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Chapter 1

Introduction

1.1 Introduction

Pattern recognition [9, 24, 28, 57, 61] is what humans do mostof the time, without any

conscious effort, and fortunately excel in. Information isreceived through various sensory

organs, processed simultaneously in the brain, and its source is instantaneously identified

without any perceptible effort. The interesting issue is that recognition occurs even under

non-ideal conditions,i.e., when information is vague, imprecise or incomplete. In reality,

most human activities depend on the success in performing various pattern recognition

tasks. Let us consider an example. Before boarding a train orbus, we first select the

appropriate one by identifying either the route number or its destination on the basis of the

visual signals received by the brain; this information is then speedily processed, followed

by neurobiological implementation of template-matching [28].

The discipline of pattern recognition (PR) centers around the development of algorithms

and methodologies/devices which enable automated implementation of various recogni-

tion tasks normally performed by humans. The motivation is to perform these tasks more

10



CHAPTER 1. INTRODUCTION 11

accurately and/or faster, perhaps, in a more economical manner; and, in many cases, to

relieve humans from the mundane activity of mechanically performing such routine recog-

nition tasks. The scope of PR also encompasses tasks in whichhumans are not particularly

good, like reading Quick Response codes. The goal of patternrecognition research is to

prepare mechanisms to automate certain decision making processes that lead to classifi-

cation and recognition. Though research in this domain has attained maturity over the

past decades, it remains fertile to researchers due to the continuous interaction with other

disciplines including biology, artificial intelligence, information theory, psychology and

cognitive science. As a result, depending on the practical needs and demand, various ap-

plications like video surveillance, image retrieval, social media mining, have been initiated

in order to supplement the classical techniques [24,28].

The field of machine learning is concerned with the question of how to construct programs

that gradually and automatically improve with experience.In recent years many successful

machine learning applications have been developed, encompassing algorithms that learn

to detect fraudulent financial transactions, information-filtering systems that learn users’

reading preferences, and autonomous vehicles that learn todrive on public highways. Typ-

ically machine learning involves searching a very large space of possible hypotheses to

determine the one that best fits the observed data, along withany prior domain knowl-

edge. The learner’s task is to search through the vast space of solutions, determined by the

available evaluation functions, in order to locate the mostconsistent hypothesis [9,82].

Over the last several years the availability of the internetand the decrease in cost of stor-

age have resulted in databases become voluminous and, in some cases, heterogeneous.

Such massive datasets generally consist of a combination ofnumeric, textual, symbolic,

pictorial, video, as well as aural data. There may also be embedded a certain amount of re-

dundancy, error, imprecision, etc. Traditional data cleaning, statistical data summarization

and data management techniques are often just not adequate for handling such multimedia
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data [84]. This is where we need data mining in order to intelligently extract information

or knowledge, that may be useful for exploring the domain in consideration and to provide

support towards decision making.

Data mining [34, 47, 84] can be viewed as an integration of PR and machine learning in

the context of large data. Here stress is more on the scalability of the number of features

and instances, where scalability refers to the ability of analgorithm to efficiently handle

large volumes of data. In effect data mining involves a multidisciplinary effort from the

database, machine learning and statistics communities. Some of the major functionali-

ties of data mining include association rule mining, clustering, classification, regression,

sequence analysis, dimensionality reduction, rule generation, summarization or condensa-

tion. Data mining algorithms determine both the flexibilityof a model in representing the

data as well as its interpretability in human terms. Although a more complex model may

fit the data in a better manner, often it may also be more difficult to understand [62, 84].

This pertains to the issues of generalization and overfitting.

There can exist various kinds of imperfection in the input data, mainly due to uncertainty,

vagueness, and incompleteness. While incompleteness arises due to missing or unknown

data, uncertainty (or vagueness) can be caused by errors in physical measurements due to

incorrect measuring devices or the mixing of noisy and pure signals. Soft computing tech-

niques are capable of effectively handling these issues. Soft computing is a consortium of

paradigms like fuzzy sets, neural networks, and genetic algorithms, that work synergisti-

cally to provide flexible information processing capabilities for real life problems. Its aim

is to exploit the tolerance for imprecision, uncertainty, approximate reasoning and partial

truth in order to achieve tractability, robustness, low cost solution and close resemblance

to human-like decision making [93]. The use of soft computing in pattern recognition and

is reported in literature [84,93].

With the discovery and/or growth of high-throughput technologies, like hyper-spectral im-



CHAPTER 1. INTRODUCTION 13

agery, radio frequency ID, high speed internet, and smart metering, there has been an

asymptotic increase in the dimensionality and size of databases. As a result their storage

and processing have become more challenging, with manual processing becoming im-

practical. Therefore, techniques integrating data miningand machine learning are being

developed in order to efficiently automate the pattern recognition and knowledge discov-

ery process. However application of these algorithms directly on raw data is mostly use-

less due to the high level of noise and redundancy associatedwith the samples. Noise

usually comes from imperfection during data collection or from the source of the data

itself. Redundancy may be incorporated during measurementof the same variable over

different instances. Extracting nuggets of knowledge fromsuch huge and noisy datasets

is thus a difficult task, and data preprocessing is a necessary step towards achieving this

goal [76,78]. Feature selection plays a major role in this direction.

The objective of this thesis is to present development and design of some algorithms, along

with their case studies, involving both theoretical and experimental studies in unsupervised

feature selection. Extension to large data is also investigated, with a view to reducing the

curse of dimensionality. Novel similarity measures, from statistical, classical, and soft

computing domains, are introduced to identify reduced subsets of informative features.

The similarity is mainly based on various internal characteristics of the data.

Before outlining the scope of the thesis, we provide a brief introduction to pattern recog-

nition, data mining and soft computing. The rest of this chapter is organized as follows.

Section 1.2 introduces the pattern recognition and data mining. Next we present genetic

algorithms and its various constituents in Section 1.3. A short study of feature selection

is provided in Section 1.4. The role of similarities, in clustering and feature selection, is

highlighted in Section 1.4.3. Finally Section 1.5 deals with the scope of the thesis.
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1.2 Pattern Recognition

Pattern recognition (PR) can be viewed as a two-fold task, consisting of learning the in-

variant and common properties of a set of samples (or patterns) characterizing a class or

group, and of deciding an unknown pattern to be the possible member of a group by noting

that it has properties common to those of its set of samples. PR can thus be described as

a transformation from the measurement spaceMS to feature spaceFS, and finally to the

decision spaceDS as

MS → FS → DS, (1.1)

where→ denotes a mapping from one space to another.

Patterns can be represented by arrays of numbers or characters obtained from a sequence

of binary or logical tests, scanning of images, reading of texts, or acquiring information

from any relevant source. Pattern classes can be depicted byone or several prototype

patterns. A typical PR system consists of three phases namely, (i) data acquisition, (ii)

feature selection or extraction, and (iii) decision making, i.e. classification or clustering.

Its aim is to achieve robustness with respect to random noise, and to obtain output in real

time. It is also desirable for the system to be adaptive to changes in environment [28].

Data is first gathered with a set of sensors during the data acquisition phase, depending

on the environment within which patterns are to be classifiedor clustered. This is then

passed on to the feature selection or extraction phase, where its dimensionality is reduced

by either retaining a few characteristic features or properties or by mapping the infor-

mation content into a space whose basis or features are formed using the characteristic

features of the original data. In a broader perspective, this stage significantly influences

the entire recognition process. Finally, the classification or clustering phase evaluates the

information present among the selected or extracted features for learning a final decision.

This phase basically establishes a transformation betweenthe input features and the output
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clusters or classes [24,28].

Learning can be broadly categorized into three categories,viz. supervised, semi-supervised

and unsupervised. In supervised learning, the algorithm generates a learner by analyzing

a training set made up of database tuples and their associated class labels. In the testing

phase, the algorithm predicts the class labels of samples which it has not encountered dur-

ing training. Generalization and scalability are two important properties of any learner.

The generalization capability is estimated based on the performance over an unknown test

set. Overfitting exists when a model is extensively complex,such as having too many

parameters relative to the number of observations, and describes random error or noise

instead of focusing on the underlying relationship. Underfitting occurs when a model is

too simple, and is not flexible enough to capture the underlying trends in the observed

data. Scalability refers to the ability to construct a learner or predictor efficiently, in the

presence of a large set of data. Scalable approaches are thuscapable of handling training

data that are too large to fit in memory.

Supervised learning is also termed classification. It contrasts with unsupervised learning

or clustering, in which neither the class label of a sample nor the total number of labels

to be learned are available. In semi-supervised learning, on the other hand, partial class

information of the training samples may be known in advance.In the following sections

we describe classification and clustering in further detail, before moving on to large data.

1.2.1 Classification

A classifier partitions a feature space into regions, by assigning each input pattern to one

of the possible output classes based on certain parameters.In real life, since most of

these parameters may not be known a priori, they need to be estimated from a finite set of

input patterns. This finite set of samples, which often provides partial information for the
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optimal design of a pattern recognition system, is termed the training set.

There are several approaches to classifier design. These include decision theoretic (both

deterministic and probabilistic) approaches, connectionist approaches, and support vec-

tor machines, among others. A good classifier should possesscharacteristics like on-line

adaptation, nonlinear separability, capability of handling overlapping classes, fast decision

making and minimization of the number of tunable parametersin the system. Some of the

well-known classifiers are outlined below.

k-nearest neighbors (k-NN)

Given a test pointxt, thek training points which are closest toxt in terms of distance are

identified. Thenxt is classified using majority voting among thesek nearest neighbors.

Ties are resolved arbitrarily [28]. Thek-NN classifier is used in Sections 2.3, 3.4 and 4.4.

Discriminant analysis

The procedure attempts to determine several discriminant functions (linear combination

of independent variables) that discriminates among the groups defined by the response

variable [47].

Näıve Bayes (NB)

This is a probabilistic approach. In the Naı̈ve Bayes (NB) [24] setting, the naive assump-

tion of class conditional independence is made. Here the values of attributes of a sample

are conditionally independent of one another, given the class label of the sample. In other

words, there exists no dependence relationship among the attributes or features [47]. The

NB classier is used in Sections 2.3, 3.4, 3.4.3 and 4.4.
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Decision tree

A decision tree classifier uses, in most cases, an information theoretic measure, like en-

tropy, for assessing the discriminating power of each attribute. A few important decision

tree algorithms are Interactive Dichotomizer 3 (ID3), Classification and Regression Tree

(CART), C4.5/C5.0, RainForest [84].

Support Vector Machine (SVM)

The SVM classifier is based on hyperplane learning. The idea is to map the training

data into a higher dimensional feature space via a mapping function, and to construct a

separating hyperplane with maximum margin. This yields a linear or nonlinear decision

boundary in the input space. Using a kernel functionk, it is possible to compute the

separating hyperplane without explicitly mapping into thefeature space. We have used

SV M in Sections 2.3, 3.4.3 and 4.4, for classification.

1.2.2 Clustering

A cluster is comprised of a number of similar objects collected or grouped together [56].

It may be described as an aggregation of points in a test space, such that the within-cluster

distance between any two points in a cluster is less than the between-cluster distance be-

tween any pair of points in different clusters. It can also berepresented as connected

regions in a multi-dimensional space, containing a relatively high density of points sepa-

rated from other such dense regions by a region containing a relatively lower density of

points [32]. The process of clustering usually consists of three steps. (1) Define a measure

of dissimilarity or similarity between the objects or patterns. (2) Formulate an objective

function for clustering given patterns or objects. (3) Design a methodology for obtaining

the cluster satisfying the objective. Broadly clustering algorithms can be categorized into
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partitive, hierarchical and density-based approaches.

Given a database of objects or data tuples, a partitive method constructs partitions of data

with each partition representing a cluster around a centroid. The most well-known mem-

ber of this family is thek-means algorithm [24]. Although partitive algorithms are less

expensive, in terms of time and space, yet the number of clusters need to be specified

apriori. Moreover, the cluster structure is dependent on the choice of seed points. Another

variant of conventionalk-means algorithm is the Iterative Self-Organizing Data Analysis

Technique (ISODATA), which employs splitting and merging operations on clusters based

on a threshold [84]. Some other examples include Partitioning Around Medoids (PAM)

andk modes [47,84].

A hierarchical method creates a hierarchical decomposition of the given set of objects, and

can be grouped as agglomerative or divisive depending on whether the process is bottom-

up or top-down. A major weakness of these methods involves poor scalability, quadratic

time complexity, and sensitivity to outliers. However the cluster structure remains the

same over repeated executions. Popular algorithms of this category are single linkage,

complete linkage, and Divisive Analysis (DIANA) clustering [47,84].

The general idea of density-based methods is to continue growing a cluster, around a seed

point, as long as the density of patterns in its neighborhoodis above a user-defined thresh-

old. The neighborhood region of each pattern in a cluster, within a user-defined radius,

must contain a given minimum number of points (as defined by the density threshold).

The major characteristics of density-based methods include the ability to effectively (i) dis-

cover clusters of arbitrary shape (convex and non-convex) and (ii) handle noise. But they

are, generally, computationally more expensive than partitive methods. Few important ex-

amples are Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and

Ordering Points To Identify Clustering Structure (OPTICS)[47,84].
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1.2.3 Dimensionality reduction

Dimensionality reduction is an important preprocessing technique to remove noisy, irrel-

evant and redundant features or attributes from the data. Itincludes feature extraction

and feature selection. Feature extraction involves the projection of data into a new trans-

formed space of lower dimensionality, such that the attributes in this transformed space

consist of linear or non-linear weighted combination of features from the original space.

Examples of feature extraction techniques include Principle Component Analysis (PCA),

Linear Discriminant Analysis (LDA), and Singular Value Decomposition (SVD) [9,28].

On the contrary, feature selection approaches select subset(s) of features from the origi-

nal space for maximizing their relevance to the target. Suchselected features should also

have minimum redundancy among themselves. Popular featureselection techniques in-

clude Sequential Forward Selection (SFS) [24], SequentialBackward Search (SBS) [24],

Sequential Floating Forward Search (SFFS) [96], Step-WiseClustering (SWC) [64], Infor-

mation Gain [120], ReliefF [65], Chi Squares [120] and Minimal-Redundancy-Maximal-

Relevance criterion (mRMR) [26].

Both these dimensionality reduction approaches improve learning performance, reduce

computational complexity, build better generalizable models and decrease required storage

space. However feature selection is superior in terms of improved understandability and

interpretability, since it preserves the original featurevalues in the reduced space. Feature

extraction, on the other hand, projects the feature values into a transformed space of lower

dimension. Therefore, further semantic analysis in the newspace becomes difficult as

often no physical meaning can be assigned to the transformedfeatures. Here we describe

two of the well-known algorithms for feature extraction andselection.



CHAPTER 1. INTRODUCTION 20

Principle Component Analysis (PCA)

This is a popular technique for feature extraction technique [9], and is outlined below.

1. Compute~X ~XT =
∑D

i=1 xix
T
i whereD is the original dimension of the data.

Let U be the eigenvectors of~X ~XT , corresponding to the topd eigenvalues.

2. Encode original data in~Y = UT ~X, where~Y is ad×D matrix.

3. Reconstruct original data in thed dimensional space by~Z = U ~Y = UUT ~X.

Sequential Forward Selection (SFS)

This is a suboptimal search procedure where one feature is added at a time to the current

feature stage. The feature to be included in the feature set is selected, at each stage, from

among the remaining available features. Thereby, the new enlarged feature set yields a

maximum value of the criterion function used.

Let fk be the set consisting ofk already-selected features. Letξ0 ∈ { ~X − fk} be the

feature selected now, such that

F(fk ∪ ξ0) ≥ F(fk ∪ ξ); ∀ξ ∈ { ~X − fk}, (1.2)

whereF is the objective function to be maximized.

If ξ0 satisfies eqn. (1.2), thenfk+1 ← {fk ∪ ξ0}. The feature selection method starts with

f0 = φ and ends after the desiredd number of features are obtained [24].

The algorithm SFFS is a near-optimal SFS with provision for backtracking. SWC, on the

other hand, is not a search-based algorithm which obtains a reduced subset by discarding

correlated features.

This thesis deals with the development of four novel algorithms for feature selection.

Therefore the concept of feature selection is elaborated infurther detail in Section 1.4.
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1.2.4 Extension to large data

Large data constitutes patterns having high dimension and/or size [47]. Handling such data

involves extension of basic pattern recognition strategies in a scalable manner. Modern

day research in data mining tries to achieve these goals [84]. Data mining is the non-

trivial process of identifying valid, novel, potentially useful and ultimately understandable

patterns in data [34]. Typically, it involves fitting modelsor determining patterns from

available samples or objects. Data mining algorithms constitute some combination of

1) the model which contains parameters that are to be determined from the data, 2) the

preference criterion which is usually some form of goodness-of-fit function of the model

to the data, sometimes tempered by a smoothing term to avoid overfitting, and 3) the search

algorithm [34].

The aim of data mining is to develop a unified framework which should be able to describe

the probabilistic nature of the discovered patterns and models, be able to handle inductive

generalizations of the data, accept different forms of data(viz. relational, sequential, tex-

tual, web) and recognize the interactive and iterative processes, with the comprehensibil-

ity of the discovered knowledge being of utmost importance.PR and machine learning

algorithms seem to be the most suitable candidates for addressing these tasks [80, 98].

However, PR and data mining are not equivalent considering their original definitions.

Development of new generation PR algorithms is expected to encompass more massive

data sets involving diverse sources and types of data that will support mixed-initiative data

mining, where human experts collaborate with the computer to form the hypotheses and

test them. It should have capability to reduce the effect of spurious data points which

misleads to overfit the model design [63].

Data mining, thus, is an attempt to make sense of the information explosion embedded

in large volume of data. Its tasks are mainly of two types, viz. (i) descriptive, when it
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discovers interesting patterns or rules from the data, and (ii) predictive, when it predicts or

classifies the behavior of the model based on available data.It uses automated tools that

employ sophisticated algorithms to discover mainly hiddenpatterns, associations, anoma-

lies, and/or structure from large amounts of data stored in data warehouses or other in-

formation repositories, by filtering necessary information from the dataset. It strives to

develop architecture of an algorithm in such a way that it canbe scalable in terms of the

large numbers of features and instances [84].

Classification of large data is achieved by using decision trees like Serial PaRallelizable

INduction of decision Trees (SPRINT) [84], support vector machines [9], neural net-

works [48], etc. Some popular clustering algorithms for handling large data are approxi-

mate kernel K-means [15], Balanced Iterative Reducing and Clustering Using Hierarchies

(BIRCH) [84], spectral clustering [79], Clustering Large Applications based on RAN-

domized Search (CLARANS), Clustering Using Representatives (CURE), and Clustering

in QUEest (CLIQUE) [84].

Big data is a popular term used to describe the exponential growth and availability of data,

both structured and unstructured. It is important to business and society because, with the

internet, the availability of more data leads to more accurate analyses and subsequently

to better decision making. Eventually, it helps to achieve greater operational efficiencies,

cost reductions and reduced risk. Big data has been used to convey all sorts of ideas,

involving huge quantities of data, social media analytics,next generation data management

capabilities, real-time data, and much more.

1.3 Genetic algorithms

Genetic algorithms (GAs) [107], based on powerful metaphors from the natural world,

mimic some of the processes observed in natural selection and evolution, like selection,
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cross-over and mutation, towards stepwise optimization ofmathematical problems. Since

GAs consider multiple points in the search space simultaneously, they have less chance

of converging to local optima. Thereby GAs offer a highly parallel, robust and adap-

tive search process, which generally leads to approximately global solutions guided by

some heuristic function. GAs have been found to provide nearoptimal solutions to com-

plex optimization problem in varied fields like operations research, VLSI design, pattern

recognition, and machine learning [40, 84]. The design of the heuristic objective function

can be of two types, viz. single objective and multi-objective, as described here.

