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Chapter 1

Introduction

Objective
The main objectives of this thesis are the following:

(i) To investigate the behaviour of the Euler class groups under integral and subintegral
extensions. More precisely, given a subintegral (or integral) extension R < S of
Noetherian rings, we are interested in finding out the relationship between the

Euler class group of R and the Euler class group of S.

(ii) To develop a theory (namely, an extension of the theory of Euler class group to
the Euler class group of R[T] relative to a projective R[T]-module L of rank 1) in
order to detect the precise obstruction for a projective R[T]-module P of rank n
with determinant L to split off a free summand of rank one, where n is the Krull

dimension of the (Noetherian) ring R.

The results on (i) will be discussed in Chapters 3, 4, 5 and the results on (ii) will be
discussed in Chapters 6, 7 and 8. These results have been obtained in joint works with
Mrinal Kanti Das. The results on (i) are based on the paper [D-Z 1] and the results on
(ii) are based on the paper [D-Z 2].

We now give brief introductions to the problems tackled in this thesis and the
statements of the main results that we obtained.

As both (i) and (ii) involve the theory of the Euler class groups, we start with a few

words on its history and development.
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Obstruction theory and the Euler class group

Let A be a Noetherian ring of (Krull) dimension n. A classical result of Serre [Se] asserts
that if rank(P) > n + 1, then P ~ Q ® A for some A-module @ (in other words, P
splits off a free summand of rank one). There are well-known examples of rings A and
indecomposable projective A-modules of rank < dim(A) to show that Serre’s result is
best possible. Most of the research in projective modules in last thirty years is centred
around the following question.

Question 1. Let A be a Noetherian ring of dimension d and P be a projective A-module
of rank n < d. What is the precise obstruction for P to split off a free summand of rank
one?

To tackle the above question one would like to find a suitable “obstruction group”
G™(A) so that given a projective A-module P of rank n, an element x,(P) € G"(A) can
be associated such that z,(P) is trivial in G™(A) if and only if P ~ Q @ A. This has
been achieved in the case d = n through the following path-breaking works.

(i) [MK-M, Mu] Let X = Spec(A) be a smooth affine variety of dimension n over
an algebraically closed field k. Then the Chow group C H"(X) is the obstruction
group and ¢, (P) (the top Chern class of P) is the obstruction element. It is

well-known that this result is no longer valid for arbitrary base field k.

(ii) [B-RS 1, B-RS 4] Let A be a Noetherian Q-algebra of dimension n. The n-th Euler
class group E™(A, L) of A with coefficients in a line bundle I (defined in [B-RS 4])
takes the role of G™(A). Given a projective A-module P of rank n, its Euler class
e(P, x) takes the role of z,(P), where x : A™(P) 5 L is an isomorphism.

(iii) [B-M, F, F-Sr, Mo] Let X be a smooth affine scheme of dimension n and L be
a line bundle over X. Let € be a vector bundle of rank n with determinant L.
Then, one can take the Chow-Witt group 51\7{7L(X ,L) (defined in [B-M]) as the

obstruction group. The Euler class associated to £ in this group works as the
obstruction element.

It is not i in (i
known if the groups in (ii) and (iii) are isomorphic for a smooth affine

scheme.



In Chapters 3, 4 and 5 we shall be mostly working with the Euler class group as
defined in [B-RS 1, B-RS 4]. Although the precise definitions and the main results from
[B-RS 1, B-RS 4] will be recalled in Chapter 2, let us now give a quick illustration of the
core idea of the Euler class theory in very simple terms. This sketch will also help us in
understanding the motivation behind some of the questions that we are about to discuss.

Let A be a commutative Noetherian ring of dimension n > 2. Let P be a projective
A-module of rank 7 and for simplicity, assume that the determinant of P is trivial. Let
us fix x : A ~ A"(P). By a theorem of Eisenbud-Evans [E-E|, there exists a surjective
map « : P — J, where J C A is an ideal of height n. The map « will induce a surjection
@:P/JP — J/J? As dim(A/J) =0, the A/J-module P/JP is free. Let us choose an
isomorphism o : (4/J)" ~ P/JP such that A"(c) = x ® A/J and take the composite
surjection wy = @o : (A/J)® ~ P/JP - J/J2. Bhatwadekar and Raja Sridharan
proves in [B-RS 4, Corollary 4.4] that if Q C R, then P ~ Q & A for some A-module
Q if and only if wy can be lifted to a surjection 6 : A™ — J. In [B-RS 1, B-RS 4], this

phenomenon is formalized in the form of the theory of Euler class group.

Subintegral extensions and the Euler class groups

Let R be a commutative Noetherian ring. An extension R < S is called subintegral
if: (1) it is integral, (2) the induced map Spec(S) — Spec(R) is bijective, and (3) the
induced field extensions Rp/pR, < Sy/PBSyp are all trivial, where P € Spec(S) and
p=PNR.

Subintegral ring extensions, apart from their intrinsic appeal, played an important
role in studying projective modules. As evidence, we mention a few results below.

Let R <3 S be a subintegral extension and P be a finitely generated projective
R-module. Tn [I 2], Ischebeck studied the behaviour of some K -theoretic functors under
the extension R < S, there is a result [I 2, Proposition 8] which asserts that P is free
if and only if P®p S is a free S-module (P is assumed to have trivial determinant).
Later, while answering a conjecture of Murthy, Swan proved in [Sw2, Theorem 14.1]
that if the module P ® g S has a direct sum decomposition into projective S-modules,
then there is a similar decomposition for P (see [Sw2] for the precise statement). We

mention another result which inspired us to investigate the questions we are going to
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describe below. In [B 1], to address some question on existence of unimodular elements,
Bhatwadekar implicitly proves that if P ®p S >~ Q' @ S for some S-module @', then
there is an R-module @ such that P ~ @ @ R (in other words, P has a unimodular
element if and only if so does P ®5 S). This result is not mentioned anywhere but it
can be derived using the techniques of [B 1].

We now assume that R < S is a subintegral extension with dim(R) =n > 2. Let
J C R be an ideal of height n such that p(J/J?2) = n, where u(—) stands for the minimal
number of generators. Assume that we are given: J = (a1, - - ,a,) + J2. Taking a cue
from Bhatwadekar’s (unstated) result in [B 1] and the illustration of Euler class theory
discussed above, we ask the following question.
Question 2. Let R < S be a subintegral extension with dim(R) = n > 2. Let
J C R be an ideal of height n such that J = (a1,---,a,) + J2. Assume further
that JS = (B1,---,8n) such that §; — a; € J2S fori =1,--- ,n. Then, can we find
by,---,bn € J such that J = (by, - ,b,) with b; —a; € J2fori =1, - ,n?

Note that the generators of J/J2 may not have been induced by a surjection from
a projective R-module as there are examples of rings R of dimension n and ideals J
of height n such that u(J/J?) = n but J is not even surjective image of a projective
R-module. Therefore a combination of [B 1] and [B-RS 4, Corollary 4.4] would not work,
whereas, an affirmative answer to Question 2 would imply Bhatwadekar’s (unstated)
result in [B 1] (provided Q c R). Anyone familiar with the Euler class groups will readily

understand that we are essentially asking if the natural map from the n-th Euler class

group E™(R) to the n-th Euler class group E™(S) is injective or not. It requires some

arguments to ascertain that there is a natural map & - E™(R) — E™(S). In Chapter 3
. b

we answer Question 2 in the affirmative. In fact, we prove the following result (
3.2.3).

Theorem

Theorem A. Let R <3 $ be a subintegral extension. Then the natural map ¢ :

E™R) — E™(S) is an isomorphism.

To prove T ; i
p heorem A, we first argue that whenever required, we can always assume

that the rings are reduced rings. It is well known that an extension R < S is subintegral

if and only if S is the filtered union of subrings, each of which can be obtained from R

by a fini & ntari ; :
v a fmite number of elementarily subintegral’ extensions (recall that an ‘elementarily



subintegral’ extension is a ring extension of the form R < R[b], where 42,3 € R). In
order to reduce our problem to finite subintegral extensions (and therefore to elementarily
subintegral extensions), we first prove an interesting general result on the Euler class
groups which roughly says that the Euler class group, under some suitable conditions,
commutes with filtered direct limit of a directed system of rings (see Theorem 3.2.2
and the discussion preceding it for the details). If R « S is elementarily subintegral
extension of reduced rings, then we observe that the conductor ideal C of R in S has
height at least one and (R/C')req = (S/C)red- We then take advantage of a ‘conductor

diagram’ to prove the result (see Theorem 3.2.1).

There is this notion of the Euler class group E™(R, L) of R with respect to a line
bundle L, defined in [B-RS 4]. We generalize Theorem A in the following form {Theorem
3.2.4).

Theorem B. Let R <+ S be a subintegral extension and L be a projective R-module of

rank one. Then E*(R, L) is isomorphic to E™(S, L ®g S).

In Euler class theory there is a notion of the weak Euler class group Eg(R) of a
Noetherian ring R, which is a certain quotient of E™(R) (sec Chapter 2 for the definition).

We prove the following result on the weak Euler class group.

Theorem C. Let R — S be a subintegral extension and dim(R) is even. Then the
natural map @, : Eg(R) — Eg(S) is an isomorphism.

An interesting offshoot of Theorem A is that if R is an affine algcbra over a Cy-field
of characteristic zero, and if J C R is an ideal of height n with w(J/J?) = n, then
p(J) = n if and only if x1(J.S) = n. We prove this result in (Theorem 3.2.11).

Recall that for a reduced ring A, there is a maximal subintegral extension contained in
the total ring of fractions of A. This is called the seminormalization of A and is denoted
by T A (see [Swl] for details). From the category of commutative Noetherian rings we
have the seminormalization functor, R — T(Rr.q), to the category of seminormal rings.
As a consequence of Theorem A, we conclude that the Euler class group behaves well
with respect to this functor in the sense that E"(R) ~ E™(T(Rred))-

Let us now assume that R — S is an integral extension. It requires more effort than

in the subintegral case to show that there is a group homomorphism ¥ : E(R) — E(S).
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It is natural to ask whether ¥ is an isomorphism or not. In this context, we prove

Theorem D. Let R — S be an integral extension such that the extension Rreq > Sred
is birational. Then ¥ : E(R) — E(S) is surjective. Further, if Rreq < Sped I8 @

subintegral extension, then ¥ is an isomorphism.

However, we give an example to show that Theorem A is not valid for arbitrary
integral extension even if it is finite blI‘dthlld,l ,

In Chapter 5, we answer a question of Ischebeck frorn [T 2] in the following form
(Theorem 5.0.1).
Theorem E. Let R be a ring of dimension 2 and R — S be a subintegral extension.
Let P and @ be two projective R-modules of rank 2 such that det(P) ~ det(Q) and
PRS~Q®S. Let x : det(P) > det(Q) and 0 : P® S = @ ® S be isomorphisms.
Assume that y ® S = A26. Then P ~ Q.

The Euler class group of R[T] relative to a line bundle

We now go back to our discussion on Question 1 at the beginning. As described there,
Question 1 has a satisfactory solution in the case: rank(P) = dim(A). However, not
much progress has been made for rank(P) < dim(A) (see [B-RS 5] for some results
in this direction). The first case that one would like to investigate is obviously when
rank(P) =dim(A) — 1. In this context, it is most natural to inquire first what happens
if A is a polynomial algebra, ie., A = R[T], where R is a Noetherian Q-algebra of

dimension n, and P is a projective R[T]-module of rank n. In this setup, we settle

Question 1 here. A partial solution in the same setup has been obtained by Das in [D 1].
We give the details below.

Let R be a commutative Noetherian ring of dimension n > 2 containing Q. Following
the works of Bhatwadekar and Raja Sridharan [B-RS 1, B-RS 4] on the Euler class groups,

the notion of the n-th Euler class group E™(R[T]) has been defined and explored in

detail ; )
etail in [D 1, D 2]. This group serves as an obstruction group to detect whether a given

projective R[Tl-module P of rank n, with #rivial determinant, splits as P ~ QOR[T].
To achieve this, given such a P and a trivialization x : R[T] 3 A"(P), an element of

E™(R : .
(R[T]) was associated to the pair (P, x), which is called the Euler class of (P,x)- It



was then proved [D 1, Corollary 4.11] that P ~ Q ® R[T] if and only if this Euler class
vanishes in E™(R[T]).

Evidently the theory was limited, as it could only capture projective R[T)-modules
with trivial determinant. Here we eliminate that restriction. We extend the theory to
E™(R[T], L) (the n-th Euler class group of R[T| with respect to a line bundle I over
R[T]) and define the Euler class of a pair (P,x), where P is a projective’ R[T']-module of
rank n and x : L 5 A"(P) an isomorphism. We prove the following (Theorem 8.0.2).
Theorem F. The Euler class of the pair (P, x) vanishes in E™(R[T], L) if and only if- P
splits off a free summand of rank one.

We carry this out in two steps. First, in Chapter 6 we tackie the case when the line
bundle L is extended from R. We have been able to extend almost all the relevant results
from [D 1] here. These results are then crucially used to develop the theory further, as
discussed below.

But before we describe our next step, let us digress a bit. It is not hard to believe
that for all practical purposes we may assume that R is reduced. Now let Ry be the semi-
normalization of R. Then R is seminormal and as a consequence, Pic(R1) ~ Pic(R1[T)).
In other words, line bundles over R;[I] are extended from R;. We successfully exploit
this phenomenon to define and study the n-th Euler class group E"(R[T], L) for n > 4,
when L is not necessarily extended from R.

For an arbitrary L, the idea is to find a suitable finite subintegral extension S
of R such that the projective S[T]-module L ® S[T] is extended from 5. Note that,
E™(S[T), LR S[T)) is now well-understood. In Chapter 7 we introduce a machinery,
which is modelled on a series of lemmas from [B 1], to descend from S [T] to R[I']. Then
we develop the theory of the Euler class group E™(R[T], L) by going forth and back by
using these crucial ‘descent lemmas’.

As an application of the descent lemmas, we also prove the following (‘Theorem 7.0.4)
which generalizes Mandal’s result ([M1, Theorem 1.2]).

Theorem G. Let A = R[T] be a polynomial ring over a commutative Noetherian ring
R with dim(R) = n > 4. Let I be an ideal of A of height n that contains a monic
polynomial. let L be a projective R[T}-module of rank 1. Write £ = L & R[T]""".

Suppose that there exists o : £ — I/I*. Then there is a surjection B: £ —» I such that
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B lifts a.
Unfortunately the method we just described above used for dim(R) > 4, does not

work so well in the case dim(R) = 3 due to the lack of a suitable “subtraction principle”.
We treat this case separately, by defining a “restricted” Euler class group which serves
most of our purposes. For instance, here also we prove that the Euler class of a projective
R[T]-module P of rank 3 is the precise obstruction for P to split off a free summand of
rank one. We also treat the case dim(/?) = 2 and extend most of the results from [D 1]

for a two dimensional ring R.

Layout

The layout of this thesis is as follows.

In Chapter 2, wé recall definitions and known results. Sometimes we have provided
proofs of others’ results due to two reasons: (1) there is no suitable proof available
for the versions we are interested in, (2) to make the thesis as much self-contained as
possible. We also prove some preliminary results in this chapter which will be required
in subsequent chapters.

In Chapter 3 we consider subintegral extensions, prove Theorem A and other allied

results and some applications of the main theorems.

Chapter 4 is about integral extensions of rings and the relations of the Euler class
group under such extensions. In this chapter we prove a more general form of Theorem
A in the form of Theorem D. Further, we give an example to show that Theorem A is

not valid for arbitrary integral extension even if it is finite birational.

In Chapter 5 we carry out a delicate investigation of subintegral extension of two

dimensional rings and consider a question of Ischebeck, posed in [I 2.

Chapters 6, 7, 8 are about developing the theory of n-th Euler class group for a

polynomial algebra R[T] with respect to a projective R[T]-module L of rank one. In

Chapter 6 we consider the special case when L is extended from R. In Chapter 7 we

rove s " “ ;
p ome "descent lemmas » which we crucially use to build the theory in Chapter 8

in the general case when L is not necessarily extended from R.



Chapter 2

Preliminaries

All the rings considered in this thesis are commutative and Noetherian. By dimension
of a ring we mean its Krull dimension. Modules are assumed to be finitely generated.

Projective modules are assumed to have constant rank.

2.1 Definitions and general results

In this section we shall give some definitions and prove some preliminary results which

will be used throughout this thesis. We start with the following definition.

Definition 2.1.1; Let R be a ring and P be an R-module. Then P is said to be
projective if there exists an R-module Q such that P & @Q ~ R" for some positive integer

n, in other words P @ Q is free.

Definition 2.1.2. Let R be a ring and P be a projective R-module. An element p € P
is called unimodular if there is a surjective R-linear map ¢ : P — R such that ¢(p) = 1.
The set of all unimodular elements of P is denoted by Um(P). If P = R, then we write
Um,(R) for Um(R").

Remark 2.1.1. Tt is casy to see that if a projective R-module P has a unimodular element,
then P ~ Q @ R for some R-module Q. We describe this phenomenon by saying that P
splits off a free summand of rank one.

The following result is due to Serre [Se]. We shall refer to this result as “Serre’s

splitting theorem”.
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Theorem 2.1.1. Let R be a ring and P be a projective R-module. If rank(P) >
dim(R) + 1, then P splits off a free summand of rank one, i.e., P ~ Q @ R for some
R-module Q.

Let P be a projective R-module of rank n and ¢ be an R-linear endomorphism of P.
Then ¢ induces an endomorphism A" (¢) of A™(P) in a natural way. We call A"(P) the
determinant of P. We call the endomorphism A™(¢) the determinant of ¢ and denote it
by det(¢). As A™(P) is a projective R-module of rank one, det(¢) € R. It can be casily
checked that ¢ is an automorphism if and only if det(¢) is a unit of R.

Definition 2.1.3. Let P be a projective R-module. We define S L{P) to be the group of
automorphisms of I” of determinant one. If P = R", then we write .SL,(R) for SL(R").

We now recall the definition of a subgroup of SL(P). Given ¢ € P*(= Hompg(P, R))
and p € P, we define an endomorphism ¢, of P as the composite P s R P If

@(p) =0, then <p12, =0 and 1+ ¢, is an automorphism of P.

Definition 2.1.4. An automorphism of P is called a transvection if it is of the form
1+ ¢, where o(p) = 0 and either ¢ is unimodular in P* or p is unimodular in P. The
subgroup of SL(P) generated by all transvections will be denoted by £(P). If n> 3 and
P = R", then, by a result of Suslin [Su 2, 1.4], E(R™) can be identificd with &,(R), the

group of n x n elementary matrices.

Definitien 2.1.5. Let A4 be a ring and let f; : My — N and fo : My — N be
A-linear maps. The fiber product of My and M, over N is a triple (M, g1, 92), where

M is an A-module, g : M ~— M; and 92 : M — M; are A-linear maps such that

fiog1 = fa0 gy and the triple is universal in the sense that given any other triple

(A ! .
(M’, 9}, d5) where M’ is an A-module, g} : M’ — M) and g} : M’ —s M, are A-linear

maps such that f; o g} = f0 3 there is a unique homomorphism h ; M’ — M such
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that g1oh =g} and gy 0 h = g}.

Remark 2.1.2. We say that

M o Ml
lgz lfl
fa .
M, N

is a fiber product diagram or Cartesian diagram to mean M is the fiber product of M

and M5 over N as in the above definition.
The following examples of Cartesian diagrams will be used later.

Example 2.1.1. Let A be a ring and let M be an A-module. Let s,¢t € A be such that
As + At = A. Then

Av_‘>As M‘—>Ms

T

At — Ast Mt — Mst
are Cartesian diagrams of commutative rings and A-modules respectively.

Example 2.1.2. Let A be a ring and I, J be ideals of A. Let M be an A-module, then

AlInJ A/l M/(IM N JM) M/lLM
AéJ —A/I+J M/JM M/(I+ )M

are Cartesian diagrams of A-modules.

Definition 2.1.6. Let R <> S be a ring extension. Then the ideal € := {a € R|aS C R}

is called the conductor ideal of R in S. It is the largest ideal in R which is also an ideal

in S,
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Example 2.1.3. Let R < S be aring extension and C be the conductor ideal of R in
S. Let M be an R-module. Then the following are Cartesian diagrams

R S M M & RrS
R/C—=S/C M®grR/C—>M® rS/C

Definition 2.1.7. Let R C S berings and f € R be a non-zerodivisor in both B and
S. Then we say that the inclusion map 7 : R < S is an analytic isomorphism along f if

R/(f) ~ S/(f) or equivalently S=R + fR and fSNR= fR.

_The following result is due to Nashier [N, Proposition 1.3].

Proposition 2.1.1. Let R C S be rings. Let I be an ideal of S and J = INR. Suppose

there is an element f in J such that the inclusion map i : R <> S is an analytic

isomorphism along f. Then
(i) R/J~ S/,
(i) I =JS,
(i) J/J2~1/1? as R/J? or S/I2-modules.
The following classical result is due to Bass [Baj.

Theorem 2.1.2. Let A be g ring and let P be a projective A-module such that

rank(P) > dim(A). Then the group E(P®A) of transvections of P&A acts transi-

tively on Um(Pd A).
The following result is due to Lindel [L 2, Theorem 2.6).

Theorem 2.1.3. Let A be a ring with dim (A) =d and R = A[T}, - -+, T,). Let P be a

projective R-module of rank > maz(2,d + 1). Then E(P® R) acts transitively on the
set of unimodular elements of P& R.

P . .
roposition 2.1.2. Let R be g nng and P be a projective R-module such that P has a
unimodular element. Let o, 3 ¢ Um(P*) be such that a =

B modulo the nil radical n of
R. Then there is a transvection § of P such that 8

= af.
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Proof. Applying [MK-M-R, Remark 2.3] it follows that there is © € £(P*) such that
©(a) = B. Therefore, © is a finite product of transvections of the projective module
P*. For simplicity, we prove this proposition by assuming that © itself is a transvection.
The general case can be worked out in a similar manner.

Let © = 1+ 1y, where ¢p € P* and ¢ € P* such that ¢(¢) = 0. Since P is a
projective module, P** can be identified with P. Therefore, we may assume ) = p for
some p € P. With this identification we have ¥(¢) = ¢(p) = 0. Now from the definition
of a transvection, we have, either ¥y € Um(P**) or ¢ € Um(P*). If 1y € Um(P**), then
note that p € Um(P). Therefore 1+ ¢, is a transvection of P (as ¢(p) = 0).

Now we have ©(a) = (1 + v¥g)(a) = B. Therefore, for any ¢ € P, we have (1+
Pe)(e)(g) = Blo)- But (1 + ¥p)(@)(e) = afg) + (¢¥)(@)(9) = a(a) + (d(p))e) =
a(q) + a(p)o(q).

On the other hand, a(1 + ¢,)(q) = a(q + po(q)) = ala) + a(p)é(q) and hence
a(l + ¢,)(q) = B(q) for all ¢ € P. Therefore, if we write @ = 1 + ¢p, then f is a

transvection of P and af = 3. a

The following result is due to Bhatwadekar and Roy and is about lifting of a

transvection of a projective module.

Proposition 2.1.3. [B-R 1, Proposition {.1] Let A be a ring, J C A be an ideal and P
be a projective A-module of rank n. Then any transvection 6 e E(P/JP) can be lifted to
a (unipotent) automorphism 6 of P. If in addition, the map Um(P) — Um(P/JP) is
surjective, then the map E(P) — E(P/JP) is surjective.

Let S be a ring and C be an ideal of S. Let P be a projective S-module. The above

result of Bhatwadekar and Roy asserts that any transvection o of P/CP can be lifted to

a unipotent automorphism of P. We need a variant of their result in the following form.

Proposition 2.1.4. Let S be a ring and J,C be ideals of S such that J +C = S. Let
P be a projective S-module and o be a transvection of P/CP. Then o can be lifted to

T € Aut(P) with the property that T is identity modulo J.

Proof. Let ¢ = 1+1,, where ¢ € (P/CP)" and g € P/CP such that ¥(q) = 0. Let
p € P and 6 € P* be lifts of ¢ and ¢, respectively. Then we have #(p) = c, for some
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ceC.

