Quality Control Charts'

By W. A. SHEWHART

IRRESPECTIVE of the care taken in defining the production pro-
cedure, the manufacturer realizes that he cannot make all units of
a given kind of product identical. This is equivalent to assuming the
existence of non-assignable causes of variation in quality? of product.
- Of course, random fluctuations in such factors as humidity, tempera-
ture, wear and tear of machinery and the psychological and physiolog-
cal conditions of those individuals engaged in carrying out the manu-
facturing procedure may give rise to some of these apparently uncon-
- trollable variations. Knowing this, the manufacturer contents himself
with trying to produce a product which is uniform and controlled—
one which does not vary from one period to another by more than an
amount which may be accounted for by a system of chance or non-
assignable causes producing variations independent of time.

To make clear the significance of the terms “‘assignable causes’ and
“‘non-assignable causes,”” we may make use of the following illustra-
tion. Suppose a person were to fire one hundred rounds at a target.
We know what probably would happen—the individual would not hit
the bull’s-eye every time. Possibly some of the shots would fall within
the first ring, others within the second ring, and, in general, the shots
would be distributed somewhat uniformly about the center of the tar-
get. We have a more or less definite picture of some of the possible
reasons why the individual would not hit the bull’s-eye every time,
but we probably cannot assign the reasons or causes for his missing
the bull's-eye in any particular instance—the causes of missing are
non-assignable. Suppose, however, that the individual tended to
shoot to the right of the bull's-eye. Naturally we would conclude that
there was some discoverable cause for this general tendency, i.e., we
would feel that the observed effect could be assigned to some particular
cause.

The reason for trying to find assignable causes is obvious—it is only
through the control of such factors that we are able to improve the
product without _changing the whole manufacturing process. But it
would be a waste of time to try to ferret out or assign some cause for a

t A brief description of a newly developed form of control chart for detecting lack
of control of manufactured product.

2 Quality is some function of those characteristics X, Y, Z . . ., required to define
a thing. For our present purpose we shall consider that quality is a function of a
single characteristic X.
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fluctuation in product which is no greater than that which could have
resuited from the non-assignable causes as it would be to try to find
the exact manner in which each of the causes contributed to missing
the bull's-eye in the analogous case of target practice just considered.
Here then is the practical commercial problem—When do the ob-
served differences between the product for one period and that for an-
other indicate lack of control due to assignable causes, and when, on
the other hand, do the differences in quality of manufactured product
observed from one period to another indicate only fortuitous, chance
or random effects which we cannot reasonably hope to control without
radically changing the whole manufacturing process? We shall out-
line a typical example of the way this question arises, outline the basis
for its solution and present the results in the form of a control chart.

TypicAL ExaMrLE

Fig. 1 shows the frequency polygon for 15,050 instruments inspected
for quality X. These instruments were selected at random throughout
the year from a product manufactured in quantities of approximately
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Fig.1—Polygon showing distribution in quality for 15,050 unita of product. Do these
data present any evidence of lack of control?

2,000,000 per year. Is there any indication from these data that the
product had not been uniform or controlled throughout the twelve
month period in which the instruments had been selected?
Oftentimes we must decide from a study of a single frequency poly-
gon of data such as given in Fig. 1, whether or not the product has been
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controlled during the period for which the data have been collected.
In this instance, however, it was possible to group the 15,050 obser-
vations into twelve groups representing monthly samples of approx-
imately 1250 instruments each. The data are presented in this form
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Fig. 2—Monthly polygons showinﬁ distribution in quality for samples of approxim-
ately 1250 units of product. Do these data present any evidence of lack of control?

in'Fig. 2. Obviously no two polygons are the same in respect to aver-
age, dispersion and shape, but of course we would not expect them to
‘beithe same even though the product were uniform, any more than we
would expect two targets to show the same distribution of shots even
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if the same individual had fired at both targets. In other words, non-
assignable, fortuitous or chance causes introduce certain differences in
the average, dispersion and shape of the observed polygons from one
month to another, and we must set up some method of differentiating
the effects of assignable from those of non-assignable causes.

OUTLINE OF Basis FOR DETECTING LACK oF CONTROL

Uniform product was defined above as one for which the differences
between the units or groups of units were controlled by a complex
system of non-assignable chance causes producing results independent
of time. Now, following a line of reasoning whose origin is attributed
to Laplace, it may be shown that such a system of causes, in general,
may be expected to give a unimodal distribution of product such that
the probability dy, of the production of a unit having the quality X
within the range X to X+dX is independent of time, being a contin-
uous function, f/, of the quality X and certain parameters. We may
represent the probability symbolically by the following equation

dyy =f' (X, My N ... Mw)dX, )

where the \'’s represent the m’ parameters. Experimental evidence
abounds in many fields of science to justify the adoption of Eq. 1 to
represent the probability distribution of the effects of systems of
chance causes. It is quite reasonable, therefore, to adopt this equation
as a definition of uniform product and to use it as a basis for detecting
lack of control.