1.3.1 Single objective GA (SGA)

SGAs, while simultaneously considering multiple solutions, use only one fitness function

to provide a near optimal solution. A possible solution is encoded by a binary string,i.e.

a finite set of ‘0’ and ‘1’ bits, and is called a chromosome. ThelengthL of this string

depends on the problem at hand, with the different subsets ofbits being mapped to their

corresponding domains. Increasing the length of a chromosome leads to high precision

of the encoded variables. A collection ofSt such strings or chromosomes is called a

population.

GAs typically start with a randomly generated population ofsizeSt. At every iteration,

each chromosome of the population is evaluated in terms of a fitness functionF signifying

the suitability of the string (or solution) towards a given problem. A new population of

the same size is produced in the next generation, using threebasic operations viz. selec-

tion, crossover and mutation, on each chromosome. SinceL andSt are finite, therefore

the number of possible populations is also finite. GAs are generally executed for a fixed

number of generations, or terminated when there occurs no further improvement in the

generated population over a certain number of iterations. In case of the elitist models, the
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knowledge about the best chromosome (generated so far) is preserved so that the popula-

tion retains the good solutions. Typically the worst stringof the offspring population gets

replaced by the best string of the parent population.

The schematic diagram of the basic structure of an elitist GAmodel is provided in Fig.

1.1.

Figure 1.1: Basic steps of an elitist GA model

A given feature subset is typically represented in a GA framework as a binary string, also

called as chromosome, with a “0” or “1” in positionk specifying the absence or presence

of thek-th feature in the set. The length of the chromosome is equal to the total number of

available features in the data. It represents a prospectivesolution of the problem in hand,

and a population of such chromosomes is evaluated by optimizing an objective function

in order to enhance its fitness. GA proceeds to find a fit set of individuals (here, feature
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subsets) by reproducing new children chromosomes from older parents. In the process it

employs the operators selection, crossover (where parts oftwo parent chromosomes are

mixed to create an offspring) and mutation (where bit(s) of asingle parent are randomly

perturbed to create an offspring). Crossover probabilitypc and mutation probabilitypm are

used. This repeats over multiple generations (or iterations) until a certain fitness level is

achieved. The chromosome with the best fitness value is decoded to obtain the best feature

subset.

1.3.2 Multi-objective optimization and GAs

Multi-objective optimization [16] trades off between a vector of objective functions

~F (~x) = F1(~x), F2(~x), . . . , FM(~x), (1.3)

whereM is number of objectives and~x(∈ Rn) is a pattern vector ofn decision vari-

ables. Unlike single objective optimization, here we try tooptimize two or more conflict-

ing characteristics represented by multiple objective functions. Modeling this situation in

a single objective framework would amount to a heuristic determination of a number of

parameters involved in expressing such a scalar-combination-type objective function. The

multi-objective technique, on the other hand, is concernedwith the simultaneous mini-

mization or maximization of a vector of objectives~F (~x) that can be subject to a number

of constraints or bounds. In other words, we have

Minimize (or Maximize) ~F (~x) (1.4)

subject to gi(~x) ≤ 0, i = 1, 2, . . . , I;

hk(~x) = 0, k = 1, 2, . . . , K;

xL
j ≤ xj ≤ xU

j , j = 1, 2, . . . , n;
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whereI andK are the inequality and equality constraints respectively.Each decision

variablexj takes a value within lower boundxL
j and upper boundxU

j , with the bounds

constituting a decision variable spaceD. The solution set of~x that satisfiesall (I + K)

constraints andall 2n variable bounds, forms the feasible solution spaceΩ. As these

objective functions are competing with each other, there isno unique solution to this tech-

nique. Instead, the concept of nondominance [22] (also called Pareto optimality [13])

must be used to characterize the objectives. The objective function spaceΛ is defined as

Λ = f ′ ∈ Rm, wheref ′ = ~F (~x)~x∈Ω. A mapping from the feasible solutions space into the

objective function space, in two dimensions, is depicted inFig. 1.2.

Multi-objective genetic algorithm (MOGA) simultaneouslydeals with such multiple con-

flicting objective functions to yield a family of solutions,which are not comparable. Each

solution is equally good and can not be completely ordered with respect to the functions.

While the goal of a single objective problem is to find the bestsolution from the solution

space, the multi-objective framework optimizes several objectives to generate a set of solu-

tions by making compromise in performance over all the concerned objectives [1,22,67].

Such a family of solutions is called thePareto Optimal Front[13, 67], and contains those

elements of a solution space which can not be simultaneouslyimproved with respect to all

the competing objectives under consideration.

The concept of optimality, in multi-objective optimization, deals with a set of solutions.

The conditions for a solution to bedominatedwith respect to the other solutions are out-

lined here. A solution~x(1)is said to dominate the other solution~x(2) if the following two

conditions are true [22]:

1. The solution~x(1) is no worsethan~x(2) in all M objectives,i.e.

Fi(~x
(1)) ⋫ Fi(~x

(2)) ∀i = 1, 2, . . .M .

2. The solution~x(1) is strictly betterthan~x(2) in at least oneof theM objectives,i.e.

Fī(~x
(1)) ⊳ Fī(~x

(2)) for at least onēi ∈ {1, 2, ...M}.
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If any of the above conditions is not satisfied, then the solution ~x(1) does not dominate the

solution~x(2). So, the solution~x(1) and~x(2) form Pareto optimal front of these objective

functions. A typical Pareto optimal front over two objective functions is shown in Fig. 1.3.

Here we simultaneously optimize the conflicting requirements of the multiple objective

functions. Multi-objective genetic algorithms (MOGAs) may thus be used as a tool for

multi-objective optimization.

��

��

Ω Λ

x 1

x 2

F1

F2

Figure 1.2: Mapping from feasible solutions space into objective function space

Λ

F2

F1

Pareto optimal
   Front

Figure 1.3: Pareto optimal front or non-dominated solutions ofF1 andF2

The aim of MOGA is to converge to an archive which is a subset ofPareto optimal solu-

tions and consist of diverse set of strings from the objective functions space. During the

execution process a subset of the Pareto front, with respectto the present population, is

created at each generation. In general, MOGAs consider two primary issues.

1) Selection of non-dominated solutions are preferred overdominated ones.
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2) Good spread of solutions is maintained in a population, sothat the archive represents

(as close as possible) the true Pareto optimal set.

In this thesis we have used the Non-dominated Sorting Genetic Algorithm (NSGA-II), that

converges to the global Pareto front while simultaneously maintaining the diversity of a

population [22], for traversing the feature space (in Sections 2.2.3 and 3.3.3).

1.4 Feature Selection

In continuation to the discussion in Section 1.2.3, we recall that feature selection is a

commonly used preprocessing technique for reducing high-dimensional data [77]. It helps

to select a subset of attributes or features, from the original feature space, that can be

used to construct a model describing a dataset. Its objectives encompass (i) reducing

dimensionality, (ii) eliminating noisy, irrelevant and redundant features, (iii) reducing the

amount of data needed for learning, (iv) improving the mining performance of algorithms,

in terms of measures like predictive accuracy, and (v) enhancing the comprehensibility

of constructed models [76, 78]. Feature selection has been widely applied to many fields

such as pattern recognition [58, 83], text categorization [36, 42, 90, 120], image retrieval

[21], stock market analysis [50], wireless sensor network analysis [2], face recognition

[122], customer relationship management [89], intrusion detection [74], genomic analysis

[3,118] and social media analysis [112,113].

1.4.1 Overview

Rapid development in computer engineering enabled collection of data at an unprece-

dented rate, thereby presenting new challenges to feature selection in ultrahigh dimen-

sional data domains [33], stream data [39], multi-task data[91], multi-source data [124,
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125] and high dimensional multi-view data [112]. Absence ofclass labels require unsuper-

vised feature selection. Some strategies explore the intrinsic domain-dependent properties

of datasets using statistics or information theory. In other words, there exists no alterna-

tive to good feature selection as a preprocessing strategy for any decision making task.

As such, there is an ongoing volume of research [76, 78, 112] towards developing robust

feature selection algorithms. We address some of these issues in this thesis.

The selected features are typically evaluated in terms of their performance in decision

making. Feature selection algorithm thus constitute threesteps, namely, feature subset

generation, subset evaluation, and stopping criteria, as summarized in Fig. 1.4. Subset

generation chooses feature subsets from the original feature space, based on certain search

strategies. The evaluation criterion is used to judge the relevance of a selected subset of

features. It may require either labeled or unlabeled data during the evaluation. A super-

vised feature selection method [95, 102, 117] determines feature relevance by computing

the correlation or dependence of the subset with the class label, or by estimating its capabil-

ity to predict the class labels in the dataset. In the absenceof such labels, an unsupervised

feature selection method [19, 30, 60] utilizes several internal characteristics of the data,

like variance, distribution, or preservation of sample similarity, in order to evaluate the

relevance of the selected subset. Research in feature selection is currently getting focused

towards unsupervised learning [76,78].

Feature selection strategies can be broadly categorized into filter, wrapper and embedded

models, based on the degree of involvement of the learning algorithm in the evaluation cri-

terion. Filter models do not utilize any particular learning algorithm during the feature sub-

set evaluation process. Here the subset selection totally depends on the characteristics of

the dataset as well as the class labels of samples (when available). Well-known filter algo-

rithms include Information Gain, ReliefF, Fast Correlation-Based Filter (FCBF), mRMR,

feature dependency, entropy-based distance and Laplacianscore [77]. The wrapper mod-
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Figure 1.4: Typical view of a feature selection model

els, on the other hand, use a predetermined learning algorithm to compute the relevance

of the features in a dataset [66,77,115]. Wrappers also tendto be more expensive than fil-

ters, from the aspects of both time and computational complexity [66,73].Popular wrapper

algorithms are Recursive Feature Elimination Support Vector Machine (RFE-SVM) [45],

and Feature Subset Selection Wrapped around EM Clustering (FSSWEM) [29]. The em-

bedded models incorporate feature selection as a part of their training schedule, while

computing the relevance of features in terms of their effectiveness in optimizing a crite-

rion function [77,128].

Finding an optimal feature subset, based on a criterion, is usually intractable [66] for large

number of features. This is because exhaustively traversing the entire search space is NP-

hard in nature [10]. Therefore researchers use sequential,incremental, or random search

strategies to generate feature subsets for high-dimensional data [78]. A complete search

traverses the total search space of aD-dimensional data, while evaluating all2D feature

subset combinations. Thereby, it is guaranteed to find an optimal feature set. However, a

search need not be exhaustive in order to guarantee completeness. Heuristic functions have

been introduced to minimize the size of the search space, without jeopardizing the chances

of finding the optimal result. Random search either starts with a randomly selected subset

for performing sequential search, or proceeds to generate the next subset in a completely
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random manner.

The use of soft computing is an interesting proposition along this direction [5, 108], in

order to arrive at an acceptable solution at a lower cost. This is of particular interest

towards the efficient mining and analysis of large data. We can utilize the uncertainty

handling capacity of fuzzy sets and the search potential of genetic algorithms for efficiently

traversing large search spaces [84].

Since the problem of feature selection involves an exponential search space, therefore

GAs become naturally applicable [100, 119] due to their heuristic nature. The use of GA

in feature selection already exists in literature [12,58,106,107], where it is employed as an

optimization technique to select a minimal set of features.Feature subsets were selected

[106] using GA, involving an objective function based on thecapability of preserving the

correspondence between pairwise inter-pattern distances(relative to the original feature

set) in terms of Sammon’s stress function. Here GA was used torandomly traverse the

feature subset space.

When there occur two or more conflicting characteristics to be optimized, often the single

objective optimization function requires an appropriate formulation in terms of an additive

combination of the different criteria involved. In such cases multi-objective optimization

becomes more appropriate. Feature selection can be formulated as a minimization of the

number of features and maximization of the information content in unsupervised learning

(or predictive accuracy in supervised learning) over the selected subset. MOGAs were

employed [5] over a population of candidate strings to select multiple non-dominated so-

lutions representing strings of feature subsets. We have used both single objective and

multi-objective GA for evaluating the fitness of a population of encoded chromosomes for

feature selection in Sections 2.2.3, 3.3 and 3.3.3.
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1.4.2 Evaluation of subspaces

The partitioning in different feature subspaces is evaluated both internally and externally.

While the external measures compare the resultant partitioning with the correct classifi-

cation of the (known) data, the internal measures compute a relationship involving the

inter- and intra-cluster separability. There exist many measures of this type in litera-

ture [37, 38, 54, 56, 104]. Some of these are discussed below,and are used in Sections

2.3, 3.4, and 3.4.3.

TheSilhouette statistic[103] offers a way of internally validating the generated clusters.

Though computationally more intensive, it is another way ofestimating the number of

clusters in a distribution. The Silhouette index,S, computes for each point a width de-

pending on its membership in any cluster. This silhouette width is then an average over all

observations. This is expressed as

Sk =
1

Nk

∑

i:~xi∈Uk

bi − ai

max(ai, bi)
, (1.5)

whereNk is the total number of points of clusterUk, ai is the average distance between

pattern~xi and all other points in its own clusterUk , andbi is the minimum of the average

dissimilarities between~xi and patterns in other clusters. Finally, the global silhouette

index,S, of the clustering is given by

S =
1

k

k∑

j=1

Sj . (1.6)

The partition with the highest value ofS is considered to be optimal.

Redundancy rate (RED) assesses the average linear correlation among all feature pairs

in a subset ofG features, and is measured as [127]

RED(G) =
1

d(d− 1)

∑

fi,fj∈F,i>j

ρi,j. (1.7)
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Hereρi,j is the Pearson correlation between feature pairsfi andfj, and the cardinality of

G is d. A larger value of this measure indicates that more featuresare strongly correlated,

thereby implying that greater redundancy inG. A smaller value ofRED(G) corresponds

to the selection of a better feature subset.

The F -measureFm is an external validation technique, using class labels as external

information. It combines precision and recall [101], expressed as

Recall(i, j) =
nij

ni
, (1.8)

Precision(i, j) =
nij

nj

, (1.9)

wherenij is the number of patterns belonging to classi that fall in clusterj, andni, nj are

the cardinalities of classi clusterj respectively. TheFm(i, j) of clusterj and classi is

computed as

Fm(i, j) =
2× Recall(i, j)× Precision(i, j)

Recall(i, j) + Precision(i, j)
. (1.10)

No one-to-one mapping exists between a class and a cluster. TheFm(i) for a particular

classi is given as

Fm(i) = max
0<j<k

Fm(i, j). (1.11)

Finally, theF -measure is evaluated as

Fm =
∑

i

ni

N
Fm(i), (1.12)

with values lying in the range[0, 1], and a larger value ofFm indicating improved quality

of clustering.

Next we describe a few external measures for comparing different sets of partitioning, over

the same or different feature spaces. LetU be a set of clustersU1, U2, . . . , Uk. Jaccard
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Index (JI) [6], between two sets of clusters (partitioning)U andU ′, is defined as

JI(U, U ′) =
n11

n11 + n10 + n01
. (1.13)

Heren11 is the number of pattern pairs lying in the same cluster underboth sets of parti-

tionsU andU ′, n10 is the number of pattern pairs falling in the same cluster under U but

not in U ′ andn01 is the number of pattern pairs that belong to the same clusterunderU ′

but not inU . A value ofJI nearer to 1 indicates a better match between the clusters from

the two different partitioning spacesU andU ′.

Rand Index (RI) [99] is used to compare the partitioning setsU andU ′ as

RI(U, U ′) =
n11 + n00

N(N − 1)/2
, (1.14)

wheren00 is the number of pattern pairs that belong to different clusters under partitioning

U andU ′. A value ofRI nearer to 1 indicates a better matching betweenU andU ′. We

have0 ≤ JI, RI ≤ 1.

An information theoretic measureVariation of Information (V I) [81] is also used to

compare the partitioning spacesU andU ′. It is defined as

V I(U, U ′) = H(U)−H(U ′)− 2I(U, U ′), (1.15)

where

H(U) = −
k∑

j=1

P (j)log(P (j)) (1.16)

is the entropy associated with clusteringU and

I(U, U ′) =
k∑

j=1

k′∑

j′=1

P (j, j′)log
P (j, j′)

P (j)P (j′)
(1.17)

is the mutual information between clusteringU andU ′. HereP (j) = nj/N is the proba-

bility of a pattern belonging to clusterUj , wherenj is the number of patterns in the cluster
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Uj , andP (j, j′) =
|Uj∩U ′

j′
|

N
is the probability that a pattern belongs to thejth cluster in both

U andU ′. We have0 ≤ V I ≤ logN . A value ofV I nearer to 0 implies better matching

of the partitions in the spacesU andU ′.

The Jaccard Score (JAC) evaluates the proficiency of a selected feature subset in pre-

serving pairwise sample similarity, and is computed as [127]

JAC(MG, M, m) =
1

N

N∑

i=1

NN(i, m, MG) ∩NN(i, m, M)

NN(i, m, MG) ∪NN(i, m, M)
. (1.18)

HereMG = XGXT
G is a similarity matrix computed over the selected feature set G (using

the inner product),XG is the pattern set with theseG features, andM is the similarity

matrix computed in the original feature space;NN(i, m, M) andNN(i, m, MG) denote

the m-nearest neighbors of theith sample according toM andMG respectively.JAC

measures the average overlapping of the neighborhoods specified by MG andM , with a

higher score indicating a better preservation of sample similarity.

1.4.3 Role of similarity

The concept of similarity is basic to human experience. In everyday life it implies some

degree of closeness between two physical objects or ideas orpatterns, with the metric

being often used as a standard for measurement. Effective solutions for data indexing

and data mining often require that appropriate measure of pattern-to-pattern similarity be

provided. LetX be a set. A functions : X ×X → R is called similarity or proximity in

X if, for ∀ x, y ∈ X, we have

1. s(x, y) ≥ 0 (non-negativity);

2. s(x, y) = s(y, x);

3. s(x, y) < s(x, x) ∀x, y ∈ X : x 6= y ands(x, y) = s(x, x) if and only if x = y.
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If any distance satisfies the triangular property then it is called a metric. Such sets of dis-

tances or similarities are of importance in pattern recognition, as they help in projecting

patterns or objects closely if they are in the same cluster orgroup, and far apart if they be-

long to different clusters or groups. Any use of such similarity measures involves implicit

assumption that the data objects or patterns naturally formgroups, which can be regarded

as arising from different generation mechanisms while sharing common statistical charac-

teristics [25,38].

Unsupervised learning aims to group objects based on similarities, with the measure being

highly dependent on the features representing the data. Many learning algorithms assume

the domain expert to have determined the relevant features.Since all features are not

equally important, there can exist redundancy, irrelevance or noise – which can again

misguide learning. The challenge is to identify and eliminate unimportant features from

the datasets, thereby increasing comprehensibility underthe curse of dimensionality.

The concept of preservation of sample similarity has been used to identify irrelevant fea-

tures [49, 123] as well as to remove redundant features [127]. Zhao and Liu [123] (SPEC

framework) ranked each feature based on their alignment to the leading eigenvectors of

the pairwise similarity matrix of samples, thereby preserving the geometric structure of

data. This was employed in Sections 3.4.2 and 3.4.3. Heet al. [49] evaluated features

individually, depending on their capability for preserving the locality in terms the nearest

neighbors of sample points. Another popular feature selection algorithm, based on nearest

neighbor approach, is ReliefF [65, 102]. This supervised algorithm ranks each individual

feature depending on how well it can distinguish all neighbouring same-class data points

in the training set from those belonging to different classes. This has been used in Sections

2.3.4, 3.4.2 and 3.4.3.