We first consider the case when ¢ is a unimodular element of P/CP. Then there
exists p € P* such that ¢(p) =1+ d, for some d € C.

Set ¢/ = (1+d)8 —cp. Then ¢/(p) = 0 and ¢’ is a lift of yp. Therefore 14 ¢}, € Aut (P)
and it lifts o. We have .J + C = S. Therefore, there exist a € .J and b € C such that
a + b= 1. Finally we consider 7 = 1 + a¢;,. Then again 7 € Aut (P), 7 = Id modulo J
and 7 is a lift of o.

Next we consider the case when ¥ € Um((P/CP)*). Then there exists p’ € P such
that 6(p) =1+ e, for some e € C. Consider the element ¢’ = (1 + €)p + ¢p/. Then
8(¢') = 0. Therefore, 7 = 1 + afy will work. ' O

Lemma 2.1.1. Let R < S be an extension of rings and C be the conductor of R in
S. Let J C R be an ideal such that J + C = R and JS # S. Then the natural map
f:J®RrS - JS is an isomorphism (of S-modules).

Proof. We use a local-global argument to prove that [ is an isomorphism. To see this,

let m be a maximal ideal of .S and let p = m N R. First note that
(JORSNmM=J&rSm=(J ®p Ry) ®r, Sm = J, @R, Sm.

If C ¢ m, then C ¢ p as well, and R, = Sp = Sm and in this case Jp ®r, Sm and

JpSm are both isomorphic to Jp, and the isomorphism is induced by f. If C C m, then
JS ¢ m, J¢Zp, and therefore Jp = Ry,

S induces the isomorphism.

(JS)m = Sm. Again, it can be easily seen that

]
The proof of the following lemma can be found in [B-RS 4, Corollary 2.13]. This is a

consequence of a result of Eisenbud-Evans [E-E], as stated in [P, p. 1420]. .

Lemma 2.1.2. Let A pe 4 ring and P be a projective A-module of rank n. Let

(P* & A). €

Then there exists an element B € P* such that ht (Ia) > n, where I =
(a +aB)(P). In particular, if the ideal (a(P),

| a) has height > n then ht I > n. Further,
if (a(P),a)

is an ideal of height >n and T is q proper ideal of A, then ht [ = n.

Th i i :
e following lemma, 1s standard. We give a proof for the sake of completeness.
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Lemma 2.1.3. Let R be a ring and J C R be an ideal of R. Let K C J and L C J? be

two ideals of R such that K+ L = J. ThenJ = K +(e) for somee € L with e(l-e)e K
and K =JNJ where J' + L = R,

Proof. Let bar denote reduction modulo the ideal K. Since J = J, by Nakayama lemma
there exists € € J such that (1 —€)J = 0. It then follows that J = (€) and €2 =e.
Since K + L = J, we can assume that e € L. Now J = K + (e). Since €2 = &, we have
e—e* e K. Take J' = K + (1 —¢). Then L + .J’ = R, since e € L. We claim that
K=JnJ.

Letae€ JnJ'. Then a = b+ed = by +(1 — e)dy, where b,b; € K and d, dy € R. This
implies that ed — (1 — e)d; € K. But e — e2 € K. Therefore e2d € K and consequently
ed € K. Therefore a € K. This proves K = J N J'. 0O

The next lemma, which is an application of Lemma (2.1.3) and Lemma (2.1.2), is
a synthesis of [B-RS 4, Corollary 2.14] and [B-RS 5, Corollary 2.4]. We shall call this

lemma as the “moving lemma”.

Lemma 2.1.4. (Moving Lemma) Let R be a ring of dimension d and let P be a
projective R-module of rank n, where 2n > d + 2. Let J C R be an ideal of height n and
letow: P/JP — J/J2 be a surjection. Then there exists an ideal J' C R and a surjection

B:P - JnJ such that:
(i) J+J =R.
(ii) B®R/J =7a.
(iii) ht(J’) > n.

. . ,
(iv) Given finitely many ideals Jy,--- ,J. of R, each of height > d —n + 1, the ideal J
can be chosen with the additional property that it is comazimal with J; for each

i:l,...””'.

Proof. As P is a projective module, @ can be lifted to an R-linear map 8 : P — J.
Then 3(P) +J2 = J. By Lemma 2.1.3, there exists b € J? such that 8(P) + (b) = J.
Let K = J2n J;N--- N J, and bar denote reduction modulo the ideal K. Note that
dim(R) <n —1.
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Applying Lemma 2.1.2 to the element (5,5) € P ® R, we see that there exists
f1 € P* such that if N = (8 + b31)(P) then ht(N;) > n.

Since f + b3y is also a lift of &, replacing 8 with 8 + 631, we may assume that
N = B(P). Now N + (b) = J and b € J2. By Lemma 2.1.3, N = JnJ;, where
J1+ (b) = R. Since Np = (J1)p and N = J N Jq, we get

ht(J1) = ht(J1); = ht(NV3) > n.

But then we have n < ht(J;) < dim(R) < n — 1. Hence we get J; = R. Therefore
N =J and hence B(P) + K = J.

?

By Lemma 2.1.3, there exists ¢ € K such that §(P) + (c) = J. By Lemma 2.1.2

’

replacing 8 by 8 + ¢35 for some 35 € P*, we may asstme that Joi (P) = JnNJ, where
ht(J') > n and J’ + (c) = R. This proves the lemma. O

The following lemma is again an easy application of (2.1.3) and (2.1.2). We give a

proof for the sake of completeness.

Lemma 2.1.5. Let A be g ring of dimension d and I be an ideal of A. Let P be a

projective A module with rank(P) =n > d 4 1. Assume that there exists a surjection
a:P/IP —1I/I?. Then o can be lifted to a surjection f: P — I.

Proof. Let f: P —3 [ be 3 lift of . Then B(P)+1* =1 and therefore, by Lemma

2.1.3, there exists b € 72 such that B(P)+(b) = I. Applying Lemma 2.1.2 to the element
(B8,0) € P*g A, we see that there exists v € P* such that if N — (B + by)(P) then
ht(Ny) > n. Since dim(A) =dand n > d + 1, it follows that "

€ N for some positive
integer r.

Since § + by is also a lift of @, it is enough to show that N — I. We prove this by

showing that N, = I, for all P € Spec(A). If N ¢ p, then clearly I ¢ p and N, = I, = Ap.

If N Cp, then as N + () =T and b N, it follows that I p. Note that b(1-b) € ¥

and 1 - b e A,*. Therefore Ny =I;. This completes the proof. ]

The following Proposition is implicit in the proof of [B-RS 2, Proposition 2.5].

Proposition 2.1.5. Le; 4 be a ring of dimension d 21 and I be an ideal of AlT] of
height > 2. Assume that I = (f

Ly fn) + 12, where n > d+ 1. Then there exist
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g1, 9n €I such that I = (ga,--- ,gn) with f; — gi € I? fori=1,--- ,n.

We improve the above proposition in the following form to suit our needs. The proof

is similar to the one given in [B-RS 2.

Proposition 2.1.6. Let A be a ring of dimension d > 2. Let I be an ideal of A[T] of
height > 2 and P be a projective A[T]-module of rankn > d+ 1. Suppose that there
exists ¢ : P/IP — I/I2. Then ¢ can be lifted to a surjection: P — I.

Proof. Since rank(P) = n > dim(A) + 1, by a result of Plumstead [P, Corollary 2 of
Section 3], P has a free summand of rank one. Let P = Q& A[T], where Q is a projective
A[T] module. Let J = I N A. Since ht(I) > 2, we have ht(J) > 1. Therefore we can
choose b € J2 such that ht(b) = 1. Now

n 2 dim(A) + 1 = dim(A[T]) — 1 + 1 > dim(A[T]/bA[T]) + 1

Therefore, by Lemma 2.1.5 we have ® : P/bP — I/(b), and @ is a lift of ¢ ®
A[T}/bA[T] . Let v € Homai7)(P; I) be a lift of @ (not necessarily surjective). Then, as
I/bA[T] = ®(P/bP), we have y(P) + bA[T] = I. By applying Lemma 2.1.2 to the pair
(7, b) € Homyp(P, A[T]) & A[T], we sce that there exists § € Homapr) (P, A[T]) such
that ht(Kp) > n, where K = (v + bB)(P).

Note that K + bA[T] = I and b € I2. By Lemma 2.1.3, there exists an ideal I’ of
A[T)] such that K = I NI’ and I' + bA[T] = A[T). Now ht(I') = ht(I}) = ht(Kp) > n.

Setting u = v + b3 we further observe:

(i) p: P> INI is a surjection;
(i) p® ALY = o,

If I’ = A[T), then we are done since then y¢ : P — I N I' =1 and p is a lift of ¢ (recall
that b € I2). If I is a proper ideal then clearly I’ contains a monic polynomial and
by [La, Lemma 1.1, p. 79] we have I'n A + bA = A. Therefore /! contains an element

of the form 1+ ba for some a € A. Hence I} ;4 = A[T]14b4, and therefore we have a

surjection 1144 : P1yoa — Iiyba.
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Now P =Q ® A[T). Let 0,: Q, & Ap[T] — Ap[T] be the projection onto the second

factor. Now consider the following surjections:
e1464) © Poi4bay = Apsay 7]

Ob(1404) * Porabay = Apaysa)[T]

So we have two unimodular elements of Pb*(1 +bA)-

Observe that rank(Qya404) = 7 — 1 > max(2,d) and d — 1 = dim(Ay1454))-

Therefore, by Theorem 2.1.3 we have a transvection 7 € £ (Pb(1+b A)) such that

Ho(1464)T = Op1104)

Now consider the following fiber product diagram:

-1

w‘:“ Wi,q) WA)
Id

hppp ——ooo Ib(1+b4) — Ib(1+bA)

By a standard patching argument we have a surjection n: P — I . It is easy to see
that 7 is a lift of ¢. a
Lemma 2.1.6. Let A be ¢ ring and let I and K be two ideals of A[T]
Let P be a projective A[T]

modulo n[T).

such that K C IZ2.
-module and n be the nilradica] of A. Let bar denote reduction
Suppose that a : P —» I/K isq surjection such that the induced map

a@: P —»I/K can be lifted to a surjection B:P -1 Then o can

also be lifted to a
surjection ¢ : P — I.
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Proof. We have 8: P — I, which is a lift of a. Therefore, we have
B P — (I+n[T))/n[T) S I/(INn[T)).

We note that I/(K Nn[TY) is the fiber product of I/ K and I/(I N n[T)]) over I/(K,IN
n[T7):

1/(K nu[T)) I/K
I/(INn[T)) I/(K,INu[T))

Therefore a and 8 will patch to yield a surjection v : P — I/(K N n[T)]). Let
¢ : P —> I be alift of y. We prove that ¢ is surjective. We have ¢(P) + (K Nn[T]) = 1.
Since n is the nil radical of A, it follows that V' (I) = V(¢(P)) (For an ideal J C A[T], by
V(J), we mean the subset of Spec(A[T)), consisting of those prime ideals which contain
J) and hence I = ¢(P). Since ¢ lifts o, we are done. O
The proof of the following lemma can be found in [B-RS 1, Remark 3.9].

Lemma 2.1.7. Let A be a ring, I C A[T] be an ideal and P be a projective A-module.
Let ¢ : P[T) - I/I% be a surjection. Assume further that either I(0) = A or there is a
surjection v : P — I(0) such that 3(0) = ¢ ® A/1(0). Then we can lift ¢ to a surjection
@ : P[T] - I/(I?T).

The following theorem is due to Mandal and Raja Sridharan [M-RS].

Theorem 2.1.4. Let A be a ring and R = A[T). Let I =I'nI" be the intersection of
two ideals I' and I" in R such that

(i) I’ contains a monic polynomial,
(if) I" =I"(0)R is an extended ideal and
(iii) I’ +I” = R.

Suppose that P is a projective A-module of rank r > dim(R/I') + 2 and f : P - 1(0)
and ¢ : P[T|/I'P[T] — I'/I” are two surjective linear maps such that $(0) = f mod
I'(0)2. Then there is a surjective map 9 : P[T] — I such that ¢(0) = f.
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2.2 The Euler class group and related results

In this section we quickly recall the generalitics of the Euler class group theory. We first
accumulate some basic definitions, namely, the definitions of the Euler class group, the
Euler class of a projective module, and then state some results which are relevant to
this thesis. Detailed accounts of these topics can be found in [B-RS 4, D 1].

We start with the definition (from [B-RS 4]) of the n-th Euler class group E'(R,L)
of a commutative Noetherian ring of dimension n with respect to a projective R-module

L of rank one. For brevity of notation, we shall denote E"(R, L) by E(R, L).

Definition 2.2.1. (The Euler class group E(R, L)): Write F' = L & Rl Let JCR
be an ideal of height n such that J/J? is generated by n elements. Two surjections
o, B from F/JF to J/J? are said to be related if there exists 0 € SL(F/JF) such that
ao = 8. Clearly this is an equivalence relation on the set of surjections from F/JF to
J/J?%. Let o] denote the equivalence class of a. Such an equivalence class [a] is called a
local L-orientation of J. By abuse of notation, we shall identify an equivalence class ]
with a. A local L-orientation a is called a global L-orientation if o : F/JF — J/J? can
be lifted to a surjection 6 : F — J.

Let G be the free abelian group on the set of pairs (n,wn) where n is an m-primary
ideal for some maximal ideal m of height n such that n/n? is generated by n elements
and wn is a local L-orientation of n. Let J C R be an ideal of height n such that J/J 2
is generated by n elements and wy is a local L-orientation of .J. Let .J — Min; be the
(irredundant) primary decomposition of J. We associate to the pair (J,wy), the element
nzol(::;o C‘:i\l:fd S’n:vtk;e; ‘::1 :j the local L-orientation of n; induced by w;. By abuse of

(i, wn,) by (J,wr). Let H be the subgroup of G generated by

t M . .
set of pairs (J,w;), where J is an ideal of height n and wy is a global L-orientation of J.

The Euler class group of R with respect to L is E(R, L) e /H.

Remark 2.2.1. ~
ark 2.2.1. When L ~ R, the Euler class group E(R, R) is simply denoted by E(R).

Remark 2.2.2. T - i
n [M-Y 2, Section 3] Mandal-Yang proved certain interesting functorial

roperties of th
prop e Euler class groups. Here we quote one of their results which is most

relevant to this thesi
hesis. Let A, B be commutative Noetherian rings, each of dimension
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n > 2. Let f: A~ B be a morphism of rings which satisfies a special property: for
any ideal I of A with ht(I) = n and u(I/I%) = n, the ideal IB := f(I)B has height > n.
Let L be a projective A-module of rank one. Then they show that IM-Y 2, Definition
3.3] there is a group homomorphism E(f) : £(A,L) — E(B,L® sB). Further, if
g+ B — (' is another morphism of rings satisfying the same property as above, one
has the following commutative diagram (see [M-Y 2, Proposition 3.4]):

E(A L) —E@E(B, L ® B)

E
m i (9)
E(C,L®C)
For example, if f : A — B is a flat extension of rings, then f satisfies the property
specified above. In Chapter 3, after introducing subintegral extension of rings, we shall

show that such extensions enjoy the same property (see Remark 3.2.1).

Definition 2.2.2. (The Euler class of a projective module): Let P be a projective
R-module of rank n such that L ~ A*(P) and let x : L = A"P be an isomorphism.
Let o : P — J be a surjection where J is an ideal of height n. Therefore we obtain an
induced surjection @ : P/JP — J/J% Let ¥ : F/JF = P/JP be an isomorphism such
that A™(¥) = X. Let ws be the local L-orientation of J given by the composite surjection
@ ~: F/JF — J/J?. Let e(P, x) be the image in E(R, L) of the element (J,w,) of G.
If Q C R, then it is proved in [B-RS 4] that the assignment sending the pair (P, x) to
the element e(P, x) of E(R, L) is well defined. The Euler class of (P, X) is defined to
be e(P, x). We should note that the assumption Q C R is necessary only when we talk
about the Euler class of a projective R-module. This assumption was needed to prove
[B-RS 4, Proposition 3.1}, which essentially shows that the Euler class of a projective
module is well defined. But a careful inspection of the proof of [B-RS 4, Proposition
3.1] would reveal that if dim(R) = 2, we do not need to assume that Q C R to define
the Buler class. However, in the definition of E(R[T]), we need to assume that Q C R
to start with,

We recall some results from [B-RS 4] for later use.

Theorem 2.2.1. [B-RS 4, 4.2, 4.5, 4.4] Let R be a ring of dimension n > 2 and L be a
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projective R-module of rank 1. Let P be a projective R-module of rank n with L ~ A™(P)
and let x : L 5 AP be an isomorphism. Let J C R be an ideal of height n and wy be a

local L-orientation of J.

(i) Suppose that the image of (J,wys) is zero in E(R,L). Then there exists a surjection
a: F — J such that wy is induced by o (in other words, wy is a global L-

orientation).

(ii) Assume that Q C R. Let e(P,x) = (J,wy) in E(R,L). Then there exists a
surjective map « : P — .J such that (J,w;) is induced by (c, X).

(iii) Assume that Q C R. Then, P ~ P, ® R for some projective R-module P, of rank
n—1if and only if e(P,x) =0 in E(R,L).

Let R be a commutative Noetherian ring containing Q with dim(R) =n > 2. The
notion of the n-th Euler class group E™(R[TY]) has been defined in [D 1]. We should note
that the definition of E™(R[TY)) is different from that of E™R) and is not obtained by just
replacing R by R[T]. Further, for a commutative Noetherian ring A of dimension d and

a projective A-module L of rank one, Mandal-Yang [M-Y 1] defined the r-th Euler class

groups E™(A, L) for 1 < r < n. The definition of E™(R[T]) given below from D 1] is not

obtained from their definition either (by taking A = R[T)], d = n+1, L = R[T]andr = n).
Let us point out the difference. For an ideal I of R[T] of height n with w(I/I?)=n, a

local orientation of I is defined as an SL,(R[T]/I)

-equivalence class of surjections in D 1]
whereas in [M-Y 1]

a local orientation of I is defined as an En(R[T]/I)-equivalence class
of surjections. Therefore, a priori the definitions are different and it will be interesting
to know whether the groups thus obtained are isomorphic or not.

For brevity we denote E™(R[T]) as E(R[T]) and recall its definition from [D 1].

Definition 2.2.3, (The Euler class group FE

(R[T])) Let R be a Noetherian ring of
dimension n > 3 containing Q. Let J — R

T be an ideal of height n such that I/12 is
@ and 8 from (R[T]/I)™ —» I/12 are said to

(R[T]/T) such that ao — B.
relation on the set of surjections from (R[T)/T)" to I/12.

generated by n elements. Two surjections

be related if there exists o € SL, This is an equivalenc
e

l Let [«] denote the equivalence
class of a. We call such ap equivalence clags [o] a local orientation of I. It was shown
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in [D 1, Proposition 4.4], that if o : (R[T]/I)™ — I/I? can be lifted to a surjection
¢ : R[T]" — I then so can any § equivalent to ce. We call a local orientation [a] of I a
global orientation of I if the surjection o : (R[T]/I)™ —» I/I? can be lifted to a susjection
6 : R[T" — I. Let G be the free abelian group on the set of pairs (I, w;) where I C R[T]
is an ideal of height n such that Spec(R[T]/I) is connected, I/I? is generated by n
elements and wy : (R[T'}/I)™ — I/I? is a local orientation of I. Let I C R|[T] be an
ideal of height n and w; a local orientation of 7. Now I can be decomposed uniquely
as I = I;N---N1I,, where the I}’s are ideals of R[T] of height n, pairwise comaximal,
such that Spec(R[T]/I) is connected for each k. Clearly w; induces local orientations
wr, of Iy for 1 <k < r. By (I, wr) we mean the element X(Iy,wy;, ) of G. Let H be the
subgroup of G generated by set of pairs (I,w;), where I is an ideal of R[T] of height n
generated by n elements and wr is a global orientation of I given by fhe set of generators

of I. We define the Euler class group of R[T'|, denoted by E(R[T]), to be G/H.

Definition 2.2.4. (The Euler class of a projective R[T]-module) Let R be as in
(Definition 2.2.3). Let P be a projective R[T]-module of rank n with trivial determinant.
Fix a trivialization x : R[T] = A™(P). Let a : P — I be a surjection such that I is an
ideal of height n. Note that, since P has trivial determinant and dim(R[T)/I) <1, P/IP
is a free R[T')/I-module. Composing o ® R[T/I with an isomorphism 7 : (R[T)/ 1) 5
P/IP with the property A™(7) = x ® R[T]/I we get a local orientation, say wi, of I.
Let e(P, x) be the image in E(R[T]) of the element (I,wr) of G. (We say that (I,wr)
is obtained from the pair (a,X)). It can be proved that the assignment sending the
pair (P, ) to e(P,x) is well defined (see [D 1, Lemma 4.6]). The Euler class of (P,x) is
defined to be e(P, x).
The following results are due to Das [D 1].

Theorem 2.2.2. [D 1, 4.7, 4.10, 4.11] Let R be a Noetherian ring (containing Q)
of dimensionn > 3. Let I C R[T) be an ideal of R[T] of height n. such that I/1% is
generated by n elements and wy be a local orientation of I. Let P be a rank n projective
R[T)-module with trivial determinant with a trivialization X : R[T] = N™(P).

(a) Suppose that the image of (I,wr) is zero in E(R[T]). Thenwr s @ global orientation
of I.
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(b) Suppose that e(P, x) = (I,w;) in E(R[T]). Then there exists a surjection c: P —» I
such that wy is induced by o and x (as described above).

(¢) P~ QOR[T] for some projective R[T|-module Q if and only if e(P, x) = 0in E(R[TY)).

The following results will be very useful in subsequent chapters.

Proposition 2.2.1. Let R be a ring of dimension n and let Ryeq = R/n, where n denotes

the nilradical of R. Let I be a projective R-module of rank one.

(i) The groups E(R, L) and E(Ryeq, L ® Ryeq) are canonically isomorphic [B-RS 4,
Corollary 4.6].

(i) Let Q € R. Then E(Ryed[T]) and E(R[T)) are c'anom'cally wsomorphic [D 3,
Proposition 2.15].

We now recall the definition of the weak Euler class group of a ring from [B-RS 4].

Definition 2.2.5. (The weak Eyler class group Eo(R,L)): Let R be a ring of dimension

n2>2 Let L be a pProjective R-module of rank one. Write F" = L @ R"~1 Let Gy be
the free abelian group on the set of all ideals n, where n is m-primary for some maximal
ideal m of height n such that there is a surjection F' — n/n2.
n, we take the (irredundant)

element Y. n,

Given any ideal .J of height

primary decomposition J = Min; and associate to .J , the
of Gy. We denote this element by (J)

- Let Hy be the subgroup of G,
generated by all (.J)

such that J is 5 surjective image of F. The weak Euler class group

of R with respect to I is defined as Ey(R, L) = Gy/H,.
Remark 2.2.3. Tt is clear from the above definitions that ¢
surjective group homomorphism O

t E(R,L) — Eo(R, L) which sends an element
(Jyws) of E(R, L) to (J) in Ey(R, L).

We shall need the following result on Eo(R, L).

Proposition 2.2.9, [B-RS 4, of even
(J)=0 in Eo(R, L) if and only if

J is a surjective image of q projective R-modyle of rank n which is stably 1

somorphic to
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Remark 2.2.4. 1t has been proved in [B-RS 4, Theorem 6.8] that the groups Eqo(R, L)
and Ep(R, R) are canonically isomorphic. Therefore, from now on we shall simply denote

the weak Euler class group as Ey(R).

2.3 Some Subtraction principles

One of the most important tools for the type of questions we are tackling in this thesis
are the so called “subtraction principles”. In this section we prove some subtraction
principles. These results are used crucially in this thesis. We first state a couple of
available subtraction principles and then prove some variants suited to fit our needs.

We first state a simplified version of [B-RS 4, Theorem 3.3].

Proposition 2.3.1. Let A be a ring of dimension n > 2 and J, J' be two comazimal
ideals of height n. Let P = Q® A be a projective A-module of rankn. Let a : P — JN.J'
and B : P - J' be two surjections such that c @ A/J' = ® A/J'. Then there exists a
surjection @ : P - J such that 0 Q A/J=a® A/J.

