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Chapter 1

Introduction

In symmetric key cryptography, it is assumed that there are two parties Alice and Bob

and there is an insecure communication channel between them as shown in Figure 1.1.

A cryptographic system can be used to achieve secure communication between these two

parties. This cryptographic system assumes that there is a secret K called the key that is

known only to Alice and Bob and no one else. The message to be communicated is called

the plaintext and is denoted by M . The cryptographic system has an encryption algorithm

Enc(M,K) used by the sender that takes as input a plaintext message M and the secret key

K and gives as output a ciphertext C. The receiver uses the decryption algorithm Dec(C,K)

that takes as input the ciphertext C and the secret key K to recover the plaintext message

M . Since the secret key K is not known to anybody other than Alice and Bob, no one else

can succeed in decrypting the ciphertext C with non-negligible probability.

Now consider a scenario where there are n+1 parties such that one of them is the sender

and the remaining n are receivers as shown in Figure 1.2. The sender here is called the

center who broadcasts encrypted messages to the n receivers called the users of the system.

Let N be the set of users. In a particular session, some of the users are privileged and hence

they can correctly decrypt the message. The decryption privilege of the remaining users are

revoked. Let R be the set of revoked users. Assuming there are r = |R| revoked users, the

Alice Bob

Eve

C ← Enc(M,K) M ← Dec(C,K)

Insecure Communication Channel

Figure 1.1: Symmetric key framework.
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Broadcasting Center

Insecure Communication (Broadcasting) Channel

The n Users

privileged users

revoked users

Figure 1.2: Symmetric key broadcast encryption framework.

remaining n−r users are privileged. The cryptographic framework that ensures the working

of the above system is called Broadcast Encryption (BE).

A Broadcast Encryption (BE) scheme allows the center to efficiently broadcast encrypted

information so that only the privileged users in N \ R can decrypt the message correctly.

The privileged set can be any subset of N . In the two-party system, we have seen that a

single secret key is shared between Alice and Bob while the algorithms Enc and Dec and all

other parameters in the system are public. The use of this secret key ensures that no third

party will be able to correctly decrypt the ciphertext. We first look at two basic techniques

for designing a BE scheme using such a two-party symmetric key encryption scheme.

Singleton Set Scheme. In the first technique, a unique secret key is assigned to every

user in N . Each of these secret keys are known to the broadcasting center. The two-party

symmetric key scheme can hence be used to communicate between the center and each user.

Hence, the center encrypts the plaintext message M using the secret key of each privileged

user in N \R. All these n− r encryptions of M are broadcast through the common public

channel. Only a user in N \R should be able to decrypt the plaintext message M from the

portion of this broadcast intended for itself. In this scheme, each user needs to store only a

single secret key. However, the communication overhead is O(n− r).

Power Set Scheme. In the second technique, a unique secret key is assigned to every

subset in N . As before, each of these secret keys are known to the broadcasting center.

A user is given all those secret keys that correspond to subsets in which the user belongs.
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Broadcast Message

Message Block M

Figure 1.3: Broadcast message divided into blocks, each sent in a new session.

This time, the two parties involved in any communication would be the center and the set

of privileged users. The center needs to encrypt the plaintext message M only once using

the secret key of the privileged subset N \ R. Hence, a user should be able to decrypt the

broadcast if and only if it belongs to N \R. In this scheme, the number of secret keys to be

stored by a user is exponential in n. However, the plaintext has to be encrypted only once.

From these two schemes it is clear that in a BE system the users are given some secret

information before the start of the broadcast. This could be the actual decryption keys (as

in the schemes described above) or some information from which it can derive the decryp-

tion keys. A user uses this information for decrypting relevant encrypted digital content.

This secret information occupies some storage space in the user equipment. The storage

requirement per user is one of the important parameters of a BE scheme.

In a typical BE scheme, the entire digital data to be broadcast is divided into blocks as

shown in Figure 1.3. Each such block is called a message and each message is broadcast

in a new session. For each session, a new random key called the session key Ks is used to

encrypt the corresponding message M to be broadcast. The session key in turn, is encrypted

a number of times using user keys and these multiple encryptions of the session key are

sent as the header of the encrypted message. An encrypted session is shown in Figure 1.4.

The transmission overhead of the scheme is determined by the number of encryptions of the

session key in the header. This is called the header length and we denote this quantity by

h. This header length h is another important parameter of a BE scheme.
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FKs(M) EL1(Ks) · · · ELh(Ks)

body header

Figure 1.4: An encrypted session where Ks is the session key and Li’s denote keys with
which the session key is encrypted.

A few more points to be noted:

• In both these schemes, keys are assigned to subsets of users. In the first scheme, each

subset is a singleton set containing a single user u ∈ N . The user storage requirement

is minimum while the header length is maximized. In the second scheme, every non-

empty subset of N is assigned a unique key. Here, the user storage requirement is

maximized while the header length is minimum. In effect, these are two ends of a

hierarchy of optimization between the user storage and the header length of the BE

system. Other schemes may be obtained by assigning keys to only certain subsets of

N .

• Resilience is an important feature to be considered in the design of BE schemes. In

a BE scheme, an individual revoked user should not be able to decrypt the broadcast

individually. However for certain schemes, an adversary may be able to use the secret

information (decryption keys) of a set of revoked users to derive some additional in-

formation. With this additional information, it may be able to decrypt the encrypted

broadcast. In a t-resilient scheme, an adversary may have the secrets of at most t

revoked users and yet will not be able to decrypt the content correctly. In a fully

resilient scheme, even if an adversary has the decryption keys of all the remaining

non-privileged users in the system, it will not be able to correctly decrypt the content.

• A crucial requirement for a BE scheme is that it should facilitate dynamic revocation

of any subset of users. In other words, after the BE system has been initialized and

has started working, the center should be able to revoke a privileged user’s decryption

capabilities from a certain point of time. The decision could be based on their sub-

scription or privilege status. At the start of the next session, the center makes sure
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that the new session key is not encrypted using the keys of any of the revoked users

including the newly revoked ones.

• A BE scheme is said to be stateless if the secret keys distributed initially need not

be updated as new users are revoked or provided decryption privileges. On the other

hand, a stateful BE scheme would allow the user secret to be updated from time to

time.

• When a BE scheme is put to practical use, the user devices may get compromised. The

leaked secret keys of these compromised devices can be used to build pirate devices

with decryption privileges or re-broadcast the secret to many unauthorized users. The

pirate devices can decrypt the broadcasts correctly even though they are not supposed

to. Hence, for the system to keep working, there should be a mechanism to identify

these leaked keys and revoke them, so that future broadcasts cannot be decrypted by

the pirate devices carrying those keys. The technique of identifying the compromised

keys from a pirate device by treating it as a black-box1 is called traitor tracing.

It is to be noted here that a traceability scheme that will be able to trace traitors, may

not have revocation capabilities for taking away decryption privileges and vice-versa.

However for most practical scenarios, either of the two properties would be rendered

useless without the other.

The NNL-SD and HS-LSD Schemes. Broadcast Encryption was first introduced in

[Ber91] followed by [FN93]. There have been several works in this area (discussed in details

in Chapter 2) since then, but the most popular scheme out of these is the tree-based Subset

Difference (SD) method of Naor-Naor-Lotspiech (NNL) [NNL01, NNL02]. The NNL-SD

scheme is fully resilient against any number of revoked users colluding together. The scheme

also allows the users to be stateless and hence, they do not have to update their individual

secret information with every session. The decryption privileges of a user in the system

may be dynamically revoked or reinstated. Since it is a symmetric key based scheme, it

is very efficient in terms of encryption and decryption time. User storage requirement is

O(log2 n) the transmission overhead is linear in the number r of revoked users. The NNL-

SD scheme offered the simplest algorithm and the best trade-offs for use in both real-time

1 A black-box is a device which can be viewed in terms of its input, output and transfer characteristics
without any knowledge about its internal implementation, engineering or data contained.
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applications like Pay-TV and non-real time applications like content protection in optical

discs. Further, the scheme itself is quite elegant and reasonably easy to implement. This

scheme was adopted as part of the Advanced Access Content System (AACS) standard for

content protection in High Definition (HD) Digital Versatile Disc / Digital Video Disc (DVD)

and Blu-ray discs [AAC].

The NNL-SD scheme is defined for n users where n is a power of two, i.e., n = 2`0 for

some `0 ≥ 0. The users are considered to be the leaves of a full binary2 tree having `0 levels.

Let i be a node in this tree and j be a node in the subtree of i. Now consider the set of

users that are leaf nodes in the subtree rooted at i but are not in the subtree rooted at j.

The subsets are called Subset Difference (SD) subsets. All SD subsets that can be formed

in the binary tree are assigned keys. We will see in Chapter 2 that each user in the SD

scheme needs to store `0(`0 + 1)/2 k-bit strings where k is the key length of the underlying

symmetric key cryptosystem. If r users are revoked, then the worst case header length (i.e.,

the number of encryptions of the session key) is 2r − 1 [NNL01, NNL02], while the average

case header length was experimentally found to be at most 1.25r [NNL01, NNL02].