Since these algorithms handle each feature individually, while neglecting possible corre-

lation between different features in the set, therefore there exists a chance of redundant
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feature(s) being retained in the reduced subset; such that eventually the selected feature

set may not be optimal [11]. Zhaoet al. [127] overcame this limitation by collectively

evaluating a set of features, and solved the combinatorial optimization formulation using

sequential forward selection (SPFS-SFS) approach. This isemployed in Sections 3.4.2

and 3.4.3.

Feature selection using feature similarity is not new in literature. Maximal information

compression index (fsfs) has been used in Ref. [83], to measure the similarity between

features based on their linear dependence. This feature selection method initially partitions

the original feature set into distinct subsets or clusters,such that all features within a cluster

are highly similar to each other and vice versa. A single representative feature from each

such cluster is then selected, based on the nearest neighbors of the features, to constitute

the resulting reduced subset. The maximal information compression index

λ2 = 1/2[vr(~fi) + vr(~fj)−
√

(vr(~fi) + vr(~fj))2 − 4vr(~fi)vr(~fj)(1− ρ(~f1, ~f2))2]

(1.19)

is used for feature clustering, wherevr(~fi) is the variance of the feature vector~fi, ρ(~fi, ~fj) =

cov(~fi, ~fj)√
vr(~fi)vr(~fj )

is the Pearson correlation coefficient between~fi and~fj , andcov(~fi, ~fj) is the

covariance between~fi and~fj . Hereλ2 becomes zero when the features are linearly depen-

dent, and it increases as the amount of dependency decreases. The computational com-

plexity of this scheme isO(D2 ∗N) [83], with N being the cardinality of the samples or

instances of a dataset. However any variation in the set of nearest neighbors can influence

the cluster of features, and thereby affect the final featureset. This is used in Section 4.4.

The Hilbert-Schmidt independence criterion (HSIC) [41] has also been used to measure

the similarity between features [18]. It maps the feature vectors into a Reproducing Kernel

Hilbert Spaces (RKHS) to calculate the norm between them. The algorithm computes

HSIC(~fi, ~fj) =
1

N(N − 3)
[trace(K̃L̃) +

1T K̃11T L̃1
(N − 1)(N − 2)

− 2

N − 2
1T K̃L̃1], (1.20)
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whereK̃ and L̃ are kernel matrices with diagonal elements equal to 0,i.e K̃ = K −
diag(K) andL̃ = L − diag(L). HereK(p, q) = φ1(fip, fiq) andL(p, q) = φ2(fjp, fjq)

are the kernel matrices withp, q = 1, . . . N . φ1 andφ2 are the Gaussian mapping func-

tions [18, 41]. Note that the choice of the kernel affects themeasurement of dependence

or similarity between the features. The computational complexity of HSIC (computed

between a pair of features) isO(N2) [109]. It is employed in Section 4.4.

Mutual information, in terms of minimal-redundancy-maximal-relevance (mRMR) crite-

rion [26] has been used [95] to measure the maximal statistical dependency or similarity

between features. The algorithm proceeds by selecting features incrementally,i.e., it in-

cludes a feature into an already generated subset when the inclusion improves the overall

mutual information of the subset. The supervised mRMR scheme [95] selects features

incrementally by optimizing

max
~fj∈{~GD−~Gm−1}

[MI(~fj , ~w)− 1

m− 1

∑

~fi∈{~Gm−1}

MI(~fj , ~fi)]. (1.21)

HereMI(~fi, ~w) is the mutual information between feature vector~fi and target class vector

~w, MI(~fj , ~fi) is the mutual information between~fi and~fj , {~Gm−1} is the subset of(m−1)

selected features, and{~GD} is the original feature space. The feature~fi from the set

{~GD − ~Gm−1}, which maximizes eqn. (1.21), is selected at themth step to generate a

feature subset{~Gm} of sizem. The Parzen window method is used to approximate the

mutual information. However, in the process, the algorithmmay also happen to miss the

best subset. This measure is used in Section 4.4.

Related literature on feature subset evaluation include Category Utility score [23], Fisher’s

feature dependency measure [27, 111], and entropy-based unsupervised feature ranking

[20]. These proceed by selecting the subset(s) of features while trying to preserve the in-

herent characteristics of the data. Authors have used an unsupervised method [116] that

assumes a linear model to choose a subset of features while approximating the original
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data. Zhaoet. al. [126] developed an embedded model which evaluates a feature subset

based on its capability of preserving sample similarity.

The role of soft computing in efficiently handling similarity, from the perspective of fea-

ture selection, is one of the major thrusts of this thesis. Weuse fuzzy proximity to quantify

topological neighborhood information, followed by its incorporation in dimensionality re-

duction. A secondary distance measure is then introduced topreserve sample similarity,

and is used to identify optimal feature set(s) from the data.We also employ a relatively

new statistic called distance correlation to measure feature dependence, and propagate this

information in a belief propagation network to perform clustering of a feature space for

deriving meaningful feature subset(s). Evaluation indices demonstrate that our algorithms

produce more informative, less redundant feature subset(s) over related methods existing

in literature. The selected subsets also resulted in comparatively higher predictive accu-

racy.

1.5 Scope of the Thesis

The objective of this thesis is to present some investigations, both theoretical and exper-

imental, addressing certain aspects of unsupervised feature selection using similarity, in-

volving structural, neighborhood and affinity between pattern pairs, and passing messages

between feature pairs. Quantitative evaluation of the selected reduced feature subset(s) is

also performed, and these results are compared with other state-of-the-art feature selection

techniques.

Some of the issues covered in this thesis include concepts from structural similarity, shared

nearest neighbors, and distance correlation, towards improved feature selection. The ef-

fectiveness of the different algorithms is demonstrated onone synthetic, along with fifteen
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sets of publicly available real data viz. Iris1, Spambase1, Ionosphere1, Multiple Features

(MF)1, Isolet1, ORL2, COIL20 [88], USPS3, NSL-KDD4, Colon5, Leukemia6, Prostate6,

DLBCL6, MLL 6. The outline of the investigations is summarized below, under different

chapter headings.

1.5.1 Feature selection using structural similarity

A new method of feature selection is developed, based on structural similarity [72, 85].

The topological neighbourhood information about pairs of objects (or patterns), to parti-

tion(s), is taken into consideration while computing a measure of structural similarity. This

is termed proximity, and is defined in terms of membership values. Multi-objective evolu-

tionary optimization is employed to arrive at a consensus solution in terms of the contra-

dictory criteria pair involving fuzzy proximity and feature set cardinality. Results on Iris,

Ionosphere, Spambase, Isolet and Colon, and a synthetic dataset, show that the method

led to a correct selection of the reduced feature subset fromdata having low, medium as

well as high dimensionality. Comparative study is also provided, and quantified in terms

of accuracy of classification and clustering validity indices.

1.5.2 Feature selection using SNN distance

In this chapter, we use the concept of Shared Nearest Neighbor (SNN) distance [53] to

design a novel feature selection strategy. The algorithm strives to preserve the pairwise

sample similarity in the selected feature subspace [71]. The similarity is measured in

1http://archive.ics.uci.edu/ml/datasets.html
2http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
3http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.html#usps
4http://nsl.cs.unb.ca/NSL-KDD/
5http://microarray.princeton.edu/oncology
6http://www.biolab.si/supp/bi-cancer/
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terms of the number of patterns common to the fixed size neighborhoods of a pair of

sample points, as determined by primary distance measures like Euclidean, City block,

Cosine. This is a filter model which collectively evaluates aset of features. A secondary

similarity between pattern pairs is computed, based on a ranking of the nearest neighbors

of each sample as induced by the primary distance (or similarity). Genetic algorithm (GA)

is used to traverse the search space to find an optimal featureset.

This is then extended to improve the scalability to data withlarger numbers of samples.

In order to overcome the bottleneck of generating a large pairwise similarity matrix, we

adopt a divide-and-conquer strategy. The data is randomly partitioned into nearly equal

subsets, followed by a merger of the sample pairs having an SNN distance measure below

some user-defined threshold within each such subset. Finally a feature subset is selected

from this merged set of patterns, while preserving the pairwise sample similarity based on

SNN distance. Results are provided on five publicly available datasets viz. MF, USPS,

ORL, Spambase, and COIL20, along with comparative study involving related methods.

This work further extended in a multi-objective framework,which tries to preserve pair-

wise sample similarity while reducing the feature size [70]. A multi-objective framework

is employed for the preservation of sample similarity, along with dimensionality reduction

of the feature space. A reduced set of samples, chosen to preserve sample similarity, serves

to reduce the effect of outliers on the feature selection procedure while also decreasing

computational complexity. Experimental results on four sets of publicly available datasets

viz. MF, USPS, ORL, and COIL20 demonstrate the effectiveness of this feature selection

strategy. Comparative study with related methods is based on classification accuracy in

the reduced space and evaluation indices.
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1.5.3 Feature selection through message passing

A novel similarity-based feature selection algorithm is developed, using the concept of

distance correlation. A feature subset is selected in termsof distance correlation between

pairs of features, without assuming any underlying distribution of the data [69]. The

pairwise similarity is then employed in a message passing framework, to select a set of

exemplars features involving minimum redundancy and reduced parameter tuning. The

algorithm does not need an exhaustive traversal of the search space.

The methodology is next extended to handle large data, usingan inherent property ofR.

The effectiveness of the algorithm is demonstrated on nine sets of publicly-available data

viz. Colon, Leukemia, DLBCL, Prostate, MLL, NSL KDD, Isolet, COIL20, and MF. The

algorithm starts by simultaneously considering all the features as potential exemplars, and

gradually updating messages on the basis of simple formulaethat search for the minima

of an appropriately chosen energy function. The magnitude of each message reflects the

current affinity that one feature has for choosing another feature as its exemplar.

1.5.4 Conclusions and scope for further research

The concluding remarks with future scope of research are presented in Chapter 5.



Chapter 2

Feature Selection using Structural

Similarity

2.1 Introduction

An interesting way of looking at feature selection is to aim at preserving the structural

similarity of data clusters, while mapping a high-dimensional feature space to a lower-

dimensional one. In other words, a pair of objects (or patterns) belonging to the same

partition in the original high-dimensional space is expected to be retained in the same par-

tition in the reduced domain as well. By considering such similarity or proximity between

all object pairs as a guideline [94], one can hope to eliminate some of the less important

features. The aim is to retain those features which allow thesimilarity between the parti-

tioning, in the original and reduced spaces, to be high. Thiscan also help in improving the

computational efficiency in the lower dimensional space, given that the mapping is nearly

lossless as measured in terms of the similarity measure used.

The chapter introduces a new method of feature selection, based on structural similarity.

43
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The topological neighbourhood information about pairs of objects (or patterns), to parti-

tion(s), is taken into consideration while computing a measure of structural similarity. This

is termed proximity, and is defined in terms of membership values of the corresponding

patterns. For a dataset withN input patterns we can define anN × N symmetric matrix,

referred as proximity matrixP, whose(i, j)th entry represents the similarity (or dissim-

ilarity) measure between theith andjth patterns fori, j = 1, . . . , N . Typically distance

functions are used for the purpose. The proximity matrix is apertinent construct that al-

lows us to deal with structural information inherent in the data. In the fuzzy perspective

the concept of similarity boils down to the membership valueµ.

We focus on the use of proximity relationship, as a similarity measure, from the viewpoint

of fuzzy sets. This is used as one of the objective functions,during multi-objective opti-

mization, for evaluating the fitness of the feature subsets of varying cardinality. The use

of fuzziness allows us to efficiently model uncertainties and ambiguities inherent in real

life overlapping data. The proximity of a pair of patterns inthe original feature space is

compared with that in the reduced subspace of selected features. If they are similar, as

measured in terms of their belonging to the same cluster (both before and after feature se-

lection), then this implies that the eliminated feature(s)are not so relevant to the decision

making process.

The second criterion is the cardinality of the selected feature subset. This is sought to be

minimized, and serves as a penalty to the objective function. A close observation reveals

that these two criteria are of a conflicting nature. A smallersubset of features is likely to

result in a reduced proximity, and hence reduced classification accuracy (as compared to

the original feature space).

Multi-objective optimization is employed to arrive at a consensus solution in terms of this

contradictory criteria pair, involving fuzzy proximity and feature set cardinality. Here

MOGA is used as a tool for the multi-objective optimization,and any other technique
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could also have sufficed [17]. The user does not need to specify the desired number of fea-

tures, as it is embedded in the optimization process. The algorithm terminates when an op-

timal subset of features is obtained, according to the fitness criteria of the multi-objective

genetic optimization. Experimental results indicate correct selection of the reduced fea-

ture subset. Validation of the selected set of features is reported in terms of classification

accuracy using WEKA [46] implementation of several well-known classifiers, as well as

internal and external clustering validity indices.

The rest of the chapter is organized as follows. In Section 2.2 we present the proximity-

based methodology for feature selection and outline the background on multi-objective op-

timization. The experimental results and comparative study are described in Section 2.3,

on Iris, Ionosphere, Spambase, Isolet and Colon, and a synthetic dataset. Finally, Sec-

tion 2.4 concludes the chapter.

2.2 Proximity-based Feature Selection

Let us consider Fig. 2.1 to explain the concept of structuralsimilarity between clusters in

the context of feature selection. Using this crude example,we describe how that the idea

of preserving cluster structure of original feature space in a feature subset actually leads to

feature selection. Removing irrelevant feature(s) does not significantly affect the internal

characteristics of the data. Three patternsX1, X2 andX3 are seen to be partitioned into

the same cluster in the three-dimensional feature space of part (a). The three features are

aligned with three reference axesi.e. x-axis,y-axis andz-axis of this dataset.

If the least important featurei.e. the feature aligned withy-axis is eliminated, the cluster

structure is expected to remain unaltered; implying that the single cluster would still con-

tain the same distribution of pattern points as depicted in part (b) of the figure. Here the

three- to two-dimensional mapping is said to be almost lossless, such that the clustering
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structures in the two subspaces remain very similar. The clustering structure is thus said

to be preserved in the transformation between these two subspaces.

On the other hand, if an important featuree.g.the feature aligned withz-axis is eliminated

then the mapping is bound to disrupt the cluster structure, since important information gets

lost in the process. From part (c) of the figure we observe thatthe similarity between the

partitioning, in the two subspaces, is now no longer high. Inother words, the distance

between the partitioning is higher; with the pattern pointsgetting redistributed into two

different clustersi.e. cluster structure of original space is not preserved here..

2.2.1 Concept of proximity

Proximity is used as a way of determining the similarity between clustering structures,

while mapping from a high- to a low-dimensional feature space. In the process, we aim to

retain the important features. Such preservation of structural similarity between clusters

is expected to lead to the selection of important features. Let there bek subsets of data

located in different feature subspaces, with the number of patterns in each subspace being

equal toN .

Fuzzy c-Means (FCM)

[8] The FCM is outlined here for our reference.

1. Assignc initial means~mjs. Choose the value of fuzzifierff and the number of

iterationsiter.

2. Repeat Steps 3 to 4 until there is no significant change in partitions, or upto a specific

number of iterationsiter.
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(a)

(b) (c)

Figure 2.1: Mapping of patterns from (a) three-dimensionalspace, to a pair of two-

dimensional spaces having cluster structure (b) preserved, and (c) not preserved
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3. For i = 1, 2, . . .N and j = 1, 2, . . . , c, compute the membershipµij of the ith

pattern~xi to thejth clusterUj by

µij =
1

∑c
k=1[

dis(~xi, ~mj)

dis(~xi, ~mk)
]

2

ff−1

:

c∑

j=1

µij = 1 ∀i and 0 <

N∑

i=1

µij < N ∀j. (2.1)

Put~xi in Uj if µij > µij1, ∀j1 6= j.

Resolve ties arbitrarily.

4. Update mean by

~mj =
1

∑N
i=1 µff

ij

N∑

i=1

µff
ij ∗ ~xi, ∀j. (2.2)

Typically, ff > 1.

We form ak × N partition matrixPR consisting of membership valuesµij . This mem-

bership value is updated by minimizing the objective functionJf of eqn. (2.3).

Jf = min
c∑

j=1

N∑

i=1

µff
ij ∗ (~xi − ~mj)

2. (2.3)

We computeµij ∈ [0, 1] as the membership of thejth pattern to theith meanmi, where

||.|| is the distance norm and1 ≤ ff <∞ is the fuzzifier [8]. Note that the dimensionality

d of the patterns in each subset could be different. However, in each subset, the distance

of a pattern is computed from the fuzzy cluster prototypes [of eqn. (2.2)] over the same

set of features.

The partition matrix is used to evaluate proximitypx, which measures the extent to which

a pair of patterns are regarded as similar or dissimilar in different subspaces [94]. This

incorporates a mechanism of partial supervision in the process of navigating a structure in

the data. The proximity matrixP contains the proximity values for all possible pairs of

patterns. The fuzzy partitions generated by FCM, using eqn.(2.1), are directly related to

the proximity relation. The proximity between pattern pairk1 andk2 is computed as
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px(k1, k2) =

k∑

i=1

(µik1
∧ µik2

), (2.4)

where∧ denotes the minimum operation,px(k1, k2) ∈ [0, 1], andk1, k2 = 1, . . . , N .

Evidentlypx(k1, k2) = 1 for k1 = k2, such that membership is evaluated with respect to

FCM, andpx(k1, k2) = px(k2, k1).

The aim is to reduce the number of features, subject to maintaining the structural similarity

between patterns. For this purpose multi-objective optimization is employed to handle the

conflicting requirements of dimensionality reduction along with proximity preservation.

We use MOGA [here NSGA-II] [22], as a tool to efficiently traverse the feature subspaces,

subject to fulfilling the above objectives.

2.2.2 Proximity between feature subspaces

Let the cardinality of the original and reduced feature spaces beD andd, respectively.

Let the proximity matrices in these two spaces be denoted byP andP ′. The similarity

between the two matrices is represented by a scalar value

Ps =
N∑

k1=1,k2>k1

[px(k1, k2) ∧ px′(k1, k2)], (2.5)

wherepx′(k1, k2) is computed by eqn. (2.4) in the reduced feature space and∧ denotes the

minimum operation.

Note that the membership valueµik at each stage is computed based on the FCM objective

function, using eqns. (2.1)-(2.3). This becomes inherent in the proximity matrix in eqn.

(2.4). Moreover, as the MOGA updates the encoded cluster means over the generations it

has to continuously refer to the FCM based membership computations.

We retain only those pattern pairs which belong to the same cluster in both the original and

the reduced feature space, in an attempt to reduce the ambiguity of the resultant clustering.
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For such cases we use

Ps0
=

N∑

k1=1,k2=k1+1

[(px(k1, k2) ≥ θ) ∧ (px′(k1, k2) ≥ θ)], (2.6)

such thatPs0
takes the minimum of the values ofpx(k1, k2) andpx′(k1, k2) only when

bothpx(k1, k2) andpx′(k1, k2) are greater than a thresholdθ. This implies that bothµik1

andµik2
are greater than or equal toθ in the original and reduced feature spaces by eqn.

(2.4).

