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Chapter 1

Introduction

For univariate as well as finite dimensional multivariate data, there is an extensive lit-
erature on nonparametric statistical methods. One of the reasons for the popularity
of nonparametric methods is that it is often difficult to justify the assumptions (e.g.,
Gaussian distribution of the data) made in the models used in parametric methods.
Nonparametric procedures use more flexible models, which involve less assumptions.
So, they are more robust against possible departures from the model assumptions, and
are applicable to a wide variety of data. Nonparametric methods outperform their
parametric competitors in many situations, where the assumptions required for the
parametric methods are not satisfied.

Nowadays, with the advancement in the technology and measurement apparatus,
statisticians often have to analyze data, which are curves or functions observed over a
domain. Such data are increasingly becoming common in various fields of science like
biomedical sciences (ECG and EEG curves of patients observed over a time period, MRI
and other image data obtained from patients), cognitive sciences (data on hand-writing
and speech patterns of subjects), chemical science (spectrometric data observed over
a range of wavelengths), environmental science (air pollutant levels at different places
over a period of time), meteorology (temperature curves at different places over a year,
precipitation levels at different locations during a year) etc (see Ramsay and Silverman
(2005) for a detailed exposition). A major difference between this type of data and

standard multivariate data is that the set of points in the domain, where one sample
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bbservation is recorded may be different than those for the other sample observations.
Further, the number of such points is often very large compared to the number of sam-
ples making the dimension of the data larger than the sample size. As a result, standard
multivariate techniques cannot be used for analyzing such data. However, this type of
data can be conveniently handled by viewing them as observations from some infinite
dimensional space, e.g., the space of functions defined on an interval in the real line.
Due to the advantages in using nonparametric methods for multivariate data lying in
finite dimensional spaces, one may expect that such procedures will also be useful for
analyzing data, which lie in infinite dimensional spaces. In this thesis, we will address
this issue by investigating various nonparametric procedures for such data.

Ranks, distributions and quantiles have been used to develop various nonparamet-
ric procedures for univariate data (see, e.g., Lehmann (1975) and H&jek et al. (1999)).
Various extensions of these notions are available in the literature for multivariate data
lying in finite dimensional spaces, and several well-known nonparametric procedures
have been developed based on them (see, e.g., Puri and Sen (1971) and Oja (2010)).
My thesis will be mainly devoted to investigating similar notions in infinite dimensional
spaces and studying nonparametric statistical methods based on them.

Perhaps, the most popular nonparametric test for univariate data is the Wilcoxon—
Mann-Whitney rank sum test for two sample problems. For finite dimensional multi-
variate data, several extensions of the Wilcoxon-Mann-Whitney test have been studied,
and some of these extensions have been shown to be asymptotically more efficient than
the Hotelling’s T2 test for many non-Gaussian distributions (see, e.g., Puri and Sen

(1971), Randles and Peters (1990), Liu and Singh (1993), Choi and Marden (1997),

Chakraborty and Chaudhuri (1999) and Oja (1999)). There have been some work on

developing two sample tests for means of functional data (see, e.g., Cox and Lee (2008)
Zhang et al. (2010) and Horvath et al. (2013)). Cuevas et al. (2004) studied a functional
analysis of variance test, while Shen and Faraway (2004) and Zhang and Chen (2007)

Investigated tests in the setup of a functional linear model. For testing the hypothe-

sis of equality of two mean functions, each of the previous tests can be appropriately

simplified and used. However, all these tests for functional data have low powers when

the sample observations have non-Gaussian and heavy-tailed distributions or when the



samples are contaminated by outliers. In Chapter 2, we have investigated a notion
of spatial ranks for probability distributions in infinite dimensional spaces, and have
studied a Wilcoxon-Mann-Whitney type test for two sample problems based on them.
The proposed test statistic has a limiting Gaussian distribution under the null hypoth-
esis. Further, it is shown this test is consistent against all those alternatives, where the
spatial median of Y — X is different from zero. In particular, the test is consistent for
location shift alternatives. Here X and Y are random observations from the two prob-
ability distributions in some infinite dimensional space. A theoretical comparison of
the asymptotic powers of the proposed test and some other consistent tests available in
the literature under a sequence of shrinking location alternatives have been carried out.
It is shown that the proposed test outperforms the competing tests for some processes
with heavy-tailed distributions, and all these tests have comparable powers for some
well-known Gaussian processes. An empirical study of the robustness and the finite
sample powers of this test and some of the other tests in the literature have also been
conducted, which further establishes the superiority of the proposed test over many of
the two sample tests available in the literature. The contents of Chapter 2 are partially
based on Chakraborty and Chaudhuri (2014d).

Univariate medians and quantiles have been extended in a number of ways for data
and distributions in finite dimensional spaces (see, e.g., Small (1990), Chaudhuri (1996)
and Koltchinskii (1997) for reviews). However, many of these well-known multivariate
medians do not have meaningful extensions into infinite dimensional spaces that can be
used to analyze data lying in those spaces. On the other hand, the spatial median and
the spatial quantiles extend easily into infinite dimensional spaces (see, e.g., Valadier
(1984), Kemperman (1987) and Chaudhuri (1996)). Recently, there have been some
attempts to use spatial median type estimators for analyzing various real functional
datasets (see, e.g., Gervini (2008), Chaouch and Goga (2012) and Cardot et al. (2013)).
However, not much is known about the properties of spatial quantiles in infinite dimen-
sional spaces. In finite dimensional spaces, spatial distributions have been extenéively
studied (see, e.g., Koltchinskii (1997), Mdtténen et al. (1997) and Oja (2010)), and
they can be viewed as inverses of spatial quantiles. In Chapter 3, we have investigated

the notion of spatial distributions in infinite dimensional spaces along with those of
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the associated quantiles. Glivenko-Cantelli and Donsker type results have also been
established for empirical spatial distribution processes, which arise from data lying in
such spaces. We have investigated a version of empirical spatial quantile in infinite
dimensional spaces, and a Bahadur-type asymptotic linear representation of this esti-
mator along with its weak convergence have been obtained. A study of the asymptotic
efficiency of the sample spatial median relative to the sample mean is presented for
some well-known probability models in infinite dimensional spaces. It is shown that
the sample spatial median is asymptotically more efficient relative to the sample mean
for a class of processes with heavy-tailed distributions. The contents of Chapter 3 are
partially based on Chakraborty and Chaudhuri (2014c).

Several nonparametric statistical procedures for finite dimensional data have been
developed using different notions of depth functions (see, e.g., Donoho and Gasko (1992),
Liu et al. (1999) and Ghosh and Chaudhuri (2005)). A depth function provides a center-
outward ordering of the points in the sample space relative to a given probability distri-
bution (see, e.g., Zuo and Serfling (2000) for some extensive review). There have been
some work on developing depth functions for probability distributions in function spaces.
Fraiman and Muniz (2001) studied a depth function, called the integrated data depth,
for probability distributions in C[0, 1]. Recently, Lépez-Pintado and Romo (2009, 2011)
studied the band depth, the half-region depth and their modified versions for proba-
bility distributions in such spaces. Some of these depth functions have been used to
develop nonparametric statistical methods for functional data (see, e.g., Fraiman and
Muniz (2001), Lépez-Pintado and Romo (2009) and Sun and Genton (2011)).

We have investigated the behaviour of various depth functions for some standard
probability models that are widely used for data in infinite dimensional spaces, and
this forms a part of the contents of Chapter 4. We have proved that the band depth

and the half-region depth have degenerate behaviour for many standard probability

distributions in function spaces. Further, the half-

space depth (see, e.g., Donoho and
Gasko (1992))

and the projection depth (see, e.g., Zuo and Serfling (2000)), which can

be de e . : ..
fined in infinite dimensional spaces have similar degenerate behaviour for many

probability distributions in such spaces. On the other hand, we have shown that the

modified versions of the band depth and the half-region depth, the integrated data depth



and the infinite dimensional extension of the finite dimensional version of the spatial
depth (see, e.g., Vardi and Zhang (2000) and Serfling (2002)) do not suffer from any
such degenerate behaviour for similar probability distributions. We have also investi-
gated the asymptotic properties of the empirical spatial depth in infinite dimensional
spaces.

Associated with any depth function is the deepest point, which is the point in the
sample space, where the depth function achieves its maximum value. The deepest point
associated with various depth functions have been studied in finite dimensions, and it is
a popular choice of the center or the median of a multivariate probability distribution
(see, e.g., Small (1990) and Donoho and Gasko (1992)). It turns out that many of
these deepest points do not have any meaningful extensions into infinite dimensional
spaces. In Chapter 4, we have investigated the deepest points associated with some
of the depth functions mentioned in the previous paragraph. We have proved that the
integrated data depth, the infinite dimensional extension of the spatial depth, and the
modified versions of both the band depth and the half-region depth yield statistically
meaningful notions of deepest points for a large class of probability distributions in
infinite dimensional spaces. The breakdown points of the deepest points based on these
depth functions have been studied. The asymptotic consistency of the corresponding
empirical deepest points have also been investigated. The contents of Chapter 4 are
partially based on Chakraborty and Chaudhuri (2014a) and Chakraborty and Chaud-
huri (2014b).

The theory developed in this thesis and the proofs of the results involve several con-
cepts from functional analysis, convex analysis in infinite dimensional spaces, and prob-
ability distributions in Banach spaces. For the sake of better readability and ready ref-

erence, we have included the relevant definitions and concepts as part of the Appendix.
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Chapter 2

A Wilcoxon—Mann—Whitney type

test for infinite dimensional data

For testing the equality of means of two functional datasets, Horvéth et al. (2013) pro-
posed two test statistics based on orthogonal projections of the difference between the
sample mean functions. One of those statistics is same as Hotelling’s T2 statistic based
on a finite number of such projections. The two sample version of the test statistics
studied by Cuevas et al. (2004) and Zhang and Chen (2007) reduce to the Lo-norm of
the difference between the sample mean functions, and this statistic was also studied by
Zhang et al. (2010) for testing the equality of two mean functions. However, all of the
above-mentioned tests for functional data perform poorly when the observations have
non-Gaussian distributions with heavy-tails or the samples are contaminated with out-
liers. In a different direction, Bai and Saranadasa (1996), Fan and Lin (1998), Chen and
Qin (2010) and Srivastava et al. (2013) studied some tests for comparing the means of
two finite dimensional datasets for which the data dimension is larger than the sample
size, and it grows with the sample size. These authors, however, worked in a setup,
which is different from the infinite dimensional setup considered in this chapter.

In this chapter, we develop and study a Wilcoxon-Mann—Whitney type test for data
lying in infinite dimensional spaces. For univariate data, the Wilcoxon-Mann—Whitney
test is known to have better power than the t-test for several non-Gaussian distributions

(see, e.g., Hijek et al. (1999)). Various extensions of the Wilcoxon-Mann-Whitney test
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have been studied for multivariate data in finite dimensional spaces (e.g., Puri and Sen
(1971), Randles and Peters (1990), Liu and Singh (1993), Choi and Marden (1997),
Chakraborty and Chaudhuri (1999) and Oja (1999)), and these extensions too outper-
form Hotelling’s T2 test for several non-Gaussian multivariate distributions. However,
some of the Wilcoxon-Mann-Whitney type tests for finite dimensional data in R4 like
those defined using simplices (e.g., Liu and Singh (1993) and Oja (1999)) or those based
on interdirections (e.g., Randles and Peters (1990)), cannot be extended into infinite
dimensional spaces due to their dependence on the finite dimensional coordinate sys-
tem in R% Further, a test that involves standardization by some covariance matrix
computed from the sample (e.g., Puri and Sen (1971) and Oja (1999)) is challenging
to extend for data lying in infinite dimensional spaces. This is because such an em-
pirical covariance operator usually converges to a compact operator, which does not
have a bounded inverse. So, one has to properly regularize the inverse of that empirical

covariance operator as the sample size grows.

2.1 The test and its asymptotic distribution in Hilbert

spaces

Let X be a random element in a separable Hilbert space X. For any nonzero x € X,
denote Sx = x/||x||, where || - || is the norm in X associated with the inner product

;) in X. We define Sy = 0 if x = Q. The spatial rank of x € X with respect to

the distribution of X is defined as ¥, = E(Sx_x). Henceforth, the expectation of any

random element in any Hilbert space will be in the Bochner sense. The spatial rank

defined in this way has been studied in R by Chaudhuri (1996), Choi and Marden
(1997), Oja (2010) and Hettmansperger and McKean (2011).

Let X1,Xo,...,X,, and Y1,Ys,...,Y, be independent observations from two prob-

ability measures P and Q on X. Define y = E(Sy_x). Then the hypothesis Hy : 4 = 0

is equivalent to the hypothesis that the spatial median of Y — X is gero. If Q differs
from P by a shift A in the location, then Hy becomes the hypothesis A

= 0. When P
and Q are symmetric about m; and mos,

their spatial medians are m; and my, which

are also their means if the means exist. In this case, Hy is equivalent to the hyp

othesis
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m; = mp. Our Wilcoxon-Mann-Whitney type statistic for testing Hp : 4 = 0 against
Hy: 4 # 0 is defined as ’

W= (mn) 30N Sy, x, = (mn) Y3 (Y - XY - Xl (2)
i=1 j=1 i=1 j=1

Note that W is a Hilbert space valued U-statistic (e.g., Borovskikh (1996)) and is an
unbiased estimator of u. We reject the null hypothesis for large values of ||W]||. It is
straightforward to verify that for any ¢ € R, a € X and a bijective linear isometry
B on X, the hypotheses Hy, Hi, and the test statistic W remain invariant under the
transformation X — ¢B(X) +aand Y — ¢B(Y) 4+ a. If X = R, then Sx = sign(x),
and W reduces to the univariate Wilcoxon-Mann-Whitney statistic. The statistic W
can be easily computed using (2.1). We shall see later in this chapter that this test is
robust against outliers in the data, it does not require any moment assumption unlike
mean based tests and has good performance for heavy-tailed distributions.

We now study the asymptotic distribution of W. Define ['1,I'y : X = X as

I' = E{ElSy-x|X)®ESy-x|X)} - u®u,
Iy = E{E(SY_X | Y) ® E(SY_X [ Y)} — U Lu.

Here, ® denotes the tensor product in X (see the Appendix). So, I'y and I'; are contin-
uous linear symmetric positive operators. We denote by G(m, C) the distribution of a
Gaussian random element in a separable Hilbert space X with mean m and covariance

C (see the Appendix).

Theorem 2.1.1. Let N = m+n and m/N — v € (0,1) as m,n — oo. Then, for
any two probability measures P and Q on X, (mn/N)Y2(W — ) converges weakly to
G{0,(1 — )Ty + T2} as m,n — co.

Note that in the above theorem, we do not assume the existence of moments. Let
cq denote the 100(1 — )th percentile of the distribution of ||G(0, (1 —v)['; ++T2)|. If
the test rejects Hy for ||(mn/N V2WH| > cq, its asymptotic size will be a. It follows
from Theorem 2.1.1 that the asymptotic power of our test will be 1 whenever p # 0.

Suppose that both P and @ are symmetric, then our test is consistent whenever the
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two spatial medians are different. In particular, our test is consistent for location shift
alternatives.

We now describe how to compute the critical value of our test statistic from a given
sample. Let X1,X2,...,Xm and Y1,Yo,..., Y, be two samples taking values in a
separable Hilbert space X' with norm || - | induced by the inner product (-,-) in X. We
have already mentioned earlier that the statistic W can be easily computed using (2.1).

The operator I'; defined before Theorem 2.1.1 is estimated by

~ 1 i 3 -~

=01 2} ZHY Xll ZHY lel “H
where i = (mn)~1 320 Y201 (Y — Xy)/|[Y; — Xi|| is the empirical version of . We
estimate I'; by fg, which is defined similarly. Note that the asymptotic distribution of
||(mn/N)Y2W|? is a weighted sum of independent chi-square random variables each
with one degree of freedom and the weights are the eigenvalues of the (1 — 7)1 +
~Ty. This representation follows from the spectral decomposition of the compact self-
adjoint operator (1 — )’y + 4’2 and can be deduced from Theorem IV.2.4 in page
213 and Proposition 1.9 in page 161 in Vakhania et al. (1987). The eigenvalues of
(1 — 4)I'1 + 4Tz can be estimated by the eigenvalues of (1 — fy)fl + 'ny. The critical
value ¢, can now be obtained by simulating from the estimated asymptotic distribution
of W. In practice, the sample observations are often obtained as finite dimensional
approximations of elements in X, e.g., functions observed on a finite grid of points on
an interval or linear combinations of finitely many fixed elements of an orthonormal
basis of X. Then, in order to compute W, fl and f‘g, we use these sample observations

and the appropriate finite dimensional inner products and norms.

2.2 Asymptotic powers of different tests under shrinking

location shifts

In the previous section, we have established the consistency of our test for models with
fixed location shifts. We shall now derive the asymptotic distribution of our test statistic

under appropriate sequences of shrinking location shifts. Recall that N = m 4+ n is the
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total size of the two samples. We assume the following.
(A) Y is distributed as X + Ay, where Ay = §(mn/N)~1/2 for some fixed nonzero
deX and N > 1.

For some of the Wilcoxon—-Mann—Whitney type tests studied in the finite dimensional
setting, such alternative hypotheses have been shown to be contiguous to the null,
and this leads to nondegenerate limiting distributions of the test statistics under those
alternatives (e.g., Choi and Marden (1997), Chakraborty and Chaudhuri (1999) and
Oja (1999)). For h € X, define Jx : X — X as

Je(h) = E(J]Y =X +x|")h - E{(x + Y —= X, h)(x + Y — X)/||x + Y — X||*}. (2.2)

Theorem 2.2.1. As before, let N = m+n, m/N = v € (0,1) as m,n = oco. Also,
assume that the distribution of X is nonatomic and Jo exists. Then, under Assumption
(A) described above, (mn/N)Y?W converges weakly to G{Jo(8),I'1} as m,n — oo.
Here, the expectation in Jg is with respect to the common distribution of X and Y

under the null hypothesis.

Let Y — X = Y27 ; Vi for an orthonormal basis {¢y}r>1 of A. Then, the expec-
tation aeﬁning Jo is finite if any two dimensional marginal of (V1, Va,...) has a density
that is bounded on bounded subsets of R2.

In order to compare the asymptotic power of our test with those of the tests available
in Cuevas et al. (2004) and Horvéth et al. (2013), we shall now study the asymptotic
distributions of those test statistics under the sequences of shrinking shifts described in
Assumption (A) above. For the two sample problem in Ls[a, bl, the test statistic studied
by Cuevas et al. (2004) reduces to Tcrr = m||X — Y||2. Horvéth et al. (2013) studied
the test statistics Trxr: = Yok, (X — ¥, %k))? and Thkra = by Ap (X — Y, %)),
Here, the Xk’s denote the eigenvalues of the empirical pooled covariance of the X;’s and
the Y;’s in descending order of magnitudes, and the Jk 's are the corresponding empiri-
cal eigenfunctions. If ¥ = R and L = d, Tikr2 reduces to Hotelling’s T? statistic, and

Tuxri = m 1 TcFF.

Theorem 2.2.2. Let N = m+n and m/N — v € (0,1) as m,n = co. Then, under

Assumption (A) described above, we have the following.
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(a) If E(||X|]?) < oo, nN-YTopp converges weakly to Y g1 /\kx%l)(ﬁ,%//\k) as m,mn —
oo. Here, the \;’s are the eigenvalues of the covariance & of X in decreasing order of
magnitudes and the ¢y ’s are the eigenfunctions corresponding to the Ax’s, B = (8, ¥k),
and x%l)(ﬂ,% / k) denotes the noncentral chi-square variable with 1 degree of freedom and
noncentrality parameter B2 /A for k> 1.

(b) Assume that for some L > 1, M > ... > Ap > Appa > 0. If E(IX||*) < oo,
mnN1Tykr; converges weakly to Eﬁ=1 )\kx%l)(ﬁ,%//\k), and mn N Tykra converges

weakly to Sr_, X%1) (BE/ M) as m,n — oo.

For evaluating the asymptotic powers of different tests under shrinking location

shifts, we have considered the random element in X’ defined as

X = iZl/Q{(k — 0.5)w} "1 Zysin{(k — 0.5)7t}, (2.3)
k=1

where the Zi’s are independent random variables for £ > 1. We have considered two
cases, namely, Z;’s having standard normal distributions, and Z; = U(V/ 5)~1/2 where
the Uy’s are independent standard normal variables and V has a chi-square distribution
with 5 degrees of freedom independent of the Uy’s for each k& > 1. Both of these
distributions satisfy the assumptions made in Theorems 2.2.1 and 2.2.2. These two
cases correspond to the Karhunen-Logve expansions of the standard Brownian motion
and the centered t process (e.g., Yu et al. (2007)) on [0, 1] with 5 degrees of freedom and
covariance kernel K(t,s) = min(t, s), respectively. We call them the sBm and the t(5)
distributions, respectively. Recall that Y is distributed as X + 6 (mn/N )—1/ 2, and we
consider three choices of §, namely, &1(t) = ¢, d2(¢) = ct and d3(t) = ct(1 —t), where t €
[0,1] and ¢ > 0. For evaluating the asymptotic powers of different tests using Theorems
2.2.1 and 2.2.2, T'; is estimated in a similar way as described in Section 2.1 using
1000 sample functions from the underlying distribution. The operator X is estimated
by the sample covariance operator of X. The eigenvalues and the eigenfunctions of
[’y and % are estimated by the eigenvalues and the eigenfunctions of their empirical
counterparts. Also, Jo(§) is estimated by its sample analog. The asymptotic powers are
then computed by simulating from the appropriate asymptotic Gaussian distribution

with these estimated parameters. For the tests based on Tykgr; and THkRr2, the number
?
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L is chosen using the cumulative variance method described in Horvath et al. (2013).
Figure (2.1) shows the plots of the asymptotic powers of the tests based on W, Tcpr,

Tukri and Tykre for the sBm and the t(5) distributions under shrinking location shifts.
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Figure 2.1: Plots of the asymptotic powers of the tests based on W (black curves), Tcrr
(red - - curves), Tykr1 (violet - - - curves) and Thkgre (green — — curves) with nominal
level 5%.

It is seen from Figure 2.1 that our test based on W outperforms the tests based on
Tcrr and Takri for all the models considered except d2(t) under the sBm distribution, in
which case, the powers of the three tests are similar. Our test outperforms the test based
on Tykge for d2(t) under both the distributions, 1(¢) under the t(5) distribution, and
61(t) under the sBm distribution for ¢ > 1. Since the t(5) distribution is heavy-tailed,
it has an adverse effect on the performances of the mean based tests, but our test based

on spatial ranks remains unaffected. For the shift §3(t) under both the distributions,
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the test based on Tykr2 has significantly better performance than our test, but even 1n
this case, its performance degrades significantly for the t(5) distribution as compared

to the sBm distribution, but that does not happen for our test.

2.3 Empirical study of different tests

In this section, we will carry out a comparative study of the finite sample performances
of various tests including the test based on W in terms of their robustness in presence
of contamination in the samples, their empirical powers for simulated data, and their

performances on real data.

2.3.1 Robustness study of different tests

It is known that the univariate Wilcoxon-Mann-Whitney test is robust against contam-
ination of the samples by outliers while the tests based on the sample means like the
t-test do not have such robustness. The influence function of the univariate Wilcoxon-
Mann-Whitney test is bounded, which implies that the maximal asymptotic level and
the minimal asymptotic power even for moderately high contamination proportions
are not much different than those without contamination (see Chapter 7 in Hampel
et al. (1986)). It can be shown that the influence function of our test based on W is
JQ){E(Sx-y + Sx-v)}, where x,y € X, J is defined in Theorem 2.2.1, and Q(O0)
is the spatial median of the distribution of Y — X for an independent copy Y of X.
This influence function is bounded in norm under the conditions of Proposition 2.1 in
Cardot et al. (2013). Thus, it is expected that our test will be robust like the univariate
Wilcoxon-Mann-Whitney test when the samples are contaminated by outliers. We now
compare our test in terms of its size and power under contaminated data with the tests
based on Tcrr, Tukri, Tukre as well as the two sample version of the test for linear
models studied by Shen and Faraway (2004). We denote by Tsp the test statistic of the
test studied by Shen and Faraway (2004).

The distribution of the uncontaminated data, is taken to be the sBm distribution de-
scribed in Section 2.2. We have considered contamination in the mean as well as in the

covariance of the sBm distribution. For the mean contamination, we used the Gaussian
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Table 2.1: Sizes of some tests with nominal level 5%

W  Tcrr Tuxri Tuxre Tsr

Contamination
proportion

0 50 4.9 4.9 6.1 3.1
Mean contamination 1/15 56 352 346 70 34
in both the samples 3/15 34 554 546 6.2 4.8
5/15 56 56.0 55.4 6.2 5.6
Covariance contamination 1/15 50 161  15.1 50 2.3
in both the samples 3/15 3.7 339 30.7 4.8 2.2
5/15 3.6 48.9 43.8 4.2 3.0
Covariance contamination 1/15 48 112 104 53 3.1
in only one sample 3/15 51 223 21.0 4.9 3.0
5/15 3.7 318 29.0 4.5 2.1

distribution with mean function A(t) = 5 and covariance kernel K(t,s) = min(t, s),
t,s € [0,1]. The covariance contamination is done using the zero mean Gaussian dis-
tribution with covariance kernel K (t,s) = 16min(¢,s), t,s € [0,1]. We have chosen
m = n = 15, and each sample curve is observed at 250 equispaced points in [0, 1]. The
contamination proportions chosen are 1/15, 3/15 and 5/15. To keep the null hypoth-
esis unchanged under mean contamination, we consider mean contamination in both
the samples. The null hypothesis remains unaltered if one or both the samples have
covariance contamination. For the power study under contamination, we consider the
location shift A(t) = 0.6, ¢t € [0,1]. The sizes and the powers of the tests are averaged
over 1000 Monte Carlo simulations, and they are provided in Tables (2.1) and (2.2),
respectively.

