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INTRODUCTION AND SUMMARY

Unless otherwise stated all rings are assumed to be
commutative and Noetherian with finite Krull dimension and

modules are finitely generated.

There are three related questions in commutative algebra.
They are about the existence of unimodular elements in projective
modules, cancellation of projective modules and minimal number
of generators %ur finitely generated modules. In particular,
determining the minimal number of generators of ideals is also

of great interest in this area.

In this thesis we shall be concerned with the above questions

in the case of Laurent polynomial rings.

The thesis consists of three Chapters. The main results

are presented in Chapters II and III.

We shall brifely recall some classical results in the above

mentioned area. Serre [Sr] proved that : if P is a projective

module over a ring R with rank P > dim R+1 then P has a unimodular

element. Cancellation theorem of Bass [Ba-Z] says that : if P is a

projective module over R with rank P > dim R+1 then P has

cancellation property. Forster [F] and Swan [Sw] proved that : for

an R-module M, if n = max{pu(p,M) + dim(R/p)|p is a prime ideal with

HP # 0} then M is generated by n elements.

A unified treatment to all these problems was given by

Eisenbud and Evans [EE-2]. They introduced the idea of basic elements



for modules, extending the concept of unimodular elements for

projecktive modules, and deduced all the results mentioned above.

It was also known that the above mentioned results
are the best possible in the general situation. However one
expected to improve these results for special kinds of rings.
Eisenbud and Evans [EE-1] suggested the following three conjectures

for polynomial rings:

EEC I. If M is a finitely generated R[T]- module such that

ulp, M) > dim R + 1 then M has a basic element.

EEC II. If P 1s a finitely generated projective module over

R[T] of rank > dim R + 1 and if P' and 0 are finitely generated

projective modules such that P@0Q = P' @0 then P = P!

EEC III. Let M be a finitely generated R[T]- module and let

e(M) = max{ p(p,M) + dim(R[T]/p) |p e Spec (R[T])with dim(R[T]/p) < dim R}.

Then M is generated by e(M) elements.

EEC III was first proved by Sathaye [Sa] in the case when
the base ring is an affine domain over an infinite field and then
Mohan Kumar [MK-2] proved it completely. EEC I and I1 were proved

by Plumstead [P] in his thesis. He also gave an alternative proof

of EEC III.

In an obvious way one can make statements analogous to

LEC I-I11 for Laurent polynomial rings. Fait

In Chapter II of this thesis we shall discuss these Laurent

polynomial anologous of EEC I-III. We shall see that all these analogues



of EEC I-III for Laurent polynomial rings are settled

affirmatively.

In Chapter III we shall consider a problem about minimal
number of generators of ideals. There is a well known result

([MK-1], Lemma)that : for an ideal I of a ring R

uilflz} < ull) < u(IfIE} + 1. It would be desirable to have
ull) = u(IﬁIz} . But this is not true in general. However it is
expected that this equality holds for a large class of rings and

ideals.

Mohan Kumar [MK-2] proved that:if R is a polynomial ring

over a field in several variables and u{Iflz}_i dim(R/I} + 2 then

I is generated by u{I!IZJ elements.

Inspired by this result one expects that : when R is

a polynomial ring or a Laurent polynomial ring in several variables

over a commutative ring A and I is an ideal of R with

height(I) > dim A and  w(I/1%) > dim(R/1) + 2, then w(I) = w(1/12).
Our main result in Chapter III will establish this proposition

when R is a Laurent polynomial ring with atleast one Laurent polynomial
variable. It is interesting to note that our method does not work in

the polynomial case (see Chapter 111, Remark 2.6).

About the techniques used, one of our main tools is a
technique of patching isomorphisms of modules introduced by Plumstead

[P], developed from an idea of Quillen [Q].

Now we shall briefly mention the chapterwise organization

of the thesis and the main results.



Chapter 1. In this chapter we shall fix up some preliminaries.
In 81 we shall discuss the patching tacHniques of Plumstead.

The rest of the preliminaries and notations are in § 2.

Chapter II. As we have mentioned, Chapter II consists of analogues

of EEC I-1II for Laurent polynomial rings.

Theorem 1.1 of this chapter is the H[T,Tﬂll- analogue of

EEC I. It states that : if M is a finitely generated H[T,Tnl]- module

with  u(p,M) > dim{R[T,T'l]fp} for all minimal prime p of R[T,T-L]

then M has a basic element, This theorem is an easy consequence

of the validity of EEC I ([P], p.19, Theorem 2), unlike the analogues

of EEC II and III.

The Laurent polynomial analogue of EEC II is established in
Theorem 1.2 of this chapter. Namely the theorem is : if P, P' and Q

are finitely generated projective R[T,T'l]- modules with

rank P > dim R + 1, then P@ Q = P' @ Q@ implies P = P'. The proof
of this theorem is accomplished by actually proving a kind of cancellation
theorem for torsion-free modules over polynomial rings, which we

mention as proposition 1.5 in this chapter. Apart from generalizing

Plumstead's cancellation theorem (i.e. validity of EEC II), this

proposition seems to be of some further interest. In fact it was later

used by Bhatwadekar and Roy ([BR], §4, Theorem 4.3)}to prove a

cancellation theorem for projective modules over certain class of

overrings of polynomial rings. After that Ravi Rao ([R], §4, Theorem 1.1(B))

has used a modified version of this proposition to prove a cancellation



theorem for projective modules over all overrings of polynomial

rings.

Theorem 2.1 of Chapter 11 will establish the Laurent
polynomial analogue of EEC III. More precisely, the theorem says:

if M is a finitely generated module over R[T,T_l}jr then M is

generated by e(M) elements, where

e(M) = max{u(p,M) + dim(R(T,T"21/p) |pe Spec(RLT,T1]) with

dim(R[T,T™11/p) < dim R} .

Chapter III. The main theorem (Theorem 2.3) of this chapter

me, ) >0 an

states that : if R =,A[Kl,...,xn,

r > 1 is a Laurent polynomial ring with atleast one Laurent polynomial

variable and 1 1is an ideal of R with height(I) > dim A and

u(Ifrz} > dim(R/I) + 2, then u(I) = u(1;12) ;

For proving Theorem 2.3, one of our key results in this

Chapter is Theorem 1.2. It says : if I is an ideal in R[T] with

w(1/1%) > dim(R[T1/I) + 2 and'if I contains a monic polynomisl

whose constant term is a unit, then p(I) = p{IEIE}. We use

Theorem 1.2 to deduce its Laurent polynomial analogue (Theorem 2.2),

namely : if R = A[T,T-l] and I is an ideal of R which contains

a monic polynomial in T and a monic polynomial in 11 and if

u{lflz) > dim(R/I) + 2, then 1 is generated by u{lflz} elements.

Theorem 2.3 follows immediately from this theorem and

another result (Lemma 2.4) of this chapter. The results states that:



X T 7] with n> 0 and r>1

if R = ALX T ises

IEEEEE

is a Laurent polynomial ring in several variables over a

commutative ring A and 1 is an ideal of R with

height(I) > dim A, then I will contain (after a change of

variables) a monic polynomial in T1 and a monic polynomial in TIl

This lemma is a generalization of a lemma of 5Suslin

([Su-2 ], § 7, Lemma 7.1) dealing with the case n = 0.



CHAPTER I

In this chapter we shall record some preliminaries
and notations. In §1 we shall recall some Lemmas of Pluhstead
[P] about patching of isomorphisms of modules. As we feel there
is a flaw in Plumstead's proof of these lemmas concerning the use
of his version of Quillen's Lemma, we shall also give the proofs of
these lemmas along with an appropriate version (81, Lemma 1.2) of

Quillen's Lemma ([Q], Lemma 1).
Rest of the prerequisites and notations are in § 2.

