistics for the purpose of presenting as much as possible of the total

information contained in the original series of observations. The prectice of

glving the third and fourth moments in addition to the first and second without
any indication of the frequency distribution which should be used therewith 13

perhaps of 1little value so far as th
¢ Presentation of total i
n
o formation is

It would be better in s
uch cases to prese
nt the
distribution. Original observed

It may not b
e out of place to mention here that in Part III we shall

find that, in genersl,
’ g k and g, are of comparatively little value when the
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sample size is small.,

On the other hand, we shall find there that k and By may

contain a comparatively large amount of the essential information even though no

information is available as to the form of frequency function in which these
statistics are used as parameters,
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CHAPTER V

Presentation of Data to Show Relationship

1. Nature of the Problem
ent time we have been concerned primarily with the

Up to the pres

sresentation of the information contained in an observed series of dats repre-.

senting some quality characteristic X. In many problems in engineering work,
however, we are interested not only in this phase of the subject but also in
the study of the relationship between different observed characteristics, and

it 1s this problem which we shall now consider.

2., The Concept of Mathematical Functional Relationship

Before 'entering upon the discussion of the problem involved in studying
the relationships between quality characteristics, it is perhaps well for us to
review briefly some of the fundamental concepts underlying our picture of mathe-
matical relationship. For example, we say that Y is a function of X when for
every value of X within a given domein for which the function is defined the
value or values of Y are fixed.

In general a functional relationship involves certain constants or

perometers and therefore may be written symbolically

Y=2(X, My Ny 0 0 o, Ap)s

the \.'s being the parameters. In fact, as we have already seen and as will be

further amplified, the information contained in the observed data is to be

presented in the form of estimates of barameters which occur in the type of func-
tional relationship to be used.

A8 a very simple case, we may take the relationship

roint X = =
P a, Y=>b. If we take as 8 special case g = 1, b = 2 and give m all
Ly =

possible values we get the 1
, pol.llb (1 2) illustrated
H

in Fig. 2.14.

In a similar wa
Y 1if we put the €quation of the straight line into the
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form
Y=mX + (b - ma)

and give m the same constant value, while the point (a,b) is assigned arbitra-

rily, we obtain a family of parallel lines through the point (a,b). A48 a

special case, if we let m = 3, we get the set of parallel lines shown also in
Fig. 2.14

If we pass now to a slightly more compli-
cated case, namely, the second degree parabola

expressed by a functional relationship

Y-b = ax?,

we can also illustrate the significance of the =2

e

-g
parameters in this equation. Tor example, if

we fix a and assign to b different values, we

get a set of parabolas such as shown at the

(a) a=1, be2

left, Fig. 2.15. In a similar way if we fix
the value of b, and for example let it be O

and change a, we get the set or family of
parabolas shown at the right of the figure. / /
Enough has been said to illustrate =
the well known fact that for every function-
al form f theré are, in genersl, a very Y
(b) m=3

large number of curves constituting, as we
say, @ family of eurves, @ Single one of FIG. 2.14 - GRAPH OF RELATIONSHIP
which is specified when the parameters Y-b=olX-a)
involved in the functional form are fixed. On the other hand, all of the
curves belonging to a given family have certain characteristics which are
common to all end this commonness among the curves is defined by the function
f.

From our present viewpoint we see then that in order to express a re-
lationship between two or more variables, we must consider two things:

1. The form of the functional relationship.

2. The specific velues of the parameters in that functional
relationship.
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Whenever one is given & mathe-
matical relationship between two vari-
ables, he can of course, as already
stated, calculate the value of one when
the other is given. For example, if we
take the parabola

9

Y = 4 - 4% + X%,

we can calculate the value of Y corres-~

ponding to any given value of X and
al) as1, b‘O.l,-..1 (b) b=0, &‘1‘21304

y1G. £.15 - GRAPH OF RELATIONSHIP Y-b= o then plot these results to give the
graphical picture of the relationship between Y and X, This familar process is
fllustrated below.

What has been said in respect to the
relationship between two variables can easily be
extended to three or more, For example, if

Z = £(X,Y)
. we say, in general, that for given values of X

61 and Y, Z is determined.

49 3. Law of Relationship

Engineers in their everyday work frequently

make use of laws or relationships between variable

quality characteristics, In fact, one of the main
objects of physical and engineering science is to

discover and make use of such relationships.
A very simple a priori law is
8 = l ta ’

3 (2.26)

where 8 is the space covered in the time t by a body falling freely from a

position of rest. Almosty everyone who has taken elementary physics has had the

ex :
perience of estimating the value of a from simultaneously observed pairs

of
values of s and t. '

Fquation (2.26) is the simple law of falling bodies.

In a similar :
. wWay we have the law relating the force F acting on a mass
e acceleration a produced in the velocity of the
mass,

F=nma,
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Underlying these conceptions of laws we have the idea of a functional

relationship previously described. Such laws as those given by (2.26) and (2.27)

assume that the relationship is a mathematically continuous one over certain

possible ranges, sven though it is obviously not possible to check experimentally

such an assumption by measurement. In other words, we have here the intro-

duction of the concept of a theoretical law which exists even though we can

never prove by experiment that it does exist., In practice we can never do more

than obtain an estimate of the paremeter, in this case a, included in the law.

Over and against this theoretical law we have the empirical law, one

of the simplest examples being that expressing the relationship between the

length LO of a bar at an initial temperature to and the length Ll at a higher

temperature tl. Customarily this relationship is assumed to be given by the

equation

L1 = Lo(l + at), (2.28)
* where

t=4

1~ %o
In this case, however, it is necessary to note that the value of a is
sufficiently accurate only for a small range of temperature t and holds for a

temperature in the ne:l.ghborhoodl of 20° C.

To cover wider ranges of temperature, we need other formulse. Some-

times, for example, we find the expression
2
Ll=L0(l+alt+ agtt + . .)

4. Information Given by a Set of Data

First of all let us note the rodle played by the parameters in a given

empirical law. In the one just described, a is proportional to the slope of the

straight line (2.28) and in general this parameter is different for the differ-

ent materials. For example, Kaye and Labyz give the following series of values
of a.

In general, the coefficient a increases with the temperature but extra-
polation of ¢ may be unsound since some substances expand irregulerly.

Interpolation of a from constituent metals must be employed with caution
in the case of alloys.

- G.W.C.Kaye and T.H.Laby, "Physical and Chemical Constants and Some Mathe-
matical Functions",
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a
a

____3_a - Element 6
Element 10” Element x 10°° oSt x 10
Aluminium 25.5 Gold 13.9 go{z:ﬁ;m gg.e
Antimony 12 Iridium 6.5 Sglver s
Bismuth 15.7 Iron {cast) 10.2 e o
. (diamond) L2 S" l(wxl'gughzg ii.g S?xlphur c., 70
"oleas oth 5.4 Toad ' T 27.6 Thellium,40°  30.2
" 7. Magnesium 25.4 Tin R
Cadxngru;phite) 28.2 Nigﬁel 12.8 Tux'c'lgsten,27: 4.44
Cobalt 12.3 Palladium 11.7 gog’it 22.%6
Copper 16.7 Platinum 8.9 Zine, 25. o] .

TABLE 2.22 - ILLUSTRATIVE TABLE:

How Useful Physical Information
is Presented in Forms of Simple
Functions Used as Estimates of

Parameters in Assumed Relatiomships

Here we see that the linear function expresses a relationship which is
approximately true for all the elements, whereas the parameters differ from one
to the other.

From what precedes we see that if the law of functional relationship
is known a priori, the only thing that experimental work is supposed to give
is the numerical values of the parameters. For example, if it were true that
the length of a specimen of material at any given temperature varied in a linear

manner with temperature as indicated by (2.28), then all the information that an

observed set of data consisting of pairs of values of lengths and temperatures

could give would be tied up in the parameter a, technically termed the coef-
ficlent of linear expansion.

If the law of relationship is unknown, expérimental work must give us
an empirical relationship f and also estimates of the parameters involved in
this relationship., In such a case all the information is not tied up in the

estimates of the parameters unless these estimates are so chosen in terms of

simple functions of the data that they may be used equally well in other possible
relationships. This point will be stressed in a later paragraph, where it will
be shown that the simple st I, ¥ .

p atistics X, ¥, Oyr Uy and r are of much more value
in this respect than many of those ordinarily tabulated

Before we can take up
this point, however,

w
¢ must consider some of the available ways and means of
estimating the parameters.

5. Finding Estimates of Parameters to Express Information

In general,

let us write the law ‘
of relationship betw iab
X and Y in the form ’ ' "en o e
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Y= f(x’ ).1’ Kz, e ¢ o AE), (2029)
where the A's are the parameters to be estimated from n observed pairs of values

of X and Y. We shall consider four methods for estimating these parameters.
(A) Direct Calculation

If the number n of different pairs of observations is equal to or
greater than the number m of parameters, we may use  any set of m different pairs
of values, say, Xl, Yl; Xz' Yz; o v e 3 )Sn’ Ym;
equations

and form the set of simul taneous

Yl = f(Xl, ).l, kz’ ¢ o o hm)

o = f(xz, )\.1’ kz, ¢ ¢ e km)

® @ & & 2 & e & o e ¢ o o s o

Ym=f(%’ Kl, kz, L ) Km),

the solution of which will give one set of estimates 911’ 912, N glm of
the m parameters. Now we may choose any other set of m pairs of different
values of X and Y end solve in a similar way for a second set of estimates of

the parameters, and so on. If all of the pairs of values happen to satisfy a

single one of the family of curves represented by the assumed function, then

the different sets of estimates will be identical., .It would be, however, a

very rare thing to have an observed set of n points that satisfy a single

equation involving m parameters where m < n.

Obviously we would get, by such a method, n, =

n
—_—  sets of m
\ n-m |m
parame ters

. ell' 912. L N 2 811' LN ) elm
921 0220 LA 4 821’ (XX ezm

® & o & ® & O e & s+ s o

8, 416 v 20 6 v +0 B ’
nll nlz nli nlxn
where, in general, all of the sets will be different.
This method does not provide any criterion by which to choose the best
set of statistics or estimates of the parameters from among the possible n

1
different sets, and even if it did, it would still have the disadvantege that

any particular set makes use of the information contained in only m of the n

pairs of observed values.,
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Let us illustrate these points by a simple example, taking from Table
2.2 the first six pairs of values of voltage and ocurrent: 3, .03; 6, 075 9,
.11; 12, .15; 15, 193 18, .24.

Let us assume that the relationship between'Y and X is given by the
expression .
Y=ao+al}(+a2 ’
where in a particular case Wwe have replaced the generalized A'S by the a's. To
abtain estimates of the a's, we need only three pairs of values of Xend Y. We

may teke, for example,
03 =8y * Sal + 99.3
07 = a5 + Gal + 56&2
(11 =84 * Qay + 8la, .
From these three squations we gev

-,01000

29

ay +,01333
az = "QOOOOO .
But in a similar way we get from the next three pairs of values

ay =+ .09000

-,00167
= +,00056 .

2
o
|

Similarly, we would get estimates of these three a's for every set' of
three values of X and Y, in all ..._..Ll_l__
1 |3

way of deciding upon any one of the 680 sets of estimates of a5, 8y and a, in
preference to any other.

or 680 sets of estimates! We have no

To give all 0f the sets we would have to calculate

and then tabulate a total of 680 x 3 = 2040 estimates of the a's. Manifestly

it would be much better to give merely the original 17 pairs of observed values
of X and Y.

It is obvious, therefore, that this method of attack is not very

desirable and is clearly of little value. We pass, therefore, to a considera-

tion of other methods of finding estimates of the rarameters
(B) Graphical Method

In what follows we shell assume various forms for the functional

relationship between X and Y and indicate in each case how to obtain graphical
estimates of the parameters.
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a ;.
{a) Y aj + aX.

