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Chapter 1

Introduction

1.1 Introduction

Pattern recognition [9, 24, 28,57, 61] is what humans do robste time, without any
conscious effort, and fortunately excel in. Informatiomngseived through various sensory
organs, processed simultaneously in the brain, and it€sasiinstantaneously identified
without any perceptible effort. The interesting issue &t tiecognition occurs even under
non-ideal conditiong,e., when information is vague, imprecise or incomplete. Ifitga
most human activities depend on the success in performirigugpattern recognition
tasks. Let us consider an example. Before boarding a trabbusy we first select the
appropriate one by identifying either the route numberdéstination on the basis of the
visual signals received by the brain; this information isrttspeedily processed, followed

by neurobiological implementation of template-matchi2g][

The discipline of pattern recognition (PR) centers aroumedevelopment of algorithms
and methodologies/devices which enable automated impitien of various recogni-

tion tasks normally performed by humans. The motivatiow igérform these tasks more

10
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accurately and/or faster, perhaps, in a more economicaheraand, in many cases, to
relieve humans from the mundane activity of mechanicaltjgoeing such routine recog-
nition tasks. The scope of PR also encompasses tasks in tminncans are not particularly
good, like reading Quick Response codes. The goal of pattewgnition research is to
prepare mechanisms to automate certain decision makiruggses that lead to classifi-
cation and recognition. Though research in this domain ttasad maturity over the
past decades, it remains fertile to researchers due to tiiemaous interaction with other
disciplines including biology, artificial intelligencenformation theory, psychology and
cognitive science. As a result, depending on the practieatis and demand, various ap-
plications like video surveillance, image retrieval, shanedia mining, have been initiated

in order to supplement the classical techniques [24, 28].

The field of machine learning is concerned with the questfdrow to construct programs
that gradually and automatically improve with experiedogecent years many successful
machine learning applications have been developed, erassing algorithms that learn
to detect fraudulent financial transactions, informatfiiitering systems that learn users’
reading preferences, and autonomous vehicles that ledriveoon public highways. Typ-
ically machine learning involves searching a very largecepaf possible hypotheses to
determine the one that best fits the observed data, alongamittprior domain knowl-
edge. The learner’s task is to search through the vast spactutions, determined by the

available evaluation functions, in order to locate the noosisistent hypothesis [9, 82].

Over the last several years the availability of the intearet the decrease in cost of stor-
age have resulted in databases become voluminous and, & cases, heterogeneous.
Such massive datasets generally consist of a combinationoragric, textual, symbolic,

pictorial, video, as well as aural data. There may also beeelahd a certain amount of re-
dundancy, error, imprecision, etc. Traditional data diegystatistical data summarization

and data management techniques are often just not adequasntiling such multimedia
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data [84]. This is where we need data mining in order to iigefitly extract information
or knowledge, that may be useful for exploring the domairinsideration and to provide

support towards decision making.

Data mining [34, 47, 84] can be viewed as an integration of RRraachine learning in
the context of large data. Here stress is more on the sa@yatfithe number of features
and instances, where scalability refers to the ability oakorithm to efficiently handle
large volumes of data. In effect data mining involves a ndigtgiplinary effort from the
database, machine learning and statistics communitiemeSd the major functionali-
ties of data mining include association rule mining, clustg classification, regression,
sequence analysis, dimensionality reduction, rule géioassgsummarization or condensa-
tion. Data mining algorithms determine both the flexibiliiya model in representing the
data as well as its interpretability in human terms. Althoagmore complex model may
fit the data in a better manner, often it may also be more difftouunderstand [62, 84].

This pertains to the issues of generalization and ovedittin

There can exist various kinds of imperfection in the inputdenainly due to uncertainty,
vagueness, and incompleteness. While incompletenegs ali® to missing or unknown
data, uncertainty (or vagueness) can be caused by errohysicpl measurements due to
incorrect measuring devices or the mixing of noisy and pigeads. Soft computing tech-
niques are capable of effectively handling these issuds c8mputing is a consortium of
paradigms like fuzzy sets, neural networks, and genetrihgns, that work synergisti-
cally to provide flexible information processing capambtfor real life problems. Its aim
is to exploit the tolerance for imprecision, uncertainfypeoximate reasoning and partial
truth in order to achieve tractability, robustness, lowt@mution and close resemblance
to human-like decision making [93]. The use of soft compyitmpattern recognition and

is reported in literature [84, 93].

With the discovery and/or growth of high-throughput tediogees, like hyper-spectral im-
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agery, radio frequency ID, high speed internet, and smatenng, there has been an
asymptotic increase in the dimensionality and size of detab. As a result their storage
and processing have become more challenging, with manoakgsing becoming im-
practical. Therefore, techniques integrating data miming machine learning are being
developed in order to efficiently automate the pattern reitmgn and knowledge discov-
ery process. However application of these algorithms tyen raw data is mostly use-
less due to the high level of noise and redundancy assoardtbdhe samples. Noise
usually comes from imperfection during data collection rmi the source of the data
itself. Redundancy may be incorporated during measureofethie same variable over
different instances. Extracting nuggets of knowledge fsuoh huge and noisy datasets
Is thus a difficult task, and data preprocessing is a negessap towards achieving this

goal [76, 78]. Feature selection plays a major role in thisation.

The objective of this thesis is to present development ar@jd@f some algorithms, along
with their case studies, involving both theoretical andezkpental studies in unsupervised
feature selection. Extension to large data is also invat®) with a view to reducing the
curse of dimensionality. Novel similarity measures, frotatistical, classical, and soft
computing domains, are introduced to identify reduced stsbsf informative features.

The similarity is mainly based on various internal charasties of the data.

Before outlining the scope of the thesis, we provide a brigbiduction to pattern recog-
nition, data mining and soft computing. The rest of this ¢bafs organized as follows.
Section 1.2 introduces the pattern recognition and datangrirNext we present genetic
algorithms and its various constituents in Section 1.3. érisktudy of feature selection
is provided in Section 1.4. The role of similarities, in ¢krsng and feature selection, is

highlighted in Section 1.4.3. Finally Section 1.5 dealdwtite scope of the thesis.



CHAPTER 1. INTRODUCTION 14

1.2 Pattern Recognition

Pattern recognition (PR) can be viewed as a two-fold tasksisting of learning the in-
variant and common properties of a set of samples (or paltetraracterizing a class or
group, and of deciding an unknown pattern to be the possiblaloer of a group by noting
that it has properties common to those of its set of samplRscdn thus be described as
a transformation from the measurement sp&te to feature spacé's, and finally to the
decision spac®.S as

MS — FS — DS, (1.1)

where— denotes a mapping from one space to another.

Patterns can be represented by arrays of numbers or charabtained from a sequence
of binary or logical tests, scanning of images, reading ®fsteor acquiring information
from any relevant source. Pattern classes can be depictemhdywr several prototype
patterns. A typical PR system consists of three phases ga(ijetlata acquisition, (ii)
feature selection or extraction, and (iii) decision making. classification or clustering.
Its aim is to achieve robustness with respect to random parsgto obtain output in real

time. It is also desirable for the system to be adaptive tmgla in environment [28].

Data is first gathered with a set of sensors during the dataisiign phase, depending
on the environment within which patterns are to be classiiedlustered. This is then
passed on to the feature selection or extraction phasegvtisetimensionality is reduced
by either retaining a few characteristic features or prisgeror by mapping the infor-
mation content into a space whose basis or features are dousiag the characteristic
features of the original data. In a broader perspective,dtage significantly influences
the entire recognition process. Finally, the classificatio clustering phase evaluates the
information present among the selected or extracted fesfor learning a final decision.

This phase basically establishes a transformation betthesnput features and the output
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clusters or classes [24, 28].

Learning can be broadly categorized into three categoiessupervised, semi-supervised
and unsupervised. In supervised learning, the algorithneigees a learner by analyzing
a training set made up of database tuples and their assbdiates labels. In the testing
phase, the algorithm predicts the class labels of samplehwtthas not encountered dur-
ing training. Generalization and scalability are two intpot properties of any learner.
The generalization capability is estimated based on tHeqmeance over an unknown test
set. Overfitting exists when a model is extensively compgeich as having too many
parameters relative to the number of observations, andidesacandom error or noise
instead of focusing on the underlying relationship. Undkemfiy occurs when a model is
too simple, and is not flexible enough to capture the undeglytends in the observed
data. Scalability refers to the ability to construct a legrar predictor efficiently, in the
presence of a large set of data. Scalable approaches areajaisle of handling training

data that are too large to fit in memory.

Supervised learning is also termed classification. It @stsrwith unsupervised learning
or clustering, in which neither the class label of a samplethe total number of labels
to be learned are available. In semi-supervised learninghe other hand, partial class
information of the training samples may be known in advarnodhe following sections

we describe classification and clustering in further deltesifore moving on to large data.

1.2.1 Classification

A classifier partitions a feature space into regions, bygassg each input pattern to one
of the possible output classes based on certain paramdten®al life, since most of
these parameters may not be known a priori, they need to ineagst from a finite set of

input patterns. This finite set of samples, which often ptesipartial information for the
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optimal design of a pattern recognition system, is termedrining set.

There are several approaches to classifier design. Thdseéngecision theoretic (both
deterministic and probabilistic) approaches, connetdtcpproaches, and support vec-
tor machines, among others. A good classifier should possesacteristics like on-line
adaptation, nonlinear separability, capability of hamglloverlapping classes, fast decision
making and minimization of the number of tunable parametetise system. Some of the

well-known classifiers are outlined below.

k-nearest neighbors (k-NN)

Given a test point;, thek training points which are closest i in terms of distance are
identified. Thenz, is classified using majority voting among thés@aearest neighbors.

Ties are resolved arbitrarily [28]. THeNN classifier is used in Sections 2.3, 3.4 and 4.4.

Discriminant analysis

The procedure attempts to determine several discriminardtions (linear combination
of independent variables) that discriminates among thepggalefined by the response

variable [47].

Naive Bayes (NB)

This is a probabilistic approach. In the Naive Bayes (NB)) [@tting, the naive assump-
tion of class conditional independence is made. Here theegabdf attributes of a sample
are conditionally independent of one another, given thesdiabel of the sample. In other
words, there exists no dependence relationship amongttiteuges or features [47]. The

NB classier is used in Sections 2.3, 3.4, 3.4.3and 4.4.
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Decision tree

A decision tree classifier uses, in most cases, an informatieoretic measure, like en-
tropy, for assessing the discriminating power of eachlatte. A few important decision
tree algorithms are Interactive Dichotomizer 3 (ID3), Glésation and Regression Tree

(CART), C4.5/C5.0, RainForest [84].

Support Vector Machine (SVM)

The SVM classifier is based on hyperplane learning. The idega map the training
data into a higher dimensional feature space via a mappmgfitin, and to construct a
separating hyperplane with maximum margin. This yieldswadr or nonlinear decision
boundary in the input space. Using a kernel functignt is possible to compute the
separating hyperplane without explicitly mapping into teature space. We have used

SV M in Sections 2.3, 3.4.3 and 4.4, for classification.

1.2.2 Clustering

A cluster is comprised of a number of similar objects coéodr grouped together [56].
It may be described as an aggregation of points in a test spaci that the within-cluster
distance between any two points in a cluster is less thandtvegen-cluster distance be-
tween any pair of points in different clusters. It can alsorggresented as connected
regions in a multi-dimensional space, containing a reddyihigh density of points sepa-
rated from other such dense regions by a region containirdpéively lower density of
points [32]. The process of clustering usually consisthitde steps. (1) Define a measure
of dissimilarity or similarity between the objects or patie (2) Formulate an objective
function for clustering given patterns or objects. (3) [@esa methodology for obtaining

the cluster satisfying the objective. Broadly clusteritgpathms can be categorized into
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partitive, hierarchical and density-based approaches.

Given a database of objects or data tuples, a partitive rdetbiostructs partitions of data
with each partition representing a cluster around a cehtrbne most well-known mem-
ber of this family is thek-means algorithm [24]. Although partitive algorithms aesd
expensive, in terms of time and space, yet the number oferhusteed to be specified
apriori. Moreover, the cluster structure is dependent erctioice of seed points. Another
variant of conventionat-means algorithm is the Iterative Self-Organizing Data lfsia
Technique (ISODATA), which employs splitting and mergimgeoations on clusters based
on a threshold [84]. Some other examples include Partiigpiround Medoids (PAM)
andk modes [47, 84].

A hierarchical method creates a hierarchical decompasitiohe given set of objects, and
can be grouped as agglomerative or divisive depending oth&h#he process is bottom-
up or top-down. A major weakness of these methods involves gralability, quadratic

time complexity, and sensitivity to outliers. However tHaster structure remains the
same over repeated executions. Popular algorithms of #tegory are single linkage,

complete linkage, and Divisive Analysis (DIANA) clustegifd7, 84].

The general idea of density-based methods is to continwaiggaa cluster, around a seed
point, as long as the density of patterns in its neighborheatiove a user-defined thresh-
old. The neighborhood region of each pattern in a clustahiwia user-defined radius,
must contain a given minimum number of points (as defined bydénsity threshold).
The major characteristics of density-based methods iredluelability to effectively (i) dis-
cover clusters of arbitrary shape (convex and non-convax)i® handle noise. But they
are, generally, computationally more expensive thantpatinethods. Few important ex-
amples are Density-Based Spatial Clustering of Applicetiwith Noise (DBSCAN) and
Ordering Points To Identify Clustering Structure (OPTI(4&, 84].
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1.2.3 Dimensionality reduction

Dimensionality reduction is an important preprocessimptégue to remove noisy, irrel-
evant and redundant features or attributes from the datancllides feature extraction
and feature selection. Feature extraction involves thgption of data into a new trans-
formed space of lower dimensionality, such that the attebun this transformed space
consist of linear or non-linear weighted combination oftéeas from the original space.
Examples of feature extraction techniques include Priacimmponent Analysis (PCA),

Linear Discriminant Analysis (LDA), and Singular Value @&aposition (SVD) [9, 28].

On the contrary, feature selection approaches select gspséfeatures from the origi-
nal space for maximizing their relevance to the target. Satbcted features should also
have minimum redundancy among themselves. Popular fesgleetion techniques in-
clude Sequential Forward Selection (SFS) [24], SequeBaakward Search (SBS) [24],
Sequential Floating Forward Search (SFFS) [96], Step-Wisstering (SWC) [64], Infor-
mation Gain [120], ReliefF [65], Chi Squares [120] and MiairiRedundancy-Maximal-

Relevance criterion (MRMR) [26].

Both these dimensionality reduction approaches improaeniag performance, reduce
computational complexity, build better generalizable gleénd decrease required storage
space. However feature selection is superior in terms ofongmd understandability and
interpretability, since it preserves the original featuaues in the reduced space. Feature
extraction, on the other hand, projects the feature vahtesa transformed space of lower
dimension. Therefore, further semantic analysis in the space becomes difficult as
often no physical meaning can be assigned to the transfofeatures. Here we describe

two of the well-known algorithms for feature extraction asedection.
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Principle Component Analysis (PCA)

This is a popular technique for feature extraction techaif@j, and is outlined below.

1. ComputeX X7 = S°P 2,27 whereD is the original dimension of the data.

Let U be the eigenvectors of X7, corresponding to the tapeigenvalues.
2. Encode original data ii = U7X, whereY is ad x D matrix.

3. Reconstruct original data in thiedimensional space by = UY = UUTX.

Sequential Forward Selection (SFS)

This is a suboptimal search procedure where one featureledaat a time to the current
feature stage. The feature to be included in the features sefected, at each stage, from
among the remaining available features. Thereby, the néavgad feature set yields a

maximum value of the criterion function used.

Let f. be the set consisting df already-selected features. L&t {X’ — fx} be the

feature selected now, such that

F(fsU&) 2 F(frU€); V&€ {X — fi}, (1.2)
whereF is the objective function to be maximized.

If &, satisfies eqn. (1.2), thefy.; «— {fx U & }. The feature selection method starts with

fo = ¢ and ends after the desirdchumber of features are obtained [24].

The algorithm SFFS is a near-optimal SFS with provision fckiracking. SWC, on the
other hand, is not a search-based algorithm which obtaiadwuced subset by discarding

correlated features.

This thesis deals with the development of four novel alhong for feature selection.

Therefore the concept of feature selection is elaboratéariner detail in Section 1.4.
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1.2.4 Extension to large data

Large data constitutes patterns having high dimensioroasdze [47]. Handling such data
involves extension of basic pattern recognition strategiea scalable manner. Modern
day research in data mining tries to achieve these goals [B4}a mining is the non-
trivial process of identifying valid, novel, potentiallgeful and ultimately understandable
patterns in data [34]. Typically, it involves fitting modeds determining patterns from
available samples or objects. Data mining algorithms d¢tutetsome combination of
1) the model which contains parameters that are to be detethirom the data, 2) the
preference criterion which is usually some form of goodrafsfit function of the model
to the data, sometimes tempered by a smoothing term to aveititting, and 3) the search

algorithm [34].

The aim of data mining is to develop a unified framework whicbidd be able to describe
the probabilistic nature of the discovered patterns andetsotie able to handle inductive
generalizations of the data, accept different forms of (lata relational, sequential, tex-
tual, web) and recognize the interactive and iterative gsees, with the comprehensibil-
ity of the discovered knowledge being of utmost importane® and machine learning
algorithms seem to be the most suitable candidates for ssidgethese tasks [80, 98].
However, PR and data mining are not equivalent considetieg briginal definitions.

Development of new generation PR algorithms is expectech¢orapass more massive
data sets involving diverse sources and types of data thiagwpiport mixed-initiative data

mining, where human experts collaborate with the compuatéotm the hypotheses and
test them. It should have capability to reduce the effectpafrisus data points which

misleads to overfit the model design [63].

Data mining, thus, is an attempt to make sense of the infeomatxplosion embedded

in large volume of data. Its tasks are mainly of two types, \(ix descriptive, when it
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discovers interesting patterns or rules from the data, @narédictive, when it predicts or
classifies the behavior of the model based on available dlatises automated tools that
employ sophisticated algorithms to discover mainly hiddatterns, associations, anoma-
lies, and/or structure from large amounts of data storecata varehouses or other in-
formation repositories, by filtering necessary informatfcom the dataset. It strives to
develop architecture of an algorithm in such a way that itlearscalable in terms of the

large numbers of features and instances [84].

Classification of large data is achieved by using decisieadiike Serial PaRallelizable
INduction of decision Trees (SPRINT) [84], support vectoaahines [9], neural net-
works [48], etc. Some popular clustering algorithms fordiang large data are approxi-
mate kernel K-means [15], Balanced Iterative Reducing dodt€ring Using Hierarchies
(BIRCH) [84], spectral clustering [79], Clustering Largeplications based on RAN-
domized Search (CLARANS), Clustering Using Represergat{CURE), and Clustering
in QUEest (CLIQUE) [84].

Big data is a popular term used to describe the exponentaltgrand availability of data,
both structured and unstructured. It is important to bussrand society because, with the
internet, the availability of more data leads to more adeuamalyses and subsequently
to better decision making. Eventually, it helps to achieraater operational efficiencies,
cost reductions and reduced risk. Big data has been usedht@yall sorts of ideas,
involving huge quantities of data, social media analytiext generation data management

capabilities, real-time data, and much more.