The following variant was proved in [B-K, Theorem 3.7].

Proposition 2.3.2. Let A be a ring of dimension d and J,J' be two comazimal ideals
of A of height n where 2n > d+ 3. Let P = Q®A be a projective A-module of rank n.
Letax: P —+JnN ;]’ and B : P — J' be two surjections such that « QA =PRAT.
Then there exists a surjection 6 : P — J such that 6@ A/J =a® AlJ.

Modifying the proof of [B-RS 4, Theorem 3.3] we obtain the following subtraction

principle.

Proposition 2.3.3. Let n >4 and A be a ring of dimension n + 1. Let P and L be
projective A-modules of rank n and 1, respectively, such that PHA ~ LPA™. Write
Q =L® A" 2. Let x : A*(P) = L be an isomorphism. Let J C A be an ideal of height
> n and J' be an ideal of height n such that J + J = A. Let o : P - JnJ and
B:Q@®A—J be surjections. Let =B A/J : (@@ A)/T(Q® A) = J']J"? and
a=a®A/J :P/J'P — J'[J? be the induced surjections. Suppose that there exists an
isomorphism 6 : P/J'P 5 (Q ® A)/J(Q ® A) such that: (i) B8 = @ and (ii) AMd) = X-
Then there exists a surjection 6 : P — J such that 0 ® AlJ=a® A/J.
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Proof. We write down the proof in two steps as it will turn out to be convenient later.
Step 1. We note that to prove this result we can change 3 by composing with an
element of SL(Q @ A). Let 8 = (v,a), where v € Q*. Let tilde denote reduction
modulo J2. As J + J' = A, it follows that (¥,a) € Un((Q & A)*)). Let v/ be any
element of Um(Q*). Since dim(A4/J?) < 1 < rank(Q), by Theorem 2.1.2 there exists
5 € E((Q & A)*)) such that (7,3)7 = (+/,0). By Theorem 2.1.3, & can be lifted to an
automorphism o* € SL((Q ® A)*).. But ¢* induces an automorphism o € SL(QTA).
Therefore, by replacing 8 with o, we may assume that 3 = (v, a) has the property
that a € J and v(Q) + J? = A. We can further apply Lemma 2.1.2 to obtain 7 € Q*
such that if I = (v + a7)(Q), then ht(Z,) > n — 1. Note that (I,a) = J'. As ht(J') = n,
it follows that ht(I) = n — 1 and thus dim(A/I) < 2. As (v,a) and (v + a7,a) are

connected by a transvection, by replacing (v, a) by (v +a7,a), we can assume that:
() »(Q)+J% = A.

(i) dim(A(v(Q)) < 2.

Using (1) we may further assume that a = 1 modulo J2.

Step 2. Consider the following ideals in A[Y]:
Ky = (v(Q),Y + a), Ky = J[Y],Kg =K N Ks.

We claim that there is a surjection n(Y) : P[Y] - K3 such that n(0) = a. We first

check that the theorem follows from the claim, as it is easier! Putting Y = 1—a we obtain

a surjection §: P — .J. Since q = 1 modulo .J2, we have 8 ® AT =n(1- aA)RA/T =

N0 ®A/J=a® A/J, which proves the theorem.

N -
ow for the claim, note that AlY]/K1 ~ A/(v(Q)) and we have dim(A[Y}/K7) < 2.
A 3 . . o . B

s Pand Q& A are stably isomorphic, it is easy to see that there is an isomorphism, say.

~(Y): PRVEGPIY] 5 QIYY/K QY] @ A[Y]/K,.
X ® A[Y]/K;. Since AN (0) =x9A/J!
of SL(Q/J'Qa A/J). We can apply Theorem 2.1.3 and alter k(YY) by an element of
SLQY/K QY] ¢ A[Y]/K1) and assume that k{0)

VR AYLY +a) : QY] @ AlY] - K, with AlY]

We choose x(Y') so that N'K(Y) =
» it follows that £(0) and 4 differ by an element

= 0. Now, tensoring the surjection

/K1, we obtain a surjection eY) -
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QY]/KiQY|®A[Y]/Ky — K1/K2. Therefore, we have a surjection m(Y) = €(Y)k(Y):
PY]/K1PY] - K /KZ. Since 6 = @, €(0) = 3, and «(0) = 4, we have 7(0) = anA/J’.
Therefore, applying Theorem 2.1.4 we obtain a surjection n(Y) : P[Y] - K3 such that
7n(0) = c. This proves the claim. O

Using a similar method we have another subtraction principle.

Proposition 2.3.4. Let R be a ring of dimension n > 3 and write A = R[T). Assume
that ht J(R) > 2, where J (R) is the Jacobson radical of R. Let P and L be projective
A-modules of rank n and 1, respectively, together with an isomorphism x : N*(P) 5 L.
Write Q= L& A" 2. Let J C A be an ideal of height > n and J' be an ideal of height n
such that J'+(K2T) = A, where K = JENT. Leta: P — NI and B : QDA - J' be
surjections such that a(P)+(K?T) = J. Let B = B® A/J : (QBA) /T (Q&A) — J'/J?
and & = a®A/J' : P/J'P — J'/J? be the induced surjections. Suppose that there
exists an isomorphism § : P/J'P 5 (Q& A)/J(Q @ A) such that: (i) B = @ and (ii)
A"(8) =X. Then there exists a surjection 8 : P ~ J such that (§ — a)(P) C (K2T).

Proof. To be consistent with the above proposition, we write the proof in steps.

Step 1. As in the proof of Proposition 2.3.3, write 8 = (v,a), where v € Q*. Let tilde
denote reduction modulo (K2T). Then (7,a@) € Um((Q® A)*)). Let +’ be any element of
Um(Q*). Write D = R[T)/(K2T). Note that K D is contained in the Jacobson radical of
D and D/KD ~ (R/K)[T]. With an argument combining Theorem 2.1.3 and Theorem
2.1.3, it is easy to check that, changing 3 if necessary, we can assume that 8 = (v,a) has
the property that @ € (K27} and v(Q) + (K?T) = A. Now apply Lemma 2.1.2 to finally
ensure that ht(¥(Q)) = n — 1, and therefore by [B-RS 1, Lemma 3.1] dim(A4/(»(Q)) < L.

Note that we may further assume that @ = 1 modulo (K2T).

Step 2. This step is exactly the same as its counterpart in Proposition 2.3.3. Note that

here we have the advantage that dim(A/(#(Q)) < 1 and therefore we do not need P and

@ @ A to be stably isomorphic. U
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Chapter 3

Subintegral extensions and the

Fuler class groups

In this chapter, we investigate the relationship between the Euler class group and

subintegral extensions.

3.1 Subintegral extensions
In this section we recall the definitions and some basic properties of subintegral extensions.
We may refer to [Swl] and [I 2] for further details.

Definition 3.1.1. An extension R < S of rings is called subintegral if: (1) it is integral,
(2) the induced map Spec(S) — Spec(R) is bijective, and (3) for each P € Spec(S) the
induced field extension Ry, /pRp — Sgp/PSyp is trivial, where p =P N R.
Example 3.1.1. Let & be a field and T be an indeterminate. Then the extension
k[T?, T3] < k[T] is subintegral.

The following alternative characterization of subintegral extensions is due to Swan

([Swl, Lemma 2.1]). Here we give a detailed proof.

Lemma 3.1.1. R <> S is subintegral if and only if S is integral over R and for any

field F gnd any homomorphism ¢ : R —» F, the diagram

29
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can be filled in uniquely.

Proof. First we assume that R < S is subintegral. Let F' be a field and ¢ : R — F be
any homomorphism. Then p = Ker(¢) is a prime ideal of R. By the lying over theorem,
there exists g € Spec(S) such that q N 2 = p.

Now ¢ induces a map ¥ : Ry/pRy — F' defined by U(z/y) = o(x)/d(y) forz,y € R
and y ¢ p. This definition does not depend on representatives. Also U(z/1) = ¢(x).
Since the induced field extension R,/pR, — S4/q5; is trivial. Therefore we have
¥ : S,/qS; —> F. Finally we define 4 : § — F by 9(s) = ¥(s/1). From the
definition of 1, it is clear that ¢¥|g = ¢. Also using the fact that the induced map
Spec(S) — Spec(R) is injective, it is easy to check that + is unique.

‘We now prove.the converse. Since S is integral over R, the induced map Spec(S) —
Spec(R) is syrjective. So we need to prove the injectivity. Let qq, q2 € Spec(S) such that
giNR=gNR=yp. As S is integral over R, we note that Sy, /9154, and S42/925q, are
algebraic extensions of Ry /pRy,. Let F be the algebraic closure of Ry /pRy. Then both
S4q:/915q, and S, /425, can be embedded into F.

R g
i
“ Sq1/915q, 85

Now i —

ow if we take ¢ = ja, then from the uniqueness of ¥ it follows that q1 = q2
Let :
. q € Spec(S) and qO R = p. Then we have a natural homomorphism ¢ : R —
g R deﬁ \ — 1 N

p/PRy defined by ¢(r) = r/l. From the hypothesis we see that there is a unique
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homomorphism ¢ : S — R,/ pR, such that the following diagram commutes.

R —— g
% -7
R 4
Ry/pR,

We can define ¥ : Sy /qSq — Ry /pRy (since the kernel of ¢ is q) such that
Ry /pRy, = S4/qSq — Ry/pR,

is identity. As the map Sq/qS; — Rp/pRy is injective, the induced ficld extension
Ry /pRy — S4/4S, is trivial.
This completes the proof. U

Definition 3.1.2. An extension of the form R < R[b] with b2,53 € R is subintegral. It

is called an eiementam'ly subintegral extension.

Remark 3.1.1. We record the following fundamental facts about subintegral extensions.

(i) R < S is subintegral if and only if S is the filtered union of subrings which can be

obtained from R by a finite number of elementarily subintegral extensions.

(ii) If R is a reduced Noetherian ring then any subintegral extension of R is contained

in R, the integral closure of R in its total ring of fractions.
Definition 3.1.3. A ring R is called seminormal if it is reduced and whenever b,c € R
satisfy b3 = c2, there is an a € R witha? = b, a3 = c.

Remark 3.1.2. Note that a will be unique if it exists. Conversely, if we assume the

uniqueness of a, B will necessarily be reduced.

Notation. Let R be a ring. We denote, by Q(R), the total quotient ring of R.

Definition 3.1.4. Let R be a reduced ring. Then there is a unique maximal R-subalgebra
of Q(R) which is subintegral over R. This is called the seminormalization (or subintegral

closure) of R and is denoted by *(R).
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The next two lemmas are easy applications of Lemma 3.1.1.

Lemma 3.1.2. Let R < S be o subintegral extension. Then Rp.q — Spy is also

subintegral.

Proof. First of all, it is easy to check that Sieq is integral over Rreq.

Leti: R S and ' : Rieq & Sreq be the inclusion maps. Let 7 : R — R, and
w1 S — Sq be the natural surjections. Let F be a field and 8 : Ryeq — F be any
homomorphism. Then we have the composite ¢ = 7 : R —> F. Since R — S is
subintegral, by Lemma 3.1.1 there exists a unique homomorphism ) : S — F' such that
Yi = O,

Now we define a map ¥ : Seq — F by ¥([s]) = ¢/(s). To see that ¥ is well defined,
let s € S be such that s" = 0 for some positive power r. Then (s”) = 0 in F. Since F'
is a field, ¥(s) = 0, implying that ¥([s]) = 0.

It is quite clear that the diagram:

4

7
Rred - Sred
I e
0 - -
L
<
F

is commutative. Uniqueness of ¥ can be easily checked using the uniqueness of . [

Lemma 3.1.3. Let R < S be g subintegral extension and let R C R' where R’ is flat
over R. Then R’ < R' ® S is also subintegral.

Proof. Let ' = R’ ® pS. Note that S’ is integral over R'.

Let i : R <+ S be the inclusion map. Let j : R <+ S’ be the map defined by
J(r') = " ®1. Note that the flatness condition ensures that j is injective. Let I be
afield and 0 : R" —5 F be any homomorphism. Now we have the restriction map
¢=06lr:R— F. Since R S is subintegral, by Lemma 3.1.1 there exists a unique
homomorphism 1 : § — F such that ¥i = .

Now we can define a map ¥: S’ — F by U(r'®s) = H(T))w(s)-
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It is quite clear that the following diagram is commutative.

Uniqueness of ¥ can be easily checked using the uniqueness of . o

Remark 3.1.3. In the above lemma if we take R’ to be faithfully flat over R then the
converse is also true. In other words, let R < S be an extension of rings and IR — R/
be a faithfully flat extension. Write S’ = S ®r R’. Then R < S is subintegral if and
only if R’ < S’ is subintegral. (See [Sw1, Page 215]).

Lemma 3.1.4. Let R < S be an elementarily subintegral exctension. Let C be the

conductor ideal of R in S. Then (R/C)red = (S/C)red-

Proof. Let R < R[b] with 42,63 € R, be an elementarily subintegral extension. Let
K = +/C, the radical of C in R[b]. Then it follows that (R[b]/C)req = R[b]/K and
(R/C)reqd = R/K NR. Now we will show that R[b]/K = R/K NR. Note that b € K.
Therefore, R{b]/K = R+ Rb/K = R+ K/K=R/K NR. o

Lemma 3.1.5. Let R — S be a finite ring estension with same total quotient ring. Let
C be the conductor ideal of R in S. Then h{(C) > 1. Moreover, if R < S 1is a finite

subintegral extension of reduced rings then ht(C) > 1.

Proof. Let T be the multiplicative set of all non-zerodivisors in R. Then T7!C is
the conductor ideal of Q(R) —» Q(S). But we have Q(R) = Q(§ ) and consequently,
T~1C = Q(R). Therefore, C contains a non-zerodivisor and hence ht(C) > 1.

We now show that if R <> S is a subintegral extension of reduced rings then
Q(R) = Q(S). Let p; and B; be the minimal prime ideals of R and S respectively.
Since R and S both are reduced, using the Chinese remainder theorem it is easy
to see that Q(R) = [] Ry,/piRp, and Q(S) = [T Sy,/BiSy,. From the definition of
subintegral extension it follows that [ Ry, /piRp, = [T Sp./BiSp:- Therefore we have
Q(R) = Q(9). O
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3.2 Main results

In [I 2] Ischebeck studied the behaviour of certain K-theoretical functors under subin-
tegral extensions. In particular, it is proved in [ 2, Proposition 6] that if R = S is a
(finite) subintegral extension, then the Chow groups CH;(.S) and CHi(I?) are isomorphic.
Along the same line, in [G], Gubeladze’s object of study is the orbit space of unimodular
rows under the natural action of elémentary matrices. This orbit space Um,(R)/E,(R)
carries a group structure for n = dim(R) + 1 (thanks to the work of van der Kallen
[VK1]), and as shown in [B-RS 4], is inﬁimately related to the Euler class groups and

the weak Euler class groups. Therefore, it is natural to ask the following questions.

Question 3.2.1. Let R — S be a subintegral extension of Noetherian rings with
dim(R) =n > 2. Let L be a projective R-module of rank one. Is E(R, L) ~ E(S,LRRrS)?
Also, is Eg(R, L) ~ Ey(S, L& rS) ?

We have consciously decided to tackle the above questions in the case L = R first.
The proofs in this case are much more comprehensible as one is working with generators.
We prove that E(R) is isomorphic to E(S). The general case for arbitrary L is proved
in Theorem 3.2.4. If the dimension of R is even, then we prove that Eg(R) is isomorphic
to Ep(S).

The following remark ensures that for a subintegral extension R — 5, there are
natural maps from E(R) to E(S) and from Ey(R) to Ey(S).

Remark 3.2.1. Let R < S be a subintegral extension and let dim(R) = n. Then
dim(S) = n. The definition of a subintegral extension asserts that the inclusioni: R < S
induces a bijection 7* : Spec(S) — Spec(R). As S is integral over R, the going up theorem
holds for this extension. As R,S are both Noetherian, this implies that i* is a closed
map. But since * is bijective, it is therefore an open map and as a consequence, the
going down theorem also holds for this extension. As S is integral over R, the lying

0 t i
ver theorem is already there. These two theorems imply ‘that for an ideal I of R,

h —_
we have ht(I) = ht(IS). It now follows from [M-Y 2, Definition 3.3] that there is a
morphism from E(R) to E

(S) (see also Remark 2.2.2). However, we give the details.
Let (I,wy)

be a pair, where I is an ideal of R of height n and wy : (R/I)" »I/*isa
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local orientation of /. Then by the above discussion, we have ht(IS) = n. Although S
may not be flat over R, note that the local orientation w; induces a local orientation
wi 2 (S/IS)™ — IS/(IS)? of IS in a natural way. Clearly, if wy is a global orientation,
then so is wy. Thus we have a canonical morphism ® : E(R) — E(S) which maps (I, w;)
to (IS,wj). It is now easy to observe from the above discussion that there is also a
canonical morphism &g : Eq(R) — E(S) which sends (1) to (I5).

To answer the question raised at the beginning, we first prove the following result.

Theorem 3.2.1. Let R be a Noetherian ring of dimension n > 2. Let R — S be a
finite subintegral extension. Then the induced homomorphism ® : E(R) —» E(S) is an

1somorphism.

Proof. By Lemma 3.1.2 the extension Ryq — Sreq iS subintegral. We know that
E(R) ~ E(Rpeq) and E(S) ~ E(Sq) by Proposition 2.2.1, and therefore without
loss of generality we assume that R,S are both reduced. Further, we may assume
that the extension R < S is elementarily subintegral. From Lemma 3.1.4, we have
(R/C)red = (S/C)seq, where C is the conductor of R in S. Since the extension R < S
is finite and R, S are both reduced rings, it follows from Lemma 3.1.5 that ht(C) > 1.
Step 1. In this step we prove that the induced map ® : F(R) — E(S) is injective.
Let (I,w;) € E(R) such that (IS,w?) =0in E(S). Here I C R is an ideal of height

2
n and wy is a local orientation of I represented by, say, { = (a1, ,an) + I=. To prove
that (I,wy) = 0 in E(R), we have to find vy, - , v, such that [ = (vi,-- , Up) with
vi-a; €2 fori=1, - ,n.

Since (1S,w}) =0 in E(S), there exist oq,--- , a, € IS such that IS = (a1, ,n)
where a; — o4 € (IS)2.
Since (ay, - ,a,) + I? = I, applying the moving lemina (Lemma 2.1.4), we can find

bi,--+.by € I and an ideal I’ of R such that
() INI' =(by, - ,b,) with a; — b; € I%.
@) '+InCc=R

(iii) ht(I') > n.
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If ht(I') > n, then I’ = R and we are done by (i). Therefore we assume that
ht(I’) = n. Now consider the equation ISNI'S = (b, - ,by) in S. On the other
hand we have I.S = (a3, -+ ,0n) such that a; —o; € (IS)2. Therefore, o; — b; € I2S.
Using the subtraction principle (Proposition 2.3.1), we have 81, -+, n € I'S such that
IS =i, fBn) with B — b € (I'S)2.

AsI'+C = R, we have I'® S/C ~ S/C. Further note that the image of I' in R/C is
R/C and the image of I'S in S/C is S/C. This implies that (B1,- - - ,Ba) € Uma(S/C)
where bar denotes modulo C in S. Therefore, (81, ,8n) € Um,, ((S/C)req). Note that
we have (R/C)reqd = (S/C)req- As the canonical map : Umy,(R/C) — Umy((R/C)red)

is surjective, there are elements f1,---, fn € R such that (]71, ‘e ,}"Z) € Um,(R/C)
(where tilde denotes reduction modulo C in R). Moreover, for each i € {1,--- ,n}, we
have f; - B € ﬁ(S/C), where n(S/C) is the nil-radical of S/C. '

Now we have two unimodular rows (B, ,Bn) and (f,- -, fn) in S/C such that

_ fi — Bi €n(S/C). Therefore, by [MK-M-R, Remark 2.3], there exists a transvection & of
(S/C)™ such that (E, s ,B;)E = (ﬁ, RN ﬁ) By Proposition 2.1.4, @ can be lifted to
an automorphism o of 5™ such that ¢ = Id modulo I’S. Let (B1, ", Bn)o=(91,""" »9n)-
Then we have (g1, -+ ,9n) = (B, . B,)T = (f1,--- + fn) in S/C. Therefore f;—g; € C.
Since f; € R, we have g; € R.

We now claim that I' = (g, - - ,9n) and g; — b; € I,

Proof of the claim : We first note that as I’ is comaximal with C and C is the conductor
ideal, we have I'S N C = (I'S)C = I'C = I\ C. Futther, S/I'S = (I'S + C)/I'S ~
C/I'SNC)=C/(I'NC) ~ (I + C)/I' = R/I'. Therefore, 'SNR=1.

It now follows from above that (91,-++ ,9n) CI'. As 0 = Id modulo IS, it is easy

to see that g; — b; € 2SN R =12. As (]71, e ,;‘:) € Um,(R/C) and f; —g; € C, it

follows that (g, - - - 19n) + C = R. Recall that we also have I’'S — (91, »9n)S.

Let m be any maximal ideal of R. If C' C m, then 'Ry = R = (g1, +¢n) B On

the other hand, if C Z m, then Ry, = T-1R = T71S, where T = R~ m (this is true

because for any ¢ C, Ry = S). In this case,

Id — 7'~1p _ pp-1 -
B =I'T'R=ITS = (g1, ,¢,)T 'S= (g1, , gn)Pm-
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Therefore, I’ = (g1, ,gn) with g; — b; € 2. This proves the claim.

We have : (i) INI' = (by,--- ,by,), (ii) I' = (g1, -- ,gn) With gi ~ b; € I"”2. We can
now apply the subtraction principle (Proposition 2.3.1) to obtain vy, - - - ,Un € I such
that I = (vy, -+ ,v,) with v; — b; € I2. Asa;—b; € 12 it follows that v; — @; € I2. This
proves that (I,w;) =0in F(R) and that & is injective.

Step 2. In this step we show that @ : E(R) — E(S) is surjective.

Let (I,w;) € E(S). Suppose that wy is induced by : I = (fy,--- , fn) + J2. By using

the moving lemma (Lemma 2.1.4), we can find g1, - - , gn € I and an ideal K C S such

that

(a) (91,--- 9n) =INK where g; — f; € I?

(b) K +1NC =S where ht(K) > n.

I ht(K) >n,then K = S and I = (g1, -+ ,g»n) implying that (I,w;) = 0 in E(S)
and there is nothing to prove. Therefore we assume that ht(K) = n. Let wx be the
local orientation induced by gy, - , gn. Then from (a) we have (/,ws) + (K, wk) =01in
E(S). In order to prove that (I,wr) has a preimage in E(R) it is enough to prove that
(K,wk) has a preimage.

Let KNR=J. As K + C = S, we have J + C = R, and hence there exists c € C
such that | =1~ c € J. We can assume that ht(l) = 1. (If ht(I) =0, choose {’ € J such
that !’ does not belong to any minimal prime ideal of R. Then ht(l + I - 1"y = 1. Now
(I-DA~V)=1-1-V+1' If we writel” =1+ 1’ — I/, then we have 1 — 1" € C
and ht(!") = 1 and we can work with I”). Since ¢ € C, we have R, = Sc. Therefore
R/(1-c)=5/(1-c¢)and R < S is an analytic isomorphism along { € J. Therefore

using Proposition 2.1.1, we have
(¢) R/J ~S/K.
dy K=Js
(e) Asle J, wehave J/J? ~ K/K2.