. In this case drew through the observed points the straight line that eppears to

£it them best. This prooess, of course, determines both the slope 8, of the
line and the Y-intercept 8y
b = 2
(v) Y 8y + 8;X + a, X" .
The derivative of this function is given by

% = 8y ¢ 2e2x

end, therefore, the ratio of oY to aAX should plot ageinst aX @sun approximat ely
straight line.

Hence, putting in the line that appears to fit this set of points
best, we determine as above in (a) the parameters 8y and a,. To obtain an
estimate of &, it is customary practice to find a value of a, corresponding to
each of the n pairs of velues of X and Y &and then to take the aversge of these
n estimates as the"best" .estimete of age.

_aofalx
(e) T=—=73""

In this case Y plotted ageinst % should give a straight line, since, if we let

X = -31(-—. Y=717, we get the form
1

Y= a +a

8k

which represents a straight line.

(a) Y =3 ali .
Setting Y, = %—. X = X, we are led again to a linear relationship between Y,
and X.
aoxa
(e) Y=1% alxz y

The plot of Y to Xl = —X—z- is & straight line.
X

In cases (c), (d) and (e) the method of finding the two paremeters in

the resulting linear equation is the seme &as that used in (&).

alx
(£) Y = aoc ’

where ¢ is e known constant. Here
7 log Y = log ao ¥ alX log ©

and hence the graph of Y against X on semi-logarithmioc peper is a straight line

from whioch 8 and a8, may be determined as before.
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(&) Y= et

Here

log Y = log a, + 8, log X

0 v
and the graph of Y ageainst X on double logarithmic paper is & straight line, the
psrameters of which can be found as above.
Oof oourse, these are only a few of the simplest ways in which the un-
known pareameters may be estimated. We shall now consider a numerical illustration.
Again we shall take the data relating the current Y in emperes to the
voltage X in volts. The data sheet of Fig. 2.17 shows the necessary steps in the
ocaloulation of the parameters a5 8 and a, in the assumed reletionship

2

J T I ‘ ]
i {
7 - e R —— Voltege | Current «01225X Y-.01225K
. IR - ‘ I Y ax ) oY r 5 -0001222x2| ¥, 000122242 b
Y R < s .03 o OT ...... .037850 | -.007860 | .O13386
‘ ; Coo 6 .07 3 | .04 | 013333 .077899 | -.007899 | .053435
; 9 a1 8 |.08 | 013333 .120148 | -.010148 | .095684
- P12 .15 9 |.12 | .013333 .164597 | -.0145¢7 | .140133
P15 9 (12 |.1s | 013333 .211245 | -.021245 | .186781
i 18 .24 |15 |.21 | .014000 .280093 | -.020093 | .235629
{21 .20 |18 |.26  .0l4444 .311140 | -.0211¢0 | .286676
| 2 .3¢ |21 (.31 | .0la762 .364367 | ..024387 | .339923
Lo27 .39 |24 |.36 | .015000 .419834 | -.020834 | .395370
| %0 +45 27 | .42 | .015555 +477480 | -.027480 +453016
i 28 .50 | 30 |.a7 | .015666 .537326 | -.037326 | -512862
36 .55 |33 |.52 | .015758 .599371 | -.049371 | .574907
39 .62 |36 |.59 | .016389 .663616 | -.043616 | .639152
42 .69 |39 (.66 | .016923 .730081 | -.040061 | .705597
45 .76 |42 |.73 | .017381 .798705 | -.038705 | 774241
48 l .86 |45 | .83 | .018444 .869549 | -.009540 | .845085
| 51 .93 |48 | .90 | .018750 .942582 | -.012502 | .918128

£=-.415893 .
+17= -.024464 = 8,

Y = -.024464 + .01285K + .0001222X°
FIG. 2.17

In using this method the values of gy 8y and a, derived from the data
depend upon the straight line drawn so as to "best" fit the points plotted and

in the absence of any criterion by which to determine this "best" fit, there

probadly would result almost as many different assumed lines &s there are inde-

pendent trials at drawing the line. This 1s obviously a serious objection to
this method of estimating the parameters,

W
e shall consider next the method of least squares used extensively by

engineers and students of the physical sciences in estimating the parameters in
a given equetion.

{C) The Method of Least Sqguares

Suppose as before that we have a set of n pairs of Vvalues X end Y
]

that
is, xl. Yl; Xz, Yz; .e

* 5 Xp» Y, end that these pairs considered &s coordie
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nates of points in a plane 1lie approximately on the curvdé

Y = f(xl, hl, kz, e« o e M) (2030)

The method of least squares, as usually applied, consists in taking
those estimates of the parameters in (2.30) which meke the sum of the squares
m
(ngv§ ) & minimm, where v? is defined by the equation

2
VJ = [f(xJ’ Kl, )"2’ * o o Km) -Yle.
Let 72= j§1 v?, then the formal conditions for a minimum are

2
ov?) -0, (1 =1, 2, .., n.

(2.31)
axi

This system of m equations theoretically may be solved for the m un-
known values of the parameters, thus securing a set of m statistiocs representing
the n pairs of values of X and Y. Practically, however, it may not be feasible
to solve the set (2.31) of m equations in that form. In such cases an approxi-
mation to a series expansion of f£(X) may tend to lessen the difficulties.

Ir £(X, Ais <o xm) can be expanded in a Taylor's Series about some

sultably chosen value X = Xo, we may write

af
f(X’ Kl’ see0e ’M)'_'f(xo, 7\.1, eswve ’M)+EE;O (X—Xo)
2
1 (a%f) (x-x.)2 + (2.32)
b —— 0 XX
lz (ax®)y
i
where &ng means the value of the i°P derivaetive of f for X=X,. If we think
0

of £(X, Ays +ees Ap) as some unknown but nevertheless definite function which
represents the data, then the A's have fixed values and the various derivatives
of £ have therefore definite values. This simply means that under rather
general conditions we may to a first approximation represent the unknown

function by a polynomial
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2 . .. m
Y-ao+alx+azx + +amX .

Assuming thererore as the ‘simplest case that all terms of higher power
than the first may be neglected and measuring X and Y as before from their mean

values, we have
iy 2
v’ = T (yi-ao—alxi)

2.2

n
2
= E (y’i + @y +ajxy -2a,y, ~28,X,yy + 2a,8,1,)

i=1

2 2
= no? + nao + nalo‘z - 2a1rncx0'y

where °x and ay are the functions or statistics introduced in Chapter II-3.

Hence to determine a, and 8y, Ve have

%a,

—a-(l-z—)--zancz-Zrnac =0

aal 1x Xy '
from which

85 = 0,

and we s
ee that the value of &, comes out in terms of our familiar friends Ux’
uy and r previously introduced.

Following the same procedure for the case of

y = ao + alx + &212,



-1
we get, wherethe I stands for summation from 1 to n,
Za +ar.x+a):xz =T
0 1 2 Y,
azx+a2x2+ all‘.xs =T
0 1 2 XY,
2 3 4
8o=x” + a 7x% + a,7x% « 2Py,
or since Ix = Iy = O, we have

2
na, + 0 +nazo'x-o

O+na02+nau nro_o
1'x 2°3

xy’
2
naoo'i * nagH, ¢+ nagh, = Zx7y,

#here u = the ith moment of X about the mean X.

From the above set of equations, we find

0 0 no‘lzI
o2
nr“xdy no Di,
sz ny ny
y 3 4
ao = A »
n 0 nr!;‘aC
0 nrcxcry nl-L:5
2
- no’f£ X"y nu4
a8y A ’
n 0 0
0 ndi nraxcy
2 2
nax nu:5 x"y
8y = A ’
where 2
n 0 nO'x
2
A = 0 ncx nu5 .

First of all we should note that all together eight statistics are re-
quired to be caleculated from the original set of n pairs of values of X and Y,

First we have to calculate the means X and Y which give the new origin of
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2
and XY,
coordinates. In addition, Wwe must evaluate Oy, Gy’ T, Ha» By y

Let us apply this method to the determination of the parabola
+ 12
y=ey* ayx ay
for the current versus voltage in the carbon contact example given above. The

pecessary details of the calculations are given below.

X = 27 8, = —.0348916

T = .42176 8y = +.0183905

o = 14.6989 8, = +.00016153

X

- 2
% -272186 Y-¥-= ag * al(x -%) + az(x -y
ug = 0 Substituting
U4 = 83579, o
Y = .008091+ .009667X + .0001615 X

r = .99301

n = 17°

txay = 101.43

{D} Method of Moments

Given a series of n pairs of values of X and Y, the method of moments,
as well as the other three methods just described, gives a way of celculating

certain simple functions or statistics of the observed data such that they

contain much of the information presented in the original series of observations.

Priefly the method is based upon the assumption that the quality characteristics

X and Y are functionally related. Hence it follows that this function should be

satisfied by the observed pairs of values except as these observed values may be
influenced by errors of measurement.

Ve shall consider the application of the method to the simple case where
the ordinates are given at discrete points located at equal intervals on the
X-axis, such, for example, as we have in the series of observed pairs of values

of current through and voltage across a carbon contact discussed in previous

chapters. The method of moments may also be applied to £ind estimates of

statistios to represent the information contained in a series of observations of

some quality cheracteristic X. In this case the observed data are supposed to

e

the
observed number of values of X falling within the ith interval, We shall
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consider as a special case the representation of the information where the area
or observéd frequency Yi is given for each intervel of width h, the ordinate
Yi being situated at the midpoint of the interval, The details of carrying out
the method for this case differ from those for tle problem just preceding. In
what follows, therefore, we shall refer to these two problems es Types I and II,

Specifically the method assumes the existence of a oontinuous funotion
fl(X) ‘such that, for data of Type I

£,(Xy) = ¥4

and for data of Type II
X, + 2
i 2
j rl(x)dx = Yi’
Xy

_a
2

for all given intervals., Moments of the curve which is chosen to represent or

"f£it" the data are then equaited to estimates of like moments found from the
hypothetically correct function fi(X) .

A little consideration will shdw that in (I) there are at least two
possible ways of equating moments and that in general, these two do not lead to
the same estimates of the unknown parameters.

(a) We may equate moments of the discrete ordinates of the

fitted curve Y = £{X, L ) ...,M) to like moments of the
observed ordinates or

(b) We may equate moments of the fitted curve Y= f(x,kl, "")\n)

found by integration to estimates of like moments found

from the data.
TYPE Ifal

Given a series of equally spaced ordinates

Yl, Ya, oo .,Yn
at

xl’ xz’...’x

n
to fit a curve Y = £(X, kl,...,km) to these ordinates.

Denoting by NO, 11 1¥gre 01V the sum and first m moments of these

ordinates sbout an arbitrary origin, we have
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z N
1 Y1 e

n

@ s 00 esscrcsceros

n
iZy X,y =N 1V ¢

urv
Denote by N, 1M1 1“2""'1”‘m the area and first m moments of the ¢ e

£0Xy, Xypoes km) to be fitted to the data.

Then n
S T A e hg) =N

: N
1El Xif(xi,hl, o ’M) = lu'l

® ® 600000000000 BSOS SONOEN

r XD =N
121 xi (11,7\.1, ** ’7“m) Bl lum

The method of determining the parameters xl, 7\.2, .o "7“m now consists in

equating N =X
= Ny»
L RS L
M2 = 1Y

lum = lvm .
From this system of equations we may solve for the A's in two ways,
i.6., by using the m moment equations together with N = No or by using the

(m-1) moment equations and N = N0 where N is now expressed as a function of the
parameters 11, xz,...,xm.