§ 1. Plumstead's Patching Lemmas.

The main lemma (Lemma 1.5) in this section is a lemma of
Plumstead ([P], page 11, Lemma 1) for patching isomorphisms of modules.

We shall start with a relabive version of Quillen's Lemna.

Lemma 1.1 (Quillen's Lemma). Let R be a commutative ring and A

be an algebra over R (which is not necessarily commutative). Let s

be an element of R and F be an element of (1 + THS[T]f, the units

of AELT} which are congruent to 1 module T. Then there exists an

integer k > 0 such that for any T,, T, in R with r, -1, in s R,

there exists G in (1 + TALT]; with GB(T] = F(rlT]F{rzT)Fl. Further,

if h: A+Bis a ring homomorphism and that the image of F in

EB[T] is one, then G may be taken with the property that the image of

G in B[T] is one.



Proof. The absolute case is proved in [Q]. In the relative

case we see that the following diagram

W
|

of rings and homomorphisms is commutative. Given any element d

in AE with its image in Bs zero, we can choose a ¢ in A with
its image in B zero and (c)_ = s*d in A, - In Quillen's proof
([Q], Lemma 1)if cij's are chosen in A so that their images in B

is zero, then the relative version of the lemma is established as in

[Ql.

The following special case of this Lemma will be used to prove

the main lemma.

Lemma 1.2. Let R be a noetherian commutative ring and s an

element in R. Suppose M is a finitely generated module over R

and M[T] denotes M@H R[T]. Given any isomorphism

1]

@ * ME[T] 5 Ms[T] of HE[T]— modules with ¢ = Id (mod T), there is

an_integer k > 0 such that for r r

1 2
there is an isomorphism @ : M[T] ¥ M[T]

R with r-r, in sR

R[T]- modules such that

|5
- =

-1 . - .
0,(T) = ¢(r;Tg(r,1)"" . Further if h : R+ R' is a homomorphism

of commutative rings with (pﬁgﬂé = Id, then & may be taken such

that B@R' = Id.



Proof. Follows from Lemma 1.1 by taking A = EndREH] and

B = Endg, (M@R') .

Definition 1.3. Let R be a commutative ring and M , M' be

modules over R. Suppose F, g : M3M' are isomorphisms of

R-modules. We say f is isotopic to g if there is an isomorphism

@ : M[T] 3 M'[T] over R[T] with (0) = f and (1) = g. If
h: R+ R' is a homomorphism of commutative rings then f is

isotopic te g relative to h if there is an isotopy ¢ of f to

g with ¢& R'[T] = Fﬁah R'[T] , a constant map.
e RIUT itk s,

We give an example of isotopic isomorphisms.

Example 1.4. Let R = A[T] be a polynomial ring and let M[T] be an
R-module extended from an A-module M. If £ is an R-automorphism.

of M[T] with f(0) = 1dH , then f is isotopic to IUM[T] i

Mureover the isotopy can be chosen Lo be relative to the homomorphism
R—=U5 A, In fact the automorphism @(X) = F(XT) of the R[X]- module

M[T][X] provides the desired isotopy.

The proof of the main lemma in this section is just the
reproduction of Plumstead's proof but for the use of the appropriate

version (Lemma 1.2) of Quillen' s lemma.

Lemma 1.5. ([P], page 11, Lemma 1). Let R be a commutative noetherian

ring and let Sy S be elements in R with ﬂsl + Hsz

2 R. Let

M, M' be finitely generated R-modules and let ¢, : M, -~ ML be

i i

isomorphism for i = 1,2. If (‘:’-1} and (o) are isotopie, then
Sy To—— p sl

there exists an isomorphism © : M ¥ M' . Further, if h : R+ R' is
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a homomorphism of commutative rings such that (al}s and {uz}s

2 2
are isotopic relative to h ¢ R + R! then & may be
515, 518, 518, ——
chosen with o, @ R* = ai@ﬁ for i = 1,2
’ 1

=1
Proof. Let m= {azislo (ul)sz v HEX = (q;z}slﬂ (ml}az where

. ot -1 o=
by € ﬂut{l‘-‘lsi} , then by setting @) = @y o Py and ay = oy 4;2

we have  (a! = (al) . So there is an isomorphism @ : M > M'
1 S, 2 sy

with EE. = ai
i
Now since (uz'} is isotopic to (a,)_ (resp. relative to
53 1 S,

h ), Id is isotopic to w (resp. relative to h ). Suppose
%1% 3

@ is an isotopy with ¢(0) = Id and (1) = n . We show that
m= (1) q:(a]hl pla), where (1) q:r(a)-l is in the image of
Aut{Msz} and ¢@fa) is in the image of Aul‘.(MEl} for a properly chosen
a in R. By applying Lemma 1.2 twice we see that there exists k >0

such that  (T) ::p(aT}_l is in image (Aut(M_ [T])) if 1l-a is in
2

STH and ¢l(aT) = g(al) q}{ﬂT}nl is in image (Aut(M_ [(T])) if a is
1

in skR. As Rs, +Rs, =R there is a in R such that a belongs to
sgﬂ and l-a belongs to sIfR. So (1) q:n(a]'_l is in image

(Aut(M_ )) and  g¢(a) in image (Aut(M_ )) for some a in R.
2 ’ 1

In the relative case we have m@RSlBE[T] = 1. By applying
relative version of Lemma 1.2 we may assume that the lifting 1, and
¥, of p(T) q;{aT}'l and @(aT) may be taken with . @R' = 1. But .
now of OR' = (a; ®R') ° (411]@1:1'} = o ®R' and similarly

ui@)ﬂ* =, ® R' . Thus the isomorphism @& will satisfy
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asigﬁ' s U @R fordaEl2,

Remark 1.6. In Plumstead's proof of Lemma 1.5, we have

@ : HEIBZ[T] + Mslsz[T] an isotopy of @(0) = Id to ¢ (1) =

with g ®@R'[T] = Id. To apply Quillen's lemma we consider 0

as an element of EH{|H {MS " }[T] and since ?@H'[T] = Id,

985 172
the image of ¢ in Eﬁdn.‘1(H3 5 GORL - J{T] is one. As for
5.1-:'2 _]. 2 1 2

a ring homomorphism R + R' one does not necessarily have

End M. _ ) @®R! = End,, (M. _ @R’ _ ), Plumstesd's
Hslsz 8184 1S5 Rslsz 8185 88,

version of Quillen's lemma ([P], p.l0) is not applicable. .

We shall conclude this section by quoting the following

lemma of Plumstead which is a consequence of Lemma 1.5 and Example 1.4.

Lemma 1.7. ([P], p.12, Lemma 2). Let A be a commuLative noetherian

ring and R = A[T] be a polynomial ring over A. Let M, M' be finitely

generated R-modules. Let « : be clements of A with

S1r 8,
Asl + Aaz = A. Assume o Ha -~ Mé are isomorphisms for i = 1,2
i i
satisfying
l. K& -e (o). =1 mod T
Z's 1l's, ~
1 2
2. Ms 5 is extended from AE gt §
172 1°2
Then there exists an isomorphism 8 : M ¥ M' such that 0, =as

mod T for i = 1,2,
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§ 2. Some more, Preliminaries and Notations

Before we go into any further preliminaries we shall fix

up some notations.

Throughout this section and in the subsequent Chapters A
and R will always denote a commutative noetherian ring with
finite Krull dimension. A[T] and A[T,T'l} respectively denote the
polynomial ring and the Laurent polynomial ring over A with T

as the variable. By dim A we shall mean the Krull dimension of A.