The size of our test based on spatial ranks is not significantly different from the nom-
inal 5% level for all the contamination models considered. The sizes of the mean based
tests using Torr and TukRr1 are larger than 34% in all cases of mean contamination.
Their sizes are larger than 10% when one of the samples have covariance contamination,
and these are comparatively higher when both the samples have covariance contami-

nation. The size of the test using Ts is always significantly smaller than the nominal
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Table 2.2: Powers of some tests with nominal level 5%

W Tukrz TsF

Contamination
proportion

0 90.9 86.2 704
Mean contamination 1/15 712 32.0 276
in both the samples 3/15 444 122 116
5/15 26.6 8.8 9.0
Covariance contamination 1/15 82.3 62.6 49.0
in both the samples 3/15 63.9 39.1 25.2
5/15 43.2 26.6 16.5
Covariance contamination 1/15 85.5 70.7 579
only in the sample 3/15 77.3  53.8 409
from the null 5/15 625 414 291
Covariance contamination 1/15 869 74.7 621
only in the sample 3/15 76.7 544 415
from the alternative 5/15 64.4 40.1 279

level for the contaminated models as well as the uncontaminated models considered
later.” The numerators and the denominators in the statistics Thkgro and Tsr are possi-
bly affected in a similar way in the presence of outliers, while the ratios as well as the
sizes of the resulting tests remain relatively unaffected.

Since the tests based on Terr and Tykg; have very high sizes under all the contam-
ination models considered, we did not include them in the power study. Although there
is a reduction in the powers of all the tests considered as the contamination proportion
increases, this reduction is the least for our test based on spatial ranks among all the
competing tests for all the models considered. The reduction in power is due to the
increase in the variability of the sample as the contamination proportion increases. The

effect of contamination on the mean based tests is more pronounced

tamination, when the powers of these tests become close to their sizes if the proportion

shift but has a larger magnitude.
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2.3.2 Empirical power study of different tests using simulated data

We shall now carry out a comparative study of the finite sample empirical powers of
the tests considered in the previous subsection as well as some more tests available in
the literature. A pointwise t test with an appropriate p-value correction for multiple
testing was studied by Cox and Lee (2008) for testing the equality of means of two
Gaussian functional datasets. Cuesta-Albertos and Febrero-Bande (2010) studied an
analysis of variance test for functional data based on multiple testing using random
univariate linear projections of the data. The two sample version of this test reduces to
performing the univariate Wilcoxon-Mann—-Whitney test for each projection followed
by a p-value adjustment, and we have used 30 random projection directions for this
test. Gretton et al. (2012) studied tests for comparing two probability distributions
on metric spaces. We have used their test based on the asymptotic distribution of the
unbiased statistic MMD?2 studied in Section 5 in that paper, and have chosen the radial
basis kernel for this test. For comparing two finite dimensional probability distributions,
Hall and Tajvidi (2002) studied a permutation test based on the ranks of the distances
between the sample observations, while Rosenbaum (2005) studied a test based on a
notion of adjacency. We have used the Lo-distance between the pointwise ranks as the
distance function for implementing the latter test. Since the test statistic has a discrete
distribution, we randomized the test to improve its size and power.

The form of the distribution of X is given by (2.3) in Section 2.2. Here, we consider
the sBm and the t(5) distributions as in Section 2.2 as well as the t(1) distribution, for
which Zx = Ui /V1/?, where the Uy’s are independent standard normal variables and V
has a chi-square distribution with 1 degree of freedom independent of the Uy’s for each
k > 1. The t(1) distribution is included to investigate the performance of our test and
its competitors when the moment conditions on the probability distribution required
by some of the competing tests fail to hold. We have chosen m = n = 15, and each
sample curve is observed at 250 equispaced points in [0,1]. The distribution of Y is
same as that of X + Ag, k = 1,2,3, where A1(t) = ¢, Ay(t) = ct and Az(t) = ct(1 —t)
for t € [0,1] and ¢ > 0. All the sizes and the powers are evaluated by averaging the

results of 1000 Monte-Carlo simulations. The powers of the tests based on W, Tcrr,
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Tuxri and Tuxre are plotted in Figure 2.9. We denote the test statistics of the test
studied by Cox and Lee (2008), Cuesta-Albertos and Febrero-Bande (2010), Gretton
et al. (2012), Hall and Tajvidi (2002) and Rosenbaum (2005) by Tcw, Tcars, Ta, Tur
and TR respectively. The powers of these tests and that of our test based on W are
plotted in Figure 2.3.

There is no significant difference between the size of our test and the nominal 5%
level in all the models considered. The sizes of the competing tests except those based
on Teapp and Tsp are also not significantly different from the nominal 5% level for
the sBm and the t(5) distributions. The sizes of the tests based on Tcr, Tuxkr1 and
Tukre are approximately 1.5% for the heavy-tailed t(1) distribution, while those of the
remaining tests are not significantly different from the nominal 5% level. The size of the
test using Tcarg is around 2.6% in all our simulations. The size of the test based on Tsp
is significantly smaller than the nominal 5% level for all the distributions considered,
and it is zero for the t(1) distribution. The standard errors of the estimated sizes of

these tests range from 0.0037 to 0.0078 for all the distributions.

The tests based on Tcrr, Tuxkri and Thkre have extremely low powers and are
significantly outperformed by our test based on W in the case of the t(1) distribution.
The nonexistence of moments severely affects the performance of these mean based tests,
but our test based on spatial ranks is less affected. As in the asymptotic power study
in Section 2.2, our test has significantly higher power than the tests based on Tcrr and
Thkri for Ay(t) and A3(t) under the t(5) distributions. Under the t(5) distribution, our

test is significantly more powerful than the test using Tykgre for ¢ > 0.4 in Ai(t) = ¢

and ¢ 2 0.6 in Ay(t) = ct. Heavy tails of the t(5) distribution adversely affect the

powers of the mean based tests associated with Tcrr, Tukri and Takgre. The powers

of our test and the tests based on Tcrr and Tykg; are comparable for Az(t) under the

t(5) distribution, and the test based on Tukre significantly outperforms our test for

Aj(t) under both the sBm and the t(5) distributions. However, the performances of the

mean based tests degrade significantly under the t(5) distribution, while our test based

on spatial ranks is not affected. Even under the light-tailed sBm distribution, our test
3
outperforms the tests based on T'crr and IR for ¢ > 0.3 in A

1(t) =cand ¢ > 1.8 i
A:;(t) = Ct( i N

1—1), and it is as powerful as the test based on Tykgrs for A4 (t) and Aq(t)



19 Empirical study of different tests

sBm and A4(t) sBm and Ax(t) sBm and Ay(t)
(S [~ o
- - -
o | © ©
o o o
_—— L @ ©
[ ®o < & o
:° : 2
o = a 9 o X
(=] (=] o
N o o~
o o o
< | < ] <
< T T T T T T T < T T T T T T T © T T T T T T
0.0 0.2 0.4 0.6 0.0 0.4 0.8 1.2 0.0 12 24 3.6
c c [
t(1) and A,(t) t(1) and A,(t) t(1) and As(t)
] < <
« | < « |
o (=] <
. @ . @ o |
o © o < ® <
2 g 2
£ < | £ = | € =
o o o
o" | / Eh / o
(=] < (=]
o |= i o | e s=m—TT I =Y
© fr—T—T—T 77 71 ©C T 71— T T 1 e
0.0 0.2 0.4 0.6 0.0 04 0.8 1.2
c c
t(5) and A4(t) t(5) and A(t)
e < <
< | < | «Q
=3 =] o
© @ -
3 o ® © ]
E 2 2
g = | £ = | g =
c =] o
o ~ N
S 7 c °
o < | < |
© Yr——T—7 T T T e e e B L e YT T
0.0 0.2 0.4 0.6 0.0 0.4 0.8 1.2 0.0 12 24 3.6
c c c

Figure 2.2: Plots of the finite sample powers of the tests based on W (black curves),
Tcrr (red - - curves), Thkr1 (violet - - - curves) and Tgkr2 (green - — curves) with
nominal level of 5%.

But our test is significantly less powerful than the tests based on Tcpp and Tykry for
¢ > 0.7 in Ag(t) = ct.
Our test significantly outperforms the test based on Tg for ¢ > 0.2 in Ay(¢) = c and

¢ > 1.5 in As(t) = ct(1 —t) under the sBm and the t(5) distributions. Our test also
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outperforms this test for ¢ > 0.5 in Ay(t) = ct under the sBm distribution. Our test is
significantly more powerful than the test based on T¢y, for ¢ > 2 in A3(t) = ct(1 —t)
under the t(1) distribution and for ¢ > 0.5 in A(¢) = ct under all the distributions.
Further. our test is significantly more powerful than the tests using Tsr, TcarB, THT
and TR for almost all the shifts under the sBm and the t(5) distributions as well as for
all large ¢ values in the alternatives Aj(t) = ¢, A2(t) = ct, and Aj3(t) = ct(1 —t) under
the t(1) distribution. The test using Tcarp is significantly less powerful than our test
because the random projections failed to properly capture the directions of the location
shifts. On the other hand, while the tests based on Tyt, Tg and T are consistent
against general alternatives, which do not necessarily differ in their locations, such
tests are often less powerful than tests for location like our test based on W, when the
difference is only in the locations. Our test and the test based on TG have comparable
powers for A(t) and Az(t) under the t(1) distribution and for A3(t) under the t(5)
distribution. The latter test is significantly more powerful than our test for ¢ > 0.7 in
As(t) = ct under the t(1) distribution. Our test is as powerful as the test based on Ty,
for Az(t) under the sBm and the t(5) distributions. However for Ay (t), the latter test is
much more powerful than all the other tests for all of the distributions considered. This
is because the coordinate random variable at ¢ = 0.0001, which is closest to zero in our
computations, has scale parameter equal to 0.0001. Consequently, for this coordinate

and Aj(t), the adjusted p-values of the t test used in this test procedure are less than

0.05 for many of the simulations. The test based on Ty, rejects Hj for such simulations

resulting in the high power of this test. The standard errors of the estimated powers of

all of these tests are of the order of 0.01 or less for all the distributions.

2.3.3 Analysis of the Spectrometry data

classes, namely, “< 20%”

and “> 20%”. Each observation in this dataset can be viewed as an eleme

nt in the
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Figure 2.3: Plots of the finite sample powers of the tests based on W (black curves),
Tsr (green - + - curves), Tcy (red - V - curves), Tcars (purple - o - curves), Tg (blue
— - curves), Tyt (brown - - - curves) and Tg (violet - - curves) with nominal level 5%.

separable Hilbert space L2[850,1050].
For all the tests, the p-values are 0 up to two decimal places indicating significant

difference in the two distributions. We have also applied these tests at nominal level 5%
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to 1000 randomly chosen 20% subsamples of the dataset in order to evaluate their powers
when the sample sizes are smaller. Our test significantly outperforms the competing
tests, and its power is 0.832. The tests using Tr and Tcp have significantly less power
than our test as they are based on coordinatewise ranks and coordinatewise t tests,
respectively. They fail to properly capture the strong dependence structure in the data
and have powers 0.452 and 0.462, respectively. The power of the test using TcaAFB IS
0.406, which is also significantly less because the random projection directions failed to
adequately capture the direction of the location shift. The powers of the tests using
T and Tyt are 0.715 and 0.695, respectively, which are significantly smaller than that
of our test. As discussed in subsection 2.3.2, these two tests are consistent for general
alternatives, and they may perform worse than our test, when there is difference mainly
in the locations of the two distributions. The powers of the tests based on TcFr,
Tukri, Tukr2 and Tsr are 0.712, 0.744, 0.778 and 0.709, respectively, and they are all
significantly less powerful than our test. One of the advantages of our test based on
spatial ranks is its robustness against outliers in the data unlike the mean based tests
that use Tcrr, Tukr1, Tikr2 and Tspp. We now assess the impact of outliers in the
data on these tests. We used the functional boxplot proposed in Sun and Genton (2011)
for outlier detection. For comparing the effect of using different notions of functional
depth on outlier detection, and hence on the performance of the tests, we considered two
depth functions, namely, the modified band depth (Lépez-Pintado and Romo (2009))
and the spatial depth (Chakraborty and Chaudhuri (2014b)) for this procedure. These
two depth functions will be studied in detail in Chapter 4.

The functional boxplot using the modified band depth identified five observations
from the class with fat content < 20% and three observations from the class with fat
content > 20% as outliers. On the other hand, the functional boxplot using the spatial
depth identified one more observation in the class with fat content > 20% as an outlier.
So. the performance of the tests should not differ much for the two datasets. The plots of
the original data along with the outliers (red curves) detected using both the procedures

are given in Figure 2.4. We have marked the observation, which has been detected as
an outlier only by the spatial depth as the red dotted curve.

The t
e tests based on W, Tcrr, TR, Thkro and Tgpy are again applied to randomly
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Figure 2.4: Plots of the samples curves of the Spectrometry data indicating the outlying
curves.

chosen 20% subsamples of the two datasets obtained after removing the outliers detected
by the two depth functions. The powers of the tests averaged over 1000 Monte-Carlo
iterations are given in the following table, where FBP-MBD and FBP-SD denote the
functional boxplot using the modified band depth and the spatial depth, respectively.

Table 2.3: Powers of some nominal 5% tests for the Spectrometry data.

Procedure W  Tcrr Tukri Tukr2 Tsr
FBP-MBD 0.870 0.851 0.862 0.868  0.809
FBP-SD 0.862 0.843 0.849 0.859 0.796

As expected and remarked earlier, there is no significant impact of the outlier detec-
tion procedure on the performance of the tests. Due to the robustness of our test based
on spatial ranks, its power increases only marginally after removal of outliers. On the
other hand, the lack of robustness of the mean based tests using Tcrr, Tukr1, THKR2

and Tkp is evident in the significant increase in their powers.
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2.4 The test and its asymptotic distribution in general
Banach spaces

Functional data are sometimes modelled as samples from probability distributions in an
infinite dimensional Banach space. The Wilcoxon-Mann—Whitney type test discussed
so far in this chapter can also be extended to the setup when data take values in a
general Banach space. For this we will need some of the concepts introduced in the
Appendix. Let X be a Banach space with norm || - ||, and denote its dual space by &A™.
Suppose that X is smooth, and denote the Gateaux derivative of the norm || - || in X
at a nonzero x € X by Sx. The spatial rank of x € X with respect to the distribution
of a random element X € X is defined as ¥, = E(Sx_x), where the expectation is in
the Bochner sense. Hilbert spaces are smooth with Sx = x/||x||. So, in a Hilbert space,
Uy = E{(x~X)/||x — X]||}, and the spatial rank defined in this way coincides with the
definition given in the first paragraph in Section 2.1 of this chapter. If X = L,(I), where
ICRYforad>1,and p € (1, 00), which is the Banach space of all functions x : I — R
satisfying [, |x(s)|Pds < oo, then Sy(h) = J; sign{x(s)}|x(s)|P~ h(s)ds/||x|[P~! for all
x,h e L,(I).

Let Xy, Xs,...,X;nand Y1,Ys,...,Y, be independent observations from two prob-
ability measures P and Q on a smooth Banach space X. Define 4 = E(Sy_x). Our
Wilcoxon-Mann-Whitney type statistic for testing the hypothesis Hy : u = 0 against
Hy:p# 0 is defined as W = (mn)~! 3™ > i1 5Y,-x,.

Define I'1, T’y : X** — x*

to be the continuous linear symmetric positive operators
given by

[1(f) = EIf{E(Sy-x | X)}E(Sy_x | X)] — f(p)p,
Do) = E[f{E(Sy-x | Y)}E(Sy_x | Y) - f(u)u,

where f € X**. We denote by G(m, C) the distribution of a Gaussian random element
In a separable Banach space X with mean m and covariance C. The next theorem gives

the analog of Theorem 2.1.1 in general Banach spaces.

Th =
eorem 2.4.1. Let N = m + n and m/N — v € (0,1) as m,n — co. Also, assume
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that the dual space X* is a separable and type 2 Banach space. Then, for any two
probability measures P and Q on X, (mn/N)Y2(W — 1) converges weakly to G{O0, 1-
Y1 + T2} as myn — co.

We next state the analog of Theorem 2.2.1 for data in general Banach spaces. Sup-
pose that Y is distributed as X+Ay, where Ay = §(mn/N)~1/2 for some fixed nonzero
0 € X and N > 1. This choice of shrinking alternatives have already been used earlier
in this chapter. We assume that the norm in X is twice Gateaux differentiable at every
x # 0. Let us denote the Hessian of the function x — E(]|Y — X + x|| — [[Y — X||)
at x by Jx : X — X* when it exists (see the Appendix). If X is a Hilbert space and
E(IY — X + x||™1) < oo, then Jx is given by 2.2 in Section 2.2. Further, if X is a
L, space for some 2 < p < oo, and E(||]Y — X + x||™}) < oo, it can be shown that

mathsfJx exists and is given by

_ JI¥(s) = X(s) + X(s)PP*2(s)w(s)ds
@}w) = (= DE R

_ {JIY() = X(s) +x(a)P a(s)ds} {] ¥ (s) = X(s) +x(s) P w(s)ds}
TY =X+ x| /

where z,w and x € X

Theorem 2.4.2. Let N = m+n, m/N — v € (0,1) asm,n — oo, and X'* is a separable
and type 2 Banach space. Also, assume that the distribution of X is nonatomic and Jo
exists. Then, under the sequence of shrinking location shifts described at the beginning
of this section, (mn/N)\/2W converges weakly to G{Jo(8),T'1} as m,n — co. Here, the
expectation in the definition of Jo is taken with respect to the common distribution of

X and Y under the null hypothesis.

Finally, we discuss the implementation of our test when data lie in general Banach
spaces. Note that for general Banach spaces, we no longer have the weighted chi-square
representation of the asymptotic distribution as mentioned in Section 2.1 for Hilbert
spaces. Note that in any smooth Banach space, we can estimate I'y and I'; by their
empirical counterparts, which are defined in a similar way as discussed in Section 2 of

this chapter. We can simulate from the asymptotic Gaussian distribution with these
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estimated covariance operators, and this leads to an estimate of the critical value of the

test in smooth Banach spaces.

2.5 Paired sample Wilcoxon signed-rank type test in gen-

eral Banach spaces

One can define a paired sample Wilcoxon signed-rank type test in smooth Banach spaces
using spatial ranks in a similar way as the two sample Wilcoxon-Mann-Whitney test
described in Section 2.4. Consider an independent and identically distributed sample
(X1,Y1),(X2,Y2)...,(Xn, Yn), and define W; = Y; — X for all 1 < ¢ < n. Define
0 = E(Swi+w), where W is an independet copy of W. Then, the hypothesis Hy : § = 0
is equivalent to the hypothesis that the spatial median of W + W’ is zero. Suppose
that Y — X has a symmetric distribution about some n € X', i.e., the distribution of
Y —X-—nand n—Y +X are the same. Then, it follows that Hy becomes the hypothesis
n = 0. This holds, in particular, if X and Y — 7 are exchangeable, i.e., the distributions
of (X,Y —n) and (Y — 7, X) are the same. Analogous to the discussion in the second
paragraph in Section 2.1, it follows that if the distribution of Y — X is symmetric and
its mean exists, then Hp is equivalent to the hypothesis E(Y — X) = 0. Our Wilcoxon
signed-rank type statistic for testing the hypothesis Hy : § = 0 against Hy : 6 # 0 is
defined as Tsg = 2{n(n — 1)}! > 1<icj<n SWi+w,. We reject Hy for large values of
[[Tsrl|. Define I : X** — X* as II(f) = 4(E[f{E(Sww' [W)} E(Sww: [W)] - £(6)8),
where f € X**. The next theorem gives the asymptotic distribution of Tsg for any fixed
distribution of W.

Theorem 2.5.1. Suppose that the dual space X* is a separable and type 2 Banach

is p-uniformly smooth for some p € (4/3,2]. Then, for any
probability measure P on X, n}/?(Tgp — 9)

space. Also assume that X'*
converges weakly to G(0,1I) as n — oo.

Thus, like our two sample Wilcoxon~Mann~Whitney type test, the paired sample

e . .
Wilcoxon signed-rank type test will also have asymptotic size a. Further, it will be
. )

consistent against those alternatives, which satisfy @ # 0. This holds if the distribution

of W is . . . Co .
18 symmetric and its spatial median is different from zero. In particular, this test
?
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is consistent for location shift alternatives.

We next describe how to compute the critical value of the paired sample Wilcoxon
signed rank type test using its asymptotic distribution under the null hypothesis given
in Theorem 2.5.1. Let (X;,Y;), 1 <4 < n, be a sample from a probability distribution
in X. If X' is a separable Hilbert space, then as in the case of the two sample Wilcoxon—
Mann-Whitney type test, the asymptotic distribution of ||n!/2Tgg||? is also a weighted
sum of independent chi-square random variables each with one degree of freedom, where
the weights are the eigenvalues of the II. The eigenvalues of II can be estimated by the

eigenvalues of ﬁ, which is defined as

~ 4 ki 1 & W, +W. 1 & W, + W,
I = . l-—0|® g
n—1 ; n—1;|1wi+wjl| n—l;”Wi—{-WjH

Here, § = 2{n(n — )} ' 3 Z] ir1(Wi + W) /|[W; + W;||. The critical value can
now be obtained by simulating from the estimated asymptotic distribution of Tgr. On
the other hand, if X is a geheral Banach space satisfying the assumptions of Theorem
2.5.1, we no longer have the weighted chi-square representation of the asymptotic distri-
bution of Tsr under the null hypothesis. However, we can estimate II by its empirical
counterpart, which is defined in a similar way as the earlier definition in Hilbert spaces.
We can then simulate from the asymptotic Gaussian distribution with this estimated

covariance operator, and then compute the critical value of the test.

2.6 Mathematical details

Proof of Theorem 2.1.1. Observe that W — p is a two-sample Hilbert space valued U-
statistic with kernel h(x,y) = Sy—x — p satisfying E{h(X,Y)} = 0. By the Hoeffd-
ing decomposition for Hilbert space valued U-statistics (see Section 1.2 of Borovskikh

(1996)), we have

i B{h(X,,Y) | X} + ZE{hXYJMYHRm
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So, Rypn = (mn) =1 5700 30 h(X;,Y;), where h(x,y) = h(x,y) - E{h(X,Y) | X =
x} — E{h(X,Y) | Y = y}. Since E{h(X,Y) | Y =y} = E{h(X,Y) | X = x} =0,
and ||}~1(x,y)H < 4 for all x,y € X, we get

E(|[Rmnll?) = (mr) E(|h(X1, Y1)|?) < 16(mn) " (2.4)

Since m/N — ~ € (0,1), (2.4) implies that (mn/N)Y/?R,, , converges to 0 in proba-
bility as m,n — co. Now, m~ /237" E{h(X;,Y) | X;} and n=V/2 37 | E{h(X,Y;) |
Y} converge weakly to G(0,I'1) and G(0,T'3), respectively, as m,n — oo by the central
limit theorem for independent and identically distributed random variables in a separa-
ble Hilbert space (see Theorem 7.5(i) of Araujo and Giné (1980)). This together with
the assumption that m/N — v, and the fact that (mn/N)V2R,, . converges to 0 in

probability complete the proof. O

Proof of Theorem 2.2.1. Define u(Ay) = E(Sy_x). Applying the Hoeffding decom-
position for Hilbert space valued U-statistics as in the proof of Theorem 1, it follows

that

W= pAn) = S (BSy-x, | X0~ u(Aw))
i=1
e S AB(SY, x| Yy) = wlAn)} + S (25)

j=1

Arguing as in the proof of Theorem 1, it can be shown that E(||S,,,)?) < 16(mn)~1

for each m,n > 1. Thus, (mn/N)Y2S,. . = 0 in probability as m,n — oo under the

scquence of shrinking shifts.

Note that p(Ay) = E(Sz-x4ay), where Z is an independent copy of X. Also

from the definition of Fréchet derivative (see the Appendix) it follows that J (h) is the
, . . )
Fréchet derivative of E(Sz_x ) evaluated at h € X. So, (mn/N)V/ 2u(AnN) converges

to Jo(d) as m,n — oo,

Let us write PN (X)) = m—1/2{E(SY_x1. | Xi)-u(AN)}. Note that E{@N(Xi)} = (.

asymptotic Gaussianity of > i' 1 @ N(Xi)
= ¥
triangular array {(I)N(Xl),...,q)N(

To prove the i
1t is enough to show that the

0o -
Xm)}%_; of rowwise Independent and identically
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distributed random elements satisfy the conditions of Corollary 7.8 in Araujo and Giné

(1980). Observe that for any € > 0,
m m
S P{EN X > €} < 3 E{IB(Sy-x, | Xi) - w(An)|PH/m/? < 8m~1/2,
i=1 i=1

Thus, limp, 00 D 1y P{||®n(X;)|| > €} = 0 for every € > 0, which ensures that condi-
tion (1) of Corollary 7.8 in Araujo and Giné (1980) holds.