2.2.3 Optimization tool

The multi-objective optimization is implemented using NSGA-II. We encode the problem

as a real string of lengthL, with the firstd bits corresponding to thed features in the orig-

inal space. Here, in the bit representation, a “1” implies that the corresponding attribute

is present while “0” indicates that it is not. The desired number of features need not be

pre-specified, since it is automatically determined duringthe optimization. Let the size of

a chromosome be

L = d + k × d = d× (k + 1). (2.7)

The k cluster centers (or prototypes) are encoded in real form in the subsequentk × d

bits. Only those features of the centers in the second part ofthe string, corresponding to

a “1” in the first part, are considered during clustering. Fig. 2.2 depicts such an encoding

in a chromosome, representing a sample set of cluster prototypes in a feature subspace.

Initially all the bits are set randomly.

The objective is to optimize a conflicting set of requirements; i.e., select a minimal number

of features that enable us to arrive at an acceptable structure-preserving mapping. We

employ MOGA withPs0
of eqn. (2.6) as the fitness function

F1 = Ps0
. (2.8)
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Figure 2.2: An encoded chromosome representing a feature subspace with the cluster

prototypes

The second fitness function corresponds to the cardinality of the feature set under consid-

eration, and is defined as

F2 = d. (2.9)

While F2 is minimized to give credit to a candidate string containingless attributes, the

functionF1 maximizes the extent to which all pairs of patterns belong tothe same cluster

in the two feature spaces,viz., original and reduced subspace. These two fitness functions

are optimized in the framework of MOGA. Clustering is done byFCM to update the

prototypes~mi, in the different subspaces.

2.2.4 The algorithm

The objective is to preserve the proximity relationship between pattern pairs, which is a

measure of their structural similarity, while reducing thenumber of features. The main

steps of the algorithm PR, outlined below, are repeated overseveral generations.

1. Initialize the population randomly, with real numbers.

2. Select a pair of chromosomes randomly for single-point crossover.

3. Perform two-point mutation simultaneously on the two parts of the string. In the

first part, the value of the randomly chosen bit (signifying presence or absence of

the corresponding attribute) is flipped. In case of the second part, the valuemijold
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corresponds to the randomly chosen attributej of theith cluster center; this is mu-

tated as

mijnew
= σ × x + mijold

, (2.10)

where the perturbationx(∼ Norm(0, 1) is drawn from a Gaussian distribution, the

varianceσ2 determines the magnitude of this perturbation at positionmijold
, and

mijnew
is its new value (at the corresponding attributej of the ith cluster center)

after mutation.

4. Compute the fitness values of different feature sets basedon their proximity and

cardinality, using eqns. (2.8)-(2.9).

5. Rank the population using dominance criteria. Compute the crowding distance of

the chromosome, to maintain diversity in the population [22].

6. Combine parent and offspring population. Replace the parent population by the best

members of the combined population.

Note that the cluster centers are initially set randomly. During crossover and mutation the

centers get modified. Their effect is reflected through the proximity function [eqn. (2.8)]

into the fitness evaluation. The features present in a chromosome, as indicated by the

“1”s in the first part, determine the reduced feature subspace. They affect the computation

of proximity in terms of cluster prototypes, using eqns. (2.1)-(2.3) and (2.4). Finally the

selected feature sets are validated in terms of cluster validity indices [eqns. (1.6) and

(1.12)], and the classification accuracy.

2.3 Experimental Results

The performance of the algorithm was tested on various synthetic and real datasets. These

include (i) a synthetic dataset and the benchmarkIris flower (low-dimensional), (ii)Iono-
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sphereandSpambase(medium-dimensional), and (iii)IsoletandColoncancer microarray

gene expression data (high-dimensional). All results wereaveraged over several (3-5) runs

involving different random seeds. No significant change wasobserved in the performance,

using different seeds. The choice ofθ in eqn. (2.6) was taken to be 0.5, so that the member-

ship of pattern pairk1, k2 became simultaneously high in the same cluster. The crossover

and mutation probabilities, in the MOGA, were selected as 0.85 and 0.05 respectively after

several experiments. The clustering was evaluated in termsof clustering validity indicesS

andFm [of eqns. (1.6) and (1.12)]. The selected feature subsets were externally validated

on their predictive accuracy, using the publicly availableWEKA implementation [46] of

different classifiers likek-nearest neighbors (k-NN), Naive Bayes’ (NB) and support vec-

tor machine (SVM) [described in Section 1.2.1], involving ten-fold cross validation. The

clustering structures of reduced and original feature spaces are compared usingJI, RI

andV I of eqns. (1.13)-(1.15).

2.3.1 Data description

The synthetic data contains three clusters, each with 100 randomly generated patterns.

The two-dimensional scatter plot of Fig. 2.3 depicts the patterns lying within circles of

unit radii, each having different centers. A lot of overlapping is artificially introduced. We

included a third attribute having completely random values, to evaluate the effectiveness

of the algorithm in identifying the significance of the first two features. TheIris data

consists of 150 pattern points with four input features corresponding to measurements of

sepal length, sepal width, petal length, petal widthon fifty flowers from each of the three

speciessetosa, versicolor, virginica(representing the three output classes).

The Ionospheredata represents autocorrelation functions of radar measurements. There

are 351 instances, each having 34 (continuous) features andbelonging to two classes,viz.
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Figure 2.3: Synthetic data

“good” or “bad” – indicating the passage or obstruction of free electrons in the ionosphere.

We considered a total of 32 features (attributes 3 to 34) as input to the algorithm. The

Spambasedata consists of 4601 instances of emails, to be classified into spam or nonspam

categories. There are 57 continuous attributes denoting word frequencies.

The Isolet data consists of several spectral coefficients from the utterance of English al-

phabets by 150 subjects. There are 617 real features (havingvalues in the range [0,1])

with 7797 instances and 26 classes. The above-mentioned three datasets were taken from

the UCI Machine Learning Repository, as indicated in Section 1.5.

The Colon Cancerdata is a collection of 62 gene expression measurements fromcolon

biopsy samples. There are 22 normal and 40 colon cancer samples, having 2000 genes

(features). Typically, microarray gene expression data involves a larger number of features

(genes) as compared to the samples (time points). In other words, the features correspond

to gene expression values that indicate the abundance of mRNA in a sample (or tissue)

for a number of patients; with the objective being to separate cancer patients from healthy

ones based on their gene expression profiles. Many of these features are redundant and
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adversely affect the output decision. Hence preprocessingis often needed [44] to initially

eliminate some of the irrelevant features. Some initial preprocessing [5] was done, to

reduce the large number of redundant genes to 943, before applying our algorithm.

2.3.2 Low- and medium-dimensional data

The performance of the algorithm for strings generated in the non- dominated Pareto front,

for the four datasets (having low and medium number of features), are presented in Ta-

bles 2.1-2.2. The second column (in both tables) indicates the selected attributes, marked

by a “1” in the first part of the chromosome, with the string corresponding to feature po-

sitions1, 2, . . . , D. The two fitness functions are evaluated by eqns. (2.8)-(2.9). However

for the cases where the original feature space did not figure in the Pareto optimal front, this

is still included as the last row for each dataset in the tablefor comparison (without any

F1). The external validation performance of the selected feature subsets is provided, along

with that of the original set, in terms of classification accuracy involving ten-fold cross-

validation using different classifiers. The algorithm was run for 100 generations with a

population size of 50 chromosomes. The last two columns indicate the Silhouette index

(S) [eqn. (1.6)] andF -measure (Fm) [eqn. (1.12)] values.

We know that the synthetic data is represented with the first two attributes, and the third

feature was inserted randomly. As evident from the results,the selection of the first two

features (only) generally results in the best overall accuracy, as well asS andFm, due

to the elimination of this unimportant third feature. The feature set{1,2} also produces

better clustering in reduced space according toJI [eqn. (1.13)],RI [eqn. (1.14)] andV I

[eqn. (1.15)].

In case of theIris data, it is observed that the choice of feature 3 occurs in allthe three

cases, with feature 4 being selected the second-most frequently. Together they result in the
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Table 2.1: Performance of selected feature subsets, of low cardinality, from Pareto-optimal

front

F1 F2 Validation accuracy (%) by Silh. Fm-

Dataset Feature prox. card. k-NN NB SVM stat. meas. JI RI V I

subspace (×104) S

1 77.4

{1, 2, 3} 2.10 3 3 73.9

(Original) 5 76.0 78.0 78.7 0.055 0.395 – – –

7 77.6

Synthetic 1 60.3

{1} 0.74 1 3 59.5

N = 300 5 60.2 62 61.3 0.044 0.622 0.21 0.55 2.13

D = 3 7 60.3

k = 3 1 79.2

{1, 2} 1.53 2 3 79.1

5 80.4 80 80.3 0.088 0.801 0.20 0.56 2.17

7 80.8

1 94.7

{2, 3, 4} 0.58 3 3 94.2

5 93.8 96.0 97.3 0.176 0.940 0.80 0.93 0.38

7 93.0

Iris 1 93.0

{3} 0.34 1 3 92.9

N = 150 5 92.1 96.7 95.3 0.214 0.933 0.82 0.93 0.37

D = 4 7 92.4

k = 3 1 94.8

{3, 4} 0.36 2 3 94.6

5 94.2 96.0 96.7 0.219 0.950 0.79 0.92 0.42

7 94.3

1 93.3

(Original) – 4 3 92.6

5 91.4 96.0 96.7 0.156 0.677 – – –

7 89.7
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second highest proximity and second lowest cardinality. Itis well-known that these are

the two features most important for discriminating betweenthe classes in this benchmark

data. Interestingly, the performance of thek-NN in the reduced space (involving attributes

3 and 4) is found to be the overall best – inspite of the elimination of two features. The

same holds for the validity indicesS andFm. The SVM provides best accuracy with three

features while NB performs best with only feature 3. TheJI, RI andV I also demonstrate

that the cluster structure is best preserved along feature 3.

The results from Table 2.2 exhibit better average classification performance byk-NN and

SVM, for Spambase, with a smaller set of featuresviz. 13 and 15. The values of both

S andFm are also the best with 15 features. Although NB provides a better score of

79.3% in the original space, yet its performance with 15 features is comparable at 79.0%.

TheJI, RI andV I provide best result with 11 featuresi.e the original cluster structure is

preserved in this feature space.

Results for theIonospheredata demonstrate that out of the 32 initial attributes our al-

gorithm selected a cardinality of 5 and 7 for the best performance in terms of mean

recognition accuracy (%) byk-NN. In Fig. 2.4 we depict a visually understandable, three-

dimensional projection, in terms of attributes 4, 5, 6 of the32-dimensional data. Inciden-

tally, this corresponds to the best performance by classifier NB. It is observed here that our

algorithm selected a reasonably good set of features, whichcaptured the structural similar-

ity between the two classes in the original feature space (atthe best values ofS andFm).

The best feature subset in terms of structure preservation is a set of 16 features according

to theJI, RI andV I.

Next the scope of the algorithm was extended to incorporate avariation in the number of

clusters. We determined the optimum number of clustersko (varyingk from 2 to 12), in

both the original and reduced feature spaces, by maximizingthe Silhouette index of eqn.

(1.6). FCM is used to determine the fuzzy partitioning corresponding toko clusters, for
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Table 2.2: Performance of selected feature subsets, of medium cardinality, from Pareto-

optimal front

F2 Validation accuracy (%) by Silh. F m-

Dataset Feature card. k-NN NB SVM stat. meas. JI RI V I

subspace S

{27, 28, 29, 47, 1 71.0

48, 49, 53, 54, 11 3 69.9 61.2 77.4 0.099 0.664 1.00 1.00 0.00

Spambase 55, 56, 57} 5 70.0

7 69.4

N = 4601 {3, 4, 9, 10, 1 77.9

D = 57 11, 22, 23, 24, 15 3 78.1 79.0 85.5 0.131 0.742 0.55 0.58 0.85

k = 2 35, 36, 37, 38, 5 78.2

52, 53, 54} 7 77.9

F1 = {6, 7, 8, 12, 1 80.4

105.8 × 10
5 13, 14, 15, 26, 13 3 80.3 65.5 81.2 0.039 0.672 0.82 0.82 0.38

27, 28, 36, 44, 5 80.3

45} 7 79.7

1 72.5

(Original) 57 3 72.0 79.3 83.7 0.098 0.664 – – –

5 71.6

7 71.1

{6, 7, 8, 9, 1 90.8

10, 11, 16, 17, 16 3 90.6

18, 22, 23, 24, 5 90.2 74.9 90.3 0.077 0.724 0.94 0.97 0.16

25, 29, 30, 31} 7 90.4

1 90.9

{4, 5, 6, 33, 34} 5 3 92.9

Ionosphere 5 92.6 88.6 90.6 0.108 0.731 0.54 0.69 0.96

7 92.3

N = 351 1 86.2

D = 32 (2-34) {4, 5, 6} 3 3 90.1

k = 2 5 91.9 89.7 90.3 0.156 0.836 0.45 0.57 1.08

7 92.3

F1 = 5 91.7

0.61 × 10
5 {14, 21, 22, 23, 7 3 92.0

24, 25, 26} 5 92.2 70.4 85.8 0.070 0.733 0.75 0.85 0.51

7 92.0

1 91.1

(Original) 32 3 91.3 81.8 94.0 0.078 0.700 – – –

5 91.7

7 92.0
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Table 2.3: Performance of selected feature subsets, from Pareto-optimal front, allowing

variation in number of clusters

F1 F2 Validation Silh. Fm-

Dataset Feature prox. card. accuracy (%) by stat. meas. JI RI V I

subspace (×104) NB SVM S

Iris

N = 150 {3} 0.549 1 96.7 95.3 0.311 0.933 0.82 0.93 0.37

D = 4 {3, 4} 0.556 2 96.0 96.7 0.311 0.950 0.79 0.92 0.42

k = 3 {1,2,3,4} 0.564 4 96.0 96.7 0.311 0.677 – – –

(Original)

{3,5,8,

13,15,17, 2.739 9 82.6 89.5 0.150 0.740 0.85 0.92 0.29

Ionosphere 19,21,31}

{3,5,8,

N = 351 15,17, 2.733 7 86.9 89.7 0.150 0.728 0.85 0.92 0.29

D = 32 21,31}

k = 2 {3,5,8,

13,15,17, 2.737 8 85.7 89.2 0.150 0.746 0.85 0.91 0.29

21,31}



CHAPTER 2. FEATURE SELECTION USING STRUCTURAL SIMILARITY 60

−1

0

1
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

F
ea

tu
re

 6

Feature 5
Feature 4

Class 1
Class 2

Figure 2.4: Projection ofIonospheredata in three-dimensional space

each generated feature subspace. Multiobjective optimization in terms of maximization of

proximity [eqn. (2.8)] and minimization of cardinality of the feature space [eqn. (2.9)]

ensures the selection of those feature subsets that retain structural similarity among the

clusters. The encoded chromosome of Fig. 2.2 now involves only the firstD bits. How-

ever, the computational complexity gets enhanced and adversely affects the processing of

large data.

Table 2.3 depicts the results for theIris andIonospheredata. In all the cases the optimum

number of clusters converged toko = 2. Incidentally the corresponding value ofS was

found to be better here, as compared to Tables 2.1-2.2. The algorithm, in this modified

framework, generated the same subsets of reduced features in Table 2.3 as in Table 2.1.

In case ofSyntheticdata the algorithm failed to eliminate the random third feature. The

Spambasedata was found to be too large to be processed, upon varying the number of

clusters. With theIonospheredata we obtained a different set of reduced feature subsets,
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that were generally comparable in terms of predictive accuracy andF -measure. The re-

sult of theJI, RI andV I shown that cluster structure is also preserved when we allow

variation in the number of clusters.

2.3.3 High-dimensional data

Table 2.4 presents the average performance of the algorithm(over ten runs), corresponding

to strings generated in the non-dominated Pareto front, forthe high-dimensionalIsolet

and the microarrayColon cancer data. The algorithm was run for 100 generations with

a population size of 40 chromosomes. There were 15,000 generations, with a population

size of 200. The 10-fold cross validation was used to computethe classification accuracy

in both the cases.

With theIsoletdata we observe that the performance of the classifiers is, ingeneral, better

in the original feature space. However, both NB and SVM provide comparable classifi-

cation accuracy with less than half the number of features. The value ofS is found to

be better in the reduced space. The values ofJI, RI andV I indicate that the clustering

obtained in the reduced space preserves the structure present in the original space.

In case of theColon microarray data we observe that the performance of NB andk-NN

(for k = 1, 3) is better with reduced features. The same is true forFm. Keeping in

mind that the reduction in feature set cardinality is almostten times, as compared to the

original set of 2000 features, the overall performance can be said to be reasonably good

in the reduced space. TheJI, RI andV I values show that our algorithm succeeded in

preserving the cluster structure over the reduced subset, when compared to the original as

well as preprocessed feature spaces.
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Table 2.4: Performance of some selected feature subsets, oflarge cardinality, from Pareto-

optimal front

F2 Validation accuracy (%) by Silhouette Fm-

Dataset cardinality k-NN NB SVM statistic measure JI RI V I

S

1 77.6

Isolet 275 3 79.1

5 80.2 84.9 94.9 2.4×10−3 0.344 0.88 0.94 0.28

N = 7797 7 80.7

D = 617 1 77.5

k = 26 274 3 79.1

5 80.3 84.8 94.8 2.4×10−3 0.336 0.89 0.94 0.26

F1 = 2.91 × 107 7 80.7

1 92.7

617 3 93.7 85.1 95.5 1.5×10−3 0.365 – – –

(Original) 5 94.1

7 94.1

1 83.9

Colon 261 3 80.7 54.8 64.5 1.5×10−2 0.704 1.0 1.0 0.0

N = 62 5 71.0

D = 2000 7 71.0

Dpreproc = 943 1 83.9

k = 2 264 3 80.6 54.8 64.5 1.5×10−2 0.704 1.0 1.0 0.0

5 71.0

F1 = 1.25 × 103 7 71.0

1 77.7

943 3 79.7 53.2 64.5 1.2×10−2 0.704 – – –

(Preproc.) 5 75.8

[5] 7 74.8

1 77.1

2000 3 77.7 53.2 82.3 2.4×10−2 0.687 – – –

(Original) 5 75.2

7 73.9
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2.3.4 Comparative study

The performance of our algorithm (model PR) forIris data was compared with that of

some of the existing techniques, considered as benchmark inthis study. These are

1. the statistical method of Devijver and Kittler [24] (model DK), which uses proba-

bilistic distance measure to assess discriminatory information conveyed by a set of

features,

2. the fuzzy entropy based method of Pal and Chakraborty [92](model PC), which is

defined in terms of interclass and intraclass distances of patterns,

3. the neural network based method of Ruck and Rogers [105] (model R*), which used

MLP and saliency measure for feature selection, and

4. the model of Ishibuchi [55] (model IM), which used MLP and avariant of class

separability.

Table 2.5 demonstrates a comparative study of the feature subsets selected by different

algorithms for theIris data. AsIris data is typically studied by researchers (in the pattern

recognition field), an extensive comparison has been provided for this data. The overall

study shows that the results tally with each other. The features 3 and 4 were always found

to be more important than the features 1 and 2 for classifyingIris data.