Unless otherwise specified all our modules are finitely
generated. If M is a module over R, then (M) or pR(H}
will denote the minimal number of generators of M as an R-module.
If p is a prime ideal of R, then uR{Hp} will be denoted by .
ulp, M. %

For R-modules M and N and R-linear map ¢ : M + N,
we can define an automorphism of M@N by setting
(myn) + (m, n+ ¢{m)) for m in M and n in N. We shall describe

this automorphism diagramatically as

M M
& > @
b e N

We also recall that for an element m in an R-module M,

0(m,M) denotes the ideal

{ olm) |p : M> R an R-linear map } .

e
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Sometimes we write O(m) for O(m,M).
We shall recall some definitions.

Definition 2.1. An element m in an R-module M is said to hé

unimodular if 0(m,M) = R.

Definition 2.2. An element m in an R-module M is said to be

basic at a prime ideal p of R if m does not belong to p Hp :
And m is said to be basic if it is basic at all primes of R.

We remark that a unimodular element is basic and in the case of

finitely generated projective modules an element is unimodular if and

only if it is basic.
The set of all non-negative intauers will be denoted by IN.

Definition 2.3. If P is a subset of Spec(R) and d : P + N is

a function, then for p , ¢ in P define p << ¢ if p c g
and d{p) > d(g). This defines a partial order on P . Such a

function is called a generalized dimension function if for any ideal I

of R, V(I)N P has only finitely many minimal elements with

respect to the ordering <<

Before we give any example of generalized dimension function we
shall quote two theorems. The first one is an improved version
of Eisenbud-Evans theorem ([EE-2], §3, Theorem A(b)) on the existence
of basic elements of modules and the other theorem is an improvement

on Eisenbud-Evans theorem ([EE-2], §7, Theorem B) on number of

generators of modules using the notion of generalized dimension functions.
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Theorem 2.4 ([P], page 6, EISENBUD-EVANS THEOREM). Suppose M

is a finitely generated R-module . Let P be a subset of

Spec(R) and d : P + N be a generalized dimension function.

Assume u(p, M) > 1 +d(p) for all p in P . Let (r,m) be

an element of R@ M, basic at all primes p of P . Then there

is an element m' of M such that m + rm' is basic at all primes

p of P

Theorem 2.5 ([P], Section I, Theorem 0). Let R be a commutative

ring, M a finitely generated R-module, P a set of primes of

R and d : P + IN a generalized dimension function. Let

X13 X9yee.,x  be elements of M and N a submodule of M such that

(Exl + sz + e 4 Rxn + N}p = Mp for each p in P . Assume

n > Sup{ p(p, M) + d(p)|p in P}. Then there exist elements

y; =%; +m, for 1i=1,2,...,n where m, belongs to N such that

=
1]

Ryl + Ryz + s 4 Hyn is fully basic in M at all p in P

i.e. Mp = Mé for all p in P .

Theorem 2.4 and Theorem 2.5 can be used very efficiently to
find generators of modules on prime sets where we can define some good

generalized dimension function.
Now we give some examples of generalized dimension functions.

Example 2.6 ([P] , Section I, Example 1). Let P € Spec(R) be a

set of primes such that for all ideal I of R, V(I)I1 P has only
finitely many minimal elements with respect to inclusion. For a prime
ideal p of P .define d(p) =5up{nip=pur_plcp2 P,

a chain with pﬂ,..., Py in P} . Then d is a generalized dimension
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function on P . We call it the standard dimension function with

respect to P .

Example 2.7. Let Pl,..., Pr be subsets of Spec(R) and

di - Pi + IN generalized dimension function on Fi for i = 1

¥

te r. Let P = P,U P,U ---U P . For aprime p ofP
define d(p) = Sup[di{p}|p in Pi s I 21,009 }« Then d is

a generalized dimension function on P

Example 2.8. Let R be a noetherian ring and let there be an

element s in the radical of R, such that dim(R/sR) < dim R
Suppose D(T) = {p e Spec(R[T])| T ¢ p}. Then there is a generalized
dimension function d on D{T) such that for all p in D(T),

d(p) < dim(R[T, r'l]pr) and d(p) < dim R .

Proof. It is enough to find a generalized dimension function d

on Spec{R{T,T'l]} such that for all prime p , d(p) < dim R and

d(p) < dim(R[T,T11/p). Let P, be the set of all prime ideals of
H[T,T_l] which contains s and PZ = {pe Spec(R[T,TAIJ)iht[p} < dim R }.
Suppose dl and dz are the standard generalized dimension functions

an Pl and PZ respectively. Since Spec{RET,T"l]} = U Py,

if d is the generalized dimension function defined by dl and d2 as

in Example 2.7, then d is a generalized dimension function of desired

type.

Example 2.9. ([P], Section 1, Example 4). If R is a commutative
noetherian ring and s in radical (R) with dim(R/sR) < dim R , then ™~
there is a generalized dimension function d : Spec(R[T]) + IN such

that d(p) < dim R for all p in Spec(R[T]).
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We shall conclude this section with a special case of

Theorem 2.4.

Theorem 2, 10. Llet P be a finitely generated R-module of

constant rank t. If (r,p) is unimodular in R@® P, then there is

an element q in P such that height (0(p + rq) > t.

Proof. Use Theorem 2.4 with the set of prime ideals of R of
height <t as P , equipped with the standard generalized dimension

function (Example 2.6).
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CHAPTER 1II

Analogues of Eisenbud-Evans Conjectures for Laurent

Polynomial rings

The aim of this chapter is to prove three theroems about
modules over Laurent polynomial rings, namely Theorem 1.1, Theorem 1.2
and Theorem 2.1. Theorem 1.1. is about the existence of basic
elements in finitely generated modules over Laurent polynomial rings.
Theorem 1.2 is a cancellation theorem for finitely generated projective
modules over Laurent polynomial rings. And Theorem 2.1 gives an
estimate for number of generators of modules over Laurent polynomial .
rings. These are the Laurent polynomial analogues of EEC I-III

mentioned in the Introduction and Summary.

§1l. Basic Elements and Cancellation over Laurent Polynomial Rings.

We begin with the R[T,T_l]— analogue of EEC-I.

Theorem 1.1. Let M be a finitely generated R[T,T*l]- module with

ulp, M) > dim(H[T,T_l]fp) for each minimal prime p of R[T,T-l].

Then there is an element m of M, which is basic at all primes.

Proof. Let N be a finitely generated R[T]- submodule of M such
that N, =M. If p is a minimal prime of R[T], then p; is a

1

minimal prime of R[T,T ~]. Further dim(H[T,T'l]pr] = dim(R[T]/p) and

N = Hp . So we have u(p, N) > dim(R[T]/p) for each minimal prime p
T

of R[T]. So there is an element m in N which is basic in N at
all primes of R[T]([P], Section III, Theorem 2)}). It follows that m is

basic in M at all primes of R[T,T™V].
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The next theorem is the R[T,T"l]- analogue of EEC-II.

Theorem 1.2. Let P, P' and Q be finitely generated projective

RIT,T‘lln modules with rank P > d+l, where d is the dimension

of R. If P@Q=P' @0Q, then P = P'
Before going into the proof of Theorem 1.2 we prove a lemma.

Lemma 1.3. If I is an ideal in R[T,T '] of height dim R+l, then

I contains an element g(T) such that g(T) = 1 + Tg'(T) for

some g'(T) in R[T].

Proof. We may assume 1 is a root ideal. Suppose 1 = p1r1pzn et Py
where pi's are prime ideals of height dim R + 1 in H[T,T#l] for
i=1ltor. If pi = piiﬁ H[T"l], then height {p;} = dim R+l as

an ideal of R[T"l]. So p; contains a monic polynomial in T".l for
i=1tor ([Ba], 54, Lemma 3). Hence I N R[T'l] = piN «ea P

1

contains a monic polynomial in T - . "~ Hence by multiplying it by a

suitable power of T we get, I contains an element of the desired type.