We next verify condition (2) of Corollary 7.8 in Araujo and Giné (1980). Let us fix
f € X. Since [|Sx|| = 1 for all x # 0, we can choose § = 1 in that condition (2). Then,

m m
> EB{(f,on(X))2} =m™ > E[{Wni — B(Wn )}, (2.6)
i=1 i=1

where Wy,; = (f, E(Sy—_x, | Xl)) Since the X;’s are identically distributed, the
right hand side in (2.6) simplifies to E[{Wy1 — E(Wn1)}?]. Note that Wy, =
(f,E(Sz-x,+ax | X1)), where Z is an independent copy of X;. The dominated con-

vergence theorem implies that
E(Sz-xi+ay | X1) — E(Sz-x, | X1) (2.7)

as m,n — oo for almost all values of X;. Thus, we get the convergence of E(Wn 1)
to E{(f, E(Sz-x, | X1))} as m,n — oco. Similarly, it follows that E(Wﬁ,l) converges
to E{(f, E(Sz_x, | X1))?} as m,n — oo. So, Yim) E{(f,®n(X:))*} — Tu(f,f) as
m,n — oo, where I'; is as defined before Theorem 1 in Section 2 in the paper. This
completes the verification of condition (2) of Corollary 7.8 in Araujo and Giné (1980).

Finally, for the veriﬁcatioﬁ of condition (3) of Corollary 7.8 in Araujo and Giné
(1980), suppose that. {Fx}e>1 is a sequence of finite dimensional subspaces of X' such
that F, C Fr41 for all & > 1, and the closure of Upre; Fk is &. Such a sequence of
subspaces exists because of the separability of X. For any x € X and any k& > 1, we
define d(x, Fi) = inf{|[x —y|| : y € Fi}. It is straightforward to verify that for every

k > 1, the map x — d(x,F) is continuous and bounded on any closed ball in X. It
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follows from (2.7) that pu(Ay) — 0 as m,n — 00, and

Il

i E[d®{®n(Xs), Fi}] m™! Emj E[2{E(Sz-x.+ay | Xi) — w(AN), Fi}]

=1 i=1

~  Eld*{E(Sz-x,+ay | X1) — #(AN), Fi}]
— E[dz{E(SZ—-Xl lXI)v—Fk}]

as m,n —> oo. From the choice of the Fj’s, it can be shown that d(x,Fx) — O as
k — oo for all x € X. So, E[d*{E(Sz-x, | X1),Fi}] converges to zero as k — 0o,
which completes the verification of condition (3) of Corollary 7.8 in Araujo and Giné
(1980).

Thus, S, ®n(X;) converges weakly to a centered Gaussian random element in
X as m,n — co. Further, its asymptotic covariance is I'1, which was obtained while
checking condition (2) of Corollary 7.8 in Araujo and Giné (1980). It follows from similar
arguments that n=1/23°7 ; E{h(X,Y;) | Y;} also converges weakly to a Gaussian

random element in X’ with the same distribution as m,n — oco. Thus, it follows from

(2.5) that
(mn/NYYH{W — p(An)} — G(0,Ty)

weakly as m,n — oo under the sequence of shrinking shifts. This, together with the

fact that (mn/N)Y/2(Ax) converges to Jo(d) as m,n — oo completes the proof of the

theorem.

a

Proof of Theorem 2.2.2. (a) Let us observe that nN ™ Tgpp = mnN~Y|X - Y||2. For
each N > 1, Y has the same distribution as that of Z + A N, where Z is an indepen-
dent copy of X. Now, by the central limit theorem for independent and identically

distributed random elements in a separable Hilbert space (see Theorem 7.5(

and Giné (1980)), it follows that (mn/N)V/2(Z — X)

i) in Araujo
converges weakly to G(0,X) as
m,n = oo. Thus, (mn/N)Y/2(Y — X), which has the same distribution as that of
(mn/N)V*(Z — X + Ay), converges weakly to G(4,%) as m,n — co. Now, the dis-

tribution of ||G(8, )2 i i
ion of ||G(d,X)]|? is the same as that of Y ohe /\kle)(ﬂ,%//\k) using the spectral
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decomposition of the compact self-adjoint operator ¥. This proves part (a) of the propo-
sition.
(b) Let v = (X = Y, 41), (X = Y, 9),...,(X = ¥,91)) and B = (B, B2,...,BL). Tt
follows from the central limit theorem in RY that (mn/N)Y/2{v — (mn/N)~/23} con-
verges weakly to Np,(0,Ar) as m,n — oo under the given sequence of shrinking shifts,
where Ay is the diagonal matrix Diag(\1,...,Ar). Thus, under the given sequence of
shifts, (mn/N)Y/2v converges weakly to a Ny (B, Ay) distribution as m,n — oo.

From arguments similar to those in the proof of Theorem 5.3 in Horvath and
Kokoszka (2012), and using the assumptions in the present theorem, we get

e (mn/N)V2|(X ~ Y, — G| = 0p(1) (2.8)

as m,n — oo under this sequence of shifts. Here z}z\k is the empirical version of 1, and
Ck = sign(({b\k, i)). In view of (2.8), the limiting distribution of mnN~! Z{;:l(()_( -
Y, $k>)2 is the same as that of mnN ! Zﬁzl(()_( —Y,Gx))? = mnN7Y|v||?, and the
latter converges weakly to ]|NL(E, Ap)||* as m,n — co. Thus, mnN~Tykg) converges
weakly to Zé:l Ak X%l) (,6’,3 /Ak) under the given sequence of shrinking shifts as m,n — oo.

It also follows using similar arguments as in the proof of Theorem 5.3 in Horvéath
and Kokoszka (2012) that under the assumptions of the present theorem, we have

max (mn/N)V2A (K = Y, g~ G| = op(1)

as m,n — oo under the given sequence of shifts. Similar arguments as in the case of
Thkri now yield the asymptotic distribution of mnN ~1ThukRre, and this completes the

proof. O
Proof of Theorem 2.4.1. Similar to the proof of Theorem 2.1.1, we use the Hoeflding

decomposition for W — p to get

m 1 n
W—p= > B{b(Xs V) | X} + o 3 B{R(X,Y,) | Y3} + R,
=1 j=1

where Ry = (mn) ' 30 305 h(X;,Y;) as in Theorem 2.1.1. Let &(X;) =
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Z;’ZI h(X;,Y;). Using the definition of type 2 Banach spaces, we get

E(|Rmal? | Y35 =1,2,...,n)

m 2
- ;,#E{ o eX)| 1 Yji=1,...,n
i=1
< Y BRI Yi=1,....n}. 29)
i=1

Taking expectations of both sides of 2.9 with respect to Y; for 1 < j < n, we get

2
B(Rpmal®) < h—‘jl—QE{ >R, - (2.10)
=

Since E{H(X,Y) | X=x}=0forall x e X, once again from the definition of type 2

Banach spaces, we get
E {

Using the boundedness of the kernel and (2.10) and (2.11), we have

> " h(X1,Y;)

=1

2} < oE Léz«: {Hii(xl,yj)”2 | xl}

= bnE{Hﬂ(Xl,Yl)HQ}. (2.11)

E(Rmal?) < %E{“ﬂ(xl,Yl)Hz} < 17%2

Proof of Theorem 2.4.92. Define y = H(AN) = E(Sy_x). Applying the Hoeffding de-
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composition as in the proof of the previous theorem, it follows that
1 m
W —u(An) = - > {E(Sy-x, | Xi) — u(An)}
i=1

1« .
to > {E(Sy;-x | Y;) = t{(AN)} + R (2.12)
i=1
Arguing as in the proof of Theorem 2.4.1, it can be shown that E(||ﬁmn||2) < 1662 /mn
for each m,n > 1. Thus, (mn/N)}/2R,,, — 0 in probability as m,n — co under the
sequence of shrinking shifts.
Note that u(An) = E(Sz—x+ay), where Z is an independent copy of X. So, it

follows from the equivalent definition of Hessian given in the Appendix that
(mn/NY2u(AN) — Jo(6) (213)

as m,n — oo.

The asymptotic Gaussianity of the first two terms on the right hand side of (2.12)
after proper scaling will follow from arguments similar to those in the proof of Theorem
2.2.1. Let us write ®n(X;) = m~Y2{E(Sy_x, | Xi) — #(An)}. Condition (1) of
Corollary 7.8 in Araujo and Giné (1980) holds as in the proof of Theorem 2.2.1.

For verifying condition (2) of Corollary 7.8 in Araujo and Giné (1980), let us fix
f € A**. We have

S° Bl (en(X0H = m 1 3 Bli{Uns ~ EUN] = BliUxs ~ BUx)) (.10
i=1 i=1
where Uy; = f{E(Sy—_x, | Xi)}. Note that Un,1 = f{E(Sz-x;+ay | Xi)}, where Z
is an independent copy of X;. Since the norm in X is assumed to be twice Gateaux
differentiable, it follows from Theorem 4.6.15(a) and Proposition 4.6.16 in Borwein and
Vanderwerff (2010) that the norm in & is Fréchet differentiable. This in turn implies
that the map x —> Sx is continuous on X\{0} (see, e.g., Corollary 4.2.12 in Borwein
and Vanderwerff (2010)). The rest of the proof involving verifying conditions (2) and
(3) of Corollary 7.8 in Araujo and Giné (1980) is exactly same as that of the proof of

Theorem 2.2.1. g
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Proof of Theorem 2.5.1. Similar to the proof of Theorem 2.4.1, we use the Hoeffding

decomposition for Tgr — 6 to get

2 "
Tspr— 0 = -~ Z[E{SWH-W' ] Wz} - 9] + Sy,

i=1
wheres, = 2{n(n—1)}"! 2 1<i<i<n Swi+w =230 E{Sw,+w’ | W;}+6. Arguing as
in the proof of Theorem 2.4.1, it can be shown that n!/2s,, converges to 0 in probability
as n — 0o. The weak convergence of the first term in the Hoeffding decomposition after
proper scaling follows from similar arguments as in the proof of Theorem 2.4.1, and this

completes the proof. O



Chapter 3

The spatial distribution and
quantiles in infinite dimensional

spaces

For a univariate probability distribution, median is a well-known and popular choice
of its center. It has several desirable statistical properties, which include equivariance
under monotone transformations and asymptotic consistency under very general con-
ditions. The univariate median and other quantiles have been extended in a number
of ways for multivariate data and distributions in finite dimensional spaces (see, e.g.,
Oja (1983), Liu (1990), Small (1990) and Donoho and Gasko (1992)). In particular,
the spatial median, the spatial quantiles and the associated spatial distribution func-
tion in finite dimensional Euclidean spaces have been extensively studied (see, e.g.,
Brown (1983), Chaudhuri (1996), Koltchinskii (1997), M&ttonen et al. (1997) and Ser-
fling (2002)). However, many of the well-known multivariate medians like the simplicial
depth median (see Liu (1990)), and the simplicial volume median (see Oja (1983)) do
not have meaningful extensions into infinite dimensional spaces. On the other hand, the
spatial median as well as the spatial quantiles extend easily into infinite dimensional Ba-
nach spaces (see Valadier (1984), Kemperman (1987) and Chaudhuri (1996)). Gervini
(2008) proposed functional principal components using the sample spatial median and

used those to analyze a data involving the movements of the lips. The spatial median

35
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has also been used by Chaouch and Goga (2012) to calculate the median profile for
the electricity load data in France. Fraiman and Pateiro-Lépez (2012) studied some
direction-based quantiles for probability distributions in infinite dimensional Hilbert
spaces. These quantiles are defined for unit direction vectors in such spaces, and they
extend the finite dimensional quantiles considered by Kong and Mizera (2012). The
principle quantile directions derived from these quantiles were used by Fraiman and
Pateiro-Lopez (2012) to detect outliers in a dataset of annual age-specific mortality
rates of French males between the years 1899 and 2005. Recently, Cardot et al. (2013)
considered an updation based estimator of the spatial median and used it to compute
the profile of a typical television audience in France throughout a single day.

In this chapter, we investigate the spatial distribution in infinite dimensional Banach
spaces and study their properties along with the spatial quantiles. There are several
mathematical difficulties in dealing with the probability distributions in such spaces.
These are primarily due to the noncompactness of the closed unit ball in such spaces.
We prove some Glivenko-Cantelli and Donsker type results for empirical spatial distri-
bution processes arising from data lying in infinite dimensional spaces. A Bahadur type
linear representation of the sample spatial quantile and its asymptotic Gaussianity are
derived. We also study the asymptotic efficiency of the sample spatial median relative

to the sample mean for some well-known probability distributions in function spaces.

3.1 The spatial distribution and the associated empirical

processes in Banach spaces

For probability distributions in R%, the spatial distribution is a special case of the M-

distribution function, which was studied in detail in Koltchinskii (1997). Consider the

. R R .
map f: R* x R* - R such that for every x € R, f(.,x) is a convex function. Then,

» & subgradient of the map x — E{f(x, X)} is called the
M-distribution function of X with respect to' f. If f (

for any random vector X ¢ R¢

- %,¥) = {lx = yil = llyl|, where
- || is the usual Euclidean norm, the M-distribution function is the spatial distribu-
tion f i ;

unction, whose value at x with respect to the probability distribution of X is

E _ _ .
{(x=X)/lIx=X||}. 1fd = 1, the spatial distribution simplifies to 2F(xz)—1, where F
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is the cumulative distribution function of X. Koltchinskii (1997) showed that under cer-
tain conditions, the M-distribution function characterizes the probability distribution
of a random vector like the cumulative distribution function. In that paper, Glivenko-
Cantelli and Donsker type results were also proved for the empirical M-distribution
process. These results are similar to those obtained for the empirical process associated
with the cumulative distribution function in the finite dimensional multivariate setting.
For probability distributions in the space of real-valued functions on an interval, a no-
tion of distribution functional was studied by Bugni et al. (2009). But those authors
did not study any Glivenko-Cantelli or Donsker type result for the empirical processes
associated with their distribution functionals. Further, there is no natural extension
of the cumulative distribution function for probability distributions in general infinite
dimensional Banach spaces.

In this section, we study the spatial distribution in infinite dimensional Banach
spaces and obtain Glivenko-Cantelli and Donsker type results for the associated empir-
ical processes. Let X be a smooth Banach space, and denote the Gateaux derivative
(see the Appendix) of the norm || - || in X at a nonzero x € X by Sx. As a con-
vention, we define Sy = 0 if x = 0. Let X be a random element in &, and denote
its probability distribution by p. The spatial distribution at x € X with respect to
p is defined as ¥y = E{Sx_x}. The empirical spatial distribution can be defined as
\fx =n"! o1 Sx—x;, where X1,Xo,...,X, are ii.d. observations from a probabil-
ity distribution p in X. The empirical spatial distribution was used in the Chapter
2 to develop Wilcoxon-Mann-Whitney type tests for two sample problems in infinite
dimensional spaces. Later in this chapter, the spatial quantile will be defined in infinite
dimensional spaces as the inverse of the spatial distribution.

Associated with the spatial distribution is the corresponding empirical spatial dis-
tribution process {\fx — Wy :x € I} indexed by I C X. Thisisa Banach space valued
stochastic process indexed by the elements in a Banach space. When X = R¢ equipped
with the Euclidean norm, the Glivenko-Cantelli and the Donsker type results hold for
the empirical spatial distribution process with I = R¢ (see Koltchinskii (1997)). The
following theorem states a Glivenko-Cantelli and a Donsker type result for the empirical

spatial distribution process in a separable Hilbert space.
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Chapter 3: The spatial dis

Theorem 3.1.1. Let X be a separable Hilbert space, and Z be a finite dimensional

subspace of X. Then, U, converges to Wy uniformly in Z in the weak topology of X
almost surely. Further, if p is nonatomic, then for any d > 1 and any continuous linear

map g : X — R, the process {g(\/_ﬁ(@x——\llx)) . x € Z} converges weakly to a d-variate

Gaussian process on 2.

The Glivenko-Cantelli and the Donsker type results in Koltchinskii (1997) for the
empirical spatial distribution process in R? follow from the above theorem as a straight-
forward corollary. The result stated in Theorem 3.1.1 is also true in Banach spaces like
L, spaces for some even integer p > 2 (see the remark after the proof of Theorem 3.1.1
given in the section on mathematical details).

A probability measure in an infinite dimensional separable Banach space X’ (e.g., a
nondegencrate Gaussian measure) may assign zero probability to all finite dimensional
subspaces. However, since X is separable, for any € > 0, we can find a compact set
K C X such that u(K) > 1 — € (see, e.g., Araujo and Giné (1980)). Thus, given any
measurable set V' C X', there exists a compact set such that the probability content
of V outside this compact set is as small as we want. The next theorem gives the
asymptotic properties of the empirical spatial distribution process uniformly over any

compact subset of X'. We state an assumption that is required for the next theorem.

ASSUMPTION (A). There ezists a map T(x) : X\{0} — (0, 00), which is measur-

able with respect to the usual Borel o-field of X such that for all x # 0,—~h, we have
ISxin = Sxll < T(x){Ih]}.

Assumption (A) holds if X isaa Hilbert space Oor a Lp space for some pcC [2 OO)
’ ?
and in the former case we can choose 7 (X) = 2/”)(“

For any set A ¢ X, we denote by
N{(e, A)

the minimum number of open balls of radii ¢ and centers in A that are needed
to cover A.

Theorem 3.1.2. Let X* be q separable Banach space, and K C X be a compact set.

(a) Suppose that Assumption (A) holds, and Sup|xjj<c Ep {T(x — X)} < oo for each

C >0, . ' U
where u) is the nonatomic part of u. Then, U, converges to Wy uniformly over

x € K in the norm topology of X* almost surely.

(b) Let 1 be a nonatomic probability measure, SUP|ixji<c Eu{T?(x — X)} < oo for each
< -~ eac
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C > 0, and Assumption (A) hold. If fol Vin N(e,K)de < oo for each € > 0, then the
empirical process Tg = {g(vn(¥x — ¥y)) : x € K} converges weakly to a d-variate
Gaussian process on K for any d > 1 and any continuous linear function g : X* — RY.
Further, if X is a separable Hilbert space, then for any Lipschitz continuous function

g:X - Re, Tg converges weakly to a R%-valued stochastic process on K.

If 1 is a purely atomic measure, the Glivenko-Cantelli type result in part (a) of
the above theorem holds over the entire space X (see Lemma 3.3.1 in the section
on mathematical details). It follows from part (a) of the above theorem and the
tightness of any probability measure in any complete separable metric space that
fX||\ix — Uy |[2u(dx) — 0 as n — oo almost surely. If we choose d = 1 and
g(x) = ||x|| in the second statement in part (b) of the above theorem, it follows that
suPxere || Ux — Uxl| = Op(1/v/n) and [, |[Tx — Uxl|2u(dx) = Op(1/n) as n — co.

Let X be a separable Hilbert space and X = "7 ; Xyt for an orthonormal basis
{k}k>1 of X. Then, the moment condition assumed in part (a) (respectively, part
(b)) of the above theorem holds if some bivariate (respectively, trivariate) marginal of
(X1, X2, ...) has a density under p; (respectively, ) that is bounded on bounded sub-
sets of R? (respectively, R3).

Let 7 = fol \/m‘)de. We will now explore some situations under which the
entropy condition in part (b) of Theorem 3.1.2 holds, i.e., I < co. It is easy to verify that
Z < oo for every compact set K in any finite dimensional Banach space. The finiteness
of T is also true for many compact sets in various infinite dimensional function spaces

(see, e.g., Kolmogorov and Tihomirov (1961)), and we discuss some examples below.

1. Consider the space C(B) of continuous real-valued functions defined on a closed
and bounded box B in R? and equipped with the supremum norm. For some
C > 0 and r > 1, consider the subset Ff (C) of C(B) whose elements have partial
derivatives upto order r, the r-th order partial derivatives are Holder continuous
with exponent « € (0,1], and the remainder terms in their Taylor expansions at
x + h about x are uniformly bounded by C|h|[? for all x,x +h € B. Here,
g =r+ « This will be the situation, for example, when we have functional data

in the space C(B), and for modelling purposes the sample space is assumed to
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B
have certain smoothness properties. Then, for any compact subset K of Fy (C),

we have In N(e, K) ~ (1/5)(‘1/‘1). Therefore, I < oo if d < 2g. It is important to
note that K is totally bounded in Ly(B, p) for any p € [1,00) with its e-entropy
of the same order for any finite measure p because C(B) C Lp(B,p) when B is
compact. Thus if we take X = L,(B, p) for some p € [2,00) and the compact
subset to be K as described above, we have the Glivenko-Cantelli and Donsker

properties as in part (b) of Theorem 3.1.2.

2. Let (Z,p) be any metric space and A be a compact subset of Z. Let us consider
the subset of C(A), which satisfy Holder’s condition with a positive, nonconvex
function ¢, i.e., any f : A — R in this set satisfies [f(x1) — f(x2)| < o(p(x1,x2))
for every x1, xp € A. Consider a subset K of such functions that are bounded on A
by a constant C. Suppose that N (g, A) ~ o(ln (1/¢)) and N(g, A) is of the same
order as N(ke, A) for an arbitrary k > 0. Then, in N(g,K) ~ cN(¢7'(¢), A)
for a universal constant ¢ > 0. Thus, K is totally bounded. Hence, I < oo if
fol VN(¢~1(€), A) < oo, which is true if fol V/—In ¢=1(g) < oo by the assumption
on N(e, A). Examples of such positive, nonconvex function ¢ include ¢(u) = ull
for some r > 1. Similar to the previous example, if we take X = L,(A4, u) for a
o-finite measure p on A and p € {2, o), then for the compact sets described above,

the Glivenko-Cantelli and the Donsker properties as in part (b) of Theorem 3.1.2
hold.

3.2 Spatial quantiles in Banach spaces

An important property of the spatial distribution in finite dimensional Euclidean spaces
is its strict monotonicity for a class of nonatomic probability distributions. This along
with its continuity and the surjective property was used to define the spatial quantile
as the inverse of the spatial distribution in these spaces (see Koltchinskii (1997)). The

following result shows that even in a class of infinite dimensional Banach spaces, we have
b

the strict monotonicity, the surjectivity and the continuity of the spatial distribution

map.
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Theorem 3.2.1. Let X be a smooth, strictly conver Banach space, and suppose that p
is nonatomic probability measure in X. If u is not entirely supported on a line in X, the
spatial distribution map x — U is strictly monotone, i.e., (¥x — Uy ) (x—y) > 0 for all
x,y € X with x # y. The range of the spatial distribution map is the entire open unit
ball in X* if X is reflexive (i.e., X = X**). If the norm in X is Fréchet differentiable,

the spatial distribution map is continuous.

Under the conditions of Theorem 3.2.1, for any u in the open unit ball B*(0,1) in
A*, the spatial u-quantile Q(u) can be defined as the inverse, evaluated at u, of the spa-
tial distribution map. Thus, Q(u) is the solution of the equation E{Sq_x} = u. When
i has atoms, we can define Q(u) by appropriately inverting the spatial distribution
map, which is now a continuous bijection from X\A4, to B*(0,1)\Uxen, B*(Sx,p(x))
if the other conditions in Theorem 3.2.1 hold but it is discontinuous at each x € A,,.
Here, A, denotes the set of atoms of u, p(x) = P(X = x) for x € A,, and B*(z,r)
and E*(z,r) denote the open and the closed balls in X'™*, respectively, with radius r
and center z € X*. Even if p has atoms, it can be shown that Q(u) is the minimizer
of E{]|Q — X|| — ||X[|} — u(Q) with respect to Q € X. Spatial quantiles have been
defined in R¢ through such a minimization problem in Chaudhuri (1996) and Koltchin-
skii (1997). The former paper also mentioned about the extension of spatial quantiles
into general Banach spaces. The properties of spatial quantiles for probability distribu-
tions in R? equipped with the lp-norm for some p € [1,00) was studied by Chakraborty
(2001). Suppose that we have a unimodal probability density function in R%. If the
density function is a strictly decreasing function of ||x|[,, where || - ||, is the [p-norm,
then it can be easily shown that the density contours and the contours of the spatial
quantiles computed using the l,-norm coincide.

Note that the central quantiles correspond to small values of ||u||, while the extreme
quantiles correspond to larger values of ||u||. Further, u/ [lu|| gives the direction of the
proximity /remoteness of Q(u) relative the center of the probability distribution. For
example, let X = (X1, X>,...) be a nondegenerate random element symmetric about
zero in I, for some p € (1,00). So, the spatial median of X is zero. For any u in the

open unit ball of [ = I3, where 1/p+1/q = 1, the spatial u-quantile Q(u) = (g1, 92,...)
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of X will satisfy the equation E{sign(qx — Xi)lar — Xk|P‘1/||Q(u) — X|{P1} = uy for
all k > 1. If ||ul| is close to zero, then it follows from the symmetry of the distribution
of X, that g should also be close to zero for all & > 1. Further, if the gi's are large,
the corresponding Q(u) is an extreme quantile of the distribution of X.

The spatial quantile possesses an equivariance property under the class of affine
transformations L : X — X of the form L(x) = cA(x) + a, where ¢ > 0, a € X
and A : X — X is a linear surjective isometry for all x € X. Using the surjec-
tive property of A it follows that minimizing E{}|Q — L(X)|} — LX)} — u(Q) over
Q € X is cquivalent to minimizing E{|A(Q) — AX)|| — JAXOI} — u(A(Q’)) over
Q' € X, where Q = L(Q'). The last minimization problem is the same as minimizing
E{IQ - X|| = IX|]} = (A*(u))(Q') over Q' € X by virtue of the isometry of A. Here,
A* . X* = X* denotes the adjoint of A (see the Appendix). Thus, the spatial u-quantile
of the distribution of L(X) equals L(Q(A*(u))), where Q(A*(u)) is the A*(u)-quantile
of the distribution of X.