Note that we have K = (g1, - »gn) + K2. As J/J? ~ K/K?, corresponding to this

set of generators of K/K?2 we have a set of generators of J/ J2. Calling them a3, - ,ax
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we have J = (a1, ,an) + J2. Let wy be the associated local orientation of J. Then
(J,ws) € E(R) and clearly o((J,wy)) = (K, wk). |

To extend the above theorem to all subintegral extensions we first prove that the Euler
class group commutes with direct limit in the following sense. Let S be a Noetherian ring
such that S is the filtered direct limit of a direct system of Noetherian subrings {Su, ttas}
indexed by 2. Here, for a < 3 the map p1q3 : So < Sp is the inclusion map and for each
a €9, let po : Sq <> S be the inclusion. Assume that the following conditions hold: (1)
dim(S) = n = dim(S4) for each o € Q, and (2) for any ideal I C S, with ht(l,) = n
and u(I,/I2) = n, one has ht(1,S;) > n for a < 8 and ht(1oS) > n. It is now easy
to see that for all o, 8 € Q, the map g : Sa — Sp induces 845 : E(Sa) — E(Sp)
and jo 1 So — S induces ¢, : E(Sa) —> E(S) so that { E(S,), 8ap} is a direct system
of groups and ¢gfss = ¢o. Then we show below that the Euler class group E(S) is
isomorphic to the direct limit {lim E'(S4),0a}. A situation as above will occur when,
for example, the ring morphisms are all flat extensions (see Remark 2.2.2). In Theorem

3.2.3 we shall soon encounter another set up where it takes place naturally.

Theorem 3.2.2. With notations as above, E(S) = E(l_ll_‘g Sq) =~ li_HgE(Sa)-

Proof. As for each « there is a group homomorphism ¢, : E(S,) — E(S) with
P53 = ¢, by the properties of direct limit there is a group homomorphism ¥ :
lim E(Sy) — E(S). We prove that 1 is an isomorphism.

An element x of lim E(S,) is of the form z = 8,(x,) for some a € Q and z, €
E(Sa). Let 24 = (Jas wa) € E(Sq), where J, is an ideal of S, of height n and wq
1s a local orientation of J, induced by, say, Jo = (a1,--- ,a,) + J2. Assume that
¥(z) = 0in E(S). This implies that ba((Jorwa)) = (JoS,w?) = 0 in E(S), where

* . .
Wy is the local orientation of JoS induced by wg. Applying Theorem 2.2.1 we obtain

by,---
1 »bn € JoS such that JoS = (by,--- yon) with b; — a; = A€ JC%S Since S is the

filtered di imi ~ sy
red direct limit of the subrings S,,, it is easy to see that there exists 4 € 2 such

that aq,---
L, 0n, by, D SRR Wy Sg. Now there is v € Q such that S, <= S, and

Sp = S,. It follows that in 5., we have JaSy = (b1, - ,by) with b; —a; = ) € J§S7.
This implies that (JaSy,w%) =0 in E(S,

) and therefore z = 0 in 1_i_I§E(Sa), proving
that ¢ : th’E(SQ) — E(S) is injective.
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Next we prove that ¥ is surjective. Let (I,w) € E(S). Then I is an ideal of S
of height n and w is a local orientation of I induced by, say, I = (froeoy fu) + 12
Then by Lemma 2.1.3, there exists e € I such that 7 = (fy,--- s fn,€) where e(1 —¢€) €
(f1,-++, fa). Suppose that e(1 — €) = kyfi + --- knfn where k; € S. Since S is the
filtered direct limit of the subrings Sy, it is easy to see that there exits o € ©Q such that
fioo s fne by, ky € Sa. Let I' = (f1,-++, fn,€)Sa. Then I' = (f1,"-- , fa,e —
kifi =+~ knfn) = (f1,- - -, fn, €2) implying that I’ = (fy,---, fu) + I, If o' denotes
the local orientation of I induced by this set of generators of I'/I2, then (I’,u') € E(S,).
Then clearly ¢4 ((I',w’)) = (I, w) and it proves that (6, ((I',«'))) = (I,w), implying
the surjectivity of . o

Theorem 3.2.3. Let R be a Noetherian ring of dimension n > 2. Let R < S be
any subintegral extension. Then the induced homomorphism ® : E(R) — E(S) is an

1somorphism.

Proof. Recall that S is the filtered union of subrings S, where each S, is obtained from
R by a finite sequence of elementarily subintegral extensions. This means that given
two subrings S, Sy of the above type, there is a subring S, of the above type such that
R < Sy < 8y and R < S3 — Sy. Let S = UpeSa-

For elements o, 3 € Q define o < 3 to mean So C Sp and let pag : Sa <> Sp be the

inclusion map. Then S is the filtered direct limit of {Sq}acq, i€,

5= l_irl}an.
o)

For a < (e Q) we have a group homomorphism 8ag : E(S.) — E(Sp) induced by
the inclusion map S, — Sp. Note that Sq < Sp is subintegral.

We then have the direct limit lig & (Sq) of the direct system of groups {E(Sa)}acn
and group homomorphisms b : E(Sa) — lim E(Sa)-

By Theorem 3.2.2, E(S) = E(lim S,) ~ lim £(Sa). Since by Theorem 3.2.1, E(R) ~
E(Sa) for each q, it follows that E(R) =~ E(S). o

We now proceed to prove that if R < S is subintegral, then E(R, L) is isomorphic to

E(S,L ®R S), where L is a projective R-module of rank one. Again we need to ensure
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that there is a natural morphism from ® : E(R,L) — E(S, L ®g S). As for any ideal
J C R of height n, by Remark 3.2.1 we have ht(JS) = n, the existence of ¢ is ensured
by [M-Y 2, Definition 3.3]. However, we present the explicit description of ® below for
the convenience.

We write I = L@ R"!. Let J be any ideal of R of height n and w; : F/JF - J/.J?

bé any surjection. Tensoring with .S/ J.S over R/J we obtain the induced surjection

. (F®rS) _ (JerS)

1

Y IS(FerS) IS eRS)

Now composing wy with the surjective map  induced by the natural surjection f :
J ®r S —» JS we obtain a local orientation of JS. We call it wY. Thus

.. (F®rS) @ (J®rS) F JS

Wi
T IS(FeRrS)  JS(J@RS)  J2S

Wy

FJJF I/
(F@gpS) _“J J(

TS(Fens — > JS/J%S

Note that if w; can be lifted to a, surjection § : F — J, then so can be w’. Therefore,
we have a well defined group homomorphism & : E(R,L) — E(S,L ®g S) which takes
an element (J,w,) of E(R, L) to (JS, wy) of E(S,L®gS).

We now prove the following theorem. We shall not give a detailed proof as it is along

the same line as the last two theorems. We shall only highlight the crucial deviations.

Theorem 3.2.4. Let R < S be o subintegral extension and L be a projective R-module

of rank one. Then the map @ : E(R,L) — E(S,L ®p S), described above, is an
isomorphism.

Proof . o
roof. As the direct limit argument of Theorem 3.2.3 works in this case too, we may
ass . . .
ume that S is obtained from R by a finite number of subintegral extensions. Therefore,
as befo
¢, we may assume that R, S are both reduced and R <« S is elementarily

subintegral. If C is the conductor of R in S, then ht(C) > 1 and (R/C)red = (S/C)req-

Let (J,wy) e E(R,L) be such that (JS,w*) =0in E(S.L ®r S). Applying the
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moving lemma (Lemma 2.1.4) and the subtraction principle (Proposition 2.3.1), we may
assume that J+C = R. As (JS,w%) = 0in E(S, L ®r S), there exists a surjection
B': F®pS — JS such that 8 lifts w¥. As JS+C = S, it follows that B"=p®sS/C e
Um((F ®r 5/C)*). Now 8" will induce a unimodular element of (F ®p (S/C)red)* and
also, as (R/C)red = (S/C)red, a unimodular element of (F @y (R/C)red)*. We lift
the latter one to 0 € Um((F ®g R/C)*). Now note that § ® g/¢S/C and B” are the
same modulo the nil radical of S/C. Therefore, applying Proposition 2.1.2, we obtain
7 € E(F ®p S/C) such that 6 ® p;cS/C = f&. Applying Proposition 2.1.4 we can lift &
to an automorphism ¢ of F* ® .S such that ¢ = id modulo JS.

Write 8 = #'0. Then 3 : F'® pS ~» JS and 8 lifts w (as o is identity modulo JS).
As J+C =R, we have J ® pS ~ JS (see Lemma 2.1.1), and J® RR/C ~ R/C, and
J®RrS/C ~ §/C. Up to these identifications, the following diagram is Cartesian

J J®S = JS
| l
(E/C) (5/C)

As /3 and § agree over S/C, they will patch to. yield a surjection a : ' — J. Here is
the patching diagram:

F F®S
\\\a 5
™ IRS~JS
F®R/C Fes/C
N T
R/C __Is/c

Identifying J ® pS with JS and using the isomorphism §/J5 ~ R/J, we have:
a® (R/J) = a®(S/JS) = (@@ )@ (5/J5) =
R R R °S

,5(%) (8/J8) = wJR(,z/gJ(S/JS) = w,llgl(R/J) =wJ.



42 Chapter 3: Subintegral extensions and the Euler class groups

Thus a lifts w, implying that (J,w,) = 0 in E(R, L). This proves that ® is injective.
The proof that ® is surjective is similar to the proof in Step 2 of Theorem 3.2.1. [

Applying the above theorem we have the following corollaries.

Corollary 3.2.1. Let R be a ring of dimension n > 2 and T (Ryeq) be the seminormal-
ization of Ryeq- Let L be a projective R-module of rank one and write L= LRV (Ryeq)-
Then E(R, L) =~ E(+(Rye), L).

Proof. Recall that if A is a reduced ring then its seminormalization is the subintegral
closure of A in its total ring of fractions.
Here we have E(R,L) ~ E(Ryeq, L ® Ryeq) by Proposition 2.2.1, and the group
E(Ryed, L ® Ryeq) is isomorphic to E(*(Ryeq), L) by Theorem 3.2.4. O
The (unstated) result of Bhatwadekar from [B 1], as mentioned in the introduction,

can now be deduced (although we have the restriction that Q C R).

Corollary 3.2.2. Let R S be a subintegral extension of Q-algebras with dim(R) =
n > 2. Let P be a projective R-module of rank n. Then P has a unimodular element if

and only if the projective S-module P Qg S has a unimodular element.

Remark 3.2.2. The above corollary is also true if we take S = +(Ryq). Further, if

dim(R) = 2, then we do not need the assumption that Q C R (sce Definition 2.2.2).

Adapting the same method as above, one can similarly prove the following result.
We may also note that by Lemma 5.1.3, as R[T] is faithfully flat over R, the extension
R < S is subintegral if and only if so is the extension R[T] — S[T7.

Theorem 3.2.5. Let R be g ring (containing Q) of dimension n > 3. Let R<+ S be a
subintegral extension. Then E(R[T)) ~ E(S[T)). In particular, if R is reduced and if S

is the seminormalization of R, then E (R[T1) ~ E(S[T]). Therefore, for an arbitrary R,
the groups E(R[T]) and E(*(Ryeg)[T)) are isomorphic.

Proof. Si . . ..
roof. Since the method of proof is. quite similar to Theorem 3.2.1 above, instead of
writing the whole proof, we just work out one key step. We can assume that the rings are

reduced and the extension R — S is elementarily subintegral. Let C be the conductor
of Rin S. We have ht(C) > 1.
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Let I = (f1,--+.fa) + I2. We just show how to ‘move away’ from I to obtain a
suitable residual ideal I’ of height n so that I’ is comaximal with both 7 and C[T]. Let
J=I’NC CR. Then ht(J) > 1. Let b € J be such that ht(b) = 1. Let bar denote
reduction modulo (b). We have, T = (ay,--- ,@n) + I~ in R[T]. As dim(R) < n — 1, it
follows from Proposition 2.1.5 that there exist g1, ,gn € I such that T = (77, , Gn),
where g; — f; € I Therefore, I = (g1, ,gn,b) such that g; — f; € I2. One can now
apply Lemma 2.1.2 and Lemma 2.1.3 to find an ideal I’ such that (possibly after some
renaming the ¢;’s): (1) I N I' = (g1,--- ,gn), (2) I’ + I N C[T] = R[T], (3) ht({') =n.

Note that I’ = (g1,-- - , gn) + I'?. Now we can work with I’ and apply the subtraction

principle [D 1, Proposition 4.3] at appropriate places to prove the results. O

Let R be a ring of dimension n > 2. Given a pair (J,w,); where J C IR is an ideal
of height > 2 and wy : (R/J)* — J/J? a surjection, the Segre class s(J,ws) has been
defined in [D-RS] in the following way:

Suppose that wy induces J = (aq,--- ,an) + J2. Applying a variant of the moving
lemma [D-RS, Lemma 2.7], we can find ¢;,--+ ,cn, € J such that (c,- - ,en) =JNJ;
where htJ; > n, J; +J = R and ¢ = a; modulo J2. If J; is a proper ideal then
Ji=(c1, -+ ,¢,) + J? and it induces a local orientation wy, : (R/J1)" — J1/J?. The
Segre class of the pair (J,w) is defined as: s(J,wy) = —(J1,wy,) € B(R). If Jy = R then
J =(c1,- -+ ,cp) and the Segre class is defined to be zero. Tt is proved that the definition
of the Segre class does not depend on the choice of J;. Further, when ht(J) = n, the
Segre class coincides with the Euler class of (J,ws). We now recall the following result

on Segre classes.

Theorem 3.2.6. [D-RS, Theorem 3.3] Let R be a ring of dimension n = 2. Let JCR
be an ideal of height > 2 and wy : (R}J)"* — J/J? be a surjection. Suppose that
s(J,ws) =0 in E(R). Then w,y can be lifted to a surjection 6:R" > J.

We now have

Theorem 3.2.7. Let R be a ring of dimension n > 2 and R <3 S be a subintegral
n 2 recti

extension. Let J C B be an ideal of height > 2 and wy : (R/J)* = J/J be a surjection.

Assume that the induced surjection w’ : (S/JS)" —» JS/J2S has a lift to a surjection

6:S™ - JS. Thenwy can be lifted to a surjection o : R" = J.
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Proof. The hypothesis tells that the Segre class s(JS,w}) =0 in E (S). It is now obvious
from the definition of the Segre class and Theorem 3.2.3 that s(J,w,;) = 0in E(R).

Therefore, by the above theorem, w; can be lifted to a surjection 6 : R" — J. O

We now mention another immediate consequence of Theorem 3.2.3. We need to
recall some generalities from [B-RS 4, Section 7]. Let A be a ring of dimension 2. Let
I?BSp(A) be the set of isometry classes of (P,s), where P is a projective A-module of
rank 2 and s : P x P — A anon-degenerate skew-symmetric bilinear form. In [B-RS 4],
a group structure is defined on Kg.S p(A), where the pair (A2, h) plays the role of the
identity element, where h is the unique (up to isometry) non-degenerate alternating form
on A% Tt is then remarked that this group coincides with the usual notion of I?:)Sp(A).

Further, it is proved in [B-RS 4, Theorem 7.2] that KySp(A) is isomorphic to the Euler
class group E(A).

Corollary 3.2.3. Let R < S be a subintegral extension with dim(R) =2 = dim(S).
Then the groups I?E)Sp(R) and I?BSp(S) are isomorphic.

Proof. We have KoSp(R) ~ E(R) and KSp(S) ~ E(S), the result is obvious from
Theorem 3.2.3. =

We now consider the weak Euler class groups. We shall first prove the invariance of
the weak Euler class group under finite subintegral extension (for even dimensional rings)

and then generalize it to arbitrary subintegral extension by a direct limit argument.

Before proceeding we first clarify a notation.

Remark 3.2.3. Let R be a ring of dimension n and take (I,w;) € E(R). Letu€ R be a

unit modulo /. By 7iw; we mean the local orientation obtained from the composition
) w
(R/D)™ = (R/1)" S 1/ 12,

where 6 € GL,,(R/I) has determinant (here "bar” means modulo I). It follows from

B .
[B 2, Lemma 2.2] that if w; and wg are two local orientations of I, then there exists

v € R such that v is a unit modulo [ and wy = Tw;.

Theorem 3.2.8. Let R be g ring (containing Q) with dim(R) = n, wheren is even. Let
R — S be a finite subintegral extension, Then Eo(R) ~ Ey(S).
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Proof. Let ®q : Eg(R) — Ep(S) be the group homomorphism induced by the inclusion
R < S. We have already proved that there is an isomorphism ® : E(R) 5 E(S). Recall
that there are canonical surjective morphisms ¢ : E(R) — Ego(R) and ¢/ : E(S) — Eg(S).
Furthermore, ¥'® = ®y1». Therefore it easily follows that ®g is surjective. Note that
this is true even if we do not assume that n is even.

We may assume that R is reduced. Let C be the conductor of Rin S. Then ht(C) > 1.
To prove that ®y is injective, let (I) € FEo(R) be such that ®o((1)) = (IS) = 0 in Ey(S).
Let w be any local orientation of I and w* be the local orientation of IS induced by w.
Then (I,w) € E(R), (IS,w*) € E(S) and ¥{((I,w)) = (1), ¥'((IS,w*)) = (I.S). Applying
moving lemma (Lemma 2.1.4) we can find (J,w;) € E(R) such that (I,w) + (J,wy) =0
in E(R) and J+INC =R. Then (JS) =0 in Ey(S) and if we can prove that (J) =0
in Eg(R) then it implies that (I) = 0 in Eg(R). Therefore, without any loss of generality
we may assume that | is comaximal with C. Consequently, S/IS ~ R/I. We will need
this information in the latter part.

Since (IS) = 0 in EO(S), by Proposition 2.2.2 there exists a stably free S-module P’
of rank n together with an isomorphism x’ : § = A™P’ such that (P, x) = (IS,w®S)
in E(S).

We now claim that there is a stably free R-module P of rank n such that P®S~P.
Proof of the claim: As P’ is a stably free S-module of rank n = dim(9), there is a uni-
modular row (ag, a1, ,an) € Umy,y1(S) corresponding to P'. Then (@, @1, - +Gn) €
Um,y1(S/C), where bar denotes reduction modulo C. Since dim(S/C) < n —1, the row
(@, - ,Gp) is elementarily completable. Say (@i, - - ,—dn)g =(1,- ,0). Let 8 € Enta(5)
be a lift of 8. Write (ag, - , @n )0 = (bg, -+ +bn). Then (bo, - ,by) = (1,0, ...,0). There-
fore we have by — 1€ C C R and by, ,b, € C C R. Hence by, - ,bn € R. Let m
be any maximal ideal of R. If C C m, then by ¢ m. If C ¢ m, then b; ¢ m for some
i=1,--- ,n. In any case, the ideal in R generated by bo, - - ;bn i 0t contained in any
maximal ideal of R. Therefore, (bo,- -+ ,bn) € Umn41 (R).

Let P be the stably free R-module of rank n corresponding to {bo, " > br). Then it
is easy to check that P S ~ P’.

Let x : R 53 A"P be an isomorphism. Consider the Euler class e(P ® S, x ® S) =
e(P'. x® S). Now y’ and y® S differ by a unit of S, say, u. Therefore, (P ® S, X ®5) =
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(IS,uww) in E(S). As S/IS ~ R/I, the image of u in S/IS has a lift to v € (R/I)"
(where bar denotes reduction modulo I). We then have ®(e(P, x)) =¢e(P®S5,x® 5) =
(IS,uw) = (IS,uw). On the other hand, ®({I,7w)) = (IS,uw). As @ is injective, it
follows that e(P, x) = (I,7w). By Theorem 2.2.1 there is a surjection a: P+ 1. As P
is stably free, it follows from Proposition 2.2.2 that (I) = 0 in Fp(R). This proves that
&g : Eo(R) — Ep(S) is injective and completes the proof. O

Now we give an easy proof of Theorem 3.2.8.

Proof. Let R — .S be a finite subintegral extension of Q-algebras with dim(R) =n =
dim(S), where n is even. By [B-RS 4, Theorem 7.6] we have the following commutative

diagram with exact rows:

Urns) . B(R) — Eo(R) —> 0

Ent1(R)
l¢ l@ l@o
Um, (S)
Enr1(5) E(5) Eo(S) —0

Now @ is an isomorphism and it is easy to see that ¢ is surjective (see the proof of the
claim above). Therefore, it follows that D is injective. We may note that ¢ is also

injective due to a result by Gubeladze [G]. -

Remark 3.2.4. Tf dim(R) = 2, we do not need to assume that Q C R in the above
theorem.

We now prove that the weak Euler class group also commutes with direct limit.

Let S be a Noetherian ring which is the filtered direct limit of a direct system of

Noetherian subrings {S,, #op} and the set up be exactly as in Theorem 3.2.2. Then it

is easy to see that the weak Euler class groups form a direct system {Eo(Sa); fag}- Let
{l—lg Eo(Sa). fa} be its direct limit. For each a € Q, we also have group homomorphism
ho : Ey(Sy) — E(S) induced by the inclusion pq : S, < S with the property that
hgfap = ha for a < B. We prove below that Ey(S) is isomorphic to h_n;Eo(Sa) Note

that we do not put any restriction on the dimension of the ring.

Theorem 3.2.9. With notations as abowve, Ey(S) = Eo(li‘lg Sa) =~ @E;EO(SQ).
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Proof. In this proof we shall apply Theorem 3.2.2 and freely use the notations from there.
As for each « there is a group homomorphism by, : Eg(Sa) — Eg(S) with kg fos = ha
for a < B3, by the properties of direct limit there is a map g : li_n}Eo(Sa) — Ey(S). We
prove that g is an isomorphism.

By Remark 2.2.3 there is a canonical surjective morphism E(S,) — Eg(S,) for
each o € Q2. They will induce a surjection @ : li_n}E(So,) — lim Eo(Sa). We also have
a canonical surjection ¥ : E(S) —» Fy(S). We then have the following commutative

diagram.

ling E(Sa) —*— > B(S)
Ql l\p
limg Eo(Sa) —* Eo(S)

Therefore, g is surjective. To prove that g is injective, note that an element x
of lim Fo(Sa) is of the form = = fo(xq) for some o € Q and 2, € Ep(Sa). Let
To = (Jo) € Eo(Sy), where J, is an ideal of S, of height n. Assume that g(z)} =0 in
Ep(S). This implies that ho((Ja)) = (JaS) =0in Eo(S).

Let (Ja,wa) € E(S,) be a preimage of (J,). By a slight abuse of notations let us
view (Jq,wq) as an element of lim £(S,) and write W((Jay Wa)) = (JouS,wy), where w, is
induced by w,. By the commutativity of the above diagram, ¥((JoS,ws)) = (JaS) =0
in Eo(S). Applying [B-RS 3, Lemma 3.3] (which works for a commutative Noetherian
ring) it follows that ) l

(JaSswd) + D (Lwi) = D, (Ljrwy)
i=1 j=k+1
in E(S), where each of I, - - - , I; is generated by n elements.

We now want to lift the above equation in lig £ (Sa)- Let us describe the process with
one element, say, (I,w;). Let /3 = (a1, ,an) and let w denote the global orientation
of I induced by these generators. Then by Remark 3.2.3, (I 1,w1) = (I, ww) for some
v € S which is unit modulo /;. There exists v € S such that uv —1= aiby + -+ anbn.
As S is the filtered direct limit of {Sa}aecn, we can find some g1 € Q such that
a, - ap, by - . Jbnyu,v € Sp,. Let Ky = (a, -+ ,an)Sp, and let o denote the global

orientation of K induced by these generators. Composing o with an automorphism of
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(Sg,/K1)™ with determinant © modulo K we get a local orientation, say, o1 of K. It is
then clear that ¢z, ((K1,01)) = ({1, w1).

Applying the above process for each of I;,---,I; we can find a suitable 8 € Q
and elements (K, 04) € E(Sp), 1 < i < I such that ¢g((K;,04)) = (I;,w;) for each 1.
Moreover, applying Theorem 3.2.2 it is easy to see that the following equation holds in

E(Sp).
k

‘ l
(JaSpwa ® Sg) + > (Kiyoi)) = Y, (Kj,05)
=1 j=k+1

As each K; is generated by n elements, it follows that (JaSs) =0 in Ey(Ss) and as
a consequence, = = 0 in lim Eo(Sa). U

Theorem 3.2.10. Let R be a ring (containing Q) with dim(R) = n, wheren is even.
Let R — S be a subintegral extension. Then Ey(R) ~ Eo(S).