Proof of Theorem 1.2. By an obvious argument we may assume

Q= R[T,T_l]. We can also assume that R is reduced.
Let ¢ : R[T,T_‘l]&)P' = R[T,T-l ® P be an isomorphism and
let ¢(1,0) = (a(T),p). Without loss of generality we may assume

a(T) belongs to TR[T]. By Theorem 2.10 of Chapter I there is a ﬁ

in P such that if p' = p + a(T)q, then height(0(p')) > d+l .

Again, by Lemma 1.3, there exists g'(T) in R[T] such that 1 + Tg'(T)_._
belongs to 0(p'). Let B, : P~ R[T,T_l] be an E[T,T-l]- linear map
such that El{p'} = 1+ Tg'(T) and let q denote the map R[T,T'lj + P

such that q(1) = q.
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Let  be the composite isomorphism given by the following

diagram.
RCT,T71) RCT,T7] RLT,T 1 R(T, T
h » B
@ i ® \\\Q\M ® f/if;ﬂ ®
P! P —=—— P = P

(1, 0) — (a(T),p) —— (a(T),p') — (1+Tg'(T)+a(T),p’')

Then  ¢(1,0) = (1 + Tg'(T)+ a(7), p'). Replacing p' by p and

1+ Tg'(T) + a(T) by a(T), we have an isomorphism

v: RIT, THI@P > RIT, T1@P  such that  (1,0) =(a(T),p) and
a(T) = 1 + Tb(T) for some polynomial b(T). Again since

1 + Tg'(T) belongs to 0(p), g(T) = T + Tg'(T) belongs to O(p).
Suppose 32 : P = R[T,T_l] be an R[T,le]— linear map.with

Ezﬁp} = g(T). Let py = T_lp . Chooose Ppr Pgae+=s Py in P such
that py, py,...p. form a system of generators of P and g,(p;)

belongs to R[T]for i = 1 to r.

r
Llet M= Z H[T]pi and let B : M » R[T] be the restriction
i=1

of B, to M. Then g(T) = g(p) ¢ 0(p,M). So we have

(1) M is a finitely generated R[T]- submodule of P and
Mo =P .
(2) g(T) = T+ Tg*(T) e 0O(p,M)
(3) peT and a(T) =1+ T6(T) for some b(T) in R[T].
(4) u(p,M) > d+1 for all p in Spec(R[T]).
(5) (a(7),p) is unimodular in R[T]@M and hence basic at all

primes of R[T].
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(1), (2), (3) follow by choice. If p belongs to
Spec(R[T]) and p' is a minimal prime contained in p , then
p: is a minimal prime in R[T,T*l]. And M .= P . . So

T P pT
pulp, M) > u(p',M) > p{pi , P) > d+l. Hence (4) holds.

For (5) first note that a(T) ¢ 0((a(T),p), RIT] @ M). Now
(a(T),p) is unimodular in R[T,T_I]QF’ and hence

0((a(T),p), RIT,T}1@P) = R[T,7T°L

]. So it follows i belongs to
0((a(T),p), R(TI@ M) for some n > 1. Hence
R[T] = RLT) a(T) + R{TIT"S 0((a(T),p), RIT] @ M). So we see that

(a(T),p) is unimodular in R[T] @ M.

Write N for aRTT,p ﬁ[T] . Then the sequence

¥ — R[T] (a(1),p) RIT]®M ——= N — 10
is split exact. 5o we have

RIT,T 0P

=P,
(a(T),p)R[T,T7 1]

Since My = P , it is enough to prove N =~ M.

As N is a direct summand of R[T]@M , it is torsion-free

(i.e. non-zero-divisors of R[T] act as non-zero-divisors of N).
Suppose h : M+ N is the natural map. Let barring denote

"modulo T" . Then h : B> N = %f%%?ﬂ is the natural isomorphism.
We shall prove that there is an isomorphism 6 : M ¥ N such that
B=h .

Let 5 be the set of all non-zero-divisors of R. Then
R[T] w(kl x ko ox oo xkr)[T], where k

kz,..., kr are fields.

l?
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Since MS and NS are torsion-free over RS[Tl, they are

extended from R.. So there is s in 5 such that HE

9 1 1
and Ns are extended from R3 . It follows that there is
1 1 =1
an isomorphism ay ¢ NE —_— I"'I3 such that a) = h5 i
1 1 1

Let 5" = 1 + is. Then sl

and dim(Rg,/s Rc,) < dim(Rg,). By example 2.9 of Chapter I,

there is a generalized dimension function &§: Spec (HS.[T]}———? N

belongs to rad(Rg,)

such that &(p) g_dimfﬁs,} <d for all p in Spec {RS.[T]}.
If D(T) denotes the set of all p in Spec (RS,[T]) which
does not contain T and 51 the restriction of § to D(T),
then §, is a generalized dimension function on D(T). Since
(a(T),p) is unimodular and hence basic in FIS,[I](::]MEI at all
p in D(T), we have {Tza(T},p} is basic at all p in D(T).
Further, u{p,MS,} g_ﬁlfp} + 1 for all p in D(T)..By an
application of Eisenbud-Evans Theorem (Chapter I, Theorem 2.4),
there is q in Mc, such that p' = p + Tza(TJq is basic in
Mc, at all primes p in D(T). As a consequence p' is
unimodular in P, = {HS*}T' Therefore T" ¢ D{p',HS,) for some
n > 1. Moreover, by (2), g{T) = T + ng'(T) € D(p,HS,}. Since
p' = p + T2a(T)g, it follows that T + T2g"(T) ¢ O(p',M¢,) for
some polynomial g"(T), which shows that T ¢ D(p',MS,} and

hence 1 - a(T) ¢ 0(p',M.,).

SI

If s Mg, —> HS.[T] is a homomorphism such that

Alp') =1-a(T), let H: Rg:[T] @ Mg~ R, [T] @ Mg,
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be the composite isomorphism given by the following diagram

R (T] === R [T] == Rq[T] == R,I[T]
Z2A Ay
® 3 @ ) ® e e
MSI e Msr = HSI == =3 HSI
(a(T),p) —— (a(T),p') —> (1,p') ——  (1,0)

Then H({a(T),p)) = (1,0) and since p' ¢ TH5¢1 H is given

by the diagram

HS!‘ RSI
® A e
Mg Mg

Define Hl 2 NS* —_— HS' to be the isomorphism which makes
the following diagram commutative

(a(T),p)

0 —> R, [T] ———  RITI@ M), > N, . 0
lld 1H H,
(1,0) v
0—— RS'[T]' _— (R[T]{E}M}Sf — HS' —_— 0

In this diagram the rows are split exact. If we reduce modulo
T we get the following commutative diagram with split exact

rows,



(1,0)

0 —— R, (R @ HJST‘“"—'—-—? ﬁs.—z- 0

E : V4 1

0 —— ES, _{1_9 (R @ M)S,—-—:-

If we identify NS' and HS' by hS' : HS.-——-b NS"
we have the following commutative diagram

(1,0)

0 —— ﬁb‘ — = (R ® [4} — ﬁéf“——? 0

X Gt
Id | Hohg,

Here both the rows consist of natural maps. So it follows that

ﬁln Eé, = Id. We can find s, in S§' and an isomorphism
Qy H5 — Ms such that 0y ° hE = Id.
2 2 2
- =1
_ilnce Rsl + Rsz = R, Hsl is extended, @ = hsl and
Eé = F; , we can apply Lemma 1.7 of Chapter I to the isomorphisms
2
a; = N —— M, 1=1,2 to conclude that N and M are isomor-
i i
phic. In fact there is an isomorphism © : M —- N such that

@ = h as claimed. 5o the proof is complete.