A later work by Halevy-Shamir (HS) [HS02] introduced a variant of the SD method called

the Layered Subset Difference (LSD) scheme. The basic idea is to partition the tree into

several layers which gives the name of the scheme. A different trade-off is obtained. User

storage is reduced in the HS-LSD method to `
3/2
0 but, the worst case header length grows to

4r− 3. In [HS02], based on simulation results, it is remarked that the average header length

is around 2r. Compared to the SD method, the LSD method reduces the user storage at the

cost of increasing the header length.

Applications of BE. Applications of BE systems have been discussed in details in Chap-

ter 8. Here we provide a very brief overview of these applications so that the parametric

requirements of a BE system can be understood.

The application of BE systems is pretty wide in the implementation of Digital Rights

Management (DRM) [DRMa] for content protection in digital data distribution technologies

such as Pay-TV, Internet or mobile video broadcast, optical discs, etc. DRM systems can

in general be modelled as follows. There is a set of users and a center which broadcasts the

copyrighted digital content. As shown in Figure 1.1, for each block of data the center decides

2The arity of a tree corresponds to the maximum number of children that a node in the tree may have.
In a binary tree, each node has at most two children.
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on a set of privileged users which should be able to decrypt it while the revoked users should

not be able to do so. Other than DRM systems, BE may also be used for broadcasting secret

instructions to military outposts from a base station or to ensure that only privileged users

in a file-sharing system gets access to files.

In real-time scenarios like Pay-TV, Internet or mobile video broadcast, the number of

users can vary from a few thousands to millions. For other real-time applications of BE like

broadcasts from a military base station, the number of users will be a few tens or hundreds.

The BE scheme that is used in real time scenarios as above, has to be efficient in terms of the

transmission overhead associated with each message as also the encryption and decryption

times and storage of user keys.

For non-real-time applications like content protection in Blu-Ray discs and HD-DVDs

[AAC], the requirements from a BE scheme are somewhat different. Here, the transmis-

sion overhead is the additional information stored in the physical media that is used for

decrypting the content. Storage space in discs is no more a constraint nowadays. Further,

since encryption does not happen in real-time, improving the encryption time is also not

very important. On the other hand, reducing the user storage and decryption time is still

important.

1.1 Thesis Plan and our Contributions

The Context. Our central focus has been the tree-based symmetric key BE schemes

that are based on the subset difference based technique. These schemes have the following

distinguishing features.

• They are fully resilient to collusion of users. This offers a stronger security guarantee

against revoked users compared to t-resilient schemes.

• They allow broadcasts to any set N \R of privileged users which implies that any set

R of users can be revoked. The center determines the set R of revoked users at the

beginning of each session. Hence, these schemes allow dynamic revocation of users.

• They are stateless and hence do not require the keys stored in user devices to be

updated. This reduces the cost of tamper-resistant hardware used in user devices.
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• All these schemes have corresponding traitor tracing techniques. By revoking the users

whose keys have been leaked, the system’s security can be retained.

These features together make them arguably the most useful schemes for long-term imple-

mentations at various scales.

One disadvantage of these schemes is that they do not allow dynamic joining or leaving

of the users from the system. As a result all these schemes have to fix the total number of

users during the initiation of the scheme. We understand that it is difficult to come up with

a stateless scheme that allows users to join or leave the system. A user leaving a system may

be realized by the permanent revocation of that user. However, there is no known method of

adding new users to the system without updating the keys of the existing users (as the keys

of the new subsets have to be provided to the existing users). As a work-around, stateless

schemes assume the total number n of users at the outset during the initiation of the scheme.

The actual number of users of the system may be much smaller than n. The remaining users

of the system are assumed to be dummy. As users are added to the system, these dummy

users are associated with real users.

Scope for Optimizations. With the above-mentioned desirable features in mind, our ob-

jective has been to work on various optimizations of the subset-difference based BE schemes.

We performed detailed (combinatorial as well as probabilistic) analysis of these schemes

which has played a crucial role in understanding the scope for optimizations that were avail-

able. The two most important as well as competing parameters of any BE scheme are the

header length (communication overhead) and the amount of user storage required.

The fundamental behaviour of all BE schemes is primarily determined by the choice of

subsets of users to which keys are assigned. This choice determines the optimization between

the header length and the user storage to a large extent. Keeping the other parameters like

decryption time under control is also important. In addition to the choice of subsets, the

user storage also depends on the technique by which keys are assigned to the subsets.

The Singleton Set scheme and the Power Set scheme are at the two ends of the spectrum

of possible schemes. As the choice of the collection of subsets is varied, we get different BE

schemes. Typically as the number of subsets to which keys are assigned is increased, the

header length decreases while the user storage increases and vice-versa. However, this may

not always be true as we will see later in the thesis.
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Power Set scheme

a-ABTSD schemes
(for different values of a)

k-SD schemes
(for different values of k)

NNL-SD scheme

HS-LSD scheme

Singleton Set scheme

Figure 1.5: Each circle or ellipse represents the collection of subsets of a BE scheme. The
Singleton Set scheme has the smallest collection that is contained in every other scheme.
The Power Set scheme has the collection of all possible subsets of users.

In Figure 1.5 we represent the relationship between the collection of subsets that are

assigned keys in various schemes. The singleton subsets are present in every scheme while

the collection for the Power Set scheme contains all possible subsets that may be assigned

keys. All other schemes fall between these two ends. The collections of the NNL-SD scheme

and the HS-LSD scheme have also been indicated. In due course we will come to know of

the other schemes that have been indicated alongwith.

Our Goal. Let us now understand the overall goal of this thesis. We have succeeded in

improving both the header length and the user storage individually by different kinds of

generalizations of the NNL-SD and HS-LSD schemes. Although these improvements are not

asymptotic, they are significant as far as practical numbers are concerned and our results

are the state-of-the-art in both these directions. However, improving both the parameters

together could not be done. The best we could achieve was to improve one parameter while

restricting the increase of the other.

We believe that the contributions of this thesis may be used to achieve significant gains

in various practical applications of BE. Some of these applications are listed in Chapter 8.

This chapter also provides a summary of our results and their practical impact.
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In the following, we provide a brief summary of the other chapters which appear in the

thesis. In Chapter 2, we provide the necessary preliminary material required in the later

chapters. In Chapter 3, we list the previous and related works in BE. The next four chapters

provide details of the four papers [BS13, BS14a, BS15, BS14b] this thesis is based on. The

following is an overview of these four chapters.

1.1.1 The Complete Tree Subset Difference Scheme and its Anal-

ysis

Chapter 4 consists of the work done in [BS13]. We develop tools for detailed analysis

of the subset-difference based technique for choosing subsets that are assigned keys. These

tools are used for the detailed understanding of this technique and how it may be extended.

There are three major contributions in this work.

Arbitrary Number of Users. We broaden the scope of use of the NNL-SD scheme. The

NNL-SD scheme and all follow-up works [HS02, GST04, PB06, AK08, MMW09] assume the

total number of users n to be a power of two. When implementing the NNL-SD scheme for

applications such as Pay-TV, it is possible that the number of users in the system will be

arbitrary. As mentioned before, the center assumes the existence of dummy users to make

the number of users a power of two. We relax this restriction to allow any arbitrary number

of users in the system by introducing the Complete Tree Subset Difference (CTSD) scheme.

The CTSD scheme is based on the NNL-SD scheme and subsumes it while eliminating the

requirement of dummy users in the system. When the number of users in the CTSD method

is a power of two, it becomes exactly the same as the NNL-SD scheme. Inclusion of dummy

users results in the expected header length of the NNL-SD scheme to be more than the

CTSD scheme for practical values of n and r.

It is to be noted that an implementation that uses the NNL-SD scheme can easily shift

to using the CTSD scheme with minimal change in the software implementation. This is

because the internal tree structure used for assigning keys to subsets of users in the NNL-SD

scheme remains almost the same in the CTSD scheme.

Combinatorial Analysis of The CTSD Scheme. The importance of the NNL-SD

scheme motivates the study of its combinatorial properties. We carry out such a study for
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the CTSD scheme and the results so obtained also apply to the NNL-SD scheme. A new

approach is used for the detailed combinatorial analysis. A method is proposed to count

the number, N(n, r, h), of ways that r out of n users can be revoked to get a header length

of h in the CTSD scheme. This counting is formulated using two recurrences. Using these

recurrences, a dynamic programming based algorithm is developed to compute N(n, r, h)

in polynomial time. Previous to our work, to compute N(n, r, h) for the NNL-SD method,

one would have to run the SD algorithm on the possibly exponentially many
(
n
r

)
revocation

patterns. Further combinatorial results that we obtain are as follows.

1. The worst case header length for a given r in the NNL-SD scheme was shown to be

2r − 1 in [NNL01, NNL02]. We show that the worst case header length for the CTSD

scheme and hence for the NNL-SD scheme is min(2r − 1, bn/2c, n− r).

2. Given r, we characterize the minimum number of users, nr, that need to be in a

system using the CTSD method, that can give rise to the maximum header length of

2r− 1. For the special case of the NNL-SD method the expression for nr was obtained

in [MMW09].

3. For the special case when n is a power of two i.e., for the NNL-SD scheme, we use

the recurrences to obtain a generating function for the sequence. Earlier, a generating

function of a slightly different form was obtained in [PB06] using direct arguments.