Proof. The proof is along the same line as in Theorem 3.2.3 and is obtained by using

Theorem 3.2.8 and Theorem 3.2.9. O

Remark 3.2.5. Similarly one can prove that if R — S is a subintegral extension of even
dimensional Q-algebras, then Eo(R[T]) ~ Eo(S[T)).
Remark 3.2.6. Let R < Sbea subintegral extension of even dimensional rings and L be
a projective R-module of rank one. By Remark 2.2.4 we know that the weak Euler class
group does not depend on L. Therefore, applying Remark 2.2.4 and Theorem 3.2.10
above, we have Eg(R, L) ~ Ey(R) = Eo(S) ~ Ey(S,L ® S).

When dim(R) is not necessarily even, we have the following affirmative result. Recall
that for a module Ar » the notation s( M)
of M.

stands for the minimal number of generators

Theorem 3.2.11. Let R be an affine algebra over a Cy-field k of characteristic zero

and R S be g subintegral eitensioﬁ with dim(R) =n > 2. Then Eo(R) ~ Ey(S). In

particular, if J is an ideal of R of height n such that u(J/J2) = n, then p(J) =n if and
only if W(JS) = n.

Proof. For any affine algebra of dimension n 2 2 over a Cy-field of characteristic zero,

the Euler class group is isomorphic to the weak Euler class group. A proof for n > 3 is
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given in [D 2, Lemma 5.2], whereas the case n = 2 can be worked out easily. Therefore,
we have E(R) ~ Ey(R) and E(S) ~ Ey(S) and the first assertion follows from Theorem
3.2.3.

To prove the second part, let J C R be an ideal of height n. If J is generated by n
elements, then obviously so is .J.S.

Conversely, let u(J/J?) = n and suppose it is given that u(JS) = n. Let wy :
(R/J)* —» J/J? be any surjection and let w% : (S/JS)™ — JS/J2S be the surjection
induced by wy. As E(S) ~ Ey(S), we have (JS,w?) = 0 in E(S) and therefore by
Theorem 3.2.3, (J,w;) =0 in E(R) and J is generated by n elements. A t
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Chapter 4

Integral extensions and the Euler

class groups

The aim of this short chapter is to explore what happens when R < S is an integral
extension. We shall give an example to show that even if R < S is a finite (hence
integral) birational extension, E(R) may not be isomorphic to E (S). Before giving this
example, we engage ourselves in a more delicate investigation and prove a result which
generalizes Theorem 3.2.3 and improves the understanding further.

First, to ensure that there is a group homomorphism from E(R) to E(S) when
R < S is integral, we need to prove some generalities on the Euler class group. In fact

we define a group which is very similar to the Euler class group.

Definition 4.0.1. Let A be a Noetherian ring of dimension n > 2. Let G be the
free abelian group on the pairs (J,wy), where: (1) J is an m-primary ideal for some
maximal ideal m of A (not necessarily of height n), (2) wy is an E,(A/J)-equivalence
class of surjections from (A/J)" —» J/J? (ie., a local orientation of J). Given any
zero dimensional ideal I of A and a surjection wy : (A/I)™ — I/I%, one can associate
an element of G in an obvious manner; we call it (I,w;). Let # be the subgrcup of G
generated by all elements of the type (I,w;) where dim(A/I) =0 and wy can be lifted
to a surjection from A" to I. We define E(4) = G/H.

We can follow the theory of Euler class groups as developed in {B-RS 1, B-RS 4] and

51
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adapting similar methods can prove the following results. Recall that in [B-RS 1, B-RS 4]
the results are proved for ideals of height n in an n-dimensional ring whereas here we
need the same results for zero dimensional ideals. Since the methods of proofs are exactly

the same, we do not repeat them here.

Lemma 4.0.1. Let A be a Noetherian ring of dimension n > 2 and J C A be a zero
dimensional ideal. Suppose that J = (f1,- -+, fn) + J%. Then there exist g1, ,gn € J
and an ideal J' C A such that '

@) JNJT = (g1, ,gn) with fi — g; € J2.
(i) J+J' = A with ht(J") > n.

(iil) Given finitely many zero dimensional ideals Ji,7+ ,Jr of A, the ideal J' can be

chosen with the additional property that it is comazimal with Ji fori=1,---,r.

Proposition 4.0.1. (Addition principle) Let A be a Noetherian ring of dimension
n > 2. Let Jy and Jy be two zero dimensional ideals which are comaximal. Suppose that

Ji=lansan) and Jy = (b, ,by). Then iNJy= (e, ,en), where a~c; € J2
and b ~ ¢; € J3.

Proposition 4.0.2. (Subtraction principle) Let A be a Noetherian ring of dimension

n 22 Let Jy and Jy be two zero dimensional ideals which are comazimal. Suppose that

N1=(a1,--- ,an) and JiNJy=(c1, - ,ep) witha; —¢; € JE. Then Jo = (b1, - ,bn)
with bi—cie J22

Theorem 4.0.1. Let A be a Noetherian ring of dimension n > 2. Let J C A be a zero

dimensional ideal such that J/J? is generated by n elements and let wy : (A)J)" — J/J?

be a local orientation of J. Suppose that the image of (J, wy) is zero in E(A). Then wy

can be lifted to a surjection a: A* — J,

From the above results it is natural to suspect that F(A) is possibly isomorphic to

E(A). Such is indeed the Case, as proved in the proposition below.

Proposition 4.0.3. Let A be a Noetherian ring of dimension n > 2. The canonical
map from E(A) to E(A) is an isomorphism.
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Proof. 1t is obvious that there is a canonical map, say, 6 : E(4) — E(A), which
takes an element (J,ws) of E(A) to (J,wy) in E(A). It is also clear that 6 is a group
homomorphism.

We now define a map in the reverse direction. Let J C A be an ideal such that
dim(A/.J) = 0 and let w; be a local orientation of J given by: J = (ay,- -+ , a,) +.J2. By
Lemma 2.1.3 there is e € J2 such that J = (ay, - , an, €), where e(1 —€) € (ay,--- ,an).
Using a standard general position argument (see [D-RS, Lemma 2.4]) it follows that
there are elements 71, ,¥n € A such that the ideal I = (a3 + me, - , an + Vne) has
the property that ht (I) > n. Note that [ + () = J and (e) C J2 Applying Lemma
2.1.3 we see that there is an ideal J’ such that

(a1 +me - an+7me) = JnJ’

where J’ + (¢) = A. Now it is easy to deduce that ht(J’) > n. The case when
J' = A being trivial, we assume that ht (J') = n. Let us write b; = a; + 7ie. Clearly
b1, -+ , by induce wy. Let wy be the local orientation of J’ induced by by, - -+, bn. We
then have (J,ws) + (J',wy) = 0 in E(A). One can repeat the above procedure for
J' and wy to obtain an ideal J” of height n and a local orientation wy» such that
(J,wp) + (J",wm) =0in E(A). Therefore, (J,ws) = (J”,wyn) in E(A).

We define n : E(A) — E(A) by sending (/,w.) to (J”,wy») in E(A).

We need to prove that 7 is well-defined.

We show that our definition of 1 does not depend on the choice of J”. Since
(S wp) +(J" wyn) =0in E(A), we only need to check that our definition is independent
of the choice of J'. Let I’ be an ideal of A of height n such that (i) J + I' = A and (ii)
(d1, - ,dp)=J NI, where d; — a; € I'".

If I’ = A then it is easy to check using subtraction principles (Proposition 4.0.2) that
(V' wyr) =0 in E(A). Therefore assume that I’ is a proper ideal. In fact, in the proof
we will assume all the ideals to be proper.

Let wys : (A/I')* —» I’/ I"? be the local orientation induced by di, - - - ,dn. We have
to show that (J/,wy) = (I’,wys) in E(A). Using Lemma 4.0.1 we can find an ideal Ji

of A of height n and a local orientation wy, such that: (i) J1is comaximal with each
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of J, J and I’ , (ii) (J',wyp) + (J1,ws,) = 0 in E(A). Now it is enough to prove that
(I',wp) + (J1,wy, ) = 0in E(4). Again applying Lemma 4.0.1 we can find an ideal J,
of A of height n such that JN Jz is generated by 7 elements and Js is comaximal with
each of J , J', I’ and J;. Now the ideals J' NJ; and J N Jy are both generated by n
clements and they are comaximal. Applying the addition principle (Proposition 4.0.1),
the ideal J' N J1 N J N Jy is generated by n elements with appropriate set of generators.
Since J' N J is generated by n elements, by the subtraction principle (Proposition 4.0.2)
it follows that Ji N Jp is generated by n elements with appropriate set of generators.
Since JNI' and J; N Jo are both generated by n elements and they are comaximal, by
the addition principle I’ N J;NJ N Jy is generated by n elements with appropriate set of
generators. Again since J N J; is n-generated, it follows using the subtraction principle
that I’NJy is n-generated by the appropriate set of generators. Keeping track of the
generators, it is easy to see that this implies (I',wp) 4 (J1,wy, ) = 0 in E(A). Therefore,
the map is well defined.

Clearly 7 is a group homomorphism. Further, 8 and 7 are inverses of each other. O

An easier proof of the above proposition can be given, as we see below. However the
above proof explicitly demonstrates the map from E(A) to E(A).

Proof of Proposition 4.0.3: Using Moving lemma 2.1.4 and Chinese remainder
theorem, it is easy to see that any element of E(A) is of the form (I,wr), where [ C A
is an ideal of height n and w; is a local orientation of I. Suppose (I,wr) =0in E(A).
By Theorem 4.0.1, w; can be lifted to a, surjection a: A" — I. But then (I,w;) =0 in

E(A). Hence 8 is injective. Also by Lemma 4.0.1, it is clear that 8 is surjective. )

Remark 4.0.1. As E(A) = E(Aeq), it follows that E(A) o~ E(Ared)-

We nozv assume that R — S is an integral extension with dim(R) = n > 2. Let
(J;w;) € E(R), where dim(R/J) =0 and wy : (R/J)* - J/J? is a local orientation of
J. As R— S is integral, we have dim(S/JS) = 0. Further, w; induces wy: (§/IS)™ —
JS/(JS)?, alocal orientatiqn of JS. Therefore, (JS, wy) € E(S). It is now easy to see
that there is a group homomorphism, say, & : E(R) — E(S ), which takes (J,wy) to

J * : 4.
(JS,w3). Using Proposition 4.0.3, we have a group homomorphism from E(R) to E(S).

We now prove the following theorem which improves Theorem 3.2.3.
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Theorem 4.0.2. Let R — S’ be an integral extension such that the extension R,eg < Syeq
is birational. Then the map ® : E(R) — E(S) is surjective. Further, if R cq > Sreq 18

o subintegral extension, then ® is an isomorphism.

Proof. We first show that it is enough to prove the result when R < S is a finite extension.
To see this, let (I,w) E.E(S). Then I is an ideal of S with dim(S/I) =0 and w is a local
orientation of I induced by, say, I = (fy,--+, fu)+I?. Then by Lemma 2.1.3, there exists
e € I such that I =(f1,--- , fn,e) where e(l—e) € (f1,--- , fn). Suppose that e(1—e) =
kyfi + - knfn where k; € S. Now consider Ry = R[f1, ", fa,€. k1, s kn] < S and
R < R is finite. Let I' = (fy, -, fu,€)R1. Then I’ = (f1,--, fuse — k1f1 — -+ —
knfn) = (f1,-+ , fn,€?) implying that I’ = (fi,- - , fn) + I’?. If o' denotes the local
orientation of {’ induced by this set of generators of 1’/1'?, then (I',w’) € E (£1). The
map from E(R;) to E(S) takes (I’,w') to (I,w). It is enough to find a preimage of
(I',w') in E (R). Therefore, we may assume the extension to be finite to start with.

Let us write & = Ryq and S = Seeq. Let C be the conductor of R in S. As R—S
is birational, using Lemma 3.1.5 we have ht(C) > 1.

Let (I,wy) € E(S). By Proposition 4.0.3 we may assume that ht(7) = n. Exactly
the same proof as in Step 2 of Theorem 3.2.1 will show that the map from E(R) to E(S)
is surjective. It follows that the map ® : E (R) — E(S) is surjective.

We now assume that B < S is subintegral. Then, by Theorem 3.2.3 E(R) ~ E(S),
and we have,

B(R) ~ E(R) ~ E(R) ~ E(S) ~ E(S) ~ E(S).

We now recall some definitions.

Definition 4.0.2. The group of all isomorphism classes of rank one projective R-modules
is called the Picard group of R and denoted by Pic(R). The operation is defined by
[P} «[Q] := [P ® @], where [P] denotes the isomorphism class of P. Pic is a functor
from commutative rings to abelian groups. If f : R — S is a ring homomorphism then
Pic(f) : Pic(R) — Pic(S) is a group homomorphism sending L to L ®r 5.

Definition 4.0.3. Let SP(R) consists of the isomorphism classes of projective R-modules.
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Write (P) for the isomorphism class of P. The Grothendieck group of R is

def <(P)|P € B(R) > ‘
<P Q) (P)- (QIP.Q e P(R) >

Ko(R)

Let [P] denotes the image of (P) in Ko(R). Thus we have [P © Q] = [P]& [Q] in Ko(R),
Note that if o : R — S is a ring homomorphism, then « induces a group homomor-

phism o, : Ko(R) — Ko(9) defined by o, ([P]) = [P ®r S).

Definition 4.0.4. Let R be a ring with Spec(R) is connected. Ko(R) is the subgroup
of Ko(R) generated by [P] — [R"], where P has rank n.

The determinant induces an epimorphism
det : Ko(R) —> Pic(R)

defined by det([P]) = A™(P), where rank(P) = n. The kernel of this map is denoted by
SKo(R).

Definition 4.0.5. Let GL,(R) be the set of all n x n invertible matrices over R. The
group GLn(R) is embedded in the group G Lp41(R) by identifying a matrix A € GLn(R)
with the larger matrix (49) of GLpy1(R). Under such an identification, we have
SIn(R) C SLny1(R) and Eo(R) C Enyq(R). Let GL(R) := | GLn(R), SL(R) =
nL>J15’Ln(}%’,) and E(R) := |J E.(R). "

2 n>1
The Whitchead group of R is Ky (R) := GL(R)/E(R) and the special Whitehead
group of R is SK;(R) := SL(R)/E(R).

The following theorem is due to Miluor.

Theorem 4.0.3. (/Ba, pp. 481]) Let

A —2 4

-

A2\f2—>B

be a Cartesian diagram of ring homomorphisms in which fy or fy is surjective. Then

the following Mayer-vietoris sequences are exact
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0 — A" — A1 9 4] — B* — Pic(A)

— Pic(A1) @ Pic(A2) — Pic(B).

— SK()(Al) & SK()(AQ) e SKQ(B) |

We end this chapter by the following example. This example was suggested to us by

Bhatwadekar (personal communication).

Example 4.0.1. Let S = C[X,Y] and f = (X2 — Y3). Let Sy = S/(f) ~ C[T2,T3].
Then (S1)* = C*. By [Mu-P, Example 2.5] Ko(C[T2,T3]) ~ C. Therefore, by [Mu-P,
Corollary 2.2, SK(S;) is of infinite rank. Therefore [Mu-P, Proposition 2.5] ensures
that SK;(S1) # 0 (also see [Kr, Section 12]).

Let R = C[X]+ fS. Then S is a finite (birational) extension of R and f§ is the
conductor of R in S. Moreover, R/fS ~ C[X].

Now it is easy to see that R is seminormal. From the Cartesian square

R s
i :
R/f S/fS =51

we have an exact Mayer- Vietoris sequence (by Theorem 4.0.3):
0-— R* — S*® (R/f)* — S7 — Pic(R)

— Pic(S) @ Pic(R/ f) — Pic(51)-

Consequently we have

0— C* — C* @ C* — C* — Pic(R) — 0,
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from which it follows that Pic(R) = 0.

Now using the above Cartesian square, we have another exact sequence
SKi(R) — SKi(S) ® SK1(R/f) — SK1(S1) — SKy(R)

It is easy to see that SK (R/f), SKo(S) and SKo(R/f) are all trivial. Also by Suslin’s
stability theorem [Su 2] (or see [La, pp. 220]), we have SK;(S) = 0. Therefore, we have

SK;1(S1) ~ SKo(R).

As Pic(R) = 0, we have Ky(R) ~ SKo(R) and consequently, Ko(R) ~ SK;(S;) # 0.
Therefore there exists a projective R-module P of rank two (with trivial determinant)
which is not stably free. Fix an isomorphism x : R ~ A?(P) and consider the Euler class
e(P,x) € E(R). As P has trivial determinant, e(P, x) = 0 would imply that P is free.

Therefore, E(R) is not the trivial group whereas E(S) is trivial, showing that the map
from E(R) to E(S) is not injective. u



Chapter 5

Subintegral extension of

2-dimensional rings

The following question, mentioned in [I 2, Remark (b), pp 331], is still open.

Question 5.0.1, Let R — S be a subintegral extension. Let P and Q be two projective

R-modules with det(P) ~ det(Q) and PR S~Q® S. Is P~Q ?

In [I2] it is suggested that perhaps the compatibility of the two isomorphisms is
required as an additional hypothesis. Following that suggestion we give an affirmative
answer in the case when dim(R) = 2.

We need the following crucial lemma from [B 2].

Lemma 5.0.1. [B 2, Lemma 3.5] Let A be a ring and P and Q be two projective
A-modules of rank 2 such that det(P) ~ det(Q). Let x : det(P) — det(Q) be an
isomorphism. Let J C A be an ideal of height 2. Let v : P — J and B:Q —»J be two
surjections. Let bar denote the reduction modulo J and @ : P — J/J2 and B : Q — ']/']2
be the surjections induced from o and B, respectively. Suppose that there ezists an
isomorphism § : P 2 Q such that : (i) B6 = & and (i) A*6 = X. Then there exists an
isomorphism o : P 5 Q) such that Bo =, g is a lift of & and Ao = X.

o PN
We now prove the main result of this chapter. Note that in view of Definition 2.2.2,

we do not need to assume that Q C R.

59
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Theorem 5.0.1. Let R be a ring of dimension 2 and R-<— S be a subintegral eztension.
Let P and Q be two projective R-modules of rank 2 such that det(P) = det(Q) and
PRS~Q®S. Let x :det(P) 5 det(Q) and § : PR S 5 Q ® S be isomorphisms.
Assume that x ® S = A%0. Then P ~ Q.

Proof. Now det(P) = A%(P) and det(Q) = A%(Q) are projective R-modules of rank
one. Since they are isomorphic, there is a projective R-module L of rank one which is
isomorphic to both. We fix x1: L = A2P. Let xa2:= (x)x1: L = A2P 5 AQ.

We now point out a general fact. Let A be a ring of dimension n and P be a projective
* A-module of rank n with an isomorphism x : L = A"(P). Recall from the definition of
the Euler class of the pair (P, x) that e(P, x) is an invariant of the isomorphism class of
(2, x)-

From the above paragraph we conclude that the Euler classes e(P®S,x1®S) and
e(Q@ ® S,x2 ® S) are equal in the Euler class group E(S, L ®S).

The two elements e(P®S,x; ® S) and (Q®S,x2 ® S) of E(S,L ® S) are the
images of the elements e(P, x1) and e(P, x2), respectively, under the natural map
®:E(R,L) — E(S,L®S). The map ® is injective. Therefore e(P,x1) = (@, x2) in
E(R,L). Let (P, x1) = e(Q, x2) = (I, wr) in E(R, L).

Now using Theorem 2.2.1, there exist two surjections f : P — I and g: @ — I such
that (I,wr) is obtained from (, x1) and (g, x2).

Let u: (R/I)?2 5 P/IP and 7 - (R/1)? 5 Q/IQ be two isomorphisms such that
A= X1 and AT = X,. From the definition of the Euler class of a projective module,
it follows that w; = fu = gr.

Now consider the isomorphism & = Tl P/IP 53 Q/IQ. Then we have 56 = f
and /\2(6) = (/\27')(/\2/J_1) =il =7y

Therefore we have two surjections f : P — I and g : @@ — I and an isomorphism

§:P 3 _ _
/TP = Q/IQ such that A% = ¥ and gd = f. Therefore by the above lemma there

exists an isomorphism ¢ : P 5 Q such that: (i) B¢ = a, (ii) ¢ is a lift of 4, and (iii)

24 —
A“¢ = x. Hence the theorem is proved. D

Definiti .
efinition 5.0.1. Tet Rbea nng and P be a projective R-module. We say that P is
cancellative if P& R ~ Q P R implies P ~ Q
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Corollary 5.0.1. Let R — S be a subintegral extension with dim(R) = 2. Let L be a
rank one projective R-module such that (L & R)® S is cancellative. Then L & R is also

cancellative.

Proof. We give two proofs of this corollary.
Proof 1. Let P be a projective R-module of rank 2 such that L ® E2 ~ P @ R. Then
L ~ A2(P). We fix an isomorphism y : L 5 A2(P).

Let us denote L ®g S by L and P ®@rSas P. As L is cancellative, there is an
isomorphism ¢ : L®S 5 P. Then ¢ induces A2(¢) : L 5 A2(P). The isomorphism
xX®S: L3 A2(P) (induced by X) and the isomorphism A?(¢) differ by a unit u € 8.
Defner: L& S — L@ S by sending (I,s) to (/,us). Then 7 is an isomorphism and
moreover, A2(7) : L 5 L is just scalar multiplication by u. Then the composition
0 =¢r: L@ S P has the property that A2(8) = x ® S. Now we can apply the above
theorem to conclude that L @ R = P. Thus, L © R is cancellative.

Proof 2. In this proof we do not use the above theorem. We shall denote L ®z S
by L. We use the following observation of Bhatwadekar in [B 2, p. 348] : for a
ring A and a projective A-module L of rank one, L & A is cancellative if and only if
E(A, L) ~ Ey(A, L). '

Now assume that L & S is cancellative. Then E(S, L) =~ Ey(S, L). Since R~ S is
subintegral, using Theorem 3.2.4 and Remark 3.2.6 it follows that E(R, L) =~ Eo(R, L).
a.

Therefore L @ R is cancellative.

The following proposition is due to Bhatwadekar.
Proposition 5.0.1. /B 2, Proposition 3.7] Let A be ring of dimension 2 and let P be a
rank 2 projective A-module. If N2P @ A is cancellative, then P is cancellative.

We can now deduce the following corollary.

Corollary 5.0.2. Let R <3 S be a subintegral extension with dim(R) = 2. Suppose that

all projective S-modules of rank 2 are cancellative. Then all projective R-modules of

rank 2 are cancellative.

Proof. By the above proposition it is sufficient to consider rank 2 projective f-modules

of the form L @ R, where L is a rank one projective R-module. Rest of the proof follows
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from the above corollary. 0.
We can easily extend Theorem 5.0.1 to R[T)] for projective modules with trivial

determinants, in the following way.

Theorem 5.0.2. Let R be a ring (containing Q) of dimension 2 and R < S be a
subintegral extension. Let P and Q be two projective R[T|-modules of rank 2 with
trivial determinants such that P ® S[T] ~ Q ® S[T]. Let x : det(P) 5 det(Q) and
0:P®S[T] = Q ® S[T] be isomorphisms. Assume that x @ S = A26. Then P ~ Q.

Proof. We just follow the proof of Theorem 5.0.1. We repeat Step 1 word by word, only

replacing L by R[T7]. In Step 2 we only need to use Theorem 2.2.2 in place of Theorem
2.2.1. [l

Remark 5.0.1. A nontrivial result that is hidden in the proof of Theorem 5.0.2 is the

symplectic cancellation theorem of Bhatwadekar [B 2, Theorem 4.8], which is used to

prove [D 1, Theorem 7.6].



Chapter 6

The Euler class group with
respect to an extended line

bundle

By a ring we shall mean a commutative Noetherian ring containing Q.

Let R be a ring of dimension » > 3. The aim of this chapter is to extend the theory
of the Euler class group E(R[T]) of R[T], as developed in [D 1, D 2], to E(R[T], L[T}),
where L is a projective R-module of rank one. Obviously, when L is free, E(R[T}], L[T])
should coincide with E(R[T7]).

Notation. Let A be a ring and let A[T] be the polynomial algebra in one variable T.
We denote, by A(T), the ring obtained from A[T] by inverting all monic polynomials.
For an ideal I of A[T) and a € A, I(a) denotes the ideal {f(a): f(T) € I} of A. Let P
be a projective 4-module. Then P[T) denotes the projective A[T]-module P &4 AlT]
and P(T) denotes the projective A(T)-module P[T] @ apry A(T).