Corollary 1.4. Let P,P' and @ be finitely generated projective

R(T,T ] modules with p(p,P) > dim(R[T, T'l]fp) for all minimal

primes p of H[T.T"‘ ]. If P®Q = PP®0Q then P= P'. .

In the proof of Theorem 1.2 we have seen that following kind

of cancellation holds for finitely generated torsion-free modules
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over polynomial rings :

Proposition 1.5. Let M be a finitely generated torsion-free

module over R[T]. Suppose MT is a projective module of rank

greater than or equal to dim(R[T]) and (a(T),p) is a

unimodular element in R[T] @M with

(1) pe ™ and a(T) =1+ Tb(T) for some b(T) in

R[T].

(2) 0(p,M) contains an element T + ng{T} for some

g(T) in R[T].

’ . - = ~ RITI@G M
Then there is an isomorphism © : M 3 (a(1),p)R[T] such

. RGN
> (1,00R

that @ is the natural map M

§ 2. Number of Generators for Modules over Laurent Polynomial

Rings.

In this section we shall prove the HET.T_I]-analngue

{Theorem 2.1) of EEC-III.

Recall that given an R-module M, one defires

e(M) = Max{u(p,M) + dim(R/p)|peSpec(R) with dim(R/p) < dim R}

e'(M) = Max{u(p,M) + dim(R/p)|p € Spec(R) and p is not minimal}

Theorem Z.1. Suppose M is a finitely generated module over

R[T,T_l], the Laurent polynomial ring over R. Then M is

generated by =(M) elements.
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In view of the following theorem it is enough tc prove

Theorem 2.1 for certain ideals.

Theorem 2.2. Validity of Theorem 2.1 for all ideals in reduced

Laurent polynomial rings, not contained in any minimal prime ideal,

implies the validity of lheorem 2.1 for any module over a Laurent

polynomial ring.

Theorem 2.3. Let B = R[T,T_l] where R is a reduced noetherian

commutative ring of finite Krull dimension. Suppose 1 is an ideal

in B, which is not contained in any minimal prime ideal of B. Then

I is generated by e'(I) elements.

As mentioned above Theorem 2.1 follows from Theorem 2.2 and 2.3.
Theorem 2.2 has an analogous theorem in the polynomial case, which
was first proved by Sathaye ([5a], Theorem 1) in the case of domain
and then Mohan Kumar ([MK-2], §3, Theorem 2) proved the theorem in
the general case. Our proof of Theorem 2.2 is word for word same as
Mohan Kumar's proof. In view of that we shall omit the proof. So

we only prove Theorem 2.3.

The following lemma will be used in the proof of Theorem 2.3.

This lemma is a very special case of ([MK-2], §3, Corollary 3) .

Lemma 2.4. Let R be a noetherian ring and I an ideal of R

with uiI!Iz} = n. Then we can choose @) 98gy v a8 in I such that

i) ay;8,,...,8_ generate I modulo 12 .

n
ii) For any prime ideal p containing E a; i
i=1

and not containing I , height(p) > n.
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Proof of Theorem 2.3. First we do some reduction of the problem.

il

Since 1 is not contained in any minimal prime of B = R[T,T"
{Iflz}p = 0 for all minimal prime P of B. Hence

u(p, 1/1%) + dim(8/p) < u(p,I) + dim(B/p) < e'(I), whenever
imz}p #0. By ([HK-2], 51, Corollary 2), we have u(1/1%) < e'(I).

If  w(I/1%) < e'(1), then since (1) < w(I/1%) + 1 ([MK-1], Lemma)
we have  y(I) 5_&'51). S0, we assume u(IfIz} = e'(I). Again

since lp £ 0 for all P in Spec(B), we have e'(I) > dim(B) = n (say).

If e'(I) > n, then by Lemma 2.4, there are a I

1? aZ"“’ae'{I} in

such that B1r 8Bga--lyy (1) generate T modulo I2 and any prime p

e'(I)

containing igl a;B also contains I. As 8158554580, (1) gﬂner?te
2 e'(I) e' (1) _ )

I modulo I, 1p = jzl aiHJP whengver gzl a;B is contained

in p and hence for all p in Spec(B). So 3)rev+y8g: (1) generate L.

Hence we have u(I) < e'(I).

So in the rest of the proof we shall assume
u{lfiz} = e'(I) = dim(B) = n. We write J = R[T]Jf\ I and denote by
J(0), the ideal {f(0) |f ¢ J} of R. If p is a minimal prime of
R, since J 1is not contained in any minimal prime, there is an element
f in J not belonging to pB. Let f = ag + 31T + cer oAy 1° where
8gs 8yreeerdy belong to p and ay does not belong to p for
some 1 < r. If a is an element in R, not in p and belonging to all
T.i+l+ e

other minimal primes of R, then af = aa, TP

-+ ag-TF
i+l r

; . : r-1i
b J d = T = : . S T
elongs to and since J =10 R[T], g aa; + aal+lf + + aa
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is in J. Hence aa. belongs to J(0), which shows that J(0)
is not contained in any minimal prime, i.e. there is a non-zero-

divisor s  belonging to J(0).

Now let S denote the set of all non-zero-divisors of R.
We have s belonging Lo J0)0 5. Since Rc[T] is a product of
principal ideal domains and ‘]5 is an ideal not contained in any
minimal prime, it is a free module of rank one over HS[T]. Hence

there is an element 51 in S5 such that 35 is a free module of

1
rank one over HS [T]. IFf necessary, by multiplying Sy by 8, 1 we
1
@y assume s, belongs to J(U)M S, Taking L = Hs [_T_'ir.'_1 i
' o k)
we have x. ,%,,...,x_ in J such that 0+ L+ R_[T] —— T =0
1%72 n Sy Sy

*
is an exact sequence, where (xi) denotes the cobvious map (for

instance take x; to be a free generator of JS and X, = se+ = X 0}).

1 2 n

Write S' =1 + ﬁlﬁ and let P =D(T)U D{sl} where

{T) = {pe Spec{RS{T]}|T ¢ p} and D{sl} = {p-55p3c{HS{T]}|sl £ p} -
n
Note that (121 RGAT] x, + T Jé,}p = (Jg)

shall construct a generalized dimension function d :P + IN such

p for all p in P . We

that pu(p, JS,J +d(p) <n for all p in P . Since s; belongs
to rad(RS.} and dim(RS,fisS.} 2 dim[ﬁs,}, by example 2.8 in

Chapter I , there is a generalized dimension function d, : D{T) = N

1
such that dlEp} < dim(ﬂs,} and dlﬂp}‘g dim(Hs,[T,T'l]pr} for all

p of D(T). Define d, : D{51} + N such that dzip] = dim{HS,[t}pr )
51

for all p in D(le. By example 2.7 in Chapter I d : P » IN
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whege d{p) = max [di{p}lp e P, i=1,2} defines a generalized
dimension function on P . We claim that d has the desired
property. To see this let us assume ulp, JE'} + d(p) >n for
some p in P . Since d(p) < dim(Rg,) <n we have J.,Cp
As 35‘ is not contained in any minimal prime ideal, p is not
minimal. If Tla p, then as s, ¢ J(0) we have s, € p which is
impossible. So T £ p, now if S, €P then p(ﬂ,JS.} + dip) =
u{pT,IS.} +:I1(p]' < u(pT,i-ﬁ,} + dim(ns.[r,!‘l],pr}E n.

Therefore we have S £p and T £ p . Again as above

d(p) < dim{RS,[T,T-l]pr} is not possible, so we have

d(p) > din(Rg,[T,T71)/p;) > d,(p) . Hence dlp) = d,(p) = r(say).

As dz(p} = dim{(ﬂs,[T]jp}sl}, we have a chain p PlE: '*'C:p} in

Spec(Rg,[T1), with s, £ p_ . But dim{HS,[T,T"l];’pT} <r. So

Te Pe oo since JTc: p = pr , we have sl £ Pr , which is again a
contradiction. So we have seen that for p in P

¥

ulp, JS,] + d(p) > n is not possible.