1.3 Genetic algorithms

Genetic algorithms (GAs) [107], based on powerful metaphoom the natural world,

mimic some of the processes observed in natural selectidreasiution, like selection,
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cross-over and mutation, towards stepwise optimizatianathematical problems. Since
GAs consider multiple points in the search space simultasigpothey have less chance
of converging to local optima. Thereby GAs offer a highly gdkel, robust and adap-
tive search process, which generally leads to approximatebal solutions guided by
some heuristic function. GAs have been found to provide npamal solutions to com-
plex optimization problem in varied fields like operatioesearch, VLSI design, pattern
recognition, and machine learning [40, 84]. The design efttauristic objective function

can be of two types, viz. single objective and multi-objestias described here.

1.3.1 Single objective GA (SGA)

SGAs, while simultaneously considering multiple soluspase only one fitness function
to provide a near optimal solution. A possible solution isaed by a binary string.e.

a finite set of ‘0’ and ‘1’ bits, and is called a chromosome. Térgth L of this string
depends on the problem at hand, with the different subsdigbeing mapped to their
corresponding domains. Increasing the length of a chromedeads to high precision
of the encoded variables. A collection 6f such strings or chromosomes is called a

population.

GAs typically start with a randomly generated populatiorsiak S;. At every iteration,
each chromosome of the population is evaluated in terms tfesB functiort’ signifying
the suitability of the string (or solution) towards a givemlplem. A new population of
the same size is produced in the next generation, using bage operations viz. selec-
tion, crossover and mutation, on each chromosome. SinaedS; are finite, therefore
the number of possible populations is also finite. GAs areegily executed for a fixed
number of generations, or terminated when there occurs mioeiuimprovement in the

generated population over a certain number of iteratiansake of the elitist models, the
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knowledge about the best chromosome (generated so fagssed so that the popula-
tion retains the good solutions. Typically the worst striighe offspring population gets

replaced by the best string of the parent population.

The schematic diagram of the basic structure of an elitistr@lel is provided in Fig.
1.1.

Define fitness function,
input variables
Select GA parameters

|

‘ Encode chromosomes ‘

!

—>‘ Create initial population ‘

!

‘ Compute fitness values ‘

Create mating pool
using selection

Store best string

Select
best
string

Stopping
criterion
achieved

Figure 1.1: Basic steps of an elitist GA model

A given feature subset is typically represented in a GA fnaork as a binary string, also
called as chromosome, with a “0” or “1” in positidnspecifying the absence or presence
of the k-th feature in the set. The length of the chromosome is egulkttotal number of
available features in the data. It represents a prospessivtion of the problem in hand,
and a population of such chromosomes is evaluated by optighén objective function

in order to enhance its fitness. GA proceeds to find a fit setdibicuals (here, feature
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subsets) by reproducing new children chromosomes fronr glaieents. In the process it
employs the operators selection, crossover (where patisamparent chromosomes are
mixed to create an offspring) and mutation (where bit(s) eirgle parent are randomly
perturbed to create an offspring). Crossover probahilignd mutation probability,,, are

used. This repeats over multiple generations (or iterajiantil a certain fitness level is
achieved. The chromosome with the best fitness value is dddodbtain the best feature

subset.

1.3.2 Multi-objective optimization and GAs
Multi-objective optimization [16] trades off between a t@cof objective functions
F() = F(2), Fa(T), ..., Fa(Z), (1.3)

where M is number of objectives and(¢ R") is a pattern vector of. decision vari-
ables. Unlike single objective optimization, here we tryppiimize two or more conflict-
ing characteristics represented by multiple objectivefiams. Modeling this situation in
a single objective framework would amount to a heuristiedatnation of a number of
parameters involved in expressing such a scalar-combm#gpe objective function. The
multi-objective technique, on the other hand, is concenvid the simultaneous mini-
mization or maximization of a vector of objectivé§7) that can be subject to a number

of constraints or bounds. In other words, we have

Minimize (or Maximize) F(Z) (1.4)
subjectto ¢;(¥) <0, i=1,2,...,1;

K;

he(@) =0, k=1,2,...

)

L U .
vy <wj<uz;, j=L12,...,n;
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where [ and K are the inequality and equality constraints respectiv@élgch decision
variablex; takes a value within lower bounﬂjL and upper boundg.f, with the bounds
constituting a decision variable spabe The solution set of that satisfiesall (1 + K)
constraints anall 2n variable bounds, forms the feasible solution spceAs these
objective functions are competing with each other, thermignique solution to this tech-
nique. Instead, the concept of nondominance [22] (alseddHareto optimality [13])
must be used to characterize the objectives. The objecativeibn spacé\ is defined as
A= f € R™ wheref = ﬁ(f)feg. A mapping from the feasible solutions space into the

objective function space, in two dimensions, is depictellig 1.2.

Multi-objective genetic algorithm (MOGA) simultaneouslgals with such multiple con-
flicting objective functions to yield a family of solutionshich are not comparable. Each
solution is equally good and can not be completely orderel rspect to the functions.
While the goal of a single objective problem is to find the ksdution from the solution
space, the multi-objective framework optimizes severgcives to generate a set of solu-
tions by making compromise in performance over all the corex objectives [1,22,67].
Such a family of solutions is called thiareto Optimal Fron{13, 67], and contains those
elements of a solution space which can not be simultaneaughoved with respect to all

the competing objectives under consideration.

The concept of optimality, in multi-objective optimizatiodeals with a set of solutions.
The conditions for a solution to ldominatedwith respect to the other solutions are out-
lined here. A solutiorz(Vis said to dominate the other solutigf?) if the following two
conditions are true [22]:

1. The solutionz™ is no worsethanz® in all M objectivesj.e.

Fi(zW) ot Fy(#?)Vi=1,2,... M.

2. The solutionz™" is strictly betterthanz® in at least oneof the M/ objectivesj.e.

F; (V) < Fy(7?) for at least one € {1,2,...M}.
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If any of the above conditions is not satisfied, then the smut") does not dominate the
solution#®. So, the solutiorr™ and#® form Pareto optimal front of these objective
functions. A typical Pareto optimal front over two objeetiunctions is shown in Fig. 1.3.
Here we simultaneously optimize the conflicting requiretaasf the multiple objective

functions. Multi-objective genetic algorithms (MOGAS) ynehus be used as a tool for

multi-objective optimization.

X, [

Figure 1.2: Mapping from feasible solutions space into ctoje function space

Pareto optimal
F Front

F
Figure 1.3: Pareto optimal front or non-dominated solwgiohF; and F;

The aim of MOGA is to converge to an archive which is a subs@&astto optimal solu-
tions and consist of diverse set of strings from the objediinctions space. During the
execution process a subset of the Pareto front, with respdgbe present population, is
created at each generation. In general, MOGASs consider tiweapy issues.

1) Selection of non-dominated solutions are preferred deerinated ones.
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2) Good spread of solutions is maintained in a populatiorthabthe archive represents

(as close as possible) the true Pareto optimal set.

In this thesis we have used the Non-dominated Sorting GeA&gorithm (NSGA-I1), that
converges to the global Pareto front while simultaneousdyntaining the diversity of a

population [22], for traversing the feature space (in $&di2.2.3 and 3.3.3).

1.4 Feature Selection

In continuation to the discussion in Section 1.2.3, we tettet feature selection is a
commonly used preprocessing technique for reducing higtedsional data [77]. It helps
to select a subset of attributes or features, from the algwature space, that can be
used to construct a model describing a dataset. Its obgsctwmcompass (i) reducing
dimensionality, (ii) eliminating noisy, irrelevant anddundant features, (iii) reducing the
amount of data needed for learning, (iv) improving the myperformance of algorithms,
in terms of measures like predictive accuracy, and (v) ecingnthe comprehensibility
of constructed models [76, 78]. Feature selection has bésgelywapplied to many fields
such as pattern recognition [58, 83], text categorizat&®) 42, 90, 120], image retrieval
[21], stock market analysis [50], wireless sensor netwaralysis [2], face recognition
[122], customer relationship management [89], intrusietedtion [74], genomic analysis

[3,118] and social media analysis [112,113].

1.4.1 Overview

Rapid development in computer engineering enabled calleaf data at an unprece-
dented rate, thereby presenting new challenges to featlgetion in ultrahigh dimen-

sional data domains [33], stream data [39], multi-task §&td multi-source data [124,
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125] and high dimensional multi-view data [112]. Absencelats labels require unsuper-
vised feature selection. Some strategies explore thagitrdomain-dependent properties
of datasets using statistics or information theory. In ptherds, there exists no alterna-
tive to good feature selection as a preprocessing strataggny decision making task.
As such, there is an ongoing volume of research [76, 78, d#drds developing robust

feature selection algorithms. We address some of thesesisshis thesis.

The selected features are typically evaluated in terms @f fherformance in decision
making. Feature selection algorithm thus constitute tisteps, namely, feature subset
generation, subset evaluation, and stopping criteriapasygrized in Fig. 1.4. Subset
generation chooses feature subsets from the originalreegpace, based on certain search
strategies. The evaluation criterion is used to judge thevaace of a selected subset of
features. It may require either labeled or unlabeled datenguhe evaluation. A super-
vised feature selection method [95, 102, 117] determinasife relevance by computing
the correlation or dependence of the subset with the clbs§ lar by estimating its capabil-
ity to predict the class labels in the dataset. In the absehsech labels, an unsupervised
feature selection method [19, 30, 60] utilizes severalrirdecharacteristics of the data,
like variance, distribution, or preservation of sampleiknty, in order to evaluate the
relevance of the selected subset. Research in featuréiselesccurrently getting focused

towards unsupervised learning [76, 78].

Feature selection strategies can be broadly categoritedilber, wrapper and embedded
models, based on the degree of involvement of the learngayi#thm in the evaluation cri-
terion. Filter models do not utilize any particular leagnadgorithm during the feature sub-
set evaluation process. Here the subset selection totgtigratls on the characteristics of
the dataset as well as the class labels of samples (whealaedilWell-known filter algo-
rithms include Information Gain, ReliefF, Fast CorrelatiBased Filter (FCBF), mRMR,
feature dependency, entropy-based distance and Laplswiae [77]. The wrapper mod-
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Stopping
criterion

Feature sgbset Evaluation
generation

Selected feature
subset

Figure 1.4: Typical view of a feature selection model

els, on the other hand, use a predetermined learning digotid compute the relevance
of the features in a dataset [66, 77,115]. Wrappers alsottebd more expensive than fil-
ters, from the aspects of both time and computational caxitpl6, 73].Popular wrapper
algorithms are Recursive Feature Elimination Support&etachine (RFE-SVM) [45],
and Feature Subset Selection Wrapped around EM ClustéfB§WEM) [29]. The em-
bedded models incorporate feature selection as a part oftthaing schedule, while
computing the relevance of features in terms of their effeoess in optimizing a crite-
rion function [77,128].

Finding an optimal feature subset, based on a criteriorsuslly intractable [66] for large
number of features. This is because exhaustively travgthmentire search space is NP-
hard in nature [10]. Therefore researchers use sequentatmental, or random search
strategies to generate feature subsets for high-dimeasisiata [78]. A complete search
traverses the total search space db-alimensional data, while evaluating al¥ feature
subset combinations. Thereby, it is guaranteed to find amapfeature set. However, a
search need not be exhaustive in order to guarantee comgédsteHeuristic functions have
been introduced to minimize the size of the search spackoutijeopardizing the chances
of finding the optimal result. Random search either starts arandomly selected subset

for performing sequential search, or proceeds to gendnatadxt subset in a completely
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random manner.

The use of soft computing is an interesting proposition gltms direction [5, 108], in
order to arrive at an acceptable solution at a lower cost.s Tof particular interest
towards the efficient mining and analysis of large data. We wi#ize the uncertainty
handling capacity of fuzzy sets and the search potentiadieétic algorithms for efficiently

traversing large search spaces [84].

Since the problem of feature selection involves an expoalesg¢arch space, therefore
GAs become naturally applicable [100, 119] due to their is¢iarnature. The use of GA
in feature selection already exists in literature [12, 88,107], where it is employed as an
optimization technique to select a minimal set of featufesature subsets were selected
[106] using GA, involving an objective function based on tagability of preserving the
correspondence between pairwise inter-pattern distainekedive to the original feature
set) in terms of Sammon’s stress function. Here GA was usedndomly traverse the

feature subset space.

When there occur two or more conflicting characteristicss@ptimized, often the single
objective optimization function requires an appropriaterfulation in terms of an additive
combination of the different criteria involved. In such easnulti-objective optimization
becomes more appropriate. Feature selection can be faedwda a minimization of the
number of features and maximization of the information eahtn unsupervised learning
(or predictive accuracy in supervised learning) over tHected subset. MOGAs were
employed [5] over a population of candidate strings to tetedtiple non-dominated so-
lutions representing strings of feature subsets. We hagd beth single objective and
multi-objective GA for evaluating the fitness of a populataf encoded chromosomes for

feature selection in Sections 2.2.3, 3.3 and 3.3.3.
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1.4.2 Evaluation of subspaces

The partitioning in different feature subspaces is evaldi&ioth internally and externally.
While the external measures compare the resultant paitigovith the correct classifi-
cation of the (known) data, the internal measures computdasianship involving the
inter- and intra-cluster separability. There exist manyasuees of this type in litera-
ture [37, 38,54, 56, 104]. Some of these are discussed balmvare used in Sections
2.3,3.4,and 3.4.3.

The Silhouette statistic[103] offers a way of internally validating the generatedstérs.
Though computationally more intensive, it is another wayestimating the number of
clusters in a distribution. The Silhouette inde¥, computes for each point a width de-
pending on its membership in any cluster. This silhouettiiwis then an average over all
observations. This is expressed as

S = = 3 _hima (1.5)

N ey max(a;, b;)

where N, is the total number of points of clustéf., a; is the average distance between
patternz; and all other points in its own clustéf, , andb; is the minimum of the average
dissimilarities betweerr; and patterns in other clusters. Finally, the global sillitzue

index, S, of the clustering is given by

S:

| =

k
> s (1.6)

The partition with the highest value 6fis considered to be optimal.

Redundancy rate (RE D) assesses the average linear correlation among all feairee p

in a subset ofj features, and is measured as [127]

1
EDG) = —— 1.7
RED(G) = grr—y f,.,;mp“ (1.7)
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Herep, ; is the Pearson correlation between feature pgiesid f;, and the cardinality of
G isd. A larger value of this measure indicates that more featarestrongly correlated,
thereby implying that greater redundancydnA smaller value ofRE D(G) corresponds

to the selection of a better feature subset.

The F'-measure F'm is an external validation technique, using class labelsxésrrel

information. It combines precision and recall [101], exgsed as

Recall(i, ) = %, (1.8)
14
Precision(i, j) = %, (1.9)
nj

wheren,; is the number of patterns belonging to clasisat fall in clusterj, andn;, n; are
the cardinalities of classcluster; respectively. The&'m(i, j) of cluster; and class is

computed as
2 x Recall(i, j) x Precision(i, j)

Fm(i,j) = (1.10)

Recall(i, j) + Precision(i, j)
No one-to-one mapping exists between a class and a clusterF'ih(i) for a particular
classi is given as

Fm(i) = max Fm(i, j). (1.11)

0<j<k

Finally, the F-measure is evaluated as
Fm=3" %Fm(i), (1.12)

with values lying in the rangf), 1], and a larger value df'm indicating improved quality

of clustering.

Next we describe a few external measures for comparingdiftesets of partitioning, over

the same or different feature spaces. Uebe a set of cluster&,, Us, ..., U,. Jaccard
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Index (J1) [6], between two sets of clusters (partitionirigandlU’, is defined as

ni
N1 + N1 + No1

JIU,U") = (1.13)

Hereny; is the number of pattern pairs lying in the same cluster ubd#r sets of parti-
tionsU andU’, nyq is the number of pattern pairs falling in the same clustereabdbut
not in U’ andng, is the number of pattern pairs that belong to the same clusiderl’

but not inU. A value of JI nearer to 1 indicates a better match between the clusters fro

the two different partitioning spacésandU’.
Rand Index (R[) [99] is used to compare the partitioning sétaindU’ as

n11 + Noo

RI(U,U') = NN -T2

(1.14)

whereng is the number of pattern pairs that belong to different etsstinder partitioning
U andU’. A value of RI nearer to 1 indicates a better matching betw€eandU’. We

have0 < JI,RI < 1.

An information theoretic measundariation of Information (V') [81] is also used to

compare the partitioning spacesandU’. It is defined as

VIUU)=HU)—-H{U)-2I(UU"), (1.15)
where .
H(U) == P(j)log(P(j)) (1.16)
j=1
is the entropy associated with clusteritigand
o P(j.J)
HUU) =33 P(j,j)log5 = (1.17)

is the mutual information between clusteritigandU’. Here P(j) = n;/N is the proba-

bility of a pattern belonging to clustéf;, wheren, is the number of patterns in the cluster
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U;,andP(j,j") = ‘ULNU" is the probability that a pattern belongs to ftile cluster in both
U andU’. We have) < VI < logN. A value of VI nearer to 0 implies better matching

of the partitions in the spacésandU’.

The Jaccard Score (JAC) evaluates the proficiency of a selected feature subset in pre

serving pairwise sample similarity, and is computed as]127

N . ;

1 NN(Z’m’Mg)mNN(Z,maM)
AC (Mg, M, m) = — ' t
J C( G 7m) Ni:1 NN(Z’m,Mg)UNN(Z7m7M) ( 8)

Here Mg = Xg X[ is a similarity matrix computed over the selected featutes@ising
the inner product) X is the pattern set with thesg features, and\/ is the similarity
matrix computed in the original feature spacéN (i, m, M) and NN (i, m, Mg) denote
the m-nearest neighbors of thiéh sample according td/ and Mg respectively. JAC
measures the average overlapping of the neighborhoodgisgdry M and M, with a

higher score indicating a better preservation of sampldagitty.

1.4.3 Role of similarity

The concept of similarity is basic to human experience. krgday life it implies some
degree of closeness between two physical objects or idepattarns, with the metric
being often used as a standard for measurement. Effectivemsts for data indexing
and data mining often require that appropriate measurettérpato-pattern similarity be
provided. LetX be a set. A function : X x X — R is called similarity or proximity in

X if, for Vz,y € X, we have
1. s(x,y) > 0 (non-negativity);

2. s(z,y) = s(y,z);

3. s(z,y) < s(x,x) Yo,y € X : x # yands(z,y) = s(x,x) ifand only if z = y.
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If any distance satisfies the triangular property then itited a metric. Such sets of dis-
tances or similarities are of importance in pattern reciogmj as they help in projecting
patterns or objects closely if they are in the same clustgraup, and far apart if they be-
long to different clusters or groups. Any use of such sintyaneasures involves implicit
assumption that the data objects or patterns naturally §pouaps, which can be regarded
as arising from different generation mechanisms whileisgarommon statistical charac-

teristics [25, 38].

Unsupervised learning aims to group objects based on sitigkg with the measure being
highly dependent on the features representing the datay Maming algorithms assume
the domain expert to have determined the relevant featud@sce all features are not
equally important, there can exist redundancy, irrelegamcnoise — which can again
misguide learning. The challenge is to identify and elingnanimportant features from

the datasets, thereby increasing comprehensibility uth@ecurse of dimensionality.