Probabilistic Analysis of The CTSD Scheme. We propose a simple and efficient

algorithm for computing the expected header length for a given n and r in the CTSD and

hence the NNL-SD method. The algorithm requires O(r log n) multiplications and O(1)

space. Due to its efficiency, this algorithm allows the computation of the expected header

length for values of n ranging from a few hundreds to millions. This provides a useful tool

to practitioners implementing either the NNL-SD or the CTSD method.

For the NNL-SD scheme, as n goes to infinity through powers of two, we provide an

expression Hr for the limiting upper bound on the expected header length Hn,r. The value

of Hr can be computed using O(r) multiplications. Computing this value for different r

shows that Hr is always less than 1.25r. The only previously known upper bound on the

expected header length in the NNL-SD scheme for r revoked users was proved to be 1.38r

in [NNL01, NNL02]. They also commented that experimental results indicated that the
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bound is probably 1.25r. Our analysis of the expected header length shows that proving the

precise limiting upper bound is more complicated than anticipated in [NNL01, NNL02].

1.1.2 The (Layered) Complete Tree Subset Difference Scheme and

its Analysis

In Chapter 5, we work with the idea of layering the levels of the underlying binary tree

T 0 of the NNL-SD scheme [NNL01, NNL02]. This idea of layering was introduced in [HS02].

A layering strategy is a choice of levels of the underlying binary tree which are said to be

special. Layering in general reduces the user storage while increasing the (worst case and

average) header length. The Halevy-Shamir (HS) layering works for n = 2`0 users where `0

is a perfect square. This limits its usage to very specific number of users (24, 29, 216, 225).

Two natural extensions of the HS layering strategy that work for values of `0 that may not

be a perfect square (and hence subsume the HS layering strategy) are considered. While

both have the same storage requirement, one of them is experimentally seen to have lower

average header length. We call this the extended HS or e-HS layering. We also propose a

general layering strategy where any set of levels of the tree may be considered to be special

and hence would denote a layering strategy.

Storage Minimal Layering. The first major problem that we tackle is whether the user

storage can be lowered further than the e-HS layering strategy. To this end, we introduce

the notion of storage minimal layering. For such a strategy, the user storage requirement is

the minimum possible that can be obtained from 2-way splitting of NNL-SD subsets using

layerings. An O(`3
0) time and O(`2

0) space dynamic programming algorithm is presented

to compute storage minimal layerings. In the HS layering strategy, the root node of the

user tree is treated as a special level. We show that removing this condition yields a scheme

where the user storage is significantly reduced while the effect on the average header length is

negligible. The resulting storage minimal schemes result in user storages which are between

18% to 24% lower than that required by the (extended) Halevy-Shamir layering scheme. We

note that our work does not provide any asymptotic improvement in user storage compared

to the Halevy-Shamir scheme. Rather, our work provides concrete improvement in user

storage for all practical values of n and also an algorithm to compute the corresponding

layering strategies.
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Constrained Minimization Layering. Simply minimizing user storage is only one as-

pect of the problem. We consider the constrained minimization problem whereby one tries

to minimize the user storage but, without increasing the actual values of the average header

length significantly beyond that achieved by the NNL-SD scheme. This is a difficult prob-

lem to solve analytically. Instead, we show how to tackle the problem empirically. Given

some idea about the number of users that would be revoked, we show how one may use this

information to design a layering strategy for which the average header length is almost as

small as the NNL-SD scheme. The user storage for such a layering scheme is significantly

less than that of the NNL-SD scheme. Concrete practical examples are provided and it is

shown how to tackle this problem for any practical value of the number of users.

Probabilistic Analysis of General Layering Strategy. We describe an algorithm to

compute the expected header length of the layering based NNL-SD schemes assuming any

general layering strategy. This algorithm works for all possible values of the number of

users (and not only those values which are powers of two). Assuming that r out of n

users are revoked uniformly at random, our algorithm computes the expected header length

in O(r log2 n) time and O(log n) space. A simulation based approach can also be used

to estimate the average header length. In this approach, for a fixed n and r, a set of

r users are randomly revoked and the cover generation algorithm is applied to compute

the corresponding header length. This process is repeated many times and the average of

the different header lengths is taken to be an estimate of the actual value of the expected

header length. Each run will require O(n) space (and hence also O(n) time) to compute

the cover and hence the header length. In contrast, our algorithm does away with the need

of performing such a simulation study. Given n and r, it directly computes the expected

header length when r out of n users are uniformly revoked. Since r will be much smaller

than n for practical scenarios, our algorithm will be faster and require much less space. The

algorithm is of interest in its own right as it will be a useful tool to practitioners who may

wish to quickly calculate the average header length for different broadcast scenarios.
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1.1.3 Generalizations of the Subset Difference Scheme Using Trees

of Higher Arity

In Chapter 6, we extend the ideas of NNL to k-ary3 trees for any k ≥ 2. Our treatment is

general and unified, i.e., the same approach works for all values of k. Suppose n is a power

of k, i.e., n = k`0 for some `0 ≥ 1 and consider the users to be the leaf nodes of a full k-ary

tree of height `0. Let j1, . . . , jc, 1 ≤ c ≤ k, be a set of sibling nodes in this tree and i is an

ancestor of these nodes. Consider the set S of leaf nodes in the subtree formed by taking

away the subtrees rooted at j1, . . . , jc from the subtree rooted at i. So, the set S is formed

as a subset difference of two sets of users. In the summary of the NNL-SD scheme above,

we have seen that subsets of users arising in this manner are called Subset Difference (SD)

sets. The identification of the SD sets is a key aspect of obtaining the k-ary tree scheme.

This idea extends the idea of SD sets introduced for binary trees in [NNL01, NNL02].

Why k-ary Trees? We mentioned earlier that as more subsets are assigned keys, the

header length of a scheme reduces while the storage requirement increases. An intuition

behind considering k-ary trees with k > 2 is that the number of SD sets grows with increasing

k (Figure 1.5) and so the header length may come down at the cost of increasing the user

storage. This, however, does not turn out to be entirely true. Working out the details of

the scheme and the resulting analysis shows up a rich complexity of behavior which is not

apparent at the outset. We provide an extensive analysis of the scheme covering the following

points.

Cover Generation Algorithm. Given a set of revoked users, the center has to find the

subsets of users whose union would be the set of privileged users. The session key Ks will

be encrypted using keys of only these subsets. This set of subsets is called the subset cover

Sc and the algorithm to find the subset cover is called the cover generation algorithm or

the cover finding algorithm. We develop a single cover generation algorithm which works

for all k. This is an intuitively simple algorithm which uses just an array as the underlying

data structure. Specializing this algorithm for k = 2 yields the cover finding algorithm given

in [NNL01, NNL02]. The description of the algorithm turns out to be considerably simpler

than that of [NNL01, NNL02].

3A node in a k-ary tree may have at most k child nodes.



Thesis Plan and our Contributions 15

Traitor Tracing. The NNL paper [NNL01, NNL02] provides a mechanism for tracing

traitors. With some modification, this idea also fits the k-ary BE scheme. It turns out that

compared to binary trees, for k ≥ 3, tracing traitors can be done more efficiently (i.e.; with

fewer number of queries).

Header Length. For k-ary trees with n users, the maximum header length of a transmis-

sion with r revoked users is shown to be min(2r − 1, n − r, dn/ke). Somewhat surprisingly,

the first component, i.e., 2r − 1 is not affected by k. We show that the bound of 2r − 1 is

indeed achieved for values of k greater than 2. Average case analysis of the header length

is done under the assumption that the revoked set of users is distributed uniformly among

the set of all users. With this assumption, we derive an expression for the expected header

length. The method is to compute the probability that any internal node generates a subset

in the header. Summing over all these probabilities provide the expected header length.

The expression for the expected header length can be computed in O(r log n) time and O(1)

space. We have implemented the algorithm to compute the expected header length and

provide representative values to show the average header lengths for different values of k.

User Storage. During the initiation of the scheme, the center provides each user with

sufficient information so that it is able to generate any key corresponding to an SD set

of which it is a member. This information is measured in terms of the number of m-bit

seeds that are required to be stored by any user. Here m is the size of the key of the

underlying symmetric cipher. The work of NNL provides a clever way to use a pseudo-

random generator so that user storage consists of 1 + dlog2 ne(dlog2 ne + 1)/2 seeds. The

direct combination of this idea with the SD sets of a k-ary tree makes the user storage to be

1+(2k−1−1)dlogk ne(dlogk ne+1)/2 seeds. We show that a modification based on the use of

cyclotomic cosets modulo 2k−1 reduces the user storage to 1+(χk−2)dlogk ne(dlogk ne+1)/2

seeds, where χk is the number of cyclotomic cosets modulo 2k − 1.

Tackling Arbitrary Number of Users. When n is not a power of k, we show that a

complete k-ary tree structure can be used to construct the BE scheme. This is an analogue

of complete binary trees used in data structures. Average header length analysis of such

schemes is performed using simulation studies.
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Simulation Study of the Header Length. We perform a simulation study of the average

header length for n = 10x (x = 3, . . . , 8) users and for k = 2, . . . , 8. Experimental results

indicate that there is a cut-off value δk such that for r/n > δk, the average header length

of the k-ary scheme is less compared to that of the binary tree based scheme. Further, the

value of δk decreases as k increases. This suggests that by increasing k, it is possible to

reduce the header length for lower values of r. This can be important for applications such

as Pay-TV systems. The trade-off is a one-time moderate increase in user storage.