Therefore, we have a generalized dimension function

d on P such that for all p in P, ulp, Joi) + d(p) < n.

= (Jg,), for all p in P , we can

n
As {izl Rg [TIx; +[T]JS.)p

P

apply Theorem 2.5 of Chapter 1 to get Ypreeta¥Yq in J such that

g1 ¢

il
Y; = %3 * T x: for some X! in JS* and {igl HS,{T]yi}p = gJS.}p

for all p in P .

(y.)
Let L" = ker(ﬂs.[T]n — Js.l . Then the sequence
(v.)
0+ L"» RS,[T]" -1, Jg, >0 is exact at all p in P .
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Hence the sequences

=1.n |:""ri}
0o =+ LT -+ RS‘[T’ Ts% ] e {JS,JT + 0
and
n (yij
0 + L' + R.,[T]" —3— (3.,). =+ 0
5 5 5 Sy

are exact. Since (JS.}S is free of rank one, Le  1is projective

1 1
and rank(L" )} = n-1 > dim{(R_, [T]). Hence L" is cancellative
Sl = 5 51 51
([P], Section III, Theorem 1). Hence as L; is stably free, it is
' 1
free of rank n-1. We can choose S, € S' such that if
y.)
L = ker(ﬂﬁ (TP —3 I ) , then the sequences
JOPG
o -+ + HS 5 LT) — ] - 0
& 1°2 5 b
and

B Ll L IRE T e L WD

T 2 SZT
are exact and L. is free of rank n-1. We also have X; =¥y (mod T).
1
Let o' : {[}5 ¥ (E'}s be the isomorphism defined by the
2 1
following commutative diagram 6f exact sequences,
_ " (Ei}
0 — {L}S —_— RSS —y {J)EE — 0
2 k-2 172
si a' il Id jL d
. S (y;) ©
0 el —% g, = e ) —)
1 b 8 g

(Barring always denotes "modulo T") . As L, and L, are

1 Z
extended there is an isomorphism « : L 5 Lé such that
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almod T) = @' . Using o we can define an isomorphism
g:R._[TI1" TR [T]" with B = Id (mod T), to get the
o et g i

following commutative diagram:

(x.)
b0 — L. ——5 R, & T T | -t I
2 o e ®1%2
|« CE b
|
it L
0 — (L') ———> R [T]: ———— 1] —
=) €159 39849 .

(This can be done because the rows in the diagram above are split

exact).

As Rsl + Rsz = R, we can construct the following fibre product

diagram,
B e e e o EEVY > R, (11"
: Z N\ (yy)
S

: RV A SN 4 I W W | ey TN
: | 72
I ! \\\\“u \\\a
: | 0 ?
I | .
: i
v |

o :' o W r
RSET] N RSIEE L Hsfzm

\xljé \:xi} \{yil

v '
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In this diagram 0@ is the fibre product of RS [T]rII and

1
no . n n n
R._[LT) given by the maps R_ [T] -+ R [(T] L, g [T]
o2 2 72 %152
and R_[T]" + R__[T]" . The sequence Q-+ J > 0 is got by
= 5.8
2 172
property of fibre product. 1If Fooe 0 ¥ Hs [T i=1,2 are
i i
the obvious isomorphisms, then (f,) © (f Jﬁl =R= Id (mod T). s
2 sy 1 S,

Hence by Lemma 1.7 of Chapter I, § = R[T]n i.e. 0 is free of
rank n.
Again we see that in this diagram all the s.qjuences in the

bottom are exact but since

need not be exact. But

-1.n

is exact. Therefore we see that

DT - JT + 0

is exact . As Q 1is free of rank n, we see that J; is generated
by n elements. Therefore we conclude that I is generated by n

elements, which completes the proof of Theorem 2.3.

Remark 2.4. We shall give an example of a module M over

H[T,T_l] for which given any module M' over R[T] with My = M

we have e(M') > e(M). This shows that Theorem 2.1 is not
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-
an immediate consequence of Mohan Kumar's theorem ([MK-2], § 3,

Theorem 3).

Let R be a discrete valuation ring with p a generator
of the maximal ideal. Let f =T + p and let M denote the
RLT,T71)- module R(T,T™1J/(f). If p is a prine ideal of height
two of R[T] and contains f, then as height (pN R) = 1, p belongs
to p and hence T belongs to p . So we see that f generates

1

a maximal ideal in R[T,T ~]. It follows e(M) = 1. Let M' be an

RLT]- module such that H} =M. IFf p is the ideal generated by f
in R[T] then Hﬁ # 0. Hence yu(p, M') + dim{ R[T]/p) = 2 . Hence
e(M) < e(M') .

femark 2.6.  Mohan Kumar (|MK-3]) has extended Theorem 2.1 for
S'lH[T], where S 1is a multiplicative set of non-zero-divisors in

RCT] with dim(R[T]) = dim(S™YR[T]).
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Efficient Generation of Ideals in Laurent Polynomial Rings

In this Chapter we discuss some interesting cases of the

question that if R 1is a commutative noetherian ring and I is

an ideal of R, then whether I 1is generated by u(IHIE}

elements. In general it is known that u(IIIz} < ufI) 5_u{1f12}+l

([MK-1], Lemma).

Mohan Kumar ([MK-2], §4 , proof of Theorem 5) has proved
if R = A[T] is a polynomial ring over a noetherian commutative ring
A and I an ideal of R which contains a monic polynomial, with
u(1/1%) > dim(R/1) + 2, then I is a quotient of a projective
R-module of rank u(I!IZ}. One of our results (Theorem 1.2) in thié
Chapter is a variant of this result, .which says that if we further

assume that I contains an element with constant term a unit then I

is actually generated by u{IfIE} elements.

Theorem 1.2 will be applied to deduce an analogous result
(Theorem 2.2) for Laurent polynomial rings.

The main result (Theorem 2.3) in this Chapter is that if

1 1 _
R = AlXyseeesX T{ A T% ],h >0 and r > 1 is a Laurent

polynomial ring in several variables over a commutative noeltherian

ring A and I is an ideal of R with w(1/1%) > dim(R/I) + 2

and if height(I) > dim A, then I is generated by gilfIz} elements.

We do not know if such a theorem is true for r = 0.
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Recall R = A[Ky,eeonX., ..., ™17 denctes the
1 I 1 r

Laurent polynomial ring over Lhe ring A wilh n polynomial

variables xl,...,xn and r Laurent polynomial variables

Tesusua¥

1’

§1. A Theorem on Polynomial Rings

In this section we prove Theorem 1.2, the variant of

Mohan Kumar's result mentioned above.

Before we state the result we introduce the following

definition.

Definition l.1. A monic polynomial f in A[T] is said to be a

special monic polynomial if the constant term of f is equal to one.

Theorem 1.2. Let R = A[T] be a polynomial ring over a commutative

noetherian ring A and I an ideal of R. Suppose

u{IfIE) > dim(R/I) + 2 and I contains a special monic polynomial.

Ther CE/1%) = ulE).

Before we prove Theorem 1.2 , we shall state a lemma, which
is a slight variation of a Lemma of Mohan Kumar ([MK-2], §3, Lemma 3)
and the proof is also similar. Also recall that Lemma 2.4 of

Chapter II is again a special case of the same lemma of Mohan Kumar.

Lemma 1.3. Let A be a commutative noetherian ring and 1I,J be

ideals of A,I containing J. Let n = u(IfIE} . Assume that

dys.+-58, j T <N are elements of I. Further suppose,

(i) 8)589y...,a  form a part of a minimal set of generators of I

mod I2 a
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(ii) Whenever p is a prime ideal of A which contains

r
( E a; A) + J and does not contain I, the image of p in
i=]

Af(aln + J) has height atleast d, for some fixed integer d.