The concept of preservation of sample similarity has beed ts identify irrelevant fea-
tures [49, 123] as well as to remove redundant features [1ZZ4¥go and Liu [123] (SPEC
framework) ranked each feature based on their alignmeritddeiading eigenvectors of
the pairwise similarity matrix of samples, thereby preseguhe geometric structure of
data. This was employed in Sections 3.4.2 and 3.4.3.etHd. [49] evaluated features
individually, depending on their capability for presenyithe locality in terms the nearest
neighbors of sample points. Another popular feature sSeleetigorithm, based on nearest
neighbor approach, is ReliefF [65, 102]. This supervisgad@thm ranks each individual
feature depending on how well it can distinguish all neigiibeg same-class data points
in the training set from those belonging to different clasSéhis has been used in Sections
2.3.4,3.4.2and 3.4.3.

Since these algorithms handle each feature individualyieaneglecting possible corre-

lation between different features in the set, thereforeetlexists a chance of redundant
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feature(s) being retained in the reduced subset; such ¥eatweally the selected feature
set may not be optimal [11]. Zhaet al.[127] overcame this limitation by collectively
evaluating a set of features, and solved the combinatgptainezation formulation using
sequential forward selection (SPFS-SFS) approach. Tham@oyed in Sections 3.4.2
and 3.4.3.

Feature selection using feature similarity is not new ieréiture. Maximal information
compression index (fsfs) has been used in Ref. [83], to nmeake similarity between
features based on their linear dependence. This featwetiosl method initially partitions
the original feature set into distinct subsets or clustarsh that all features within a cluster
are highly similar to each other and vice versa. A singlegs@ntative feature from each
such cluster is then selected, based on the nearest nesghibihie features, to constitute

the resulting reduced subset. The maximal information cesgion index

Ao = 1/2[0r(F) + or(F)) =\ (wr(F) + vr(£))? — dor(F)or(F)(1 = p(F1. J3))?
(1.19)

is used for feature clustering, where( f;) is the variance of the feature vectbr p( f;, fj) =
% is the Pearson correlation coefficient betwgigand f;, andcou(f;, f;) is the
covariance betweef) and f;. Here\, becomes zero when the features are linearly depen-
dent, and it increases as the amount of dependency decrédsesomputational com-
plexity of this scheme i©(D? x N) [83], with N being the cardinality of the samples or
instances of a dataset. However any variation in the setareséneighbors can influence

the cluster of features, and thereby affect the final feaateThis is used in Section 4.4.

The Hilbert-Schmidt independence criterion (HSIC) [41% ladso been used to measure
the similarity between features [18]. It maps the featumes into a Reproducing Kernel

Hilbert Spaces (RKHS) to calculate the norm between thers.alorithm computes

. 17 K117 11 9 .
KL — 1K1, (1.2
[trace( )+(N—1)(N—2) N 3 ], (1.20)

HSIC(f;, [;) = NN 3
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where K and L are kernel matrices with diagonal elements equal toeDX = K —
diag(K) andL = L — diag(L). Here K (p,q) = ¢1(fip, fig) aNdL(p,q) = b2(f;p, fiq)
are the kernel matrices with ¢ = 1,... N. ¢, and¢, are the Gaussian mapping func-
tions [18,41]. Note that the choice of the kernel affectsrtieasurement of dependence
or similarity between the features. The computational dexity of HSIC (computed

between a pair of features)d(N?) [109]. It is employed in Section 4.4.

Mutual information, in terms of minimal-redundancy-maxilnelevance (MRMR) crite-
rion [26] has been used [95] to measure the maximal stalsligpendency or similarity
between features. The algorithm proceeds by selectingriEsatncrementallyj.e., it in-

cludes a feature into an already generated subset whendlosion improves the overall
mutual information of the subset. The supervised mMRMR sehf98] selects features

incrementally by optimizing

e M@ - Y MG AL @2

’ fi€{Gm-1}
Here M I( ﬁ, w) is the mutual information between feature vegﬁoand target class vector
w, MI(f;-, f3) is the mutual information betweq_‘é\andﬁ-, {Gn_11} is the subset afm—1)
selected features, ar{de} is the original feature space. The feattﬁefrom the set
{Gp — G.n_1}, which maximizes eqn. (1.21), is selected at thh step to generate a
feature subsefG,,} of sizem. The Parzen window method is used to approximate the

mutual information. However, in the process, the algorithay also happen to miss the

best subset. This measure is used in Section 4.4.

Related literature on feature subset evaluation includedoay Utility score [23], Fisher’s
feature dependency measure [27,111], and entropy-basegpenvised feature ranking
[20]. These proceed by selecting the subset(s) of featuinde trying to preserve the in-
herent characteristics of the data. Authors have used arpensgsed method [116] that

assumes a linear model to choose a subset of features wipitexamating the original
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data. Zhacet. al [126] developed an embedded model which evaluates a éatirset

based on its capability of preserving sample similarity.

The role of soft computing in efficiently handling similatifrom the perspective of fea-
ture selection, is one of the major thrusts of this thesisugésfuzzy proximity to quantify
topological neighborhood information, followed by its arporation in dimensionality re-
duction. A secondary distance measure is then introducedeterve sample similarity,
and is used to identify optimal feature set(s) from the dalte. also employ a relatively
new statistic called distance correlation to measure featependence, and propagate this
information in a belief propagation network to perform ¢krgg of a feature space for
deriving meaningful feature subset(s). Evaluation inslidemonstrate that our algorithms
produce more informative, less redundant feature subsmtés related methods existing
in literature. The selected subsets also resulted in caatipaly higher predictive accu-

racy.

1.5 Scope of the Thesis

The objective of this thesis is to present some investigatiboth theoretical and exper-
imental, addressing certain aspects of unsupervisedréeatliection using similarity, in-
volving structural, neighborhood and affinity between @atipairs, and passing messages
between feature pairs. Quantitative evaluation of thecsedereduced feature subset(s) is
also performed, and these results are compared with otterst-the-art feature selection

techniques.

Some of the issues covered in this thesis include conceptsdtructural similarity, shared
nearest neighbors, and distance correlation, towardsowegrfeature selection. The ef-

fectiveness of the different algorithms is demonstratedrsynthetic, along with fifteen
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sets of publicly available real data viz. fjsSpambask lonospherg Multiple Features
(MF)!, Isolet, ORL?, COIL20 [88], USPS8, NSL-KDD#*, Color?, Leukemid, Prostaté,
DLBCL®, MLL®. The outline of the investigations is summarized below,asrifferent

chapter headings.

1.5.1 Feature selection using structural similarity

A new method of feature selection is developed, based ontatal similarity [72, 85].
The topological neighbourhood information about pairs lgkots (or patterns), to parti-
tion(s), is taken into consideration while computing a noeasf structural similarity. This
is termed proximity, and is defined in terms of membershipesl Multi-objective evolu-
tionary optimization is employed to arrive at a consensulistiem in terms of the contra-
dictory criteria pair involving fuzzy proximity and feawiset cardinality. Results on Iris,
lonosphere, Spambase, Isolet and Colon, and a synthetisedashow that the method
led to a correct selection of the reduced feature subset diatan having low, medium as
well as high dimensionality. Comparative study is also pesd, and quantified in terms

of accuracy of classification and clustering validity iresc

1.5.2 Feature selection using SNN distance

In this chapter, we use the concept of Shared Nearest NeaidBIbtN) distance [53] to
design a novel feature selection strategy. The algorithivestto preserve the pairwise

sample similarity in the selected feature subspace [71]e Jimilarity is measured in

http://archive.ics.uci.edu/ml/datasets.html
2http://www.cl.cam.ac.uk/research/dtg/attarchivedtiatabase.html
3http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/multiclass.html#usps
“4http://nsl.cs.unb.ca/NSL-KDD/

Shttp://microarray.princeton.edu/oncology
Shttp://www.biolab.si/supp/bi-cancer/
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terms of the number of patterns common to the fixed size neigjdods of a pair of
sample points, as determined by primary distance measukeegulclidean, City block,
Cosine. This is a filter model which collectively evaluateset of features. A secondary
similarity between pattern pairs is computed, based onldngrof the nearest neighbors
of each sample as induced by the primary distance (or siiyilaGenetic algorithm (GA)

Is used to traverse the search space to find an optimal fesgtire

This is then extended to improve the scalability to data watiger numbers of samples.
In order to overcome the bottleneck of generating a largempse similarity matrix, we
adopt a divide-and-conquer strategy. The data is randoamytipned into nearly equal
subsets, followed by a merger of the sample pairs having ah @dtance measure below
some user-defined threshold within each such subset. yFimd#lature subset is selected
from this merged set of patterns, while preserving the pagwample similarity based on
SNN distance. Results are provided on five publicly avadatdtasets viz. MF, USPS,
ORL, Spambase, and COIL20, along with comparative studylvivg related methods.

This work further extended in a multi-objective framewaonkjich tries to preserve pair-
wise sample similarity while reducing the feature size [#multi-objective framework

is employed for the preservation of sample similarity, glanth dimensionality reduction

of the feature space. A reduced set of samples, chosen &rpeesample similarity, serves
to reduce the effect of outliers on the feature selectiorrqulare while also decreasing
computational complexity. Experimental results on fous & publicly available datasets
viz. MF, USPS, ORL, and COIL20 demonstrate the effectiverméshis feature selection
strategy. Comparative study with related methods is basedassification accuracy in

the reduced space and evaluation indices.



CHAPTER 1. INTRODUCTION 42

1.5.3 Feature selection through message passing

A novel similarity-based feature selection algorithm isy@eped, using the concept of
distance correlation. A feature subset is selected in tefrdsstance correlation between
pairs of features, without assuming any underlying distidn of the data [69]. The

pairwise similarity is then employed in a message passiagérork, to select a set of
exemplars features involving minimum redundancy and redymarameter tuning. The

algorithm does not need an exhaustive traversal of thelssaace.

The methodology is next extended to handle large data, @singherent property oR.
The effectiveness of the algorithm is demonstrated on reted publicly-available data
viz. Colon, Leukemia, DLBCL, Prostate, MLL, NSL KDD, Iso}étOIL20, and MF. The
algorithm starts by simultaneously considering all thedess as potential exemplars, and
gradually updating messages on the basis of simple fornhétesearch for the minima
of an appropriately chosen energy function. The magnitddsmoh message reflects the

current affinity that one feature has for choosing anotheiufe as its exemplar.

1.5.4 Conclusions and scope for further research

The concluding remarks with future scope of research argepted in Chapter 5.



Chapter 2

Feature Selection using Structural

Similarity

2.1 Introduction

An interesting way of looking at feature selection is to aitrpeeserving the structural
similarity of data clusters, while mapping a high-dimemsibfeature space to a lower-
dimensional one. In other words, a pair of objects (or patfebelonging to the same
partition in the original high-dimensional space is expddb be retained in the same par-
tition in the reduced domain as well. By considering suchilairy or proximity between
all object pairs as a guideline [94], one can hope to elingis@ime of the less important
features. The aim is to retain those features which allovsitmélarity between the parti-
tioning, in the original and reduced spaces, to be high. Gdusalso help in improving the
computational efficiency in the lower dimensional spaceggithat the mapping is nearly

lossless as measured in terms of the similarity measure used

The chapter introduces a new method of feature selecti@®doan structural similarity.

43
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The topological neighbourhood information about pairs lgjeots (or patterns), to parti-
tion(s), is taken into consideration while computing a noeasf structural similarity. This
is termed proximity, and is defined in terms of membershipeslof the corresponding
patterns. For a dataset wifth input patterns we can define &h x N symmetric matrix,
referred as proximity matri®, whose(i, j)th entry represents the similarity (or dissim-
ilarity) measure between théh and;jth patterns fori, ; = 1,..., N. Typically distance
functions are used for the purpose. The proximity matrix peginent construct that al-
lows us to deal with structural information inherent in ttegad In the fuzzy perspective

the concept of similarity boils down to the membership value

We focus on the use of proximity relationship, as a simyameasure, from the viewpoint
of fuzzy sets. This is used as one of the objective functidosng multi-objective opti-
mization, for evaluating the fitness of the feature subsktgkying cardinality. The use
of fuzziness allows us to efficiently model uncertaintied ambiguities inherent in real
life overlapping data. The proximity of a pair of patternshe original feature space is
compared with that in the reduced subspace of selectedrésatif they are similar, as
measured in terms of their belonging to the same clusteh (befiore and after feature se-
lection), then this implies that the eliminated featur&(® not so relevant to the decision

making process.

The second criterion is the cardinality of the selecteduieasubset. This is sought to be
minimized, and serves as a penalty to the objective functoolose observation reveals
that these two criteria are of a conflicting nature. A smadldrset of features is likely to

result in a reduced proximity, and hence reduced classditaiccuracy (as compared to

the original feature space).

Multi-objective optimization is employed to arrive at a sensus solution in terms of this
contradictory criteria pair, involving fuzzy proximity drfeature set cardinality. Here

MOGA is used as a tool for the multi-objective optimizati@nd any other technique
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could also have sufficed [17]. The user does not need to gpeeidesired number of fea-
tures, as itis embedded in the optimization process. Thwithgn terminates when an op-
timal subset of features is obtained, according to the steageria of the multi-objective

genetic optimization. Experimental results indicate ectiselection of the reduced fea-
ture subset. Validation of the selected set of featurespgrted in terms of classification
accuracy using WEKA [46] implementation of several welblam classifiers, as well as

internal and external clustering validity indices.

The rest of the chapter is organized as follows. In Secti@n& present the proximity-
based methodology for feature selection and outline thegraand on multi-objective op-
timization. The experimental results and comparativeysare described in Section 2.3,
on Iris, lonosphere, Spambase, Isolet and Colon, and aefynthataset. Finally, Sec-

tion 2.4 concludes the chapter.

2.2 Proximity-based Feature Selection

Let us consider Fig. 2.1 to explain the concept of structsirailarity between clusters in
the context of feature selection. Using this crude exanvpéegdescribe how that the idea
of preserving cluster structure of original feature spacefieature subset actually leads to
feature selection. Removing irrelevant feature(s) doesigaificantly affect the internal
characteristics of the data. Three pattekils X2 and X3 are seen to be partitioned into
the same cluster in the three-dimensional feature spacarb{a). The three features are

aligned with three reference axes. z-axis,y-axis andz-axis of this dataset.

If the least important featurée. the feature aligned witp-axis is eliminated, the cluster
structure is expected to remain unaltered; implying thatsiihgle cluster would still con-
tain the same distribution of pattern points as depictedam () of the figure. Here the

three- to two-dimensional mapping is said to be almost éssslsuch that the clustering
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structures in the two subspaces remain very similar. Th&teling structure is thus said

to be preserved in the transformation between these twgaubs.

On the other hand, if an important featr.g.the feature aligned with-axis is eliminated

then the mapping is bound to disrupt the cluster structumegsmportant information gets
lost in the process. From part (c) of the figure we observettiesimilarity between the
partitioning, in the two subspaces, is now no longer highotimer words, the distance
between the partitioning is higher; with the pattern poopg#ting redistributed into two

different clusters.e. cluster structure of original space is not preserved here..

2.2.1 Concept of proximity

Proximity is used as a way of determining the similarity bedw clustering structures,
while mapping from a high- to a low-dimensional feature gpdn the process, we aim to
retain the important features. Such preservation of siratsimilarity between clusters
is expected to lead to the selection of important features.there be: subsets of data
located in different feature subspaces, with the numbeatiems in each subspace being

equal to/V.

Fuzzy c-Means (FCM)

[8] The FCM is outlined here for our reference.

1. Assignc initial meansni;js. Choose the value of fuzzifief f and the number of

iterationsiter.

2. Repeat Steps 3 to 4 until there is no significant changertitipas, or upto a specific

number of iterationster.
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Figure 2.1: Mapping of patterns from (a) three-dimensicszdce, to a pair of two-

dimensional spaces having cluster structure (b) presearetl(c) not preserved
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3. Fori = 1,2,...Nandj = 1,2,...,¢, compute the membershyp; of the ith
patternz; to thejth clusterU; by

1
dis(Fo) ij—leand0<Zuzj<N‘v’j (2.1)
D e 1[dw(x:mz)]ff j=1 i=1

Putfl in Uj if Wij > Mgy s v,]l 7£ .]

His =

Resolve ties arbitrarily.

4. Update mean by

T — plf « 7,5, (2.2)
Zz 1/”Lz]fzzl

Typically, ff > 1.

We form ak x N partition matrixPR consisting of membership valugs;. This mem-

bership value is updated by minimizing the objective fumtti; of eqn. (2.3).

c N
Tr=min Y >l (& — i), (2.3)

j=1 i=1

We compute;; € [0, 1] as the membership of thgh pattern to théth meanm;, where
|.]| is the distance norm and< f f < oo is the fuzzifier [8]. Note that the dimensionality
d of the patterns in each subset could be different. Howemerach subset, the distance
of a pattern is computed from the fuzzy cluster prototypésfm. (2.2)] over the same

set of features.

The partition matrix is used to evaluate proximity, which measures the extent to which
a pair of patterns are regarded as similar or dissimilar ffem@int subspaces [94]. This
incorporates a mechanism of partial supervision in thegssof navigating a structure in
the data. The proximity matri® contains the proximity values for all possible pairs of
patterns. The fuzzy partitions generated by FCM, using €é2yi1), are directly related to

the proximity relation. The proximity between pattern pailandk, is computed as
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k
pl‘(k‘l, kQ) = Z(Mikl A :uikz)? (24)

i=1
where A denotes the minimum operatiopg(k1, k2) € [0,1], andky, ks = 1,..., N.
Evidently pxz(ky, ko) = 1 for k; = ko, such that membership is evaluated with respect to

FCM, andpx(kl, ]{Zg) = p.ﬁC(l{Zg, ]{Zl)

The aim is to reduce the number of features, subject to maintgthe structural similarity
between patterns. For this purpose multi-objective oation is employed to handle the
conflicting requirements of dimensionality reduction gamith proximity preservation.
We use MOGA [here NSGA-II] [22], as a tool to efficiently trase the feature subspaces,

subject to fulfilling the above objectives.

2.2.2 Proximity between feature subspaces

Let the cardinality of the original and reduced feature sgaoeD andd, respectively.
Let the proximity matrices in these two spaces be denote® lapwdP’. The similarity
between the two matrices is represented by a scalar value

N
Po= Y [p(ky, ko) Apa'(ky, ko)), (2.5)

k1=1,ka>k1

wherepz’(kq, k2) is computed by eqn. (2.4) in the reduced feature space atwhotes the

minimum operation.

Note that the membership valpg, at each stage is computed based on the FCM objective
function, using eqgns. (2.1)-(2.3). This becomes inhenenhée proximity matrix in egn.
(2.4). Moreover, as the MOGA updates the encoded clustensn@zer the generations it

has to continuously refer to the FCM based membership caatipuos.

We retain only those pattern pairs which belong to the saosten in both the original and

the reduced feature space, in an attempt to reduce the aiytwfthe resultant clustering.
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For such cases we use

N

Po= Y. lpz(k, k) > 0) A (p2'(kr, k) > 0)], (2.6)

k1=1,ko=k1+1
such thatP;, takes the minimum of the values pi:(k,, k2) andpz’(ky, k2) only when
bothpx(k, ko) andpx’(ky, ko) are greater than a threshald This implies that bothu;,
and;, are greater than or equal #an the original and reduced feature spaces by eqn.
(2.4).

2.2.3 Optimization tool

The multi-objective optimization is implemented using NSG. We encode the problem
as a real string of length, with the firstd bits corresponding to théfeatures in the orig-
inal space. Here, in the bit representation, a “1” impliest the corresponding attribute
is present while “0” indicates that it is not. The desired temof features need not be
pre-specified, since it is automatically determined dutiregoptimization. Let the size of
a chromosome be

L=d+kxd=dx (k+1). 2.7)

The k cluster centers (or prototypes) are encoded in real fornhensubsequerit x d

bits. Only those features of the centers in the second pahecstring, corresponding to
a “1” in the first part, are considered during clustering..RRg depicts such an encoding
in a chromosome, representing a sample set of cluster gpat®tin a feature subspace.