Next the average classification performance of the feature set selected by algorithm PR

was compared (on some of the datasets) over a test set (90% of the data) with the perfor-

mance of those selected by certain existing unsupervised techniques, averaged on 10 runs,

using a training set size of 10%. The well-known feature selection algorithms considered

were SFS [24] (described in Section 1.2.3), SFFS [96], SWC [64] and BB [87]. We also

compared the performance of the supervised Relief-F [65] ina similar manner.
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Table 2.5: Comparative study onIris data

Algorithm Features providing

best performance

PR {3, 4}
DK {3, 4}
PC {4, 3}
IM {3, 4}
R∗ {3, 4}

Table 2.6 presents a comparison of the average classification performance, by thek-NN

overk = 1, 3, 5, 7, for sample feature subsets selected by all these algorithms for datasets

Iris, Spambase, IonosphereandIsolet. In each case the initialD features were reduced to

d (for uniformity of comparison with PR). In general, our algorithm PR was better than

the supervisedRelief-F for dataIsolet and comparable for dataIris. As compared to the

other algorithms,PR was always found to be better.

For Iris d = 2 corresponds to the minimal subset selected by our algorithmin Table 2.1.

However withSpambaseandIonospherewe observed that a lower cardinality of 13 (row 4)

and 5 (row 6) byPR in Table 2.2, respectively, provided a higher classification accuracy

as compared to that generated by the larger subsets,d = 27 and 16 respectively (d as

reported in [86]) in Table 2.6.

SinceBB and SFFS algorithms required infeasibly high computation time for high-

dimensional data, we did not include them for the comparisoninvolving Isolet. The per-

formance was best withPR for d = 309 (as reported in [86]). On the other hand, Table 2.4

indicates the lowest cardinality of 274 with a poorer average classification accuracy (as

compared to that usingd = 309). The computational complexity of the algorithm PR is
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Table 2.6: Comparative study withk-NN classifier on some data

Dataset Algorithm Accuracy (%)

Mean SD

PR 94.49 1.34

Iris BB 92.29 2.57

D = 4 SFS 92.29 2.57

d = 2, k = 3 SFFS 92.29 2.57

SWC 93.48 2.03

Relief − F 95.68 0.65

PR 79.75 0.99

Spambase BB 70.93 0.70

D = 57 SFS 70.73 0.77

d = 27, k = 2 SFFS 70.73 0.77

SWC 76.40 1.05

Relief − F 89.00 0.28

PR 78.67 1.81

Ionosphere BB 75.96 0.35

D = 32 SFS 69.94 0.32

d = 16, k = 2 SFFS 74.73 0.37

SWC 62.03 0.32

Relief − F 89.90 1.30

Isolet PR 94.60 0.38

D = 617 SFS 74.45 1.20

d = 309, k = 26 SWC 78.25 1.22

Relief − F 90.40 0.30
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Table 2.7: Execution time of Algorithm PR on different datasets

Dataset Execution time (Second)

Iris 10

Synthetic 55

Spambase 6300

Ionosphere 39

Colon 18000

Isolet 86052

O(gStDN2), whereSt is population size,N corresponds to the number of pattern points,

andg is the number of the generations. Now complexity of ReliefF algorithm isO(tnND),

wheretn is the number of training samples used for finding nearest neighbour [102]. It

has higher time requirements for datasets containing largenumber of samples. The com-

putational complexity of BB, SFS, and SFFS algorithms are infeasibly high for large data

sets [86].

Incidentally, we also explored the use ofk-means [24] clustering during proximity compu-

tation. This resulted in the generation of binary values in the proximity matrix, instead of

values lying in the range [0,1]. The presence of a number of “ones” in the matrix perhaps

lead to a greater homogeneity between the chromosomes of thepopulation, as evaluated by

the first objective function of eqn. (2.8). Thereby, during multi-objective optimization this

objective function plays a less significant role as comparedto the cardinality of the feature

space [eqn. (2.9)]. Hencek-means almost always resulted in a minimum cardinality of

feature space, typically one, with no emphasis on the cluster structure. This highlights the

utility of fuzzy clustering in our algorithmPR. The execution time of PR over different set

was reported on Table 2.7. The execution time was computed ona HP Z800 workstation
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with Xeon(R) 2.67 GHz CPU and 16 GB RAM.

2.4 Conclusion

A new feature selection algorithm, based on structural similarity, has been described.

Fuzzy proximity was used to evaluate the similarity betweenthe original and reduced

feature subspaces. The cardinality of the feature subset was simultaneously minimized.

The optimal number of features was automatically determined during the multi-objective

optimization. This algorithm preserves the performance ofthe benchmark classifiers as

well as cluster structure in the reduced space. Comparativestudy demonstrated the effec-

tiveness of the developed method.

The topological neighbourhood information, pertaining tothe inherent cluster structure

in the data, was utilized while achieving reduction in feature subspace cardinality. This

is expected to have wide ramifications in data mining, data analysis and retrieval, with

particular emphasis on visualization.

Here the basic objective was to investigate how preservation of structural similarity, as

measured by proximity, could help in the selection of appropriate features. Multi-objective

genetic algorithm was a tool used during optimization. Any other tool could also have

served the purpose. However, in the MOGA framework the size of the chromosome in

eqn. (2.7) gets limited by the cardinalityD while matrixP is dependent on the number of

patternsN . This constrains the algorithm for large data, with a complexity of O(gStDN2).

That is one of the reasons why we used preprocessing for the high-dimensional and redun-

dant gene expression data.

In the following chapter we present a new algorithm for feature selection based on shared

nearest neighbors (SNN) distance between patterns. While here we focused on structural

similarity between clusters in different feature spaces, at a global level, the SNN distance
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is computed between pattern pairs based on their neighborhood regions. Thereby we are

able to incorporate more local information during computation of the similarity measure.



Chapter 3

Feature Selection using SNN Distance

3.1 Introduction

Similarity measures based on distance are often sensitive to the dimensionality of the pat-

tern space [7]. The relative contrast is found to decrease, with increase in dimensionality,

for a broad range of data distribution and distance measures. This, in turn, reduces the

discriminatory ability of the measures [53]. As an alternative, researchers have devised

a simple and common secondary similarity measure involvingshared nearest neighbor

(SNN) information. The SNN measure has been used in the mergestep of agglomerative

clustering [43,59], for clustering high dimensional data sets [31,52], and in finding outliers

in subspaces of high dimensional data [68]. It is less prone to the distance concentration

effect, that occurs in higher dimensions. It is also found tobe more robust than primary

distances, while providing better separability in the presence of several irrelevant and re-

dundant features [53]. This observation motivated us to usethe SNN distance measure as

a novel evaluation criterion for our feature selection algorithm.

The algorithm aims to preserve the pairwise sample similarity in the selected feature sub-

69
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space. The similarity is measured in terms of the number of patterns common to the

fixed size neighborhoods of a pair of sample points, as determined by a primary distance

measure like Euclidean, City block, Cosine, etc. It is a filter model which collectively eval-

uates a set of features. A secondary similarity between pattern pairs is computed based on

a ranking of the nearest neighbors of each sample, as inducedby the primary distance (or

similarity). Genetic algorithm (GA) is used to traverse thesearch space to find an opti-

mal feature set. GA employs an inductive learning strategy to produce a solution which is

unaffected by local peaks caused by noise or interdependencies among features.

This is then extended to improve scalability in larger data.In order to overcome the bot-

tleneck of generating a large pairwise similarity matrix, we adopt a divide-and-conquer

strategy. The data is divided into nearly equal subsets, followed by a merger of those

sample pairs having an SNN distance measure below some user-defined threshold within

each such subset. This is followed by the selection of a feature subset, while preserving

pairwise sample similarity based on SNN distance, from thismerged set of patterns.

The rest of chapter is organized as follows. The concept of shared nearest neighbor (SNN)

distance between points is described in Section 3.2. In Section 3.3 we present the new

feature selection algorithm using the SNN distance, and itsextension to accommodate the

divide and merge strategy for improving scalability. The experimental results are provided

in Section 3.4 on five sets of publicly available real data,viz. MF, USPS, ORL, Spambase

andCOIL20, along with related comparison. Finally, Section 3.5 concludes the chapter.

3.2 Shared Nearest Neighbor Distance

The most basic form of shared nearest-neighbor similarity measure is the ‘overlap’ [59].

Given a data setX consisting ofN = |X| sample points ands ∈ N+, whereNNs(x) ⊆ X

is the set ofs-nearest-neighbors ofx ∈ X as determined using some specified primary
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distance or similarity measure, like Euclidean, city block, or cosine distance. A primary

similarity measure is any function which determines a ranking of patterns relative to a

query. It is not necessary for the data points to be represented as vectors. The query

pertains to thes-nearest neighbors of a sample.

The ‘overlap’ between sample pointsx andy is defined to be the intersection size

SNNs(x, y) = |NNs(x) ∩ NNs(y)|. It is an alternative to the traditional similarity mea-

sure, and is sometimes called as secondary similarity measure as it is based on the rankings

induced by a specified primary similarity measure. The similarity measure, used here, is

based on this ‘overlap’. It is equivalent to the cosine of theangle between the zero-one set

membership vectors forNNs(x) andNNs(y), and is defined as [31,51]

simcoss(x, y) =
SNNs(x, y)

s
. (3.1)

Transforming to the distance form [53], we have

dacoss(x, y) = arccos(simcoss(x, y)). (3.2)

This distance is symmetric and satisfies the triangular inequality. Therefore, this dis-

tance is a metric [53]. There also exist other similar distance forms like linear inversion

dinvs(x, y) = 1−simcoss(x, y) and the logarithmic formdins(x, y) = − ln(simcoss(x, y))

[53]. However, these distances do not satisfy the triangular inequality property. All these

distance functions decrease monotonically with respect tothe similarity value present be-

tween the pointsx andy.

The feature selection algorithm based on shared nearest neighbor distance (FSSNN), out-

lined in the following section, employs thedacoss(x, y) distance to evaluate feature sub-

sets. It selects a subset of features which are able to preserve the pairwise common natural

grouping present in thes-size neighborhood of the original feature space.
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3.3 Feature Selection

Let PDMs be the pairwise secondary distance matrix ofN × N dimension, whereN is

the number of patterns in a data set. We have

PDMs(i, j) = dacoss(i, j). (3.3)

It is obvious from the definition thatPDMs is symmetric and the principal diagonal el-

ements ofPDMs are always zero. Hence the upper triangular part of matrixPDMs

contains information about the pairwise common natural groupings of allN data points in

the original feature space.

In order to reduce the computational complexity, we select those pattern pairs having

dacoss values below a thresholdθ (as chosen in Algorithm 3.2). Next a setXsel is created,

using these selected pairs. We calculatePDMs1
, usings1-nearest neighbors on setXsel,

with its dimension beingn × n (n = |Xsel|). Let PDMs1fsub(i, j) be the pairwise sec-

ondary distance, withs1 nearest neighbors being evaluated on setXsel overfsub subset of

features. Thefsub is a reduced subset of original features and is considered for evaluation.

The set of features is selected by minimizing objective function

F1 =

i=n−1,j=n∑

i=1,j>i

abs(PDMs1
(i, j)− PDMs1fsub

(i, j)), (3.4)

such that the similarity between pattern pair(i, j) in the original feature space gets pre-

served in the reduced feature spacefsub. Hereabs(Z) is the absolute value of the elements

of Z. We employ GA for heuristically exploring this search space.

3.3.1 Using SNN

The feature selection Algorithm 3.1 is presented here. Its time complexity largely depends

on the cost of building the dissimilarity matrixPDMs as well as on the optimization tech-
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Algorithm 3.1:FSSNN

Input: Pattern setX, with N sample points andD features.

Neighborhoodss ands1.

Output: A feature subset,ffinal.

1: Construct pairwise dissimilarity matrixPDMs using eqn. (3.2).

2: Choose thresholdθ using Algorithm 3.2.

3: Select the pairs of points lying at a distance less thanθ. Construct a setXsel using

these points.

4: CalculatePDMs1
with s1-nearest neighbors on the setXsel.

5: Select the feature subset by optimizing eqn. (3.4).

Here GA is used as an optimization technique.

nique. We needO(sN2D) floating point operations for constructingPDMs. Next we

generatePDMs1
for each randomly selected feature subset from the setXsel. It requires

O(s1n
2D) floating point operations. This is followed by optimizationusing eqn. (3.4).

When GA is used with a population sizeSt overg generations, the complexity of the opti-

mization process becomesO(Stgs1n
2D). Hence the overall time complexity of Algorithm

3.1 isO((sN2 + Stgs1n
2)D).

It may be noted that a thresholdθ is used in Steps 2-3 of the algorithm. This user-defined

parameter helps in reducing the computational burden on theoptimization procedure,

while also retaining the influential points (hubs) [97] which affect the reasoning procedure

of nearest-neighbor computation. The heuristic for choosing θ is outlined in Algorithm

3.2.
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Algorithm 3.2:Choosing the threshold

Input: The pairwise dissimilarity matrixPDMs.

Output: Thresholdθ.

1: Find the minimum entry (> 0) of each row ofPDMs, and store asmin rowi, for

i ∈ 1, . . . , N − 1.

2: Choose the first percentile of these(N − 1) values ofmin rowi asθ.

3.3.2 Improving scalability

For datasets with large numbers of patterns we haveN >> n, such that the overall com-

plexity of Algorithm 3.1 tends toO(sN2D). Therefore the construction ofPDMs be-

comes the bottleneck. To overcome this problem the originaldataset can be randomly

divided intoT number of disjoint subsetsX i of nearly equal size, withi varying from1

to T . Each new pairwise dissimilarity matrixPDM i
s is generated fromX i with an appro-

priateθi. This can also be done in parallel. The proposed extension, involving divide and

merge procedures, is listed as Algorithm 3.3.

The time complexity of the optimization step in Algorithm 3.3 is the same as that of

Algorithm 3.1, i.e. O(Stgs1n
2D). Now, let the size of the largest subset benl. So the

generation ofPDM i
s involvesO(sn2

l D) floating point operations. Hence the overall time

complexity of this algorithm becomesO(T sn2
l +Stgs1n

2)D). Thereby, we have a gain in

time complexity. This gain is enhanced if each subsetX i and itsPDM i
s are processed in

parallel, such that it now becomesO(sn2
l + Stgs1n

2)D).
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Algorithm 3.3:Using Divide and Merge

Input: Pattern setX with N sample points andD features.

Neighborhoodss ands1.

Number of subsetsT .

Output: A feature subsetffinal.

1: Randomly divide the data setX, intoT disjoint subsets,X i such thatX = ∪Ti X i and

X i1 ∩X i2 = φ if i1 6= i2.

2: for i← 1 to T do

a. Construct pairwise dissimilarity matrixPDM i
s using eqn. (3.2) onX i.

b. Select thresholdθi using Algorithm 3.2.

c. Select the pair of points whose distance value is less thanθi. Construct a setX i
sel,

of cardinalityni, using these points.

3: end for

4: ConstructXsel such thatXsel = ∪Ti=1X
i
sel.

5: CalculatePDMs1
with s1-nearest neighbors on the setXsel.

6: Select the feature subset by optimizing eqn. (3.4).

GA is used as an optimization technique.

3.3.3 Using Multi-objective Optimization

Determining an appropriate formulation of a single objective function in terms of an addi-

tive combination of conflicting fitness criteria is a difficult task. Therefore, multi-objective

optimization becomes necessary when it is required to arrive at a consensus solution in

terms of two or more contradictory criteria. In this chapterwe employ the SNN distance

for feature selection in a multi-objective framework. It chooses a reduced set of features

while preserving the pairwise sample similarity. A featureevaluation criterion is formu-
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lated in terms of the SNN distance, and is simultaneously optimized with the feature set

cardinality. The multi-objective genetic algorithm NSGA-II of Section 1.3.2 is used, as

an optimization technique, to traverse the search space andgenerate a non-dominated set

of features. NSGA-II is a randomized search, guided by the principle of evolution and

natural genetics, with a large amount of implicit parallelism.

In Section 3.3 we optimized the single objective functionF1 of eqn. (3.4). In the multi-

objective framework the algorithm simultaneously reducesthe size of the feature subset

while preserving the pairwise topological neighbourhood information present in thes-size

neighborhood in the original feature space. The second objective function is the cardinality

of the reduced feature setfsub, and is expressed as

F2 = |fsub|. (3.5)

We employ NSGA-II [5, 22] for heuristically exploring this search space by minimizing

both fitness functions.

A population of chromosomes, representing the selected feature subset, is evaluated by

simultaneously optimizing the two objective functionsF1 and F2, in order to enhance

their fitness; and thereby perform feature selection.

Multi-objective GA proceeds to find a fit set of individuals (here, feature subsets) by re-

producing new children chromosomes from older parents. In the process it employs the

operators selection, crossover and mutation. This repeatsover multiple generations (or

iterations) until a stopping criterion is met. The chromosomes associated with the non-

dominated solutions with respect to the fitness functions are decoded to obtain the reduced

feature subsets.

The multi-objective feature selection algorithm based on shared nearest neighbors (MF-

SSNN) is outlined as Algorithm 3.4.
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Algorithm 3.4:MFSSNN

Input: Pattern setX, with N sample points andD features.

Size of neighborhoodss ands1, cardinality of reduced setNsel = |Xsel|.
Output: A feature subset,ffinal.

1: Construct pairwise dissimilarity matrixPDMs using eqn. (3.2).

2: Construct a reduced setXsel of samples using Algorithm 3.5.

3: CalculatePDMs1
with s1-nearest neighbors on the setXsel.

4: Select feature subset(s) by simultaneously optimizing eqns. (3.4) and (3.5) in a multi-

objective framework.

3.4 Experimental Results

The two feature selection algorithms, which preserve similarity between samples based on

the shared nearest neighbors concept, were implemented on five sets of public domain data

viz. MF, USPS, ORL, Spambase,andCOIL20. The effectiveness of the algorithms was

evaluated by externally validating selected feature subsets in terms of their predictive ac-

curacy, as measured by well-known classifiers, likek-nearest neighbors (k-NN) and Naive

Bayes (NB) [described in Section 1.2.1] with 10-fold cross validation. The process was

repeated 20 times and the results were averaged for the final result. The paired Student’s

t-test for unequal mean and variance [4,75] was used to compute the statistical significance

of the obtained results, and the threshold for rejecting thenull hypothesis was set at 0.05.

The feature subsets were also evaluated in terms of sample similarity and the presence of

redundancy, as measured byJAC [eqn. (1.18)] andRED [eqn. (1.7)].

Sinces << N , the SNN is found to be reasonably robust to the choice ofs [53]. Here we

selecteds = 50 ands1 = s whenn (i.e. |Xsel|) > s; otherwises1 was set to the nearest
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Algorithm 3.5:A heuristic for constructing Xsel

Input: The pairwise dissimilarity matrixPDMs andNsel.

Output: Reduced sample setXsel

1: Find the minimum entry (> 0) of each row ofPDMs and store asmin rowi, with

i ∈ 1, . . . , N − 1.

2: Sortmin rowi in ascending order along with indices.

3: Select topNsel index values ofmin rowi.

4: Generate sample setXsel with these selected points.

integer value of 60% ofn. In Algorithm 3.3 parameterT was selected as 10 after several

experiments. Results were generated using cosine distance[eqn. (3.2)] as the primary

measure. The Euclidean and City block distances were also explored, but their ranking of

the patterns was found to be nearly similar.

GA has been used to optimize the evaluation criterion of eqn.(3.4) for selecting a minimal

set of features. The parameter settings used were crossoverprobabilitypc = 0.8, size of

populationSt = 150, and number of generations 100, with the mutation probability pm

being varied over the generations based on a Gaussian function. The best feature subsets

were selected over 30 runs.