Definition 6.0.1. Let A be a ring and P be a projective A[T]-module. Let J(AP)CA
consist of all those a € A such that P, is extended from A,. It follows from [Qu, Theorem
1] that J(A, P) is an ideal and J(A, P) = VT (A, P). This is called the Quillen ideal
of Pin 4.

Remark 6.0.1. It is easy to deduce ht7 (4, P) > 1 from Quillen-Suslin theorer {Qu, Su 1]
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If determinant of P is extended from A, then htJ(A, P) > 2 by [B-R 1, Theorem 3.1].

The proof of the following lemma can be found in [B-RS 1].

Lemma 6.0.1. Let A be a ring containing an infinite field k and let I C A[T] be an
ideal of height n. Then there ezists A € k such that either I(A\) = A or I(}) is an ideal
of height n in A.

The following theorem was stated without proof in [D 1, Theorem 3.11]. One can
actually mimic the proof of [D 1, Theorem 3.10] with necessary modifications to prove
this result directly. For the sake of completeness we give here a quick proof, using
[D 1, Theorem 3.10]. As [D 1, Theorem 3.10] played a pivotal role in studying tne
Euler class group E(RI[TY]), this theorem will do the same for E (R[T), L[T]). Recall that

R(T) is the ring obtained from R[T] by inverting all the monic polynomials and that
dim(R(T)) = dim(R).

Theorem 6.0.1. Let R be a ring of dimensionn >3 and P be a projective R-module

of rank n. Let I C R[T) be an ideal of height n such that there is a surjection
¢ 2 P[T) - I)(I*T).

Assume that 1 @ R(T) : (PIT]® R(T)) —» IR(T)/I?R(T) can be lifted to a surjection

0 (P[T] ® R(T)) — IR(T).

Then % also has a lift to a surjective map 6 : P[T] —» I.

P . .
roof. We first note that if J contains a monic polynomial, then the conditions of the

theorem » ivi : .
eorem are trivially satisfied. In this case, the theorem has been proved by Mandal

[M 2, Theorem 2.1]. Therefore, in what follows, we may assume that I does not contain

& monic polynomial.

Let J=TNR. Applying [D 1, Lemma 3.9], we get a lift ¢ € HomRm(P(T],I) of 1,

such that the ideal $(P[T]) = I” satisfies the following propertics:

() I"+ (J2T) = 1.



(i) I” =INT', where ht(I') > n.
(iii) I’ + (J2T) = R[T).

Let J'=I'NR. It can be deduced that dim(R/(J -+ J’)) = 0. This was proved in
ID 1, Theorem 3.101.

Write B = Ry, ;. Tensoring the surjection ¢ ® B : Py ;[T] —» (I N I')B[T] with
B[T]/I' B[T] we obtain a surjection |

¢1 : Poyy[T] - IPB[T]/T?B[T).

Now we note two things. First, as I’ + (J2T) = A[T], it follows that I'(0)B = B.
Secondly, since JB is contained in the Jacobson radical of B and dim(B/J5) < 1, it is
easy to see using Theorem 2.1.1 that P, has a free summand of rank one and hence
there is a surjective map « : P4y — I'(0)B(= B). Combining these two, it follows from

Lemma 2.1.7 that there is a surjection
B : Piyy[T] -» I'BT)/(I"*T)BITY,

which is a lift of ¢;.

Consider the ring C = Byry = Rypspy. As dim(B/(J +J1)) = 0, it follows
that C is semilocal, and consequently Pijpss is a free C-module. Applying the
subtraction principle (Proposition 2.3.2) over C(T'), we see that there is a surjection
Yy : P® C(T) - I'C(T) which lifts 3 ® C(T). Since Pyy4p is a free C-module,
it follows from [D 1, Theorem 3.10], that B ® C|T] has a lift to a surjective map
3. Pyyyan{T) = I'CIT). It now follows from [D 1, Lemma 38, that 8 has a lift to a
surjection B : Pyyy[T] —» I'B[T], i-e., (8 - B)(P14s[T]) C (I”*T)B(T].

Now we can apply [B-K, Lemma 4.7], and obtain a surjection 1 : P1+7[7]
such that (5 — ¢)(Peys[T]) C (I2T)BIT]. Applying [D 1, Lemma 3.8] again, we are done
a

— IB[TY,

. . RITIn—-1
In this chapter we shall frequently apply the above theorem taking Lirie RiT}
in place of P[T], where L is a projective R-module of rapk one. Let us illustrate one

such application in the form of following proposition which will be used later.
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Notation. Let L be a projective R-module of rank one. Throughout this chapter we
shall denote L & R™~! by £ and L{T] & R[T}"~* by L[T].

Proposition 6.0.1. Let R be a ring and I C R[T] be an ideal of height n. Let o and 8
be two surjections from L|T)/I1L|T) to I/I? such that there exists o € SL(L[T]/IL[T])
with the property that ac = B. Suppose that a can be lifted to a surjection 8 : L|T) — I.
Then 8 can also be lifted to a surjection ¢ : L[T) — I.

Proof. Since Q@ C R, by Lemma 6.0.1 there exists A € Q such that I(\) = Ror I(A) is
an ideal of R of height n. Without loss of generality we may assume that A =0.

If I{0) = R, then by Lemma 2.1.7, we can lift § to a surjection B: C[T) - 1/(I?T).
We now show that the same can be done if ht(I(0)) = n. Let a(0) : L/I{(0)L —
1(0)/1(0)2, B(0) : £/I1(0)L — I(0)/1(0)? be surjections induced by a, B, respectively.
Therefore a(0)o(0) = £(0). As dim(R/I(0)) = 0, we have o(0) € E(L/I(0)L). As
E(L) — E(L/I(0)L) is surjective, there exists T € £(L), which is a lift of 0(0). As
6(0) lifts «(0), the composition 6(0)7 lifts 8. Again by Lemma 2.1.7, we can lift 3 to a
surjection § : £[T] — 1/(I2T).

Now consider the ring R(T") and the induced surjections a®R(T") and S R(T). Again
since dim(R(T") /I R(T)) = 0, we have SL(L&R(T)/ILRR(T)) = E(LRR(T)/ILIR(T))
and as above , B ® R(T) can be lifted to a surjection from £ — IR(T). Now we can
apply Theorem 6.0.1 and conclude that 3 can be lifted to a surjection ¢: £~ 1. O

Remark 6.0.2. The above proposition was proved in [D 1, Proposition 4.4] in the case
when L is free. We may justifiably call the technique involved in the proof as a "monic
inversion technigue”. This was ubiquitous in [D 1). As we are proving results analogous
to [D 1] in this chapter, therefore, whenever we present a result which can be proved by

this monic inversion technique, either we give a quick sketch or we skip the proof.
The following addition and subtraction principles, like their counterparts in [D 1],

can be proved using the monic inversion technigque illustrated above.

Proposition 6.0.2. (Addition principle) Let R be a ring of dimension n > 3 and

let I, Iy C R[T) be two comazimal tdeals, each of height n. Assume that there exist
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surjections 61 : L[T] » Iy and 8y : L[T] - I,. Then there exists surjection 6 : L[T] —
I1 NIz such that 9 ® R[T]/Ii =60,® R[T]/Ii, 1=1,2.

Proposition 6.0.3. (Subtraction principle) Let R be a ring of dimension n > 3 and
let I, Iy C R[T| be two comazimal ideals, each of height n. Assume that there exist
surjections 61 : LT~ Iy and ¢ : L[T] - I1 N Iy such that § ® R[T}/I; = 6, ® R[T|/1;.
Then there exists surjection 02 : L[T] — Iy such that 6 ® R[T|/Iy = 0, ® R[T}/I5.

Let R be a commutative Noetherian ring of dimension n > 3 containing Q. Let L be
a projective R-module of rank one. We now go on to define the (n-th) Euler class group
E™(R[TY, L[T]). For brevity we denote this group by E(R[T], L[T]). As above, we shall
denote L & R* ! by £ and L{T] @ R[T]* ! as L[T].

We first define some terms. Let I C R[T] be an ideal of height n such that there
exists a surjection £[T]/IL[T] ~ I/I%. Two surjections «, 3 : L[T)/IL[T} — 1/I1? are
said to be related if there exists o € SL(L|T)/IL[T]) such that ao = 3. Tt easily follows
that this defines an equivalence relation on the set of surjections from L[T']/1L[T] to
I/I%. Let [a] denote the equivalence class of . We call such an equivalence class [a] a
local L(T'}-orientation of I.

We call a local L{T}-orientation [a] of I a global L[T)]-orientation if the surjection
a : LIT)/IL[T) - I/I? can be lifted to a surjection 8 : L[T] - I. Note that by
Proposition 6.0.1, if @ can be lifted to a surjection 6 : L[T] — I, then § can also be
lifted to a surjection 5 : £[T'} — I. Therefore, by a slight abuse of notations, we denote
[a] by a.

Let G be the free abelian group on the set of pairs (,wr) where I C R[T] is an ideal
of height n with the property that Spec(R[T]/I) is connected and I/I? is a surjective
image of L[T)/IL[T] and wy : L{T}/IL[T] ~ 1/1? is a local L[T]-orientation of I.

Let I be any ideal of R[T] of height n such that I/I? is surjective image of L[T]/IL[T].
Then there is a unique decomposition (see [D 1) for details), I = Iy N -0 Iy, where
Spec(R[T)/I;) is connected and ht I; = n for each i, and Ii +I; = R[T) for i # j. Now if
wr is a local L[T]-orientation of I then it naturally gives rise to wy, : LIT)/LLT) - L/ 17
for 1 <i<k By (I,w;) we mean the element S (i, wr) €G.

Let H be the subgroup of G generated by the set of pairs (/,wy) in G such that wy
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is a global orientation.

Definition 6.0.2. We define the (n-th) Euler class group of R[T] with respect to L[]
as E(R[T),L[T]) := G/H.

Let P be a projective R[T}-module of rank n having determinant L[T], where L
is a projective R-module of rank 1. Let x : L[T] = A"P be an isomorphism. To the
pair (P, x), we associate an element e(P, x) of E(R[T],L[T]) as follows: Let A\g: P — Iy
be a surjection, where I is an ideal of R[T] of height n. Let bar denote reduction
modulo Iy. We obtain an induced surjection X : P/IgP — Iy/ Ig. Note that, since P
has determinant L[T'] and dim(R[T"]/Ig) < 1, by Serre’s splitting theorem (Theorem
2.1.1) we have P/IgP ~ L[T|/LL[T] ® (R[T]/Io)" ! (= L[T)/IoL[T}] in our notation).

We choose an isomorphism 7 : L[T]/IoL[T] = P/IyP, such that A"y =Y. Let wj, be - .

the composite surjection
X 3o
LIT|/IoL[T] % P/IoP = I/ I3

Let e(P, x) be the image in E(R[T], L[T]) of the element (I, wr,). We say that (I, wr,)
is obtained from the pair (A, X).

As yet another application of the monic inversion technique, we have the following

Lemma 6.0.2. The assignment sending the pair (P,x) to the element e(P,x), as

described above, is well defined.

Proof. (Sketch) Let A\; : P — I, (i = 0,1) be two surjections so that (X;,¥) induce
(I;,wr,). Apply the moving lemma (Lemma 2.1.4) to find an ideal K C R[T] and a
local L{T}-orientation wg of K such that ht(K) > n, K+ I; = R[T] for i = 0,1 and

(o,wo) + (K,wi) = 0 in E(R[T), L[T]). Now let I = I; N K and w; be the local

L[T)-orientation of I induced by wr, and wg. Now use the facts that the Euler class

of a projective R-module (resp., R(T)-module) is well-defined, and the monic inversion

technique as in Theorem 6.0.1 to show that w 1 is a global orientation. This will prove

0=(Lw) = (I, wn,) +(K,wk) in E(R[T], L[T}) and therefore, (1o, wr) = (Iwy). O

Definition 6.0.3. We define the Euler class of (P, x) to be e(P, x).
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Remark 6.0.3. It is easy to see from the definition of E(R,L) in [B-RS 4] and the
definition of E(R[T], L[T]) given above, that there is a canonical group homomorphism
®: E(R, L) — E(RI[T], L[T]). Following the method of proof of [D 2, Theorem 3.3] with
obvious modifications, one can check that there is a surjective group homomorphism
U : E(R[T), LIT]) - E(R, L) with the property that if (I,w;) € E(R[T], L[T]) is such
that the ideal I(0) is an ideal of R of height n, then ¥((I,wy)) = (I, wr(g)), where
wy(oy is the local L-orientation of I(0) induced by w; (if I(0) = R, then W((I,w;)) = 0).
Moreover, ¥® = idg(g ) and therefore @ is injective. On the other hand, as the extension
R[T] < R(T) is flat, we have a canonical group homomorphism ¢ : E(R[T], L{T]) —
E(R(T), LT ® R(T)).

With the above remark in hand, one can prove the following theorem. The method

of proof again involves a straightforward monic inversion technique.

Theorem 6.0.2. Let R be a ring of dimensionn > 3. Let I C A[T] be an ideal of height
n such that I/12 is generated by n elements and let wy : LIT)/IL[T] — I1/1? be a local
L[T)-orientation of I. Suppose that the image of (I,wr) is zero in E(A[T], L[T]). Then

wy can be lifted to a surjection 0 : L[T] - I (i.e., wy is a.global orientation).

Proof. We leave the proof. =
The following theorem extends [D 1, Theorem 4.8} and a theorem of Mandal M 2,
Theorem 2.1]. The method of proof is similar to [D 1, Theorem 4.8]. As the proof is

rather involved, we give an outline.

Theorem 6.0.3. Let R be a ring of dimR=n >3 and J C R[T] be an ideal of height
n. Let P be a projective R|T)-module of rank n whose determinant is L[T]. Assume that
we are given a surjection ¥ : P — J/(J 2T). Assume further that v ® R(T') can be lifted
to a surjection ¢’ : P ® R(T) — JR(T). Then, there exists a surjection ¥ : P — .J such
that ¥ is a lift of ¥ .

PTOOf. We ﬁx an isomorphism X M L[T] :) /\nP Let j(R, P) denote the Qulllen ideal Of

Pin R and write K = J (R,P)NJ. Since the determinant of P is extended from R,

we have, ht(J(R, P)) > 2. Therefore, ht K > 2. We can apply [D 1, Lemma 3.9} and
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obtain a lift o« € Hom pyr)(P,J) of ¢ and an ideal J' C R[T) of height n such that (1)
J' + (K®T) = R[T}, (2) a: P> J N J'is a surjection and (3) a(P) + (K2T) = J.

Tt follows that e(P,x) = (JNJ',wyns) in E(R[T], L[T]) where the local orientation
wyny is obtained by composing « ® R[T|/(J N J') with a suitable isomorphism X
(R[T]/JN.J)" = P/(JN.J)P, as described in the definition of an Euler class.

Therefore, e(P, x) = (J,ws) + (J',w ). We note that since J’(0) = R, by Lemma
2.1.7 we can lift w to a surjection from L[T) —» J'/(J'?T). Moreover, considering
the equation e(P ® R(T),x ® R(T)) = (JR(T),w; ® R(T)) + (J'R(T),wy ® R(T)) in
E(R(T),L[T] ® R(T)) and using the condition of the theorem it is easy to deduce that
(J'R(T),wp @ R(T)) = 0 in E(R(T), L{T] ® R(T)). (Actually, the condition of the
theorem tells that e(P ® R(T),x® R(T)) = (JR(T),w; ® R(T'}) ). As wy is induced by
a surjection L[T] — J'/(J 2T), it follows from Theorem 6.0.1 that there is a surjection
B: LT} - J' which lifts w. |

Let us write B = Ryyx. By [D 1, Lemma 3.8] it is enough to prove that there is
a surjection 6 : L{T]| ® B[T] - J such that (§ — o)(L[T]) < (K2T). We can apply
Proposition 2.3.4 to obtain such a 6. ]

Remark 6.0.4. Let the notations be as in the above theorem. Note that if J contains a
monic polynomial, the conditions of the theorem are trivially satisfied. The conclusion
of the theorem asserts that if J contains a monic polynomial, then any surjection

¥ : P — J/(J?T) can be lifted to a surjection ¥ : P —» J. This improves [M 2, Theorem

2.1], where P was assumed to be extended from R.

To derive some corollaries of the above two theorems, we need the following lemma.

Lemma 6.0.3. /D 1, Lemma 4-9] Let A be a ring, I C A[T] be an ideal and P be

a projective A{T|-module. Suppose that we are given surjections o : P —» I/I? and

B:P—10)=1I/IN(T) such that o Rarryr A/1(0) = 8R4 A/I(0). Then there is a
surjection 0 : P — I /(I?T) such that 6 lifts both o and 8.

We have the following set of corollaries. These can be derived easily from Theorem

6.0.2, Theorem 6.0.3. For assistance, we may consult [D 1].

Corollary 6.0.1. Let R be of dimension n 2> 3. Let P be a projective R[T|-module of
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rank n with determinant isomorphic to L[T|. Let x : A"P 5 L[T}. Let e(P, x) = (I,uw;)
in E(R[TY, L[T1). Then, there exists a surjection o : P — I such that (I,wy) is obtained
from (a, x).
Corollary 6.0.2. Let R be a ring. Let P be a projective R[T)|-module of rank n with
determinant isomorphic to L[T']. Let x : A*P = L[T|. Then, e(P,x) = 0 if and only if
P has a unimodular element. In particular, if P has a unimodular element then P maps
onto any ideal of R[T| of height n which is surjective image of L[T] & R[T]"~ 1.
Corollary 6.0.3. Let R be a ring and I C R[T| be an ideal of height n. Let P be a
projective R[T|-module of rank n with determinant isomorphic to L[T] and o : P —» I be
a surjection. Suppose that P has a unimodular element. Then I is surjective image of
LT} & RIT]™ 1. |

We can also prove the following local-global principle for the Euler class groups.

Theorem 6.0.4. Let R, L be as above. The following sequence of groups is exact
0— E(R,L) — E(R[T],L[T]) — HE(Rm[T],Lm[T]).
m

Proof. Let (I1,wy,) € E(R[T), L[T]) be such that its image in E(Ru[T], Lo[T1]) is zero
for each maximal ideal m of R. We show that (I1,wr,) has a preimage in E(R, L).

As Q C R, we can assume that either [3(0) is an ideal of height n or I,(0) = R.
Case 1. Assume that I;(0) is proper. Apply the moving lemma (Lemma 2.1.4), and obtain
an ideal K C R of height n which is comaximal with 73 N R and a local L[T}-orientation
wi of K such that (I1(0),wy, (o)) + (K. wk) = 0 in E(R, L).

Let I = I N K[T). As I; and K[T) are comaximal, wy, and wk will induce a local

L[T}-orientation wy of I and we have:
(Lwr) = (I, wr,) + (K[T)wk ® R[T]) in E(R[T],LT]).

Note that proving (I,w;) = O will suffice. Observe from the above equation that
(1(0), wi()) = 0in B(R, L) and therefore, by [B-RS 4, Theorem 4.2] wi(g) can be lifted

to a surjection o : £ — I(0). Therefore, by Lemma 2.1.7 wy can be lifted to a surjection
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¢ : L[T] - I/(I?T). It is now enough to show that ¢ can be lifted to a surjection
0:L[T]—~ I

Now we can proceed as in the first half of the proof of Theorem 6.0.1 and reduce the
theorem to the case when R is semilocal. But in that case L is free and the proof in this

case is given in [D 1, Lemma 5.5].

Case 2. If I; (0) = R, then wy, can be lifted to a surjection ¥y : £L[T] - L/(IT). We
can proceed as in ‘Case 1 to reduce the proof to the semilocal case. O
The following is an analogue of a theorem of Roitman [Ro, Proposition 2}, proved

for the Euler class groups in [D-RS 2].

Theorem 6.0.5. Let R, L be as above. Let S C R be a multiplicatively closed set. Assume
that the canonical map ® : B(R, L) — E(R[T), L[T)) is given to be surjective. Then
the canonical map ®s5 : E(S™'R,S™1L) — E(S™IR[T), ST1L[TY) is also surjective.

Proof. Write Ls for L ®r Rs. By Theorem 6.0.4, we have the following exact sequence
of abelian groups

0 — E(Rs, Ls) — E(Rs[T], Ls[T]) — [[ E((Rs)m[T], (Ls)m(T}),

m
where m is a maximal ideal of Rg of height n. To prove the theorem, it is enough to
show that E((Rs)m[T], (Ls)m[T]) = O for each such m. Since m is a maximal ideal of R
which avoids S, we are reduced to showing that under the hypothesis of the theorem,
E(Rm, Lyw) — E(Rm[T], Lw[T)) is surjective. Since E(Rm, Lm) = 0, we need only

prove that E(Rwm ([T}, Lm[T]) = 0. But Ly is free and we are done by [D-RS 2, Theorem

4.9). .

Theorem 6.0.6. Let R be ¢ regular Ting of dimension n > 3 which is essentially of
finite type over a field k such that R has infinite residue fields. Let L be a projective
R-module of rank one. Then E(R, L) is isomorphic to E(R[T], L[T)).

Proof. We only need to prove that the canonical map from E(R, L) to E(R[T),L[T)) is

surjective. In view of the local-global principle Theorem 6.0.4, it is enough to prove that
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E(Rw[T), Lm[T]) = 0 for each maximal ideal m of R of height n. But Ly, is free and
therefore the result follows from [M-V, Theorem 4j, [D 3, 4.9]. O

Theorem 6.0.7. Let R be an affine algebra of dimension n > 3 over an alge-
braically closed field k of characteristic zero. Then the canonical map E(R[TY, L[T) -
E(R(T), LT ® R(T)) is injective.

Probf. It can be derived by modifyiﬁg the proof in [D 1, Proposition 5.8] 0

Remark 6.0.5. Let R be a regular domain of dimension d containing an infinite field
and n be a positive integer such that 2n > d + 3. Then the n-th Euler class group
E™(R[TY]) has been defined in [D-RS 2] and results analogous to those in [D 1, D 2] have
been proved. By a result of Lindel |L 1], any line bundle on R[T] is extended from R
and hence is of the form L[T], where L is a line bundle on R. The theory can easily be
extended to define E"(R[T'), L[T']) and many results of this chapter can be proved. For
instance, it can be proved that if R is regular and is essentially of finite type over an
infinite field, then E"(R[T], L[T]) ~ E*(R,L). A similar result has been proved using

different techniques in [M-Y 2]. However we are not going into the details of this setup.
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Chapter 7

Some descent lemmas and their

applications

In this chapter we prove some technical results which are crucial to the theory and
results in Chapter 8. Motivation for the following lemmas came from [B 1, 3.1, 3.2, 3.3].
The basic setup is as follows. We shall try to stick to the notations introduced below
throughout this chapter.

Let R < S be a finite extension of reduced rings and let C' be the conductor ideal of
Rin S. Let L be a projective R[T]-module of rank one and I C R[T] be an ideal such
that 7577 is a proper ideal. Write £ =L & R[T]"~. Assume that there is a surjection
@: £/I€ - I/I% Then o naturally induces a surjection from (£&S[T])/IS[T](£ ® S[T])
to ZS[T']/I2S(T], which we shall denote by a*. We now explicitly describe how o* is
obtained.

Tensoring o with S[T']/IS[T] over R[T]/I we obtain the surjection

(E@pm S (I Brm ST
CIS[THE Qpn SIT)  IS[T)( @pyry ST)

F jecti I®
Composing & with the surjective map f induced by the natural surjection f R[T]

S[T - 18 [T}, we obtain a*. Thus o* is the composition f&

Eoan SIT) 5 _U2un ST T S

* .

* IS ogpy S IS ©ryry ST

75
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Now suppose it is given that a* has a lift to a surjection 5 : £ ® S[T] - IS[T]. In
the following three lemmas we investigate, under what additional hypotheses, we may be
able to obtain a lift of « to a surjection ¢ : £ — I. We fix the above notations for the
following lemmas. We shall only mention the additional hypotheses in the statements.