Initially all the bits are set randomly.

The objective is to optimize a conflicting set of requirensene., select a minimal number
of features that enable us to arrive at an acceptable stedpteserving mapping. We

employ MOGA withP;, of eqn. (2.6) as the fitness function

F =P, (2.8)
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< Part 1 < Part 2 >
0/1f0/1f ------- 0/1{|mMyy| ------- Myp|Myy| ------- Myp| -=====--- Myq| ---=--- Myp
L_ D bit —A<—Db|t /| D bit | ~— Duit

< D * k bit >

Figure 2.2: An encoded chromosome representing a featlogpaae with the cluster

prototypes

The second fitness function corresponds to the cardindlityeofeature set under consid-

eration, and is defined as
F,=d. (2.9)

While F; is minimized to give credit to a candidate string containiegs attributes, the
function F; maximizes the extent to which all pairs of patterns belonpéosame cluster
in the two feature spacegiz., original and reduced subspace. These two fitness functions
are optimized in the framework of MOGA. Clustering is done B$M to update the

prototypesn;, in the different subspaces.

2.2.4 The algorithm

The objective is to preserve the proximity relationshipNssn pattern pairs, which is a
measure of their structural similarity, while reducing thenber of features. The main

steps of the algorithm PR, outlined below, are repeated seigeral generations.

1. Initialize the population randomly, with real numbers.
2. Select a pair of chromosomes randomly for single-poinsover.

3. Perform two-point mutation simultaneously on the twotpaf the string. In the
first part, the value of the randomly chosen bit (signifyimggence or absence of

the corresponding attribute) is flipped. In case of the seéquart, the valuen

tJold
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corresponds to the randomly chosen attributé the ith cluster center; this is mu-
tated as

mij =0 X T +Mmyj (2.10)
where the perturbation(~ Norm/(0, 1) is drawn from a Gaussian distribution, the
variances” determines the magnitude of this perturbation at positiop,,, and
mg; IS its new value (at the corresponding attribytef the ith cluster center)

after mutation.

4. Compute the fitness values of different feature sets basetieir proximity and

cardinality, using egns. (2.8)-(2.9).

5. Rank the population using dominance criteria. Compuectbwding distance of

the chromosome, to maintain diversity in the populatior].[22

6. Combine parent and offspring population. Replace therggoopulation by the best

members of the combined population.

Note that the cluster centers are initially set randomlytiyicrossover and mutation the
centers get modified. Their effect is reflected through tlxipmity function [eqgn. (2.8)]

into the fitness evaluation. The features present in a chsome, as indicated by the
“1”s in the first part, determine the reduced feature sulesp@ioey affect the computation
of proximity in terms of cluster prototypes, using eqnsl1jZ2.3) and (2.4). Finally the
selected feature sets are validated in terms of clustedityaindices [egns. (1.6) and

(1.12)], and the classification accuracy.

2.3 Experimental Results

The performance of the algorithm was tested on various syietand real datasets. These

include (i) a synthetic dataset and the benchntaskflower (low-dimensional), (iijono-
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sphereandSpambasémedium-dimensional), and (iilsoletandColoncancer microarray
gene expression data (high-dimensional). All results \aeezaged over several (3-5) runs
involving different random seeds. No significant change alaserved in the performance,
using different seeds. The choicefah eqn. (2.6) was taken to be 0.5, so that the member-
ship of pattern paiky, k; became simultaneously high in the same cluster. The cressov
and mutation probabilities, in the MOGA, were selected 85 @nd 0.05 respectively after
several experiments. The clustering was evaluated in tefielgstering validity indices$
andF'm [of egns. (1.6) and (1.12)]. The selected feature subseats evgernally validated
on their predictive accuracy, using the publicly availalEKA implementation [46] of
different classifiers liké-nearest neighborg{NN), Naive Bayes’ (NB) and support vec-
tor machine (SVM) [described in Section 1.2.1], involvimgifold cross validation. The
clustering structures of reduced and original feature epace compared using/, R/
andV I of egns. (1.13)-(1.15).

2.3.1 Data description

The synthetic data contains three clusters, each with 10@oraly generated patterns.
The two-dimensional scatter plot of Fig. 2.3 depicts theéguas lying within circles of
unit radii, each having different centers. A lot of overlagpis artificially introduced. We
included a third attribute having completely random valuesvaluate the effectiveness
of the algorithm in identifying the significance of the firsid features. Thdris data
consists of 150 pattern points with four input features €gponding to measurements of
sepal length, sepal width, petal length, petal widthfifty flowers from each of the three

speciesetosa, versicolor, virginicepresenting the three output classes).

The lonospheredata represents autocorrelation functions of radar measants. There

are 351 instances, each having 34 (continuous) featuresedadging to two classesiz.
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Figure 2.3: Synthetic data

“good” or “bad” — indicating the passage or obstruction ekfelectrons in the ionosphere.
We considered a total of 32 features (attributes 3 to 34) ptito the algorithm. The
Spambasdata consists of 4601 instances of emails, to be classifiedpam or nonspam

categories. There are 57 continuous attributes denotimg fkequencies.

Thelsoletdata consists of several spectral coefficients from thearite of English al-
phabets by 150 subjects. There are 617 real features (haslogs in the range [0,1])
with 7797 instances and 26 classes. The above-mentionsel diatasets were taken from

the UCI Machine Learning Repository, as indicated in Seclic.

The Colon Cancerdata is a collection of 62 gene expression measurementsdoton
biopsy samples. There are 22 normal and 40 colon cancer sgniaving 2000 genes
(features). Typically, microarray gene expression datalires a larger number of features
(genes) as compared to the samples (time points). In othetsyihe features correspond
to gene expression values that indicate the abundance ofAmRIE sample (or tissue)
for a number of patients; with the objective being to segacancer patients from healthy

ones based on their gene expression profiles. Many of theserés are redundant and
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adversely affect the output decision. Hence preprocessiofjen needed [44] to initially
eliminate some of the irrelevant features. Some initiappreessing [5] was done, to

reduce the large number of redundant genes to 943, befoldrappur algorithm.

2.3.2 Low- and medium-dimensional data

The performance of the algorithm for strings generatedemtbn- dominated Pareto front,
for the four datasets (having low and medium number of feafyrare presented in Ta-
bles 2.1-2.2. The second column (in both tables) indicsteselected attributes, marked
by a “1” in the first part of the chromosome, with the stringresponding to feature po-
sitions1,2,..., D. The two fitness functions are evaluated by eqgns. (2.8)-(Bi8wever
for the cases where the original feature space did not figutteei Pareto optimal front, this
is still included as the last row for each dataset in the tédoleomparison (without any
F1). The external validation performance of the selectedufeagubsets is provided, along
with that of the original set, in terms of classification a@my involving ten-fold cross-
validation using different classifiers. The algorithm was for 100 generations with a
population size of 50 chromosomes. The last two columngatdithe Silhouette index

(S) [egn. (1.6)] andi'-measure £'m) [eqn. (1.12)] values.

We know that the synthetic data is represented with the firstdttributes, and the third
feature was inserted randomly. As evident from the restliss selection of the first two
features (only) generally results in the best overall aacyras well as5 and F'm, due
to the elimination of this unimportant third feature. Thatiere set{1,2} also produces
better clustering in reduced space accordingtdeqn. (1.13)],RI [egn. (1.14)] and/[
[egn. (1.15)].

In case of thdris data, it is observed that the choice of feature 3 occurs ithalkhree

cases, with feature 4 being selected the second-most fidguBogether they result in the
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Table 2.1: Performance of selected feature subsets, ofdadvlity, from Pareto-optimal

front

P F> Validation accuracy (%) byl Silh. | Fm-
Dataset Feature prox. card. k-NN NB SVM stat. | meas.| JI RI VI

subspace| (x10%) S

77.4
73.9
76.0 | 78.0 | 78.7 | 0.055| 0.395 - - -
77.6
60.3
59.5
60.2 | 62 61.3 | 0.044 | 0.622 | 0.21 | 0.55 | 2.13
60.3
79.2
79.1
80.4 | 80 80.3 | 0.088 | 0.801 | 0.20 | 0.56 | 2.17
80.8
94.7
94.2
93.8 | 96.0 | 97.3 | 0.176 | 0.940 | 0.80 | 0.93 | 0.38
93.0
93.0
92.9
92.1 | 96.7 | 953 | 0.214 | 0.933 | 0.82 | 0.93 | 0.37
92.4
94.8
94.6
942 | 96.0 | 96.7 | 0.219 | 0.950 | 0.79 | 0.92 | 0.42
94.3
93.3
92.6
914 | 96.0 | 96.7 | 0.156 | 0.677 - - -
89.7

{1,2,3 2.10 3
(Original)

Synthetic
{1} 0.74 1
N = 300
D=3
k=3

{1,2 1.53 2

{2,3,4 | 058 3

Iris
{3} 0.34 1
N =150
D=4
k=3

(3,4 0.36 2

(Original) - 4

N O W RN 00w RN 00w RN 0w RN 0w RN O W RN 0w
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second highest proximity and second lowest cardinalitys ivell-known that these are
the two features most important for discriminating betwtenclasses in this benchmark
data. Interestingly, the performance of thélN in the reduced space (involving attributes
3 and 4) is found to be the overall best — inspite of the elitmamaof two features. The
same holds for the validity indicésand /'m. The SVM provides best accuracy with three
features while NB performs best with only feature 3. The R/ andV I also demonstrate

that the cluster structure is best preserved along feature 3

The results from Table 2.2 exhibit better average classificgerformance by:-NN and
SVM, for Spambasewith a smaller set of featuraesz. 13 and 15. The values of both
S and F'm are also the best with 15 features. Although NB provides &ebstore of
79.3% in the original space, yet its performance with 15uest is comparable at 79.0%.
TheJI, RI andV I provide best result with 11 featuree the original cluster structure is

preserved in this feature space.

Results for thdonospheredata demonstrate that out of the 32 initial attributes our al
gorithm selected a cardinality of 5 and 7 for the best peréorce in terms of mean
recognition accuracy (%) b&-NN. In Fig. 2.4 we depict a visually understandable, three-
dimensional projection, in terms of attributes 4, 5, 6 of 82edimensional data. Inciden-
tally, this corresponds to the best performance by classifte It is observed here that our
algorithm selected a reasonably good set of features, wiajotured the structural similar-
ity between the two classes in the original feature spadhéabest values of and F'm).
The best feature subset in terms of structure preservatiarset of 16 features according

totheJI, RI andV 1.

Next the scope of the algorithm was extended to incorporatgiation in the number of
clusters. We determined the optimum number of clustgiiwarying & from 2 to 12), in
both the original and reduced feature spaces, by maximthi@dgilhouette index of egn.

(1.6). FCM is used to determine the fuzzy partitioning cspanding tok, clusters, for
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Table 2.2: Performance of selected feature subsets, ofumedardinality, from Pareto-

optimal front

Fy Validation accuracy (%) by Silh. Fm-
Dataset Feature card. k-NN NB SVM stat. meas. JI RI VI
subspace S
{27, 28, 29, 47, 1 710
48, 49, 53, 54, 11 3| 69.9 | 61.2 77.4 | 0.099 | 0.664 | 1.00 | 1.00 | 0.00
Spambase 55, 56, 57 5 70.0
7 69.4
N = 4601 {3,4,9,10, 1| 779
D =57 11, 22, 23, 24, 15 3 78.1 79.0 85.5 0.131 0.742 0.55 0.58 0.85
k=2 35, 36, 37, 38, 5 | 782
52,53, 54 7 77.9
F, = {6,7,8,12, 1 80.4
105.8 x 10° 13,14, 15, 26, 13 3 | 803 | 655 81.2 0.039 | 0672 | 0.82 | 0.82 | 0.38
27,28, 36, 44, 5 80.3
45} 7| 797
1 725
(Original) 57 3| 720 | 793 83.7 0.098 | 0.664 - - -
5 71.6
7 71.1
{6,7,8,9, 1| 90.8
10, 11, 16, 17, 16 3 90.6
18, 22, 23, 24, 5 90.2 74.9 90.3 0.077 0.724 0.94 0.97 0.16
25,29, 30, 3} 7 90.4
1| 90.9
{4,5,6,33,33 5 3| 929
lonosphere 5 | 926 | 88.6 90.6 0.108 | 0.731 | 054 | 0.69 | 0.96
7 92.3
N = 351 1 86.2
D = 32(2-34) {4,5, 6 3 3 | 90.1
k=2 5 91.9 89.7 90.3 0.156 0.836 0.45 0.57 1.08
7 92.3
Fi = 5 | 91.7
0.61 x 10° {14, 21, 22, 23, 7 3 92.0
24,25, 26 5| 922 | 704 85.8 0.070 | 0.733 | 0.75 | 0.85 | 0.51
7 92.0
1 91.1
(Original) 32 3| 913 | 818 94.0 0.078 | 0.700 - - -
5 91.7
7 92.0
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Table 2.3: Performance of selected feature subsets, frogtd?aptimal front, allowing

variation in number of clusters

Fy Fy Validation Silh. Fm-
Dataset Feature prox. card. | accuracy (%) by| stat. | meas.| JI RI VI
subspace| (x10%) NB SVM S
Iris
N =150 {3} 0.549 1 96.7 95.3 0.311 | 0.933 | 0.82 | 0.93 | 0.37
D=4 {3, 4} 0.556 2 96.0 96.7 0.311 | 0950 | 0.79 | 0.92 | 0.42
k=3 {1,234 | 0564 4 |96.0| 967 |0311|0677| - - -
(Original)
{3,5,8,

13,15,17, | 2.739 9 82.6 89.5 0.150 | 0.740 | 0.85 | 0.92 | 0.29
lonosphere| 19,21,3%

{355,8,
N =351 1517, | 2733 | 7 | 869 | 897 | 0.150| 0.728 | 0.85| 0.92 | 0.29
D =32 21,31
k=2 {3558,

13,1517, | 2.737 | 8 | 857 | 89.2 | 0.150| 0.746 | 0.85 | 0.91 | 0.29
21,31




CHAPTER 2. FEATURE SELECTION USING STRUCTURAL SIMILARITY 60

* Class1
1 A A Class 2

0.5

Feature 6

-0.5

1
- 0 05
-1 0.5
F 4
eature Feature 5

Figure 2.4: Projection dibnospheralata in three-dimensional space

each generated feature subspace. Multiobjective opttraizan terms of maximization of
proximity [egn. (2.8)] and minimization of cardinality ofi¢ feature space [eqn. (2.9)]
ensures the selection of those feature subsets that rétaatusal similarity among the
clusters. The encoded chromosome of Fig. 2.2 now involvéstbe first D bits. How-

ever, the computational complexity gets enhanced and selyeaffects the processing of

large data.

Table 2.3 depicts the results for thies andlonospheralata. In all the cases the optimum
number of clusters converged k9 = 2. Incidentally the corresponding value §fwas
found to be better here, as compared to Tables 2.1-2.2. Hoeithim, in this modified
framework, generated the same subsets of reduced featui@ble 2.3 as in Table 2.1.
In case ofSynthetiadata the algorithm failed to eliminate the random third deat The
Spambaselata was found to be too large to be processed, upon varysgumber of

clusters. With thdonospheredata we obtained a different set of reduced feature subsets,
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that were generally comparable in terms of predictive aamuandF-measure. The re-
sult of theJI, RI andV I shown that cluster structure is also preserved when we allow

variation in the number of clusters.

2.3.3 High-dimensional data

Table 2.4 presents the average performance of the algofiten ten runs), corresponding
to strings generated in the non-dominated Pareto fronttherhigh-dimensionalisolet
and the microarray.olon cancer data. The algorithm was run for 100 generations with
a population size of 40 chromosomes. There were 15,000 agores, with a population
size of 200. The 10-fold cross validation was used to comiingelassification accuracy

in both the cases.

With thelsoletdata we observe that the performance of the classifiersggrieral, better
in the original feature space. However, both NB and SVM mtewiomparable classifi-
cation accuracy with less than half the number of featurdse Value ofS is found to

be better in the reduced space. The valuesiofRI andV [ indicate that the clustering

obtained in the reduced space preserves the structurenpnesiee original space.

In case of theColon microarray data we observe that the performance of NB/ahiN
(for £ = 1, 3) is better with reduced features. The same is trueFiar Keeping in
mind that the reduction in feature set cardinality is alntesttimes, as compared to the
original set of 2000 features, the overall performance @sdd to be reasonably good
in the reduced space. The, RI andV I values show that our algorithm succeeded in
preserving the cluster structure over the reduced subket) wompared to the original as

well as preprocessed feature spaces.
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Table 2.4: Performance of some selected feature subsédsgefcardinality, from Pareto-

optimal front

F> Validation accuracy (%) by] Silhouette Fm-
Dataset cardinality k-NN NB SVM statistic measure| JI RI VI
S

77.6
79.1
80.2 | 84.9| 949 | 2.4x10~% | 0.344 | 0.88| 0.94 | 0.28
80.7
775
79.1
80.3 | 84.8| 948 | 24x1073 | 0.336 | 0.89 | 0.94| 0.26
80.7
92.7
93.7| 85.1| 955 | 1.5x1073 | 0.365 - - -
94.1
94.1
83.9
80.7 | 54.8| 645 | 1.5x10=2 | 0704 | 1.0 | 1.0 | 0.0
71.0
71.0
83.9
80.6 | 54.8| 645 | 1.5x1072 | 0704 | 1.0 | 1.0 | 0.0
71.0
71.0
777
79.7 | 53.2| 645 | 1.2x10~2 0.704 - - -
75.8
74.8
77.1
77.7| 53.2 | 823 | 24x10-2 | 0.687 - - -
75.2
73.9

Isolet 275

N = 7797
D =617
k =26 274

F =291 x 107

617
(Original)

Colon 261
N =62

D = 2000
Dpreproc = 943
k=2 264

Fi =1.25 x 102

943
(Preproc.)
[5]

2000
(Original)

N O W RN 0 W RN 00w RN W RN 0O ®W RN 0O W RN W
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2.3.4 Comparative study

The performance of our algorithm (model PR) tos data was compared with that of

some of the existing techniques, considered as benchméhmlsistudy. These are

1. the statistical method of Devijver and Kittler [24] (mdd¥K), which uses proba-
bilistic distance measure to assess discriminatory in&bion conveyed by a set of

features,

2. the fuzzy entropy based method of Pal and Chakraborty(f@atiel PC), which is

defined in terms of interclass and intraclass distancesttdrpa,

3. the neural network based method of Ruck and Rogers [10&J€hR*), which used

MLP and saliency measure for feature selection, and

4. the model of Ishibuchi [55] (model IM), which used MLP and/ariant of class

separability.

Table 2.5 demonstrates a comparative study of the featloseiselected by different
algorithms for thdris data. Aslris data is typically studied by researchers (in the pattern
recognition field), an extensive comparison has been peavidr this data. The overall
study shows that the results tally with each other. The feat@ and 4 were always found

to be more important than the features 1 and 2 for classifyiaglata.