Obviously, if we knew f’ and the values of the m’ parameters in
Eq. 1, it would be comparatively easy to determine the limits within
which the quality X or any estimate of a parameter derived from a
sample of the product might be expected to vary because of chance
causes. In practice, however, we know only the # observed values of
quality obtained from inspecting a sample of as many units, and we
do not know either the true functional relationship f’ or any one of the
m’ parameters even though the product be uniform. We wish to find f’
and each of the m’ parameters, but, knowing that we cannot do this, we
try to find some approximation f for the true function f’ and some
estimates O;, O: . . . O for the parameters Ay, Az . . . Am OCcurring in
f. To do this we tentatively assume that the sample of # units has
been drawn from a uniform product distributed in accord with the
function f, and then use statistical theory to see if our assumption is
justified.
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Theoretically there are four fundamental steps in the procedure out-
lined above. They are: '

1. The Problem of Specification: To find or specify a satisfactory
form f of the distribution of the uniform product from which the
sample of n pieces is assumed to have been drawn or to find the
equation

Ay, =f(X, A M, - . . Am)dX @)

where dy, is the assumed probability of a unit having a quality X
within the interval X to X +dX.

For example we often assume the distribution to be normal so
that Eq. 2 becomes

1 (X —nm)?

e ot dX, (')

Here m =2, and \; and A, are respectively the arithmetic mean m,
and the root mean square (or standard) deviation ¢ of X as defined
by the normal curve Eq. 2’.

2. The Problem of Estimation: To find from the data given by
the sample a suitable estimate for each of the m parameters in
Eq. 2. These estimates of the parameters in terms of the data of
the sample are often termed statistics. If we let ©; represent the
chosen statistic for the parameter \; in Eq. 2, we may rewrite this
equation as follows

d,Ve =f(X, Oy, Og, . . . Op)dX 3)

as our theoretical approximation for the assumed true (Eq. 2)
probability distribution.

An estimate of a given parameter may often be obtained in a
number of ways by one or more methods.

In the above illustrative case of the normal law, we must esti-
mate the two parameters m,; and o (Eq. 2") from the n observed
values of X in the sample. Now, it is well known3 that ¢ may be
expressed in an indefinitely large number of ways in terms of the
arithmetic means of the absolute values of the integral powers of
the deviations of X defined by Eq. 2’. Estimates of ¢ might be
obtained in terms of the corresponding means calculated from the

#Whittaker and Robinson, Calculus of Observation, page 182.



598

BELL SYSTEM TECHNICAL JOURNAL

sample. Two such estimates familiar to all are (letting ©; stand in
general for an estimate of o, the second parameter of equation 2)

NENENES
n

where the summation extends over all the X's in the sample of n
and X is the arithmetic mean of these values of X.

Thus for every \ occurring in Eq. 2, we may have many ways of
securing an estimate from the sample. Of these ways, which one
shall we choose? Obviously, as in the case of 62, compared with
O, one estimate may require less labor than another in its cal-
culation. This, however, is not always the deciding factor, be-
cause one estimate may have a larger error than another. This
leads us to the third problem.

and

3. The Problem of Distribution: To determine how each of the
proposed estimates of a parameter might be distributed in a
sequence of samples so that we may obtain some measure of its
error.

In general we desire that estimate of a given parameter which
has the smallest error or highest precision. Thus, in the case of
0., it requires a sample of 1.14#n to give as high a precision as the
estimate O has for a sample of size # because the ratio of the
error of Oz to Og is 4/1.14. Hence the economic savings effected
by using the better of two estimates may be very appreciable.

Furthermore the errors of the statistics are used in establishing
the limits within which observed values of the statistics calculated
from different samples may be expected to lie as will be illustrated
below in discussing the data of Fig. 2. Naturally such errors are
used in preparing the control chart Fig. 4.

Suppose now that we have taken the three steps outlined above
and found the calculated or theoretical distribution in the form of
Eq. 3. What assurance have we that the observed sample could
have come from such a distribution? This question leads us to
the fourth problem.

4, The Problem of Fit: To calculate the probability of fit between
the observed and theoretical distributions.
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Thus, if the # observed values of X are grouped into m+1 cells
having frequencies 7,, 71, - . . #2441 and if the calculated or theo-
retical frequencies in these same cells as determined from Eq. 3
are 7og, Mg, - - - #mg Where Zn;=2n;g=n, we may calculate by
Pearson’s method the probability P of random samples exhibiting
as large or larger values of X"’ than that observed in our sample

(nig—n:)? o

where x’=2——m—e—. If the value of probability P thus found
is small, we may conclude that it is highly improbable that
the sample of # units of product came from uniform product of the
form assumed. Of course, this theoretically does not settle the
question as to whether the sample might have come from a uni-
form product other than that assumed, because, as we see, f is only
an assumed form for f’. Practically, however, we seem justified in
concluding that it is unlikely that the product is uniform if P is
small, particularly since the choice of f is customarily made upon
the basis of large samples. The application of this test is illus-
trated in connection with the discussion of the data in Fig. 3.