The sample spatial u-quantile can be defined as the minimizer over Q € X of
n~ S {11Q = X — [IXs|} — u(Q). Note that this minimization problem is an infi-
nite dimensional one and is thus difficult to solve in general. Cadre (2001) proposed an
alternative estimator of the spatial median (i.e., when u = 0) by considering the above
empirical minimization problem only over the data points. However, as mentioned by
that author, this estimator will be inconsistent when the population spatial median lies
outside the support of the distribution. Gervini (2008) proposed an algorithm for com-
puting the sample spatial median in Hilbert spaces. However, the idea does not extend
to spatial quantiles or into general Banach spaces.

We shall now discuss a computational procedure for sample spatial quantiles in a Ba-
nach space. We assume that X is a Banach space having a Schauder basis {¢1,¢2,...},

say. 50 that for any x € X, there exists a unique sequence of real numbers {2k }k>1 such

that x = Y22 | 2.0 _
x =) 7 TpPy. Let Z, = span{di, oo, ..., bd(n) }, where d(n) is a positive integer
depending on the sample size n. Define z™ — ZZ(HI) arde, where z Zoo s
s = ! = 2.ik=1%%Pk-
We will assume that Hz(n)H < ||z} for all n > 1 and 2 € X. Note that if X is a

...} is an orthonormal basis of X’ , then z(™ is the orthog-

onal projection of z onto Z,,. For each k > 1, define ¢ to be the continuous li
us linear

Hilbert space, and {¢1, ¢9,
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functional on X given by gk(z) = ag. Let us assume that {51,52,...} is a Schauder
basis of X*. Define u(® = ZZ(:I) brdy, where u € B*(0,1) and u = PR brdi. We
also assume that |[u(™|| < ||u|| for all n > 1 and u € B*(0, 1). The above assumptions
concerning the Schauder bases of a Banach space and its dual space hold for any sep-
arable Hilbert space and any L, space with p € (1,00) (see, e.g., (Fabian et al., 2001,
pp. 166-169)). We compute the sample spatial u-quantile Q(u) as the minimizer of
n S 1Q — X = XM} — u™(Q) over Q € Z,.

For all the numerical studies in this chapter, we have chosen d(n) = [\/n]. In our
simulated data examples, sample quantiles computed with this choice of d(n) approxi-
mate the true quantiles quite well. We will later show that this choice of d(n) ensures
the consistency of sample quantiles in a class of Banach spaces, and is sufficient to
prove their asymptotic Gaussianity in separable Hilbert spaces (cf. Theorems 3.2.1.1
and 3.2.1.3).

We now demonstrate the spatial quantiles using some simulated and real data.
We have considered the random element X = > 77, AxYidy in L[0,1]. Here, the
Yy’s are independent N(0,1) random variables, Ay = {(k — 0.5)7}"! and ¢(t) =
V2sin{(k — 0.5)7t} for k > 1. Note that X has the distribution of the standard Brow-
nian motion on [0, 1] with ¢ being the eigenfunction associated with the eigenvalue A2
of the covariance kernel of the standard Brownian motion. Figure 3.1 shows the plots
of the population spatial quantiles of the standard Brownian motion for u = +cé,
where k = 1,2,3 and ¢ = 0.25,0.5,0.75. We have also plotted the spatial median, which
is presented as the horizontal line through zero in all the plots. For each ¥ = 1,2, 3,
the spatial quantiles corresponding to u = cgy, for ¢ = 0.25, 0.5 and 0.75 are given by
the black, the red and the violet solid curves, respectively, while those corresponding to
u = —c¢y, for these c values are given by the black, the red and the violet dashed curves,
respectively. Note that A;Yi, A2Y2 and AzY3 account for 81.1%, 9% and 3.24%, respec-
tively, of the total variation E(|X||?) = 3%, Var(MYz) = 2 pe A? in the Brownian
motion process. For computing the population spatial quantiles, we generated a large
sample of size n = 2500 from the standard Brownian motion and computed the sample
spatial quantiles with d(n) = [\/n] and Z, = span{¢1, 2, . . > Pd(n)}-

Our simulated data consists of n = 50 sample curves from the standard Brownian
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Figure 3.1: Plots of the spatial quantiles of the standard Brownian motion including
the spatial median.

motion, and each sample curve is observed at 250 equispaced points in [0,1]. The
real dataset considered here is the Spectrometry data used earlier in Chapter 2. For
each of the simulated and the real dataset, we have chosen d(n) = [V/n], and Z, is
constructed using the eigenvectors associated with the d(n) largest eigenvalues of the
sample covariance matrix. For computing the sample spatial quantiles for both the
simulated and the real data, we have first computed the sample spatial quantiles for the
centered data obtained by subtracting the sample mean from each observation, and then
added back the sample mean to the computed sample spatial quantiles. Figure 3.2 shows
the plots of the simulated dataset along with the sample spatial median (the purple curve
in the top left plot) and those of the sample spatial quantiles corresponding tou = :i:cak
for k = 1.2.3, where ¢ = 0.25,0.5,0.75 and $k is the eigenvector associated with the
kth largest eigenvalue of the sample covariance matrix for k > 1. Figure 3.3 shows the
plots of the real dataset along with the sample spatial medians (the purple curves in
the plots in the first column) and those of the sample spatial quantiles corresponding
tou = ﬂ:c@. for k = 1,2, where ¢ = 0.25,0.5,0.75 and é)\k is the eigenvector associated
with the kth largest eigenvalue of the sample covariance matrix for £ > 1. In both the

figures. for each &, the sample spatial quantiles corresponding to u = cgy, for ¢ = 0.25
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0.5 and 0.75 are given by the black, the red and the violet solid curves, respectively,
while those corresponding to u = —cggk for these ¢ values are given by the black, the red
and the violet dashed curves, respectively. The percentage of the total variation in the
simulated data explained by the first three sample eigenvectors is almost same as the
population values mentioned in the previous paragraph. For each of the two classes in
the real dataset, the first two sample eigenvectors account for about 99.5% of the total

variation in that class.
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Figure 3.2: Plots of the simulated data from the standard Brownian motion along with
the sample spatial quantiles.

For each k, the spatial u-quantiles of the standard Brownian motion corresponding
to u = céy and —cPi exhibit an ordering, where the spatial u-quantile associated with

a smaller ¢ value is relatively closer to the spatial median than the spatial u-quantile
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associated with a larger ¢ value (see Figure 3.1). A similar ordering is also seen for the
sample spatial quantiles of both the simulated and the two classes in the real dataset.
The sample spatial median for the simulated data is close to the zero function (see
Figure 3.2), which is the spatial median of the standard Brownian motion. There is
a noticeable difference in the locations of the sample spatial median and the sample
spatial quantiles corresponding to u = :i:cqgl between the two classes in the real dataset

(see Figure 3.3). Moreover, the sample spatial quantiles of the two classes in the real

dataset are different in their shapes.
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3.2.1 Asymptotic properties of sample spatial quantiles

The following theorem gives the strong consistency of Q(u) in the norm topology for a

class of Banach spaces.

Theorem 3.2.1.1. Suppose that X is a separable, reflexive Banach space such that
the norm in X is locally uniformly rotund, and assume that p is nonatomic and not

entirely supported on a line in X. Then, ||Q(u) — Q(u)|| = 0 as n — oo almost surely

if d(n) = oo as n — oo.

Since Q(u) is a nonlinear function of the data, in order to study its asymptotic
distribution, we need to approximate it by a suitable linear function of the data. In finite
dimensions, this is achieved through a Bahadur type asymptotic linear representation
(see, e.g., Chaudhuri (1996) and Koltchinskii (1997)), and our next theorem gives a
similar representation in infinite dimensional Hilbert spaces. Consider the real-valued
function g(Q) = E{||Q — X|| — ||X||} — u(Q) defined on a Hilbert space X, and denote
its Hessian at Q € X by Jq, which is a continuous linear operator on X (see the
Appendix). We denote by ]Q the symmetric bounded bilinear functional from X x X
into R associated with Jq, which satisfies

Q-X

T h t2] h h)|/t2=0
HQ~X||"“}()—5 q(h,h)| /t* =

lim |9(Q + th) — g(Q) — tE {

for any h € X. Here, jq(h, v) = (Jq(h), V) for every h,v € X. We define the Hessian
Jn.q of the function g,(Q) = E{||Q — X™|| = [|X™||} — u™(Q), which is defined on
Z,, in a similar way. The symmetric bounded bilinear functional associated with J, g
is denoted by jn,Q. Here, we consider an orthonormal basis of X' (which is a Schauder
basis), and Z, is as chosen as in Section 3.2. Let Q.(u) = argmingez, g»(Q) and
define B, (u) = ||{Qn(u) —Q(u)||. It can be shown that Bp(u) = 0 as n — co. We make
the following assumption, which will be required for Theorem 3.2.1.2 below.

AsSUMPTION (B). Suppose that p1 is nonatomic and not entirely supported on a line
in X, and supqez,,qli<c E{IQ — X™)||=2} < oo for each C > 0 and all appropriately
large n.

As discussed after Assumption (A) in Section 3.1, if X' is a Hilbert space, we can
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choose T'(x) = 2/]|x|| in that assumption. Thus, Assumption (B) can be viewed as a
d(n)-dimensional analog of the moment condition assumed in part (b) of Theorem 3.1.2.

Also, it holds under the same situation as discussed after Theorem 3.1.2.

Theorem 3.2.1.2. Let X be a separable Hilbert space, and Assumption (B) hold.
Then, the following Bahadur type asymptotic linear representation holds if for some

a € (0,1/2], d(n)/n'=2% tends to a positive constant as n — oo.

Qn(u) - X(n)
1Qn (u) — X{™

Q(u) - Qn(u) = _% Z[Jn,Qn(u)]_l <
i=1

where Ry, = O((In n)/n**) as n — co almost surely.

The Bahadur-type representation of the sample spatial u-quantile in finite dimen-
sional Euclidean spaces (see, e.g., Chaudhuri (1996) and Koltchinskii (1997)) can be
obtained as a straightforward corollary of the above theorem by choosing oo = 1/2. Un-
der the assumptions of the preceding theorem, if a € (1/4,1/2], we have the asymptotic
Gaussianity of /n(Q(u) — Qn(u)) as n — oo.

The extension of the above Bahadur-type representation into general Banach spaces
is a challenging task mainly due to two reasons. First, although some version of Bern-

stein type exponential bounds as in Fact 3.3.1 are available in general Banach spaces

(sce, e.g., Theorem 2.1 in Yurinskif (1976)), those bounds are not adequate for extend-

ing the proof from Hilbert spaces into general Banach spaces. Next, the lower bound of

Jn.q(h,h)/||h||? in Fact 3.3.3 is not always true in general Banach s
let ¥ =1/ and X = (X1, Xy,

paces. For instance,

...) be a zero mean Gaussian random element in X'. Let
Z, = span{el,eg,...,ed(n)}, where e;, = G =k):j 2> 1), k > 1, which form the

n = €4(n) € Z,. Then, for any Q = (q1,¢2,...) €
Zn. it can be shown that Ir,Q(bn, by ) /[y 2 < 3B(9a) — Xamy)2/11Q — X)), 1

can also be shown that the last term converges to zero as n — oo by observing that

canonical Schauder basis for ly. Let h

9y — Xam)l = 0 almost surely and d(n) = oo as n — 00. This clearly implies that

the lower bound in Fact 3.3.3 does not hold in this case.

We shall now discuss some situationg when B
n

. (W) = ||Qn(u) - Q(u)|| satisfies
iy 00 v/By(u) = 0. This along with the weak convergence of \/n(Q(u) — Q, (u))
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stated above will give the asymptotic Gaussianity of \/n(Q(u)—Q(u)) as n — co. Under
the assumptions of Theorem 3.2.1.2, it can be shown that for some constants by, by > 0,
we have Bn(u) < byrp+bys, for all large n, where r,, = E{HX—X(”)H/]]Q(u)—XH} and
sp = |lu— u(")||. Let us take X = Lg([a, b], v), which is the space of all real-valued func-
tions x on [a,b] C R with v a probability measure on [a, b] such that [ x%(t)v(dt) < oco.
Suppose X has the Karhunen-Lotve expansion X = m + Y 30, A Vi, where the
Y)’s are uncorrelated random variables with zero means and unit variances, the )\,%’s
and the ¢;’s are the eigenvalues and the eigenfunctions, respectively, of the covari-
ance of X. Let Z, = span{¢1,¢2,...,¢4m)}- Under the assumptions of Theorem
3.2.1.2, it can be shown that limp oo v/2Tn = 0 if lim, 00 v/722|jm — m™|| = 0 and
limn.,oonZ,Dd(n) )\z = 0. The latter is true for some o > 1/4 if limg_ o0 k%A = 0
(e.g., if the A\i’s decay geometrically as k — o0). We now discuss some conditions
that are sufficient to ensure lim,_,o v/77||m — m™)|| = 0 as well as lim, 0, v/728, = 0
(implying that lim,_,c +/nBp(u) = 0) in separable Hilbert spaces. If X = Ly([0, 1], v},
where v is the uniform distribution, and {@x}kr>1 is the set of standard Fourier ba-
sis functions, then Theorem 4.4 in Vretblad (2003) describes those x € A’ for which
limy, 00 v/72ljx — x(™}| = 0 holds. It follows from that theorem that a sufficient con-
dition for limp_e0 v/72|jx — x(™|| = 0 to hold is that x is thrice differentiable on
[0,1], x(0) = x(1), and its right hand derivative at 0 equals its left hand derivative
at 1 for each of the three derivatives. On the other hand, if {¢g}r>1 is either the
set of normalized Chebyshev or Legendre polynomials, which form orthonormal bases
of X when v is the uniform and the Beta(1/2,1/2) distributions, respectively, then
X € X satisfying limp_so0 v72||x — X({| = 0 can be obtained using Theorem 4.2 in
Trefethen (2008) and Theorem 2.1 in Wang and Xiang (2012), respectively. Next,
let X = Ly(R,v), where v is the normal distribution with zero mean and variance
1/2, and ¢x(t) o exp{—At*}hy(A’t),t € R,k > 1 for an appropriate A > 0 and
A" > 0, where {hi}r>1 is the set of Hermite polynomials. Then, x € X' satisfying
limp_y00 /71 [x— %™ || = 0 can be obtained from the conditions of the theorem in p. 385
in Boyd (1984) for j > 5. An important special case in this setup is the Gaussian pro-
cess with the Gaussian covariance kernel, which is used in classification and regression

problems (see, e.g., Rasmussen and Williams (2006)). The eigenvalues of this kernel
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' i P = 1/4.
decay geometrically, which implies that liMn_oo ? Y psdm) M = 0 for some o > 1/

Summarizing this discussion, we have the following theorem.

Theorem 3.2.1.3. Suppose that the assumptions of Theorem 3.2.1.2 hold. Also,
assume that for some a € (1/4, 1/2], vnsn — 0, Vnjjm — m™| — 0 and
Ny k>d(n) M — 0 asn — oo Then, there exists a zero Mean Gaussian random el-
ement Z, such that Jn(Q(u) — Q(u)) converges weakly to Zy as n — 0o. The co-
variance of Zy is given by Vu = [JQ(U)]‘IAU[JQ(u)]_l, where Ay @ X — X satisfies
(Au(z),w) = E{<W%E%)T—%ﬂ ——u,z> <ﬂ%_((3)5})7%ﬂ —u,w>} for z, w € X, and (-,") de-

notes the inner product in X.

3.2.2 Asymptotic efficiency of the sample spatial median

We will now study the asymptotic efficiency of the sample spatial median Q(O) relative
to the sample mean X when X has a symmetric distribution in a Hilbert space X about
some m € X. In this case, Q(0) = E(X) = m. We assume that E(||X||?) < oo, and
let ¥ be the covariance of X. Note that Q,(0) = m(™, and following the discussion
after Theorem 3.2.1.2, it can be shown that under the conditions of that theorem and if
V|lm — m™}| — 0 as n — oo, we have the weak convergence of \/H(Q(O) —m) to Zg
as n — oo. Here, Zg is a Gaussian random element with zero mean and covariance Vg
as in Theorem 3.2.1.3. On the other hand, using the central limit theorem in Hilbert
spaces, we have the weak convergence of /n(X — m) to a Gaussian random element
with zero mean and covariance X.

For our asymptotic efficiency study, we have first considered X = m+ Y rey A Yo
in L»[0,1] with Y3’s having independent standard normal distributions, and the A\2’s and
the ¢,’s being the eigenvalues and the eigenfunctions of the covariance kernel K (t,s) =
0.5(t2" + 52 — |t — 5|21y for H ranging from 0.1 to 0.9. In this case, X has the distribution

of a fractional Brownian motion on [0, 1] with mean m and Hurst index H. We have
also considered t processes (see, e.g., Yu et al. (2007)) on [0,1] with mean m, degrees

of freedom r > 3 and covariance kernel K(t,s) = min(t, s). In this case, X = m -+

oC .
k=1 MwYiop with Yy, = Z/ \/W for 7 > 3, where the Z,’s are independent standard

normal variables, and W' is an independent chi-square variable with r degrees of freedom
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Here, the )\%’s and the ¢;’s are the eigenvalues and the eigenfunctions, respectively,
of the covariance kernel K(t,s) = min(t, s). We have also included in our study the
distributions of X = m+3"727 | A\ Yi¢y in Lo(R, v) corresponding to all the choices of the
Yi’s mentioned above. Here, v is the normal distribution with zero mean and variance
1/2, the )\i’s and the ¢;’s are the eigenvalues and the eigenfunctions, respectively, of
the Gaussian covariance kernel K (t, s) = exp{—(t — 5)?} (see Section 4.3 in Rasmussen
and Williams (2006)). These processes on R are the Gaussian and the t processes with 7
degrees of freedom for r > 3, respectively, having mean m and the Gaussian covariance
kernel. The mean function m of each of the processes considered above is assumed to
satisfy /n|/m — m(")‘|| — 0 as n — oo so that we can apply Theorem 3.2.1.3. The
asymptotic efficiency of Q(O) relative to X can be defined as trace(X)/trace(Vp). The
traces of ¥ and Vp are defined as Y 7o, (X9, i) and > 5 (Votk, ¥), respectively,
where {¢x}r>1 is an orthonormal basis of the Hilbert space X. It can be shown that
both the infinite sums are convergent, and their values are independent of the choice of
{%k}r>1. For numerically computing the efficiency, each of the two infinite dimensional
covariances are replaced by the D-dimensional covariance matrix of the distribution of
(X(t1),X(t2),...,X(tp)), where D is appropriately large. For the processes in L3[0, 1],
ti,ta,...,tp are chosen to be equispaced points in [0,1], while for the processes in
Ly(R,v), these points are chosen randomly from the distribution v. These choices
ensures that for any x € Ly[0,1] or La(R, v), ||x||* can be approximated by the average
of x2(t) over these D points. For our numerical evaluation of the asymptotic efficiencies,
we have chosen D = 200.

The efficiency of Q(0) relative to X for the fractional Brownian motion decreases
from 0.923 to 0.718 as the value of H increases from 0.1 to 0.9. For the Brownian motion
(i.e., when H = 0.5) this efficiency is 0.83. For the t-processes in [0, 1], this efficiency
is 2.135 for 3 degrees of freedom, and it decreases with the increase in the degrees of
freedom. The efficiency remains more than 1 up to 9 degrees of freedom, when its value
is 1.006. This efficiency for the Gaussian process in Ly(R, v) is 0.834. The efficiency for
the t-processes in La(R, v) is 2.247 for 3 degrees of freedom, and it decreases with the
increase in the degrees of freedom. As before, this efficiency remains more than 1 up to

9 degrees of freedom, when its value is 1.013.
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3.3 Mathematical details

Lemma 3.3.1. Suppose that X* is a separable Banach space. If p is atomic, then

SUPxex H‘:I;x — U] = 0 as n — oo almost surely.

Proof. Define ply) = n~ 13 0" I(X;=y) and p(y) = P(X =y) for y € A,, where A4,
denotes the set of atoms of p. By the strong law of large numbers, lim,_, 2(y) = p(y)
almost surely for each y € A,,. Observe that sup, ¢y H\flx—\I'xH < ZyGAu 1p(y)—p(y)| =
2—-23 yea, min{p(y), p(y)}. Since min{p(y),p(y)} < p(y), the proof is complete by

the dominated convergence theorem. g

Proof of Theorem 8.1.1. Let us write p = pu1 + (1 — p)ug, where pu1 and us are the
nonatomic and the atomic parts of 4, respectively. Let N,, = w1 I(X; ¢ Ay), where
Ay is the set of atoms of u. Denote by fi; and Jis the empirical probability distributions
corresponding to 1 and g, respectively. Here, as well as in other proofs in this section,

we will denote the inner product in a Hilbert space by (-,-). Observe that for any x € Z

B, (<’n§+§ﬂ )”E (< nx—xu>)'

Nn
n

|

|28 (V) o (==
e (L E=) - ((=5m)

5 (5 -0 (25)
Q2 (F25) - 2 (22X
+‘<"Eﬂ2(ﬁ>w (nx XI|>>’+2'N/”“”'

IA

In other words,

‘<l"f”‘“‘1”‘>’5‘< (n Xu) E“l(ui in»l

- X
d(= XT) - = xn)“““" /m=rl- (31)
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The third term in the right hand side of (3.1) converges to zero as n — oo almost surely
by the strong law of large numbers. By Lemma 3.3.1, the second term in the right hand

side of (3.1) converges to zero uniformly over x € X as n — oo almost surely.

Let us next consider the class of functions
G = (U : X > R, (s) = (Lx—)I(x #5)/|x —sl|; x € Z}.

Similar arguments as those in the proofs of Theorems 5.5 and 5.6 in pp. 471 — 474 in
Koltchinskii (1997) show that G is a VC-subgraph class. Since u; is nonatomic, the
functions in G are almost surely uj-continuous. Thus, using the separability of X, we
get that G is a pointwise separable class (see p. 116 in van der Vaart and Wellner (1996))
with an envelope function that is unity everywhere. Thus, it follows from Theorem 2.6.8
in van der Vaart and Wellner (1996) that G is a Glivenko-Cantelli class with respect
to the measure p;, which implies that the first term in the right hand side of (3.1)
converges uniformly over x € Z as n — oo almost surely.

Since X is separable, it has a countable dense subset L. So,

(5 ()2 (3o viee e

as n — oo almost surely. Note that both the expectations in (3.2) above are bounded

lim sup
n—oo xcZ

in norm by 1. Using this fact, equation (3.2) and the fact that £ is dense in X, we get
the proof.

For the second part of the theorem, note that it is enough to prove the result for
d = 1. By the Riesz representation theorem, for any continuous linear map g : X — R,
there exists 1 € X satisfying g(x) = (I,x) for every x € X. Let us consider the class
of functions G defined above in the proof of the first part of this theorem. If p itself is
nonatomic, it follows from the arguments in that proof by replacing g1 with p that G
is a VC-subgraph class. This along with Theorem 2.6.8 in van der Vaart and Wellner
(1996) implies that G is a Donsker class with respect to p. This completes the proof of

the theorem. O

REMARK: Suppose that X is a L, space for an even integer p > 2. Using arguments
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similar to those used in deriving (3.1), we get an analogous bound for 1(Sx_x) for any
x € Z and1 € X. In this case, G in the proof of Theorem 3.1.1 is to be defined as
G ={¥x: X > R, ¢Yx(s) =1(Sx-s); x € £}, and g in that theorem is to be chosen a
function from X* into R?. Using arguments similar to those in the proof of Theoremn
3.1.1, it can be shown that G is a VC-subgraph and a pointwise separable class, and
hence a Glivenko-Cantelli and a Donsker class. So, the assertions of Theorem 3.1.1 hold

in this case as well.

The following fact is a generalization of the Bernstein inequality for probability
distributions in separable Hilbert spaces, and it will be used in the proof of Theorem

3.1.2(b).

Fact 3.3.1. (Yurinskil, 1976, p. 491) Let Y1,Ys,...,Y,, be independent random el-
ements in a separable Hilbert space X satisfying E(Y;) = 0 for 1 < i < n. Suppose
that for some h > 0 and u; > 0, we have E(IY:||™) < (m!/2)u2h™=2 for 1 < i <n
and all m > 2. Let U2 = iz1u?. Then, for any v > 0, P(I| 3L, Y3l > wUy,) <
2ezp{—(v?/2)(1 + 1.62(vh/U,))~1}.

Proof of Theorem 3.1.2. (a) As in the proof of Theorem 3.1.1, we get

18x — O] < 1z {Sx-x} — By {Sx_x}|| + (3.3)

“Eﬁz {SX—X} - E;zz{SX—X}” +2 INn/n —pl.

7 VN(e) of K. The first term in the

right hand side of the Inequality in (3.3) is bounded above by

W S} = B {80, -] 4 1B (S x) Eu{Sy,_x}|

+ -
ISIII;aKf((E) ”E“I {SVI“X} —E, {Svt—X}”’
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where ||x — v;|| < €. Using Assumption (A) in Section 3.1, it follows that

1B {Sx—x} = B {Sv;—x}| £ Ep{T(v; - X)}x — vy (3.4)

IA

2B, {T(v; — X)},

for all n sufficiently large almost surely. Further,

1B {Sx—x} = Epu {Sv;—x }| < e By {T(v; = X))} (3.5)

Using (3.4) and (3.5), the moment condition in the theorem and the fact that
maxi<j<nN() || Ea, { Svi-x} — Ep {Sv,—x }|| converges to zero as n — co almost surely,
we get the proof of part (a) of the theorem.