Then we can find a in I such that ,

r+1

(i) ayy.--,8,, a form a part of a minimal set of generators

f I mod IE.

——m

r+l

(ii) Whenever p is a prime ideal of A, which contains

r+l
(3 a;A) + J and does not contain I, the image of p in A/(a;A+d)
=]

has height atleast d+l.

Proof of Theorem 1.2. 5Suppose ay belongs to a minimal set of

generators of I mod I2 . Since I contains a special monic polynomial
f, replacing 2 by a - 31(U}f2 + f? for large enough p, we can

assume a, is special monic.

Write J = AN I. Then A/J + R/I and A/) » R!(J,al}ﬁ are

integral extensions. So we have dim(A[T}/I) = dim(A/J) = dim(ﬂﬂb,al)ﬂ).

Write B = R/(J,a})R. By Lemma 1.3 we can choose a, in
I such that,

form a part of minimal set of generators of I mod I2 .

(1) a;,a,

(ii) If a prime ideal p of R contains alﬁ - azﬁ + JR and does
not contain I, then image of p in B has height atleast one.

If necessary by replacing a, by 8= aziu}ai we may assume

EZ{U} = 0.
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If we write n = p{IIIZ}, then by iterating the above

process we can find a ,a_ in I with

b Eeatian 1

al{[l} =1, a,(0) = n,...,an{ﬂ} = 0 and such that,
(1) 31185500058 form a minimal set of generators of I mod I2 A

(ii) Whenever p is a prime ideal of R which contains

=
( 3 aiH} + JR and does not contain I, the image of p in B has
izl

height atleast n-1.

Since n > dim(R/I) + 2 = dim B + 2, by (ii) we have

n
(iii) For a prime ideal p of R, if p contains ( E

a.R) + JR
ji=1 1 .

then p also contains 1.

Write B = R/aik and consider the multiplicative set
l+Jin A. Since J is contained in the radical of A1+J and
Bl+J is an integral extension of H1+J , we have J 1is also

contained in radical {EE+JJ' In view of (iii) a maximal ideal of
B-‘

143 which contains the images of Byyeeer@ will also contain

17, the image of I in B] ;. And thus by (i) for a maximal ideal

M of Ei+J » which contains the images of Bnyenesd in BI+J ’

I - . -
we have IM is generated by the images of 8y5:--5a8_ 10 El+J and

n
hence 1I” is generated by these elements. So it follows that
n

I,,3° izl a, Ry ;. Thus we see that I ,e®

=123

a. Rl+s ; for

i=1

some S5 in  J.

We shall assume s is not nilpotent (otherwise nothing to

prove).
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As a consequence the following sequence

n (ai}
0=+ K =R S 1 =+ 0
l+s l+s

(ai}

is exact, where the map hl+s —_— Il+s is the obwvious surjection

defined by e 1 =1+%ton, and K the kernel of the surjection.
As s belongs to I, Ks is projective and since a8y is a monic
polynomial, by Quillen-5uslin Theorem ([Q], Theorem 3/[Su-1],

Theorem 1) Hs is free of rank n-1.

Since 15 — EE , we have an exact sequence over Rs

O+ K + " Alalaeee0), 1 L
5 S

where the surjection is the obvious map defined by (1,0,..,0)

and K~ is the kernel of the surjection which is free.

Let us denote '"mod T" by "bar" . Now as aliﬂﬁ 2.y

EZ(U} = U,...,an{ﬂj = 0, there is an isomorphism hy : Es 5 El+3

rl

such that the following diagram

_ 0 (Ei] B
0 - KS - ns[l+5} — 13[1-4-5] + 0
h
gl I ||
» n (L lywasl). .
O M * lnt5(l+s} IS{I+SJ * 0

is commutative, where the last and the middle vertical maps are

identity.

Since K_ and Ki+s are free, there is an isomorphism

h: Ks iy Kl+s such that h = hl .
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Using splittings of the surjections

- {ai}

R I n (1,0,...,0)
s(1+s) s(l+s)

»> 0 and R5(1+E} < 15(1+S} -+ 0

which are equal "modulo T", we can define an isomorphism
P P

n T i
H: Ro1ie) * Re(lss) such that H = Id (mod T) and the following
diagram
n I[E].i];
U= K * Rs(l+s} Jp - Is(l+5) g
Sl h I[Ii |l Id
L
0+ K . R (1,0,..,0) I D
l+s s(1+s) s(1+s)

is commutative.

As As + A(l+s) = A, we can construct the following fibre

product diagram,

[ ecmmc e ——— ] Rn
S
! 1,0,...,0)
I
1 T s i e e B anin e I
{ ______ » o
I I
I I
I |\‘ \J
| i 0
I 1
| 1
1 |
I 1
i i
v : v
B ety @ B Rl
1+s : s(1+s) e = {
| ]..|D 'l-!-l,[]‘J
{aiji Yi} v
Il+s ’ IBE1+3} Is{l+s)
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r

In this diagram @ is the fibre product of ﬁg and R} _

; n n n n H
given by the maps R_+ R () .y and Ry .+ Rog.e) = Ro(iae) -

The sequence () =+ I - 0 is got by the property of fibre product. .
If : 4% 17 and : 4, ¥ R are the obvious
o) Ry g SN Hp iy l+s =
isomorphisms, then {glJl;;(gil}s = H = Id (mod T). Hence by

(Chapter I, Lemma 1.7) Q@ = A e, Nds free of rank n.

Since upper right hand and lower left hand sequences in the
diagram are exact, we see that Q + I -+ 0 is exact. Thus 1 is
generated by n = u{lflz} elements and the proof of Theorem 1.2 is

complete.

§2. On Laurent Polynomial Rings.

In this section we shall prove cur main result (Theorem
2.3). We also prove the Laurent polynomial analogue (Theorem 2.2)

of Theorem 1.2, which will be used in the proof of the main result.

It will be convenient for the subsequent discussion to have

the following definition.

Definition 2.1. A Laurent'pulynnmial fin A[T,Tﬂl] is called a

doubly monic Laurent polynomial if both the coefficients of the

highest degree term and the lowest degree term in f are equal to
one.
For example a special monic polynomial is a doubly monic

Laurent polynomial.



40

Theorem 2.2. Let R = A[T,T'l] be a Laurent polynomial ring over

a commutative noetherian ring A in one variable T. Suppose I

is an ideal of R, which contains a doubly monic Laurent polynomial.

IE w(1/1%) > dim(R/I) + 2, then w(I/1%) = w(D).

Proof. |Write I1 = IN A[T]and J =AMNI. Since I contains

a doubly monic Laurent polynomial, Il contains a special monic.

Suppose I ERRETL . form a minimal set of generators of I
mod Iz, where n = g[lflz}. We can assume ays+++58_  belong to Tl

and with the help of a special monic in 11 we can further assume

a, is a special monic polynomial. We shall see that 8118550058
generate Il(mnd lil. It is enough to see thal for every prime
ideal p of A[T], {Ilﬁfip is generated by these elements. If T
belongs to p , then a does not belong to p and hence

2
(Ilfll)p = 0. IF T does not belong to p , then {Il)Fl = (I)p

T

2 .
and hence {Ilfll}p is generated by a»8y,-.-58 . Hence

it follows that u(1/1%) = w(1,/1% ) .

Now as both R/I and A[T]}ll are integral extensions of
A/J, we have dim(R/I) = dim(A/J) =(dim ALT]/1)). Thus
u{IlfIf) # u(lflz} > dim(R/I) + 2 = dim(A[T]f[l) + 2. Therefore by
an application of Theorem 1.2 we get u{[1] = u{Ilflf} = p(IIIZ] 5
Hence u(I) < ufl!lzl. Thus the proof is complete.