Next the average classification performance of the featetrselected by algorithm PR
was compared (on some of the datasets) over a test set (90% déta) with the perfor-
mance of those selected by certain existing unsupervisedigues, averaged on 10 runs,
using a training set size of 10%. The well-known featured®la algorithms considered
were SFS [24] (described in Section 1.2.3), SFFS [96], SWAT 46d BB [87]. We also

compared the performance of the supervised Relief-F [6&]dimilar manner.
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Table 2.5: Comparative study dms data

Algorithm | Features providing
best performance
PR {3, 4}
DK {3, 4
PC {4, 3}
IM {3, 4
Rx {3, 4}

Table 2.6 presents a comparison of the average classifiga¢idormance, by thé-NN
overk = 1, 3,5, 7, for sample feature subsets selected by all these alg@itbndatasets
Iris, Spambase, lonospheamdlisolet In each case the initidD features were reduced to
d (for uniformity of comparison with PR). In general, our atgbm PR was better than
the supervisedRelief-Ffor datalsoletand comparable for datas. As compared to the

other algorithmsP R was always found to be better.

ForlIris d = 2 corresponds to the minimal subset selected by our algotithfable 2.1.
However withSpambasandlonospherave observed that a lower cardinality of 13 (row 4)
and 5 (row 6) byPR in Table 2.2, respectively, provided a higher classificagocuracy
as compared to that generated by the larger subgets,27 and 16 respectivelyd(as
reported in [86]) in Table 2.6.

Since BB and SF'F'S algorithms required infeasibly high computation time fogh
dimensional data, we did not include them for the compariseolving Isolet The per-
formance was best witR R for d = 309 (as reported in [86]). On the other hand, Table 2.4
indicates the lowest cardinality of 274 with a poorer averatassification accuracy (as

compared to that using = 309). The computational complexity of the algorithm PR is
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Table 2.6: Comparative study withiNN classifier on some data

Dataset Algorithm | Accuracy (%)
Mean| SD
PR 94.49| 1.34
Iris BB 92.29| 2.57
D= SFS 92.29| 2.57
d=2,k=3 SFFS 92.29| 2.57
SwWcC 93.48| 2.03
Relief — F | 95.68| 0.65
PR 79.75| 0.99
Spambase BB 70.93| 0.70
D =57 SEFS 70.73| 0.77
d=27,k=2 SFFS 70.73| 0.77
SwWc 76.40| 1.05
Relief — F' | 89.00| 0.28
PR 78.67| 1.81
lonosphere BB 75.96| 0.35
D =32 SFS 69.94| 0.32
d=16,k=2 SFFS 74.73| 0.37
SWwc 62.03| 0.32
Relief — F' | 89.90| 1.30
Isolet PR 94.60| 0.38
D =617 SFS 74.45| 1.20
d=309,k=26| SWC 78.25| 1.22
Relief — F' | 90.40| 0.30

65
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Table 2.7: Execution time of Algorithm PR on different datiss

Dataset | Execution time (Second)
Iris 10
Synthetic 55
Spambase 6300
lonosphere 39
Colon 18000
Isolet 86052

O(gS;DN?), wheresS; is population size]N corresponds to the number of pattern points,
andg is the number of the generations. Now complexity of Reliéffoathm isO(t,, N D),
wheret,, is the number of training samples used for finding nearegfhi@ur [102]. It
has higher time requirements for datasets containing laugeber of samples. The com-
putational complexity of BB, SFS, and SFFS algorithms afeasibly high for large data
sets [86].

Incidentally, we also explored the uselemeans [24] clustering during proximity compu-
tation. This resulted in the generation of binary valueh@groximity matrix, instead of
values lying in the range [0,1]. The presence of a number €50 in the matrix perhaps
lead to a greater homogeneity between the chromosomespdphaation, as evaluated by
the first objective function of eqn. (2.8). Thereby, duringlthobjective optimization this
objective function plays a less significant role as comp#wele cardinality of the feature
space [eqn. (2.9)]. Hendemeans almost always resulted in a minimum cardinality of
feature space, typically one, with no emphasis on the algstecture. This highlights the
utility of fuzzy clustering in our algorithn¥ R. The execution time of PR over different set

was reported on Table 2.7. The execution time was computedHid Z800 workstation
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with Xeon(R) 2.67 GHz CPU and 16 GB RAM.

2.4 Conclusion

A new feature selection algorithm, based on structural lanity, has been described.
Fuzzy proximity was used to evaluate the similarity betw#®n original and reduced
feature subspaces. The cardinality of the feature subsesimaultaneously minimized.
The optimal number of features was automatically deterchth&ing the multi-objective

optimization. This algorithm preserves the performancéhefbenchmark classifiers as
well as cluster structure in the reduced space. Comparstiiely demonstrated the effec-

tiveness of the developed method.

The topological neighbourhood information, pertaininghe inherent cluster structure
in the data, was utilized while achieving reduction in featsubspace cardinality. This
is expected to have wide ramifications in data mining, datdyars and retrieval, with

particular emphasis on visualization.

Here the basic objective was to investigate how presenvatfcstructural similarity, as
measured by proximity, could help in the selection of appadp features. Multi-objective
genetic algorithm was a tool used during optimization. Amlyeo tool could also have
served the purpose. However, in the MOGA framework the sizbechromosome in
eqgn. (2.7) gets limited by the cardinalify while matrix P is dependent on the number of
patternsV. This constrains the algorithm for large data, with a comipyeof O(gS; DN?).
That is one of the reasons why we used preprocessing forghedimensional and redun-

dant gene expression data.

In the following chapter we present a new algorithm for feaselection based on shared
nearest neighbors (SNN) distance between patterns. Wérigewe focused on structural

similarity between clusters in different feature spaces, global level, the SNN distance
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is computed between pattern pairs based on their neighbdntegions. Thereby we are

able to incorporate more local information during compotaof the similarity measure.



Chapter 3

Feature Selection using SNN Distance

3.1 Introduction

Similarity measures based on distance are often sensitiveetdimensionality of the pat-
tern space [7]. The relative contrast is found to decreaihb,imcrease in dimensionality,
for a broad range of data distribution and distance measureis, in turn, reduces the
discriminatory ability of the measures [53]. As an alteiv@tresearchers have devised
a simple and common secondary similarity measure involgimgred nearest neighbor
(SNN) information. The SNN measure has been used in the nséegeof agglomerative
clustering [43,59], for clustering high dimensional dagtsg31,52], and in finding outliers
in subspaces of high dimensional data [68]. It is less prortae distance concentration
effect, that occurs in higher dimensions. It is also fountdéamore robust than primary
distances, while providing better separability in the pree of several irrelevant and re-
dundant features [53]. This observation motivated us tahs&NN distance measure as

a novel evaluation criterion for our feature selection alfon.

The algorithm aims to preserve the pairwise sample sirtylarithe selected feature sub-

69
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space. The similarity is measured in terms of the number tEéps common to the
fixed size neighborhoods of a pair of sample points, as détedvby a primary distance
measure like Euclidean, City block, Cosine, etc. Itis arfit@del which collectively eval-
uates a set of features. A secondary similarity betweeemapiairs is computed based on
a ranking of the nearest neighbors of each sample, as indyce primary distance (or
similarity). Genetic algorithm (GA) is used to traverse Hearch space to find an opti-
mal feature set. GA employs an inductive learning strategydduce a solution which is

unaffected by local peaks caused by noise or interdeperegeamong features.

This is then extended to improve scalability in larger déwaorder to overcome the bot-
tleneck of generating a large pairwise similarity matri>e adopt a divide-and-conquer
strategy. The data is divided into nearly equal subsetigweld by a merger of those
sample pairs having an SNN distance measure below somelefieed threshold within

each such subset. This is followed by the selection of a feaubset, while preserving

pairwise sample similarity based on SNN distance, fromrniesged set of patterns.

The rest of chapter is organized as follows. The conceptareshnearest neighbor (SNN)
distance between points is described in Section 3.2. In@e8t3 we present the new
feature selection algorithm using the SNN distance, anekiisnsion to accommodate the
divide and merge strategy for improving scalability. Theexmental results are provided
in Section 3.4 on five sets of publicly available real data, MF, USPS, ORL, Spambase

andCOIL20, along with related comparison. Finally, Section 3.5 cadek the chapter.

3.2 Shared Nearest Neighbor Distance

The most basic form of shared nearest-neighbor similarggsure is the ‘overlap’ [59].
Given a data seX consisting ofV = | X'| sample points and € N*, whereN N, (z) C X

is the set ofs-nearest-neighbors af € X as determined using some specified primary
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distance or similarity measure, like Euclidean, city blook cosine distance. A primary
similarity measure is any function which determines a raglof patterns relative to a
query. It is not necessary for the data points to be repredesd vectors. The query

pertains to the-nearest neighbors of a sample.

The ‘overlap’ between sample pointsandy is defined to be the intersection size

SNN(z,y) = |[NNs(z) N NN4(y)|. Itis an alternative to the traditional similarity mea-
sure, and is sometimes called as secondary similarity meastit is based on the rankings
induced by a specified primary similarity measure. The sirityy measure, used here, is
based on this ‘overlap’. It is equivalent to the cosine ofdhgle between the zero-one set

membership vectors faV N,(x) and N N,(y), and is defined as [31, 51]

simcosg(x,y) = W (3.1)
s

Transforming to the distance form [53], we have
dacoss(z,y) = arccos(simcoss(z,y)). (3.2)

This distance is symmetric and satisfies the triangularuakty. Therefore, this dis-
tance is a metric [53]. There also exist other similar distaforms like linear inversion
dinvs(z,y) = 1—simcoss(x, y) and the logarithmic forin,(x, y) = — In(simcoss(z,y))
[53]. However, these distances do not satisfy the triamgokguality property. All these
distance functions decrease monotonically with respetttasimilarity value present be-

tween the points andy.

The feature selection algorithm based on shared nearegtlbweidistance (FSSNN), out-
lined in the following section, employs thicos,(z,y) distance to evaluate feature sub-
sets. It selects a subset of features which are able to pester pairwise common natural

grouping present in thesize neighborhood of the original feature space.
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3.3 Feature Selection

Let PD M, be the pairwise secondary distance matrix\of N dimension, whereV is

the number of patterns in a data set. We have
PDM(i,j) = dacoss(i, j). (3.3)

It is obvious from the definition thaP D M, is symmetric and the principal diagonal el-
ements of PDM, are always zero. Hence the upper triangular part of matix\/,
contains information about the pairwise common naturaligiegs of allV data points in

the original feature space.

In order to reduce the computational complexity, we selpos¢ pattern pairs having
dacos, values below a threshotti(as chosen in Algorithm 3.2). Next a s€t,, is created,
using these selected pairs. We calculgi® M, , usings;-nearest neighbors on s&t.,,
with its dimension being x n (n = | X,.|). Let PDM;, rsu,(7, j) be the pairwise sec-
ondary distance, witk; nearest neighbors being evaluated on’égt over f,,,, subset of
features. Thd,,, is a reduced subset of original features and is considerezVéduation.

The set of features is selected by minimizing objective fiomc

i=n—1,j=n
Fi= Y abs(PDM,,(i,j) — PDM,y,,,(i,])). (3.4)

i=1,j>%
such that the similarity between pattern pg@irj) in the original feature space gets pre-
served in the reduced feature spdgg. Hereabs(7) is the absolute value of the elements

of Z. We employ GA for heuristically exploring this search space

3.3.1 Using SNN

The feature selection Algorithm 3.1 is presented hereints tomplexity largely depends

on the cost of building the dissimilarity matriXD M, as well as on the optimization tech-
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Algorithm 3.1: FSSNN

Input: Pattern seX, with N sample points and features.
Neighborhoods ands;.
Output: A feature subsetfi,q-
1: Construct pairwise dissimilarity matriX D M, using eqn. (3.2).
2: Choose threshold using Algorithm 3.2.
3: Select the pairs of points lying at a distance less thafonstruct a sek ., using
these points.
4: CalculateP D M, with s;-nearest neighbors on the sgf,;.
5. Select the feature subset by optimizing eqn. (3.4).

Here GA is used as an optimization technique.

niqgue. We need)(sN2D) floating point operations for constructifgD M,. Next we
generateP D M, for each randomly selected feature subset from the(gegt It requires
O(s1n?D) floating point operations. This is followed by optimizatiosing egn. (3.4).
When GA is used with a population sidgover g generations, the complexity of the opti-
mization process becoméX S;gs n?D). Hence the overall time complexity of Algorithm
3.1isO((sN? + S;gsin?)D).

It may be noted that a threshdlds used in Steps 2-3 of the algorithm. This user-defined
parameter helps in reducing the computational burden oropitenization procedure,
while also retaining the influential pointsibg [97] which affect the reasoning procedure
of nearest-neighbor computation. The heuristic for chap8iis outlined in Algorithm
3.2.
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Algorithm 3.2: Choosing the threshold

Input: The pairwise dissimilarity matri®’ D M,.
Output: Threshold®.
1: Find the minimum entry>* 0) of each row ofPDM,, and store asnin_row;, for
iel,...,N—1.

2: Choose the first percentile of thelg¥ — 1) values ofmin_row; asé.

3.3.2 Improving scalability

For datasets with large numbers of patterns we héve> n, such that the overall com-
plexity of Algorithm 3.1 tends t@)(sN2D). Therefore the construction d? DM, be-
comes the bottleneck. To overcome this problem the origila#hset can be randomly
divided into7 number of disjoint subset&* of nearly equal size, with varying from1

to 7. Each new pairwise dissimilarity matrix D M’ is generated fronX ¢ with an appro-
priated’. This can also be done in parallel. The proposed extensigalving divide and

merge procedures, is listed as Algorithm 3.3.

The time complexity of the optimization step in Algorithm33s the same as that of
Algorithm 3.1,i.e. O(S;gs1n*D). Now, let the size of the largest subset/e So the
generation of” D M! involvesO(sn? D) floating point operations. Hence the overall time
complexity of this algorithm becomé&3(7 sn? + S;gs;n?) D). Thereby, we have a gain in
time complexity. This gain is enhanced if each subseand itsP DM are processed in

parallel, such that it now becoméXsn? + S;gs1n*)D).
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Algorithm 3.3: Using Divide and Merge

Input: Pattern seX with NV sample points and features.

Neighborhoods ands;.

Number of subsets .

Output: A feature subsef;;,q.

1:

N

o P

o

Randomly divide the data séi, into 7 disjoint subsetsX® such that = U7 X and
XN X2 =¢if iy # i
for i — 1to7 do
Construct pairwise dissimilarity matrixD M¢ using eqn. (3.2) ok ™.
Select threshold using Algorithm 3.2.
Select the pair of points whose distance value is less@¢haBonstruct a seX’ ,,
of cardinalityn;, using these points.
end for
ConstructX,,; such that\,.,, = UL X} .

CalculateP D M, with s;-nearest neighbors on the s€f,,.

. Select the feature subset by optimizing eqn. (3.4).

GA is used as an optimization technique.

3.3.3 Using Multi-objective Optimization

Determining an appropriate formulation of a single objexfunction in terms of an addi-

tive combination of conflicting fitness criteria is a diffictdsk. Therefore, multi-objective

optimization becomes necessary when it is required toeatva consensus solution in

terms of two or more contradictory criteria. In this chapter employ the SNN distance

for feature selection in a multi-objective framework. Itodses a reduced set of features

while preserving the pairwise sample similarity. A featex@luation criterion is formu-
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lated in terms of the SNN distance, and is simultaneouslyropéd with the feature set
cardinality. The multi-objective genetic algorithm NSGIAef Section 1.3.2 is used, as
an optimization technique, to traverse the search spacgamerate a non-dominated set
of features. NSGA-II is a randomized search, guided by thecie of evolution and

natural genetics, with a large amount of implicit paradiedi

In Section 3.3 we optimized the single objective functignof eqn. (3.4). In the multi-
objective framework the algorithm simultaneously reduitessize of the feature subset
while preserving the pairwise topological neighbourhaddimation present in the size
neighborhood in the original feature space. The secondtmggunction is the cardinality

of the reduced feature sgt,;,, and is expressed as

F2 = |fsub|~ (35)

We employ NSGA-II [5, 22] for heuristically exploring thigarch space by minimizing

both fithess functions.

A population of chromosomes, representing the selectadrizegubset, is evaluated by
simultaneously optimizing the two objective functiohs and F5, in order to enhance

their fitness; and thereby perform feature selection.

Multi-objective GA proceeds to find a fit set of individualefk, feature subsets) by re-
producing new children chromosomes from older parentshénprocess it employs the
operators selection, crossover and mutation. This repeaismultiple generations (or
iterations) until a stopping criterion is met. The chromoes associated with the non-
dominated solutions with respect to the fithess functioaslacoded to obtain the reduced

feature subsets.

The multi-objective feature selection algorithm based loawred nearest neighbors (MF-

SSNN) is outlined as Algorithm 3.4.
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Algorithm 3.4:MFSSNN

Input: Pattern seX, with N sample points and features.
Size of neighborhoodsands;, cardinality of reduced séY,.; = | X;|-
Output: A feature subsetf;,q.
1: Construct pairwise dissimilarity matriX D M, using eqn. (3.2).
2. Construct a reduced sét,.; of samples using Algorithm 3.5.
3: CalculateP D M, with s;-nearest neighbors on the sgf,;.
4. Select feature subset(s) by simultaneously optimizinge($4) and (3.5) in a multi-

objective framework.

3.4 Experimental Results

The two feature selection algorithms, which preserve sintyl between samples based on
the shared nearest neighbors concept, were implementeceaefs of public domain data
viz. MF, USPS, ORL, SpambasmdCOIL20. The effectiveness of the algorithms was
evaluated by externally validating selected feature dsbiaderms of their predictive ac-
curacy, as measured by well-known classifiers, kikeearest neighborg{NN) and Naive
Bayes (NB) [described in Section 1.2.1] with 10-fold cros$idation. The process was
repeated 20 times and the results were averaged for the ésatr The paired Student’s
t-test for unequal mean and variance [4,75] was used to ctentipel statistical significance
of the obtained results, and the threshold for rejectingitiiehypothesis was set at 0.05.
The feature subsets were also evaluated in terms of sanmplersiy and the presence of
redundancy, as measured BYLC' [eqn. (1.18)] andRE D [eqgn. (1.7)].

Sinces << N, the SNN is found to be reasonably robust to the choice[68]. Here we

selecteds = 50 ands; = s whenn (i.e. | X,|) > s; otherwises; was set to the nearest
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Algorithm 3.5: A heuristic for constructing X,

Input: The pairwise dissimilarity matri’ DM, and N,,,.
Output: Reduced sample séi,,,
1: Find the minimum entry*% 0) of each row ofP DM, and store asnin_row;, with
iel,...,N—1.
2. Sortmin_row; in ascending order along with indices.
3: Select topV,,; index values onin_row;.

4. Generate sample sét,.; with these selected points.

integer value of 60% of. In Algorithm 3.3 parametef was selected as 10 after several
experiments. Results were generated using cosine disfaquoe (3.2)] as the primary
measure. The Euclidean and City block distances were afdorexl, but their ranking of

the patterns was found to be nearly similar.

GA has been used to optimize the evaluation criterion of €34) for selecting a minimal
set of features. The parameter settings used were crogsmmbility p. = 0.8, size of
populationS; = 150, and number of generations 100, with the mutation prokgilj,
being varied over the generations based on a Gaussiandandthe best feature subsets

were selected over 30 runs.