If we choose the first of these ways, we have the following equations
to solve for the A's:

n n
2 Xy £Xy, Ryseeerhg) = B X, Y

i=1 71 1

n
2 n
121 XU Agpeiiny) - 15y xf Y

.o-oocoooooo....-o--ooo‘oot.ooo'oo‘.

et S Seat? S N oaes? St St Sttt S

(2.33)

¥ m _ n m
R e SR U STRRPI WA Ep X Y

Y



A simple illustration will serve to make this formal outline clear,

Example: Given the series of data shown in Table 2.23,

OO P AN M

TABLE 2.23

to fit a continuous curve Y = (X, 7\,1, ...,7\.m) to these ordinates in such a way

that f(Xi) is a good approximatio.n to Y, observed.

On plotting the series of values, it will be seen that they appear to
follow a curve of parabolic type. Hence,
fitted

we may choose as our function f to be

= 2
Y—ao + alX+a2X
where in a specific case, we have as before replaced the A's by the a's.

Inasmuch as we must evaluate functions of the form
n

.o 2

iE Xi (ao + a1Xi+ azxi )

we shall do well to tabulate its value for the n given values of X as shown in
Table 2.24.

2 3 2
¥ X(a0+alX+a2X2) Xz(ao+alx+azx ) X (a0+alx+azx )
2 3
1 l(ao+al+a2) 1 (ao+al+a2)2 15(30+al+¢5\2)2
2 2(a0+231+23a2) 22(a0+2a1+2 a,) 2%(ay+2a,+2%,)
3 20000 600 00 090 o0 e 0 O & 5 0 68 600 ® & 0 9 & 0 0 00000 s0 0
4 sees 000009000 YT E R YY) R EE RN
5 e 0o 0 b OO e &8 0o IR I X B BB B B N ) ® & 9 5 5 0 8 040000
6 P2 S50 00 0 6 0 oo G e 9 9 OO 0 O 00 8t @ ® & O 5 08 000t
7 e & ® o ® 00 ‘........,....0 ® & & & 6 085 0800000
® 0000 o 2 5 2
8 8(a0+8al+82a2) 82(ay+8a,+8%,) 8%(a,+8a,+6%,)
7
z 56a0+204al+1296a2 204ao+1296al+8772a2 1296ao+87'72a1¢617 5a2
TABLE 2.24

A little study of the formation of this table will show that the sums
tabulated at the bottom are simply the sum of the first powers, second
powers,..,., fifth powers of the integers 1 to 8, multipled by a certain

Parameter,
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In a similsr way, we may display the calculation for..the Tignt alde of

Equations (2.33).

x x° B v xY XX x5y

1 101 1 1 1
’ : 8 0 o o 0
3 9 27 1 3 9 27
s 16 64 4 16 64 256
5 25 125 9 45 225 1125
. 36 216 16 96 576 3456
7 %9 343 25 175 1235 8575
8 6a 51z 36 288 2304 18432

™~

624 4404 31872
TABLE 2.25

Hence the Equations (2.23) become in this particular case

S6ay + 204&1 + 12968.2 = 624
204&0 + 1926al* 8’7’7.‘?.8.2 = 4404
129630 + 8772a1+ 61'7'76&2 = 31872

which on solving will be found to give

= 4. al= "4,

aq a8, 1, end the function sought is
therefore

£(X) = 4 -4X + X2 .

On caloulating the values of £(X) at X = 1,2,...,8 they will be found

to correspond exactly with the given Y values. We should hasten to add however,

that in general, such a result would have been merely accidental, buf in this

case was to be expsoted, since the above values of X and Y were actually

computed from the function
¥ = 4 -4X + X2

By so doing we may compare below the virtues of the various methods of

fitting curves to data. since this can only be done in a given instance when the
actual law of relationship between X and Y is known.

It may appear from the preceding example that in general, this method
of curve fitting is a very good one, simple to apply,.

and involves no moment
corrections of any kind.

A 1little consideration however, will show that the
application of this method may be next to impossible in certain instances such

for example @s would arise if we were to take for our function £{X, N Km)
’ g8y
the familiar but simple normal law funetion ' |
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_(x-32
1 20°
£(Xx) = = e

involving just two parameters X and o.

Proceeding in the above fashion, we would oome out with the two follow-
ing equations:

(x, -%)2 (X,- X)2 (x, -
..ﬁ:._ e 2; + Xz e 202 oot —-xn e 2 - g XY
/21 ovein Y i=1 "1°1
and y =

, &P , | (Xp-MF (x,- T2
- —— -— 2 - —T

—X'—l'_e 2o *'que 262 +..+—]Ep—e 2 -'xz:1 sz .

ov2n 021 ov2n =1 171

Now the right hand members of these equations are known constantc and
the xl, xz,...,x-n; X?‘_, Xg, ..'.,Xﬁ are also given values, but where both unknowns
occur in the exponents of e, the solution would obviously be at best a difficult
task. Such difficulties, of course, will not be encountered by this method 1if

we choose for f£(X) as we did above a polynomial
2 m
Y = 8y * alx + azx +...+qu .
TYPE I(b)

The runctioﬁ £(Xx, )‘1’“”7“m) to be fitted to the data is to have its

moments found by direct integration i.e.,

m
N g = j’x £(X, Ayyeeerhy)aX

This means that before we can equate moments, we must estimate the
value of moments of the lum type from the given set of ordinates. In other
words, we now bring into play the function fl(X) representing a continuous curve
which we assume passes through the tops of the given ordinates. It is the
moments of this curve, defined by

Ny yvp = X7 £y (X)X
which we must then estimate from a knowledge of XY at certain points and
equate these to the moments i, obtained from the function f£(X, hl,...,hm)
to be fitted,
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Such estimation requires the use of a suitable quadrature formula, the

purpose of such formula being, in general,

to obtain an expression for the

netion
integral of a given function over a certain range when values of the fu

are given only at certain isolated points.
The general mode of procedure is still the same as in I(a) except that

the summation signs in Equations (2.33) are now replaced by integrals whose

limits must be appropriately assigned. Thus,
X + 2 X +3 )
n 2 n 2 %
IX (X, xl,...,xm)dx = X fl(x)dX )
h _h )
-z 3 ;
h Ny )
a3 X3 ;
j‘ﬁf(x, Kl,..-,hm)dx = J fl(X)d.X )
. _h h )
-2 -2 ))
..-O...C.i..!'l........“..'.‘..,I.)
xn+% Xn+-2- g
X® X, Nyyeee,hl)dX = jxmf(x)u )
J‘ LM S
4L-2 -3 )
)

{2.34)

Applying this theory to the set of data given in Table 2.25 and using
for £{X), the function to be fitted, the same expression

= 2
£(X) ao + alx + aa](

the left side of Equations (2.34) become in this case, (h = 1)

8.5

‘[X(ao +a X + &21(2)(1)(

I5
8,5

jﬁao ta,x + azxz)dx

.5
8'5

3
jx (ao +alX +a2x2)dx

s
On the right of Equations (2.34)
8.5 8.5

J.x £, (X)ax, J[xa £,(X)aX, and

05 .5

"

368

614

—

3

0

614
+ Zo 8 + 1305&2

8y *+ 1303a, + 8874.1a,

1305&.0 + 8874.1&1 + 62858.25a

We require to estimate

8.5

Ixs f,(X)ax, when we
-]

S el et et e et Nt St St S 8 N st o e

(2.35)
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. 9
are given the values of XYy, Xi“'Yi, and XisYi fori=1,2,3,..8 as given in

Table 2.25.

Applying a suitable quadrature formulal, we estimate these three inte-
grals to be

630.333333, 4472.766661, and 32581.84996
Hence, the three equations to be solved for ags 8y and a,

are

108!5.o + 614al+ 391532 = 1890.999999

]

614&0 + 3915&1 + 26622.3a 13418.29998

2

1305&0 + 8874.1al+ 62858 .25a 32581.84996

2

from which the values of a5 8y 8y to six decimal places are

a, = +4,000001
ay = -4 .000000
a, = +1.000000

which agree very closely with the true values.
Before passing on to a discussion of Type II, we shall give a practical

example of the kind just considered, that of fitting a smooth curve

2
Y_ao+alx+a2x

to the data of Table 2.2. An outline of the details is shown below.
X Y

Yoltage "E" Current “I" XY x_zg lal
3 .03 .09 .27 .81
6 .07 .42 2.52 15.12
9 .11 .99 8,91 80.19
12 .15 1.80 21.60 259,20
15 .19 2.85 42,75 641.25
18 .24 4.32 77,76 1399.68
21 - .29 6.09 127,89 2685.69
24 o34 8,16 195.84 4700.16
27 .39 10.53 284.31 7676 .37
30 .45 13.50 405,00 12150.00
33 .50 16.50 544,50 17968.50
36 .55 19.80 712,80 25660,80
39 .62 24.18 943,02 36777.78
42 .69 28.98 1217.16 51120.72
45 .76 34,20 - 1539.00 . 69255.00
48 .86 41.28 1981,44 95109.12
51 .93 47,43 ~  2418.93 123365.43
z : 261.12 10523 ,70 448865.82

TABLE 2.26

CEm e e e e e Eme e e e e e ow emom ow m = W e =~

1. Tracts for Computers No. X by J. O. Irwin, Cambridge University Press,
1923, Page 7.
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58.5
IX fl(I)dX = 783,.3558916

1.5

52.5

sz £,(X)aX = 31595.4238754

1.5

52.5

Ex‘" £,(X)ax = 1849107.022

1.5
The like moments caloulated from the fitted curves are
52.95
Jx(ao +ax -+ azxz)dx
1.5
52.5

2 2

jx (ao+alx + azx jax
1.5
52.5

7596909 ,
%2

15773.0 + 4825:5.725511 +

7596909 '
48233 . 25&0 Ay aandlS T 797 67596.1375&2

3 e _ 7596909
X (304 8, X + a X yax = —Z — 85" 79767596 .13%7 5a1 + 3489832395,56208,
1.5

Hence the equations that determine 855 8y and a, are

5508a, + 192933&1 + 7 '7596909a2 = 3133.423566
192933a, + 7596909&1 + 519070584.55&2 = 126381,6955
7596909a, + 3190'70384.55a1+ 13959329582.25&2 = 5396428.088

from which we find
&, = .026486,
a, = .008306,
8, = .000182.

Let us pause long enough to consider the significance of the values of

8 83 and e, Just found. 1In terms of these we can express relationship

between the ocurrent Y through and the voltage X across a carbon contact in the
following way:

Y = .026486 + .008306X + .000182%2 .

By applying the method of least Squares we previously obtained this
relationship in the form '
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Y = .008091+ .009667X + .0001615XxZ.

Starting with the same set of data in the two cases we thus arrive at two differ
ent functional relationships. Both cannot be the correct expression in the

sense that they represent the hypothetically true relationship about which we

shall hear more in Part III. In fact the two expressions above simply make use

of the information contained in the original set of data when presented in terms
of certain symetric functions of the data.
In our previous notation we may write the above two relationships in

the form

2

Y=911+921X + O X

31
and

2

Y =0,,+08,,X + 0,, X

12 22 32

Now the analyst meking use of the method of moments might present the infor-
mation contained in the original data in terms of the estimates en, 921 and 031
whereas the analyst making use of the method of least squares might in a corres-
ponding way make use of 912, 922 and 932. The point to be emphasized again is
that when information is presented in this way, it contains that information
which the analyst puts in by way of method of analysie as well as that which
the data give. Unless the analyst can justify his method against all others,
the presentation of the information in terms of a particular set of e's 1is
therefore open to criticism.