PRACTICAL APPLICATION OF THEORY

The application of the steps just outlined will be illustrated by an
analysis of the data in Figs. 1 and 2 to show that the product had
not been controlled for the period therein indicated. Carrying out
steps 1 and 2 we conclude that the best theoretical equation represent-
ing the data in Fig. 1 is either* the Gram-Charlier series (two terms) or
the Pearson curve of type IV for both of which the estimates of the
parameters may be expressed in terms of the first four moments g, pa,
us and p of Fig. 3. These two distributions are shown in columns 10
and 14 respectively.® Pearson’s test for goodness of fit (step 4) gives
negligible results® (the probabilities of fit as measured by P on the
chart are for practical purposes zero) in both instances, and this was
taken as indicating that assignable causes of variation had entered the
product. Further investigation of an engineering nature justified this
conclusion.

We should not fail to note as suggested above, however, that a small
value of fit technically indicates only that the chance is small that a
random sample drawn from the theoretical universe (either the two-

4 Equations for these curves may be found in Bowley's Elements of Statistics,
pages 267 and 345 respectively.

s Bowley's table, page 303 in his “‘Elements of Statistics,"” was used in the calcula-
tion of the Gram-Charlier graduation.

s Corrections were applied to take account of the number of degrees of freedom,
etc., in the calculation of goodness of fit.
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term Gram-Charlier series or Pearson IV type in this case) would give
as large or larger value of x? than that observed. Therefore the basis
for the conclusion at the end of the previous paragraph is that we have
faith? that the customary method of taking theoretical steps 1 and 2
gives a close approximation to the true distribution of the product
when it is uniform or controlled.

Turning to a study of the data grouped into monthly distributions
(Fig. 2), we find additional evidence of lack of control. Naturally the
monthly observed values of the four statistics, average X, standard de-
viation o, skewness #=+/8;, and kurtosis 82 should lie within well-
defined limits established by sampling theory (step 3) and shown in
Fig. 4, if the product had been controlled. Furthermore, the observed
values of percentage defective p (percentage of instruments having
quality less than some value X) from month to month also should fall
within well-defined limits. Using the grand average® of a statistic as
the basis for establishing limits, the first five sections of the control
chart in Fig. 4 were constructed. The dotted lines calculated upon the
basis of a uniform sample of 1250 indicate the limits within which the
different statistics should lie, if the product had been controlled. The
chart shows that observed values of these statistics often fall outside
their respective limits indicating, subject to limitations imposed by the
method of calculation, lack of control of product.

We may go still further and, without carrying out the analysis of
Fig. 3, make use of Pearson's test of goodness of fit to calculate the
probability that the first two months’ samples could have been drawn
from the same universe (the same uniform product), then that the
third month’s sample could have come from the same universe as the
combined samples for the first and second months, etc.® Obviously the
values of x® used as a basis for this calculation of the goodness of fit

7 Such [aith may be based upon the a priori conception that an observed difference
in two values of X is the resultant effect of a large number of causes (following in the
steps of Laplace, Charlier, Edgeworth, Gram, Thiele and others) and npon the ex-
perience that observed homogeneous distributions always have been fitted by some
one of the well-known forms of probability curves (following in the steps of Pearson
and others).

8 Some objection may be raised to the use of the observed average as a basis for
establishing the limits of a given statistic, because this observed average almost cer-
tainly would not be the true value even though the product had been uniform. In
the present case, however, we are probably justified in using the observed average
because previous experience hased upon thousands of observations has given approx-
imately the same values for these quantities. Rigorously, of course, we should find
the standard deviations of monthly differences from the grand average and set up
limits on this basis. Wherever necessary this method is followed and in fact has been
%qrri:d out for the case in hand where it gives results similar to those indicated in

ig. 4.

? Pearson, K.P., Biometrika, vol. viii, 1911, p. 250 and vol. x, 1914, p. 85.

Rhodes, E.C., Biometrika, vol. xvi, 1924, p. 239,
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should fall within well-defined limits such as indicated on the chart.
Reference to the x2-part of the control chart, Fig. 4, shows that this
test gives more conclusive evidence than any other for deciding that
the product had not been controlled. As previously noted, further in-
vestigation revealed the assignable causes of lack of control. Thisis a
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common experience under such circumstances. Furthermore, it is of
interest to note that the preparation of such a chart requires but a
small amount of labor on the part of a computer.

DiscussioN AND CONCLUSION

This paper shows how statistical methods may be used to detect lack
of control of product. It describes a recently developed form of manu-
facturing control chart which helps in the use of inspection and pro-
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duction data by applying some of the modern tools of the statistician.
The chart tells the manufacturer at a glance whether or not the product
has been controlled. Evidence of lack of control calls for immediate
attention, but there need be no time lost in looking for causes of varia-
tion in product when these variations are not large enough to indicate
lack of control.

There is an obvious advantage in using all parts of the chart wherever
possible, because, as the illustration shows, one part may reveal trouble
even though some other parts do not. However, when the inspection
is made on the basis of attributes, the data will be available for the first
or percentage defective part of the chart only.