3.4.1 Data description

The datasets used are listed here with their characteristics. Multiple Features (MF)dataset

consists of 2000 samples from 10 classes of handwritten numerals (‘0’–‘9’), having 649

real-valued features. These are extracted from a collection of Dutch utility maps.USPS

is a handwritten digit database. It contains 9298 handwritten images over 16× 16 pixels,
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and has 10 classes. TheORLdatabase consists of a total of 400 face images of 40 subjects

The original images are subsampled to a size of 56× 46 pixels, with 256 grey levels per

pixel. Thus each face image can be represented by a 2576-dimensional feature vector.

COIL20 is a database of grey scale images of 20 objects, each having 72 images. The

original images are subsampled down to 32× 32 pixels, with 256 grey levels per pixel.

Spambasedata is outlined in Section 2.3.1.

3.4.2 Performance using FSSNN

The results with Algorithm 3.1, for the five datasets, is presented in Table 3.1. The car-

dinality of the selected feature subsets, in each case, is listed in column 2. The third

and fourth column indicate the average classification accuracy involving ten-fold cross-

validation, usingk-NN and NB classifiers respectively. The values within parenthesis rep-

resent the standard deviations over twenty independent runs. The last two columns depict

the effectiveness of the selected feature subset in preserving pairwise sample similarity, in

terms ofJAC, and the feature subset redundancy, in terms ofRED, respectively. The last

row for each dataset contains the average, cross-validatedclassification accuracy over the

original feature space for the data.

It is observed that our algorithm provides better performance in the reduced space in most

cases, as compared to that in the original feature space, while involving only about half the

number of features. This is true for both classifiersk-NN and NB. Table 3.2 represents the

performance of Algorithm 3.3, in a similar format, over three sets of data. Here also the

classification accuracy is generally better in the reduced space. Hence the computational

complexity of the resultant classifier gets further reduced.

Finally the performance of the two algorithms was compared to that of SPFS-SFS, ReliefF

and SPEC, as described in Section 1.4.3. Though ReliefF is a supervised methodi.e. it uses
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class label information to rank features, but it uses nearest neighbors of training samples

to evalute a feature. So we consider this method to be relevant to our approach. The

results are presented in Tables 3.3 and 3.5, with the best outputs marked in bold. Both

Algorithms 3.1 and 3.3 provide better performance in terms of classification accuracy and

the validity measures. In the case ofUSPSdata, Algorithms 3.1 and 3.3 have comparable

scores. It may be noted that our feature selection algorithms are unsupervised, in the sense

(unlike ReliefF) that they do not use class label information during feature subset selection.

Statistical significance of the classification performanceof the algorithms compared was

also tested. The comparative study of the execution time of Algorithms 3.1 and 3.3 was

mentioned on Table 3.4 and Table 3.6 respectively. The execution time was computed on

a HP Z800 workstation with Xeon(R) 2.67 GHz CPU and 16 GB RAM.

3.4.3 Performance using MFSSNN

As in the above, the algorithm was evaluated by externally validating selected feature

subsets in terms of their predictive accuracy, as measured by well-known classifiers, like

k-nearest neighbor (k-NN), Naive Bayes (NB) and Support Vector Machine (SVM) [de-

scribed in Section 1.2.1], using 10-fold cross validation.The process was repeated 50

times and the results were averaged for the final result. The paired Student’s t-test for un-

equal mean and variance was used to compute the statistical significance of the obtained

results, and the threshold for rejecting the null hypothesis was set at 0.05. The feature

subsets were also evaluated in terms of sample similarity and the presence of redundancy,

as measured byJAC [eqn. (1.18)] andRED [eqn. (1.7)]. We used four sets of real data

viz. MF, USPS, ORLandCOIL20, whose characteristics are outlined in Subsection 3.4.1.

Sinces << N , the performance of SNN is found to be reasonably robust to the choice

of s. Here we selecteds as 50 ands1 = s, for s1 < Nsel < 2 ∗ s1, in our experiments.
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Table 3.1: Performance evaluation of Algorithm 3.1

Data Set d Classification Accuracy (%) JAC RED

k-NN NB

MF 305 96.1 (0.18) 95.8 (0.12) 0.65 0.0047

N = 2000 313 96.7 (0.13) 96.1 (0.09) 0.67 0.0040

D = 649 315 96.1 (0.15) 94.7 (0.08) 0.69 0.0050

s = 50 317 95.2 (0.19) 96.0 (0.10) 0.68 0.0025

s1 = 16 318 96.3 (0.21) 94.3 (0.09) 0.71 0.0039

C = 10 D 95.1 95.9 – –

ORL 1267 97.6 (0.16) 94.7 (0.22) 0.94 0.0652

N = 400 1272 97.8 (0.14) 93.8 (0.36) 0.94 0.0654

D = 2576 1283 98.1 (0.19) 93.3 (0.39) 0.94 0.0654

s = 50 1287 98.1 (0.11) 93.8 (0.36) 0.93 0.0664

s1 = 27 1305 97.9 (0.19) 94.5 (0.29) 0.95 0.0655

C = 40 D 97.8 94.1 – –

USPS 144 96.1 (0.10) 83.4 (0.04) 0.66 0.0348

N = 9298 151 96.2 (0.08) 81.4 (0.06) 0.66 0.0395

D = 256 159 96.8 (0.06) 83.4 (0.05) 0.70 0.0366

s = 50 164 96.5 (0.07) 83.0 (0.05) 0.69 0.0329

s1 = 50 171 96.6 (0.07) 83.1 (0.04) 0.71 0.0339

C = 10 D 96.9 82.5 – –

Spambase 27 82.5 (0.27) 89.4 (0.08) 1.00 0.0099

N = 4601 34 81.6 (0.22) 86.6 (0.08) 1.00 0.0117

D = 57 35 82.1 (0.24) 87.8 (0.10) 1.00 0.0094

s = 50 36 81.3 (0.19) 87.2 (0.10) 1.00 0.0088

s1 = 50 37 81.9 (0.26) 87.7 (0.08) 1.00 0.0055

C = 2 D 82.5 89.4 – –

COIL20 480 99.9 (0.08) 92.3 (0.37) 0.81 0.0672

N = 1440 502 99.9 (0.09) 93.4 (0.19) 0.80 0.0674

D = 1024 512 99.8 (0.08) 91.7 (0.24) 0.80 0.0705

s = 50 541 99.9 (0.09) 92.6 (0.16) 0.84 0.0664

s1 = 50 550 99.8 (0.06) 92.3 (0.30) 0.87 0.0693

C = 20 D 99.7 92.6 – –
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Table 3.2: Performance evaluation of Algorithm 3.3

Data Set d Classification Accuracy (%) JAC RED

k-NN NB

MF 321 94.6 (0.19) 96.5 (0.09) 0.70 0.0041

N = 2000 323 95.5 (0.18) 95.2 (0.08) 0.71 0.0040

D = 649 324 93.9 (0.20) 95.3 (0.08) 0.68 0.0059

s = 50 326 96.3 (0.14) 94.5 (0.11) 0.70 0.0046

s1 = 50 336 96.3 (0.16) 95.5 (0.09) 0.71 0.0042

C = 10 D 95.1 95.9 – –

USPS 131 96.9 (0.05) 83.5 (0.04) 0.63 0.0332

N = 9298 144 96.5 (0.06) 83.7 (0.06) 0.64 0.0330

D = 256 153 96.1 (0.09) 82.4 (0.04) 0.66 0.0321

s = 50 155 96.6 (0.07) 83.2 (0.05) 0.68 0.0327

s1 = 50 167 96.6 (0.05) 82.9 (0.05) 0.71 0.0338

C = 10 D 96.9 82.5 – –

COIL20 509 99.7 (0.09) 92.8 (0.22) 0.84 0.0693

N = 1440 512 99.7 (0.09) 91.0 (0.43) 0.85 0.0694

D = 1024 527 99.8 (0.09) 92.5 (0.24) 0.85 0.0695

s = 50 529 99.7 (0.18) 91.9 (0.37) 0.86 0.0718

s1 = 50 531 99.8 (0.09) 92.4 (0.31) 0.86 0.0686

C = 20 D 99.7 92.6 – –
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Table 3.3: Performance comparison of Algorithm 3.1

Data Set d Algorithm Classification Accuracy (%) JAC RED

k-NN NB

MF 317 SPFS-SFS 94.2 (0.18) 95.7 (0.08) 0.30 0.0150

ReliefF 93.2 (0.17) 95.9 (0.08) 0.69 0.0047

SPEC 85.3 (0.35) 94.9 (0.07) 1.00 0.0046

Algorithm 3.1 95.2(0.19) 96.0(0.10) 0.68 0.0025

ORL 1283 SPFS-SFS 97.4 (0.16) 90.3 (0.32) 0.57 0.0774

ReliefF 97.1 (0.14) 88.8 (0.35) 0.83 0.0669

SPEC 96.8 (0.17) 88.4 (0.44) 0.49 0.0808

Algorithm 3.1 98.1(0.19) 93.3(0.39) 0.94 0.0652

USPS 144 SPFS-SFS 91.4 (0.11) 67.8 (0.06) 0.30 0.0521

ReliefF 96.6 (0.07) 84.1(0.03) 0.65 0.0433

SPEC 96.7 (0.06) 84.0 (0.06) 0.66 0.0428

Algorithm 3.1 96.9(0.10) 83.4 (0.04) 0.66 0.0348

Spambase 27 SPFS-SFS 82.2 (0.20) 86.6 (0.06) 0.95 0.0115

ReliefF 80.5 (0.31) 86.1 (0.06) 0.95 0.0241

SPEC 83.1 (0.21) 66.7 (0.12) 0.02 0.0377

Algorithm 3.1 82.5(0.27) 89.4(0.08) 1.00 0.0099

COIL20 480 SPFS-SFS 95.0 (0.20) 78.7 (0.31) 0.23 0.0664

ReliefF 99.8 (0.08) 89.0 (0.29) 0.62 0.1030

SPEC 94.7 (0.22) 78.8 (0.47) 0.28 0.0715

Algorithm 3.1 99.9(0.08) 92.3(0.37) 0.81 0.0672
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Table 3.4: Execution time comparison over different datasets, using Algorithm 3.1

Data Algorithm Execution time (Second)

MF SPFS-SFS 17264

ReliefF 64

SPEC 13

Algorithm 3.1 633

ORL SPFS-SFS 7930

ReliefF 28

SPEC 2

Algorithm 3.1 874

USPS SPFS-SFS 37316

ReliefF 410

SPEC 352

Algorithm 3.1 179077

Spambase SPFS-SFS 1038

ReliefF 35

SPEC 96

Algorithm 3.1 2800

COIL20 SPFS-SFS 25663

ReliefF 54

SPEC 8

Algorithm 3.1 1451
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Table 3.5: Performance comparison of Algorithm 3.3

Data Set d Algorithm Classification Accuracy (%) JAC RED

k-NN NB

MF 321 SPFS-SFS 94.3 (0.16) 96.0 (0.07) 0.29 0.0153

ReliefF 93.2 (0.19) 95.9 (0.06) 0.70 0.0048

SPEC 85.4 (0.23) 94.9 (0.12) 1.00 0.0044

Algorithm 3.3 94.6(0.19) 96.5(0.09) 0.70 0.0041

USPS 131 SPFS-SFS 88.8 (0.08) 65.3 (0.08) 0.26 0.0543

ReliefF 96.8 (0.08) 84.0 (0.07) 0.59 0.0428

SPEC 96.4 (0.09) 84.4(0.03) 0.61 0.0411

Algorithm 3.3 96.9(0.05) 83.5 (0.04) 0.63 0.0332

COIL20 509 SPFS-SFS 95.3 (0.09) 80.1 (0.96) 0.25 0.0676

ReliefF 99.8(0.09) 89.5 (0.26) 0.65 0.1017

SPEC 95.0 (0.24) 80.2 (0.41) 0.29 0.0718

Algorithm 3.3 99.7 (0.09) 92.8(0.22) 0.84 0.0693
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Table 3.6: Execution time comparison over different datasets, using Algorithm 3.3

Data Characteristics Algorithm Execution time (Second)

MF SPFS-SFS 59561

ReliefF 64

SPEC 13

Algorithm 3.3 199

USPS SPFS-SFS 29948

ReliefF 410

SPEC 352

Algorithm 3.3 52053

COIL20 SPFS-SFS 26432

ReliefF 54

SPEC 8

Algorithm 3.3 1266
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Table 3.7: Performance comparison with related algorithms

Dataset & d Algorithm Accuracy (%) JAC RED

parameters k-NN NB SVM

MF 155 SPFS-SFS 91.2 94.9 83.1 0.90 0.0253

(0.25) (0.10) (0.20)

N = 2000, D = 649 ReliefF 83.1 94.0 84.7 0.90 0.0122

(0.28) (0.12) (0.16)

C = 10, Nsel = 80 SPEC 96.5 93.3 94.1 0.32 0.0053

(0.14) (0.10) (0.11)

s = 50, s1 = 50 Algorithm 3.4 93.8 93.0 87.4 0.96 0.0107

(0.21) (0.11) (0.15)

D —– 95.1 95.9 88.9 —- —-

(0.24) (0.15) (0.10)

USPS 89 SPFS-SFS 69.5 52.1 64.0 0.09 0.0619

(0.17) (0.07) (0.07)

N = 9298, D = 256 ReliefF 94.8 82.1 90.2 0.41 0.0405

(0.07) (0.07) (0.06)

C = 10, Nsel = 80 SPEC 94.4 81.4 90.4 0.43 0.0388

(0.09) (0.06) (0.06)

s = 50, s1 = 50 Algorithm 3.4 95.7 83.8 91.4 0.55 0.0387

(0.07) (0.05) (0.05)

D —– 98.3 82.5 96.2 —- —-

(0.06) (0.06) (0.03)

COIL20 253 SPFS-SFS 89.8 63.7 80.2 0.11 0.0633

(0.24) (0.51) (0.41)

N = 1440, D = 1024 ReliefF 98.4 78.3 93.4 0.30 0.1390

(0.22) (0.32) (0.29)

C = 20, Nsel = 80 SPEC 84.4 61.9 73.6 0.12 0.0665

(0.35) (0.36) (0.45)

s = 50, s1 = 50 Algorithm 3.4 99.7 90.7 95.5 0.67 0.0737

(0.08) (0.30) (0.14)

D —– 99.8 92.6 95.9 —- —-

(0.08) (0.40) (0.19)

ORL 756 SPFS-SFS 95.6 89.4 92.5 0.48 0.0953

(0.11) (0.39) (0.36)

N = 400, D = 2576 ReliefF 95.4 81.6 92.6 0.30 0.1312

(0.17) (0.38) (0.26)

C = 40, Nsel = 60 SPEC 94.9 87.0 92.3 0.42 0.1009

(0.17) (0.35) (0.39)

s = 50, s1 = 50 Algorithm 3.4 97.6 94.0 98.0 0.77 0.0649

(0.15) (0.30) (0.25)

D —– 97.8 94.1 98.1 —- —-

(0.14) (0.30) (0.18)
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Table 3.8: Execution time comparison over different datasets, using Algorithm 3.4

Data Characteristics Algorithm Execution time (Second)

MF SPFS-SFS 6739

ReliefF 64

SPEC 13

Algorithm 3.4 1009

USPS SPFS-SFS 29214

ReliefF 410

SPEC 352

Algorithm 3.4 199076

COIL20 SPFS-SFS 15624

ReliefF 54

SPEC 8

Algorithm 3.4 75105

ORL SPFS-SFS 12035

ReliefF 28

SPEC 2

Algorithm 3.4 57583
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Results of Table 3.7 were generated using cosine distance [eqn. (3.2)] as the primary

measure. Multi-objective NSGA-II has been used to optimizethe evaluation criteria of

eqns. (3.4) and (3.5), for selecting the minimal set of features. As before, the parameter

values were set at crossover probabilitypc = 0.8, size of populationSt = 100, and number

of generationsg = 300, with the mutation probabilitypm being varied over the generations

based on a Gaussian function.

Fig. 3.1 depicts the Pareto optimal front, for the four datasets, using MFSSNN (Algorithm

3.4). The two objective functionsF1 andF2, by eqns. (3.4) and (3.5), are plotted along the

two axes.

We provide in Fig. 3.2 the classification accuracy (%) with respect to the cardinality of the

feature subsets, over the four datasets, for the classifiersk-NN (k = 1, 3, 5), NB and SVM.

The feature subsets from the Pareto front (of Fig. 3.1) are found to provide comparable

accuracies with respect to each classifier, as depicted in the figure.

The performance of Algorithm 3.4, for the four datasets, wasalso compared to that of

SPFS-SFS, ReliefF, and SPEC, as described in Section 1.4.3.The results are presented

in Table 3.7 for a subset of features, chosen from the plots ofFigs. 3.1 and 3.2. The

cardinality of the reduced feature subsets, in each case, islisted in column 2. The third,

fourth and fifth columns indicate the average classificationaccuracy involving 10-fold

cross-validation, usingk-NN (for k = 1), Naive Bayes’ (NB) and Support Vector Ma-

chine (SVM) classifiers respectively. The values within parentheses represent the standard

deviations over 50 independent runs. The last two columns depict the effectiveness of the

selected feature subset in preserving pairwise sample similarity, in terms ofJAC, and the

feature subset redundancy, in terms ofRED. The last row, corresponding to each dataset,

contains the average, cross-validated classification accuracy over the original feature space

(of cardinalityD) for the data.

Algorithm 3.4 performs the best (as highlighted in bold in the table) over all classifiers,
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both in terms of accuracy and sample similarity for datasetsUSPS, COIL20andORL. In-

terestingly the classification accuracy (%) is found to be comparable for feature cardinality

d even with respect to the original feature space having cardinalityD (d < D). This serves

to highlight the utility of our algorithm in reducing computational complexity while pro-

viding comparable output performance. Moreover, since ouralgorithm is unsupervised,

the efficacy of its performance becomes even more apparent (particularly in comparison

to ReliefF). The comparative study of the execution time of Algorithm 3.4 was mentioned

in Table 3.8. The execution time was computed on the platformmentions in Section 3.4.2.

3.5 Conclusion

In this chapter we have developed a new unsupervised featureselection algorithm which

preserves sample similarity in a reduced feature space based on the concept of shared

nearest neighbor distance. The novelty of our approach liesin the effective use of SNN

secondary distance (or similarity) for feature selection.The divide and merge strategy was

incorporated in order to improve the scalability of the algorithm.

The results demonstrate that the selected feature subsets could not only preserve the pre-

dictive accuracy of the classifiers in the reduced feature space, but also improved a little

in some of the cases. The validation indices indicated that sample similarity was also

preserved in the reduced space. Both the algorithms could effectively handle the redun-

dancy present in the feature set. Comparative study with SPFS-SFS, ReliefF and SPEC

demonstrated the suitability of our algorithms.

Comparing row 1 of Table 2.2 (forSpambasedata) with row 4 of Table 3.1, we find that

the SNN concept helps producing improved classifier accuracy (with bothk-NN and NB)

over structural similarity. This is perhaps due to the incorporation of local information

from the neighborhood concept, implicit in the shared nearest neighbor distance.
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Figure 3.1: Pareto optimal front for Algorithm 3.4 over datasets (a) MF, (b) USPS, (c)

COIL20, and (d) ORL
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Figure 3.2: Classification performance over different feature subsets, selected from the

Pareto optimal front, for datasets (a) MF, (b) USPS, (c) COIL20, and (d) ORL
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This work was further extended with a multi-objective framework. The results of MF-

SSNN demonstrate that the reduced feature subsets could notonly preserve the predictive

accuracy of the classifiers in the reduced feature space, butalso improved a little (in some

of the cases) with respect to the original feature space. Thevalidity indices indicated that

sample similarity was also preserved in the reduced space, with the selected features ex-

hibiting very little correlation amongst them. This algorithm also compared with related

algorithms like SPFS-SFS, ReliefF and SPEC and it demonstrated the suitability of this

algorithm.