1.1.4 The Augmented Binary Tree Subset Difference Scheme

The key idea behind the work in Chapter 7, is to assign keys to more subsets in addition to

the collection of the NNL-SD scheme. More specifically, union of subsets which are already

in the NNL-SD collection are assigned keys. As a result, if the subset cover due to the

NNL-SD scheme has subsets whose combination has been newly assigned a key, then those

subsets are replaced in the cover by their union. Consequently, the header length decreases.

In order to include these additional subsets in the collection, an additional tree structure

is assumed at each node in T 0. This structure directly relates a node with its descendants

at a height a below it in T 0. Our scheme is parameterized by a and is hence called the

a-Augmented Binary Tree Subset Difference (ABTSD) scheme. For a = 1, this scheme is

exactly the same as the NNL-SD scheme. For a given value of a, the user storage for the

scheme is O(log2 n). As the value of a is increased, the user storage increases in concrete

terms. It has been proved that for any given set of revoked users, the header length for a > 1

is at most as large as the NNL-SD scheme. Hence, it follows from the result in [BS13] that

the worst case header length for the scheme is min (2r − 1, bn/2c, n− r).

The a-ABTSD scheme is extended to accommodate an arbitrary number of users using a

complete binary tree instead of a full tree. The cover generation algorithm is simulated for

this more general complete tree version, to find the performance of the a-ABTSD scheme in

terms of communication overhead. It is observed that the expected header length for any

given number of revoked users r, decreases as a increases. For example, for n = 106, r =

4 × 105, the expected header length for a = 1 is 2.29 times that of a = 3. The storage

requirement increases from around 3.28KB for a = 1 to around 94.13KB for a = 3. From the

simulation studies, we observe that, for a given ratio of r/n, the expected header length of

the a-ABTSD scheme with a > 1 is a fixed fraction of that of a = 1. A technique is proposed
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to mitigate the increase in user storage with increasing a. It is also argued that the efficiency

of the traitor tracing mechanism for this scheme does not deteriorate with increasing a.





Chapter 2

Background and Preliminaries

As mentioned in Chapter 1, the two most important and influential works in the area of

symmetric key broadcast encryption are [NNL01, NNL02] and [HS02]. Almost all known BE

schemes fall under the Subset Cover Revocation Framework that was introduced in [NNL01,

NNL02]. The Subset Difference (SD) scheme that has been suggested by the AACS [AAC]

standard for digital rights management in optical discs was also introduced in [NNL01,

NNL02]. The Layered Subset Difference (LSD) scheme of [HS02] resulted in asymptotic

improvement of the user storage requirement of the NNL-SD scheme at the cost of increased

worst case and average header lengths.

In this thesis, we work within the ambit of the Subset Cover Framework. We have done

detailed combinatorial and probabilistic analysis of the SD and LSD schemes. Additionally,

we have proposed various generalizations of these schemes that can be instantiated for im-

proved user storage and header length. Hence, in this chapter we describe in details the

Subset Cover Revocation Framework, the Subset Difference scheme and the Layered Subset

Difference scheme.

Basic Notations. Before we start describing the various schemes and their analysis, we

give a brief summary of the most commonly used notations in this thesis. This listing is not

intended to be exhaustive but it should give a fair idea about their usage. Any new notation

introduced in the thesis, has been defined explicitly at appropriate places.

We use the usual set notations and logical operators. All indexing variables are indicated

appropriately in the different contexts. All logarithms considered have base 2.

For a BE scheme, the set of all users in the system is denoted by N and the set R ⊆ N
denotes the set of revoked users. The cardinalities of these sets are n = |N | and r = |R|.
The underlying tree structure is denoted by T 0. The 0 in the superscript indicates the label

of the root node of T 0. A node of the tree is in general denoted by lowercase letters i, j, etc.

and sometimes by u, v, etc. Hence, for a node i, the subtree of T 0 that is rooted at node i

is denoted by T i and the number of users in the subtree is denoted by λi. The nodes at the

19
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same distance from the root node are said to be at the same level and the level numbers are

denoted by `. A path in the tree is denoted by P . The maximum number of child nodes of

any node in a tree is called the arity of the tree. The arity of the tree is denoted by k.

A subset of the set N of users is denoted by S while the empty set is denoted by φ. The

collection of all such subsets of N that are assigned keys is denoted by S. The set of subsets

to which a user u belongs is denoted by Su. A subset difference subset is in general denoted

by Si,J where J is a set of nodes in the subtree T i. It is to be noted that in the NNL-SD

scheme, |J | = 1.

The secret information that is stored by a user is denoted by Iu while the header length

is denoted by h. Pseudo-random generators defined as hash functions are denoted by G and

H. The seeds used as inputs to these functions are denoted by the letter L or are written

as seed. We use uppercase letters W,X, Y, Z to denote random variables unless otherwise

stated explicitly.

2.1 The Subset Cover Revocation Framework

The Subset Cover Revocation Framework assumes a center that encrypts a message M

and broadcasts it to a set N of users where |N | = n. This set of users contains all the

possible recipients of the broadcast. A subset R of these users are revoked. A broadcast

encryption algorithm under this framework consists of three parts:

• scheme initiation - each user u ∈ N is assigned the secret information Iu that will

allow them to decrypt messages intended for them;

• broadcasting algorithm - that takes as input the message M , the set R of revoked users

and
⋃
u∈N\R Iu and outputs the ciphertext C. C is broadcast to all the users in N ;

• decryption algorithm - that runs at the user end. It takes as input the ciphertext C and

the secret information Iu that the user u had received during initiation and attempts to

decrypt C. A privileged user in N \R should be able to get back the original message

M , while any coalition of revoked users in R should not be able to get back the correct

message from C.
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Scheme Initiation. During initiation, a collection S = {S1, . . . , Sw} of subsets are defined,

where each Sj ⊆ N . A set Sj ∈ S has an associated key and any subset of N which is not

in S does not have any key associated with it. Each subset Sj is assigned a long-lived key

Lj. For a user u, let Su = {Sj ∈ S : u ∈ Sj}. User u is given secret information Iu such that

it can construct the key Lj associated with any set Sj ∈ Su. However, Iu may not explicitly

contain the long-lived key Lj, as we will see in the Subset Difference scheme and all the

related schemes in this thesis.

Broadcasting Algorithm. Once the scheme has been initiated, and the user secrets have

been distributed, the center can now start broadcasting. During broadcast, the set of priv-

ileged users N \ R is partitioned into pairwise disjoint subsets Si1 , . . . , Sih each taken from

the collection S. This partition is called the subset cover Sc. In other words,

N \R =
h⋃
j=1

Sij

where each Sij ∈ S and Sc = {Si1 , . . . , Sih}. The message to be broadcast is divided into

blocks each sent in a new session. For a message block M , the broadcasting algorithm uses

two encryption functions:

• A function F : K × {0, 1}∗ → {0, 1}∗ to encrypt the message M with a session key

K ∈ K; FK(·) , F (K, ·) is length preserving. The function F is length preserving so

that there is no loss of information or redundant communication overhead. The session

key is a random string chosen afresh for each new message M .

• A function E : K1 × {0, 1}m → {0, 1}m to encrypt the session key K with a long-lived

key L ∈ K1 corresponding to the subset Sj (∈ Sc) of users; EL(·) , E(L, ·) is length

preserving.

In order to broadcast the message M , the center chooses a random session key Ks and

encrypts M as FKs(M). This session key has to be communicated to the privileged users

in N \R so that they can correctly decrypt Ks and in turn decrypt M from this encrypted

form. To that end, the center finds the subset cover Sc = {Si1 , . . . , Sih}. Let Li1 , . . . , Lih
be the long-lived keys that were assigned to each of these subsets in Sc. The center then

encrypts the session key Ks with each of these keys Lij . The session key has to be encrypted
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h times i.e., once for each set in Sc. The h encryptions of the session key are sent along with

FK(M) as a header for the encrypted message. The header also has information to identify

the subsets Sij that form the cover Sc. The size h of the header is determined by the number

of sets in Sc. We are going to refer to this size as the header length. The encrypted message

FK(M) along with the header forms the ciphertext C. The header length is a key efficiency

parameter that resembles the transmission overhead of the scheme. The resultant ciphertext

C is a tuple 〈header, body〉. The body is the encryption FKs(M) of the message block M for

that session. The header part contains the encryptions ELij (Ks) of the session key Ks for

each subset Sij ∈ Sc and the identifier ij for that subset.

C = 〈[i1, i2, . . . , ih, ELi1 (Ks), ELi2 (Ks), . . . , ELih (Ks)], FKs(M)〉.

Decryption Algorithm. During decryption, a user u has to first find from the header,

the identifier ij such that Sij ∈ Su. Next, from the encryption of the session key ELij (Ks)

in the header, it will extract the session key Ks. It then derives the long-lived key Lij from

the secret information Iu it had acquired during initiation. Once it has Lij , it decrypts the

session key Ks. The user can hence decrypt the message M from FKs(M). In case a user is

revoked and hence does not belong to any of the sets in Sc, it will not be able to decrypt Ks

from the header or M from the body for that matter.