It is a simple matter to show that both sets of statistics involve
n, X, ¥, Ty Op “y together with certain other simple symmetric functions of the
data. In so far, therefore, as we use these simple functions for presenting
information we are making use,as it were, of a universal language the value of

which is independent of the analyst.
IYPE II

In accordance with the general assumption about the function rl(x)

made at the beginning, what we actually observe are

h h h
4L3+¢% Xpt3 Ltz
Yl = jfl(x)dx’ Ya =’J fl(X)dX, oo oy Yn = Jfl(X)dX .

h _n
Xl- ‘5 xz' E Xn §



Now
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1
let +Q

I, *3
[rl(x) ax,

{.0., Z is the sum of the observed frequenciesfrom some arbitrary value X to the
0oy

last value Xn inclusive.

Thus,
b b
x +3 X+ 3 X +3 .t 3
= 1£,(X)d&X
2y J‘r (X)ax, ZX h }‘r]_(x)dx,...,ZXn_.I_1 =Ir (X)ax, ZX . % j l(h)
17 -2 h 2 X _h X +2
Xy~ -2 Xo-3 n 2 n 2

have respectively the values

Y

l’Yz’o--’Yn, Ya"oo."'Yn’ sseevsc ooy Y

n’

Now what we require is

=1
+

No 1¥n (X) X, where

—_—— e
P4
=]

b
[

}-l
LT T AR

-+

N,

’-—-DH
=

fl(X)dX = Y1+Y *eee ¥ Y

-2
172

o

by definition.

The purpose, as before, is then to equate the value of these integrals

estimated from the observed data to like integrals of the function
£(X, )‘1' . ")"m) to be fitted.

To get an expression for No 1¥m® We may proceed as follows:

By definition,

Therefore,

% = - rl(x)°

The meth tme ST Tt
DD 232-%3?1' treatment 1is that given by Pearson in Biometrike Volume I,
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To evaluate the integral appearing in this last expression, we have
given the values of Z Xm"l at intervals of h, from Xl-% to xn+ % and it is now
only necessary to apply again a suitable quadrature i’ormulal. The moments of
the fit_ted curve £(X, xl, ...,IE) are of course obtained by direct integration.

' A simple i1llustration may help to clarify the formal details just
given.

Example: Let us take again the set of data given in Table 2.23 and as
before let the equation of the curve to be fitted be

Y= 8, + alx + azxz.

For purposes of illustration of this process, we shall now assume that
the values of Y given in Table 2.23 actually r'epresent the frequency or area of
observations lying within the unit interval of which the corresponding value of
X is the ﬁidpoint.

The necessary details involved in the computation of 1V UP to the

point of substitution into the quadrature formule are given in Table 2.27.

r oy x-3 m-pP R Wxp @y

1/2 1/4 92 46.00 23.00
: ! 3/2 9/a 91 136.50 204.75
° ’ 5/2 25/4 91 227.50 568.75
! s 7/2 49/4 90 315.00 1102.50
* : 9/2 8l/4 86 387.00 1741.50
? ° 11/2 121/4 77 423.50 2329.25
e ° 13/2 169/4 81 396.50 2577.25
= ! 15/2 225/44 36 270.00 2025.00
% ° 17/2 289/4 0 000.00 . 0000.00

TABLE 2.27

1. Tracts for Computers Loc. cit. page 6.
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v and v, are
The specific expressions for the moments ¥y, 3¥2° 1Ys3

8.5
Noyvy = -5(92)-* jz &
.5
8.5
Ny qvp = (.5)2(92) +2 |2X aX
‘.5
8.5
2
Yq¥s = (.5)2(92)+ 3|2 X° &X,
'7'5

and the values of Z, ZX and zx® are given from .5 to 8.5 in Table 2.27.

Hence, applying the quadrature formuls we find:
lblvl = 627 .333372
Nyi¥e = 4455 .711156
NOIVS =32473.099976

The like moments calculated from the curve ¥ = 8q * a.lX +a2](:a are, of

course, those given in Equations (2.35), and therefore the equations to

determine a,, 8 and az are

108a, + 614&1 + 3915&2 1882.000116

614ao + 3915&1 + 2(5622.38.2 13367 .13347

130530 + 8874.1&;L + 62858.25&2 32473.09998

Solving these, we find

o
n

0 =t 3.916677

[+ ]
[
n

- 4.000008

32 = + },000001
and the funotion f(X) sought is

Y = 3.918677 - 4.000008 X + 1.000001 X2

.

We recall now that the specific requirement placed on the fitted
function f£({X) is that

X

jr(x)dx * observed frequency within the corresponding range.
5
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To see how well the fitted function serves this purposes,

we find
X X
Ii‘(x)dx = X(3.916677 - 4.000008 X + 1.000001 xz)dx
) S

= - 1.500005 + 3.916677X =~ 2.000004X% + .333334 X,

If in this last expression we set successively X = 1.5, 2.5,...,8.5, we shall
obtain by subtraction the calculated frequency within each unit interval as
shown in Table 2.28,

X Computed Aoctual
Upper Frequency Frequency
Mid-Value Limit or  [r(X)ax Within Within
of Interval Integral 5 Interval Interval
X
5 000000
1l 1.000004 1
l.5 1.000004
2 0.000003 0
2.5 1.000007
3 1.000004
3.5 2.000011
4 4,000011 4
4.5 6.000022
5 9.000020 9
5.5 15.000042
6 16.000035 .16
6.5 31.000077
7 25.000052 25
7.5 56.000129
8 36,000075 36
8.5 92.000204
TABLE 2.28

The process outlined sbove for problems of Types I and II is quite
general in its application and can be used in the representation of many forms
of relationships such as arise in the study of physical and engineering problems
involved in the control of quality of manufactured product. Enough has been
said to indicate how the observed relationship between two variables may be
expressed in terms of simple functions of the data by means of the method of
moments. The necessary mathematical details are in general somewhat laborious
although they become much less so if the assumed function f,(X) has high contact
with the X-axis and vanishes at the extremes of tue range.

Thus it can be shown! for Type I(b) that, if the continuous function

rl(x) representing a series of discrete ordinates is such that it has high

contact with the X-axis at the extremes of the range, the area and moments of

- - m wm w em e e -
- - e s am e o
- - . = - -
T e e e e e e w e e e ®m a&m e -
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rl(x) mey be found directly from the observations without introducing any cor-
rections. A case of this kind arose in Chapter IV where the Pearson type curve
was fitted to a Point Binomiel distribution. No correction was epplied to the
moments obtained from the discrete ordinates of the binomial before equating

them to the corresponding moments found from the Pearson curve by integration.

For the problems of Type II, even though rl(x) has high contact with
the ends of the range, some adjustment is still necessary to allow for the fact
that in calculating the moments from the observations we have assumed the fre-
quency within a given interval to be centered at the middle of the interval,
although we know that this is actually not the case. These adjustments are
nown ir the literature as Sheppard's corrections. -

Particularly in problems where we are interested in presenting the
information conteined in a series of observations of some particular quality
characteristic, the information contained in the series of observations is
often presented in the form of moments to which Sheppard's corrections have
been applied. This practice needs some further consideration because here
again we rind that a so-called corrected moment has in it something which the

analyst has put there in addition to what the original data contain and there-

fore should be used with due caution.

Use of Sheppard's Corrections in the Presentation of Data

Let us go through some of the detailed mathematical steps in arriving

at corrections to be applied for the problems of Type II when the above con-~

dition as to high contact is satisfied. We shall fing that, based upon the

sssumptions that sre made, the moments calculated from the observed data must

be corrected before they can be used either in an equation of relationship or
in a theoretical frequency curve.

Assumin .
g a8 before that the function fl(X) Tepresents the data, the

moments calculated from the observations are actually defined by

_.h

N « 32 .m x—+§
lvm-k_zm Xi J‘fl(xi + x)dx .

x=-—2

I1f £,(X) can be expended in a Taylor's Series about X = X,, then
1’

£)X v =1 (X)) +xdV(x,) o 22 (2 3
1'% 118y) + x7X) = f{’(Xiwé 2%z
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and

h

+

2 B3 5

£.(X,+ X)ax =he,(X,) + r(z’x h™  ola)iyy, ., ..
L% 11Xy A ( )*'2'1‘5 1 (%)

Hence

+Q0 + @ (2)
N.,v=h ,T Xy £ (X)+ P R S td & JS IR SITIPIR I
1'm i==00” 1 1'% 215 i=~qp 1 i

Now it X f&_‘”(x)' vanishes together with all its derivatives at X =1 oo,

for all integral values of j, we have, on applying the Euler Maclaurin Sum

Formula
+00 +00
n® 1 [im,(2) (4)
N 1V ' jxmrl(x)dx+—§ -E X r (X)aX +—=— Ixmf {X)AX 4.0 (2.36)
2 2 [_
«00 -0 -00
The next step is to reduce térms like
+0
J’er:(‘-zj) (X) ax
-0
tc’ moments of f,(X), (3 =0,1,2, «.)e
Integrating by parts we have
+ too 1
jxmfgzﬂ (X)ax = Jxma[ézﬂ‘” (X)] =-m Ixm'l £120- ) xpax,
-0 =00 -
COntinuing we find
+® +00 +00
Ixmrf” (X)ax = (m) (m-nJ‘xm‘zfg’“‘z’ (X)dX =n(n-1) (m-2) . . (mzs+1)Jx‘“'z”flﬂ>u.
-
-0 -Q0

by repeated application of the integration by paris,
+00
or Jx’“r{zj)(x)dxﬂhn(m.n(m.z) e (2341 Juon a4y,

-

where 1%n-23 is the (m—aj)th moment of fi(X) about an arbitrary origin.
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Substituting the value of these integrals into (2.36), we find

2
h° N _
Noyvg = N iy v 2 5 20 ez

4
+ B Nm(m-1)m-2)(m-3) jHp_ g

2*ls

6
+ ;%;Nm(m—l)(m—2)(m-5)(m-4)(m-5) gt e o

which is the fundamental formula from which moments of the curve representing
the data may be found in terms of the rough moments found from the grouped

ovuwrvations.

If moments are taken about the mean as origin then 1Vm and lum become

moments about the mean and the fundemental formula becomes

n? nt
Yo" bm *_ZTE m(m-1) b o+ -2-;—@- m(m=1) (m-2) (m-3) by g% « ¢ »

from which we obtain

By=¥y = o,

u2= vy - -I{;- ’

Hg= Vg,

u4=v4 - -l-lé-z- Vs + E;i_o‘_h‘},

B8tCe « « o

These equations express the corrected moments (L*'s) in terms of those
(v's) for the original data. If the hypothetical curve rl(x) actually does
satisfy the oonditions in respect to contact required as a basis for Sheppard's
corrections, the above relationshipsbetween the u's and the +'s hold good. If,
however, the assumptions involved in these corrections are not Justified, the
corrected moments may distort the information given by the original series of
observations. The importance of this fact will become apparent in Part III.

It is felt that, in many problems arising in the control of quﬁlity,
it is wise to make use of the original moments in Presenting the information
conteined in the series of observations in such a way that they can be used in

an alm i
o8t universal manner as previously indicated, whereas the corrected

moments
naturally 40 not enjoy this generality. Of course, the observed moments
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may be e~sily obtained from the corrected ones by means of the above equations
provided it is known that the moments have been correocted.

In c'los:l.ng this discussion on the method of moments, we shall indicate
briefly how it leads to the use of the previously proposed simple moment
functions of a distribution of values to express the informetion contained

therein.

Application of Method of Moments to the Expression of the Information Contained

in a Frequency Distribution

In the development of a Pearson Curve to represent the Point Binomial
distribution, it was found desirable to first integrate the differential
equation to obtain the expression of the frequency function and then to determins
the parameters in this function by equating its moments to like moments of the
Point Binomial.