Comparing Tables 3.1, 3.7, and Fig. 3.2, we observe that the multi-objective framework of

Algorithm 3.4 resulted in the selection of feature subsets having reduced cardinality, while

generating comparable performance in terms of predictive accuracy and sample similarity.



Chapter 4

Feature Selection through Message

Passing

4.1 Introduction

Unlike the concept of SNN distance (described in Chapter 3),here we develop an un-

supervised feature selection scheme based on their similarity. It stems from the classical

concept of comparing different objects to detect any hiddenlinear or nonlinear relationship

between them. The algorithm selects a subset of features based on the internal character-

istics of the data, to improve the generalization capability of a classifier. Compared to

the proximity and SNN frameworks of previous chapters, the message passing scheme in-

volves a lower time complexity. It also attaches a weight or significance for each feature

with respect to the entire feature set. Features are ranked based on these weights.

The novelty of the message passing framework is that it computes the pairwise similarity

between features in terms of distance correlationR, which measures the degree of all pos-

sible relationships (linear and non-linear) [110] betweenfeature pairs without assuming

94
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any underlying distribution. This pairwise similarity is then fed into a “message passing”

scheme, which selects a subset of representative features (or a set of exemplars) from the

original feature set without exhaustively traversing the entire space. In this case, the cardi-

nality of the search space is2D with D being the cardinality of the original feature set. It

results in minimum redundancy amongst the selected set of features, coupled with reduced

parameter tuning.

For datasets involving large number of instances, the computation of pairwise similarity

between features usingR becomes computationally intensive. In order to alleviate this

problem, a dataset is randomly divided into a number of subsets and the distance covari-

ance is independently computed on each of these subsets. These are subsequently merged,

using a characteristic property of the covariance, to estimate a value ofR [110]. These

similarity values are again used in a message passing framework for selecting the feature

subset.

The local message passing scheme starts by simultaneously considering all the features

as potential representative or exemplars, and then gradually updating messages on the

basis of simple formulae which search for the minima of an appropriately chosen energy

function. The magnitude of each message reflects the currentaffinity that one feature

has for choosing another feature as its exemplar. The idea ismotivated by the affinity

propagation algorithm for clustering in sample space [35].Following repetitive message

exchange, the feature vectors get weighted according to their representative capability.

Eventually the features are selected based on these weights. The advantage of the scheme

is that it does not require any exhaustive traversal of the entire search space in order to find

the best subset of features. It also automatically reduces redundancy within the selected

subset.

The rest of chapter is organized as follows. Section 4.2 introduces some basic concepts

of distance correlation. The feature selection algorithm,based on message passing, is
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explained in Section 4.3. This is next extended to work on large data. The experimental

results, including comparative study on nine sets of publicly-available data,viz. Colon,

Leukemia, Prostate, DLBCL, MLL, NSL-KDD, Isolet, COIL20andMF, are presented in

Section 4.4. Finally Section 4.5 concludes the chapter.

4.2 Distance Correlation

The distance correlationR is a relatively new approach [110]. It provides an extensionto

Pearson correlation [114], and measures dependence between a pair of random vectors in

different types of applications. Let~fi and ~fj be two feature vectors in a dataset~X. The

distance dependence statistic is defined as follows.

Let a dataset~X consist of a set of feature vectors~f1, ~f2, . . . , ~fD, with each~fi havingN

instances such that~fi = fi1, fi2, . . . , fiN . The Minkowski distance matrix, of normr, is

computed for each feature vector~fi using

cgh = |fig − fih|r g, h = 1, . . . , N. (4.1)

For each~fi, we have

Cigh = cgh − cg. − c.h + c.., g, h = 1, . . . , N, i = 1, . . . , D, (4.2)

wherecg. = 1
N

∑N
h=1 cgh, c.h = 1

N

∑N
g=1 cgh, c.. = 1

N2

∑N
g,h=1 cgh.

The distance covarianceV (~fi, ~fj) and distance correlationR(~fi, ~fj), between feature vec-

tors~fi and~fj , are defined as [110]

V (~fi, ~fj) =
1

N2

N∑

g,h=1

CighCjgh, (4.3)

and

R(~fi, ~fj) =






V (~fi, ~fj)√
V (~fi)V (~fj)

, V (~fi)V (~fj) > 0

0, V (~fi)V (~fj) = 0,
(4.4)
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where the distance covariance of a feature vector~fi, with itself, is given as

V (~fi) =
1

N2

N∑

g,h=1

C2
igh. (4.5)

For all distributions with finite first moments, the coefficient R(~fi, ~fj) is a standardized

version of the distance covarianceV (~fi, ~fj). The value ofR lies in the interval [0,1], such

thatR = 0 if only if ~fi and~fj are independent or have no similarity between them.

This statistic is consistent for linear as well as non-linear dependence between vectors

having finite second moments. It also measures nonlinear or non-monotone dependence

between two feature vectors. This works well when (i) the dimension (or the number

of features)D of a dataset exceeds the sample sizeN , or (ii) when the distributional

assumptions of a dataset do not hold.

Some of the properties of distance covarianceV (~fi, ~fj) and distance correlationR(~fi, ~fj)

are listed below [110].

1. V (~fi, ~fj) ≥ 0, ∀i, j.

2. V (~fi) = 0, if and only if every instance of the feature vector~fi is identical.

3. 0 ≤ R(~fi, ~fj) ≤ 1.

4. R(~fi, ~fj) is symmetric.

5. If ( ~fa
i , ~fa

j ) and(~f b
i ,

~f b
j ) are pairs of vectors (corresponding to theith andjth fea-

tures), over independent subsetsa andb of samples, then the distance covariance

follows

V ( ~fa
i + ~f b

i ,
~fa
j + ~f b

j ) ≤ V ( ~fa
i , ~fa

j ) + V (~f b
i ,

~f b
j ). (4.6)

The equality holds if and only if (i)~fa
i , ~fa

j , ~f b
i ,

~f b
j are mutually independent, or (ii)

~fa
i and ~fa

j are both constants, or (iii)~f b
i and ~f b

j are both constants.
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4.3 Message Passing between Features

The algorithm initially considers a collection of real-valued similaritiessim(i, j) between

the ith andjth feature vectors (~fi, ~fj), i, j ∈ {1, . . . , D}, where the similarity value is

computed based on the distance correlationR(~fi, ~fj) of eqn. (4.4). The objective is to find

a set ofD hidden labelsli; i ∈ 1, . . . , D, to map each feature vector~fi such thatli becomes

its exemplar or representative based on the similarity. Theidea follows from the affinity

propagation algorithm for clustering in sample space [35],and is extended here to develop

a novel way of feature selection.

Each feature~fi is thus mapped to its most similar feature, on the basis ofR. During mes-

sage update, a feature~fi can not directly choose itself as its own representative. Only when

some other feature~fi′ has already chosen~fi as its representative, can feature~fi choose it-

self as its representative; and such a set of choices is called a valid mapping. Let a set

of valid mappings for theD features beL = {l1, . . . , lD}, andsim(i, li) be the similarity

of the ith feature vector~fi to its representative labelli. The energy (or cost) of a set of

valid mappings isE(L) = −
∑D

i=1 sim(i, li). The goal of the feature selection algorithm

is to search for the minima of this energy (or cost) function.The exact minimization of

the function being computationally intractable [14], researchers have developed update

rules [35] for searching the minima of the energy (or cost) function based on the Bethe

free energy approximation [121].

4.3.1 Selection of features

The update rules for feature selection are based on marginalprobabilities (or belief), and

proceed recursively by exchanging two kinds of messages between a feature and its rep-

resentative. The responsibilityres(i, k), sent from feature vector~fi to candidate repre-

sentative feature vector~fk, reflects the accumulated evidence regarding how well-suited
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Algorithm 4.1:Similarity between features

Input: N ×D data matrix~X .

Output: D ×D similarity matrixsim.

1: for i← 1 to D do

2: for j ← i to D do

Compute distance covarianceV (~fi, ~fj) between features~fi and ~fj using eqns. (4.1)-

(4.3).

Evaluate distance correlationR(~fi, ~fj) using eqn. (4.4), and store insim(i, j) and

sim(j, i).

3: end for

4: end for

5: sim = −1 ∗ sim.

~fk is to serve as the representative for feature~fi (taking into account its other potential

representatives). The availabilityavl(i, k), sent from representative feature vector~fk to

feature vector~fi, measures the accumulated evidence about how appropriate it is for ~fi to

choose~fk as its representative (taking into account the support fromother features regard-

ing whether it should be the representative).

The procedure starts with the pairwise similarity between featuressim as the input prefer-

ence, for a feature to select another feature as its representative. The pairwise similarities

are calculated using Algorithm 4.1.

The responsibilityres(i, k) and availabilityavl(i, k) are defined as [35]

res(i, k)← sim(i, k)−maxk′∈{1,...,D};k′ 6=k{avl(i, k′) + sim(i, k′)}, (4.7)

and

avl(i, k)← min{0, res(k, k) +
∑

i′;i′ /∈{i,k}

max{0, res(i′, k)}}. (4.8)
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The self-availabilityavl(k, k) of a featurek is updated as

avl(k, k)←
∑

i′;i′ /∈{i,k}

max{0, res(i′, k)}. (4.9)

To avoid numerical oscillation, the messages (res or avl) are damped before moving to

the next phase (or iteration). We use

msg ← (1− λ) ∗msg + λ ∗msgold, (4.10)

where0 < λ < 1 is a damping factor,msg represents eitherres(i, k) or avl(i, k) [eqns.

(4.7)-(4.9)] in the current message, andmsgold is the corresponding message computed

in the previous iteration. The energy is computed by summingthe diagonal elements

res(k, k) andavl(k, k) of the matrices. The procedure for feature selection through mes-

sage passing (FSMP) is summarized in Algorithm 4.2.

The complexity of Algorithms 4.1 and 4.2 areO(D2 ∗N2) andO(iter ∗D2) respectively.

While for N ≪ D the complexity of Algorithm 4.1 tends toO(D2), it approachesO(N2)

for N ≫ D. Therefore, for large values ofN this can lead to a bottleneck.

4.3.2 Extension to large data

To apply distance correlationR on a data with large samples, the property #5 of this

measure [from eqn. (4.6)] is used. It provides an upper-bound on the actual value of the

distance covarianceV (~fi, ~fj) of ~X.

In the feature selection scenario, the data is randomly divided intodiv disjoint subsets

such that (i)~X = ∪div
t

~X t and (ii) ~X t1 ∩ ~X t2 = φ if t1 6= t2 . The distance covariance

V (~f t
i ,

~f t
j ), over each subset~X t; t = 1, . . . , div, can now be computed parallelly using eqn.

(4.3). The final value of distance covarianceV (~fi, ~fj) over ~X becomes

V (~fi, ~fj) =
div∑

t=1

V (~f t
i ,

~f t
j ). (4.11)
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The procedure to compute similarity between features is outlined in Algorithm 4.3. The

similarity matrixsim is then fed into Algorithm 4.2.

The complexity of Algorithm 4.3 becomesO(D2 ∗N2
t ∗ div), whereNt is the sample car-

dinality of the subset~X t. Therefore for large data, usingNt ≪ N with a moderately large

value ofdiv, this algorithm has an advantage over Algorithm 4.1. Moreover, the complex-

ity can be further reduced by modeling each disjoint subset in a parallel framework when

it tends toO(D2 ∗N2
t ).

4.4 Experimental Study

The feature selection algorithms were implemented on nine real life datasets,viz. Colon,

Leukemia, DLBCL, Prostate, MLL, NSL-KDD, Isolet, COIL20,andMF, whose character-

istics are listed below.

Leukemiadataset contains the gene expression information of 72 acute leukemia samples.

There are 25 human acute myeloid leukemia (AML) and 47 acute lymphoblastic leukemia

(ALL) cases, each with 7129 features.Prostatedata includes the gene expression mea-

surements for 52 prostate tumors and 50 adjacent normal prostate tissue samples, over

12626 features.DLBCL data contains 77 gene expression levels. Among them, 58 are of

diffuse large B-cell lymphoma (DLBCL) type while 19 are of follicular lymphoma (FL)

type. This data consists of 7070 features.MLL data is a collection of 72 gene expres-

sion measurements. There are 24 examples of acute lymphoblastic leukemia (ALL), 20

examples of mixed-lineage leukemia (MLL) and 28 examples ofacute myeloid leukemia

(AML), over 12533 features.NSL-KDDis a benchmark data representing intrusion related

information for network-based IDs. The data has 148517 instance from two classes (viz.

normal and anomaly) over 42 features. TheColon and Isolet datasets are described in

Section 2.3.1, whileMF andCOIL20are presented in Section 3.4.1.
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As before, the efficacy of the feature selection algorithm was demonstrated by externally

validating the selected feature subsets in terms of their predictive accuracy, as measured by

well-known classifiers likek-nearest neighbors (k-NN), Naive Bayes (NB), and Support

Vector Machine (SVM) [described in Section 1.2.1], using 10-fold cross validation. The

results were averaged over 50 runs. The paired Student’s t-test for unequal mean and

variance was used to compute the statistical significance ofthe obtained results, and the

threshold for rejecting the null hypothesis was set at 0.05.

The experiments were conducted in two parts - first with the datasets having smaller sam-

ple size, followed by those with relatively larger cardinality (N). Results were compared

with those from related feature selection algorithms,viz. fsfs and mRMR, and indepen-

dence criterion HSIC (as described in Section 1.4.3). The distance correlationR between

every feature pair was computed using eqn. (4.4) on the entire dataset, and stored in the

similarity matrixsim. Herer = 1 was used in eqn. (4.1). The values of damping factorλ

and iterationiter were chosen as 0.5 and 100, respectively, after several experiments.

4.4.1 Algorithms 4.1 and 4.2

The algorithms were tested on the five datasets,Colon, Leukemia, Prostate, DLBCL and

MLL. The classification accuracy of the classifiersk-NN (k = 1, 3, 5), NB and SVM, over

the reduced sets of features, was plotted in Fig. 4.1. It is observed, in most cases, that for

a small number of features(d ∼ 50) we obtain around 90% accuracy forColon, DLBCL

andMLL data. In case ofProstatedata the classification performance is found to decrease

asd→ D.

A comparative study of the classification performance, overthe feature set extracted by

Algorithms 4.1 and 4.2, was made with that by fsfs, mRMR and HSIC. Note that HSIC

was used in the framework of Algorithm 4.2. The results are provided in Table 4.1 for
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classifiersk-NN (k = 1), NB and SVM. The cardinality of the selected feature subsets,

in each case, is listed in column 2. The last row (corresponding to each data) indicates

the performance over the entire feature set of cardinalityD. The best results (among the

feature selection methods compared) are indicated in bold.The reduced set of features

selected by Algorithms (4.1, 4.2) [FSMP] provides the best results in most cases. With

respect to the performance over the original feature space(D), the accuracy is found to

be comparable (over the reduced setd) in most cases. Specifically, our algorithm obtains

the best overall results (atd ≪ D) with classifiers NB (forColon, DLBCL, MLL), and

with k-NN and SVM (forProstate). This highlights the usefulness of the FSMP scheme

in selecting an appropriate set of reduced features for gooddecision making.

The comparison of classifier accuracy for FSMP, HSIC and mRMR, overProstate, MLL,

andColondatasets, is depicted in Figs. 4.2 - 4.4 respectively. In general, FSMP is found

to provide better performance over different feature sets of the data. However forColon

data FSMP shows higher classifier accuracy with SVM, only over smaller feature subsets.

A comparative study of the execution time, for selection of aset of 500 features by Algo-

rithms 4.1 and 4.2 and with that by fsfs, mRMR and HSIC, was listed in Table 4.2. FSMP

took less time with respect to mRMR and HSIC over all data sets. FSMP performed faster

in comparison with fsfs on Prostate Data. Over other datasets, it consumed comparable

time. The execution time was computed on a HP Z800 workstation with Xeon(R) 2.67

GHz CPU and 16 GB RAM.

4.4.2 Algorithms 4.3 and 4.2

Next the four larger datasets,NSL-KDD, Isolet, COIL20 andMF, were handled in the

framework of Algorithms 4.2 and 4.3. The plots in Fig. 4.5 depict the results, over different

choices ofdiv, for these data. In most cases a largerdiv, signifying smaller subsets, gives
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Figure 4.1: Classification performance over different feature subsets, selected using FSMP

(4.1, 4.2), for datasets (a) Colon, (b) Leukemia, (c) Prostate, (d) DLBCL, and (e) MLL
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Figure 4.2: Performance comparison of FSMP (4.1, 4.2), mRMRand HSIC, over Prostate

dataset, using classifiers (a)k-NN, (b) NB, and (c) SVM
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Figure 4.3: Performance comparison of FSMP (4.1, 4.2), mRMRand HSIC, over MLL

dataset, using classifiers (a)k-NN, (b) NB, and (c) SVM
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Figure 4.4: Performance comparison of FSMP (4.1, 4.2), mRMRand HSIC, over Colon

dataset, using classifiers (a)k-NN, (b) NB, and (c) SVM
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Table 4.1: Performance comparison over different data, using FSMP (4.1 and 4.2)

Data Characteristics d Algorithm Accuracy (%) (standard deviation)

k-NN NB SVM

Colon 45 fsfs 70.8 (1.91) 64.2 (1.33) 78.1 (1.89)

D = 2000 HSIC 78.0(2.50) 66.9 (1.41) 85.0(1.56)

N = 62 mRMR 74.8 (1.36) 57.6 (3.95) 67.1 (3.24)

C = 2 FSMP (4.1, 4.2) 77.8 (1.41) 84.2(1.19) 84.1 (1.41)

D —— 79.6 (1.13) 62.3 (1.45) 84.0 (1.74)

Leukemia 10 fsfs 53.9 (3.11) 60.3 (2.76) 63.3 (3.53)

D = 7129 HSIC 61.5 (1.80) 50.8 (3.14) 58.3 (2.43)

N = 72 mRMR 59.7 (1.83) 69.4 (1.65) 67.8 (2.53)

C = 2 FSMP (4.1, 4.2) 88.5(1.81) 83.8(0.82) 80.0(0.82)

D —— 91.4 (1.73) 86.3 (1.98) 94.8 (0.67)

Prostate 20 fsfs 72.0 (2.99) 70.0(2.77) 73.8 (2.75)

D = 12626 HSIC 48.5 (3.28) 43.8 (5.34) 52.0 (2.51)

N = 20 mRMR 57.3 (4.00) 57.3 (5.60) 54.8 (6.17)

C = 2 FSMP (4.1, 4.2) 85.8(2.45) 55.2 (4.13) 85.8(1.83)

D —— 61.0 (2.53) 72.3 (3.30) 72.0 (2.52)

DLBCL 40 fsfs 80.3 (1.35) 79.8 (1.43) 80.1 (1.28)

D = 7070 HSIC 88.3 (1.86) 85.3 (1.21) 92.5 (1.45)

N = 77 mRMR 73.0 (1.37) 79.1 (1.88) 79.7 (1.22)

C = 2 FSMP (4.1, 4.2) 89.5(1.55) 90.5(1.74) 85.6(1.22)

D —— 90.3 (1.10) 75.1(1.90) 97.2 (0.74)

MLL 50 fsfs 62.6 (1.90) 66.4 (1.10) 65.7 (2.70)

D = 12533 HSIC 83.4 (1.22) 79.2 (1.13) 85.0 (1.82)

N = 72 mRMR 33.8 (2.72) 51.0 (3.14) 40.4 (5.53)

C = 3 FSMP (4.1, 4.2) 91.0(1.88) 93.6(1.34) 93.2(1.02)

D —— 92.0 (1.18) 90.1 (1.95) 95.5 (0.50)
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Table 4.2: Execution time comparison over smaller data, using FSMP (4.1 and 4.2)

Data Algorithm Execution time (Second)

Colon fsfs 234

HSIC 723

mRMR 5320

FSMP (4.1, 4.2) 308

Leukemia fsfs 2377

HSIC 185030

mRMR 53444

FSMP (4.1, 4.2) 6020

Prostate fsfs 53074

HSIC 18872

mRMR 136983

FSMP (4.1, 4.2) 5512

DLBCL fsfs 2726

HSIC 186840

mRMR 97301

FSMP (4.1, 4.2) 6520

MLL fsfs 9240

HSIC 248910

mRMR 278700

FSMP (4.1, 4.2) 22088
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better results. As before, we obtain good accuracy atd < D. Since the processing over

eachdiv can be performed parallelly in Algorithm 4.3, it thereby serves to speed up the

process of decision making with considerably lower number of features.