Two parameters are of crucial interest. The size of the secret information Iu that is to be

stored by a user u and the average or expected length of a broadcast header which amounts

to the communication overhead. Basic intuition tells us that as the number of elements in

S grows, it should be possible to cover the privileged set N \R with fewer elements from S
and so the average header length will decrease. On the other hand, as S grows, the size of

Su also grows and this should lead to an increase in the size of Iu. Thus, the average header

length and the user storage are two competing parameters.

Security. Proving the security of the subset cover framework starts with assumptions on

the underlying primitives. With these assumptions, it has to be shown that if the key assign-

ment technique of the subset cover algorithm satisfies the key indistinguishability property,

then we get a secure encryption of the message.
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Underlying Primitives. The overall security of the BE scheme is expressed as a

function of the security provided by the underlying symmetric key encryption functions

FKs and ELi . The security requirements of these two methods are different, since FKs uses

short-lived keys (only for a session) whereas ELi uses long-lived ones (for the lifetime of the

scheme). The assumptions on the security of these primitives are as follows.

A feasible adversary 1 B chooses a message M and receives for a randomly chosen Ks,

one of the following: (a) FKs(M) or (b) FKs(RM) where RM is a random message of the

same length as M . It is assumed that B is able to distinguish between these two encryptions

with negligible probability bounded above by ε1. In other words,

|Pr[B outputs ‘a’|FKs(M)]− Pr[B outputs ‘a’|FKs(RM)]| ≤ ε1.

The long-term encryption method should withstand a more severe attack in the following

sense. A feasible adversary B for a random key Li gets to choose adaptively polynomial many

inputs and examine ciphertexts encrypted with ELi and similarly provide ciphertexts and

examine the decryptions too. Then, it chooses a random plaintext K and receives one of

(a) ELi(K) or (b) ELi(RK) where RK is a random string of length |K|. It is assumed that

B is able to distinguish between these two encryptions with negligible probability bounded

above by ε2. In other words,

|Pr[B outputs ‘a’|ELi(K)]− Pr[B outputs ‘a’|ELi(RK)]| ≤ ε2.

Key Assignment. A secure subset cover algorithm requires the key assignment tech-

nique to have the key indistinguishability property. This property requires that the key

Li assigned to a subset Si ∈ S is indistinguishable from a random key given all the secret

information of all users in N \ Si.

Definition 1. Let A be a subset cover revocation algorithm that defines the collection S of

subsets of N . Let B be a feasible adversary that selects an Si ∈ S and then receives the

Iu for all u ∈ N \ Si. Then A is said to satisfy the key indistinguishability property if the

probability that B distinguishes (a) Li (the long-lived key of the set Si that was chosen by B)

from (b) a random key RLi of the same length |Li| is negligible and bounded above by ε3. In

1 An adversary that is computationally bounded.
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other words,

|Pr[B outputs ‘a’|Li]− Pr[B outputs ‘a’|RLi ]| ≤ ε3.

All information theoretic 2 key assignment schemes in which the key for each subset in

S is chosen independently, satisfies this property with ε3 = 0.

It is to be noted here that the key indistinguishability property as per Definition 1 implies

full resilience of the subset cover revocation algorithm.

The key indistinguishability property of the key predistribution technique implies the

following lemma.

Lemma 1. For any Si ∈ S, let Si1 , Si2 , . . . , Sit be all the subsets of Si that are in S; let

Li1 , Li2 , . . . , Lit be their corresponding keys. For any adversary B that chooses an Si ∈ S and

receives Iu for all u ∈ N \Si, if B attempts to distinguish between (a) the keys Li1 , Li2 , . . . , Lit
from (b) random strings RLi1

, RLi2
, . . . , RLit

, |Lij | = |RLij
|, then

|Pr[B outputs ‘a’|Li1 , Li2 , . . . , Lit ]− Pr[B outputs ‘a’|RLi1
, RLi2

, . . . , RLit
]| ≤ t · ε3.

The definition of security of a revocation scheme is as follows.

Definition 2. Consider an adversary B that gets to:

1. Select adaptively a set R of revoked users and obtain Iu for all u ∈ R as follows.

• B may adaptively select messages M1,M2, . . . and corresponding revocation sets

R1,R2, . . . and observe the encryption of Mi when the revoked set is Ri. The

users in Ri may or may not be corrupted.

• B can create ciphertexts to see how the (non-corrupted) users decrypt it.

• B then asks to corrupt a receiver u and obtains Iu.

The adaptive corruption of users is repeated |R| times for any u ∈ N with the other

steps getting repeated accordingly a bounded number of times.

2. Choose a message M as the challenge plaintext and a set R of revoked users that must

include all the users it has corrupted at least (if not more).

2 Where keys are chosen uniformly and independently at random as opposed to them being generated by
a computationally secure primitive from a short random seed.
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B then receives the encryption for a message M ′ and the revoked set R. It has to guess

if M ′ is (a) the message M it chose or (b) a random string RM of length |M |.

We say that a revocation scheme is secure if for any (probabilistic polynomial time)

adversary B as above, the probability that B distinguishes between the two cases (a) and (b)

is negligible.

The Security Theorem. The main security theorem below shows that the key indis-

tinguishability property is sufficient for a scheme in the subset cover framework to be secure

in the sense of Definition 2.

Theorem 2. [NNL01, NNL02] Let A be a subset cover revocation algorithm where the key

assignment satisfies the key indistinguishability property (Definition 1) and where E and F

satisfy the aforementioned security requirements. Then A is secure in the sense of Defini-

tion 2 with security parameter δ ≤ εa + 2hmaxw(ε2 + 4wε3), where w is the total number

of subsets in the collection S of subsets for the scheme and hmax is the maximum size of a

cover.

The proofs for Lemma 1 and Theorem 2 use hybrid arguments and algebraic manipu-

lations that are mostly routine. We skip the proofs here and refer to [NNL01, NNL02] for

details.

Choices for Functions ELi and FKs. Two symmetric key encryption functions are used

in the subset cover revocation framework. The function FKs is used to encrypt a message

block with the session key Ks and ELi is used to encrypt Ks with the long-lived key Li of

the set Si ∈ S. Here we mention some of the schemes that may be used as ELi or FKs .

Block Ciphers. The Advanced Encryption System (AES) program was announced by

NIST3 in 1997 to replace the ageing Data Encryption Standard (DES). There were five AES

finalists namely: MARS [BCD+99], RC6 [RRYS98], Rijndael [DR02], Serpent [ABK98] and

Twofish [SKW+98, SKW+99]. Rijndael developed by Joan Daemen and Vincent Rijmen was

the final winner. Rijndael is a family of ciphers with different key and block sizes. It has an

iterated structure based on the SPN4 framework. The round function of the SPN structure

3 National Institute of Standards and Technology, USA.
4 Substitution-Permutation-Network
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is composed of (1) a subkey addition layer, (2) an Sbox layer and (3) a bit permutation

layer. For AES, NIST selected three members of the Rijndael family, each with a block

size of 128 bits, but three different input key5 lengths: 128, 192 and 256 bits. The case of

AES-128 encrypts 128-bit blocks under a key of length 128 bits. AES-128 is composed of 10

rounds that repeat four elementary mappings (SubBytes for the Sbox layer; ShiftRows and

MixColumns for the permutation layer; AddRoundKey for subkey addition) on blocks seen

as 4× 4-byte matrices.

Light-Weight Block Ciphers. AES is not suitable for extremely constrained envi-

ronments such as RFID tags and sensor networks [CMM13]. Light-weight block ciphers are

to be used in such scenarios. PRESENT [BKL+07] is one of the most popular light-weight

block ciphers. It is a 31-round block cipher that works on 64-bit blocks and input keys

may be 80 or 128 bits long. The design is based on a simple SPN structure. Instead of

having 16 unique Sboxes, PRESENT uses a single 4 × 4-bit Sbox. This helps in speed-

up of the cipher by reducing circuit complexity. Other light-weight block ciphers include

CLEFIA-128 [SSA+07], DES(X)L [LPPS07], HIGHT [HSH+06], IDEA [LM90], KATAN

& KTANTAN [CDK09], KLEIN [GNL11], LBLOCK [WZ11], LED [GPPR12], mCryp-

ton [LK05], MIBS [ISSK09], Piccolo [SIH+11], SEA [SPGQ06], SKIPJACK [ski98], TEA

& XTEA [WN94] and TWINE [SMMK12].

Stream Ciphers. The eSTREAM project was co-ordinated by ECRYPT6 for the de-

sign of new stream ciphers. The project finished in April 2008 with the publication of a

portfolio of new stream ciphers. There were four proposals that were suited to fast en-

cryption in software (so-called Profile 1) while four others offered particularly efficient hard-

ware implementation (so-called Profile 2). The portfolio has been revisited and revised

periodically and consequently the algorithms have matured. The current 2012 eSTREAM

portfolio contains seven algorithms: HC-128 [Wu08], Rabbit [BVZ08], Salsa20/12 [Ber08],

Sosemaunk [BBC+08], Grain [HJMM08], MICKEY 2.0 [BD08] and Trivium [CP08].

5 The input key is further used to get an expanded key using the key-scheduling algorithm of AES.
6 European Network of Excellence in Cryptology was a 4-year European research initiative launched

on 1 February 2004 with the stated objective of promoting the collaboration of European researchers in
information security and especially in cryptology and digital watermarking [Wik].
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Figure 2.1: An example of a full binary tree T 0 with 16 users.