However, for the purpose of showing how the various Pearson Curves
arise as special cases of the same differential equation, we proceed in a some-
what different way. Starting with the general equation

dy | __Y(X + 4)
z
by *byX + bX

given in Part IV, we may determine the parameters b,, bl’ b, and 4 as follows:

Writing the differential equation in the form
2, 4y
(b + 01X +D,X°) g = Y(X + d),

and multiplying both sides of this equation by X‘m, we have

Ly Ly
m 2, 4t -
Ix (bg +byX +b,X%) Fg X jxmy(xm)dx,
L, L

where L1 and L2 denote the limits of the frequency rarge.

Integrating by parts, we find

Ly Lp
-1 m +1
Xm(bo +byX +b2X2)Y - j Y[mboin +(m+1) b, X7+ (moz)bzxm Jax
L "Iy
Ly Ly
- } ™1y ax + a f XByax.
L L



If Y vanishes at the ends of the frequency range, then the preceding

equation gives

-mby (b g - (@el)by My - (m+2)by b1 = 1Ppe1 * @ 1Mm (2.37)
where as before 1% denotes the i'l moment of the frequency function Y about an
arbitrary origin,

Puttingm = 0, 1, 2 and 3 successively in (2.,37) we obtain four
equations expressing the parameters in terms of moments of the given frequency
function Y. However, by taking the origin at the mean of the distribution, we
get a new differential equationsin the variables

x=X-X

y=Y,
as indicated below, but since this new equation has the same form as the old
one, we shall for the sake of simplicity think of bo, bl, bz and 4 as the
consteants in this new equation.

Under these conditions, the equation which determined the constants

are
0 + b1 + 0 + d = 0,
bo + 0 + szu-a + 0 =-u,,
0 + 3b1uz + 4b2u5 + duz' == Ha
by  + 4byp, ¢ 5’1:»2&1.4 + dug = - Hyo

Solving these equations we find

bo = A
Y 0 o 1
0 -
“3 4“-3 p,z
Skg  -n 5
2 m b
bl - 4 4 3
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0 1 0 1
1 0 ks 0
0 3“2 “Hg by
b. = 5“2 4M3 ~ky Hy
2 A
0 1l (o] 0
1 4] 3u2 “Hgy
0 5u2 4u3 ~Hyg
A
where
0 1 (o] 1
1l 0 :suz 0
A=
0 3u2 493 By
3&2 4I13 Su 4 “3 .

Expanding these determinants we have

2

0 3 ?

; 2

2
o Ba(3kg + u,)
= - »

1 2 _ 0.0
2 3
bz = - ’

2 3
10u2u4 - 12l-t3 - 18112

2

L0ugh, - 12u2 - 1843

Before proceeding further, we should note that these four parameters
are given in terms of the moments of the frequency function Y. Now this function
18 unknown and in practice we substitute for the moments of Y the corrected
moments obtained from the data which are to be fitted. If the latter is such
that the Pearson Curve representing them has high contect at the ends of the

range, we should epply Sheppard's Corrections to the moments v caloulated from

the observations.
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To continue then, we assume that the above noments represent the
corrected moments of the date so that we may now write the differential equation

in the form

113(u4 + 3u2) ﬂ_
x 18u°
% i 108 H o 1zu5 o -
bolaugh, - 3u3)+ u5(5u2 + u4)x + (Bughy = Skg- 6u2)x

<

10kgH, = 12u5 - 18u2

If in this last equation we substitute

2

" m

3 =2 =
BL==8s Bp =B+ O = s

we have the differential equation in the form

ov/By (Boy+ 3)
X" I0p, - 12p,- 18

P = (2.38)
L (42 -3p)) 0 vBy (Bp+3) 2Bp =581~ 8 5
T0p, - 125, - 18 * T0p, -~ 12p,- 16 ** TOP,- 12p,- 18

The mode of this curve is the value of x for which %% = 0 other than
y = 0, that 1is, '

_ 97y (By+3)
08,- 12p,- 16 *

which gives the distance of the mode of the frequency function from the mean.

The various forms of frequency curves that may be obtained as an

integral of (2.38) depend upon the nature of the roots of the equation

bo+blx + bax‘?' = 0,
that is, they depend upon whether the "discriminant®

2

bl - 4b0 bz = o,
or upon whether

bz
l >
4_b "F' =],

This '
condition in terms of p; and Bo becomes

Balpp + 3)2
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Hence, given the relationship between By and f, of a Pearson Curve, the nature of

the ocurve is thus determined and this inequality is therefore called the

" oriterion"l.

6. Stochastic Versus Functional Relationship

For several paragraphs, we have been considering the problem of mresenting
the information contained in an observed series of n pairs of two quality
characteristics X and Y and indicating the relationship between them. For the
most part however, we have talked sbout functional relationships.

Returning nbw to the 1370 pairs of observations of depth of penetration
Y and depth of sapwood X of & certain group of 1370 telephone poles discussed in
the previous chapter, we see at once that the customary concept of functional
relationship does not appear to express our conception of relationship in this
case. True it is that, in general, the deeper the sapwood, the deeper the pene-
tration, but we are not able to say definitely for a given depth of sapwood what
should be the depth of penetration.

To meke this point clear, suppose we calculate the average depth Y of
penetration of the poles in each of the columns of the scatter diagram of

Fig. 2.6 sbove. Doing this, we get the rollowing results:

Average

Depth of Depth of Number

Sapwood Penetration of

in inches in inches Poles
X [ n
1.0 «85 2
1.3 +«83 29
1.6 1.03 62
1.9 1.16 1086
2.2 1.30 153
2.5 1,33 186
2.8 1.54 193
3.1 1.63 188
34 1.82 151
3.7 1.96 123
4.0 2.18 82
4.3 2.19 48
4.6 2.36 27
4.9 2.52 14
5.2 3.16 5
5.5 2.50 1l

TABLE 2.29

—-—______-.........-——--——-—“---‘-"--" -

ising
1. For a complete digcussion of the various forms of Pearson Curves ar
from diffgrent vagues of the criterion see W. Palin Elderton,"Frequency

Curves and Correlation’
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This table bears out the previous statement that the average depth of

data of Table
penetration increases with the depth of sapwood. Plotting the ‘
el
2.29 as in Fig. 2,18 we see that the averages Y appear to lie approximgt y
along a straight line or in other words,

—
that

1
L ]

= 2059
Y = Eo + al Y ( )
¢ e Now we might proceed as before to
£ind estimates of the parameters 8, and
P a, by one of the four methods previously
* e outlined, but we shall do it only for -

Dopth of Pesetrstios - 1a
»
L J
[ ]

b 229

the Method of Least Squares, weighting

o % e T S—
% © Dopih of Sapwood - in. each squared difference
ric. 2.18
22 [¥, - (a, +8.X,)]?
Vi 1~ '8 8%y
by the number ny, of values X in the column designated by Xi-
In this way we get '
ve =% Dyy (Y:l - a; - alxi)z'
where the I is extended to the number of arrays of Y's, .

The conditions for a minimum of v2 are

2
v = - - -
g“q)‘ 22 nyy (T -a5-a)X)) = o,

and
v2
Sia;l 2oy LTy - &g -ayxy) = 0.

On examining these equations remembering that Dyy Yi is equal to the
sum of all Y's in an X array of Y's, we see that,
whiich venish as d&X—> 0,

except for errors of grouping
they are equivalent to those obtained by' Titting the
best atraight line by the same method of least squares to the whole set of

1370 indaividual points. Hence, the slope of the best straight 1line is to a

high degree of approximation

L2
Wk

and the Equation (2.39) beocomes

when (X, Y) is chosen as the origin of
coordinates



- o
V=T x (2.40)

7 x
or putting in the values of r, cy and cx obtained from the data, we get

¥y = +472209x. The line (2.40) is shown in Fig. 2.19 and is technically termed

the line of regression of yonx, It

gives approximetely the mean value of : {
y associated with a given value of x. SL )
Furthermore, we have Jjust seen that

(2.40) may also be looked at as giving

to a high order of approximation the

Y = Depth of Pemetrstion - in

best line through the individual points

determined by the same method. . ° T i ¢ N K

X « Depth of Sapwood - in.
Line of regression Y on X

Now we are ready to consider rec. 210
further the significance of the straight line obtained 4in either one of these
two ways. On the one hand, had we proceeded according to the Method of Least
Squares using the individual observations to find the relationship between the
length L of a bar at some temperature t starting from some initial temperature
to, we would have pronounced our findings as the empirical functional relation-
ship between the two magnitudes. On the other hand, prooceeding es we Aid in

the present case and following customary practice, we would most likely have

pronounced our findings as the empirical line of regression. Just how should

We proceed in any physicel case or what is the line of differentiation between
the two methods of procedure? Asked such a question, an engineer might answer
somewhat as follows:

As for the expansion of the rod, the length will vary in some definite
functional way with temperature, that is,the length at a given temperature will
always be the same except for small errors of measurement. In the case of the
variation of depth of penetration with depth of sapwood, however, there are
Several factors supposed to influence the depth of penetration other than that
of depth of sapwood so that even though the depth of sapwood remains constant,
the variation in the other factors influencing penetration will in genersal,

ords
give rise to a whole series of values of the latter variable. In other w ’

i
it might ve argued that there exists merely an gpparent or stochastic

d.
relationship between depth of penetration and depth of sapwoo
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A little ocloser consideration reveals however, that the so~-called

empirical functional reletionship in the one case is the same fundeamentally as

the stochastic relationship in the other.

7. Use of Stochastic and Functional Relations

Of course we may use such relationships for estimating one variable in

terms of another. Thus, from the expression

L=1L, (1 + at)
introduced above, where t = tl - to ve may calculate L for any temperature
difference t when a is known. Perhaps the engineer, in general, thinks of L as
being the best estimate of the true length at temperature t. So far as the
method of attaining it is oconcerned, we see that L is merely a point on some
line of best fit although the observed values of length at the different
temperatures used in obtaining this relationship did not, in general, fall on
this line. In the same way from (2.40) we can estimate the mean depth of
penetration corresponding to a given depth of sapwood.

In either case, however, we may be interested in knowing how the
observed points used in determining an empirical relationship were distributed
about the line of best fit., For example, we might wish to know how the ob-
served depthsof penetration of telephone poles having a given sapwood thickness,
say 4.3%, were actually distributed about the average value €iven by the line
of regression. Such information could be obtained from the scatter diagrem.

In general, however, we cannot afford to publish data in the form of scatter
diagrams and hence, we need some method of presenting as much as possible of such

informa tion by means of simple functions or statisties,

Now in Chapter 3 of this part, we suggest the tabulation of the five

statistios X, Y, Oxs dy and r. Let us next see if these statistics give us

any information about the way the observed points are distributed about the
linear relationship given in (2,40).

Suppose we calculate the standard deviation s

. of the n points in a
t
scatter diagram ebout the line y = r -1 X where y and x are measured from their

respective mean values. This can easily be done and we have in fact
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PR Rk Sy
y B ,

- 2 2 2
Vn o’? 2nr 6y+nr o’§
n

0.2 . 2
v (L -r°),
or

= =
8y ay l-r°, (2.41)

We see that nothing more is required in the way of statistios caloculated from
the raw date than those already mentioned in Chapter 3, Part II. Now let us
see how we can make use of (2.41).

In vhat follows we shall 1imit our consideration to the case of linear
regression or in other words, to the case where the straight line of best fit
to the entire set of points is also to a high degree of approximation the line
of best fit to the means of the columns.