(b) As argued in the proof of Theorem 3.1.1, it is enough to consider the case d = 1.
Using Theorems 1.5.4 and 1.5.7 in van der Vaart and Wellner (1996), it follows that we
only need to prove the asymptotic equicontinuity in probability of Tg with respect to the
norm in X. Further, since p is assumed to be nonatomic, the map x g(\/ﬁ((f!x —-0y,))
is almost surely u-continuous. Since K is comf‘)act, it follows that the process Tg is
separable (see p. 115 in van der Vaart and Wellner (1996)). Thus, in view of Corollary
2.2.8 in van der Vaart and Wellner (1996) and the assumption of the finiteness of the
integral fol m for each € > 0, we will have the asymptotic equicontinuity in
probability of ’?g if we can show the sub-Gaussianity of the process (see p. 101 in van der
Vaart and Wellner (1996)) with respect to the metric induced by the norm in X. Since
g € X**, the empirical process 'Y‘g ={Vnln '3 8(Sx-x,)~E{8(Sx—x,)}] : x € K}.
Using the Bernstein inequality for real-valued random variables and the assumptions in

the theorem, we have
P(|Tg(x) - Te(y)| > ) < 2ezp {~t*/arllx —yl[*} Vn

for a suitable constant a; > 0. This proves the sub-Gaussianity of the process and
completes the proof of the first statement in part (b) of the theorem.

For proving the second statement in part (b) of the theorem, we will need Fact 3.3.1
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stated earlier. Using this, we have

P(T(x) — T >t < P(V/al|(x — Ty) — (x — Ty)l| > 1)
< Ze:cp{—t2/a2||x—YH2} Vn

for an appropriate constant ag > 0. This proves the sub-Gaussianity of the process, and

hence its weak convergence to a tight stochastic process. 0

Proof of Theorem 3.2.1. Since X 18 strictly convex, and p is not completely supported
on a straight line in X, the map x — E{||x—X|[- I|X||} is strictly convex. Thus, using
exercise 4.2.12 in Borwein and Vanderwerff (2010), we have the strict monotonicity of
the spatial distribution map. Let §(y,v) = E{lly — X|| — IIX||} — v(y), wherey € X
and v € B*(0,1). Since X is reflexive, it follows from Remark 3.5 in Kemperman (1987)
that there cxists a minimizer of § in X. Let us denote it by x(v). So, g(x(v),v) <
G(y,v) for all y € X. Equivalently, v{y — x(v)} < E{|ly — X|| = [x(v) — X|{} for
all y € X. Since p is nonatomic, it follows that the map x — E{||x — X]|| — [|X]|} is
Gateaux differentiable everywhere. So, using the previous inequality and Corollary 4.2.5
in Borwein and Vanderwerff (2010), we have W, () = E{Sx~)-x} = v. This proves that
the range of the spatial distribution map is the whole of B*(0,1). Since the norm in X
is Fréchet differentiable on A'\{0} and p is nonatomic, the map x + E{||x—X||—|1X{|}
is Fréchet differentiable everywhere. The continuity property of the spatial distribution

map is now a consequence of Corollary 4.2.12 in Borwein and Vanderwerff (2010). O

The next result can be obtained by suitably modifying the arguments in the second

paragraph in the proof of Theorem 3.1.1 in Chaudhuri (1996).

inct 3.3.2. If X is a Banach space, there ezists C; > 0 (depending on u) such that
Q(u) — Q(u)|| < C for all sufficiently large n almost surely.

Proof of Theorem 3.2.1.1. From the assumptions in the theorem and Theorem 2.17 and

Remark 3.5 in Kemperman (1987), it follows that Q(u) exists and is unique. Let

Q) =n"130 {I1Q ~ Xgn)” - ”XEn)“} - u(n)(Q) for Q € X. We will first prove

the result when X is assumed to be bounded almost surely, i.e., for some M > 0
? e} ?
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P(|IX|] < M) = 1. Now, it follows from arguments similar to those in the proof of

Lemma 2(7) in Cadre (2001) that sup|iq||<c [92(Q) — gn(Q)| = 0 as n — oo almost

surely for any C' > 0. We next show that g(Q(u)) — g(Q(u)) as n — oo almost surely.
Note that

0 < g(Q(w) - 9(Q(w)) = [9(Qw)) — gn(Q(w))] — (3.6)
[9(Q(w)) ~ 9a(Q())] + [92(Q(w)) — gn(Q(w))].

Observe that for any Q, [9(Q) — ga(Q)| < 2E{||X — X®™)|[} + [|Q| [|u — u(™||, which
implies that

sup [9(Q) = g-(Q)[ = 0, (3.7)
IQll<c

as n — oo almost surely for any C' > 0. Further,

9n(Q (1)) — 9n(Q(w)) (3.8)
= [92(Q(w) = Fu(Q(W)] + [32(Q(w)) ~ Fn(Q™ ()]
+ [32(Q™ () — g2 (QM™ ()] + [92(Q™ (1)) — gn(Q(w))].

In the notation of Section 3.2, Q(")(u) = Z(znl) qedr, where Q = >0 qrx for a

Schauder basis {¢1, ¢2, - - .} of X. The first and the third terms in the right hand side of
(3.8) are bounded above by supjq|<c;, 192(Q) — gn(Q)] for all sufficiently large n almost
surely. Here, Cy = C1 + 2||Q(u)]|, and Ci is as in Fact 3.3.2. The second term in the
right hand side of (3.8) is negative because Q(u) is a minimizer of g,. The fourth term

in the right hand side of (3.8) is bounded above by 2/|Q™ (u) — Q(u)]|. So,

9 (O(1) — gn(Q) <2 sup_ [3(Q) = 9a(Q)] +211Q™ (u) - Q)]

[1QII<C2

for all sufficiently large n almost surely. Combining (3.6), (3.7) and the previous in-
equality, we get g(Q(u)) — g(Q(u)) as n — co almost surely.
Let us now observe that for any random element X in the separable Banach space

X and any fixed € > 0, there exists M >0 such that P(||X|| > M) < ¢/Ci. So, we have
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19(Q(u)) - g(Q(w))] < £ + [5(Q(u)) — F(Q(u))| for all sufficiently large n almost surely.
Here, 5(Q) = E{(Q — X|| — [IXIDI(IX|| < M)} — u(Q). Thus, letting & — 0, we
have g(Q(u)) — g(Q(u)) as n — oo almost surely for those random elements in X" that

are not necessarily almost surely bounded. Now, using Theorems 1 and 3 in Asplund

(1968), it follows that |[|Q(u) — Q(u)]| — 0 as n — co almost surely. )

The Hessian of the function g,(Q) is

_ h <h,Q—X(”’)(Q—X("))}
"Q(h)“E{HQ—XWH 1Q - X3 '

The next result is the d(n)-dimensional analog of Proposition 2.1 in Cardot et al. (2013),

and can be obtained by suitably modifying the proof of that proposition.

Fact 3.3.3. Suppose that the assumptions of Theorem 3.2.1.2 hold. Then, for each
C >0, there exists b, B € (0,00) with b < B such that for all appropriately large n we
have bl|h||* < J, q(h, h) < B|[h|]? for any Q, h € Z, with ||Q|| < C.

Lemma 3.3.4. Suppose that the assumptions of Theorem 8.2.1.2 hold and C > 0 is
arbitrary. Then, there ezist b/, B’ ¢ (0,00) such that for all appropriately large n and
any Q, h, z € Z, with ||Q — Qr(u)|| < C, we have

— X0
IIQ X®||

|mwmﬁkdhﬂ @@V < BIQ-Quu)l,  and

> V]1Q - Qn(u)]],

Q X (n) (n)
1Q=Xm[ ~ " [ " dew@- Q)| < B'lQ - Q. (w)])2.

Proof. Consider any h € 2, sych that ||h|| = 1. A first or

der Taylor expansion of the
. —X(n)
function E {%Tn)” —ulr )} (h) about Qn(u) yields

pl Q=-X»
Q=X ~™" () =], 5(Q ~ Qu(u), h), (3.9)

where [|Q ~ Qq ()] < |1Q - Qn(w)ll. Choosing h =
using Fact 3.3.3, we have the first nequality.

Q- Q.(w)/qQ - Qn(u)|| and
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The second inequality follows from the definition of ]n,Q, the upper bound in Fact
3.3.3 and some straight-forward algebra.

From (3.9), we get

Q - X n -
}E {m —u ’} (B) = Jn, Q. () (Q — Qn(u), h)
= 11, 4(Q - Qn(w),h) — T, q,w)(Q — Qu(u), h)|

< B'fQ-Qa(w), since [|[Q - Qu(w)} < [|Q = Qn(w)|.
Taking supremum over ||h|] = 1 and using the definition of J, q, we have the proof of
the third inequality. O

Proposition 3.3.5. Suppose that the assumptions of Theorem 3.2.1.2 hold. Then,

Q) — Qu(u)|] = O(S,) as n — oo almost surely, where 8, ~ Vln n/n* and o is as
in Theorem 3.2.1.2.

Proof. From Fact 3.3.2 and the behavior of Qn(u) discussed before Assumption (B)
in Section 3.2.1, we get the existence of C3 > 0 satisfying [|Q(u) — Qn(u)|| < Cjs for
all sufficiently large n almost surely. Define Gn = {Qn(0) + X ;<q(m) Bi95 : nig; is
an integer in [—C3,Ca] and || 3 <a(y Bipsll < Cs}, and Zy, = span{p1,92, .-, Pdm) }>

where {(;};>1 is an orthonormal basis of X. Let us define the event

1 Q-xM Q-Xm™
E, = { max ||~ =Ty B = — —u™ ||| < Cudn g
" {QeGn nZ;(”Q_XE”)H 1Q — X™)|] "
Note that Hﬁ—:—% — u(")H <2forallQ € 2, and n > 1. So, using Fact 3.3.1,

there exists Cs > 0 such that P(E}) < 2(3C3n) M exp{—nCZs2} for all appropriately
large n. Using the definition of 4, given in the statement of the proposition, Cs in the

previous inequality can be chosen in such a way that Yoo, P(E}) < oo. Thus,
P(E, occurs for all sufficiently large n) = 1. (3.10)

2
We next define the event F,, = {maxQeGn S I{||Q—x§"’||5n—2} < anén}. Note that
M/

n

= maxqec, E{I|Q — X(™|[|=1} < oo for all appropriately large n in view of As-
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sumption (B) in Section 3.2.1. Further, M) > M), for all £k > 1 and n > 1

Then, P(||Q - X™|| < n72) < M/n"2 < Cg62/2 for any Q € G, and all appro-
priately large n (the first inequality follows from the Markov inequality). Therefore,
Var{I(]|Q - X™|| < n72)} < Cs62/2 for any Q € G,, and all appropriately large
n. The Bernstein inequality for real-valued random variables implies that there exists
C7 > 0 such that P(F5) < (3C3n*)¥™ezp{-nCs62} for all appropriately large n. As
before, C7 in the previous inequality can be chosen in such a way that dome P(FS) < oo,

which implics that
P(F, occurs for all sufficiently large n) =1. (3.11)

Now consider a point in G,, nearest to Q(u), say, Q,(u). Then, HQ(u) - Q,(uw)] <
sd(n)/n* for a constant Cs > 0. Note that

=X7 Q=X | 2w - ()
“ 1Q(u) — Xl(")” 1Q,(u) — x(">” Q) — X (3.12)
Then, for a constant Cy > 0, we have
l n n(u) X(n) Cw 1 n Q(u) X(n)
mE Q) - x| S R 8w —x) u®l (3.13)

+

I ) Q=X Q) - x™
nZl{”Qn(u)“Xz(n)” ”Q n)”}”

< l M {n) —~
s 7 11Qw) x| Gk
+2 ZI{HQn(U) Xl <n7?) (using (3.12))
1 (u - x™
< |z ) uil 4 cys2 (using (3.11)).

'1lm

perman (1987) that . M -
21 G — | < 1 Combining this with (3.13), we
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get

(n)
Z Qn(u) - X, — pu®
7 IQ, () — X))

< 3Cnén (3.14)

for all sufficiently large n almost surely. Suppose that Q € G, and ||Q—Qn(u)]| > Ci0dy

for some Cip > 0. Then, it follows from (3.10) and the first inequality in Lemma 3.3.4

QX" (n)
that lzl_l m nu

surely. If we choose Cig such that Cigb/ — Cy > 4C7, then in view of (3.14), we must

> (Crob' — Cy)nd, for all sufficiently large n almost

have ||Q,,(1) — Q,(u)|| < Cyoé, for all sufficiently large n almost surely. This implies
that for a constant C11 > 0, ||Q(u) — Qn(u)]| < C116y for all sufficiently large n almost

surely. This completes the proof. a

Proof of Theorem 3.2.1.2. Let H, denote the collection of points from Gy, which satisfy
1Q — Qn(u)|| < Ci16y. Let us define for Q € Z,,

L QX" Q-X7 E{_&ﬂ_ <n)}

QXM Qu(w)-X®
and An(Q) = E{IIQ X~ T1Qn(a) — XO]

} - Jn,Qn(u)(Q - Qn(u))

Using Assumption (B) in Section 3.2.1, it follows that for a constant Cya > 0,

(n) _xm
ET.(Q,X)I? < E”HQn(‘U* _Q-X

Qn(u) — XS"’H lQ-x™

Quw -X™ | Q-x® }“2
E{nqnm)—x(n)u} E{HQ X0

< C19]|Q - Qn(wi*.

+ 2

So, in view of Fact 3.3.1, there exists a constant Ci3 > 0 such that

< C135na (3.15)

Zrn(q X;)

QGHn

for all sufficiently large n almost surely. Using the third inequality in Lemma 3.3.4, there
9 .
exists a constant Cy4 > 0 such that {[An(Q)][ < C14/|Q — Qn(u)]|? for all appropriately
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large n. This along with (3.15) and the definitions of I', and A,(Q) yield

1 @ -x? Q-x{ }+ﬁﬂ<q>,

Q7 Q)= E;{an@ “x0 e X7
where maxqen, ||Rn(Q)|| = O(82) as n — oo almost surely. From Fact 3.3.3, it fol-
lows that the operator norm of J, g, (u) is uniformly bounded away from zero, and
[Jn,Q"(u)]_l is defined on the whole of Z, for all appropriately large n. It follows that
for a constant Ci5 > 0, maxqen, ||[Jn,Qn(u)]’1(ﬁ,n(Q))H < (4562 for all sufficiently
large n almost surely.

Hence, choosing Q = Q,(u), and utilizing inequality (3.13) in the proof of Proposi-

tion 3.3.5, we get

~ 1 < -1 Qn(u) — Xz(n) (n)}
u) — n = - Jn, niu n —u + R/n,

where |[R,|| = O(82) as n — oo almost surely. |

Proof of Theorem 3.2.1.3. Since U,, = n~15™"

(—Qnm)—x;")
i=1

ey — u(")) is a sum of
1Qn (0)—X;™)|

uniformly bounded, independent, zero mean random elements in the separable Hilbert
space &', we get that ||\/nU,|| is bounded in probability as n — oo in view of Fact

3.3.1. We will show that \/ﬁ{[Jn’Qn(u)]‘l(Un) =~ How] " (Un)} - 0 in probability

as n — oo. Note that for each C' > 0, every Q € X satisfying IQ|l < C and all

appropriately large n, jn,Q and J, q can be defined from X XX = Rand X — X,

by virtue of Assumption (B) in Section 3.2.1. Further, the bound obtained

in the second inequality in Lemma 3.3.4 actually holds (

respectively,

up to a constant multiple) for all
appropriately large n, any C > 0 and any Q, h, v e X, which satisfy ||Q|| < C. Thus,

n.Quu) — ] < B"{|Qn(u) - Q(u)|| for a constant B”

> 0 and all appropriately
large n. Since [|X(n) _

X[ >0asn = oo almost surely,

it follows from Assumption
(B) in Section 3.2.1 that [l

n,Qu) — JQ(U)H — 0asn = co. Since Qn(u) —» Q(u), we

now have ||Jnan(u) ~Jou)ll 2 0asn — oo, It follows from Propositio

n 2.1 in Cardot
et al. (2013) th

at the linear operator JQ(u) has a bounded inverse, which is defined on

the whole of X. Using the fact that IvV/RU,|| is bounded in probability as n - oo we
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get that

\/ﬁ H{Jn,Qn(u)}—l(Un) - {JQ(U)}-I(Un)”
V7 {dnaw ™ = o} HIHIU)I

13w} 1 Hn,qat = Jqall 1{n.Qa} I VAUl

0 asn — oo.

v A IA

The convergence in probability asserted above holds because the operator norm of
J1,Qn(u) is uniformly bounded away from zero by Fact 3.3.3. The asymptotic Gaussianity
of {JQ(U)}”I(\/ﬁUn) follows from the central limit theorem for a triangular array of
rowwise independent Hilbert space valued random elements (see, e.g., Corollary 7.8 in

Araujo and Giné (1980)). a
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Chapter 4

Data depth in infinite

dimensional spaces

The concept of data depth leads to a center-outward ordering of multivariate data, and
it has been effectively used for developing various data analytic tools. Various depth
functions for probability distributions in R? have been proposed in the literature (see,
e.g., Liu et al. (1999) and Zuo and Serfling (2000) for some extensive review). Sev-
eral desirable properties of depth functions have been introduced in Liu (1990) and
discussed subsequently in Zuo and Serfling (2000). These properties have been utilized
in developing various statistical procedures. Depth-weighted L-type location estimators
like trimmed means have been considered in Liu (1990), Donoho and Gasko (1992), Liu
et al. (1999), Fraiman and Muniz (2001), Mosler (2002) and Zuo (2006). Depth func-
tions have also been used to construct statistical classifiers (see, e.g., Jornsten (2004),
Ghosh and Chaudhuri (2005), Mosler and Hoberg (2006), Dutta and Ghosh (2012) and
Li et al. (2012)). Another useful application of depths is in constructing depth contours
(see, e.g., Donoho and Gasko (1992), He and Wang (1997) and Mosler (2002)), which
determine central and outlying regions of a probability distribution. These contours
and regions are useful in outlier detection.

We mentioned in Chapter 2 that the concept of median has been extended in several
ways for probability distributions in finite dimensional Euclidean spaces. In particular,

the median has been defined as the point in the sample space with the highest depth
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on, i.e., the deepest point with respect

1999); Small

value with respect to an appropriate depth functi

to that depth function. (see, e.g., Donoho and Gasko (1992); Liu et al. (
(1990); Zuo and Serfling (2000)).

Some of the depth functions like the half-space depth (HD) (see, e.g., Donoho and
Gasko (1992)), the projection depth (PD) (see, e.g., Zuo and Serfling (2000)) and the
spatial depth (SD) (see, e.g., Vardi and Zhang (2000) and Serfling (2002)), which were
originally defined for finite dimensional data, can have natural extensions into infinite
dimensional spaces as we shall see in subsequent sections. As discussed in the Intro-
duction, there have been some work on developing notions of depth for functional data
(see, e.g., Fraiman and Muniz (2001), Lépez-Pintado and Romo (2009), Lépez-Pintado
and Romo (2011)), and these have been used for developing various statistical methods
for such data by Lépez-Pintado and Romo (2006), Lépez-Pintado and Romo (2009) and
Sun and Genton (2011). In this chapter, we shall investigate the properties of some of
the depth functions for probability distributions in infinite dimensional spaces and the

associated deepest points.

4.1 Depths using linear projections

In this section, we shall consider depth functions that are defined using linear projections
of a random element X. We begin by recalling that in finite dimensional spaces, the

definitions of both of HD and PD involve distributions of linear projections of X. An

extension of HD into Banach spaces has been considered by Dutta et al. (2011). Consider

a Banach space X, the associated Borel o-field, a random element X € X and a fixed

point x € X. The HD of x with respect to the distribution of X is defined as H D(

Xx) =
nf{P(u(X-x)>0):ue x*}

,» where X* denotes the dual space of X. The PD of x
with respect to the distribution of X is defined as

PD(x) = {1+ sup M] -1
uex* O(u(X)) ,

where 4(-)

and o(-) are some measures of location and scatter of the distribution of
u(X).



67 Depths using linear projections

If X is a separable Hilbert space, X is isometrically isomorphic to I3, the space of
all square summable sequences. In that case, X = X* = Iy, and u(X) and u(x) in
the definitions of HD and PD given above are same as (u,X) and (u,x), respectively.
Here (-,-) denotes the usual inner product in ;. We shall first consider the space ls
equipped with its usual norm and the associated Borel o-field. Consider a random
sequence X = (X1, Xa,...) € I3 such that Y 52, E(X?) < oo, which implies E(X) =
(E(X1),E(X2),...) € la. Let us set Y7 = X; — E(X}), and denote by Y} the residual
of linear regression of X on (X1, Xa,...,Xg-1) for k£ > 2. In other words, for k > 2,
Y = Xi — Bop — Z;:ll BjxX;j, where Box + Zf;ll BjxX; is the linear regression of Xj
on (X1,Xs,...,Xg—1). Thus, Y = (Y1,Ya,...) is a sequence of uncorrelated random
variables with zero means. Further, since 72 = E(Y}?) < E(X7) for all k > 1, we have
Y ope 72 < oo, and hence, Y € I with probability one. We now state a theorem that
establishes a degeneracy result for both of HD and PD under appropriate conditions on
the distribution of Y.

Theorem 4.1.1. Let u denote the probability distribution of X in ly. Assume that
the residual sequence Y obtained from X is a-mizing with the mizing coefficients {ay}
satisfying S poq a,lc_l/ P < o0 for some p > 1. Further, assume that T, > 0 for allk > 1,
and supys E{(Yi/7x)*"} < 0o for some r > p. Then, HD(x) = PD(x) =0 for all x
in a subset of lo with p-measure one. Here HD(x) and PD(x) denote the half-space
and the projection depths of x with respect to p, respectively, and in the definition of
PD(x), we choose 6(-) and o(-) to be the mean and the standard deviation, respectively.

It is obvious that for any Gaussian probability measure f, the assumptions in the
preceding theorem hold. Recently, it has been shown by Dutta et al. (2011) that HD has
degenerate behaviour when the probability distribution of X = (X1, X2, ...) is such that
X1,X,,... are independent random variables satisfying suitable moment conditions.
Note that if X = (X1, X2, ...) is a sequence of independent random variables with zero
means, we have Y = X. In that case, if we choose p = 1 and r = 2, the moment
assumption in the above theorem implies that 3% | B{(Xk/ok)*}/k* < oo, which is

the condition assumed in Theorem 3 in Dutta et al. (2011). It is worth mentioning here

2 _ . s
that the above result is actually true whenever S (Yi/Tk)* = oo with probability

one (see the proof in Section 4.5). This, for instance, holds whenever Y is a sequence of
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independent nondegenerate random variables. The moment and the mixing assumptions
on Y stated in the theorem are only sufficient to ensure Y po;(Yi/7k)? = oo with
probability one, but by no means they are necessary.

The degeneracy of HD and PD stated in the previous theorem is not restricted to

separable Hilbert spaces only. Let us consider the space C][0, 1] of continuous functions
defined on [0, 1] along with its supremum norm and the associated Borel o-field. Recall
that the dual space of C[0,1] is the space of finite signed Borel measures on [0, 1]
equipped with its total variation norm. The following result shows the degeneracy of
HD and PD for a class of probability measures in C[0, 1].
Theorem 4.1.2. Consider a random element X in C[0,1] having a Gaussian distribu-
tion with a positive definite covariance kernel, and let u denote the distribution of X.
Then, HD(x) = PD(x) = 0 for all x in a subset of C[0,1] with p-measure one. Here
we denote the half-space and the projection depths of x with respect to p by HD(x) and
PD(x), respectively, and we choose 0(-) as the mean and o(-) as the standard deviation
in the definition of PD(x).

The degeneracy of HD stated in Theorems 4.1.1 and 4.1.2 can be interpreted as
follows. Let X be either 5 or C [0,1]. Then, for any x € X ;» we can choose a hyperplane
in X through x in such a way that the probability content of one of the half-spaces is
as small as we want. On the other hand, the degeneracy result about PD in the above
theorems implies that one can find an element u € X* so that the distance of u(x) from
the mean of u(X) relative to the standard deviation of u(X) will be as large as desired.
Such degenerate behaviour of HD and PD clearly implies that they are not suitable for

center-outward ordering of the points in X, and these depth functions cannot be used to
determine the central and the outlying regions for many

Gaussi

tions in X (X =, or C [0,1] as in the preceding paragraph)

. where the two classes differ
a shift in the location. Let X and Z denote random

only by

» where Z has the same distribution as X +c
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tions of X and Z, respectively. Similarly, let PDx and PDz be the projection depth
functions based on the distributions of X and Z, respectively. Then, under the assump-
tions of Theorem 4.1.1 or 4.1.2, it is easy to verify using the arguments in the proofs of
those theorems (see Section 4.5) that H Dx (w) = HDz(w) = PDx(w) = PDz(w) =0
for almost every realization w of X and Z. This implies that neither HD nor PD is
suitable for classification purpose in the space X for such class distributions.

It will be appropriate to note here that unlike what we have mentioned about sim-
plicial depth in the Introduction, it is easy to verify that the maximum values of HD
and PD for any symmetric probability distribution in X such that any linear function
has a continuous distribution are 1/2 (see, e.g., Dutta et al. (2011)) and 1, respectively,
and these maximum values are achieved at the center of symmetry of the probability
distribution. In other words, although HD and PD have degenerate behaviour in &', the
half-space median and the projection median remain well-defined for symmetric distri-
butions in X.