3.4.1 Data description

The datasets used are listed here with their characteriMigdtiple Features (MFataset
consists of 2000 samples from 10 classes of handwritten ralsn€0’—9’), having 649
real-valued features. These are extracted from a collectidutch utility maps.USPS

is a handwritten digit database. It contains 9298 handrithages over 1& 16 pixels,
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and has 10 classes. TBdRL database consists of a total of 400 face images of 40 subjects
The original images are subsampled to a size ok56 pixels, with 256 grey levels per
pixel. Thus each face image can be represented by a 257Gsional feature vector.
COIL20is a database of grey scale images of 20 objects, each hafiimgages. The
original images are subsampled down t0>332 pixels, with 256 grey levels per pixel.

Spambaseata is outlined in Section 2.3.1.

3.4.2 Performance using FSSNN

The results with Algorithm 3.1, for the five datasets, is presd in Table 3.1. The car-
dinality of the selected feature subsets, in each casestedlin column 2. The third
and fourth column indicate the average classification @amyumvolving ten-fold cross-
validation, using:-NN and NB classifiers respectively. The values within ptresis rep-
resent the standard deviations over twenty independeat fithee last two columns depict
the effectiveness of the selected feature subset in piaggrairwise sample similarity, in
terms ofJAC, and the feature subset redundancy, in termBB1, respectively. The last
row for each dataset contains the average, cross-valigissification accuracy over the

original feature space for the data.

It is observed that our algorithm provides better perforogan the reduced space in most
cases, as compared to that in the original feature spacks ilmolving only about half the

number of features. This is true for both classifiefdN and NB. Table 3.2 represents the
performance of Algorithm 3.3, in a similar format, over thrgets of data. Here also the
classification accuracy is generally better in the redupedes. Hence the computational

complexity of the resultant classifier gets further reduced

Finally the performance of the two algorithms was compaodtat of SPFS-SFS, ReliefF
and SPEC, as described in Section 1.4.3. Though ReliefRruigergsed methote. it uses
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class label information to rank features, but it uses néaeghbors of training samples
to evalute a feature. So we consider this method to be relégapur approach. The
results are presented in Tables 3.3 and 3.5, with the beptisumarked in bold. Both
Algorithms 3.1 and 3.3 provide better performance in terfdassification accuracy and
the validity measures. In the caseld$PSdata, Algorithms 3.1 and 3.3 have comparable
scores. It may be noted that our feature selection algostm® unsupervised, in the sense
(unlike ReliefF) that they do not use class label informataring feature subset selection.
Statistical significance of the classification performaatéhe algorithms compared was
also tested. The comparative study of the execution timelgbthms 3.1 and 3.3 was
mentioned on Table 3.4 and Table 3.6 respectively. The ¢éxgctime was computed on

a HP Z800 workstation with Xeon(R) 2.67 GHz CPU and 16 GB RAM.

3.4.3 Performance using MFSSNN

As in the above, the algorithm was evaluated by externallidating selected feature
subsets in terms of their predictive accuracy, as measwyr@eell-known classifiers, like
k-nearest neighbor:(NN), Naive Bayes (NB) and Support Vector Machine (SVM) [de-
scribed in Section 1.2.1], using 10-fold cross validatidrhne process was repeated 50
times and the results were averaged for the final result. @veghStudent’s t-test for un-
equal mean and variance was used to compute the statisgnédlcance of the obtained
results, and the threshold for rejecting the null hypothegs set at 0.05. The feature
subsets were also evaluated in terms of sample similardyttaa presence of redundancy,
as measured byAC [eqn. (1.18)] andRE D [eqn. (1.7)]. We used four sets of real data
viz. MF, USPS, ORIlandCOIL20 whose characteristics are outlined in Subsection 3.4.1.

Sinces << N, the performance of SNN is found to be reasonably robustéctioice

of s. Here we selected as 50 ands; = s, for s; < Ny < 2 * s1, In our experiments.
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Table 3.1: Performance evaluation of Algorithm 3.1

Data Set d Classification Accuracy (%) JAC RED
k-NN NB
MF 305 | 96.1(0.18)| 95.8(0.12) | 0.65 | 0.0047
N =2000 | 313 | 96.7(0.13)| 96.1(0.09) | 0.67 | 0.0040
D =649 | 315 | 96.1(0.15)| 94.7(0.08) | 0.69 | 0.0050
s =50 317 | 95.2(0.19)| 96.0(0.10) | 0.68 | 0.0025
s1 =16 318 | 96.3(0.21)| 94.3(0.09) | 0.71 | 0.0039
C =10 D 95.1 95.9 — -

ORL 1267 | 97.6 (0.16)| 94.7(0.22) | 0.94 | 0.0652
N =400 | 1272 | 97.8(0.14)| 93.8(0.36) | 0.94 | 0.0654
D =2576 | 1283 | 98.1(0.19)| 93.3(0.39) | 0.94 | 0.0654

s=50 | 1287 | 98.1(0.11)| 93.8(0.36) | 0.93 | 0.0664
s1 =27 | 1305 | 97.9(0.19)| 94.5(0.29) | 0.95 | 0.0655
C =40 D 97.8 94.1 - -

USPS | 144 | 96.1(0.10)| 83.4(0.04) | 0.66 | 0.0348
N =9208 | 151 | 96.2(0.08)| 81.4(0.06) | 0.66 | 0.0395
D=256 | 159 | 96.8(0.06)| 83.4(0.05) | 0.70 | 0.0366

s=50 164 | 96.5(0.07)| 83.0(0.05) | 0.69 | 0.0329
s1 =50 | 171 | 96.6(0.07)| 83.1(0.04) | 0.71 | 0.0339
C =10 D 96.9 82.5 - -

Spambase| 27 | 82.5(0.27)| 89.4(0.08) | 1.00 | 0.0099

N =4601 | 34 | 81.6(0.22)| 86.6(0.08) | 1.00 | 0.0117
D=57 | 35 | 821(0.24)| 87.8(0.10) | 1.00 | 0.0094
s=50 36 | 81.3(0.19)| 87.2(0.10) | 1.00 | 0.0088
s1=50 | 37 | 81.9(0.26)| 87.7(0.08) | 1.00 | 0.0055
Cc=2 D 82.5 89.4 - -

COIL20 | 480 | 99.9(0.08)| 92.3(0.37) | 0.81 | 0.0672
N =1440 | 502 | 99.9(0.09)| 93.4(0.19) | 0.80 | 0.0674
D=1024 | 512 | 99.8(0.08)| 91.7(0.24) | 0.80 | 0.0705

s=50 | 541 | 99.9(0.09)| 92.6(0.16) | 0.84 | 0.0664

s1=50 | 550 | 99.8(0.06)| 92.3(0.30) | 0.87 | 0.0693

C =20 D 99.7 92.6 - -
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Table 3.2: Performance evaluation of Algorithm 3.3

Data Set | d | Classification Accuracy (%) JAC | RED
k-NN NB
MF 321|94.6 (0.19)] 96.5(0.09) | 0.70| 0.0041
N =2000 | 323 | 95.5(0.18)] 95.2(0.08) | 0.71| 0.0040
D =649 | 324|93.9(0.20)] 95.3(0.08) | 0.68| 0.0059
s=50 |326|96.3(0.14) 94.5(0.11) | 0.70| 0.0046
s =50 |336]96.3(0.16)] 95.5(0.09) | 0.71| 0.0042
C =10 D 95.1 95.9 — —
USPS | 131|96.9(0.05)| 83.5(0.04) | 0.63| 0.0332
N =09298 | 144 | 96.5 (0.06)|, 83.7 (0.06) | 0.64| 0.0330
D =256 | 153|96.1(0.09)| 82.4(0.04) | 0.66| 0.0321
s=50 |155|96.6(0.07)] 83.2(0.05) | 0.68| 0.0327
s1 =50 | 167|96.6(0.05)| 82.9(0.05) |0.71| 0.0338
C=10 D 96.9 82.5 - -
COIL20 | 509 99.7 (0.09)] 92.8(0.22) | 0.84| 0.0693
N = 1440 | 512 99.7 (0.09)] 91.0 (0.43) | 0.85| 0.0694
D =1024 | 527 | 99.8 (0.09)] 92.5(0.24) | 0.85| 0.0695
s=>50 |529]99.7(0.18)) 91.9(0.37) | 0.86| 0.0718
s1 =50 |531]99.8(0.09) 92.4(0.31) |0.86| 0.0686
C =20 D 99.7 92.6 - -

82
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Table 3.3: Performance comparison of Algorithm 3.1

Data Set| d Algorithm | Classification Accuracy (%) JAC | RED
k-NN NB

MF 317 | SPFS-SFS | 94.2(0.18)] 95.7 (0.08) | 0.30| 0.0150

ReliefF 93.2(0.17)] 95.9(0.08) | 0.69| 0.0047

SPEC 85.3(0.35)] 94.9(0.07) | 1.00| 0.0046

Algorithm 3.1| 95.2(0.19)| 96.0(0.10) | 0.68| 0.0025

ORL | 1283| SPFS-SFS |97.4(0.16)] 90.3(0.32) | 0.57| 0.0774

ReliefF 97.1(0.14)] 88.8(0.35) | 0.83| 0.0669

SPEC 96.8 (0.17)| 88.4(0.44) | 0.49| 0.0808

Algorithm 3.1| 98.1(0.19)| 93.3(0.39) | 0.94| 0.0652

USPS | 144 | SPFS-SFS | 91.4(0.11)| 67.8(0.06) | 0.30| 0.0521

ReliefF 96.6 (0.07)] 84.1(0.03) | 0.65| 0.0433

SPEC 96.7 (0.06)| 84.0(0.06) | 0.66| 0.0428

Algorithm 3.1| 96.9(0.10)| 83.4 (0.04) | 0.66| 0.0348

Spambase 27 | SPFS-SFS |82.2(0.20)| 86.6(0.06) | 0.95| 0.0115

ReliefF 80.5(0.31)] 86.1(0.06) | 0.95| 0.0241

SPEC 83.1(0.21)] 66.7(0.12) | 0.02| 0.0377

Algorithm 3.1 | 82.5(0.27)| 89.4(0.08) | 1.00| 0.0099

COIL20 | 480 SPFS-SFS | 95.0(0.20)] 78.7 (0.31) | 0.23| 0.0664

ReliefF | 99.8(0.08)| 89.0(0.29) | 0.62| 0.1030

SPEC 94.7 (0.22)| 78.8(0.47) | 0.28| 0.0715

Algorithm 3.1| 99.9(0.08)| 92.3(0.37) |0.81| 0.0672
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Table 3.4: Execution time comparison over different datgsesing Algorithm 3.1

Data Algorithm | Execution time (Second
MF SPFS-SFS 17264
ReliefF 64
SPEC 13
Algorithm 3.1 633
ORL SPFS-SFS 7930
ReliefF 28
SPEC 2
Algorithm 3.1 874
USPS SPFS-SFS 37316
ReliefF 410
SPEC 352
Algorithm 3.1 179077
Spambase SPFS-SFS 1038
ReliefF 35
SPEC 96
Algorithm 3.1 2800
COIL20 SPFS-SFS 25663
ReliefF 54
SPEC 8
Algorithm 3.1 1451

)
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Table 3.5: Performance comparison of Algorithm 3.3

Data Set| d Algorithm | Classification Accuracy (%) JAC | RED
k-NN NB
MF 321 | SPFS-SFS | 94.3(0.16)] 96.0(0.07) | 0.29 | 0.0153
ReliefF 93.2(0.19)] 95.9(0.06) | 0.70| 0.0048
SPEC 85.4 (0.23)] 94.9(0.12) | 1.00 | 0.0044
Algorithm 3.3| 94.6(0.19)| 96.5(0.09) | 0.70 | 0.0041
USPS | 131| SPFS-SFS | 88.8(0.08)] 65.3(0.08) | 0.26 | 0.0543
ReliefF 96.8 (0.08)] 84.0(0.07) | 0.59 | 0.0428
SPEC | 96.4(0.09) 84.4(0.03) | 0.61| 0.0411
Algorithm 3.3 | 96.9(0.05)| 83.5(0.04) | 0.63| 0.0332
COIL20 | 509 | SPFS-SFS | 95.3(0.09)] 80.1(0.96) | 0.25| 0.0676
ReliefF | 99.8(0.09)| 89.5(0.26) | 0.65 | 0.1017
SPEC | 95.0(0.24)) 80.2(0.41) | 0.29 | 0.0718
Algorithm 3.3 | 99.7 (0.09)| 92.8(0.22) | 0.84 | 0.0693
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Table 3.6: Execution time comparison over different datgsesing Algorithm 3.3

Data Characteristics Algorithm | Execution time (Second

MF SPFS-SFS 59561
ReliefF 64
SPEC 13
Algorithm 3.3 199

USPS SPFS-SFS 29948
ReliefF 410
SPEC 352

Algorithm 3.3 52053

COIL20 SPFS-SFS 26432
ReliefF 54

SPEC 8
Algorithm 3.3 1266

)
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Table 3.7: Performance comparison with related algorithms

Dataset & d Algorithm Accuracy (%) JAC | RED

parameters k-NN ‘ NB ‘ SVM

MF 155 SPFS-SFS 91.2 94.9 83.1 | 0.90 | 0.0253
(0.25) | (0.10) | (0.20)

N = 2000, D = 649 ReliefF 83.1 94.0 84.7 | 0.90 | 0.0122
(0.28) | (0.12) | (0.16)

C =10, Nge; = 80 SPEC 96.5 93.3 94.1 | 0.32 | 0.0053
(0.14) | (0.10) | (0.11)

s =150,s1 =50 Algorithm 3.4 | 93.8 93.0 87.4 | 0.96 | 0.0107
(0.21) | (0.11) | (0.15)

D — 95.1 95.9 88.9 — —

(0.24) | (0.15) | (0.10)

USPS 89 | SPFS-SFS | 695 | 521 | 64.0 | 0.09 | 0.0619
0.17) | (0.07) | (0.07)

N = 9298, D = 256 ReliefF 948 | 821 | 90.2 | 0.41| 0.0405
(0.07) | (0.07) | (0.06)

C =10, Noe; = 80 SPEC 944 | 814 | 904 | 0.43 | 0.0388
(0.09) | (0.06) | (0.06)

s=50,51 =50 Algorithm 3.4 | 957 | 83.8 | 91.4 | 0.55 | 0.0387
(0.07) | (0.05) | (0.05)

D — 983 | 825 | 962 | — | —

(0.06) | (0.06) | (0.03)

COIL20 253 | SPFS-SFS | 89.8 | 63.7 | 80.2 | 0.11 | 0.0633
(0.24) | (0.51) | (0.41)

N = 1440, D = 1024 ReliefF 98.4 | 783 | 93.4 | 0.30 | 0.1390
0.22) | (0.32) | (0.29)

C =20, Nyey = 80 SPEC 84.4 | 619 | 736 | 0.12 | 0.0665
(0.35) | (0.36) | (0.45)

s =150,51 =50 Algorithm 3.4 | 99.7 | 90.7 | 955 | 0.67 | 0.0737
(0.08) | (0.30) | (0.14)

D — 998 | 926 | 959 | — | —

(0.08) | (0.40) | (0.19)

ORL 756 | SPFS-SFS | 956 | 89.4 | 925 | 0.48 | 0.0953
(0.11) | (0.39) | (0.36)

N = 400, D = 2576 ReliefF 954 | 816 | 92.6 | 0.30 | 0.1312
0.17) | (0.38) | (0.26)

C = 40, Nyey = 60 SPEC 949 | 87.0 | 92.3 | 0.42 | 0.1009
0.17) | (0.35) | (0.39)

s =150,51 =50 Algorithm 3.4 | 97.6 | 94.0 | 98.0 | 0.77 | 0.0649
(0.15) | (0.30) | (0.25)

D — 978 | 941 | 981 | — | —

(0.14) | (0.30) | (0.18)
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Data Characteristics Algorithm | Execution time (Second
MF SPFS-SFS 6739
ReliefF 64
SPEC 13
Algorithm 3.4 1009
USPS SPFS-SFS 29214
ReliefF 410
SPEC 352
Algorithm 3.4 199076
COIL20 SPFS-SFS 15624
ReliefF 54
SPEC 8
Algorithm 3.4 75105
ORL SPFS-SFS 12035
ReliefF 28
SPEC 2
Algorithm 3.4 57583

)
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Table 3.8: Execution time comparison over different datgsesing Algorithm 3.4
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Results of Table 3.7 were generated using cosine distamge [€3.2)] as the primary
measure. Multi-objective NSGA-II has been used to optintime evaluation criteria of
egns. (3.4) and (3.5), for selecting the minimal set of fezstu As before, the parameter
values were set at crossover probabitity= 0.8, size of populatiors; = 100, and number
of generationg = 300, with the mutation probability,, being varied over the generations

based on a Gaussian function.

Fig. 3.1 depicts the Pareto optimal front, for the four detssusing MFSSNN (Algorithm
3.4). The two objective functions; and F5, by eqns. (3.4) and (3.5), are plotted along the

two axes.

We provide in Fig. 3.2 the classification accuracy (%) witbpect to the cardinality of the
feature subsets, over the four datasets, for the clasgifidid (k = 1, 3,5), NB and SVM.
The feature subsets from the Pareto front (of Fig. 3.1) aneddo provide comparable

accuracies with respect to each classifier, as depictee ifighre.

The performance of Algorithm 3.4, for the four datasets, ais® compared to that of
SPFS-SFS, ReliefF, and SPEC, as described in Section ITh8results are presented
in Table 3.7 for a subset of features, chosen from the plofSigg. 3.1 and 3.2. The
cardinality of the reduced feature subsets, in each cadistad in column 2. The third,
fourth and fifth columns indicate the average classificaioauracy involving 10-fold
cross-validation, using-NN (for £ = 1), Naive Bayes’ (NB) and Support Vector Ma-
chine (SVM) classifiers respectively. The values withingpdineses represent the standard
deviations over 50 independent runs. The last two columpgttne effectiveness of the
selected feature subset in preserving pairwise sampléssityiin terms ofJ AC, and the
feature subset redundancy, in termgdf D. The last row, corresponding to each dataset,
contains the average, cross-validated classificatiorracgwver the original feature space

(of cardinality D) for the data.

Algorithm 3.4 performs the best (as highlighted in bold ie tAble) over all classifiers,
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both in terms of accuracy and sample similarity for datas&RS, COIL2@ndORL In-
terestingly the classification accuracy (%) is found to bejparable for feature cardinality
d even with respect to the original feature space having wality D (d < D). This serves
to highlight the utility of our algorithm in reducing comp@tional complexity while pro-
viding comparable output performance. Moreover, sinceadgorithm is unsupervised,
the efficacy of its performance becomes even more appararttojdarly in comparison
to ReliefF). The comparative study of the execution time lgfokithm 3.4 was mentioned

in Table 3.8. The execution time was computed on the platfoentions in Section 3.4.2.

3.5 Conclusion

In this chapter we have developed a new unsupervised fesglgetion algorithm which
preserves sample similarity in a reduced feature spacedl@se¢he concept of shared
nearest neighbor distance. The novelty of our approachridise effective use of SNN
secondary distance (or similarity) for feature selectibime divide and merge strategy was

incorporated in order to improve the scalability of the aitjon.

The results demonstrate that the selected feature sulmétsrot only preserve the pre-
dictive accuracy of the classifiers in the reduced featuaeepbut also improved a little
in some of the cases. The validation indices indicated thatpée similarity was also
preserved in the reduced space. Both the algorithms cotddtieely handle the redun-
dancy present in the feature set. Comparative study wittSSEFS, ReliefF and SPEC

demonstrated the suitability of our algorithms.