Now, if the standard deviation of the y's in one ocolum measured abdout
the line of regression is practically the same as the standard deviation of the

¥'s in any other columm, then obviously this value of standard deviation is

given by 8y and the distribution is saild to be homo-schedastic. Under these
conditions, if we draw two limit lines, one on each side of and parallel to
the line of regression such that each line thus drawn 1s at a vertical distance
t sy from the 1line of regression, we can make use of Tohebycheff's Theorem and
state that not less than 1 - —lg of the points in the socatter disgram will fall
inside the limit lines. Of c:urse, if the points in the ocolumns are normally
distributed about the line of regression, then the total number of points in
the scatter diagram falling within the limits thus set is given by the normal
law integral, as would also be true if the points were distributed according to
the second approximation discussed in the preceding chapter.,

As an 111usti-ation, let us again consider the 1370 pairs of observed
values of depth of penetration versus depth of sapwood. We have seen that the
line of best fit to all the points is also approximately the line of regression
which best fits the means of arrays of y's. Limits corresponding to
tsy; 38, are given in Fig. 2.20. If all the conditions mentioned above had
been met, then not less than (1 - %—) 1370 or 1218 of the points should fall



within the limits.,

By actual count,

1
< I 1 J N //lp—_ 1358 points fall
“y ' { P
| . ) : LT within these limits.
-y SRS S 2
$ > ! l Lyt 22| If we look further,
A S B
a8 ! P 2
8% : l - S SRR k however, we find
q 31 I /4’1 t|el2 |5 |3 |11 P
| ml i l }4/4'/ g7 1|7 |aia 3|2 L~ that the condition
s e b AT
£ ors 7 e je nine |7 1 g 11 of uniform variation
i : ;“'/77‘”{' 24 | 27| 20 15/75 1
I - B Bl T L about the line of
S Le 22 | 36 9
g e “/A{ o regression (the con-
. L3 51140 e dition of homo-

Y.

schedasticity) is

no_t met. This 1is

indicated by the

+4 .7 1,013 1,6 1,9 2.2 2.5 2,8 3.0 34 57 4,0 4.3 4,6 4.9 5,2 5.5 5.8 6.1
results .
X = Depth of Sapwood in inches u 8 given in

FIG. 2.20

Table 2.30 below.

Standard
Depth of Deviation Number
Sapwood of Penetration of
in inches in inches Poles
X o n
1.0 «15 2
1.3 .19 - 29
l.6 27 62
l.9 .28 106
2.2 .34 155
2.5 « 39 186
2.8 «47 193
3.1 «51 : 188
3.4 «59 151
3.7 « 58 123
:.g «6%7 82
A 072
:'6 089 gs
5‘9 .92 14
‘2 1052
505 0 i
TABLE 2.30

n often found in pbractice, namely,

limits established as indicated
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Let us now review these facts from the standpoint of presentation of
data,' We see that the five simple statistics presented in Chapter 3, Part II
serve to define an interpretable linear relationship provided certain conditions
are satisfied by the data. O0f course, they always serve to determine the line
of best fit to the observed data where best fit means that the sum of the
squ’ai'es of the vertical deviations from this line is less than that from any
other line, However, as we have seen, this relationship really becomes of use
only when the line of best fit is also a good fit to the means of the column
arreys and this is particularly true when the regression is linear.

v We also have seen that these statistics serve to show how the points
are distributed about the line of regression, provided the distribution is homo-
schedastic, It is very important to note, however, that these statistics do not
in themselves indicate whether or not they may be interpreted as above to
indicate relationship unless we have the additional information that the re-
gression is linear and thét the distribution is homo-schedastic about the line of
regression, We shall consider later another statistic to indicate whether or
not the regression is linear.

8. TFurther Consideration of Presentation of Data Through Parameters in a
Functional Relationship

In getting the line of best fit to the points in the scatter diagram of

the 1370 pairs of values, we took that line such that the sum
1370 x 12
£ Ty - 8p - ay%y)

was a minimum.

0f course, we could have taken that line which would make

lS'iO ) b.Y )2
2y %y~ Pom ity

& minimum,.

Following the seame procedure as before, we would find that
Y=r —1Y {(2.42)

where as before x and y are measured from the means X and Y. Similarly, we

would find the best line fitting the means of the arrays of X's in the scatter

diagram to be

C.

X {2.43)
I Yy

X=7r
v y
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to a high degree of approximation. Equation (2.43) is called the line of re-
gression of x on y in contra-distinction to the line of regression of y on x in
Bquation (2.40) previously considered. The two 1lines of regression, y on x and
I on y, for the 1370 pairs of numbers are shown in Fig. 2.21. They may be
interpreted as giving approximately the mean value of y associlated with a given

value of X and the mean value of x associated with a given value of y respec-

T T N tively.
j Quite naturally an engineer
follows this simple distinction quite
easily, but if he has not done so
previously, he will most likely ask

"What happened to our idea of function-

Y o Japlh ¢ Pepsireiice - 18.
»

al relationship between y and x?" 1In

t T L) T SR
X - Depth of Sepwood - in. the process of manipulation we really

Lines of Regression

ric. 2.21 come out with two functional relations,

both linear but nevertheless differing in their parameters, except in the special

case where r = 1 in which the two become identical,

The significance of the above question becomes even more marked when we

consider a set of data representing the relationship between two physical

quantities such as the current Y, voltage X, relation for a carbon contact as

previously oonsidered. It will be recalled that by minimizing the sum

- - 2,2
151 (Y - a, alxi aaxi)

we .obtain the equation

Y = .008091+ .009667 X + .0001615 X2 ,
vhereas it follows that had we fitted the curve

X = bo+biY + b,Y?
by minimizing the sum

12 (Xi - b - blYi - b Yi)

¥e would have gotten

X = .8576 + 77.02 Y - 25.181 Y2

Flg. 2.22 shows the graphs of these two equations. It win be observed
that both fit very well 1ndeed over the range of the observed data. Now which
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equation should be used? That perhaps is
a matter for engineering judgment. At

present we are not so much interested in

this question as we are in considering the B.J_ N,

problem .of presenting data by statistiecs. \\,

Let us then look over what we have done, ed .

keeping in mind our object, the presenta-

tion of information. - 1o

Starting with the linear relat- g '

ionship, we have seen that in general, we a

get one lire if we minimize the squares g 1.or—.—~ bbﬁi;:‘
a

of the Y deviations of the points in a
scatter disgram and get another line if

we minimize the squares of the corres-

-80

ponding X deviations. In either case, we Yoltege tg Volts xw

start with the assumption of & linear g

L -.5
relationship between Y and X of the s
form

Y=a, + ayXx or

X =08y + byy

L
where X and y are measured from X and

Y = .008091 + .009667K ¢ .Q0OM8la1f

------- X « .8567 + 77.02Y - £5.18Y%
Y as before. It turns out that e Observed points
. . 71G. 2.28
8, bo = 0

but in general,
a; # by . |
Given a set of data then we could tabulate X, Y, a, and b,, as indi-

cating the relationship between Y and X. Since however,

4 o
we can get the same information from X, ¥, 0, o and r. Further, o, and oy
give an indication of how X and Y are distributed. In other words, these five

statistics give more than the informetion included in the two lines of best fit
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reted
derived as above. We have also noted these five statistics ocan be interp

to good advantage because they are {nvolved in the estimates of certain para-

meters in an assumed non-linear relationship. In other words, we see that wg

mey make use of the information thus expressed in a number of different ways,

and now we shall go much further in the way of showing how very general the use

of these rive statistics really is.

9. Further Consideration of the Usefulness of the Information Given by X, Y,
Gy Oy AR T
Fig. 2.23 shows the two lines of best fit already considered. Line A

n 2
is obtained by minimizing 2 vfy and line B by minimizing ,Z. Vi,

Why should we take either of these lines,

-

however, in preference to the one C so0 chosen

n 2
i}-:-=1 via of the

perpendicular distances of the points to this

that the sum of the squares

line iz a minimum? ,
In fact in Part III we shall see that there

may be & real object in choosing such a line as

C. Therefore let us see how these same five

7. 2.3 statistics serve to determine the line C for a
given set of data.

The equation to the 1line C may be written in the form

ax + by + ¢ = 0

Where x and y are measured from the mean values X and Y. Now of course, we

are to rind
a, b and ¢ such that E vid is a minimum. We shali.now find &, b

and ¢ in terms of the five statistics already introduced.
We have

2
axi + byi + 0

]—a+b2

. L s 22
af+ p2 1Z1[* %1t Zabx

+

}he. 2
¥4 *+D ¥y +2a cxi+2bcyi+ 02].

Since 2:1- zyi = 0, the above expression reduces to

1=] 14 a2 +b2 Xy *2ab L‘xiyi + D zyi + nczl.
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Differentiating successively with respect to ¢, a and b and setting

the resulting expressions equal to zero gives us the three normal equations

from which we may determine a, b and c. We get:

2nc

2

=0
a+b2 ’

fron which we see _that ¢ = 0.

a“+ b“)

1 7]
az " ba aExi + b‘.':xiyi + azzx + zab)jx 3+ bzzyz] [(_TT-E—] =0

and

1 , 2 2..2
;—2—:? aExiyi+ b):yi-J + E. Exi+ 2ab>:x 3t DZZyi]E—-—:——-Tb)] «Q

making use of the fact that ¢ = 0,

The last two equations become, after simplifying:

3

2 2 2 2
(b“-a b)}::xiyi+ ab (Exi - Eyi) =

|
(o]

and
3 2 2 2 2, _
(a¥ - ab )}:xiyi+a b (7.‘.1,71 - }:xi) =0,
Dividing the first of these by b and the other by a, assuming that
neither a nor b is zero, we obtain the single equation:
2) 2

2 2 - =
a (Exiyi) + ab (Ey1 - Ixy b“Cx 0,

11
from which we can determine the slope of the "least square” line. Ve may write

the last equation as follows:

2 2
2y . g, - @
Y. a [y X)_ 4 .
§:35)+ b rdx UY) te o

from which

i

1 YA TR
- s |19 - e/ ik - oy T ety

xy

One value of % corresponds to that line for which Z vﬁd, is a maximum
and the other value to that line foxf which Evfd is a minimum, since both
values are obtained as a solution of the three normal equations.

The slopes of these two lines are

.
2
@y - [ (R |
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and .
2 _ 2.2 2 ].
- @, - w E"i- o) - Sl oy 4Ty

It follows, therefore, that the product of these slopes is -1,
showing that the two lines are perpendicular.

Since ¢ = 0, the line of best £it Cy determined in this way, must
go through the point (X, ¥) ..We also see that the slope of this line is given
in terms of o, 0, and r. Hence a knowledge of the five statistics X, ¥, 9 »
ay and r give us all three lines A, B and C.

Suppose now that we consider the possibility of finding some function
£(x, Y, Ny 7‘2""’7‘111) such that
Y2 Xz
'[ ‘[ £(X, ¥y Ny Mg eesrh)dXaY (2.44)
1%
gives us approximately the number of observed pairs of values of X and Y within
the corresponding limits. The function f in this case is the frequency function
for two veriables analogous to the corresponding frequency function for one
voriable treated in the previous chapter. Of course Z = £(X,¥) is the equation
of & surrace and the integral (2.44) represents a certain section of the volume
under this surface. What we shall do is to make use of a simple fomm of

function for the surface as we did before for the frequency curve.

The equation of the surface which we shall use is

o1 (=, yB .. lxw)
Z = 1 e 2(1-r2) (sz * oy~ 2r 0x0y)

1.8
2n °x cy l-r

(2.45)

knomas the normal law correlation surface. Here x and y are measured from

their mean values ¥ and Y.