A modified version of Tukey depth, called the random Tukey depth (RTD), was pro-
posed in Cuesta-Albertos and Nieto-Reyes (2008) for probability distributions in l3. It
is defined as RT'D(x) = mini<j<y min{P({U;,X) < (Uy, x)), P({(U;,X) > (Uj,x))},
where Uj’s are N i.i.d. observations from some probability distribution in [l indepen-
dent of X, and the probability in the definition of RTD is conditional on them. It is
easy to see that the support of the distribution of RT D(X) is the whole of [0,1/2] for
Gaussian and many other distributions in Iz, where X denotes an independent copy
of X. However, Cuesta-Albertos and Nieto-Reyes (2008) mentioned some theoretical
and practical difficulties with RTD including the problem of choosing N and the dis-
tribution of U;’s. A depth function for probability distributions in Banach spaces was
introduced in Cuevas and Fraiman (2009), which is called Integrated dual depth (IDD).
It is defined as IDD(x) = [. Dy(u(x))Q(du), wherex € X, Q is a probability measure
in X*, and Dy is a depth function defined on R. Cuevas and Fraiman (2009) recom-
mended that one can choose a finite number of i.i.d. random elements Uy, Us, ..., Un
from a probability distribution in X, which will be independent of X and compute
IDD using N 7! ch\;l Dy, (Uk(x)). It can be easily shown that if Dy is any standard
depth function (e.g., HD, SD or simplicial depth) that maps R onto a nondegenerate
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interval, then for Gaussian and many other distributions of X in &', IDD(X) will have
a nondegenerate distribution with an appropriate interval as its support. However, like
RTD, there are no natural guidelines available in practice for choosing the probability

distribution @ in the dual space A* and the number N of the random directions Uj’s.

4.2 Depths based on coordinate random variables

In this section, we shall discuss depths that use the underlying coordinate system of the
sample space. Lépez-Pintado and Romo (2009, 2011) introduced two different notions
of data depth for functional data, and they called them band depth (BD) and half-
region depth (HRD). BD and HRD of any x = {zt}ie0,1) € C[0, 1] with respect to the
probability distribution of a random element X = {Xi}teo,1] € C[0,1] are defined as

J
BD(X) = ZP ('—Hfiani’t <z < _Hlla.X'Xi,t, Vte [0, 1]) and (41)
= i=l1,..., i=1,...,j
HRD(x) = min{P(X, <z, Vte [0,1)), P(X; > z;, Vt e 0,1])}, (4.2

respectively. Here X; = {Xi,t}te[0,1]7 t=1,2,...,J, denote independent copies of X.

Lépez-Pintado and Romo (2009, 2011) have used these depth functions for detecting the

central and the peripheral sample curves of some rea] datasets including daily temper-

from observati i
N observations in the clagg. The procedure was implemented to classify the well-

e Ramsay and Silverman (2005)). Lépez-Pintado and

Romo (2009) also Proposed a rank baged test for two-

population problems using BD,

and they used the Procedure to test the equality of cur

. ves obtained b i :
diameters along the y- Y plotting relative

ong the x-axis for two groups of
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counterparts. Recently, Sun and Genton (2011) used BD and a modified version of BD

to construct boxplots for functional data.

Lépez-Pintado and Romo (2009, 2011) defined finite dimensional versions of BD and
HRD as follows. For J independent copies X; = (Xi1, X2,y Xig)y i =1,2,...,J, of
X =(X1,Xas,...,Xg) and a fixed x = (21, 29,...,zq),

J

(x) ;P (félilélez,k <ap < lrg?%(jXLk, Vk= 1,2...,d) and
HRD(x) = min{P(X, <z, V k=1,2....d), P(Xp >z, V k=1,2...,d)},

respectively. The above definitions of BD and HRD in function spaces and finite di-
mensional Euclidean spaces lead to a natural definition of these depth functions in a
sequence space. For J i.i.d. copies X; = (X1, Xj2,...) of an infinite random sequence

X = (X1, Xs,...) and a fixed sequence x = (z1,z2,...), we can define

J
BD(x) = ;P <11£112] Xik <ar < frgl% Xik, VK> 1) and
HRD(x) = min{P(X < zr, ¥ k>1), P(Xi > 2k, ¥ k> 1)},

respectively. However, as the following theorem shows, such versions of BD and HRD

in sequence spaces will have degenerate behaviour for certain a-mixing sequences.

Theorem 4.2.1. Let X = (X1, Xa,...) be an a-miring sequence of random variables
and denote the distribution of X by p. Also, assume that the mizing coefficients {oy}
satisfy > po a,lc_l/zp < oo for some p > 1, and the X} ’s are nonatomic for each k > 1.
Then, BD(x) = HRD(x) = 0 for all x with p-measure one, where BD(x) and H RD(x)

denote the band and the half-region depths of x with respect to p, respectively.

The preceding theorem implies that for i.i.d. copies of a random sequence satisfying
appropriate a-mixing conditions, any given sample sequence will not lie in a band or
a half-region formed by the other sample sequences with probability one. A question
that now arises is whether a similar phenomenon holds for probability distributions in
function spaces like C[0,1]. Unfortunately, as the next theorem shows, BD and HRD

continue to exhibit degenerate behaviour for a well-known class of probability measures
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in C[0,1].

Theorem 4.2.2. Let X = {Xi}hepo,) be o Feller process having continuous sample
paths. Assume that for some zg € R, P(Xp = z0) = 1, and the distribution of X is
nonatomic and symmetric about o for each t € (0,1]. Then, BD(x) = HRD(x) =0
for all x in a set of p-measure one, where p denotes the probability distribution of X,

and the depth functions BD and HRD are obtained using pt-

A Feller process is a strong Markov process whose transition probability function
satisfies certain continuity properties. Important examples of Feller processes include
Brownian motions, Brownian bridges etc. Feller processes have been used for modelling
data in physical and biological sciences (see, e.g., Béttcher (2010) for a review and
related references). We refer to Revuz and Yor (1991) for an exposition on Feller
processes. The above theorem implies that for many well-known stochastic processes,
BD and HRD will be degenerate at zero. Consequently, BD and HRD will not be
suitable for depth-based statistical procedures like trimming, identification of central
and outlying data points, etc. for such distributions in C[0, 1] like HD and PD. Consider
next distinct Feller processes X and Y on C[0,1], and let BDx, BDy, HRDx and
HRDy denote the BD’s and the HRD’s obtained using the distributions of X and Y,
respectively. Then, if both of X and Y satisfy the conditions of Theorem 4.2.2, using
the arguments in the proofs of Lemma 4.5.1 and 4.5.2 (see Section 4.5), it follows that
BDx(z) = BDy(z) = HRDx(2z) = HRDvy(z) = 0 for almost every realization z of X
and Y. This implies that neither BD nor HRD will be able to discriminate between the
distributions of X and Y.

It was observed by Lépez-Pintado and Romo (2009, 2011) that both of BD and HRD

tend to take small values if the sample consists of irregular (nonsmooth) curves that

cross one another often. To overcome this problem, these authors proposed modified

versions of these depth functions, called modified band depth (MBD) and modified half-
region depth (MHRD), using the “proportion of time” a, sample curve spends inside a

band or a half-region, respectively. MBD and MHRD for probability distributions in

C[0.1]. as defined by Lépez-Pintado and Romo (2009, 2011), are given below. For a
fixed x = {lt}ce[o,q € C[0,1] and J i.id. copies X; = {X; t}te[o 1) of a random element
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X ={Xihep,y € C[0,1],

MBD(x) = ZE[ <{te 0,1] : min‘XuSa:Lg,max'Xit})] and

i=1,...,J 1=1,...,j
MHRD(x) = min{EA({te [0,1]:X; <z})], EN{t € [0,1]: X, > P},

where A(-) is the Lebesgue measure on [0,1]. Fraiman and Muniz (2001) defined
the integrated data depth (ID) for probability measures on C[0,1] as follows. For
x = {zt}hefp € C[0,1] and a random element X = {X;},ei01) € C[0,1], ID(x) =
fol Dy(z;)dt, where for every t, D; denotes a univariate depth function on the real line
obtained using the distribution of X;. Fraiman and Muniz (2001) used this depth func-
tion to construct trimmed means. These authors showed that the empirical ID is a
strongly and uniformly consistent estimator of its population counterpart. They used
ID to categorize extremal and central curves in the data consisting of 100 curves used to
build the NASDAQ 100 index. As observed in Lépez-Pintado and Romo (2009), if we
choose J = 2 in the definition of MBD, then MBD(x) = [ 2F,(z;)(1~ Fy(x.))dt, which
is ID(x) defined using the simplicial depth for each coordinate variable. Here F; denotes
the distribution of X; for each ¢ € [0, 1]. Indeed, we have the following equivalent repre-
sentations of MBD and MHRD by Fubini’s theorem. For any x = {x;}¢p,1) € C[0, 1],

J 1
mBDR) = SB[ 1 (,min, X <o < max Xu) di

=9 3" 1.7

.

_ i/l [1 - (@) - (1~ Fy(z))] dt and (4.3)

=2

MHRD(x) = min {E [ /0 10X, < a:t)dt} B [ /0 x> xt)dt”
~ min { /0 ' P(X, < z)dt, /0 PX, > mt)dt}. (4.4)

o,

We now discuss some useful properties of MBD, MHRD and ID. It is easy to
see from (4.3) that if X = {Xi}iefo) € C[0,1] is symmetrically distributed about
a = {a}epy € C[0,1], ie, X —a and a — X have the same distribution, then

MBD has a unique maximum at a. The same is true for ID provided that for all
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t € [0,1], the univariate depth D, in the definition of ID has a unique maximum
at a, (cf. the property “FD4center” in Mosler and Polyakova (2012, p. 10), Theo-
rems 3 and 4 in Liu (1990) and property “P2” in Zuo and Serfling (2000, p. 463)).
Consider next x = {Zt}ejo,1) € C[0,1] and y = {yt}sco,1) € C[0, 1] satisfying either
a <oy <yory < x <a for all ¢ € [0,1], i.e.,, y is farther away from a than
x. Then, MHRD(y) < MHRD(x) and MBD(y) < MBD(x). Further, if D;(z;) is
a decrcasing function of |x; — az| for all ¢t € [0,1], we have ID(y) < ID(x) (cf. the
“FD4pw Monotone” property in Mosler and Polyakova (2012, p. 9)). Consider next
any x = {z }cj0,1) € C[0,1] satisfying z: # 0 for all ¢ in a subset of [0, 1] with Lebesgue
measure one. It follows from representations (4.3) and (4.4) for MBD and MHRD that
both MBD(a + nx) and MHRD(a + nx) converge to zero as n — oo. Further, if
Di(s) = 0as |s — a;] — oo for all ¢ € [0, 1], then ID(a + nx) — 0 as n — oo. So,
all these depth functions tend to zero as one moves away from the center of symmetry
along suitable lines. This can be viewed as a weaker version of the “FD3” property in
Mosler and Polyakova, (2012) (see also Theorem 1 in Liu (1990) and property “P4” in
Zuo and Serfling (2000, p. 464)).

The following theorem shows that MBD, MHRD and ID have nondegenerate dis-
tributions with adequate spread for a class of probability distributions in C [0,1] that
includes many popular stochastic models. The properties of these depth functions dis-

cussed in the previous paragraph and the theorem stated below show that these depth

functions are suitable choices for a center-outward ordering of elements of [0, 1] with

respect to the distributions of a large class of stochastic processes, and can be used

for constructing central and outlying regions, trimmed estimators, and also for outlier

Moreover, due to the continuity of ID and MBD, and the fact that they
attain their unique maximum at the center of s

detection.

ymmetry of any probability distribution

¥

both of these depth functions will be able to
with distinet centers of symmetry.

Note that in view of (4.3) and (4.4), both of MBD and MHRD are invariant under
coordinatewise strictly monotone transformations. This Property also holds for ID if

are i i
nvariant under sych transformations as well. For the

next theorem, in the definition of ID, we shal assume Dy(-) = y(F, (+)) for all ¢ [0,1]
= t-)) tor a € |u, 1,
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where 9 is a bounded continuous positive function satisfying ¥%(0+) = ¥(1—) = 0, and
F; denotes the distribution of Y;.

Theorem 4.2.3. Consider the process X = {Xihepy = {9t Yi)beepo,y, where
{Yitiepy € C[0,1] is a fractional Brownian motion starting at some yo € R. As-
sume that the function g : [0,1] x R is continuous, and g(t,.) is strictly increasing with
g(t,s) = 00 as s — oo for each t € [0,1]. Then the following hold.

(a) The depth functions MBD(x), MHRD(x) and ID(x) take all values in (0, A/],
(0,1/2] and ¥((0,1)), respectively, as x varies in C[0,1], where MBD, MHRD and ID
are obtained using the distribution of X, and Ay =J — 2+ 277 for any J > 2 with J
as in the definitions of BD and MBD.

(b) The supports of the distributions of MBD(X), MHRD(X) and ID(X) are [0, Aj],
[0,1/2] and the closure of ¥((0,1)), respectively. Here X denotes an independent copy
of X.

(c) The conclusions in (a) and (b) above also hold if {Y;}+c(0,1) 95 @ fractional Brownian
bridge starting at yo € R.

Note that since v is a continuous nonconstant function, the support of the distri-
bution of ID (i) is actually a closed nondegenerate interval. Here, by the support of a
probability distribution in any metric space, we mean the smallest closed set with prob-
ability one. Let us also observe that in the above theorem, the depths are computed
based on the entire process X = {X; }4¢[o,1] starting from time ¢ = 0. But in practice, it
might very often be the case that we observe the process from some time point tg > 0,
and then the depths are to be computed based on the observed path {X;}iefso,1])- Even

in that case, the conclusions of the above theorem hold (see Remark 4.5.4 in Section

4.5).

4.2.1 The deepest point

In this subsection, we study the behaviour of the deepest point based on the depths
discussed in the previous subsection. We mentioned earlier that in spite of the degen-
eracy of HD and PD, the corresponding medians are well-defined. However, for many
commonly used stochastic models for functional data including those in Theorem 4.2.2,

there is no meaningful notion of the deepest point associated with BD and HRD.
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Theorem 4.2.4. Let X be a Feller process in C0,1] starting at ag € R, which 1is

symmetric about a = {at}iepq) € C[0,1]; i-e., the distribution of X —a is same as that of
a—X. Also, assume that X has a continuous distribution for all t € (0,1] and any finite
dimensional marginal (X, X1z, .- -, Xty) of X has a positive density in a neighbourhood
of its center of symmetry (ay,at, - - - ,at,), where 0 < t1 < t2 < ... <lg < 1. Then,

BD(x) =0 for all x € C[0,1]. Moreover, HRD(a) =0.

Since any reasonable depth function should assign maximum value to the point of
symmetry of a distribution, and it should preferably be the unique maximizer, it follows
from the above theorem that neither of these two depth functions yields any useful notion
of deepest point for such stochastic processes. It will be appropriate to note here that
Kuelbs and Zinn (2012) recently proved that the half-region depth vanishes at every
point in the space of sample functions for a large class of stochastic processes, which
include processes in C|[0, 1].

Henceforth, we shall assume that for each ¢ € [0,1], the univariate depths D,’s in the
definition of ID is maximized at the median of X, if X, has a continuous distribution.
The next result gives a description of points, which maximize the depth functions MBD,

MHRD and ID. For this, let us write m = {mt}se[0,11, where m; denotes the median of
Xy for t € [0,1].

Theorem 4.2.5. Let X be a random element in C[0,1] such that X; has a continuous

distribution, which is strictly increasing in a neighbourhood of my for each t € [0,1].

Then, m is a mazimizer of MBD, MHRD and ID. Any m*
t € [0,1]

which equals m for all

except on a set of Lebesque measure zero, is also a mazimizer of MBD and
ID. Moreo = o
ver, any m** = {m} }te[

e 1
0,1] Satisfying fo Fy(mf*)dt = 1/2 is a mazimizer of
MHRD.

It is clear that m**, which satisfies fo1 Fy(m{*)dt = 1/2, may differ from m on a

Set f (6] 1. Vv
/ . ok

let us COIlSider a Standard Brownian rnOtiOIl X = {Xt}t [O 1] Deﬁne the funct. f -
. €[0,1}- 0on
{ft}!E[O.l]‘ where ft is the at percentile of ‘(t fOI t e [O 1/2) and f is the (1 a)t
bl Y t

percentile of Xy for t € [1/2,1]. can be as small or as large as we like

Here a € (0,1)



77 Depths based on coordinate random variables

Then, any such f is a maximizer of MHRD.

Let F; denote the empirical distribution of X; for each ¢ & [0, 1]. Then, the empirical
MBD of x = {z };¢(0,1] is given by

é | - B -0 Rty ai

The empirical MHRD of x is given by min { fol F‘t(mt)dt, 1— fol ﬁt(xr—)dt}. Also, the
empirical ID of x is given by fol ﬁt(zt)dt, where f)t’s denote the empirical versions of
the coordinatewise depths D;’s. Let us denote the empirical coordinatewise median
by m = {M}sc(0,1], Where /i is the median of the empirical distribution of X, for
all t € [0,1]. Here, we use the conventional definition of median, i.e., if n is even,
My = (X(nj2),e + X(n/241),t)/2, and if n is odd, My = X((n11)/2)t- We can assume that
Bt(zt) is maximized at m, for all £ € [0, 1], which is true for almost any depth func-
tion for univariate data. It can be verified that the empirical coordinatewise median
m = {M}e[0,1) is a maximizer of the empirical versions of all of the three depth func-
tions mentioned above if the distribution of X; is continuous for all ¢ € [0,1]. Further,
any m*, which differ from m only on a Lebesgue null set is also a maximizer of the em-
pirical MBD and the empirical ID. Also, there is no unique maximizer of the empirical
MHRD, and any m** = {m;* }scjo,1) satisfying fol Fy(m*)dt = 1/2 will be a maximizer
of the empirical MHRD like its population counterpart.

It is easy to see that the empirical coordinatewise median is equivariant under any
coordinatewise monotone transformation given by x — U(x), where x = {z:}ejo,1)
W(x) = {4(1) }se[0.1], and ¥ is a monotone function for each ¢ € [0,1]. These include
location shifts x — x -+ ¢, where ¢ € C[0, 1], as well as coordinatewise scale transforma-
tions x — x1, where x1 = {@:@t}1e0,1) and a¢ > 0 for each t € [0, 1].

Assume that fol | X;|dt < co with probability 1. This assumption holds if with prob-
ability one, the process X has continuous paths (e.g., the standard Brownian motion on
[0,1]). Then, it can be shown that /1 is a minimizer of the function fol S | X — meldt
over x € C[0,1], which satisfies fol |z¢|dt < oo. Here Xi = {Xit}iejo are the sample

observations. In other words, i is an empirical spatial median of the distribution of
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X in the Banach space of real-valued absolutely integrable functions defined on {0, 1].
Hence, from Theorem 2.10 in Kemperman (1987), we get that m has 50% breakdown
point.

The following result asserts the uniform strong consistency of the empirical coordi-
natewise median. Here the uniformity is over a subset of I the size of which grows with

the sample size at an appropriate rate.

Fact 4.2.1.1. Suppose that Xy has a density f, in o neighbourhood of my for each
t € [0,1). Assume that for some co,no > 0, we have infjz_m, |<no ft (@) > co for all
1< k<d, anddy > 1. Then, if log(dn) = o(n) as n — 00, we have sup <<y, Mty —

my,| = 0 as n — oo almost surely.

The proof of the above result can be obtained using the arguments in the proof of
Corollary 6 in Kosorok and Ma (2007). These authors considered the coordinatewise
median for high dimensional data when the dimension increases with the sample size.
Using sharp uniform bounds on the marginal empirical processes corresponding to the
coordinate variables, they obtained the rate of convergence of m under the same set of
assumptions used in Fact 4.2.1.1 (see Corollary 6 in Kosorok and Ma (2007)).

In practice, the process X is observed at d, grid points in [0,1]. We can then
construct a functional estimator of m from m as follows. For any point ¢t € [0,1],
which is not a grid point, we can define Mm, by the average of the empirical medians
corresponding to its k£ nearest grid points. Here k£ > 1 is a fixed integer. In that case, the
uniform consistency of this functional estimator over the whole of [0, 1] can be derived
from Fact 4.2.1.1. For this derivation, let us assume that the grid points become dense
in [0,1] as n — oo. In other words, for each ¢ € [0, 1], any fixed neighbourhood of ¢ will
contain infinitely many grid points as n — co. Let us also assume that the population
decpest point m € C[0,1]. Then, under the conditions assumed in Fact 4.2.1.1, it is

casy to show that sup;c(o 41 |7y — my| — 0 as n — od almost surely.

4.3 Spatial depth in infinite dimensional spaces

In this section, we shall consider an extension of the notion of spatial depth from R? into

infinite dimensional spaces. Spatial depth of x € R? with respect to the probability dis-
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tribution of a random vector X € R¢ is defined as SD(x) =1—||E{(x~X)/|lx—=X||}]]
(see, e.g., Vardi and Zhang (2000) and Serfling (2002)). It has been widely used for
various statistical procedures including clustering and classification (see, e.g., Jornsten
(2004) and Ghosh and Chaudhuri (2005)), construction of depth-based central and out-
lying regions and depth-based trimming (see Serfling (2006)). We can define the spatial
depth at x in any smooth Banach space X with respect to the probability distribution
of a random element X € X as SD(x) = 1 — ||¥«||, and its empirical version is given by
§B(x) =1- l|€lxl| Here, Uy and Uy are the spatial distribution at x and its empirical
version as defined in Chapter 3.

Let us also mention here that an alternative definition of spatial depth in R¢ was
considered by the authors of Vardi and Zhang (2000). These authors defined the spa-
tial depth of x € R9 relative to the distribution of a random element X € R? as
1 — inf{w > 0 : spatial median of (wéx + F)/(1 + w) = x}. Here dx denotes the point
mass at x, and F denotes the distribution of X. It can be shown using the character-
ization of spatial median given in Theorem 4.14 in Kemperman (1987) that one gets
1 — max{0, [1 — SD(x) — P(X = x)]} as the depth of x according to this definition. So,
this definition of spatial depth coincides with the definition in the previous paragraph
if F is nonatomic.

Spatial depth function inherits many of its interesting properties from finite dimen-
sions. The spatial distribution function ¥, possesses an invariance property under the
class of affine transformations L : X — X of the form L(x) = cA(x) + a, where ¢ > 0,
ac X and A: X — X is a linear surjective isometry. By the definition of Giteaux
derivative and using the isometry of A, we have Srx)— L(x)(h) = SA(x)—A(X) (A(h)) =
Sy_x(h') = Sx—X(A—l(h)) = (A’l)*(Sx_x(h)) for any x,h € X. Here, h = A(h),
and (A~1)* : X* — X* denotes the adjoint of A™'. Thus, if ¥y is the spatial

distribution at L(x) with respect to the probability distribution of L(X), we have

i i istributi t ith respect to the
Vi) = (A‘l)*(\le), where U, is the spatial distribution at x W p

probability distribution of X. This implies that the spatial depth is invariant under

such affine transformations in the sense that the spatial depth at L(x) with respect to
the distribution of L(X) is same as the spatial depth at x with respect to the distribu-

tion of X.
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It follows from Remark 3.5 and Theorems 2.17 and 4.14 in Kemperman (1987) that
if X is a strictly convex Banach space, and the distribution of X is nonatomic and not
entirely contained on a line in X, then SD(x) has a unique maximizer at the spatial
median (say, m) of X, and SD(m) = 1 (cf. the property “FD4center” in Mosler and
Polyakova (2012, p. 10), Theorems 3 and 4 in Liu (1990) and property “P2” in Zuo
and Serfling (2000, p. 463)). It follows from Theorem 3.2.1 in Chapter 3 that if the
norm in X is Fréchet differentiable and the distribution of X is nonatomic, then SD(x)
is a continuous function in x. Moreover, in such cases, SD(x + ny) =+ 0 as n — ©
for any x,y € X with y # 0 (cf. the “FD3” property in Mosler and Polyakova (2012),
Theorem 1 in Liu (1990) and property “P4” in Zuo and Serfling (2000, p. 464)). This
implies that the spatial depth function vanishes at infinity along any ray through any
point in X. The above properties of SD(x) are among the desirable properties of any
statistical depth function listed in Liu (1990) and Zuo and Serfling (2000) for the finite
dimensional setting.

A natural question that now arises is whether SD suffers from degeneracy similar
to what was observed in the case of some of the depth functions discussed earlier or
whether the distribution of SD is well spread out. It follows from Theorem 3.2.1 in
Chapter 3 that if X is a reflexive Banach space and the distribution of X is nonatomic,
then SD(x) takes all values in (0,1] as x varies over X. As the next theorem shows,
the distribution of SD is actually supported on the entire unit interval for a large class

of probability measures in separable Hilbert spaces including Gaussian probabilities.

Theorem 4.3.1. Let X be a separable Hilbert space and consider a random element
— oo r .
X = 307, Xidy, where {9k }k>1 is an orthonormal basis of X. Assume that X has

a nonatomic probability distribution p with 2 he1 E(X}) < 00, and the support of the

conditional distribution of (X1, Xs,. .. » Xaq) given (Xg41, Xgya,...) is the whole of R?

for cach d > 1. Then, the function SD(x) defined using the distribution 1 takes all the

l - ~ - . ~
values in (0,1] as x varies in X. Further, if X denotes an independent copy of X, the

support of the distribution of SD()~C) will be the whole of [0 1].

It is easy to show that if SD(x) is continuous in x
]

then SD(x) takes all values in
(0.w] C (0, 1]

as X varies over a closed subspace W of X » where w = sup, ), SD(x)
N .
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In particular, w = 1 if W contains the spatial median of X. It can be shown that
the support of a Gaussian distribution in a separable Banach space is the closure of
the translation of a subspace of X by the mean (which is also the spatial median) of
that distribution. So, if the norm in that space is Fréchet differentiable, then SD(x)
is continuous in x and it takes all values in (0, 1] as x varies over the support of that
distribution. The properties of the spatial depth discussed above imply that it induces
a meaningful center-outward ordering of the points in these spaces, and can be used to
develop depth-based statistical procedures for data from such distributions.