2.1.1 The Subset Difference Scheme

In [NNL01, NNL02], Naor-Naor-Lotspiech introduced the Subset Difference (SD) scheme as

an instance falling under the Subset Cover framework.

Scheme Initiation. The SD scheme assumes the number n of users to be a power of 2,

say n = 2`0 . Each user is associated with a leaf of a full binary tree and all the n leaf nodes

are at the bottom-most level7. The full binary tree T 0 has a root node at the top-most level

T 0 as shown in Figure 2.1. All non-leaf nodes have exactly two children. The nodes in T 0

are identified by labels as follows. The root node is labeled as 0. For a non-leaf (also called

internal) node i, its two children are labeled as 2i + 1 and 2i + 2. The subtree rooted at a

node i of T 0 is denoted by T i. A node i in T 0 represents the users at the leaf level of the

tree T i. We shall sometimes denote this set of users by the notation T i for the subtree.

The Collection S. The SD scheme introduces a major novelty in defining S and assigning

keys to the subsets in S such that there is a compact way of representing Iu. Let i be a

non-leaf node in T 0 and j be a non-root node in T i. By T i \ T j we denote the subgraph

obtained by taking away T j from T i. Let Si,j be the set of leaf nodes of T i \ T j. Figure 2.2

shows an example of such a set Si,j. Then for the SD scheme, the collection S consists of

the subsets Si,j for all possible choices of node i and all possible nodes j 6= i in the subtree

7 The set of all nodes in the tree that are at a fixed distance from the root is defined as a level. The level
number of a node is defined as the difference between the height of the tree and the length of the path from
the root to that node.
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T i

T j

Figure 2.2: An example of a subset of the form Si,j (leaf nodes of the subgraph T i \ T j
shown in green).

T i. These subsets are called SD subsets.

Key Assignment. A clever algorithm is used to define the key associated with an SD

subset Si,j. The set of all users N is assigned a random key. This key is used if there

are no revoked users. Next, each internal node i in T 0 is assigned an independent and

uniform random string seedi. A cryptographically strong pseudo-random generator (PRG)

G : {0, 1}m → {0, 1}3m is used to assign seeds derived from seedi. Let G(seed) be written

as the concatenation of 3 m-bit strings GL(seed), GM(seed) and GR(seed). Let a node i

have some (random or derived) seedi. The left child 2i + 1 gets seedi,2i+1 = GL(seedi) and

the right child 2i + 2 gets seedi,2i+2 = GR(seedi). This seedi,2i+1 (respectively seedi,2i+2) is

further used to find the seeds derived from seedi for all other nodes in T 2i+1 (respectively

T 2i+2). The derived seed for a node j from seedi of an ancestor node i is denoted as seedi,j.

The key for the subset Si,j is defined as Li,j = GM(seedi,j). For example, let the node j in

T i be reached from node i by the moves ‘left’, ‘left’ and ‘right’ as shown in Figure 2.3. Then

the seed of j derived from seedi is seedi,j = GR(GL(GL(seedi))) and the key associated with

the set Si,j is Li,j = GM(GR(GL(GL(seedi)))) as shown in Figure 2.3. This easily extends to

any appropriate pair of nodes i and j. The string Li,j is an m-bit string and the value of m

is determined by the key size of the underlying encryption algorithm.

This key assignment may alternatively be done using a hash function (in place of the

PRG) and the technique may be viewed as follows. A key K0 is assigned to the subset N .
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seedi

j

GL(seedi) GR(seedi)

GL(GL(seedi)) GR(GL(seedi))

seedi,j = GR(GL(GL(seedi)))

Li,j = GM(seedi,j)

Figure 2.3: Key of Si,j: Li,j = GM(GR(GL(GL(seedi))))

For key assignment to the other subsets Si,j ∈ S, a cryptographic hash function

G : {0, 1, 2} × {0, 1}m → {0, 1}m (2.1)

is chosen by the center and is made available to all users in the system. Here m is the

key-size of the underlying symmetric cipher. For t = 0, 1, 2, let Gt(·)
∆
= G(t, ·). Each subset

Si,j ∈ S is assigned a key as follows.

• Every internal node i in T 0 is assigned a uniform random m-bit seed Li.

• All non-root nodes j in the subtree T i derive seeds from Li in the following manner.

Let j = t0, . . . , tp = i be the sequence of nodes in the path from j to i. Then for

ı = p − 1, . . . , 0, tı = 2tı+1 + sı where sı ∈ {1, 2}. Define the derived seed Li,j

associated to Si,j to be Li,j
∆
= Gs0(· · ·Gsp−2(Gsp−1(Li)) · · · ).

• The key Ki,j associated to the subset Si,j is defined to be Ki,j
∆
= G0(Li,j).

User Information Iu. Recall that users are at the leaf level of the tree. The leaf level

is numbered 0 and level numbers increase up to `0 which is the level number of the root. For

any user u, the user storage Iu is defined in the following manner. Consider the path from

the node u to the root and let i be a node on this path at level ` > 0 of the tree. Let i1, . . . , i`
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be the siblings8 of the nodes on the path from u to i (including u but not including i). Then

for each such i, user u gets seedi,i1 , seedi,i2 , . . . , seedi,i` . Figure 2.4 shows an example where

the ancestor i of u is at level ` = 4 and hence receives 4 seeds derived from seedi. The

value of ` varies from 0 to `0 and so each user gets `0(`0 + 1)/2 seeds. The total size of Iu is

m`0(`0 + 1)/2 bits where m is the size of the seed of the PRG. Since m is fixed, it is enough

to consider only the number of derived seeds stored by a user as determining the size of user

storage.

Correctness. The derived seeds provided to a user are sufficient for the user to con-

struct the key corresponding to any Si,j to which it belongs. To see this suppose that i is

a node on the path from u to the root and j is a node in the subtree rooted at i such that

u ∈ Si,j = T i \ T j. Since u is not in T j and both u and j are in T i, the paths to the root

from these two nodes intersect for the first time at some node v which is also in T i. Let v1

be the first node in the path from v to j. Then v1 is the sibling of some node v2 in the path

from u to i and so u has seedi,v1 . From seedi,v1 , u can generate seedi,j by applying GL and

GR appropriately and so can generate Li,j = GM(seedi,j). This Li,j is the key corresponding

to the set Si,j = T i \ T j. So, u can generate keys for any subset Si,j to which it belongs.

Security. In order to prove security for the scheme, it has to be shown that the key

indistinguishability condition (as in Definition 1) holds for this method. A user u will not

be able to find the key of any subset Si,j if u /∈ Si,j. In other words, each key Li,j of a subset

Si,j in the scheme is indistinguishable from a random key for all u /∈ Si,j. If u /∈ Si,j, then

either (1) u /∈ T i or (2) u ∈ T j.

If u /∈ T i, then it is not assigned any seedi,j derived from seedi. Consequently, for any

set Si,j the key Li,j is (information theoretically) independent of all Iu for u /∈ T i. For that

matter, any part of Iu of any user that has not been derived from seedi is (information

theoretically) independent of Li,j.

If u ∈ T j, it is to be argued that Li,j remains (information theoretically) independent

of the combined secret information of all u ∈ T j. The combined information of all u ∈ T j

would contain seedi,j′ for (1) all j′ that are directly attached to (also called “hanging off”)

the path joining i and j and (2) j′ ∈ {2j + 1, 2j + 2}, the children of j. These seeds are

sufficient to derive all other seeds in the combined information of u ∈ T j. Moreover, there

8 A sibling of a node in a rooted tree is defined as any other node with the same parent node in the tree.
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u
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T j seedi,i3

T j
seedi,i4

Figure 2.4: User u gets 4 seeds derived from seedi for nodes that are directly attached to
the path between u and i. From each such derived seed, keys of many subsets (Si,j indicated
respectively for each of the four cases) can be generated.
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can be at most log n such seeds. It is important to note here that none of these seeds are

derived from one another since they were generated independently using the PRG G. Let ε4

be the bound on distinguishing outputs of G from random strings. (In case a hash function

is used in place of a PRG, ε4 would be the bound on the probability of finding a collision

for the hash function. It is to be noted that the security argument for the scheme remains

the same if G is assumed to be a random oracle and may be modified appropriately for

the use of specific hash functions.) Using a hybrid argument similar to the one used in

the proof of Lemma 1, it can be shown that the probability of distinguishing Li,j from a

random string can be at most ε4/ log n. Assuming ε4 is negligible, we get that the key Li,j

is indistinguishable from a random string for any u /∈ Si,j.

Broadcasting Algorithm. For a given set R of revoked users, the center finds the subset

cover Sc. If R = φ, the set N of all users forms the cover. Otherwise, the cover finding

algorithm runs iteratively as follows. The revoked users are leaves of T 0. It finds two revoked

leaves j1 and j2 such that their first (lowest in terms of level number) common ancestor i

has no other revoked leaf in its subtree. Let i1 (respectively i2) be the child of i on the

path joining j1 (respectively j2) with i. Subsets Si1,j1 (provided i1 6= j1) and Si2,j2 (provided

i2 6= j2) are added to the cover and hence subtrees rooted at nodes i1 and i2 are deleted. The

algorithm keeps running as above assuming the common ancestor i to be a newly revoked leaf

along with the previous ones until all the privileged users are covered. If only one non-root

revoked node j remains in the tree, the subset S0,j is added to the cover. The session key is

thus encrypted for all these subsets in the cover Sc. Figure 2.5 demostrates this algorithm.