The method of proof of the following lemma is similar to Theorem 3.2.4.

Lemma 7.0.1. Let R,S,C,£,I,a be as above and assume that : (i) (R/C)red =
(S/C)red, (i) I + C[T)| = RI[T), (iii) n > 2. Then a can be lifted to a surjective map
¢ L1

Proof. We give the proof in steps.
Step 1. We first note that since I + C[T] = R[T] and C is the conductor ideal of R in

S, the following are true:
(i) T& (R/O)T] = (R/O)[T].
(it) 7®(S/C)[T] =~ (S/C)[T).
(iti) RIT|/T ~ S[T)/IS[T).

We have a surjection, 8: £® S[T] —» IS [T] which is a lift of a*. Consider
Br:= P& (S/O)T]: £ (S/C)[T] - IS[T) ® (S/0)[T).

From (ii) we have I.S[T] & (S/C)[T] ~ (S/C)[T), implying that the image of IS[T] in
(5/0)[T) is (S/C)[T). Therefore, 8, : £ ® (S/C)[T] - (8/C)[T] is a surjection and
therefore 8 € Um((£ ® S/ONTH).

Now f1 ® (S/C)rea[T7] is also a unimodular element of (£ ® (S/C)rea[T]))*. Since it is

given that (R/C)eq = (S/C)req, it is easy to see that we have a lift of 81 ®(5/C)rea[T] to

(R/C)[T], say, 6 : £ (R/ C)T) - (R/C)[T)]. In other words, ¢ is a unimodular element of
(£®(R/C)[T))

*. It is obvious from the way ¢ is obtained that § ® (8/C)[T] = p, modulo
n((S/C)[T]), where n((S/C)[T)) denotes the nil radical of (S/C)[T] . So, we have two

unimodular elements 3; and dR(S/C)[T] of (£®(8/C)[T))* such that SR(S/CNT = A

modulo n((S/C)[TY). Therefore, by Proposition 2.1.2, there exists a transvection o of
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L& (S/C)[T] such that S10 = § @ (S/C)(T]. By Proposition 2.1.4, ¢ can be lifted to an
automorphism 7 of £ ® S[T"] such that 7 is identity modulo IS[T).

Step2. Note that I ® (R/C)[T] =~ (R/C)[T] and I & (S/C)[T] ~ (S/C)[T). Since
I+ C[T} = R[T), the natural map f : [ ®gpry S[I'] — IS[T)] is actually an isomorphism.

Consider the following Cartesian diagram :

I IS[T} ~ I ® S[T]

l |

(R/O)[T] s/

Therefore, we have the following commutative diagram:

£® S[T]

—

I® S[T) ~ IS[T)

£ (R/C)[T] £® (S/C)[T]

(R/C)IT) : (S/OIT]

Since § ® (S/C)[T] = p1o = B & (S/C)[T), the surjective maps d and S7 will patch to
yield a surjection ¢ : £ — 1.
Step 3. Finally we need to show that ¢ ® R[T]/I = «. Since 7= Id (modulo IS[T}),
we have 87 = B modulo IS[T]. Identifying I ® gr1)S[T ] with IS[T] and using the
isomorphism S[T]/IS[T| = R[T)/I, we have:

02 (BTN =68 (sry1sim) = (4,5 ST S%,](SIT J/1S[T))

_ : y y = ST [S[T])
= 575%(S[T]/IS[T]) = ﬁsﬁ](bm/b D R[g%/l( T/

—a ® BRIV =
RIT)/1

Thus ¢ lifts @, and the proof of the lemma is complete.
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Lemma 7.0.2. Let R, S,C, .1, a be as fized in the beginning of this chapter and assume
that:

(i) (R/C)red = (S/C)Tcd;'
(i) dim(R) = dim(S) =n2>4;

(i) AH(C) > 1;

(iv) for any ideal J of R[T), ht(J) = ht(JS[T1).
Then o can be lifted to a surjective map ¢ : £ —» I.

Proof. We have a : £/I£ —» I/I?. Let J = I2NC. Then ht(J) > 1. Therefore, we can
choose an clement b € .J such that ht(b) = 1. Let bar denote reduction modulo b. Then
we have @: £/T€ — 1/T° and dim(R/bR) < dim(R).

Now we can apply Proposition 2.1.6 to get a (surjective) lift 1’ : £ —» I of @, and
therefore a lift  : £ — I of a such that (n(£),b) = I. Note that b € I%. Applying
Lemma 2.1.2 to the element (1,b) of £* @ R[T], we see that there exists ¥ € £ such
that ht(Kp) > n, where K = (n+ b%)(£). But (p(£),b) = I has height nand I is a
proper ideal. Therefore, by Lemma 2.1.2, ht(K) = n. Since 1 -+ b¥ is also a lift of a,
we may replace 7 by (1 + b¥) and write K = n(£). Note that (K,b) =1 and b€ I2. It
follows, applying Lemma 2.1.3, that there exists an ideal I’ of R[T] such that:

W) n@)=Inr;
() n®R[T)/I = o
(iii) ht(I') > n;
(iv) I'+bR[T] = R[T] and therefore, I’ + C[T] = RT].

I ht(I') > n, then I’ = R[T] and 7 is the desired lift of . So, we assume that
ht([') =7,

Let §: £® S[T] — IS[T] be the lift of a*. Now consider the surjection

SIS (I ) @ ST - (T s
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As I' + I = R[T], we have (I N I")S[T"| = IS[T] N I’[T]. By the subtraction principle
(Proposition 2.3.2), there exists v : £&S[T] - I’S[T] such that y®S[T}/I' = n*®S[T)/I'.
Now we can apply the above proposition (taking I’ in place of I) to get a surjection
¢ : £ - I' such that n @ R[T]/I' = ¢ ® R[T]/I'.

Finally, we are going to apply the subtraction principle again to get a lift of «. We
have two surjections 7: £ — I NI’ and ¢ : £ — I’ such that n @ RIT|/I' =+ ® R[T}/I'.
Therefore by the subtraction principle (Proposition 2.3.2), we have a surjection ¢ : £ — [
such that ¢ @ R[T)/I = n® R[T)/I. Asn®R[T]/I = «, we have ¢ ® R[T]/I = o. Thus

the proof is complete. =

Lemma 7.0.3. Let R, S, C, £, I, be as in the beginning of this chapter and assume
that:

(i) the canonical map Spec(S) — Spec(R) is bijective;

(i) for every q € Spec(S) the inclusion map R/(q N R) — S/q is birational;
(iil) dim(R) = dim(S) = n > 4.
Then o can be lifted to a surjective map ¢ : £ —» 1.

Proof. Let C be the conductor ideal of B in S. By the assumptions of the lemma,
ht(C) > 1 (see Lemma 3.1.5). Further note that R < 5 is actually a subintegral
extension and therefore by Lemma 3.1.3 R[T] — S[T7] is also subintegral. Further, by
Remark 3.2.1 if J is any ideal of R[T], then ht(J) = ht(JS[TY).

We prove the lemma by induction on dim(R/C). If dim(R/C) = 0, then (R/C)rea is
also zero-dimensional and (R/C)req does not contain any non-zerodivisor. Let K be the
radical of C in S, then we have (R/C)req = R/K N R and (S/C)rea = S/K. Now the
total ring of fractions, Q(S/K) = [] k(P;), where P; are minimal prime ideals of S/K.
Therefore Q(R/K N R) = [ k(£ N R), since the canonical map Spec(S) — Spec(R) is
bijective.

Now by using k(P;) = k(P: N R), we have Q(S/K) = Q(R/KN R). But then

R/KN R S/K < Q(S/K)=Q(R/KNR)= R/IKNR
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The last equality holds, since R/K N R does not contain any non-zerodivisor.
Therefore it follows that (R/C)red = (S/C)req and we are done by Lemma 7.0.2. So
let us assume that dim(R/C) > 0. But then by [B-R 2, Lemma 3.5] there exists a ring

S’ enjoying the following properties:
() R S < S
(ii) (B/C)rea = (5"/C)rea
(iii) dim(R/C) > dim(S’/C") where C’ is the conductor ideal of S’ in S.

Now since the extension &' < S satisfies all the hypotheses of the lemma, by
induction hypothesis there exists a surjection 9 : £® S'[T] — IS’[T], which is a lift of
o. But (R/C)req = (5'/C)req and again applying Lemma 7.0.2 we obtain a surjection
¢ : £ — I, which is a lift of a. =
Remark 7.0.1. The above lemma is true for n > 2 if the ideal I is assumed to be
comaximal with C[T]. To see this, first note that, in the lemma, we need n > 4 only
to be able to apply the subtraction principle which was required to prove Lemma 7.0.2.
Now if we start with I + C[T] = R[T], we can apply Lemma 7.0.1 instead. Further note
that in the proof of Lemma 7.0.3, the conductor of Rin S’ is C and C is contained in

! . .
C" and therefore 1.5’ is comaximal with C” [T]. For this last argument one has to go

through the proof of [B-R 2, Lemma, 3.5].
For the convenience of exposition, we make the following definition.

Definition 7.0.1. Let A be a ring and L be a projective A[T]-module of rank one. A

ring extension A < B will be called special L-regular if the following conditions are
satisfied.

(i) The projective B[T]-module L ® A B[] is extended from B,

(ii) B is module-finite over A,

(iii) the canonical map Spec(B) — Spec(A) is bijective, and

(iv) for every B < Spec(B), the inclusion A /(BN A) <~ B/Y is birational.

The following result is a special case of [I 1, Theorem 9].



81

Theorem 7.0.1. A — B is seminormal iff N,.Pic(A) — N,.Pic(B) is injec-
tive where N, Pic(A) := Ker(Pic(A[Ty,---,T,]) —> Pic(A)) and N,Pic(B) =
Ker(Pie(B[Ty,- - ,T;]) — Pic(B)).

The following theorem is due to Traverso [T).

Theorem 7.0.2. If a ring A is seminormal then the canonical map Pic(A) — Pic(A[X])

18 an isomorphism.
The following lemma ensures the existence of special L-regular extension.

Lemma 7.0.4. Let R be a reduced ring and L be a projective R[T]-module of rank one.

Then there is a special L-regular extension R — S with S reduced.

Proof. Let R be the normalisation of R in its total quotient ring. Since R is normal, the
R[T)-module L® rr)R[T] is extended from R, say, L ® rmRITI=L® BT for some
R-module L. Let {f1.--+, fim} be a set of generators for L and {b1,- - ,bn} be a set of

generators for L. Then we get the following relations:
() fiel= Z?:lgij(bj ®1) fori=1,---,m.
(i) be®1=Y7 hu(fi®l) for k=1, ,n.

Where g;;, hy; € R[T]. Let R’ be the R-subalgebra of R generated by the coeflicients

A ;.
of {gi;,hx;}. Consider the R/-module L’ generated by {b1,- - by}, Clearly R is a

finitely generated R-subalgebra of R. Therefore R’ is a finite R-module. Then the

equality L® R[] R'[T] = L' ® g R'[T] shows that L’ is a projective ?’-module of rank
N ot :
one. Therefore we have found a ring R’ such that (i) R < R < Q(R), (ii) R’ is a finite

R-module and (iii) L ® g7y R'[T] is extended from .

. : : i in B!
Let S be the seminormalization of R in R’. Then since S is seminormal in

and (L @ppy S[T)) @y R'[T) is extended from R’, by Theorem 7.0.1, the projective
0
S[T)-module L ® gy S[T7] is extended from S.

. . i 1
Remark 7.0.2. Note that a special L-regular extension R < S is actually a subintegra

. : + i inormal
extension. If T(R) denotes the seminormalization of I?, then since (1) is semino )

one has Pic(*(R)[T]) =~ Pic(T(R)) and therefore L & (T(R)[T)) is extended from *(R).



82 Chapter 7: Some descent lemmas and their applications

The three technical lemmas we just proved above culminate in the following theorem

which will be crucially used in the next chapter.

Theorem 7.0.3. Let R be a reduced ring of dimension n > 4 and L. be a projective
R[T)-module of rank one. Let R «— S be a special L-reqular extension. Let I be an
ideal of R[T)] and o : £ — I/I? be a surjection. Suppose that the induced surjection
a*: £® S[T] — IS[T}/I*>S[T] can be lifted to a surjection S : £ ® S[T] — IS[T]. Then

a can also be lifted to a surjective map ¢ : £ —» I.

Proof. Since R < S is a special L-regular extension, with S reduced and it satisfies all

the conditions of Lemma 7.0.3. ' a

Remark 7.0.3. Tt follows from Remark 7.0.1 that the above theorem is true for n > 2if

the ideal I is assumed to be comaximal with C [T]. We shall need this observation in

Chapter 8.

We now demonstrate an application of Theorem 7.0.3 below. A result of Mandal

[M1, Theorem 1.2] is improved, albeit with a stronger hypothesis on the dimension.

Theorem 7.0.4. Let A = R[T] be a polynomial ring over a commutative Noetherian
ring R with dim(R) =n > 4. Let I be an ideal of A of height n that contains a monic
polynomial. let L be a projective R[T]-module of rank 1. Write £ = L ® R[T]*L.

Suppose that there exists a: £ —» I/I?. Then there is a surjection 8 : £ — I such that
lifts a.

Proof. By Lemma 2.1.6 we may assume that R is reduced. Let R < S be a special

L-regular extension with S reduced.
Let o* : £ ® S[T] - IS[T]/12S[T)

LRI =

be the surjection induced by a. Now note that
LeST)es Tl As R<s Sisa special L-regular extension, L ® S[T]
1s extended from S. It then follows from [B-RS 6, Proposition 3.3], that o* can be lifted

to a surjection 8 : £ ® S [T] =+ I. The result now follows from Theorem 7.0.3. O



Chapter 8

The Euler class group with

respect to an arbitrary line

bundle

Our aim in this chapter is to define and study the (n-th) Euler class group of R[7] with
respect to a projective R[T']-module L of rank one (which is not necessarily extended

from R), and extend the results of Chapter 6.

Remark 8.0.1. We keep it for the record that the top Euler class group E™1(R[T)) is
trivial. This case falls in the domain of [B-RS 4]. Let ¢ : L@ R[T|® — I/I? be any
surjection, where I is an ideal of R[T] of height n + 1. It follows from Proposition 2.1.6
that ¢ can be lifted to a surjective map ® : L& R[T]™ — I. Therefore, E"*1(R[T],L) is

trivial.

Notation. By a ring R we shall mean a commutative Noetherian ring R containing Q
with dim(R) =n > 4. Let us fix a projective R[T]-module L of rank one. Further, we
write £ = L ¢ R[T]* 1.

We now go on to define the n-th Euler class group E"(R[T],L) (henceforth denoted as
E(R[T], IL)). This definition is simply a verbatim copy of the definition of E(R[T], LT))
that was given in Chapter 6, only replacing L[T] by L. Therefore, we just recall a few

terms and point out the differences. The harder part in this chapter is to prove results

83
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analogous to those in Chapter 6.

Let I C R[T] be an ideal of height n such that 1/12 is surjective image of £/I¢.
Let bar denote reduction modulo I. Two surjections o, 8 : £/1£ — I/I? are said to be
related if there exists an automorphism o € SL(£/I£) such that ao = 3. This defines
an equivalence relation on the set of surjections from £/7£ to I/1%2. We call such an
equivalence class a local L-orientation of I.

We now prove.

Lemma 8.0.1. Let o, : £/I€ — I/I? be two surjections belonging to the same
eqiuivalence class. Suppose it is given that o can be lifted to a surjection ¢ : £ —» I.

Then f3 can also be lifted to a surjection 1 : & —» I.

Proof. In view of Lemma 2.1.6 we may assume that R is reduced.

Let R < S be a special L-regular extension with S reduced (such an extension exists
by Lemma 7.0.4). Consider the two surjections o, B*: (£ ® S[T))/IS[T)(L® S[T]) —»
IS[T]/I2S[T], which are induced by «, 8, respectively. By the assumption of the lemma
there exists an automorphism ¢ € S L(L£/IL) such that o = B. This implies that o*, 8*

b

are also connected by an automorphism of determinant one. Now note that L ® S[T] is
a projective S[T]-module of rank one which is extended from S. Therefore, as a* has a
surjective lift ¢ ® S[T]: £® S[T'] — IS[T), applying Proposition 6.0.1, it follows that
A" also has a surjective lift, say, 6 : £ @ S[T] — IS[T]. Now we can apply Lemma 7.0.2
and conclude that there is a surjection v : £ — I which lifts 3. s

Definition 8.0.1. We call a local LL-orientation [a] of I a global orientation of I if the
surjection « : L£L/18 —» I/I? can be lifted to a surjection 8 : £ — I.

Define the groups G and H exactly as in Chapter 6, by only replacing L[T] with L.
Definition 8.0.2. The Euler class group of R

module L is defined as E(R,L) %f ¢/ 7.

[T] with respect to the projective R[T]-

The following result is crucial for further discussions.

P ‘e )
roposition 8.0.1. Let R ke q reduced ring, L be q projective R[T]-module of rank one

d . .
andlet R < S pe g special L-regular extension. Then there is a canonical injective group

homomorphism © - E(R[T|,L) — E(S[T],L & S[T)).
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Proof. We first note that R — .S is a finite subintegral extension. Therefore, R[T] <
S[T] is also subintegral. Further, if I C R[T] is an ideal, then ht(I) = ht(IS[T]) (see
Remark (3.2.1)). Given a surjection wy : £/I€ — I/I2, we have the induced surjection

. (gws[M) IS[T)
“I TSI (ews[T)) 2SI

as described at the beginning of Chapter 7. It is now easy to see that there is a
canonical group homomorphism © : E(R[T],L) — E(S[T],L® S[T]), which takes
(I,wr) to (IS[T],w}). To prove that © is injective, let (I,w;) € E(R{T],IL) be such that
O((,wr)) = 0in E(S[T],L&® S[T]). In other words, (IS[T],w;) =0in E(S[T], L& S[T]),
where wy is induced by w;. As L ® S[T] is extended from S, it follows from Theorem
6.0.2, that wy has a surjective lift 7 : £& S[T] - IS[T]. But then Lemma 7.0.2 implies
that there is a surjection ¢ : £ — T lifting w;. Therefore wy is a global L-orientation and

consequently, (I,wr) =0 in E(R[T],L). =
We now prove the following results on the Euler class group E(R[T],L).

Theorem 8.0.1. Let R be a reduced ring of dimension n > 4. Let I C R[T} be an ideal
of height n such that I/12 is surjective image of £ and let wy be a local LL-orientation of
I. Suppose that the image of (I,wr) is zero in E(R[T],L). Thenwr can be lifted to a

surjection .21

Proof. This is a direct consequence of Theorem 6.0.2 and Lemma 7.0.2. 0

So far we kept assuming that the ring R is reduced. To extend the theory to

non-reduced rings, the following proposition is in order.

Proposition 8.0.2. Let R be a ring and let Ryeq = R/n(I?), where n(R?) is the ni-
radical of R. LetL be a projective R[T)-module of rank one. Then there is a canonical

isomorphism 1 : E(R[T], L) <3 E(RedlT), L ® RrealT])-

Proof. The proof is along the same line as [D 3, Proposition 2.15] and [B-RS 4, Corollary
O

4.6] and therefore omitted. We may also consult [K, Corollary 4.13].

Remark 8.0.2. As a consequence of the above proposition, Theorem 8.0.1 is now valid for

non-reduced R and therefore, throughout this chapter we may assume R to be reduced.
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We now define the Euler class of a projective R[T]-module with determinant L.

Let P be a projective R[T]-module of rank n whose determinant is isomorphic to
L. Let x : . = A™(P) be an isomorphism. To the pair (P, ), we associate an element
e(P,x) of E(R[T], L) as follows:

Let o : P — I be a surjection, where 7 is an ideal of R[T’] of height n. Let bar denote
reduction modulo I. Note that, since dim(R[T]/I) < 1, by Serre’s splitting theorem
(Theorem 2.1.1) we have P/IP ~ £/I£. We choose an isomorphism 7 : £/I£ = P/IP
such that A"¥ = X. Let ws be the composite surjection

¥ -
£/1¢ 5 P/IP — I/1%

Let e(P,x) be the image in E(R[T],L) of the element (I,w;). We say that (I,wy) is
obtained from the pair (a, x).

Definition 8.0.3. We define the Euler class of (P, ) to be e(P, x).

Lemma 8.0.2. The assignment sending the pair (P, X) to the element e(P,X), as

described above, is well defined.

Proof. Let « : P — I and 8: P — J be two surjection, where I, J C R[T] be two ideals
of height n. Let (I,wr) and (J,w,) be obtained from (o, x) and (B, x), respectively.
Applying Lemma 2.1.4, we can find an ideal K ¢ R[T] of height n such that K is
comaximal with I, .J and there is a surjection v : £ - I N K such that vy ® R[T]/I = wr.
Since K and I are comaximal, 7 induces a local L-orientation wg of K. Clearly,
(L,wr) + (K, wk) = 0 in E(R[T],L).
Let M = K N J. Note that wx and w; together will induce a local L-orientation of

M. Call it wps. Then, (M, wy) = (K, wk) + (J,ws). Therefore, showing (M,war) =0

in E(R[T], 1) is enough to prove the lemma.,

We may assume that R is reduced. Let R < S be a special L-regular extension.
Then L ® S[TY is extended from S. As the Euler class of a projective S[T}-module (in
E(S[T},L® S[TY)) is well defined, it follows that (MS[T},w};) = 0 in E(S[T),L® S[T)),

where w}, is induced by wyr. Therefore, by Theorem 6.0.2, it follows that w}s can be
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lifted to a surjective map 6 : £ ® S[T| -» MS|T]. Applying Lemma 7.0.2, we obtain a
surjective lift ¢ : £ - M of wps. In other words, (M, wyr) =0 in E(R[T], L). 0

Theorem 8.0.2. Let R be a ring and L, P, x as above. Then, e(P,x) =0 in E(R[T],L)

if and only if P has a unimodular element.

Proof. Without loss of generality we may assume that 2 is reduced. Let R < S be a
special L-regular extension with .S reduced. Let « : P — I be a surjection, where is an
ideal in R[T] of height n. Let e(P, x) = (I,wr) in E(R[T],L), where (I,wr) is obtained
from the pair (o, x).

We first assume that e(P, x) = 0 in E(R[T},L). Then, e(P ® S[T],x ® S[T]) =0in
E(S[T),L® S[T)). AsL ® S[T] is extended from S, it follows from Corollary 6.0.2 that
P ® S[T] has a unimodular element. But then by [B 1, Lemma 3.2], P has a unimodular
element.

Conversely, assume that P has a unimodular element. Therefore, P & S[T] also has a
unimodular element. As L. ® S[T] is extended from S, it follows from Corollary 6.0.2 that
e(P ® S[T], x ® S[T]) = (IS[T), w}) = 0 in E(S[T), L ® S[T]). But then by Proposition
8.0.1, e(P,x) = 0 in E(R[T], L). 0

Theorem 8.0.3. Let R be a ring and L be a projective R[T]-module of rank one. Let
P be a projective R[T|-module of rank n which is stably isomorphic to LOR[T]*"1. Let
X : L5 A™P be an isomorphism. Let I C R[T] be an ideal of height n such that I/I? is
surjective image of £ and wy be a local L-orientation of I. Suppose that e(P,x) = (I,wr)
in E(R[T),L). Then, there exists a surjection o : P —» I such that (I,wr) is obtained
from (o, ).

Proof. By Theorem 2.1.1, P/IP is isomorphic to £/I£. Choose an isomorphism ¢ :
e/1g 5 P/IP such that Ao = X ® R[T}/I. Let ¥ : pr/ir —» I/I2 be the composite
surjection:

P/IP 75 g/18 55 /12

Applying Lemma 2.1.4 we obtain a lift of ¥, say, ¢ € Hom R[T](P ,I) such that #(P) :
Iﬂ]l’ Where I/ is an ideal Of R[T] Of helght Z n and I + I/ = R[T] If I' = R[T]a then
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obviously ¢ is surjective and we are done in this case. Therefore, we assume that I’ is
proper and ht(I’) = n.