Let us observe that the definition of SD using Gateaux derivatives is not applicable
for probability distributions in the space C|0,1], where most of the other functional
depths like BD, MBD, HRD, MHRD and ID are defined. This is because the norm
in C[0, 1] is not Gateaux differentiable everywhere (see, e.g., (Fabian et al., 2001, Ex.
8.28, p. 267)). However, since C[0,1] C L[0, 1], for any probability distribution on
C[0,1], SD can be defined in the same way as in the case of the separable Hilbert
space Ly[0,1]. Thus, for a random element X € C[0,1], if the sequence (X1, X3, ...)
obtained from the orthogonal decomposition of X in Lg[0,1] satisfies the conditions
of Theorem 4.3.1, then the support of the distribution of SD()Ni) will be the whole of
[0,1]. In particular, for any Gaussian process having a continuous mean function and
a continuous positive definite covariance kernel, we can have (X1, X2,...) to be the
coefficients of the Karhunen-Lo¢ve expansion of X, which will then be a sequence of
independent Gaussian random variables, and consequently, the conditions of Theorem
4.3.1 will hold. Those assumptions, however, need not hold when X is a function of some
Gaussian process in C|0, 1] like what we have considered in Theorem 4.2.3. Indeed, even
if X admits a Karhunen-Logve type expansion in such a case, the sequence of coefficients
conditions of Theorem 4.3.1. However, as the next theorem shows,

need not satisfy the

the distribution of SD has full support on the unit interval in some of these situations
as well.

Theorem 4.3.2. Consider the process X = {Xttiep = {g(t, Y1) }reo,) as in Theorem

4.2.8. Then, the function SD(x) defined using the distribution of X takes all values in

(0,1) as x varies in C[0,1]. Moreover, the support of the distribution of SD(X) is the
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whole of [0,1), where X is an independent copy of X.

It follows from arguments that are very similar to those in Remark 4.5.4 in Section
1.5 that the above result holds even if SD is computed based on the process { Xt }te[zo,1),
where tg > 0. The properties of SD stated at the beginning of this section along
with the results in Theorems 4.3.1 and 4.3.2 imply that like ID, MBD and MHRD,
SD can also be used for various depth-based statistical procedures for data in infinite
dimensional spaces. The spatial depth function can also be used to discriminate between
two probability measures in a separable Hilbert space or C|0, 1]. For instance, for any
two nonatomic probability measures having distinct and unique spatial medians, the
associated spatial depth functions will be continuous, each having a unique maximum at
the corresponding spatial median. In that case, spatial depth will be able to distinguish
between the two distributions.

So far in this section, we showed that like MBD, MHRD and ID, SD also takes all
values in a nondegenerate interval and its distribution is well spread out for a large
class of distributions. We next study the asymptotic properties of the empirical spatial
depth in smooth Banach spaces. The uniform consistency of the empirical ID, MBD
and MHRD have already been studied by Fraiman and Munijz (2001), Lépez-Pintado
and Romo (2009) and Lépez-Pintado and Romo (2011). Further, under the conditions
of Theorem 4.2.2, when BD and HRD are degenerate, the uniform consistency of their
cmpirical versions is trivially true. This follows from Theorem 4 in Lépez-Pintado and

Romo (2009) and Theorem 3 in Lépez-Pintado and Romo (2011).

Theorem 4.3.3. Suppose that the assumptions of part (a) of Theorem 3.1.2 in Chapter

3 hold. SD
wld. Then, sup, ¢ |SD(x) —SD(x)| = 0 as n — 0o almost surely for every compact

t - ;
set K C X. Suppose that the norm function in X* s Fréchet differentiable, and X* is

a separable and type 2 Banach space. Then, \/ﬁ(gl\)(
Su(W) i U £ 0. If Wy = 0, R(ED(x) — SD(x))

W and V are zero mean Gaussian random elements

X) — SD(x)) converges weakly to

converges weakly to —||V||. Here,

m X*.
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4.3.1 The deepest point

In Chapter 3, we studied the spatial median and its properties for arbitrary proba-
bility measures (see Theorem 3.2.1 and the discussion following it). In particular, the
spatial median is unique if the underlying Banach space X is strictly convex, and the
distribution of X is not entirely supported on a line in X. Further, if the distribution
of X is nonatomic, the unique spatial median is the only point in X, which satisfies
E(Sx-x) = 0. This implies that the spatial depth of the spatial median is 1. Equiva-
lently, the spatial median is the deepest point associated with the spatial depth. When
we have a sample from a probability distribution in X, it can be verified using Theorem
4.14 in Kemperman (1987) that the sample spatial depth of the empirical spatial median
m is 1 whenever it is not one of the data points. In other words, in such situations,
the empirical spatial median m is the unique maximizer of the sample spatial depth.
It is easy to see that the empirical spatial median is equivariant under location shifts
and homogeneous scale transformations x +— ax, where a > 0. Moreover, it is also
equivariant under any linear isometry. Further, it is known that the empirical spatial
median has 50% breakdown point (see Theorem 2.10 in Kemperman (1987)). It has
been shown in Chakraborty and Chaudhuri (2014a) that under certain conditions, the
empirical spatial median is consistent in any separable Hilbert space A. Note that in
Chapter 3, we studied an estimator of the spatial median based on finite dimensional
approximations, and it was proved that this estimator is consistent in a class of Banach

spaces including Hilbert spaces (see Theorem 3.2.1.1).

4.4 Demonstration using real and simulated data

In the preceding sections, we investigated the behaviour of several depth functions

in infinite dimensional spaces. The results derived in those sections are all about

the population versions of different depth functions. In this section, we try to in-

vestigate to what extent those results are reflected in the empirical versions of the

corresponding depth functions computed using some simulated and real datasets.

First. we shall consider some simulated and real sequence data. The simulated
)

i ian random vec-
dataset consists of 50 i.i.d. observations from a zero mean Gaussian
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tor X = (X1, Xa, ..., Xq) with Cov(Xy, Xi) = p=lk=1l /(k1)2, where r = 0.1, k,l =
1.2.....d, and d = 4000. The real dataset that is considered next is obtained from
http://datam.i2r.a-star.edu. sg/datasets/krbd/ColonTumor/ColonTumor .zip,
and it contains expressions of d = 2000 genes in tumor tissue biopsies corresponding to
10 colon tumor patients and 22 normal samples of colon tissue. For both these datasets,
we can view cach sample point as the first d coordinates of an infinite sequence.

In all our samples, since the dimension is much larger than the sample size, the
empirical versions of both of HD and PD turn out to be zero (see Figure 4.1). This is a
consequence of the fact that when the dimension is larger than the sample size, and no
sample point lies in the subspace spanned by the remaining sample points, the HD and
the PD of any data point with respect to the empirical distribution of the remaining
data points is zero (see, e.g., remarks at the beginning of Section 4 in Dutta et al.
(2011)). It is also observed from the dotplots in Figure 4.1 that empirical BD and HRD
arc both degenerate at zero for the two datasets. However, the distribution of empirical
SD is well spread out in the corresponding dotplots in Figure 4.1.

For the colon data, we have prepared another dotplot (see Fig. 4.2), which shows
the difference between the two empirical SD values for each data point, where one
depth value is obtained with respect to the empirical distribution of the tumor tissue
sample, and the other one is obtained using that of the normal sample. The value of

this difference for a data point corresponding to the tumor tissue is plotted in the panel

. TR .
with heading “Tumor tissue”, where all the values are positive. This implies that each

data point in the sample of tumor tissue has higher depth value with respect to the
empirical distribution of the tumor tissue sample than its depth value with respect to
the empirical distribution of the norma] tissue sample. On the other hand, a data point

co i i i
rresponding to the normal tissue is plotted in the panel with heading “Normal tissue”,

where all th
e values, except only two, are negative. In other words, except for those

two cases, each int i
data point in the sample of normal tissue has higher depth value with

respect to the i
normal tissue sample. Thus, SD adequately discriminates between the

t 30 3 i
wo samples, and maximum depth or other depth-based classifiers
Chaudhuri (2005) and Lj et al. (

this dataset,

(see, e.g., Ghosh and
2012)) constructed using SD will yield good results for
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Figure 4.1: Dotplots of the empirical depth values for the simulated datasets and the
colon data.
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Figure 4.2: Dotplots of the empirical depth differences based on the spatial depth for

the colon data.

We shall next consider some simulated and real functional data. Each of the

three simulated datasets consists of 50 observations from (i) a standard Brownian

motion on [0,1], (ii) a zero mean fractional Brownian motion on [0,1] with covari-
)

2H
ance function K(t,s) = 1/ + s
— 0.75, and (iil) a geometric Brownian motion defined as

— |t — s|?H], where t,s € [0,1], and we

choose the Hurst index H
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Figure 4.3: Dotplots of the empirical depth values for some simulated datasets.

X, = exp((r — a?/2)t + oB,), wheret € [0,1] and r = o = 0.5. Here { Bt }teo,1) denotes

the standard Brownian motion on [0,1]. For all three simulated datasets, the sample

functions were observed at d = 2000 equispaced points in (0, 1). We have also consid-

ered two real datasets, the first one being the lip movement data, which is available at
wWw . stats.ox.ac.uk/wsilverma/fdacasebook/LipPos.dat and contains 32 sample

observations on the movement of the lower lip. The curves are the trajectories traced

by the lower lip while pronouncing the word “bob”.

The measurements are taken at
d =

501 time points in a time interval of 700 milliseconds. The second real dataset is

the growth acceleration dataset derived from the well-known Berkeley growth data (see

Ramsay and Silverman (2005)), which contains two subclasses, n

amely, the boys and
the girls.

Height i
eights of 39 boys and 54 girls were measured at 31 time points between ages
1 and 18 years. The growth curves are obtained throu

. ) gh monotone spline smoothing
available in the R package “fda”

| » and these are recorded at d = 101 equispaced ages
in the interval [1,18].

We derived the acceleration curves from the smoothed growth
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curves. For these functional datasets, we calculated MBD by taking J = 2 as suggested
by Lépez-Pintado and Romo (2009), and Dy in the definition of ID was taken to be SD

for each t, which is same as the depth function used by Fraiman and Muniz (2001).
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Figure 4.4: Dotplots of the empirical depth values for the lip movement data and the

growth acceleration data.

As shown in the dotplots in Figures 4.3 and 4.4, for all of the above simulated and

real data, the distributions of empirical ID, MBD, MHRD and SD are well spread out.

Empirical BD and HRD are both degenerate at zero for the Brownian motion and the

fractional Brownian motion (see Figure 4.3). For the geometric Brownian motion, the

maximum value of empirical BD was 0.024, with its median = 0 and the third quartile
— 0.004. whereas the maximum value of empirical HRD was 0.020 with its third quartile

= 0 (see Figure 4.3). For the lip movement data, the empirical HRD is degenerate at

zero. while the maximum value of empirical BD is 0.006 with its third quartile = 0

). For the growth acceleration data, the HRD again turns out to be

(see Figure 4.4
kes a maximum value of 0.004 for boys and 0.008 for

degenerate at zero, while BD ta
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girls, and the third quartile for BD = 0 for boys as well as girls (see Figure 4.4).
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g;gt:re 4.5: Dotplots of the empirical depth differences for the growth accceleration

For the growth acceleration data, Figure 4.5 shows the dotplots for the differences
b .
etween the two depth values with respect to the empirical distributions of the boys and

the gi

e girls based on SD, MHRD, MBD and ID. The value of this difference for a data point
corresponding to a boy (respectively, a girl) is plotted in the panel with heading “Boys”
(respectively, “Girls”). For SD, MBD and ID, most of the data points corresponding

to the boys have higher depth values with respect to the empirical distribution of the
boys than with respect to the empirical distribution of the girls. On the other hand,
most of the'data points corresponding to the girls have higher depth values with respect
to the empirical distribution of the girls. This implies that each of ID, MBD and SD

adequately discrimi
q y discriminates between the two samples, and depth-based classifiers (

Ghosh and Chaudhur; (2005) see, e.g.,

and Li et al. (2012)) constructed using ID, MBD or SD

will perform i
well for this dataset. However, the plot corresponding to MHRD shows
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that a large number of data points in the sample of boys have higher depth values with
respect to the empirical distribution of the girls, and almost half of the data points in
the sample of girls have higher depth values with respect to the empirical distribution
of the boys. This indicates that MHRD does not discriminate well between the two

samples.

4.4.1 Demonstration of the empirical deepest point

We now demonstrate the empirical deepest points using some simulated and real
datasets. For both the simulated and the real datasets, the empirical spatial median
is computed using the finite dimensional approximation method studied in Chapter 3
by considering the data as a random sample in an appropriate separable Hilbert space.
Each of the simulated datasets that we consider has 25 observations. One dataset is
generated from the standard Brownian motion in [0, 1], and the other two datasets are
generated from fractional Brownian motions in [0, 1] with Hurst indices H = 0.3 and
H = 0.7. The sample curves are observed at 1000 equispaced points in [0,1]. Figure 4.6
shows the plots of the sample curves along with the empirical coordinatewise medians
(the blue curves) and the empirical spatial medians (the red curves) for these three
distributions. It is observed from the plots that both of the empirical medians are close
to the zero function, which is the spatial median as well as the coordinatewise median

for all three distributions.

The real data considered here is the growth acceleration dataset, which was also

used earlier in this section. Figure 4.7 shows the plots of the growth acceleration curves

of the boys and the girls along with the empirical coordinatewise medians (the blue

curves) and the empirical spatial medians (the red curves). It is seen from Figure 4.7

that both of the empirical medians are close to the central curves in each dataset.

4.4.2 DD-plot in infinite dimensional spaces

tic tool for checking whether

depth plot (DD-

In the finite dimensional setup, an exploratory data analy

m the same distribution or not is the depth-

two given samples arise fro
t is a scatterplot of the depth values of the

plot) (see Liu et al. (1999)). A DD-plo
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Fractional Brownian motion H=0.3

data points in the pooled sample with respect to the empirical distributions of the two
s:mples. It can be used to detect differences in location, scale etc. let us now consider
Z e problem of constructing DD-plots for data in infinite dimensional spaces. It follows
;;Iir;hszr;e zf the earlier results that the half-space depth and the simplicial depth,
. :i tee:l used. by the authors of Liu et al. (1999) for constructing DD-plots for

1mensional spaces, cannot be used for constructing DD-plots in infinite

dimensional spaces.

We have prepared
pared DD-plots for some real and simulated functional data using SD
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Demonstration using real and simulated data

Acceleration curves for boys

Acceleration curves for girls

Acceleration
Acceleration

Figure 4.7: Plots of the acceleration curves for boys and girls along with the empirical
coordinatewise medians and the empirical spatial medians.
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Figure 4.8: DD-plots for the simulated datasets and the spectrometric data using SD.

ID. MBD and MHRD (see Figures 4.8, 4.9, 4.10 and 4.11, respectively). The simulated

. . i ian
datasets are samples from the standard Brownian motion and the fractional Brown

motion with H = 0.9. Both of these processes have Karhunen-Loéve expansions In



92

Chapter 4: Data depth in infinite dimensional spaces
Chapter = Lare ©F 7

1.0
|
1.0

00 02 04 06 08
00 02 04 06 08

1.0
1.0

00 02 04 06 08
00 02 04 06 08

B

- N — YT
00 02 0.4 06 08 1.0

Figure 4.9: DD-plots for the simulated datasets and the spectrometric data using ID.

L[0,1]. Each simulated data consists of n = 50 samples, and the sample curves are ob-
served at 250 equispaced points on [0, 1]. The real data is the Spectrometry data used in
Chapter 3, which can be viewed as a random sample from a probability distribution in
L2[850, 1050]. Since the sample spaces for the simulated and the real datasets considered
here are Hilbert spaces, ¥« in the definition of SD simplifies to E{(x — X)/||x — X}
The norm in this expression is computed as the norm of the Euclidean space whose
dimension is the number of values of the argument over which the sample functions in
the dataset are observed.

The plots in the first row in Figure 4.8 are the DD-plots using SD for the two sam-
ples from the standard Brownian motion and the fractional Brownian motion. The first
plot in the second row is the DD-plot for the two samples from the standard Brown-
lan motion and the fractional Brownian motion. The axes of the DD-plots in the first
::n;::eij;l:n::ntljozzljI;n\:tf: f\:;:i respect to t'he emp:u‘ical distributions of the

onal Brownian motion, respectively. In each

of those plots, th ’
plots, the black o’s and the red x’s represent the sample observations of the
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Figure 4.10: DD-plots for the simulated datasets and the spectfometric data using
MBD.

two samples. The vertical and the horizontal axis of the first DD-plot in the second row
correspond to the depth values with respect to the empirical distributions of the stan-
dard Brownian motion and the fractional Brownian motion, respectively, and the black
o’s and the red x’s represent the samples from these two distributions, respectively. In
the DD-plots in the first row, the black o’s and the red x’s are clustered around the 45°
line through the origin. So, the observations from each of the two samples have similar
depth values with respect to both the samples. This indicates that there is not much
difference between the two underlying populations in each case. In the first DD-plot in
the second row of Figure 4.8, all the black o’s and the red x’s lie above the 45° line
through the origin in the shape of an arch. So, all the observations in the sample from
the fractional Brownian motion have higher depth values with respect to the empirical
distribution of the sample from the standard Brownian motion. This indicates that the
former population has less spread than the latter one. The horizontal and the verti-

cal axes of the DD-plot for the spectrometric data (see the second plot in the second



Chapter 4: Data depth in infinite dimensional spaces 94

02 03 04 05
02 03 04 05

00 041

00 01

02 03 04 05
02 03 04 05

00 01
0.0 0.1

S el e B

. - e
00 01 02 03 04 05

f\‘/;%{u}g% 4.11: DD-plots for the simulated datasets and the spectrometric data using

row in Figure 4.8) correspond to the spatial depth values with respect to the empirical
distribution of the classes with fat content < 20% and > 20%, respectively, and the
black o's and the red x’s represent the samples from these two classes, respectively.
It is seen that the observations from both the samples are almost evenly spread out
below and above the 45° line through the origin in the shape of a triangle. One side
of the triangle is formed by the line joining the points with approximate coordinates
(0.4,0.8) and (0.8,0.2), and the vertex opposite to that side is the origin. This type of
DD-plot indicates a difference in location between the two samples. The points around
the aforementioned side of the triangle lie in the overlapping region of the two samples,
and have moderate to high depth values with respect to the empirical distributions of
both the samples.

Analogous descriptions as in the previous paragraph applies to the plots in Figures

4.9, 4.10 and 4.11 i
- The plots in each of these three figures are quite similar to the cor-

responding DD- ; ot
g plots using SD in Figure 4.8 with the exceptions being the DD-plot for
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the spectrometric data using MBD in Figure 4.10 and the first DD-plot in the second
row in Figure 4.11. The shape of the DD-plot for the spectrometric data using MBD in
Figure 4.10 is slightly different from the triangular shape seen, when it is constructed
using SD, ID and MHRD. However, like those DD-plots, it also indicates a difference
in the location between the two samples of the spectrometric data. The points around
the top right corner of the DD-plot lie in the overlapping region of the two samples,
and have moderate to high depth values with respect to the empirical distributions of
both the samples. The first DD- plot in the second row in Figure 4.11 is more inclined
towards the 45° line than the corresponding arch shaped DD-plots seen in the other
three figures. This indicates that MHRD is less accurate in distinguishing the difference
in scale between the Brownian motion and the fractional Brownian motion considered
than SD, MBD and ID. In view of the generalizability of SD and its desirable properties

discussed earlier, it is recommended to use SD to construct DD-plots for data in infinite

dimensional spaces.

4.5 Mathematical details

Proof of Theorem 4.1.1. Let X(d) = (X1, X2,...,Xa) and Y(d) = (Y1,Yo,...,Ys) be
d-dimensional column vectors that consist of the first d coordinates of the sequences X
and Y. Observe that Y (d) = Ty(X(d)), where Ty : R — RY is a bijective affine map.

By definition, the half-space depth of a point x € l2 relative to the distribution of X

will satisfy

inf P((u,X —x)>0) < inf inf P(v'X(d) = v'x(d))

HD(X) = ot d>i vERd
— inf inf P(VY(d)2V'y(d))
d>1veR? 15)
< inf inf P(V'Y(d) = v'y(d), (4.
= §>1veRdv/y(d)>0
where x(d) = (z1,%2,- - ,zq) is the vector of first d coordinates of X, y(d) = (y1, 92,

- L) RLER ] . g ) y unen-

i i ose. Since Y1, Ys,. ..
tor will be a column vector, and ' will denote its transp Yo, o0,

sional vec
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are uncorrelated, it follows from (4.5) and Chebyshev inequality that

d 2.2

Var(v'Y (d)) . > k=1 YTk
HD < inf inf - ———em= = inf " (46)

(x) < ,111211 viviy(d)>0  (V'y(d))? d>1viv'y(d)>0 [Zz:1 Ulcyk]

(4.6) implies, by an application of Cauchy-Schwarz inequality, that
d _l

<inf (> g2/ . 4.7
HD(x) < élel L_l yk/TkJ (47)

In view of the moment and the mixing conditions assumed on the Y}’s in the theorem,

it follows from Corollary 4 in Hansen (1991) that

d d -1
AN Y2/t > 1as = inf [Z Y2 /Tg} =0as. (4.8)
k=1 - k=1

(4.7) and (4.8) imply that HD(x)=0for all x in a subset of I3 with pu-measure one.

Next, using the definition of PD and arguments similar to those used above, we get
that for any x ¢ lo,

1-PD(x) _ [(u, %) - E((u, X))] [v'x(d) — E(v'X(d))|
PP " e, WVaruxy | 2 2t vent  /Var (VR
> swp o YOS

1vert Varvy (@) = vert | [sod a2
- k
d
= su
up )

k=1

?S:‘:o ,?QS"QI\J
e~
<©
S

assumed in th
In the theorem, (4.8) ang (4.9) now imply that PD(x) = 0 for all x in a subset

d

of Iy with H-measure one,

Proof of Th,
f Theorem 4.1.2. Let us denote the dua] space of C[0,1] by M]0,1]. Consider

the me :
asure ug € M0, 1), which assigns point magg vpatk/d, k=19 d. So, we

have uy(x) = Zzzl VkZg/q

for any x = {z}
tftefo,1] € CO’l . — /,
Xq = (Xl/dyXQ/d,., €(0.1] [ ] Let v (’Ul,Ug,...,Ud)

.,Xd ! and =
/d) an Xq4 (xl/d,a:2/d,...,xd/d)’. For each d > 1, define



97 Mathematical details

Ya,1 = X174 — E(Xy4), and let Yy, denote the residual of linear regression of X /d on
(X1/a> Xosds -+ X(k-1)q) for k = 2,3,...,d. Then, Yy = (Ya1,Ya2,...,Yqx) hasa
multivariate Gaussian distribution with independent components in view of the Gaus-
sian distribution of X. The proof now follows by straightforward modification of the

arguments used in the proof of Theorem 4.1.1 and using Y, in place of Y (d). O

Proof of Theorem 4.2.1. Let X = ()?1,)?2, Jand X = (X1, Xig, ... ), =1,2,...,J,
be independent copies of X. We first note that BD(x) = HRD(x) = 0 with probability
one iff E{BD(X)} = E{HRD(X)} = 0. Let us first consider the case of BD. Note
that E{BD(X)} = YJ_, P(minicic; Xip < Xp < maxicicj Xik, ¥ k 2 1) So,
E{BD(X)} = 0 iff P(minj<ic; Xix < X < maxi<icj Xig, ¥V &k = 1) = 0 for all
2 < j < J. Consequently, it is enough to show that for any 2 < j < J, the event
{miny<;<; X;x > X} U {maxi<;<j Xix < )Afk} occurs for some k > 1 with probability
one. Now, the sequence (minj<;<; Xi1 -—)?1, ming<i<j Xi,2 —)?2, ...) is a-mixing for any
1 < j < J, and its mixing coefficients satisfy the conditions assumed in the theorem.
On the other hand, P(mini<i<j Xix > )?k) = 277 for all k > 1, by the continuity
of the distributions of the Xx’s. So, using Corollary 4 in Hansen (1991), we have
41524 I(minj<ic; Xip > Xi) — 279 as d = oo with probability one for all 1 < j <
J. So, the event {minj<i<; Xsk > )~(k} actually occurs for infinitely many & 2> 1 with
probability one. Thus, BD(x) = 0 for all x in a subset of Iy with p-measure one.

The proof for HRD follows by taking j = 1, and we skip further details. O

Lemma 4.5.1. Let {X;}ie(o,1) be a Feller processes in C[0, 1] satisfying the conditions of

Theorem 4.2.2. Let X; = {Xit}hieo] ¢ = 1,2,...,J, denote independent copies of X,

—_— . . X <
and define Tj = inf{t > 0 : min;<i<j Xit > zo} and Sj = inf{t > 0 : maxi<i<j Xit

2o} for 1 < j < J. Then, P(T; =0)=P(S;=0) =1 forall1<j< J.