Decryption Algorithm. On receiving a ciphertext C, a privileged user u needs to identify

from the header the subset Si,j ∈ Sc to which it belongs. It then derives the key Li,j from

Iu and decrypts Ks from the header. Using Ks, it decrypts the plaintext message block M

for the session.

Traitor Tracing. Attackers of a BE scheme may either create a pirate decryption box

or re-broadcast the copyrighted material. In [NNL01, NNL02], the authors only talk about

tracing a traitor that has participated in creating a pirate decryption box. For the other
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i3
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Figure 2.5: The Cover Finding Algorithm of the NNL-SD scheme is demonstrated. First the
two nodes j1 and j2 (with lowest common ancestor i3) gives rise to the subsets Si1,j1 and
Si2,j2 . As a result, the nodes in the subtree T i3 is covered and hence deleted with only the
root i3 remaining in T 0 and is a newly revoked leaf. Next the two nodes i3 and j3 (with
lowest common ancestor i3) gives rise to the subset Si4,j3 only as the subtree rooted at i3 is
empty. Hence, the remaining nodes in the subtree T i is covered and deleted with only the
root node i remaining in T 0 and is a newly revoked leaf.

re-broadcasting attack, no immediate solutions were provided by Naor et. al.9

Hence, in the context of the SD scheme and all related or derived schemes, the traitor

tracing mechanism will be expected to identify leaked user keys from a pirate decoder by

treating it as a black-box. In [NNL01, NNL02], it was shown that traitor tracing can be

done on any scheme that assigns keys to subsets which satisfy the bifurcation property. The

bifurcation property states that given any subset that is in the collection S and hence has

been assigned a key, it is possible to partition the set into two (or a constant number of)

almost equal subsets from S. (It is to be noted that the partitioning refers to that of an

SD set and not of the collection S, and the equality is with respect to the size of each of

these SD subsets.) The bifurcation value was defined to be the ratio of the size of the largest

subset to that of the set itself. For the BE schemes of [HS02, BS13, BS14a], the subsets

used in these schemes all belong to the collection S for the NNL-SD scheme with the same

number of users. Hence, their respective traitor tracing mechanisms are almost the same as

9 A separate traitor tracing scheme to defend against re-broadcasting attacks may be used in parallel with
the tracing mechanism for pirate decoders that was proposed in [NNL01, NNL02]. As mentioned in [JL09],
the trace and revoke scheme of [JL07] may be useful that way.
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the NNL-SD scheme.

The tracing algorithm for the NNL-SD scheme works as follows. It assumes that there

is a good subset tracing procedure that will test the capability of a decryption box for

its ability to correctly decrypt a transmission intended for a particular subset cover Sc =

{Si1,j1 , . . . , Sih,jh}. The process of testing the decryption capability of the box for a subset

cover Sc is called a query. A query succeeds if the box is able to decrypt the transmission.

The subset tracing procedure also identifies the set Si′,j′ ∈ Sc containing a traitor.

The traitor is thus in the subtree T i′ but not in T j′ . The node j′ is either in the left

subtree T 2i′+1 or the right subtree T 2i′+2 of i′. First, we assume j′ to be in the left subtree

T 2i′+1. It can be easily seen that Si′,j′ = S2i′+1,j′ ∪ Si′,2i′+1. The tracing algorithm fires

two more queries. The set Si′,j′ in the cover is first replaced with S2i′+1,j′ and then with

Si′,2i′+1 and respective queries are fired on the pirate decryption box. The case in which the

decryption box successfully decrypts the content, tells which of these two subsets (that Si′,j′

has been divided into) contains the traitor. Similarly, if j′ is in the right subtree T 2i′+2,

two separate decryption capability test queries have to be fired for Sc containing Si′,2i′+2

and S2i′+2,j′ instead of Si′,j′ . The result of these tests will tell which of the two sets has

the traitors. The algorithm would thus work recursively on the subset cover where Si′,j′ is

replaced by its subset that contains the traitor.

The number of queries required by the traitor tracing algorithm depends on the bifurca-

tion value. At every step of the traitor tracing algorithm, a subset Si′,j′ of users that contains

a traitor is divided into two subsets as mentioned above. One of the two subsets of Si′,j′

would be Si′,2i′+1 or Si′,2i′+2. Hence, the bifurcation value ratio will be largest when the total

number of users in Si′,j′ is the smallest. For the partition Si′,j′ = S2i′+1,j′ ∪Si′,2i′+1, the total

number of users will be minimal for j′ ∈ {2i′ + 3, 2i′ + 4} (i.e.; when j′ is a child of 2i′ + 1).

Similarly, for the partition Si′,j′ = S2i′+2,j′ ∪Si′,2i′+2, when j′ is a child of 2i′+2, that is when

the total number of users will be minimal. Hence, it can be seen that the bifurcation value

of the NNL-SD scheme is 2/3.

The size of the remaining subset from which the traitors have to be traced decreases with

the bifurcation value of the sets in the collection S for a BE scheme. Hence, the traitor

tracing algorithm will be more efficient.



The Subset Cover Revocation Framework 35

2.1.2 The Layered Subset Difference Scheme

The point of the LSD scheme is to reduce the user storage in the SD scheme at the cost of

increasing the header length. Reduction in the user storage is achieved by reducing the size

of S. As in the SD scheme, the LSD scheme also considers the number of users to be of the

form 2`0 where the users form the leaves of a full binary tree. The major difference between

the SD and the LSD schemes is that in the LSD scheme the levels of the tree are partitioned

into layers. Some of the levels are marked as “special”. The collection of levels between

(and including) two consecutive special levels is called a layer. The levels are numbered

with the bottom-most level having the number 0, increasing to the top as in the SD scheme

description of Section 2.1.1. The length of a layer is the difference between the numbers of

the special levels enclosing the layer.

The Halevy-Shamir Layering Strategy

The layering strategy described in [HS02] is as follows:

“The root is considered to be at a special level, and in addition we consider every

level of depth k ·
√

log (n) for k = 1 . . . log (n) as special (wlog, we assume that

these numbers are integers).”

We call this the Halevy-Shamir (HS) layering strategy. It assumes
√
`0(=

√
log n) to be an

integer and hence `0 to be a perfect square. The “wlog” in the above statement is valid

when one is interested in asymptotic analysis. For concrete values of n, the paper does not

describe how to choose a layering scheme. This restricts the use of the scheme to very limited

values of n (of the form 2`0 where `0 = 4, 9, 16, 25). On the other hand, the authors of [HS02]

consider the case of n = 228 users and suggest a layering strategy with layers of size 6, 6, 6, 5

and 5. However, they do not give any general description of how to choose the layer lengths

when `0 is not a perfect square. We take up this issue later in Chapter 5.

As a consequence of layering, an SD subset Si,j is defined to be in S if either of the

following two conditions hold:

• node i is at a special level;

• or, node i is not at a special level but, node j is in the same layer as level i.
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This reduces the size of S and consequently the size of Iu also reduces as we explain below.

The distribution of seeds is done as follows. Suppose that u is a user (i.e., a leaf node) and i is

a node at level ` in the path from u to the root and i0, . . . , i`−1 are the siblings of the nodes in

the path from u to i. If ` is a special level, then u is given seedi,i0 , . . . , seedi,i`−1
as in the SD

scheme. Suppose ` is not a special level. Let `′ be the first special level below i and consider

the segment of the path from u to i which lies between `′ and `. Suppose i`′−1, . . . , i`−1 are

the siblings of the nodes on this segment. Then u gets seedi,i`′−1
, . . . , seedi,i`−1

derived from

seedi. The net effect is that if i is not at a special level, it generates seeds only up to the

next special level (and not up to the bottom-most level). This leads to the reduction in the

user storage.

The reduction in user storage is achieved at the cost of an increase in the header length.

Suppose i is not at a special level and j is in the sub-tree rooted at i but not in the same

layer as i. The SD scheme would associate the set Si,j to such an (i, j) pair. In the LSD

scheme, this set is not present. Instead, the header computation algorithm will cover this

set in the following manner. Let k be the node in the first special level as one moves down

the path from i to j. The sets Si,k and Sk,j are both present in the LSD scheme and it is

easy to see that

Si,j = Si,k ∪ Sk,j.

This can be viewed as a two-way split of the set Si,j. Figure 2.6 shows the splitting of the

subset Si,j of Figure 2.2. The key assignment to the subsets Si,k and Sk,j in Figure 2.6 is

shown in Figure 2.7. The work [HS02] also considers the possibility of multi-way split. But,

the authors conclude that this leads to further reduction in user storage only for impractical

values of the number of users. In this thesis, we will not consider multi-way split.
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Figure 2.6: The subset Si,j split into Si,k (green leaves) and Sk,j (grey leaves).
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Figure 2.7: Key for Si,k is Li,k = GM(GL(seedi)) and for Sk,j is Lk,j = GM(GR(GL(seedk))).