Comparing row 1 of Table 2.2 (fd8pambaseata) with row 4 of Table 3.1, we find that
the SNN concept helps producing improved classifier acgunaith both £.-NN and NB)
over structural similarity. This is perhaps due to the ipooation of local information

from the neighborhood concept, implicit in the shared n&areighbor distance.
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Figure 3.1: Pareto optimal front for Algorithm 3.4 over dsts (a) MF, (b) USPS, (c)
COIL20, and (d) ORL
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This work was further extended with a multi-objective framoek. The results of MF-
SSNN demonstrate that the reduced feature subsets coubthiygireserve the predictive
accuracy of the classifiers in the reduced feature spaca)dmimproved a little (in some
of the cases) with respect to the original feature space vahity indices indicated that
sample similarity was also preserved in the reduced spatetie selected features ex-
hibiting very little correlation amongst them. This alghm also compared with related
algorithms like SPFS-SFS, ReliefF and SPEC and it demdesltthe suitability of this

algorithm.

Comparing Tables 3.1, 3.7, and Fig. 3.2, we observe that thi-abjective framework of
Algorithm 3.4 resulted in the selection of feature subsatsrig reduced cardinality, while

generating comparable performance in terms of predictiearacy and sample similarity.



Chapter 4

Feature Selection through Message

Passing

4.1 Introduction

Unlike the concept of SNN distance (described in Chapteh8je we develop an un-
supervised feature selection scheme based on their styildrstems from the classical
concept of comparing different objects to detect any hidohear or nonlinear relationship
between them. The algorithm selects a subset of featuresl lsaisthe internal character-
istics of the data, to improve the generalization capabdita classifier. Compared to
the proximity and SNN frameworks of previous chapters, tlessage passing scheme in-
volves a lower time complexity. It also attaches a weightigni§icance for each feature

with respect to the entire feature set. Features are rardsztlon these weights.

The novelty of the message passing framework is that it coeshe pairwise similarity
between features in terms of distance correlafipmhich measures the degree of all pos-

sible relationships (linear and non-linear) [110] betwésature pairs without assuming

94
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any underlying distribution. This pairwise similarity isen fed into a “message passing”
scheme, which selects a subset of representative featurasét of exemplars) from the
original feature set without exhaustively traversing theére space. In this case, the cardi-
nality of the search space2$ with D being the cardinality of the original feature set. It
results in minimum redundancy amongst the selected seatifries, coupled with reduced

parameter tuning.

For datasets involving large number of instances, the coatipn of pairwise similarity
between features using becomes computationally intensive. In order to alleviaie t
problem, a dataset is randomly divided into a number of dskesad the distance covari-
ance is independently computed on each of these subsete &teesubsequently merged,
using a characteristic property of the covariance, to egtna value of? [110]. These
similarity values are again used in a message passing frarkdar selecting the feature

subset.

The local message passing scheme starts by simultanearsdidering all the features
as potential representative or exemplars, and then gigduadiating messages on the
basis of simple formulae which search for the minima of arreyately chosen energy
function. The magnitude of each message reflects the cuafénity that one feature
has for choosing another feature as its exemplar. The ideeivated by the affinity
propagation algorithm for clustering in sample space [Fajllowing repetitive message
exchange, the feature vectors get weighted according io rigigresentative capability.
Eventually the features are selected based on these weldgtgsadvantage of the scheme
is that it does not require any exhaustive traversal of thieeesearch space in order to find
the best subset of features. It also automatically redusshisndancy within the selected

subset.

The rest of chapter is organized as follows. Section 4.2dhtces some basic concepts

of distance correlation. The feature selection algorithased on message passing, is
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explained in Section 4.3. This is next extended to work ogdatata. The experimental
results, including comparative study on nine sets of pibkwailable datayiz. Colon,
Leukemia, Prostate, DLBCL, MLL, NSL-KDD, Isolet, COIL&@dMF, are presented in

Section 4.4. Finally Section 4.5 concludes the chapter.

4.2 Distance Correlation

The distance correlatioR is a relatively new approach [110]. It provides an extenson
Pearson correlation [114], and measures dependence letwer of random vectors in
different types of applications. Lg% and j_’; be two feature vectors in a datasét The

distance dependence statistic is defined as follows.

Let a datasefX consist of a set of feature vectofs fa, . .., fp, with eachf; having N
instances such thit = fi, fi2, ..., fin. The Minkowski distance matrix, of norm is

computed for each feature vectfrusing
cgh = | fig — finlr g, =1,...,N. 4.2)
For eachﬁ, we have

Cigh:Cgh—C_g.—ﬁﬁ»C_n, g,hzl,...,N, izl,...,D, (42)

1 N — 1 N — _ 1 N
Wherec, = > _j_y Cohs Ch = 3 2g—1 Cohs . = 72 2g =1 Coh-

The distance covariandé( f;, fj) and distance correlatioR( f;, fj), between feature vec-

torsﬁ andf;-, are defined as [110]

N
- 1
V(i i) = 55 D CignCign: (4.3)

g,h=1

and

R(fi fi) = § VVIVED) - (4.4)
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where the distance covariance of a feature veﬁl;owith itself, is given as

N
- 1
V() =3 2 Cin (4.5)
g,h=1
For all distributions with finite first moments, the coeffi(rie‘%(ﬁ-, fj) is a standardized
version of the distance covarianbféﬁ-, f}). The value ofR lies in the interval [0,1], such

thatR = 0 if only if ﬁ andf;- are independent or have no similarity between them.

This statistic is consistent for linear as well as non-Ingependence between vectors
having finite second moments. It also measures nonlineapmmmnotone dependence
between two feature vectors. This works well when (i) the ehision (or the number
of features)D of a dataset exceeds the sample s\zeor (ii) when the distributional

assumptions of a dataset do not hold.

Some of the properties of distance covariah¢e;, fj) and distance correlatioR( f;, fj)

are listed below [110].
L. V(fi, f;) = 0,4, j.

2. V(ﬁ-) = 0, if and only if every instance of the feature vecy’_élis identical.

- =

3.0<R(fi,f) < 1.

—

4. R(f;, f;») IS symmetric.

5. If (f2, f;@) and ( ?’, f_j?) are pairs of vectors (corresponding to thie andjth fea-
tures), over independent subsetandb of samples, then the distance covariance

follows

V(4 I0 F 4 1) S VU T + VL D) (4.6)
The equality holds if and only if (ifﬁ, ;@, :b, f;b are mutually independent, or (ii)
f;“ and f;@ are both constants, or (ii'yj_f’ and f_j’ are both constants.
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4.3 Message Passing between Features

The algorithm initially considers a collection of real-watl similaritiessim(i, j) between
the ith andjth feature vectorsﬂ, f;-), i,7 € {1,..., D}, where the similarity value is
computed based on the distance correlaﬂ’;@ﬁ, f}) of eqn. (4.4). The objective is to find
a set ofD hidden labels;;: € 1, ..., D, to map each feature vectﬂrsuch that; becomes
its exemplar or representative based on the similarity. idlba follows from the affinity
propagation algorithm for clustering in sample space [8B6¢ is extended here to develop

a novel way of feature selection.

Each featurq: is thus mapped to its most similar feature, on the basis.dduring mes-
sage update, afeatufgcan not directly choose itself as its own representativdy @hen
some other featurﬁ?/ has already chosef,} as its representative, can featlf{echoose it-
self as its representative; and such a set of choices igdcallalid mapping. Let a set
of valid mappings for thé features b&. = {[;,...,Ip}, andsim(i,[;) be the similarity
of the ith feature vectorf: to its representative labél. The energy (or cost) of a set of
valid mappings i€Z(L) = — Zil sim(i, ;). The goal of the feature selection algorithm
is to search for the minima of this energy (or cost) functidime exact minimization of
the function being computationally intractable [14], @sders have developed update
rules [35] for searching the minima of the energy (or costiction based on the Bethe

free energy approximation [121].

4.3.1 Selection of features

The update rules for feature selection are based on magiobabilities (or belief), and
proceed recursively by exchanging two kinds of messagegdaet a feature and its rep-
resentative. The responsibilitys(i, k), sent from feature vectqf; to candidate repre-

sentative feature vectaf, reflects the accumulated evidence regarding how weleguit
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Algorithm 4.1: Similarity between features

Input: N x D data matrixX .

Output: D x D similarity matrix sim.

1: for i« 1to D do

2: forj«—itoDdo
Compute distance covariand&(f;, f;) between featureg; and f; using eqns. (4.1)-
(4.3).
Evaluate distance correlatioR(ﬁ-,ﬁ-) using eqn. (4.4), and store igm(i,j) and
sim(j,1).

3:  end for

4: end for

5: stim = —1 * sim.

ﬁ is to serve as the representative for featﬁrétaking into account its other potential
representatives). The availabilityl(i, k), sent from representative feature vecférto
feature vectorﬁ-, measures the accumulated evidence about how approprigter ﬁ to
chooseﬁC as its representative (taking into account the support fstvar features regard-

ing whether it should be the representative).

The procedure starts with the pairwise similarity betwessatdresim as the input prefer-
ence, for a feature to select another feature as its repgegsen The pairwise similarities

are calculated using Algorithm 4.1.
The responsibility-es(i, k) and availabilityavl(i, k) are defined as [35]

res(i, k) < sim(i, k) — mazyeq,.. prwee{avl(i, k') + sim(i, k') }, 4.7)

.....

and

avl(i, k) «— min{0,res(k, k) + Z maz{0,res(i', k)}}. (4.8)
i1/ ¢ {i,k}
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The self-availabilityavl(k, k) of a featurek is updated as
avl(k, k) — Z maz{0,res(i', k)}. (4.9)
i/ ¢ {i,k}
To avoid numerical oscillation, the messagess(or avl) are damped before moving to

the next phase (or iteration). We use

msg < (1 — X\) x msg + X\ *x msgoa, (4.10)

where0 < A\ < 1 is a damping factonnsg represents eithetes(i, k) or avl(i, k) [egns.
(4.7)-(4.9)] in the current message, amdg,, IS the corresponding message computed
in the previous iteration. The energy is computed by sumntegdiagonal elements
res(k, k) andavl(k, k) of the matrices. The procedure for feature selection throngs-

sage passing (FSMP) is summarized in Algorithm 4.2.

The complexity of Algorithms 4.1 and 4.2 af§ D? « N?) andO (iter x« D?) respectively.
While for N < D the complexity of Algorithm 4.1 tends 0 (D?), it approache®)(N?)

for N > D. Therefore, for large values @f this can lead to a bottleneck.

4.3.2 Extension to large data

To apply distance correlatioR on a data with large samples, the property #5 of this
measure [from eqn. (4.6)] is used. It provides an upper-dammthe actual value of the

distance covariance (f;, fj) of X.

In the feature selection scenario, the data is randomhyddviintodiv disjoint subsets
such that ()X = U%* X' and (i) X" N X" = ¢ if t; # t, . The distance covariance
V( :.t, f;?), over each subsef’: t = 1,..., div, can now be computed parallelly using eqgn.

(4.3). The final value of distance covariaricéf;, f}) over X becomes
div

V(F £) =Y VLT, (4.11)
t=1
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The procedure to compute similarity between features isn@at in Algorithm 4.3. The

similarity matrix sim is then fed into Algorithm 4.2.

The complexity of Algorithm 4.3 becomé&¥( D? x N2 x div), whereN; is the sample car-
dinality of the subseX*. Therefore for large data, using < N with a moderately large
value ofdiv, this algorithm has an advantage over Algorithm 4.1. Moesahe complex-
ity can be further reduced by modeling each disjoint subysatparallel framework when
it tends toO(D? x N?).

4.4 Experimental Study

The feature selection algorithms were implemented on reatlife datasetsyiz. Colon,
Leukemia, DLBCL, Prostate, MLL, NSL-KDD, Isolet, COILa@dMF, whose character-

istics are listed below.

Leukemiadataset contains the gene expression information of 72 éeukemia samples.
There are 25 human acute myeloid leukemia (AML) and 47 agat@hoblastic leukemia
(ALL) cases, each with 7129 featureBrostatedata includes the gene expression mea-
surements for 52 prostate tumors and 50 adjacent normatiapeasssue samples, over
12626 featuresDLBCL data contains 77 gene expression levels. Among them, 5& are o
diffuse large B-cell lymphoma (DLBCL) type while 19 are oflfoular lymphoma (FL)
type. This data consists of 7070 featurddLL data is a collection of 72 gene expres-
sion measurements. There are 24 examples of acute lymsticlukemia (ALL), 20
examples of mixed-lineage leukemia (MLL) and 28 examplesooite myeloid leukemia
(AML), over 12533 featurefNSL-KDDis a benchmark data representing intrusion related
information for network-based IDs. The data has 14851 &t from two classesig.
normal and anomaly) over 42 features. Thelon and Isolet datasets are described in

Section 2.3.1, whil&F andCOIL20are presented in Section 3.4.1.
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As before, the efficacy of the feature selection algorithns e@monstrated by externally
validating the selected feature subsets in terms of thediptive accuracy, as measured by
well-known classifiers liké:-nearest neighborg:{NN), Naive Bayes (NB), and Support
Vector Machine (SVM) [described in Section 1.2.1], usingfal@ cross validation. The
results were averaged over 50 runs. The paired Studerg® fdr unequal mean and
variance was used to compute the statistical significantkeobbtained results, and the

threshold for rejecting the null hypothesis was set at 0.05.

The experiments were conducted in two parts - first with thasis having smaller sam-
ple size, followed by those with relatively larger cardibal V). Results were compared
with those from related feature selection algorithmg, fsfs and mRMR, and indepen-
dence criterion HSIC (as described in Section 1.4.3). Th@adce correlatiork between

every feature pair was computed using eqn. (4.4) on theeedititaset, and stored in the
similarity matrix sim. Herer = 1 was used in eqn. (4.1). The values of damping faator

and iterationiter were chosen as 0.5 and 100, respectively, after severalimqrés.

4.4.1 Algorithms 4.1 and 4.2

The algorithms were tested on the five datas@étdpn, LeukemiaProstate DLBCL and
MLL. The classification accuracy of the classifiefN (k = 1, 3,5), NB and SVM, over

the reduced sets of features, was plotted in Fig. 4.1. Its®oked, in most cases, that for

a small number of featurgg ~ 50) we obtain around 90% accuracy foplon, DLBCL
andMLL data. In case dProstatedata the classification performance is found to decrease
asd — D.

A comparative study of the classification performance, dkerfeature set extracted by
Algorithms 4.1 and 4.2, was made with that by fsfs, mMRMR andG4$8lote that HSIC

was used in the framework of Algorithm 4.2. The results avigied in Table 4.1 for
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classifiersk-NN (k£ = 1), NB and SVM. The cardinality of the selected feature subsets
in each case, is listed in column 2. The last row (correspanth each data) indicates
the performance over the entire feature set of cardinalitylThe best results (among the
feature selection methods compared) are indicated in bbite reduced set of features
selected by Algorithms (4.1, 4.2) [FSMP] provides the besults in most cases. With
respect to the performance over the original feature spBgethe accuracy is found to
be comparable (over the reduced &ein most cases. Specifically, our algorithm obtains
the best overall results (at < D) with classifiers NB (forColon, DLBCL, MLL), and
with k-NN and SVM (forProstatg§. This highlights the usefulness of the FSMP scheme

in selecting an appropriate set of reduced features for geotsion making.

The comparison of classifier accuracy for FSMP, HSIC and mRbRrProstate, MLL,
andColondatasets, is depicted in Figs. 4.2 - 4.4 respectively. lreggnFSMP is found
to provide better performance over different feature seth@data. However fo€olon

data FSMP shows higher classifier accuracy with SVM, only ewaaller feature subsets.

A comparative study of the execution time, for selection eétof 500 features by Algo-
rithms 4.1 and 4.2 and with that by fsfs, mMRMR and HSIC, wasdisn Table 4.2. FSMP
took less time with respect to mMRMR and HSIC over all data $688/P performed faster
in comparison with fsfs on Prostate Data. Over other dadagetonsumed comparable
time. The execution time was computed on a HP Z800 workstatith Xeon(R) 2.67
GHz CPU and 16 GB RAM.

4.4.2 Algorithms 4.3 and 4.2

Next the four larger datasetBlSL-KDD, Isolet COIL20 and MF, were handled in the
framework of Algorithms 4.2 and 4.3. The plots in Fig. 4.5idéthe results, over different

choices ofdiv, for these data. In most cases a larger, signifying smaller subsets, gives
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Figure 4.1: Classification performance over differentdeasubsets, selected using FSMP
(4.1, 4.2), for datasets (a) Colon, (b) Leukemia, (c) Ptes{@) DLBCL, and (e) MLL
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Figure 4.2: Performance comparison of FSMP (4.1, 4.2), mRM&HSIC, over Prostate
dataset, using classifiers (@NN, (b) NB, and (c) SVM
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Figure 4.3: Performance comparison of FSMP (4.1, 4.2), mRM& HSIC, over MLL
dataset, using classifiers (@NN, (b) NB, and (c) SVM
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Table 4.1: Performance comparison over different datagiSEMP (4.1 and 4.2)

Data Characteristic§ d Algorithm Accuracy (%) (standard deviation)
k-NN NB SVM

Colon 45 fsfs 70.8 (1.91) | 64.2(1.33) | 78.1(1.89)
D = 2000 HSIC 78.0(2.50) | 66.9 (1.41) | 85.0(1.56)
N =62 mMRMR 74.8 (1.36) | 57.6(3.95) | 67.1(3.24)
C=2 FSMP (4.1, 4.2)| 77.8(1.41) | 84.2(1.19) | 84.1(1.41)
D S 79.6 (1.13) | 62.3(1.45) | 84.0 (1.74)
Leukemia 10 fsfs 53.9(3.11) | 60.3(2.76) | 63.3(3.53)
D =17129 HSIC 61.5(1.80) | 50.8(3.14) | 58.3(2.43)
N =72 mRMR 59.7 (1.83) | 69.4 (1.65) | 67.8(2.53)
C=2 FSMP (4.1, 4.2)| 88.5(1.81) | 83.8(0.82) | 80.0(0.82)
D S 91.4 (1.73) | 86.3(1.98) | 94.8 (0.67)
Prostate 20 fsfs 72.0(2.99) | 70.0(2.77) | 73.8 (2.75)
D = 12626 HSIC 48.5(3.28) | 43.8(5.34) | 52.0(2.51)
N =20 mRMR 57.3 (4.00) | 57.3(5.60) | 54.8(6.17)
C=2 FSMP (4.1, 4.2)| 85.8(2.45) | 55.2 (4.13) | 85.8(1.83)
D S 61.0 (2.53) | 72.3(3.30) | 72.0(2.52)
DLBCL 40 fsfs 80.3(1.35) | 79.8(1.43) | 80.1(1.28)
D = 7070 HSIC 88.3(1.86) | 85.3(1.21) | 92.5 (1.45)
N =17 mMRMR 73.0(1.37) | 79.1(1.88) | 79.7 (1.22)
C=2 FSMP (4.1, 4.2)| 89.5(1.55) | 90.5(1.74) | 85.6(1.22)
D S 90.3(1.10) | 75.1(1.90) | 97.2(0.74)
MLL 50 fsfs 62.6 (1.90) | 66.4 (1.10) | 65.7 (2.70)
D = 12533 HSIC 83.4(1.22) | 79.2(1.13) | 85.0(1.82)
N ="72 mMRMR 33.8(2.72) | 51.0(3.14) | 40.4(5.53)
c=3 FSMP (4.1,4.2)| 91.0(1.88) | 93.6(1.34) | 93.2(1.02)
D S 92.0(1.18) | 90.1(1.95) | 95.5(0.50)
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Table 4.2: Execution time comparison over smaller datag/SEMP (4.1 and 4.2)

Data Algorithm Execution time (Second
Colon fsfs 234
HSIC 723
MRMR 5320
FSMP (4.1, 4.2 308
Leukemia fsfs 2377
HSIC 185030
MRMR 53444
FSMP (4.1, 4.2 6020
Prostate fsfs 53074
HSIC 18872
MRMR 136983
FSMP (4.1, 4.2 5512
DLBCL fsfs 2726
HSIC 186840
MRMR 97301
FSMP (4.1, 4.2 6520
MLL fsfs 9240
HSIC 248910
MRMR 278700
FSMP (4.1, 4.2 22088

)
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better results. As before, we obtain good accuraay &t D. Since the processing over
eachdiv can be performed parallelly in Algorithm 4.3, it therebywe=r to speed up the

process of decision making with considerably lower numibéeatures.