Table 4.3 demonstrates a comparative study using the three classifiers. The results for

Algorithms (4.2, 4.3) [FSMP] correspond to a sample value ofdiv, as indicated in the

second-last row for each data. SinceNt ∼ N/div, therefore the complexity reduces to

O(iter ∗ D2) + O(D2 ∗ N2
t ) when each subset~Xt can be processed in parallel. Due to

the high time and space complexity of HSIC, it was infeasibleto be implemented here.

The mRMR algorithm could not be used onNSL-KDDbecause of its high requirement

of system memory. In most cases, FSMP (algorithms 4.2, 4.3) was found to provide best

and/or comparable classification performance. For the largest dataNSL-KDD, FSMP fared

better in the much smaller reduced feature space (d = 20, Nt ∼ 297), as compared toD =

42, N = 148517 of the original feature space. This underlines the usefulness of algorithm

FSMP for effectively handling larger data. The supervised algorithm mRMR fared better

than our algorithm in a few cases,viz. Isolet(all classifiers) andCOIL20(SVM). However,

our unsupervised algorithms generally resulted in comparable performance.

Table 4.4 demonstrates a comparative study of execution time over larger datasets using

FSMP (4.2 and 4.3) with other methods. The execution time wascomputed on the plat-

form mentioned in Section 4.4.1. The results depict that thecomputation time of FSMP is

more over all datasets. The reason behind this is the computation of the pair-wise similar-

ity computation procedure between the feature pairs, whichis still the bottle-neck of the

method.
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Table 4.3: Performance comparison over larger data, using FSMP (4.2 and 4.3)

Data Characteristics d Algorithm Accuracy (%) (standard deviation)

k-NN NB SVM

NSL-KDD 20 fsfs 98.5 (0.01) 60.4 (0.01) 94.7(0.30)

D = 42 div = 500 Nt ∼ 297

N = 148517 FSMP (4.2, 4.3) 99.0(0.02) 86.9(0.00) 93.2 (0.13)

C = 2 D —— 99.3 (0.01) 86.8 (0.02) 49.4 (0.58)

Isolet 250 fsfs 65.5 (0.24) 56.5 (0.10) 70.7 (0.18)

D = 617 mRMR 87.0(0.16) 84.0(0.09) 91.2(0.05)

N = 7797 div = 150 Nt ∼ 52

C = 26 FSMP (4.2, 4.3) 86.0 (0.19) 83.0 (0.09) 90.0 (0.02)

D —— 96.9 (0.08) 85.1 (0.10) 98.9 (0.03)

COIL20 300 fsfs 95.8 (0.21) 73.0 (0.57) 84.6 (0.20)

D = 1024 mRMR 99.4 (0.17) 87.4 (0.34) 94.0(0.18)

N = 1440 div = 20 Nt ∼ 72

C = 20 FSMP (4.2, 4.3) 99.6(0.09) 89.0(0.25) 93.0 (0.14)

D —— 99.7 (0.07) 92.6 (0.16) 95.9 (0.11)

MF 150 fsfs 96.0(0.10) 90.7 (0.11) 91.0 (0.14)

D = 649 mRMR 84.6 (0.14) 94.0 (0.55) 83.0 (0.09)

N = 2000 div = 50 Nt ∼ 40

C = 10 FSMP (4.2, 4.3) 95.0 (0.22) 94.0(0.54) 92.4(0.09)

D —— 95.0 (0.28) 95.9 (0.22) 88.9 (0.12)
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Table 4.4: Execution time comparison over larger data, using FSMP (4.2, 4.3)

Data Algorithm Execution time (Second)

NSL-KDD fsfs 12

FSMP (4.2, 4.3) 1796

Isolet fsfs 148

mRMR 45

FSMP (4.2, 4.3) 3543

COIL20 fsfs 127

mRMR 182

FSMP (4.2, 4.3) 1603

MF fsfs 57

mRMR 55

FSMP (4.2, 4.3) 762
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Figure 4.5: Classification performance of classifier NB, over different feature subsets se-

lected by FSMP (4.2, 4.3), for different number of subsets(div), over datasets (a) NSL-

KDD, (b) Isolet, (c) COIL20, and (d) MF
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Table 4.5: Performance and execution time comparison between Algorithms PR, FSSNN,

MFSSNN and FSMP

Data Set Algorithm d Accuracy (%) Execution time

k-NN NB SVM (Second)

Colon PR 261 83.9 54.8 64.5 18000

FSSNN 981 79.3 62.4 64.5 714

MFSSNN 457 78.1 70.0 79.4 2603

433 78.5 66.5 78.1

FSMP (4.1, 4.2) 261 84.0 83.4 83.7 308

Original space 2000 79.6 62.3 84.0 ——

Isolet PR 274 77.5 84.8 94.8 86052

FSSNN 348 88.5 88.2 93.4 15907

MFSSNN 300 88.7 87.4 93.2 99145

121 85.6 85.0 90.8

FSMP (4.2, 4.3) 274 86.2 85.2 94.0 3543

Original space 617 96.9 85.1 98.9 ——

Table 4.6: Performance comparison between Algorithms FSSNN, MFSSNN and FSMP

Data Set Algorithm d Accuracy (%)

k-NN NB

MF FSSNN 305 96.1 95.8

MFSSNN 206 94.1 93.7

103 93.1 92.8

FSMP (4.2, 4.3)div = 50 100 93.2 93.4

FSMP (4.2, 4.3)div = 10 305 97.3 96.0

Original space 649 95.1 95.9

COIL20 FSSNN 480 99.9 92.3

MFSSNN 425 99.8 91.2

253 99.7 90.7

FSMP (4.2, 4.3)div = 20 250 99.3 87.3

FSMP (4.2, 4.3)div = 20 480 99.9 92.7

Original space 1024 99.7 92.6
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4.4.3 Comparative analysis

Comparing with the proximity framework of model PR from Chapter 2, over datasets

ColonandIsoletand model FSSNN and MFSSNN from Chapter 3, we observe from Table

4.5 that the message passing scheme (FSMP) always selects a better subset of features to

provide higher classifier accuracy usingk-NN, SVM and NB over Colon Data. Here, the

algorithm FSMP leads to an improved classification, with just 261 features, with respect

to the original feature space of cardinality 2000. This allows reduction in computational

complexity along with enhanced performance. We also observe FSMP take least execution

time to produce a feature subset. In case of Isolet data, the feature set (cardinality 348)

generated by MFSSNN produces highest accuracy.

Next, we compare the shared nearest neighbor approach of Chapter 3 (Algorithms FSSNN

and MFSSNN), with FSMP in Table 4.6. Parameters used for Algorithms FSSNN and

MFSSNN are the same as indicated in Tables 3.1 and 3.7, respectively. Two subsets of

features were selected from the Pareto front of MFSSNN, viz.those corresponding to

the highest and lowest cardinality, respectively. Here Table 4.6 illustrates the overall best

performance of FSMP, for both datasetsMF andCOIL20, using classifiersk-NN and NB.

In fact, algorithm FSMP is found to be always better in terms of classifier accuracy over

the reduced feature subset (involving lower computationalcomplexity) as compared to that

in original feature space. This serves to validates the effectiveness of the message passing

scheme.

For N >> D, the time complexity of FSMP isO(N2
t ∗ div) while for Algorithm PR it

is O(gStN
2). Hereg is the number of generations andSt is the population size of the

GA. The gain is obvious because, typically,Nt < N anddiv < gSt. In case of parallel

computation ofsim, the time complexity of FSMP can even approachO(N2
t ). The time

complexity of FSSNN becomesO(sN2 + Stgs1n
2), wheres and s1 correspond to the
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nearest neighbors andn is the cardinality of the selected pattern set. Here also, FSMP

gains over FSSNN. Algorithm MFSSNN has higher time complexity than FSSNN, and is

thereby worse than FSMP.

ForN << D, the time complexity of FSMP isO(iter∗D2) and for PR it isO(gStD). But

the value of the(g ∗St) term is generally on the higher side, given that the total number of

feature subsets is2D. Therefore, FSMP has an advantage over PR. The time complexity of

FSSNN becomesO(Stgs1n
2D) in this scenario. Thereby, again FSMP has an advantage

over both FSSNN and MFSSNN.

4.5 Conclusion

In this chapter we have developed a new unsupervised featureselection framework, which

identifies a subset of representative features by passing messages between them. The mes-

sage passing scheme, adapted from affinity propagation for clustering [35], computed the

pairwise similarity between features in terms of distance correlationR. It measured the de-

gree of all possible relationships between feature pairs, without assuming any underlying

distribution.

The algorithm was able to select a reduced set of features without exhaustively traversing

the entire search space. One of the characteristic properties ofR was utilized, to make

the algorithm viable for handling data with large number of samples. The computational

complexity was also reduced. Comparative study with related algorithms like fsfs, mRMR,

and HSIC dependence criterion, demonstrated the suitability of the algorithms on publicly-

available datasets.
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Algorithm 4.2:FSMP

Input: D × D feature similarity matrixsim, damping factorλ, number of iterationsiter, and

cardinality of output feature setd.

Output: A feature subset{~Gd}.
1: Initialize messages with pairwise similarity between features.

2: Initialize avl(i, k) = res(i, k) = 0, ∀i, k.

3: for n← 1 to iter do

4: for i← 1 to D do

5: for k ← 1 to D do

Update responsibilityres(i, k) using eqn. (4.7).

Dampres(i, k) using eqn. (4.10).

6: end for

7: end for

8: for i← 1 to D do

9: for k ← 1 to D do

10: if i 6= k then

Update availabilityavl(i, k) using eqn. (4.8).

11: else

Update self-availabilityavl(k, k) using eqn. (4.9).

12: end if

Damp availabilityavl(i, k) using eqn. (4.10).

13: end for

14: end for

15: end for

16: Compute energy (or cost) values ofD features by summingres(k, k) andavl(k, k), for k ← 1

to D.

17: Sort features on the basis of energy (or cost) value. Select topd features to constitute{~Gd}.
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Algorithm 4.3:Similarity between features for large data

Input: N ×D data matrix~X , the number of subsetsdiv.

Output: D ×D similarity matrixsim.

1: Randomly divide~X into div disjoint subsets~Xt.

2: for i← 1 to D do

3: for j ← i to D do

Compute distance covarianceV (~f t
i ,

~f t
j), over alldiv subsets~Xt, using eqns. (4.1)-(4.3).

ComputeV (~fi, ~fj) using eqn. (4.11).

Evaluate distance correlationR(~fi, ~fj) using eqn. (4.4), and store insim(i, j) and

sim(j, i).

4: end for

5: end for

6: sim = −1 ∗ sim.



Chapter 5

Conclusions and Scope for Further

Research

This chapter concludes the thesis and summarizes some open issues for future research.

5.1 Conclusions

In recent times data encompasses high dimensionality, or large number of features which

may, again, include both relevant as well as irrelevant, redundant and noisy ones. In order

to perform efficient machine learning or pattern recognition, data preprocessing becomes a

necessity. Feature selection is one such commonly used technique. It determines a subset

of the original set of attributes to enhance the comprehensibility of a model that describes

a dataset. But data does not always come with labels. Due to the rapid generation of data,

labeling may not always be possible by experts. Unsupervised technique is useful in this

scenario. It uses the intrinsic properties of data to selectan appropriate subset of features.

Similarity is an important intrinsic property, which is employed in various manners in this

119
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thesis.

In every chapter we have presented conclusions drawn from respective methodologies

developed, and the experimental results therein. Here we consolidate them to provide an

overall picture of the contributions of the thesis.

The thesis dealt with certain tasks in unsupervised featureselection. It encompassed se-

lecting feature subsets by (i) preserving structural similarity in terms of proximity, (ii) de-

termining sample similarity in terms of shared nearest neighbors, and (iii) using distance

correlation in a message passing framework. The effectiveness of the different method-

ologies and their statistically significant comparative study with related ones, were ex-

tensively demonstrated on several real life datasets from varied domains (like population

census, computer intrusion and genomic analysis) involving dimensions ranging from 3 to

12626 and samples ranging from 20 to 148517.

The thesis consists of six chapters. Chapter 1 introduced the basics of pattern recognition

and soft computing, followed by a detailed coverage of the task of feature selection. This

was followed by the scope of the thesis.

Chapter 2 considered the structural similarity between patterns, in terms of fuzzy prox-

imity relations, to select the important features. An objective function was generated to

preserve structural similarity between the original and reduced feature spaces at a global

level. The cardinality of the reduced feature space was minimized while maintaining high

proximity. Since the two objective functions were mutuallyconflicting, a multi-objective

framework was employed to resolve the issue. Feature subsets were selected from the

Pareto optimal front. The use of soft computing helped producing acceptable solutions in

the presence of uncertainty. However, there was a drawback in capturing local information

during the computation of proximity, and the computationalcomplexity was also high for

large data.
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The concept of preservation of pattern pair similarity between the original and reduced

feature spaces, at a local level, was employed in Chapter 3 for unsupervised feature se-

lection. A secondary SNN distance measure was used to compute the pairwise sample

similarity in terms of their shared nearest neighbors. GA was used as an optimization tool.

A divide-and-conquer strategy was incorporated to extend the algorithm to work for data

involving large number of samples, in a scalable manner. Thedata was randomly parti-

tioned into nearly equal subsets, followed by a merger of thesample pairs having an SNN

distance measure below some user-defined threshold within each such subset. Finally a

feature subset was selected from this merged set of patterns, while preserving the pairwise

sample similarity based on SNN distance.

Comparing Table 2.2 with Table 3.1 forSpambasedata, the efficacy of the SNN concept

could be established in terms of improved classifier accuracy (with bothk-NN and NB)

over structural similarity (in PR from Chapter 2). This was due to the incorporation of

local information from the neighborhood concept, implicitin the shared nearest neighbor

distance.

The SNN similarity was used in Subsection 3.3.3, along with feature cardinality, in a

multi-objective framework. The reduced set of samples, chosen to preserve sample sim-

ilarity, helped in reducing the effect of outliers on the feature selection procedure while

also decreasing computational complexity. Comparing Tables 3.1, 3.7, and Fig. 3.2, it

was observed that the multi-objective framework of MFSSNN resulted in the selection of

feature subsets having reduced cardinality, while generating comparable performance in

terms of predictive accuracy and sample similarity.

Chapter 4 introduced the affinity propagation framework, ina novel manner, for feature

selection. The message passing scheme worked on pairwise feature similarity, which was

computed using distance correlation. The methodology was extended to large datasets

utilizing one of the intrinsic properties of distance correlation. Considering Table 4.5 we



CHAPTER 5. CONCLUSIONS AND SCOPE FOR FURTHER RESEARCH 122

infer that FSMP always selected a better subset of features to provide higher classification

accuracy usingk-NN, SVM and NB (with respect to Algorithm PR). In case ofColondata

the algorithm FSMP resulted in an improved classification, involving 261 features, with

respect to the original feature space of cardinality 2000. Table 4.6 validated the overall best

performance of FSMP with respect to Algorithms FSSNN and MFSSNN (Chapter 3), for

both datasetsMF andCOIL20, using classifiersk-NN and NB. In fact, algorithm FSMP

was found to be always better, in terms of classifier accuracy, over the reduced feature

subset as compared to that in original feature space. This serves to justify the effectiveness

of the message passing scheme. Time complexity analysis also established the superiority

of FSMP.

5.2 Scope for Further Research

Although we have restricted the application of structural similarity concept in this thesis

to numeric attributes, the proximity approach could be extended to include mixed data by

incorporating medoids and considering a symbolic framework for computing the cluster

prototypes. However, the proximity measure has a bottle-neck in case of data involving

larger number of patterns. This can be effectively handled by a divide-and-conquer mod-

ularization strategy involving some collaboration amongst independent smaller subsets of

patterns.

The shared neighborhood concept could also be extended to include other kinds of at-

tributes (like symbolic, categorical, hybrid), given thatthe SNN distance is based on the

ranking of sample points induced by some primary distance measure. Other types of

SNN distances, like linear inverse or logarithmic forms, could also be employed. More-

over, since genetic algorithm may not always be computationally efficient, some other

specialized optimization technique may be designed by embedding the properties of SNN
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distance. These aspects are currently under investigation. Analogously, in Subsection

3.3.3, a divide and conquer strategy can be incorporated in the multi-objective MFSSNN

algorithm.

Similarities between the objects play an important role in the affinity propagation frame-

work. We plan to incorporate some other concepts like rank correlation, while modifying

the message passing equations to make this robust. Fuzzy relations will also be applied to

choose the exemplar.

Flourishing of the social media, explosion in the amount of data collected from sensors and

machine-to-machine interactions, and reduction in the cost of storage media, has caused

the creation of large volumes of data. Big data has five main characteristics like volume,

velocity, variety, veracity and complexity. Data is streaming in at an unprecedented speed

and must be dealt with in a timely manner. Reacting quick enough to deal with such

high data velocity is a challenge for most organizations. Data today comes in all types

of formats - structured, numeric data in traditional databases, as well as unstructured text

documents, email, video, audio, stock ticker data and financial transactions. Managing,

merging and governing different varieties of data is something many analysts continue to

grapple with. Some investigations on feature selection is also planned in the context of big

data.

Data flows can be highly inconsistent, with periodic peaks. Daily, seasonal and event-

triggered peak data loads can be challenging to manage. Today’s data comes from multiple

sources. And it is still an undertaking to link, match, cleanse and transform data across

systems. However it is necessary to connect and correlate relationships, hierarchies and

multiple data linkages, as otherwise the data can quickly spiral out of control. The real

issue is not to acquire large amounts of data but to manage such data.

The challenges are to obtain data from any source, harness relevant data and analyze it to

find answers that enable 1) cost reduction, 2) time reduction, 3) new product development



CHAPTER 5. CONCLUSIONS AND SCOPE FOR FURTHER RESEARCH 124

and optimized offerings, and 4) smarter business decision making. A number of recent

technology advancements like cheap storage, faster processors, affordable open source and

distributed platform e.g. Hadoop, parallel processing, large grid environments with high

connectivity and high throughputs, cloud computing, and other flexible resource allocation

arrangements, are enabling analysts and researchers to harness the big data for relevant

decision making. We will explore such framework for extending the algorithms developed

in this thesis.
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