Theorem 2.3. Suppose R = A{xl,---fxn: T%;

and r > 1 be a Laurent polynomial ring in several variables over

yorrs TE ] with n > 0

a commutative noetherian ring A. Suppose I is an ideal of R
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with height(l) > dim A and u(u[z} > dim(R/1) + 2. Then

G = w1 .

Proof. Immediate from Theorem 2.2 and the following lemma.

+1
preswaks T

r > 1 be a Laurent polynomial ring in several variables over a

Lemma 2.4. Let R = A[X

.;.,T%l] with n > 0 and

commutative noetherian ring A. Given any ideal I of R with

height(I) > dim A, there is an A-automorphism @ : R % R such that,

whl) contains a doubly monic Laurent polynomial in T

1
For n = 0 this is a result of Suslin ([Su-2], §7, Lemma 7.1).
The proof of this Lemma will be given in the next section (§3). .

Before we conclude this section we shall record a few remarks.

Remark 2.5. Lemma 2.4 is false in the case of polynomial rings
i.e. if I 1is an ideal of R = A[Xl,...,xn] with height(I) > dim A,
then I need not contain a special monic via any A-automorphism.

Following is a counter example.

Example. Let R = k[X,Y] be a polynomial ring in two variables

over a field k and I = (XY). Then there exists no w : R> R
such that w(I) contains a special moniec in Y. To see this
suppose  w(X) = fy(X) + FLO0Y + oo+ £ (OY" and

wl¥) = gulx} + gl{x}T doeee gm[K)Ym with f, any g. belonging
to k[X] for i =0tonand j=0 to m, defines a k-automorphism
w of R, sSuch that (I) contains a special monic in Y. It
follows that FG(KJ and gD[H) are units and hence constant and

hence the Jacobian of the transformation w is a multiple of Y.
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This contradicts that w 1is a k-automorphism.

Remark 2.6. We would like to know if a statement similar to
Theorem 2.3 is true for polynomial rings. MNamely, if I 1is an

ideal of R = H[Kl,...,xn} with height(I) > dim A and

u{IfIZ} > dim(R/I) + 2, then whether it is true that p(I) = u(IfIE}.
Obviously a proof like that of Theorem 2.3 does not work in view of

Remark 2.5.

§3. The proof of Lemma 2.4.

First we shall set up some notation.

If R = A[T] (resp. ﬂ[T,Tnl]} is a polynomial ring (resp.
Laurent polynomial ring) in one variable T over a commutative
ring A and 1 is an ideal of R then LT{I} denotes the ideal-
of A, consisting of coefficients of the highest degreé term in T
of elements in 1. Similarly for an ideal 1 of R = A[T,T'l], L _IEI}
will denote the ideal of A, consisting of coefficients of the :
lowest degree term in T of the elements in I. In the case of

+1 +1

Laurent polynomial rings R = A[Kl,...,xn, TT ""‘TF ] in several

variables, when we write L, (I), L, (I) or L ,{I), we mean R
Kl Tl T-l
1

ig considered as a polynomial or a Laurent polynomial ring over the
rest of the variables and the notations are used in the above sense.
There is a well known result ([Ba], §4, Lemma 2) which says

that if R = A[T] is a polynomial ring and I an ideal of R, then ;

height (L (I)) > height (I). The following lemma is an easy

consequence of this.
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Lemma 3.1. Let R = n{T,T'l] be a Laurent polynomial ring over

a commutative noetherian ring A and 1 an ideal of R. Then

height{LT(I}}_g height(I) and height(L _l{I}) > height(I)
T T

Proof. 1t is enough to prove one of these inequalities. We prove
height(L (1)) > height(I). Write J = I NA[T]. Then
height(J) = height(I) and LT(J} = LT(I}. Hence

height(LT{I}}_g height(IL) by ([Ba], &4, Lemma 2).
Now we are ready to prove Lemma 2.4.

Proof of Lemma 2.4. The proof is by induction in two stages.

First we prove the Lemma for r = 1 by induction on n and then

use induction on r to complete the proof.

Proof of the Lemma when r = 1, i.e. R = A[Kl,...,xn, 11, TIl].

If n=0 thenR = H[Tl,Tll]and in view of Lemma 3.1 we have

L. {I) =L _1{1} A. So we see that 1 contains an element of f

Ty s
which is menic in T, and an element g which is monic in Til :

We can combine f and g suitably to get a doubly monic Laurent
polynomial in I.

Assume now ¢ = 1 and n > 0. We are going to use induction on
n to complete the proof in this case. We have R = A{Kl,..,xn,Tl,Til].

Consider the ideal L, (L) . We see hulght(Lx (I)) > height(I) >dim A.
4 n

Hence by induction hypothesis we may assume (via an A-automorphism of
A[Xl,...,xn_l,Tl,Til]} that an(I} contains a doubly monic Laurent -

polynomial f in T1 . In fact we may assume
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A[xl,...,xn_l], i =1 top-1l. Let F(xn) be an element in I

with f as the coefficient of its highest degree term . Therefore

R q-1 - :
r{xn} = Fxn e flxn + + Fq for some g > 1 and fJ in
Ry | .
H[xl""’xn‘l’Tl’Tl ], i=1to q. Let s> max{dengFj : dEgT—le
1
for j = 1 to q} where deg; f. and deg _, f. denote respectively
1.] ‘3'_ J

e 1
the T,-degree and TII- degree of fj for j =1 to q. Define

X. for
i

Tl . Then

m{r(xn}} is a doubly monic Laurent polynomial. This completes the

]

w: R¥R to be the A-automorphism given m{Ki)

: _ S -5
1 <i<n-l, m{Kn) =X +T;+T," and m(Tl}

1]

proof of the Lemma for r = 1 and arbitrary n > 0.

Proof of the Lemma in the general case. Since we have proved

the Lemma when r = 1 and n > 0 arbitrary, here we shall apply

induction on r to complete the proof.

+1 +1
Assume r > 1 and n > 0. So, we have R = R[Kl,...,xn,TIj...T; 1-
Look at the ideals LTT{I} and LT_l(I} of H[Kl,...,xn,T%l,...,Tfil] ,

r
Since height(I) > dim A, by Lemma 3.1 both L, (I) and L _l{I} have
r

r
heights strictly greater than dim A and hence hEight{LT (I}Iq L _1(1}}?
r )
dim A. By induction hypothesis (via. an A-automorphism of 2

i 1 .
A[Xl,...,xn, T},..., T%_l]}, LTI{IJf1 LT_l{I} contains a Laurent
g
polynomial f which is doubly monic in Tl . We may write

£ Ti + ngg-l b P T, +1 for some p>1 and g; in

e

A[xl""’xn’ T%; 1---,T§{1] . Soweecan find F and G in I such

that, F(T) = £ 13 +f 13“1+ e A o W B

1 g-1 r q
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u ,
SUSERE D I T, for some integers g > 0 and
: ] +1 .
u>0 and Fi‘ hj in n[xl,...,xn, T{-,..., T;_l] for i =1
tog and j =1 to u.
=1tog and

Let s >max{deg, {fi}, deg _lthj} for i
1 T
1

j =1tou} . Define an A automorphism w : R+ R as follows,

m(xi} =X, for 1l<iz<n
w(Ty) =T, for 1cicr-l
— s -

w{TrJ = TrTl i=r

Then T;q wlF)} is monic in Tl and wl(G) is monic in TIl over
the coefficient ring A{xl,...,xn, T%l,..., T%l] . Hence a suitable
linear combination H of T;q wlF) and w(G) can be found which

is doubly monic in T, . As H is an element of w(1), the proof

of Lemma 2.4 is complete.
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