When the exponent of e in {2.45) is held constant, the ordinate z of

the surface is constant. Thus, all the values of x and y that satisfy

—2 (2, ¥ amy) | .a
1 - p2 (o2 oy Oy Ty ) = X (2.46)
will yield the value
S
z = —2L 2 X



- 105 -

for the ordinate. All such values of x eand y lie on the ellipse given by (2.46)
and hence this ellipse cuts the surface at = distance z above the xy-plane.

By changing to new rectangular coordinates Xy and ¥ referred to axes

which make a certain angle a with the old axes, we can simplify the equation of
this ellipse by removing the xy term.

The relationship between the 01d and the new coordinates is given by

x=xl cosa—ylsina,
y=xl sina+ylcosa..

If we choose o 80 as to satisfy

2r o _o
ten 2q = T—léx
gl -0 ’
x y
we shall obtain as the equation of the ellipse (2.46) in the new coordinates
axl+b yf = (2.47)
wherel a and b are defined by the equations
1 (1 1)
at+tb = + =5
(l-rz) (;;2- Oy )
2 2
1 (1 1) 4r
(a-b) = - 5 -5y t T3
(1-r%) ¥ log? “yz) o¢ %
80 that
R S (0 +1)_/(_},z__12;._,;1_22 ,
2(1-r2) |log® o) / log oy®) 0yf oy |
—~ 5 iy
1 (2 1) /( 1 _1)%, _ar
b = * WA s i
2(1-r%) |log® "yz) Loy 9% %" %" |

Also, from Equation (2.47) we see that the semi-axes of this ellipse are

X and -l&-_ .
va vb

We are now in & position to find the frequency oOr volume under the
surface (2.45) bounded by the ellipse xz. The process of doing this 1s 11-

lustrated graphically in Fig. 2.24.

- - - -
- e e e wm = = m -

J T T

- e e e e e e e w o e e = - -

1. See for example Osgood and Graustein "Analytic Ceometry" pp. 242-243.
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10B represents ae quadré.nt of

the ellipse Xg» obtained by setting
 the right hand member of (2.46)

equal to X5 - Giving to X a series

of velues starting from some fixed

value X, and progressing towards O,

the corresponding ellipses progress

toward the apex of the surface,

each ellipse being smaller than its

FIG. 2.24

n—>m J=0

predecessor which means, of course,
that AA, the change in the area
from one ellipse to the following

one is negative.

If now we project the ellipse xl upon the ellipse XO’ we shall have a
small ring of area (AA)0 lying between this projection and the ellipse X°
Furthermore, the volume of the surface lying under this ring of area is a thin
disc of elliptical form whose volume is clearly zo(AA)o.

If we wers to carry out this processs for succeeding ellipses XZ’XS’ N
XJ,... and form for each the corresponding volume zJ (AA)J, we would get thereby
a series of elliptical disos each lying within its predecessor such that the sum
of their volumes is approximately the volume of the surface lying within the

ellipse xO'

Thus, approximetely the volume within the ellipse xo is

z, (AA)°4 zq (AA)1 + 0. zj (AA)J +aes + z, (AA)n

and the actual volume is the

n . 0 1l .2
%o 23 m‘”J'j““* 1___,2_]';7”:’( aa
PA 2“6 a l-r ° *
Xy Y

The next step in the process is to substitute for dA its value in
To do this, we recall that

A = area of ellipse ¥
2

=%,
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Now from the above values of a and b, we rind

ab = -5 % o
S, cy (1-r%)

Hence

A= xan “xcy '1--1'2

and the volume or relative frequency P of observations lying within the ellipse
Xois (o]

l.2 1l .2
-5 X - X
P--Ie 27 yax=1- e 20,
Xo
1l .2 1l .2
-3 X ~sX
From the table of values of e and 1 - e given below, we

can read off the volume P under the frequency surface bounded by any ellipse X

Fraction Fraction Fraction Fraction
outiidg inside2 outside inside
1 l.2 1l .2
-5 X -5X -5X - X
)Lz e ° 1-e 2 e *© l-e z xz
ol .951229 048771 9000 « 1000 .2107
2 .804837 .095163 .8000 «2000 <4463
%) 860708 139292 .7500 2500 5754
o4 818731 .181269 «7000 « 3000 7134
] 778801 .221199 «6000 «4000 1,0217
) .740818 .259182 +5000 «5000 1.3863
o7 .704688 .295312 4000 6000 1.9326
«8 .670320 »329680 3000 7000 2.+080
«9 .637628 .362372 «2500 »7500 2,7726
1.0 .606531 393469 «2000 .8000 3.2198
2.0 .367879 632121 «1000 9000 4.8052
3.0 .223130 776870 " «0500 «9500 5.9915
4.0 ,135335 864665 0100 .9900 9.2104
5.0 0820885 .917915 +0030 .9970 11.8194
6.0 049787 .950213 .0027 «9973 11.8290
7.0 030197 .969803
8.0 018316 .981684
9.0 .,011109 .988891
10,0 006738 .993262
11.0 004087 995913
12.0 .002479 997521
13.0 001503 998497
14.0 .000912 .999088
15,0 000553 « 999447
16.0 000335 .999665
17.0 ,000203 »999797
18,0 .000123 .999877
19,0 .000075 999925
20,0 .000045 .999955
TABLE 2.31

and the xy-plane. This volume is our approximetion to the number of points

observed in the xy-plane within the same ellipse.



For example, we see' from
fraotion .5000 inside the ellipse
The date sheet in Fig. 2.25 shows
obtain these two ellipses for the
depth of penetration.

Actual observation shows
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this teble that the X° corresponding to &

is 1.3863 and for a fraction .9973 is 11.8290.
the details of the computation necessary to

1370 pairs of values -of depth of sapwood and

that 683 and 1358 points fall within the

theoretical ellipses. Note this close approximation obtained by means of a

simple frequency function involving the five statistics X, Y, Oyxs dy and r,

even

though the regression is not strictly linear, and the data are far from homo-

scedastioc.

grg%ontation of Relationship Between Several Variables in Terms of the Same Five
atistios

let us consider the data given in Table £2.32

nerien Teasile Ftreagtd nm! ‘l:nattv_,

) reols 8.0 t.006 These measurements were obtained by Committee

H fovet] et 2005 :

:! &: ig 3.:% XV-B2 of the Americen Society for Testing Materials
: fryond o 550 in connection with a program calling for approxi-
doE R

:E :5”: ag ?_z?: mately 80,000 measuremeénts to determine the

,;é ;‘E.’;Z é:‘.é ::g physical properties of aluminum die cestings.

E :,""“"',; :":E E.?T: Following the suggestions of Chapter 3, we

E '?:?':.: :,?tg E::.;,.: would record the results in the form given below.

" 10 oy 2,038 '

- sacor o 2700 .S

r o] " rem S« X1 Hardness Xz Density X
" =m0 ns 2,047 in psi in Rockwells i / 2
" rens0 0,8 2,608 - - n_gms./ce
: '-E 52 .°.§§ Arithmetic Mean X 31869.4 69.825 2.6785

- =0 b o No .mgli; 1:L;Ieasu:re- *

§ ﬁ E‘:i 1,068 Correlation coefficient o between T.S. and

o 2.879

“ 20900 8.0 s C Hardness = .683

s — ms ::Eg orrelation coefficient rl:5 between T.S. and

@ 0 .0 2.610 Correls Density = 657

E ﬁ E‘Z {ﬁ lation coefficient Tos between Hardness

u some se Zioes and Density = .616

s e e -

- 330 . 3 TABLE 2,3%:

: s 53 P 2331 ngﬁgngagéoxg of Information in

o e . . o : Yy Mea

. Naturaliy,

PROPERTIRS OF ALUMINMN DIE CASTIWOO

quality characteris tics

We may use the information of

Tadb
le 2.33 Pertaining to ény one of the pairs of

in just the
same manner as we have done in the previous
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X = Depth of Sapwood in inches Y = Depth of Penetration in inohes
2ro,o
a = 1370 tan 20 = 2. 3439350
£ .
T = 2.914088 o = .798211 oy
Y = 1.591460 Oy = .624872 2a = 67° 42' 3g0
r = 803201 @ = 33° 51' 1g"
1 [ 2 2
1 1 /< 1 1 4r
a = + - - +*
5 | TE ) T EZ | dilsal
2(1-r%) | o oy 9% 9y ox%y
2 2
D= ;‘(—1]-'-—5- -La- + 12 + /—lg— - —l‘r> 4r = 5,301130
-r) % 9y oy oy ox%y
2 2 2
axl + bYl = X
1,2 1,2
2 - X 2 -&X
Let X“w 1.3863 or 1 - e - . 5000 Let X“= 11.8290 orl - e -.9973
X = 1.1774 X = 3.4393
X .i1.078¢ A . .5114 X .3.502 X .1.4038
va vb Y /%

1.1919411§ + 5.3011507 = 1.3863

1.1919411‘; .

5.301130Y: = 11.8290

4.6 N
i O S
4,3 X 1 | T;d—‘
4.0 \ 1
X Y T P 7
= 1 o
3'4 L /\/ z 4 4_5.7‘&»—?,, ‘. P — 1‘, %
5 \ ( 1|2]|e ]| 2|5 1 A ' i
i A A |
2.8 /< 2 |7 |12]|7 |14 4 | :zM wa 1 T‘
2.5 \\a 126 |ujnlie 7 2 | [ i
i
2.3 2 \2/ 27 1s [ 1 | / k ]
19 / 2 |10 2 ae/. z:./ o | 7 I3 (N
, R i
1.6 / 5 | 14 34 | 4 Gz 28| f1|10 | 7 3 ) ; B
1.3 / 1|11 38 (48 51 k) 13|10 | 4 y ; .
vd = Zae .
1J/ 1 1233}@ 504;&“22\5 10 2/"*/ 1[ .
K 1|15 w1 14| 6 10| 3N\ /2/ -
4 <IBEnE P |
1 i
Rl —

o4

.7 1.0 1.3 1.6 1.9 2.2

5.5 2.8 557 5.7 4.0 4.5 4.6 4.9 5.2 5.5 B.E

X = Depth of Sapwood in inches

FIG. 2.25 - CALCULATION AND FIGURE FOR 50% AND

[, 3

" TTITTTD W

re™ Nnw T

TR 21
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peragraphs. Thus Fig. 2.26 shows such results fo

>
2

u
-

Tensile Strength - Thousands of Pounds per Square loob

Hardnesa in Roockwells "E

r the pair of characteristics,
tensile strength and

" / hardness.

It is natural,

dé however, for us to wish

o> to picture all of the

results given in Table

2.33 in a way to

x indicate the nature of

1 the relationship between
the three quality

" . ~29.73% ellipse characteristics.

/// Suppose then that we
u/// / find the plane of best

/ ( fit whose equation is
“ J/ ’ of the form
36 48 60 72 84 96 108

:cl=eL+b12+<n::5

PIG. 2.26 making use of the method

of least squares where, of course, X1y Xg, and X5 are measured from their means

Xl' Xz, and Xs.
The quantity to be minimized is

2 g X { 2
VoR gk et bxpy e °x31)]'

ience the equations that determine 8, b and c¢ are:
n
21§1 E‘li - (a + bxzi + cxsi)] = 0,
n
85 Eli “lav b, . °x:51)] *21= 0,

n

from the frirst of these equations, we have

ago.

si = =
nce Exli 2121 =

X33 =0
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The remaining two equations then give

2
ne,) =
( 2 /b + (n Tpa 6203)c nry,0d,0,

2
(nrp5 05 o)L + (nog*lo = nry,0,0,,

where rij 1; the correletion coefficient between x, and xJ and arJ is the

standard deviation of the j® variable. 1In this way we get

9 (ryp-Tyg Ty
[+ E ’
2 1l- Tpog

1 (Tyz=Typ Tps)
2

1-1‘23

as expressions of the parameters in this plane in terms of the simple statistios
of Table 2,33, Substituting the numerical values given in Table 2.33 in the

equation of the plane, we get

X = 150.9888 x, + 15310.348 Xy

as the plane of regression of tensile strength on hardness and density.
Fig. 2.27 gives two pictures of this plane, indicating its relationanip
to the observed points. The standard deviation 0y oo of the points from this

plane is given by , 1
1 T2 i3
T2 1 Tas
r15 r23 - 1384 i
= = 13 8
9.23°% 2.1/2 ?