Table 4.3 demonstrates a comparative study using the thassifeers. The results for
Algorithms (4.2, 4.3) [FSMP] correspond to a sample valueiof as indicated in the
second-last row for each data. Sindg ~ N/div, therefore the complexity reduces to
O(iter « D?) + O(D? « N?) when each subse¥, can be processed in parallel. Due to
the high time and space complexity of HSIC, it was infeastbl®e implemented here.
The mRMR algorithm could not be used dISL-KDD because of its high requirement
of system memory. In most cases, FSMP (algorithms 4.2, 4a3)faund to provide best
and/or comparable classification performance. For thesdatdNSL-KDD FSMP fared
better in the much smaller reduced feature spdce 20, N; ~ 297), as compared t® =
42, N = 148517 of the original feature space. This underlines the usefsdd algorithm
FSMP for effectively handling larger data. The supervisgor@thm mRMR fared better
than our algorithm in a few casesz. Isolet(all classifiers) an€OIL20(SVM). However,

our unsupervised algorithms generally resulted in conipanaerformance.

Table 4.4 demonstrates a comparative study of executiom dwver larger datasets using
FSMP (4.2 and 4.3) with other methods. The execution time cgasputed on the plat-
form mentioned in Section 4.4.1. The results depict thattmeputation time of FSMP is
more over all datasets. The reason behind this is the cotnputs the pair-wise similar-
ity computation procedure between the feature pairs, wisichill the bottle-neck of the

method.
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Table 4.3: Performance comparison over larger data, usshgA=(4.2 and 4.3)

Data Characteristics d Algorithm Accuracy (%) (standard deviation)
k-NN NB SVM

NSL-KDD 20 fsfs 98.5 (0.01) | 60.4 (0.01)| 94.7(0.30)
D =42 div = 500 N; ~ 297

N = 148517 FSMP (4.2,4.3) | 99.0(0.02) | 86.9(0.00) | 93.2(0.13)

Cc=2 D —_— 99.3(0.01)| 86.8 (0.02)| 49.4 (0.58)

Isolet 250 fsfs 65.5 (0.24) | 56.5(0.10)| 70.7 (0.18)

D =617 mRMR 87.0(0.16) | 84.0(0.09) | 91.2(0.05)
N =7797 div = 150 Ny ~ 52

C =26 FSMP (4.2,4.3) | 86.0(0.19)| 83.0 (0.09)| 90.0(0.02)

D —_— 96.9 (0.08) | 85.1 (0.10)| 98.9 (0.03)

COIL20 300 fsfs 95.8 (0.21) | 73.0 (0.57)| 84.6 (0.20)

D = 1024 mRMR 99.4 (0.17) | 87.4 (0.34)| 94.0(0.18)
N = 1440 div =20 Ny ~ 72

C =20 FSMP (4.2,4.3) | 99.6(0.09) | 89.0(0.25) | 93.0 (0.14)

D — 99.7 (0.07) | 92.6 (0.16)| 95.9 (0.11)

MF 150 fsfs 96.0(0.10) | 90.7 (0.11)| 91.0 (0.14)

D = 649 mRMR 84.6 (0.14) | 94.0 (0.55)| 83.0 (0.09)
N = 2000 div = 50 Ny ~ 40

C =10 FSMP (4.2,4.3) | 95.0 (0.22) | 94.0(0.54) | 92.4(0.09)

D — 95.0 (0.28) | 95.9 (0.22)| 88.9 (0.12)

111
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Table 4.4: Execution time comparison over larger data,guSBMP (4.2, 4.3)

Data Algorithm Execution time (Second

NSL-KDD fsfs 12

FSMP (4.2, 4.3 1796

Isolet fsfs 148
MRMR 45

FSMP (4.2, 4.3 3543

COIL20 fsfs 127
MRMR 182

FSMP (4.2, 4.3 1603
MF fsfs 57
MRMR 55

FSMP (4.2, 4.3 762

)
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Figure 4.5: Classification performance of classifier NB,ralifferent feature subsets se-
lected by FSMP (4.2, 4.3), for different number of subseis), over datasets (a) NSL-
KDD, (b) Isolet, (c) COIL20, and (d) MF
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Table 4.5: Performance and execution time comparison legtvdgorithms PR, FSSNN,

MFSSNN and FSMP

Data Set Algorithm d Accuracy (%) Execution time
k-NN | NB | SVM (Second)
Colon PR 261 839 | 548 | 645 18000
FSSNN 981 79.3 | 624 | 645 714
MFSSNN 457 78.1 | 70.0 | 794 2603
433 | 785 | 66.5| 78.1
FSMP (4.1,4.2)| 261 | 84.0 | 83.4| 83.7 308
Original space | 2000 | 79.6 | 62.3 | 84.0  —
Isolet PR 274 775 | 848 | 94.8 86052
FSSNN 348 | 885 | 88.2| 934 15907
MFSSNN 300 88.7 | 87.4 | 93.2 99145
121 85.6 | 85.0 | 90.8
FSMP (4.2, 4.3)| 274 86.2 | 85.2 | 94.0 3543
Original space | 617 96.9 | 85.1 | 98.9 e

Table 4.6: Performance comparison between Algorithms F§3MN-SSNN and FSMP

Data Set Algorithm d Accuracy (%)
k-NN NB

MF FSSNN 305 | 96.1 | 95.8
MFSSNN 206 94.1 | 93.7

103 93.1 | 92.8
FSMP (4.2, 4.3}liv =50 | 100 93.2 | 934
FSMP (4.2, 4.3}liv =10 | 305 97.3 | 96.0

Original space 649 95.1 | 95.9
COIL20 FSSNN 480 99.9 | 92.3
MFSSNN 425 99.8 | 91.2

253 | 99.7 | 90.7
FSMP (4.2,4.3)iv =20 | 250 | 99.3 | 87.3
FSMP (4.2, 4.3)}liv =20 | 480 99.9 | 92.7

Original space 1024 | 99.7 | 92.6
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4.4.3 Comparative analysis

Comparing with the proximity framework of model PR from Chaxp2, over datasets
Colonandisoletand model FSSNN and MFSSNN from Chapter 3, we observe froihe Tab
4.5 that the message passing scheme (FSMP) always selesiterasoibset of features to
provide higher classifier accuracy usikdNN, SVM and NB over Colon Data. Here, the
algorithm FSMP leads to an improved classification, with R&l features, with respect
to the original feature space of cardinality 2000. Thisvaiaeduction in computational
complexity along with enhanced performance. We also oledeBMP take least execution
time to produce a feature subset. In case of Isolet dataetitare set (cardinality 348)

generated by MFSSNN produces highest accuracy.

Next, we compare the shared nearest neighbor approach pfezt3a(Algorithms FSSNN
and MFSSNN), with FSMP in Table 4.6. Parameters used for itlygns FSSNN and
MFSSNN are the same as indicated in Tables 3.1 and 3.7, tasggc Two subsets of
features were selected from the Pareto front of MFSSNN, tlimse corresponding to
the highest and lowest cardinality, respectively. Herd@dls5 illustrates the overall best
performance of FSMP, for both datasbts andCOIL20, using classifieré-NN and NB.

In fact, algorithm FSMP is found to be always better in terrhslassifier accuracy over
the reduced feature subset (involving lower computatiooaiplexity) as compared to that
in original feature space. This serves to validates thetffeness of the message passing

scheme.

For N >> D, the time complexity of FSMP i€ (N} * div) while for Algorithm PR it
is O(gS;:N?). Hereg is the number of generations aisg is the population size of the
GA. The gain is obvious because, typically, < N anddiv < ¢S;. In case of parallel
computation ofsim, the time complexity of FSMP can even appro@ehV?). The time

complexity of FSSNN become8(sN? + S;gsin?), wheres ands; correspond to the
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nearest neighbors andis the cardinality of the selected pattern set. Here als®/HFS
gains over FSSNN. Algorithm MFSSNN has higher time compyetkian FSSNN, and is
thereby worse than FSMP.

For N << D, the time complexity of FSMP i§ (iter x D?) and for PR itisO(¢S; D). But

the value of thég x S;) term is generally on the higher side, given that the total lnemof
feature subsets i5°. Therefore, FSMP has an advantage over PR. The time cortypbdxi
FSSNN become®(S;gs;n*D) in this scenario. Thereby, again FSMP has an advantage
over both FSSNN and MFSSNN.

4.5 Conclusion

In this chapter we have developed a new unsupervised fesgleetion framework, which
identifies a subset of representative features by passiegages between them. The mes-
sage passing scheme, adapted from affinity propagationustecing [35], computed the
pairwise similarity between features in terms of distarareadationR. It measured the de-
gree of all possible relationships between feature paithowt assuming any underlying

distribution.

The algorithm was able to select a reduced set of featurémutiexhaustively traversing
the entire search space. One of the characteristic prepetiiR was utilized, to make
the algorithm viable for handling data with large numberaiples. The computational
complexity was also reduced. Comparative study with rdlatgorithms like fsfs, nMRMR,
and HSIC dependence criterion, demonstrated the sutiatiline algorithms on publicly-

available datasets.
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Algorithm 4.2: FSMP

Input: D x D feature similarity matrixsim, damping factor\, number of iterationgter, and
cardinality of output feature st
Output: A feature subsefG,}.
1: Initialize messages with pairwise similarity between feas.
2: Initialize avl(i, k) = res(i, k) = 0, Vi, k.
3: for n « 1toiter do
4. fori«— 1toDdo
5: for k — 1to D do
Update responsibilityes(i, k) using eqn. (4.7).
Dampres(i, k) using egn. (4.10).

6: end for
7:  end for
8: fori+— 1toDdo
o: for k — 1to D do
10: if i £ k then
Update availabilityavl (i, k) using eqgn. (4.8).
11: else
Update self-availabilityzvl(k, k) using egn. (4.9).
12: end if
Damp availabilityavi(i, k) using eqgn. (4.10).
13: end for
14:  end for
15: end for

16: Compute energy (or cost) valuesBffeatures by summinges(k, k) andavl(k, k), fork «— 1
toD.

17: Sort features on the basis of energy (or cost) value. Salpet features to constitutegd}.




CHAPTER 4. FEATURE SELECTION THROUGH MESSAGE PASSING 118

Algorithm 4.3: Similarity between features for large data

Input: N x D data matrixX, the number of subsetsuv.
Output: D x D similarity matrix sim.
1: Randomly divideX into div disjoint subsetsy.
2: for i — 1to D do
3: forj«—itoDdo
Compute distance covarianVe{ﬁ, f}), over alldiv subsetsXt, using egns. (4.1)-(4.3).
ComputeV/ (f;, f;) using egn. (4.11).

Evaluate distance correlatioR(ﬁ-,ﬁ-) using eqn. (4.4), and store ig¥m(i,j) and

sim(j,1).
4: end for
5: end for

6: stm = —1 *x sim.




Chapter 5

Conclusions and Scope for Further

Research

This chapter concludes the thesis and summarizes somessessifor future research.

5.1 Conclusions

In recent times data encompasses high dimensionalityrge lrumber of features which
may, again, include both relevant as well as irrelevanuymednt and noisy ones. In order
to perform efficient machine learning or pattern recognitaata preprocessing becomes a
necessity. Feature selection is one such commonly useditgeh It determines a subset
of the original set of attributes to enhance the comprebditgiof a model that describes
a dataset. But data does not always come with labels. Duet@pgid generation of data,
labeling may not always be possible by experts. Unsupeahtsehnique is useful in this
scenario. It uses the intrinsic properties of data to sele@ppropriate subset of features.

Similarity is an important intrinsic property, which is elaped in various manners in this
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thesis.

In every chapter we have presented conclusions drawn frepeotive methodologies
developed, and the experimental results therein. Here weotidate them to provide an

overall picture of the contributions of the thesis.

The thesis dealt with certain tasks in unsupervised featelection. It encompassed se-
lecting feature subsets by (i) preserving structural sinty in terms of proximity, (ii) de-
termining sample similarity in terms of shared nearest maogs, and (iii) using distance
correlation in a message passing framework. The effeas®wof the different method-
ologies and their statistically significant comparativedst with related ones, were ex-
tensively demonstrated on several real life datasets franed domains (like population
census, computer intrusion and genomic analysis) invgldimensions ranging from 3 to

12626 and samples ranging from 20 to 148517.

The thesis consists of six chapters. Chapter 1 introduceddkics of pattern recognition
and soft computing, followed by a detailed coverage of tk& td feature selection. This

was followed by the scope of the thesis.

Chapter 2 considered the structural similarity betweetepad, in terms of fuzzy prox-
imity relations, to select the important features. An obyecfunction was generated to
preserve structural similarity between the original ardliced feature spaces at a global
level. The cardinality of the reduced feature space wasma@d while maintaining high
proximity. Since the two objective functions were mutualbnflicting, a multi-objective
framework was employed to resolve the issue. Feature subsat selected from the
Pareto optimal front. The use of soft computing helped pcodpacceptable solutions in
the presence of uncertainty. However, there was a drawbaapituring local information
during the computation of proximity, and the computatiac@hplexity was also high for

large data.
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The concept of preservation of pattern pair similarity besgw the original and reduced
feature spaces, at a local level, was employed in Chapter @nfsupervised feature se-
lection. A secondary SNN distance measure was used to centipeitpairwise sample
similarity in terms of their shared nearest neighbors. GA used as an optimization tool.
A divide-and-conquer strategy was incorporated to extaedatgorithm to work for data
involving large number of samples, in a scalable manner. ddta was randomly parti-
tioned into nearly equal subsets, followed by a merger ot#raple pairs having an SNN
distance measure below some user-defined threshold wigicim ®uch subset. Finally a
feature subset was selected from this merged set of pgtteiie preserving the pairwise

sample similarity based on SNN distance.

Comparing Table 2.2 with Table 3.1 f@pambaseata, the efficacy of the SNN concept
could be established in terms of improved classifier acqugath both £-NN and NB)
over structural similarity (in PR from Chapter 2). This wasedo the incorporation of
local information from the neighborhood concept, implinithe shared nearest neighbor

distance.

The SNN similarity was used in Subsection 3.3.3, along wathtdre cardinality, in a

multi-objective framework. The reduced set of samplessehdo preserve sample sim-
ilarity, helped in reducing the effect of outliers on thettea selection procedure while
also decreasing computational complexity. Comparing&aBl1l, 3.7, and Fig. 3.2, it
was observed that the multi-objective framework of MFSSNBLuited in the selection of
feature subsets having reduced cardinality, while gemgrabmparable performance in

terms of predictive accuracy and sample similarity.

Chapter 4 introduced the affinity propagation frameworka inovel manner, for feature
selection. The message passing scheme worked on painaisedeimilarity, which was
computed using distance correlation. The methodology wénded to large datasets

utilizing one of the intrinsic properties of distance ctat®n. Considering Table 4.5 we
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infer that FSMP always selected a better subset of featan@®vide higher classification
accuracy using-NN, SVM and NB (with respect to Algorithm PR). In case@dlondata
the algorithm FSMP resulted in an improved classificatiompiving 261 features, with
respect to the original feature space of cardinality 20@DId4.6 validated the overall best
performance of FSMP with respect to Algorithms FSSNN and BIRN (Chapter 3), for
both datasetMF and COIL20, using classifieré-NN and NB. In fact, algorithm FSMP
was found to be always better, in terms of classifier accyuraosr the reduced feature
subset as compared to that in original feature space. Tivest justify the effectiveness
of the message passing scheme. Time complexity analysigsiablished the superiority
of FSMP.

5.2 Scope for Further Research

Although we have restricted the application of structunailarity concept in this thesis
to numeric attributes, the proximity approach could be moéel to include mixed data by
incorporating medoids and considering a symbolic fram&vwor computing the cluster
prototypes. However, the proximity measure has a botttdcine case of data involving
larger number of patterns. This can be effectively handied divide-and-conquer mod-
ularization strategy involving some collaboration amdngdependent smaller subsets of

patterns.

The shared neighborhood concept could also be extendedltalenother kinds of at-
tributes (like symbolic, categorical, hybrid), given tllaé SNN distance is based on the
ranking of sample points induced by some primary distancasone. Other types of
SNN distances, like linear inverse or logarithmic formsyldoalso be employed. More-
over, since genetic algorithm may not always be computaliprefficient, some other

specialized optimization technique may be designed by ddibg the properties of SNN
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distance. These aspects are currently under investigatioalogously, in Subsection
3.3.3, a divide and conquer strategy can be incorporateaeimiulti-objective MFSSNN

algorithm.

Similarities between the objects play an important rolehm affinity propagation frame-
work. We plan to incorporate some other concepts like ramketation, while modifying
the message passing equations to make this robust. Fuanpnsiwill also be applied to

choose the exemplar.

Flourishing of the social media, explosion in the amountadbdtollected from sensors and
machine-to-machine interactions, and reduction in thé abstorage media, has caused
the creation of large volumes of data. Big data has five maamattteristics like volume,
velocity, variety, veracity and complexity. Data is streéagin at an unprecedented speed
and must be dealt with in a timely manner. Reacting quick ghaw deal with such
high data velocity is a challenge for most organizationstaRaday comes in all types
of formats - structured, numeric data in traditional das#saas well as unstructured text
documents, email, video, audio, stock ticker data and fiaht@nsactions. Managing,
merging and governing different varieties of data is sometmany analysts continue to
grapple with. Some investigations on feature selectiofsizalanned in the context of big

data.

Data flows can be highly inconsistent, with periodic peaksilyp seasonal and event-
triggered peak data loads can be challenging to manageysatida comes from multiple
sources. And it is still an undertaking to link, match, cleamand transform data across
systems. However it is necessary to connect and correltioreships, hierarchies and
multiple data linkages, as otherwise the data can quickivalsput of control. The real

issue is not to acquire large amounts of data but to manadedsia.

The challenges are to obtain data from any source, harnlesamédata and analyze it to

find answers that enable 1) cost reduction, 2) time reducBpnew product development
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and optimized offerings, and 4) smarter business decisiakimg. A number of recent
technology advancements like cheap storage, faster pasgsffordable open source and
distributed platform e.g. Hadoop, parallel processinggdagrid environments with high
connectivity and high throughputs, cloud computing, arnpflexible resource allocation
arrangements, are enabling analysts and researchersniskahe big data for relevant
decision making. We will explore such framework for exterglihe algorithms developed

in this thesis.
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