Choose an isomorphism 0 : £/I’¢ =5 P/I'P such that A"(8) = x®R[T]/I'. By
the Chinese Remainder Theorem, we have P/(INI)P ~ P/IP & P/I'P. Therefore,
o and 6 together will induce an isomorphism 7 : £/(INI")£ 5 P/(INTI')P such that
AMT) = x ® R[T)/(INI'). Composing 7 with ¢ ® R[T|/({ N I’") (as in the definition
of the Euler class) one obtains a local orientation of I N I’, say, winr, and therefore,
e(P,x)=(I NI, wrnp). Again note that as I and I’ are comaximal, winy induces local
L-orientations of I and I’ and it is easy to see that the induced local orientation for I is

precisely wy. If we call the one induced for I’ as wy then we have:
e(P,x)=(I,wr) + (I' ywp) in E(R[T],L).

From the hypothesis of the theorem it now follows that (I',wypr) = 0, and therefore by
Theorem 8.0.1 there exists a surjection 3 : £ —» I’ such that 8 ® R[T)/I' = ¢ ® R[T]/I'.
Now we can apply Proposition 2.3.3 and conclude the proof of the corollary. O

Theorem 8.0.4. Let R be a regular ring of dimension n which is essentially of finite type
over a field k such that R has infinite residue fields. Let I be a projective R[T)-module
of rank one. Then E(R[T),L)~ E(R,L/TL).

Proof. By a result of Lindel [L 1], the projective R[T]-module L is extended from E.
Therefore, there exists projective R-module L of rank one such that L ~ L[T] and
L/TL ~ L. Therefore, we need to prove that E(R[T],L[T]) ~ E(R, L) and we are done
by Theorem 6.0.6. .

In the following theorem we extend some results from Chapter 3. In Theorem 3.2.5,
it has been proved that if R < S is a subintegral extension then the Euler class groups

E(R[T]) and E(S[T}) are isomorphic. The proofs given below are natural extensions of

arguments from Theorem 3.2.5.

Theorem 8.0.5. Let R be a ring and S be an extension ring. Let L be a projective

R[T)-module of rank one. Then E(R[T].L) ~ E(S[T],L ® S[T]) in the following cases:

(i) R—> S is elementarily subintegral.
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(ii) R <= S 1s finite subintegral. In particular, when S is a special L-regular eztension.
(iii) R — S is subintegral.
(iv) S = T(Ryeq), the seminormalization of Ryeq.

Proof. We may assume by Proposition 8.0.2 that the ring R is reduced to start with.
Also note that if R — S is subintegral, then we have a natural group homomorphism
©: E(R[T],L) - E(S|T],L ® S[T]), which sends (J,wy) to (JS,w}), where w} is the
local orientation induced by w.

(1) Let R < S be elementarily subintegral. Let C be the conductor of R in S. Then
by Lemma 3.1.4 we have (R/C)req = (S/C)red- It now follows from Lemma 7.0.1 thas ©
is injective.

To prove that © is surjective, let (I,0) € E(S[T],L® S[T]), where I C b[T] is
an ideal of height n and o : (£ ® S[T])/I(£® S[T]) — I/I? is a surjection. By using
the moving lemma (Lemma 2.1.4), we can find an ideal K C S[T] and a surjection
T: £®S[T] » INK such that: (i) ht(K) > n, (ii) K +INnC[T] = S[T], and (iii)
TR S[T)/I =o0.

If ht(K) > n, then K = S[T] and we have (I,0) = 0 in E(S[T]). Therefore we
assume that ht(K) = n. Let 1 = 7 ® S[T]/K be the local L-orientation of K. Then we
have, (I,0) 4 (K,7) =0 in E(S[T],L® S[T]). It is now enough to prove that (K,n) has
a preimage in E(R[T],L).

Let KNR|T] = J. As K +C[T| = S|T), we have J+C|[T] = R[T], and therefore there
exists f € C[T] suchthat g =1 — f € J. We can assume that ht(g) = 1. Since f € C[T,
we have R[T]; = S[T;. Therefore R[T}/(1- f) = S[T}/(1 ~ f) and R[T] — S[T}is an

analytic isomorphism along g € J. Therefore using Proposition 2.1.1, we have
(a) R[T}/J ~ S[T|/K.
(b) K = JS[T)

(¢) As g e J, we have J/J2 ~ K/K2.
As a consequence of (a) we have, £/JL~ (£® S[T])/K(£®S[T]). It is now easy
: 2 fore,
to see from (c) that 7 is induced from a surjection Wy : ¢/Jg —» J/J?. Therefore

@((‘]v LUJ)) = (K, 7])
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(2) Let R — S be finite subintegral. Then S is obtained from R by a finite sequence
of elementarily subintegral extensions and we are done by (1) above.

(3) Here .S is the filtered direct limit of subrings S, such that each S, can be obtained
from R by a finite number of elementarily subintegral extensions. A direct limit argument
as in Theorem 3.2.2 can easily be given to conclude the result.

(4) Obvious from (3). : : : O

8.1 Low dimensional rings

In this section we treat the cases when dim(R) = 2.3. The methods of previous sections
do not naturally extend to three dimensional rings due to the lack of a suitable subtraction

principle and we need to handle this carefully. The case of two dimensional rings is much

simpler but the method is different.

8.1.1 Three dimensional rings

Let R be a ring of dimension 3 (containing Q) and L be a projective R[T}-module of rank
one. Assume for the time being that R is reduced. Let B < S be a special L-regular
extension with .S reduced and C be the conductor of R in S. We fix S for the following
discussion. We have, ht(C) > 1. A careful inspection of the theory and the results in
Chapter 6 would reveal that if we had ht(C) > 2, or more generally, ht(J(R,L)) > 2,
where J(R,L) is the Quillen ideal of L in R, then one can similarly develop the theory
of E(R[T],L) and prove all the results of Chapters 6, 8. However, we now assume that
ht(C) > 1 and define a “restricted” Euler class group Eg(R[T},L) below, which will
serve most of our purposes. The definition is exactly the same as those in Chapters 6
and 8, only with one restriction imposed on the ideals concerned. We shall not repeat

the whole definition in detail and we shall freely use terms defined in Chapter 8.

Definition 8.1.1. (The “restricted” Euler class group E’S(R[T], L)): Let R be reduced.

Let G be the free abelian group on pairs (Z, wy), where Z C R(T] is an ideal of height n
such that Spec(R[T]/Z) is connected and Z + C [T] = R[T] (here is the restriction), and

 (LORIP) I
I TWaRIY 7
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is a local L-orientation of Z. Given any ideal I of R[T"] such that I + C[T'] = R[T] and

any local L-orientation wy, one can easily associate an element in G , as it was done

before. We denote this element as (I,w;). Take H to be the subgroup of G generated by

all those (I,wy) of G such that w; is a global L-orientation. Define Es(R[T),L) = G/H.
We write £ = L&R[T]2.

Theorem 8.1.1. Let R be a reduced ring of dimension 3, L be a projective R[T)-

module of rank one and S be as above. Then there is an injective group homomorphism

© : Es(R[T),L) — E(S[T], L ® S[T)).

Proof. The definition of © is the same as Proposition 8.0.1. Obviously it is a group

homomorphism. The injectivity of © follows from Remark 7.0.3. U

Corollary 8.1.1. Let R,L, S be as above. Let (I,wr) =0 in E’S(R[T],]L). Then wy is

a global L-orientation of I, i.e., there is a surjective map o : £ — I such that o lifts wr.

Proof. Clearly follows from the above theorem because © is injective. O

Now let P be a projective R[T}-module of rank 3 with determinant L and let
X : L = A3(P) be an isomorphism. We can associate an element e(P, x), called the Euler
class of (P, x), in the group Es(R[T],L) so that it serves as the precise obstruction for
P to split off a free summand of rank one. We describe it now.

Let R — S be a special L-regular extension as above and C' be the conductor
of Rin S. Since dim(R/C) < 2, it follows from Theorem 2.1.1 that the projective
(R/C)[T)-module P/C[T]P has a unimodular element. Applying Lemma 2.1.2 it is easy
to see that there is an ideal I < R[T) of height 3 which is comaximal with C[T] such that
there is a surjection a : P —» I. Choose an isomorphism 7 : £/1£ 5 P/IP such that

A"Y = ¥, where bar denotes reduction modulo I. Let w; be the composite surjection

i o 2
£/1£ 5 P/IP - I/T7.

— 3 h
We define the Euler class of (P,x) as e(P,x) = (I,wr) € Es(R[T],L)- Following the

same method as in Lemma 8.0.2 and using Theorem 8.1.1 it is easy to prove that the

Euler class is well defined.
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Theorem 8.1.2. Let R,L be as above. Let P be a projective R[T)-module of rank 3
with determinant L and let x : L. = A3(P) be an isomorphism. Then e(P,x) =0 in
Es(R[T),L) if and only if P has a unimodular element.

Proof. Let R <— S be the épecial L-regular extension fixed above and © : Eg(R[T],L) —
E(S[T],£® S[T]) be the group homomorphism from the above theorem. Let e(P, x) =
(I,wr) in Es(R[T],L).

First assume that e(P, x) = 0 in Eg(R[T],L). This will imply that e{P®S[T],x ®
S[T)) = (IS[T],w}) = 0in E(S[T], £ ® S{T)), where w} is the local orientation of IS[T]
induced by wy. As L ® S[T] is extended from S, it follows from Corollary 6.0.2 that
P ® S[T] has a unimodular element. Then by [B 1, Lemma 3.1}, P has a unimodular
element.

Conversely, if P has a unimodular element then the same is true for P® S [T], and
then (IS[T],w}) = 0 in E(S[T], £ ® S[T]). As O is injective, it follows that (/,w;) =0
in Es(R[T],L). Therefore, ¢(P,x) = 0 in Es(R[T),L). O
Remark 8.1.1. Now let R be a ring of dimension 3 which is not necessarily reduced.
Let P be a projective R[T]-module of rank 3 with determinant L. Let Ryeq = R/n(R),
where n(R) is the nil radical of R. It is easy to derive that P has a unimodular element
if and only if P ® Ryeq has a unimodular element. Fix an isomorphism x : L = A3(P).
Consider the Euler class e(P ® Rred, X ® Rpeq) € Eg(Rred, L ® Ryeq). Then P has a
unimodular element if and only if (P ® Rieq, X ® Ried) =0 in E(Rred, L ® Rred)-

8.1.2 Two dimensional rings

Let R be a ring of dimension 2 and L be a projective R[T]-module of rank one. The

theory of the Euler class group E(R[TY],L) is very much similar to the two-dimensional

case developed in [D 1, Section 7]. Unlike the higher dimensional cases treated so far,
most of the results for two dimensional rings from [D 1, Section 7] can be extended

without much hurdle. We first prove the following casy lemma.

Lemma 8.1.1. Let R be o ring of dimension 2 and b be a projective R[T)-module of

rank one. Let J C R[T] be an ideal such that there is a surjection @ : L & R[T] — J/J*.
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Then there exists a projective R[T'|-module P of determinant L such that P maps onto

J.

Proof. Write £ =L&R[T"]. Let v : £ — J bealift of @. Then «(g)+.J2 = .J. Therefore,
by Lemma 2.1.3 there exits e € J such that J = («(£),e) with e(1 — e) € a(£). This
implies that o' = a1_¢: £1_¢ — Ji_c is a surjection.

On the other hand, we have a surjection 8 : £ — J. = R[T]. which is projection
onto the second factor.

Thus we obtain two surjections of, 81-e from £,1_) to Jei—e) = R[T)e(1-¢), and

exact sequences:
00— ker(a'e) — £e(1_e) -» Je(l—e) = R[T],,(l_e) =0

0- keI'(/B1~e) — 'Qe(l—e) —- ~e(1_e) = R[T]e(l—e) =0

As projective modules of rank one are always cancellative, we have ker(c.) = Le(1—e) =
ker(B1-e). Therefore, there is an automorphism ¢ of £.(;_.) such that det(¢) = 1 and
(B1-e)¢ = . By astandard patching argument we obtain a projective R[T]-module Pof
rank 2 and a surjection from P to J. As det(¢) = 1, it is easy to see that A(P)y~L. O

Armed with the above lemma one can now easily extend [D 1, Theorem 7 .1] in the
following manner. We omit the proof as it can be worked out modifying the proof of

[D 1, Theorem 7.1].

Theorem 8.1.3. Let R be a ring of dimension 2 and 1. be a projective R[T)-module of
rank one. Write £ =L & R[T). Let J C R[T] be an ideal such that there is a surjection
@: L& - J/J2. Suppose that there is a surjection I : £&R(T) — JR(T) such thatT
lifts &« ® R(T). Then there is a surjective map 8 : £ — J and 0 € SL(L/J L) such that
af = @ R[T]/J.

[T']-module of
7.2, 7.3]. The
re. The

Remark 8.1.2. Let R be a ring of dimension 2 and L be a projective R
rank one. Applying Theorem 8.1.3 one can easily extend [D 1, Corollary
Euler class group E(R[T],L) can be defined exactly as it has been done befo

only difference is that, a local L-orientation a : £/J£ — J/J 2 will be called global if
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there is a surjection 8 : £ - J and some o € SL(£/J&) such that ac = §® R[T]/J.
The Euler class of a projective R[T']-module P of rank 2, together with an isomorphism
x : L 5 A2%(P) can also be defined as it has been done in previous section. It can
be easily checked that the Euler class e(P,x) is trivial in E(R[T],L) if and only if
P ~1L@& R[T]. We leave all the details as no new technique is involved here. Only result
that we could not extend from [D 1] is [D 1, Theorem 7.6]. Note that in the proof of [D 1,
Theorem 7.6], the “Symplectic” cancellation theorem of Bhatwadekar {B 2, Theorem

4.8] is crucially used, which is not available in this case.



Bibliography

[B-M] J. Barge and F. Morel, Groupe de cycles orientés et classe d’Euler des fibrés
vectoriels, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), 287-290.

[Ba] H. Bass, K-theory and stable algebra, I.H.E.S. 22 (1964), 5-60.

[B 1] S. M. Bhatwadekar, Inversion of monic polynomials and existence of unimodular

elements (II), Math. Z. 200 (1989), 233-238.

(B 2] S. M. Bhatwadekar, Cancellation theorems for projective modules over a two
dimensional ring and its polynomial extensions, Compositio Math. 128 (2001),
339-359.

[B-K] S. M. Bhatwadekar and Manoj Keshari, A Question of Nori: projective genera-
tion of ideals, K- Theory 28 (2003), 329-351.

[B-R 1] S. M. Bhatwadekar and Amit Roy, Some theorems about projective modules
over polynomial rings, J. Algebra 86 (1984), 150-158.

[B-R 2] S. M. Bhatwadekar and Amit Roy, Some cancellation theorems about projective

modules over polynomial rings, J. Algebra 111 (1987), 166-176.

[B-RS 1] S. M. Bhatwadekar and Raja Sridharan, Projective generation of curves in

i i i : sti y . Math.
polynomial extensions of an affine domain and a question of Nori, Invent Ma

133 (1998), 161-192.

[B-RS 2] S. M. Bhatwadekar and Raja Sridharan, Projective generation of curves in
polynomial extensions of an affine domain (II), K-Theory 15 (1998), 293-300.

95



96 BIBLIOGRAPHY

[B-RS 3] S. M. Bhatwadekar and Raja Sridharan, Zero cycles and the Euler class groups
of smooth real affine varieties, Invent. Math. 136 (1999), 287-322.

[B-RS 4] S. M. Bhatwadekar and Raja Sridharan, Euler class group of a Noetherian
ring, Compositio Math. 122 (2000), 183-222.

. [B-RS 5] S. M. Bhatwadekar and Raja Sridharan, On Euler classes and stably free
projective modules, in: Algebra, arithmetic and geometry, Part I, [I{Mumbai,
2000), 139-158, Tata Inst. Fund. Res. Stud. Math., 16, Tata Inst. Fund. Res.,
Bombay, 2002.

[B-RS 6] S. M. Bhatwadekar and Raja Sridharan, On a question of Roitman, J. Ra-
manujan Math. Soc. 16 (2001), 45-61.

[D 1] M. K. Das, The Euler class group of a polynomial algebra, J. Algebra 264
(2003), 582-612.

[D 2] M. K. Das, The Euler class group of a polynomial algebra 11, J. Algebra 299
(2006), 94-114.

[D 3] M. K. Das, Revisiting Nori’s question and homotopy invariance of Euler class

groups, J. K-Theory 8 (2011), 451-480.

[D 4] M. K. Das, On triviality of the Euler class group of a deleted neighbourhood of
a smooth local scheme, Trans. Am. Math. Soc. 365 (2013), 3397-3411.

[D-RS] M. K. Das and Raja Sridharan, Good invariants for bad ideals, J. Algebra 323
(2010), 3216-3229.

[D-RS 2] M. K. Das and Raja Sridharan, Euler class groups and a theorem of Roitman,
J. Pure and Applied Algebra 215 (2011), 1340-1347.

[D-Z 1] M. K. Das and Md. Ali Zinna, On invariance of the Euler class group under a

subintegral base change, J. Algebra 398 (2014), 131-155.

[D-Z 2] M. K. Das and Md. Ali Zinna, The Euler class group of a polynomial algebra
with coefficients in a line bundle, Math. Z. 276 (2014), 757-783.



BIBLIOGRAPHY 97

[E-E] D. Eisenbud and E. G. Evans, Generating modules efficiently: Theorems from
algebraic K-Theory, J. Algebra 27 (1973), 278-305.

[G] Joseph Gubeladze, Subintegral Extensions and Unimodular Rows, Geometric
and combinatorial aspects of commutative algebra (Messina, 1999), 221-225,

Lecture Notes in Pure and Appl. Math., 217, Dekker, New York, (2001).

[F] J. Fasel, Groupes de Chow-Witt. Mm. Soc. Math. Fr. (N.S.) 113, viii+197
(2008)

[F-Sr] J. Fasel and V. Srinivas, Chow-Witt groups and Grothendieck-Witt groups of
regular schemes, Adv. Math. 221 (2009), 302-329.

[I 1] F. Ischebeck, On the Picard group of polynomial rings, J. Algebra 88 (1984),
395-404.

[I 2] F. Ischebeck, Subintegral Ring Extensions and Some K-Theoretical Functors, J.
Algebra 121 (1989), 323-338.

[K] M. Keshari, Euler Class group of a Noetherian ring, M.Phil. thesis, available at
: http;//www.math.iitb.ac.in/”keshari/acad.html

[Kr] M. I. Krusemeyer, Fundamental groups, algebraic K-theory and a problem of
Abhyankar, Invent. Math. 19 (1973), 15-47.

[La] T. Y. Lam, Serre conjecture, in: Lecture Notes in Mathematics, Vol. 635,

Springer, Berlin, 1978.

[L 1] H. Lindel, On a question of Bass-Quillen and Suslin concerning projective

modules over polynomial rings, Invent. Math. 65 (1981), 319-323.

[L 2] H. Lindel, Unimodular elements in projective modules, J. Algebra 172 (1995),
301-319.

[M1] S. Mandal, On efficient generation of ideals, Invent. Math. 75 (1984), 59-67.

[M 2] S. Mandal, Homotopy of sections of projective modules, J. Algebraic Geometry

1 (1992), 639-646.



98 BIBLIOGRAPHY

[M-RS] S. Mandal and Raja Sridharan, Euler classes and complete intersections, J.

Math. Kyoto Univ. 36 (1996), 453-470.

[M-V] S. Mandal and P. L. N. Varma, On a question of Nori: the local case, Commu-
nications in Algebra 25 (1997), 451-457.

[M-Y 1] Satya Mandal and Yong Yang, Intersection theory of algebraic obstructions, J.
Pure Appl. Algebra 214 (2010), 2279-2293.

[M-Y 2] Satya Mandal and Yong Yang, Excision in algebraic obstruction theory, J. Pure
Appl. Algebra 216 (2012), 2159-2169.

[MK-M] N. Mohan Kumar and M. P. Murthy, Algebraic cycles and vector bundles over
affine three-folds, Ann. Math. 116 (1982), 579-591. ' '

[MK-M-R] N. Mohan Kumar, M.P Murthy and Amit Roy, A cancellation theorem for
projective modules over finitely generated rings, in: Hijikata H., et al. (Eds.),

Algebraic geometry and commutative algebra in honor of Masayoshi Nagata,

vol. 1, (1987), 281-287.

[Mo] F. Morel, Al-algebraic topology over a field, in: Lecture Notes in Mathematics,
Vol. 2052, Springer, Berlin, 2012.

Mu] M. P. Murthy, Zero cycles and projective modules, Ann. Math. 140 (1994),
405-434.

[Mu-P] M.P. Murthy, C. Pedrini, Ky and K; of polynomial rings, in: Algebraic K

-Theory 1I, in: Lecture Notes in Math., vol. 342, Springer, Berlin, 1973, pp-
109121.

[N] B. S. Nashier, Efficient generation of ideals in polynomial rings, J. Algebra 85
(1983), 287-302.
[P] B. R. Plumstead, The Conjectures of Eisenbud and Evans, American Journal

of Mathematics Vol 105 No 6 (1983), 1417-1433.

[Qu] D. Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976),
167-171.



BIBLIOGRAPHY 99

[Ro] M. Roitman, On projective modules over polynomial rings, J. Algebra 58 (1979),
51-63.

[Se] Serre, J-P, Sur les modules projectifs, Semin. Dubreil-Pisot 14 (1960-61).

[Su 1] A. A. Suslin, Projective modules over polynomial ring are free, Soviet Math.

Dokl. 17 (1976), 1160-1164.

[Su 2] A. A. Suslin, On the structure of the special linear group over polynomial rings,

Math. USSR-Izv 11 (1977), 221-238.
[Swl] Richard G. Swan, On seminormality, J. Algebra 67 (1980), 210-229.

[Sw2] Richard G. Swan, Gubeladze’s proof of Anderson’s Conjecture, Azumaya alge-
bras, actions, and modules (Bloomington, IN, 1990), 215-250, Contemp. Math.,
124, Amer. Math. Soc., Providence, RI, 1992.

[T] C. Traverso, Seminormality and the Picard group, Ann. Scuola Norm. Sup.
Pisa 24 (1970) 585-595.

[VKl] Van der Kallen, A group structure on certain orbit sets of unimodular rows, J.

Algebra 82 (1983), 363-397.

[VKZ] Van der Kallen, A module structure on certain orbit sets of unimodular rows,

J. Pure and Applied Algebra 57 (1989), 281-316.



	Page 1 
	Page 2 
	Page 3 
	Page 4 
	Page 5 
	Page 6 
	Page 7 
	Page 8 
	Page 9 
	Page 10 
	Page 11 
	Page 12 
	Page 13 
	Page 14 
	Page 15 
	Page 16 
	Page 17 
	Page 18 
	Page 19 
	Page 20 
	Page 21 
	Page 22 
	Page 23 
	Page 24 
	Page 25 
	Page 26 
	Page 27 
	Page 28 
	Page 29 
	Page 30 
	Page 31 
	Page 32 
	Page 33 
	Page 34 
	Page 35 
	Page 36 
	Page 37 
	Page 38 
	Page 39 
	Page 40 
	Page 41 
	Page 42 
	Page 43 
	Page 44 
	Page 45 
	Page 46 
	Page 47 
	Page 48 
	Page 49 
	Page 50 
	Page 51 
	Page 52 
	Page 53 
	Page 54 
	Page 55 
	Page 56 
	Page 57 
	Page 58 
	Page 59 
	Page 60 
	Page 61 
	Page 62 
	Page 63 
	Page 64 
	Page 65 
	Page 66 
	Page 67 
	Page 68 
	Page 69 
	Page 70 
	Page 71 
	Page 72 
	Page 73 
	Page 74 
	Page 75 
	Page 76 
	Page 77 
	Page 78 
	Page 79 
	Page 80 
	Page 81 
	Page 82 
	Page 83 
	Page 84 
	Page 85 
	Page 86 
	Page 87 
	Page 88 
	Page 89 
	Page 90 
	Page 91 
	Page 92 
	Page 93 
	Page 94 
	Page 95 
	Page 96 
	Page 97 
	Page 98 
	Page 99 
	Page 100 
	Page 101 
	Page 102 
	Page 103 
	Page 104 