Furthermore, if the points are distributed homo-scedastically about this plane,
then not less than 1 - “'E of the points will lie within the volume oontained
between the two planes, equally spaced on either side of and parallel to the
plane of regression at a vertical distence of t 0y o5 from this plane.

In a similar way, we could find planes of best it by minimizing either

the squares of deviations in x, O Xg. Also, there is one plane such that the
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FIG. 2.27

sum of the squares of the perpendicular distences of the points to this plane is

& minimum. In each case, we would find that the parameters of these planes may

be expressed in terms of the statistics given in Table 2.33.
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This same reasoning can be extended to the treatment of m different
variables, Thus, 1f we are given n values of each of m variables we may, by
extending the geomeirical snalogue of the cese of three variables, represent
them a5 n points in space of m dimensions, getting thereby a scatter of points
in this hyperspace. Just as in the case of three variables, we may seek to
deternmine a mathematical relationship between the variable X, say, end the re-
maining variables X5, 15, sevy Xpe In the simplest case we may assume this
relationship to be linear and proceed as before to find ‘'by the method of least
squares estimates of the psrameters in this assumed relationship in terms of
simple functions of the data.

Hence, denoting this relationship by

X = 8y + 8%y ¥ cee # a,Xn
" where c¢he x's are déviations from their respective mean values, the method
involves making
2_ 18 2
v 2 E‘li - laprepxpy v eee ¥ am‘m)]
a minimum.
Differentiating this expression successively with respect to
819 Bpyeee, By and setting each derivative equal to zero, we may solve for the
a's and substitute these in the equation of the plane. In this way we got
X, = =0y I ElJ.fl ,
: 1 J=2 Ry 9y
where Rij is the co-factor of the element standing in the 1%% row and the j'B

column of the determinant

Tz Tae2

1

rml rmz rms e
and gy is the standard deviation of the jth veriable. Thus we can see that,
even in the general case of m variables where we assume a linear relationship,
the simple functions, the average, standard deviation and correlation coeffiocient

are sufficient to determine estimates of the parameters ocourring in this
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relationship.

The standard deviation of the n points from this hyperplane of best

fit can be shown to be

Il

%.25 ...~ °1ﬁR11 ’

where R and Rn ares defined as above.
If the regression of x, on the remaining (m-1) variables is linear

{t can also be shown that to a first degree of approximation the above plane of
best fit also becomes the plane of regression. Hence provided the distribution
about this plane is homo-scedastic, we may use Tchebycheff's Theorem to show
that not less than n(l --t%) of the n obserwved points in the m-hyperspace lie
inside the planes

X+ t9% 05, .0m "

Thus far, of course, we have been considering the use of the statistios
of Table 2.33 as estimates of parameters in assumed linear relationships between
the variables considered. As in the case of two variables, we found that more
than five simple statistics were required to estimate parameters in assumed
parabolioc relationships, s0 we would find in this case that more functions than
glven in Table 2,33 are required to estimate the parameters in an assumed non-

planer relationship.

Suppose now that we consider the problem of finding a function f in-
volving { paremeters

f(xl, xz'ooo,xm’ hl’ kzgooo.l.&)
suoh that the

‘{ j jn ..J‘f ( xl. Xa,..‘,xm, kl' 7\2, oo.,K&)Xmo odxm
taken over a given volume in m-

space will give the proportion of the observed
points lying within this space. '

Let us take as a simple function in the m variables

2en o BX
zoe
vhere
2 2
2.1 ( oo | x
=R (Ral =75+ Byp 2 22z
2 22 T8 * ees + 2R . 2.
A o, 12 5,5, )y (2.48)
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where the R's are defined as above, and Zq is a constant depending on the
determinent R and the m standard deviatioms,

Analogous to the case of the normal correlation surface of two vari-
‘ables, we see that all values of the m varisbles which satisfy the Equation
(2.48) when X has the value Xo 1ie on the m-dimensional ellipse

1 ( x,? xp” nx )y 2
A4 R + R + see ¢ 2R + e = x
R ("11 ""261 22 —E"z 12,3, ) * %o

and for all such values of the m wvariables

X
- 270
z =2z, e .

Hence, to find the proportion P of the n observed pointa lying outside

any m-dimensional ellipse ¥, we must calculste

(e ¢)
Sig
Zg © dav
P= x Py
Qo 2

where V is the volume of the m space ellipse X.
By referring the sllipse to prineipal axes and then squeezing it into
an m-dimensional sphere, it can be shown that the volume of this sphere is

proportional to x® and therefore

& = cm x® ax
where C is a factor of proportionality. Hence the fraction or relative fre-

quency of sets Qf observations lying outside the ellipse X is

© 3 xz
je s Xm.]' ax
= X ' .
P o
0

A table of valuesof )(2 for a large range of values of P and m is given by
R. A. Fishert.

1, Statistical Methods for Research Workers.
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10. Conoluding Remerks on the Pres¢ntation of Relationship

In this chapter we have barely touched upon the Vvery important problem

tion-~
of presenting the information contained in sets of data so as to show rela

ship. It is believed, however, that we have covered in some detail those points
which will be found most helpful in the study of control of quality of manu-
factured product. Starting with the consideration of the real meaning of
functional relationship, we soon found that it is not feasible in general to
represent observed relationships by methematical functions. It would be perhaps
more to the point to say that in the customary case one set of observed values
carnnot be expressed as a function of another in the mathematical sense. On the
other hand, such functional relationships may serve to express approximately
certain truths about the observed relationship between the sets of data them-—
selves.

In general, the study of relationship beiween measurements of two or
more quality characteristics involves some kind of an assumption whi.ch often
can be expressed in mathematical form. The assumed relationship involves
certain parameters which in turn must he estimated from the observed data, In
this chapter we have considered four different methods of obtaining such
estimates. Ve have considered in detail several ways of obtaining these
sstimates by the method of least squares. In general, however, 1t has been
seen that the values of the parameters even in a given form of mathematical
function are actually different depending upon the method used in estimating
them. In the general case we have no definite criterion to guide us in the
choice of method of estimating the parame ters; hence two or more individuals,
given a set of data, might reascnably choose to find different groups of

parameters, which in turn most likely will differ one from another, Therefore,

to be able to interpret the meaning of an estimate of 2 given parameter, we must

have some knowledge of the method used in estimating it. This fact has been

illustrated in considerable detail in Tespect to the very simple linear relation-

ship where it is shown that by the method of least squares we may obtain several

such relationships having different estimates of Parameters even

from the same set of data.

The

when calculated

very importent thing in this connection is to heave seen that all of
the commonly derived estimates of parameters in a simple functional form can be
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expressed in terms of the five statistics for paired variables, namely, the
averages and standard deviations together with the correlation coefficient
between the variables. This is & very important fact because it shows how uni-
versal is the use of these five statistics. If a given set of data, oconsisting
of n observations on two or more characteristics, is reduced to the simple
statistics, namely, the averages, standard deviations and correlation coeffi-
clents, it has been seen thet these may be used in numerous different ways in
the interpretation of the data, particularly when relationships between quality
characteristics are linear. On the other hand, it is seen that these simple
statistics are required in the estimates of parameters in more complicated
assumed functional relationships. What all of this means is that the method of
presenting data by the five statistics suggested in Chapter III of the present
part constitutes a type of universal tool for the study of interpretation of
data.

We have seen, however, that there are some very definite limitations
even to the use of these functions for the presentation of data. For example,
in the case of two variables it is necessary to know whether or not the line of
best fit for the entire series of points on the scatter diagram is also the line
of best fit for the means of the appropriate set of arrays and to kmow whether
or not the distribution is homo-scedastic in respect to the line of regreasion.
In other words, anm engineer having taken a number of pairs of observations on
two quality characteristics, and desiring to tebulate the results of this
experiment in terms of simple functions to be used by future generations, must
give some idea as to whether or not the conditions mentioned above have been
realized in respect to the given set of observations.

As a concrete illustration the tabulation of the averages, standard
deviations and correlation coefficient for the case of 1370 observations of
depth of penetration and depth of sapwood are not sufficient in themselves to
give all of the necessary informetion in the interpretation of the data. For
example, it should also be stated that the regression 1is approximately linear
and that the standard deviation in the column arrays increases in almost linear

fashion with the number of the array proceeding from left to right of the

scatter diagram.
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Naturally it is not to be expected that, for an observed distribution
of pairs of values, the line of best fit obtained by minimizing the deviations
with respect to one of the variables should at the same time be exactly the
line of regression. This will only be true if the regression is strietly
linear. Hence to measure this lack of linearity another statistic is often
introduced, namely, the correletion ratio of one variable on another. The
nature of this measure may be seen as follows: Let 0y be the number of
observed noints in the 1%® column erray and Er'i be the observed mean of the

y's in this seme array. Furthermore let

c
o =T Xy - ¥y

x
r[ "
es indjicated in Fig. 2.28 then
| n n o
! 1 2 1
1 1 S T n_.e == 3%n (r <X x, -F.)
| Doy xi"i mgyoyxd o, "1 71
| 3
! -
f..m_.-_i______ s x n 202 2 4
| =2 izlnxi (r % xj -2r L x, F,+F7)
! p o
' - 02 g
I 1.8y .2 2
| Y = =inr 0% ~2r Lnrogo
‘ | LTE T ”ma{l
: I
l, l X = Q’E- 2 2
S 7~ T oy

Uioe of regression of Y on X
®  Obeerved msans of ocolumn arrsys

2 2
1IC. 228 0:; (llyx -
where m 1is the number of column arrays,

n

2
oo nai is the sum of weighted squared means
of arrays and % is replaced by the symb

ol Ryxo termed thg correlation ratio of
y on x,

Similarly we define the correlation ratio of x on ¥y by

Hq ,N?

Ixy

From what has Preceded, we see that, when

2 2
Tyx =T =0,
the means of the Jumn

co arrays of Fig. 2.28 1lie on the line of best fit to all

the points and the regression is therefore linear

When

2 2 :
rlyx-r >0,
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we see that the means of the column arrays do not coincide with the line of
best it and the regression is strictly not linear. Thus "gx' rz is a kind of
measure of non-linearity oi‘ regression.

Now obviously o5 S

¥’ so that by definition

n 1,

s
yx
and this of course is also true of "xy‘ Hence, to sum up, we have

rzfn;"zi' 1.

Previoualy we have seen that the standard deviation ey of the points
about the line of regression is

8 sa#l-ra.

Y ¥y

and since sy is always equal to or greater than zero, we have

-1 SrSs+1,

It follows from what has Jjust preceded that the analyst should wherever

possible give the correlation retio as a measure of the lack of linearity. Of
‘course, this factor cennot be given in a large number of instances found in
engineering work beocause it must be calculated from grouped data whereas in

practice the number of.observations i3 often too small to justify any grouping.

In this cese perhaps as good a practice as eany is merely to record the values of

the five statistics, assuming no definite knowledge 1is available in respeot to

the nature of the relationship between the two or more variables under oconsider-

ation.
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