; 1<
Proof. Consider the multivariate Feller process {(X1,¢, Xoty--- , Xj.t) Yeeo,1) where 1 <

= 27 < t) >
j < J. Since, P(T; < t)y > P(mini<i<; Xit > zg) = 277 and P(S; <t) 2

P(maxi<i<j Xit < z) = 2-7 for every t > 0, we have

- —0) =limP(S; < s) 227, (410)
P(Tj=0)=15iﬁ)1P(TjSS)Z2] and P(; = 0) = im P(S; )
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From the continuity of the sample paths of the processes, and using Propositions 2.16
and 2.17 in Revuz and Yor (1991), it follows that P(7; =0) =0or 1 and P(S; =0) =0
or 1 for all 1 € j < J. The proof is now complete using (4.10). ad

Lemma 4.5.2. Let {Xt}ic(0,1) be a Feller process on C[0,1] satisfying the conditions
of Theorem 4.2.2. Also, let £ = {fi}icpp,1) € CI0,1] be such that fo = xo and f; — 9
changes sign infinitely often in any right neighbourhood of zero. Then, P(T = () =
P(S=0)=1, where T =inf{t > 0: X, - f; >0} and S =inf{t > 0: X, — f, < 0}.

Proof. For any t > 0, let 0 < r < ¢ be such that fr < zo. Then, P(T <t) > P(T <
r) > P(X, > f;) > P(X, > zo) = 1/2. Now, arguing as in the proof of Lemma 4.5.1,
we get that P(T = 0) = 1 since {X, — fi}te[o,1] is a Feller proces staring at 0. Next, let
0 < s <t besuch that f; > xg. By similar arguments, we get that P(S =0)=1. O

Proof of Theorem {.2.2. We first prove the result for BD using similar ideas as in the

proof of Theorem 4.2.1. From the definition of BD in (4.1), we have

M«

E{BD(X P( min X;; <X
(BDX)) (s2im %o < R < o ot Ve )

.
Il
[ )

IN
,[\1g<

Il
N

] P (12121;1] Xit<X;, Vte [0, 1])

M-

il

2

: E {P (121}%1].)(1',1. < Xi, YVie|o,1) ' X, Xo,... ,XJ> }(4.11)

For any f j = izati
y fixed j, let z = {zt}te[o,l] be a realization of the process {min;<;<; Xitheepo,n)-

Th i
en, from Lemma 4.5.1, it follows that g satisfies, with probability one, the as-

sumptions made on the function f in Lemma
Play < Xy, Vi€ 0,1

in (4.11) is zero, whi

4.5.2. So, using Lemma 4.5.2, we have
)=0forallzina set of probability one. Hence, the expectation

b i ~
¢h 1mplies that E{BD(X)} = 0. Thus, BD(x) = 0 on a set of
K-Ieasure one.

The proof f i
P or HRD follows by taking z to be a realization of the process X, and

using Lemma 4.5.1 and similar arguments as above B
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Lemma 4.5.3. Let G be the map on C[0,1] defined as G(f) = {g(t, ft) }efo,1], where

f = {ft}te[(J,l] € C[0,1] and g : (0,1] xR - R is continuous. Then, G is a continuous
map from C[0, 1] into C[0, 1].

Proof. Let t, — t in 0,1] as n — oo. By the continuity of g, and the fact that
f = {f;},el(“] € C[0,1], we have 9(tn, fi,) = g(t, fi) as n = oco. This shows that G
maps C[0, 1] into C[0,1]. Let us now fix ¢ > 0,t € [0,1] and f € C[0,1]. Consider a
secquence of functions f, = {fni}tepp,y in C[0,1] such that ||f, — f]| — 0 as n — oo.
Note that the function g is uniformly continuous on [0,1] x I, where I is any compact
interval of the real line. Thus, SUPye(o,1] l9(t, fa,t) — g(¢, fi)| = 0, and this proves the

continuity of G. a

Proof of Theorem 4.2.3. (a) Since the process Y = {Yt}te[o,l] has almost surely continu-
ous sample paths, Lemma 4.5.3 implies that the sample paths of the process X = G(Y)
also lic in CI0,1] almost surely. Consider now x, = G(y,), where p € (0,1) and
Yp = {Ffl(l))}xe[(),l]- Note that the distribution F; of Y; is Gaussian for all t € (0, 1]
with zero mean and variance o? (say), which is a continuous function in ¢. So,
Fl_l(p) = oy®7!(¢,), where ® and ¢, denote the distribution function and the pth
quantile of the standard normal variable, respectively. Hence, y, € C[0, 1], and in view
of Lemma 4.5.3. we have x, = G(y;) € C[0,1].

Note that by strict monotonicity of g(t,-) for all ¢ € [0,1], we have MBD(x,) =
Yot = p? = (1= p)l, MHRD(x;) = min(p, 1 —p) and ID(xp) = 9(p). These depth
functions are bounded above by 4y = J—2+277%1,1/2 and sup,e(o,1) ¥(s), respectively,
where the upper bounds are attained in MBD and MHRD iff p = 1/2. Let us now write
Chal0.1) = {F = {fi}icio) € C10.1] = fo = o}, and define Ho = G(Cyo[0, 1]) = {G(D):
f € Cy[0.1]}. Since x, € Ho, we have MBD(Hp) = {MBD(x) : x € HO.} = (0, 4],
MHRD(Ho) = (0.1/2) and ID(Ho) = %((0,1)) by varying p € (0,1). This completes

the proof of part (a).

i i th ort
(b) 1t follows from the proof of Proposition 5.1 in Guasoni (2006) that the supp

starting at zero is the whole of Co [0,1].

of {Zy + yo}eefo, 1> the support of the

By continuity of G proved in Lemma

of a fractional Brownian motion, say {Zt}te[o.i]’

. ; hat
Since the distribution of {Yt}ie[o,1] 18 same as tha

i 1].
distribution of {¥; },¢cr0.1) is the whole of Cy,[0, 1]
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4.5.3, any point in Hp is a support point of the distribution of X. On the other hand,
for every fixed ¢ € [0, 1], since g(t,-) is a continuous strictly monotone function, and
the distribution of ¥; is continuous, it follows that the distribution of X; is continuous.
So, using the dominated convergence theorem, we get that MBD, MHRD and ID are
continuous functions on C[0,1]. This and the fact that any point in Hy is a support
point of the distribution of X completes the proof of part (b).

(¢) If {Yi}scp,1 is a fractional Brownian bridge “tied” down to bg at t = 1 (say),
then it has the same distribution as that of {Z; — Cov(Z;, Z,)(Z, — bO)}tE[O,l]- So, the
support of {Yi}icjo,1] is the set {f = {fi}ic0,1] € Cyol0,1] : f1 = bo}. The proof now

follows from arguments similar to those in parts (a) and (b). O

Remark 4.5.4. It follows from the proof of Proposition 5.1 in Guasoni (2006) that a
fractional Brownian motion {Yi}icio,) starting at yo has as its support as the whole of
Cyol0, 1], which implies that the support of {Yt}eepto) is the whole of Clto,1] for any
to > 0. Consequently, if MBD, MHRD and ID are computed based on the distribution

of {Xt}iejto,1), the supports of the distributions of MBD(X), MHRD()N() and ID(X)
will be [0, Ay], [0,1/2] and the closure of ¥((0,1)), respectively.

Proof of Theorem 4.2.4. Since Xy = ag with probability one, if y = {yt}te[o 1 € C[0,1]

is such that yo # ao, then y cannot be contained in any band formed by the X;’s.

Consequently, BD(y) = 0. So, it is enough to prove the result for any y = {ythiepo) €

C'10, 1] satisfying yo = x¢. Let y,, = (Y1/2m , Yo j2ms sy Yamgm ). It follows from part 2

of Theorem 1 in Lépez-Pintado and Romo (2009) that BDm(ym) < BDp(
m
m > 1, where the function BD,, is the m-

distribution of X

ay,) for all

dimensional band depth calculated using the

m = (Xl/Zma X2/2m,...,X2m/2m). Since

{min X, oms1 < Ty /om Vk= m+
1<i<y T HR/2mHL S T jomer < JII<12ax<] Xi’k/2m+l k=1,2,... , 2 1}
C min X, ; /om Vk= m
{1315], ik/am < Tgjom < 1121?2(] Xi’k./zm k=1,2,... , 2™}
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for all 1 < j < J, it follows that BDmi1(Yme1) < BDy(ym) for all m > 1. So,

lim BDp(yn)

= 2P (lr<nllél]Xl kj2m < Tpjgm < max Xl kyam Vhk=1,2,...,2™ and m > 1)

Then, using the almost sure uniform continuity of the sample paths, we have
BD(y) = n}l_r)noo BDm(ym) < W}I_I)noo BDn.(an) = BD(a).

The proof will be complete if we show that BD(a) = 0. Let us now consider
the multivariate Feller process {(Xl,taX2,t7-"an,t)}te[O,I] for 1 < j < J. Define
Y = {Yi}icpqy = X — a. Since {Xt}iepo,) is a Feller process starting at zo = ag
and symmetric about a, Y is a Feller process starting at 0 and symmetric about 0.
Let T; = inf{t > 0 : min<i<; X5y > a¢;} = inf{t > 0 : mini<;<; ¥;; > 0} and
S; = inf{t > 0 : maxi<;<j Xiy < a;} = inf{t > 0 : maxi<i<; Yis < 0}. From the
continuity of the sample paths and using Propositions 2.16 and 2.17 in Revuz and Yor
(1991), we get that P(T; =0) =0or 1 and P(S; =0) =0or1for all 1 < j < J. Since
P(Tj = 0) = limy o P(T; < t) > 277 and P(S; = 0) = limyo P(S; < t) > 277, we have
P(T; =0)=P(S;=0)=1forall1<j<J.

The proof of the fact that the half-region depth of a is 0 follows from the above argu-

ments after taking J = 1. O

Proof of Theorem 4.2.5. From the definition of MBD we have

1
[/ <m1n Xit <z < max X,t)dt}
) =1,
1
[/ P( min X”<a:t< max X;. | dt
0 1,. 1.7 =1, -1]

/ [1- Fiw) ~ (1 - Ry, (2.12)

MBD(x) =

M- T M“

2

.
I}

I
ZM&

where the second equality in the above follows from Fubini’s theorem. Here F; denotes
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the distribution of X; for ¢t € [0,1]. For each ¢t € [0,1], the integrand in (4.12) is
maximized iff Fy(z;) = 1/2, which can be easily verified using standard calculus. This
implies that the term in the right hand side of equation (4.12) is maximized iff F;(z;) =
1/2 for all t € [0,1], except perhaps on a subset of I with Lebesgue measure zero. Hence,
MBD is maximized at m, and also at any m™*, which equals m outside a Lebesgue null
set.

Since Dy is maximized at m; for each ¢ € [0, 1], it follows that the depth function
ID(x) = fol Dy(z:)dt is maximized at m, and at any m*, which equals m except on a
Lebesgue null set.

For MHRD, we have using Fubini’s theorem

MHRD(x) = min {E Uol I(X, < :ct)dt] , E [/OlI(Xt > a:t)dt]}

~ min { Uol P(X, < xt)dt] , [/Olp(xt > xt)dt]}
- min{ /0 R, 1— /0 1 Ft(mt)dt}. (413)

The maximum value of the right hand side of (4.13) is 1/2. Since Fy(m;) = 1/2 for
all ¢ € [0,1], m is a maximizer of MHRD. Further, any m** = {mi* }eep 1) satisfying
Jo Fu(mi*)dt = 1/2 will also maximize MERD. O

Proof of Theorem 4.3.1. First, we shall prove that the support of X is the whole of

lz, where X = (Xi, X,, .. .) is an independent copy of X = (X1,Xjy,...). For this,
let us fix x € Iy and > 0. Then, there exists d > 1 satisfying ||x — x[d]|| < n,

where x[d] = (z1,z,, . .. 1%4,0,0,...). Further, in view of the assumption on the second

moments of the X}’s, we can choose M > d such that Dkon B(X2) < n2/4. Then

P(X —x]f < 2q) > P(IX — x[d]l| <n)

~ 2
S p _ 9 n - 2 - 2
(E (X 2)* < T §:X,§<172—>P X<V, (414
k>M k>M 2

k<M
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Using Markov inequality, we get

- 2 Y2
P(ng,f < %) > 1—2—’%‘2/2(—)(’“) > 1/2. (4.15)

(4.14) and (4.15) now imply that

~ 1 ~ 2
P(IX-xll<2p) > P[> (K-an)?<L
2 k<M 2

Y XE< —712%> . (4.16)
k>M

From the conditional full support assumption on the Xg’s, it follows that the expression
on the right hand side of the inequality (4.16) is positive for each n > 0. This implies
that x lies in the support of X.

Since the distribution of X is nonatomic, SD is a continuous function on I as
mentioned in Section 4.3. Thus, the set {SD(x) : x € I3} is an interval in [0, 1]. Hence,
from the properties of SD discussed in Section 4.3, we get that the function SD takes
all values in (0,1]. This and the continuity of SD together imply that the support of
the distribution of SD(X) is the whole of [0, 1]. O

Lemma 4.5.5. The set Hyo = G(Cy,[0,1]) is convez. Here, G is as in Lemma 4.5.1
and Cy, (0, 1] is as in the proof of Theorem 4.2.3.

Proof. Let us take f = {ft}teo,1) @nd b = {hs}ieo,1] € Cyol0: 1]- Fix A € (0,1) and
t € [0,1]. Let L = max(||f]|,|h]]). By continuity of g(t,-), the range of g(t,s) for
s € [-L, L] is a closed and bounded interval, say [a,b]. Thus, Ag(t, f) + (1= N)g(t, hy) €
la,b]. Since g(t,-) is continuous and strictly increasing, there is a unique ¢; € [~L,L]
such that g(t,q;) = Ag(t, fr) + (1 — X)g(t, he). Now let t, — t € [0,1] as n — oo. Since
9(tn, @) = Ag(tn, fr.) + (1 = N)g(tn, hey), bY continuity of g, we have

Gltm, Gt) = Mg(t o) + (1 = Vgt ) = gt @) (4.17)

as n — oo. Suppose now, if possible, g, -+ gt as ™ —s 00. Then, there exists g > 0 and

a subsequence {tn, };>1 such that |‘1tnj —q|>eforalj>1 A further subsequence of

{tn, };>1 will converge to some b € [L, L], and hence, |b — ¢ = €o- Along that latter
1312
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subsequence, we have g(tn;, Qtnj) converging to g(t,b;). This and (4.17) together imply
that g(¢,b;) = g(t,q.). So, by strict monotonicity of g(t,.), we get that b, = g, which
yields a contradiction. Hence, g, — ¢t as 1 — 00, which implies that q = {gt}icio1] €

Cyol0, 1]. This proves the convexity of Hp. O

Lemma 4.5.6. Every point in Ho is a support point of the distribution of)z in Lo[0, 1].
Here X is as in Theorem 4.3.2.

Proof. Fix f € Cy[0,1] and n > 0. Let || - || denote the supremum norm on Clo,1]
as before, and || - ||2 denote the usual norm on L,[0,1]. Since |ly|l2 < [lyl| for any
y € C0,1], we have P(|G(Y) -~ G()lla < 1) > P(IG(Y) — G(®)|| < n). By the
continuity of G proved in Lemma 4.5.3, there exists 6 > 0 depending on 7 and f such
that P(||G(Y) - G(f)|| < 1) > P(||[Y — f|| < §). Since any element in Cy[0,1] is a
support point of the distribution of Y in C|0, 1], we have P(||Y — f}|| < §) > 0. It now
follows that G(f) € Hp is a support point of the distribution of X = G(?) in Lo[0, 1],
where Y denotes an independent copy of Y. This completes the proof. a

Proof of Theorem 4.3.2. We will first show that SD(x) takes all values in (0,1) as x
varies in C[0,1]. As discussed in Section 4.3, the spatial depth function is continuous
on L3[0,1]. We have Hy C C[0,1] C L»[0,1], and Hy is convex by Lemma 4.5.5, which
implies that the set SD(Hp) = {SD(f) : f € Hy} is an interval in [0,1]. It follows from
the nonatomicity of X and Lemma 4.14 in Kemperman (1987) that SD(m) = 1, where
m is a spatial median of X in L0, 1]. Further, from Remark 4.20 in Kemperman
(1987), it follows that m lies in the closure of Hy in L3[0,1]. Thus, there exists a

sequence {myp}n>1 in Hy C C|0, 1] such that |lm, —ml|y = 0 as n — oo, where || ||2 is
th i
e usual norm in L0, 1] as before. Hence, by continuity of the spatial depth function,

we have SD )
(mn) > 1 as n - co. We next consider the sequence of linear functions

frndnz1, where tn = {9(0,40) + dnt)seio, and dy — 00 a5 7 — co. Since glt,") is &

strictly increasing continuous function for each ¢ € [0,1] with g(t,s) — co as s = ©
there exists | |
fnyt such that g(t, fnt) = (0, 40) + dnt. Using the assumptions about g,

it
1t can be shown that for each n 2 1, the function f, = {fa t}te[o ] € c, 0 1] which
’ 3 0 9 3

implies that r, = . )
n = G(f) € Ho. Now, using dominated convergence theorem, we have
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SD(r,) — 0 as n - oo in view of the fact that dn, — oo, and rp/d, converges to the
identity function {t}e(o,1) € C[0,1] as n — co. Hence, SD(Hp) 2 (0,1). Note that we
will have SD(Hy) = (0, 1] if the spatial median m actually lies in Hy. Using Lemma
4.5.6, and the continuity of SD along with the fact that SD(Hg) D (0,1), we get that

the support of the distribution of SD(X) is the whole of [0, 1]. O

Proof of Theorem 4.3.3. The proof of the first statement follows directly from part (a)
of Theorem 3.1.2 after using the inequality |||x|| — ||y||| < ||x = ¥||, which holds for any
x,y € X.

Let us next consider the case Wx # 0. From the Fréchet differentiability of the norm
in X*, we have SD(x) — SD(x) = Su,(¥x — Uy) + o(||¥x — Ux||). The central limit
theorem for i.i.d. random elements in X* (see, e.g., Araujo and Giné (1980)) implies
that ﬁ(\fx — W, ) converges weakly to a zero mean Gaussian random element W € X™*
as n — oo. In particular, v/7n||¥x — U|| is bounded in probability as n — oco. Since
the map Sy, : X* — R is continuous, we now have the result for W # 0 using the
continuous mapping theorem.

Now, we consider the case ¥y = 0. In this case, @(x) - S8D(x) = —||y]|- The
central limit theorem for i.i.d. random elements in A™* yields that \/ﬁ\flx COnverges
weakly to a zero mean Gaussian random element V € X™* as n — oo. Finally, the
continuous mapping theorem completes the proof in view of the continuity of the norm

O
function in any Banach space.
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Appendix A

Appendix: Some definitions and

concepts in Banach spaces

Let X be a Banach space with norm || - ||. The dual space of X, denoted by X*, is the
Banach space of all real-valued continuous linear functions on X. We denote by X** the
dual of X*. A Banach space is called reflexive is there exists a surjective isomorphism
from & to A**, and in such cases X can be identified with X**. Hilbert spaces and L,
spaces for p € (1,00) are examples of reflexive Banach spaces.

The norm in X is said to be Géateaux differentiable at a nonzero x € X with deriva-
tive, say, Sy € X* if

lim ¢7(||x + th(] — [|x[[) = Sx(h)

for all h € X. If the above limit is uniform in h for ||h|| < 1, then the norm is said to

be Fréchet differentiable at x. Equivalently, the norm is Fréchet differentiable if
lim ||b||7*{||x + h|| — [[x]| — Sx(h)} = 0.
h—0

We define S, = 0 if x = 0. The Banach space X is said to be smooth (Fréchet smooth)
if the norm in X is Gateaux (Fréchet) differentiable at every nonzero x € A. Norms
in Hilbert spaces and L, spaces are Fréchet differentiable. For a Hilbert space, Sx =
x/||%||. When X = L,(R%), we have Sx(h) = Jra .sz'gn{x(s)}[x(s)|”'1h(s)¢;ls/]lx}]p‘1 for
x,he X.
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The norm in X is said to be twice Gateaux differentiable at x % 0 with Hessian (or
second order Gateaux derivative) Hx, a continuous linear map from X to X, if

lim t_l(Sx_Hh —Sx) = Hx (h)
t—0

for all h € X. Here, the limit is assumed to exist in the norm topology of X*. In such

cases, the following Taylor expansion holds for each h € X.
1
llx + th|| = ||x]|| + tSx + -it?{Hx(h)}(h) + r(t),

where r(t)/t? = 0 as t — 0. Norms in Hilbert spaces and L, spaces for p € [2,00)
are twice Gateaux differentiable. For a Hilbert space X with inner product (-,-), Hx =
l|x||={l = (x ® x)/||x||?} for any x € X. Here, | is the identity operator on X, and
® denotes the tensor product on X. The latter is defined as x ® x : X — X, where
{(x @ x)(z),w) = (x,2)(x,w). If ¥ = L,(R%), then

{He@}w) = (p-1E [fRd tx(s)ll;—llzpsz)w@)ds
_ {Upex(©) Pt z(s)ds} { fpa Ix(s) P~ w(s)ds}

e ’

for x,z,w € X. We refer to Chapters 4 and 5 in Borwein and Vanderwerff (2010) for
further details.

For an . .
y Banach space X, a sequence x,, in X’ is said to converge in the weak topology

fx .
o (or converges weakly) to x € X iff y(xn) — y(x) for each y € X*. In other words,

the weak t :
opology on X is the smallest topology with respect to which all elements in
X'* are continuous.

A B f s )
anach space X is said to be strictly convex if for any x # y € X satisfying

X|| = =1
lIxIl = [ly|l = 1, we have ||(x +¥)/2ll <1 (see, e.g., Borwein and Vanderwerff (2010)).

Hilbert spaces and L, spaces for p € (1, 00) are strictly convex

The norm in a B . .
a Banach space X is said to be locally uniformly rotund if for any

sequence {x
{Xn}n>1 € X and any x € X satisfying xnl| = l|x|| = 1 for all n > 1,

n—oo \ n H 2 implies hmn—wo “Xn - XII =0 (See, e.g., Borwein and Vanderwerff
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(2010)). The norm in any Hilbert space or any L, space for p € (1,00) is locally
uniformly rotund. It is easy to verify that if the norm in a Banach space is locally
uniformly rotund, then the Banach space is strictly convex (see, e.g., Borwein and
Vanderwerff (2010)).

A separable Banach space X is said to have a Schauder basis {¢1, ¢2, ...} if for any
x € X, there exists a unique sequence of real numbers {zy }x>1 such that x = Y 27 | 7,
(see, e.g., Fabian et al. (2001)). If X is a separable Hilbert space and {¢1,¢,...} is
an orthonormal basis of X, then it is a Schauder basis of X. Further, any L, space for
p € (1,00) admits a Schauder basis.

A continuous functional T : X x X — R is symmetric, nonnegative definite and

bilinear if it satisfies

(@) Txy) =Ty, x),

(ZZ) Z Z aiajT(xi, Xj) > 0,
i=1 j=1
(42) T(ax+y,2z) =aT(x,2z) + T(y,2z), T(x,ay +2)= aT(x,y) + T(x,z),

for every n > 1, @,a1,...,0n € R, and X,y,2,X1,...,Xn € X. Associated with such a
functional T is a unique continuous linear symmetric nonnegative operator T xox*
defined as {'T‘(x)}(y) = T(x,y), where x,y € X. Note that T is symmetric because
{T(x)}y) = {T(¥)}(x), and it is nonnegative since {T(x)}(x) > 0 for all x,y € X.

Let X and Y be two Banach spaces,and T : &' — Y be a continuous linear operator.
Then, the adjoint operator T* : Y* = & * of T is defined by the equation {T* (y)}Hx) =
y*{T(x)}, where x € X and y* € V*.

A Banach space X is said to be of type 2 if there exists a constant b > 0 such that
s Uy,..., Uy in X satisfying

for any n > 1 and independent zero mean random element.

E(|Ui||*) < oo foralli=1,...,n, we have

E(|| iUiHZ) < by~ E(U[[).
i=1 i=1

Type 2 Banach spaces are the only Banach spaces where any sum of i.i.d. random

elements in that space, whose norm has finite second moment, will satisfy the central
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limit theorem. Hilbert spaces and L, spaces with p € [2,00) are examples of type 2
Banach spaces. We refer to Section 7 of Chapter 3 in Araujo and Giné (1980) for further
details. '

A Banach space X is said to be p-uniformly smooth for some p € (1,2] if for every
g > 1 there exists a constant ag > 0 such that for any zero mean martingale sequence
(M, Gm)ms1 in X, we have E(||Mn|l?) < ag %, E(||[M; — M;_1||P)¥/P. Here, the
sequence (Mm)m>1 is adapted to the filtration (Gm)m>1. Any 2-uniformly smooth
Banach space is of type 2. Hilbert spaces are 2-uniformly smooth, and L, spaces are
p-uniformly smooth, where p = min(p, 2) for p € (1,00). We refer to Borovskikh (1996)
for further details.

Let X be a random element in a separable Banach space X. Suppose that there exists
a sequence {X,},>1 of measurable simple functions in X such that X, — X almost
surely and E(||X, — X||) — 0 as n — co. Then, we say that X has an expectation
in the Bochner sense, and the Bochner integral of X equals limy, o F(X,). Here,
E(X,) = Z}?@l Xnk P(Ank) if X, = Z,Icw:"l Xnkl(Ank). It is known that the Bochner
expectation of X exists if E(]|X||) < co. We refer to Section 2 in Chapter 3 of Araujo

and Giné (1980) for more details. Further, for two random elements X and Y with

finite Bochner expectations, the conditional expectation of X given Y exists and can

be properly defined (see Section 4 in Chapter II of Vakhania et al. (1987)).

By a Gaussian random element W in g, separable Banach space X with meanm € X

and covariance C, we mean that for all 1 € ¥ *, I(W) has a Gaussian distribution on

R with mean 1(m) and variance {C)}

(1) (see Section 2.4 in Chapter IV of Vakhania
et al. (1987)). Here,

. * : . .
C:X* - X is a continuous linear symmetric positive operator.
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