Chapter 3

Previous and Related Works

Although the NNL-SD scheme is the most popular of all BE schemes, there have been several

other significant works in this area. In this chapter, we shall look at some important works

on and related to BE. These works have been classified primarily based on the underlying

techniques and functionalities. Limited by our knowledge and interest, this listing is nowhere

close to being exhaustive. However, it should give the reader a fair idea of the directions of

research in this area.

The scope for obtaining hierarchies of optimization determined by the choice of the

collection S of subsets to which keys are assigned and the subsequent main optimization

goal of this thesis has been mentioned in Chapter 1. The intent of this chapter is to play a

supporting role towards this goal in the following way. The listing of the previous and related

works and categorising them under different functional groups along with their descriptions,

will set the perspective and point out where the results of the thesis stand with respect to

the known results in the area leading to the current state-of-the-art. Amongst other possible

directions of research in each of these functional categories, it will also be interesting to

obtain hierarchies of optimizations in each of the functional groups wherever appropriate.

Such a study is beyond the direct scope of this thesis.

Before we look at the characterization of the related works on BE, let us briefly state the

correlation between BE and two other related functional requirements of similar practical

scenarios: key predistribution schemes and traitor tracing schemes.

Key Predistribution Schemes. In BE, the message body is encrypted with a session key

for the users in the set N \R. This session key is shared with the users in N \R usually by

appending a header to the encrypted body that contains several encryptions of the session

key. There are schemes that assume the session key will be shared before the start of the

broadcast. A scheme where the session key is generated ahead of the start of a session (say by

exchanging messages amongst the privileged users) is called a Key Predistribution Scheme

(KPS). Hence, when the broadcast starts, each user in N \R would already have a common

39
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key established using the KPS algorithm. As part of the broadcast, no additional header

will be required. Several KPS schemes shall be mentioned and discussed in this chapter.

However, KPS schemes require user equipment to identify the set N \R at run time

and if necessary communicate with each other to establish the common key. Hence, the

overall communication overhead goes up. They also typically require updating the keys

of the users. Hence, these schemes require specialized tamper-resistant memory that can

be updated. The user secrets are updated using rekeying messages. This rekeying event

requires all users to be connected at a time which may not be a practicable assumption in all

scenarios [NNL01, NNL02]. Hence, some mechanism is always needed to ensure individual

updates. To quote from [NNL01, NNL02],

“Taking the stateless approach gets rid of the need for such a mechanism (of

updating states individually): simply add a header to each message denoting who

are the legitimate recipients by revoking those who should not receive it. In case

the number of revocations is not too large this may yield a more manageable

solution. This is especially relevant when there is a single source for the sending

messages or when public-keys are used.”

Traitor Tracing Schemes. According to [CFN94, CFNP00],

the traitor or traitors is the (set of) authorized user(s) who allow other unauthorized parties

to obtain the data;

the unauthorized parties are called pirate users.

The traitor may have leaked its secret keys to build pirate decryption boxes. It may also

choose to distribute the data by re-transmitting them to the pirates. Identifying the traitor

is termed as traitor tracing as was explained in Section 2.1.1 of the previous chapter.

Data that is to be delivered to some and protected from others, has to be encrypted. That

is where a BE scheme is functional. The data distribution center thus gives the authorized

parties cryptographic keys to decrypt the encrypted data. However, this does not stop the

authorized users from transferring the secret decryption keys or the decrypted data to an

unauthorized party.

Pirate decryption boxes may be be created using these leaked secret keys. In order to

identify which of the authorized users’ keys have been leaked, one has to get hold of a pirate
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decryption box. Traitor tracing schemes would run tests on the pirate decoder treating it as

a black-box.

If the secrets of each user is unique, the traitor that has leaked its key can be made

evident. However, if more than one user shares the same set of secret keys, it becomes

mathematically impossible to uniquely identify the traitor.

BE schemes may or may not have associated techniques to trace traitors and combat

piracy. In case they do and a traitor is identified, its secret keys are revoked dynamically.

Any future broadcast will not authorize decryption by these traitor devices. Hence, the

pirate decryption methods will be rendered useless.

This revocation of decryption privileges of a traitor may be done by updating the secret

keys of the remaining privileged users in a stateful system. In a stateless system, the center

only needs to ensure that future broadcasts cannot be decrypted using the keys of the revoked

traitor.

3.1 Seminal Works

We have already described two of the most popular works on Broadcast Encryption -

the one by Naor-Naor-Lotspiech [NNL01, NNL02] and the work by Halevy-Shamir [HS02].

However, this area of research was set rolling by papers almost a decade before these two

works. These seminal works have been listed here.

How to Broadcast a Secret; Berkovits (Eurocrypt, 1991) [Ber91]. The idea of a

broadcasting center wanting to transmit a secret to some subset of its listeners was introduced

in [Ber91]. As a first basic solution, the center can re-encrypt the message or a random key

(analogous to the session key) that is used to encrypt the message, individually (and “in

parallel”) for each of the users using their separate secret keys. This scheme is same as

the Singleton Subset scheme discussed in Chapter 1. However, a true broadcast scheme

was defined in [Ber91] to be “one in which the same broadcast message contains the same

information for each and every listener”. The intended recipients should be able to decrypt

the secret while the others cannot.

A general technique to design a (true) broadcasting scheme based on Shamir’s “k out of

n” secret sharing scheme [Sha79] was also proposed in [Ber91]. For broadcasters with more
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computational resources, the above scheme reduces to a vector-based formulation related to

Brickell’s secret sharing scheme [Bri89]. This vector based scheme allows several variations

that provide optimizations between the computation time at the center and the transmission

overhead.

Broadcast Encryption; Fiat, Naor (Crypto, 1993) [FN93]. The term Broadcast

Encryption (BE) was coined by Amos Fiat and Moni Naor in [FN93]. The idea of resilience

in a BE scheme was also introduced in this work. A BE scheme is said to be k-resilient

if a coalition of users of size up to k cannot obtain any secret of the remaining users in

the system. They acknowledged the fact that a BE scheme should allow transmission to a

dynamic set of privileged users. It was also pointed out that the relevant parameters that one

would want to optimize in a BE scheme are: (1) communication overhead, (2) user storage,

and (3) decryption time at the user end.

Zero-message schemes were defined in [FN93] where after the scheme has been initiated,

if a user u ∈ N \ R knows the identities of the privileged users in N \R it would be able

to compute a common key with the center without any additional transmission from the

center. As a first, they constructed zero-message schemes with low resilience. The first

basic scheme worked like one-time pad for each subset of N of size at most k. Two other

zero-message schemes were proposed using cryptographic assumptions like the existence of

one-way functions and security of RSA. Using these schemes, more general schemes with

higher resilience were constructed (using a family of hash functions) which were not zero-

message schemes and would hence require additional transmission from the center to the

users.

3.2 Tree-Based Schemes

We have already described the two most important tree-based schemes: NNL-SD and HS-

LSD. Here are a few more important key predistribution and broadcast encryption schemes

that assume an underlying tree structure with which the users are associated.

Logical Key Hierarchy; Wallner, Harder, Agee (RFC 2627, NSA, 1999) [WHA99].

The Logical Key Hierarchy (LKH) key predistribution technique [WHA99] is a novel solution
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to the key predistribution and re-keying problem. The users are assumed to be associated

with leaves of a rooted binary tree structure. Each node in this tree represents a subset of

users under its subtree. A hierarchy of keys is created using this underlying tree. Each user

is secretly given one of the keys at the bottom of the tree-based hierarchy. The key of an

internal node in the tree is encrypted with all of its children keys, and all of these ciphertexts

are broadcast to the group. Each member can decrypt the key of a parent node along the

path from its leaf to the root, since it has the key of the child node on that path. For bal-

anced trees, the length of the path from a user to the root is logarithmic in the group size.

Hence, each user stores log2 n keys. When a user joins or leaves the system, log2 n keys have

to be broadcast by the center corresponding to all the ancestors of the corresponding user,

through 2 log2 n + 1 re-keying messages. The LKH method achieves logarithmic broadcast

size, user storage, and computational cost. Due to the re-keying technique, the system is

forward secure (new members cannot decrypt transmissions previous to their inception) as

well as backward secure (evicted colluding members cannot decrypt new transmissions post

eviction). A generalization and improvement of the LKH scheme was given in [CMN99] by

Canetti et al.

The LKH scheme and all previous related works assumed the underlying structure to be

static. The Time-Varying Heterogeneous LKH scheme of [Mih03] employs a reconfigurable

underlying structure and a related divide-and-conquer technique to achieve trade-offs like

a large reduction of the storage and processing overload in lieu of a small increase of the

communication overhead.

In [Pin04], the state update transmission requirement per user eviction of the LKH scheme

was improved from log2 n keys to O(log2 t) where t is the size of each key.

This approach of a hierarchy of keys organized as a rooted tree was discovered inde-

pendently by [WGL00] at about the same time as [WHA99]. Additionally, protocol design,

implementation and performance analysis were considered in [WGL00]. With a hierarchy

of keys, there may be many different ways to construct rekeying messages and securely dis-

tribute them to users. The authors designed protocols for users to join and leave the system

using these rekeying strategies. Empirical results from the implementations of these rekeying

strategies and protocols showed that these protocols were scalable to larger number of users.

Key Establishment in Large Dynamic Groups Using One-Way Function Trees;

McGrew, Sherman (IEEE-TSE, 2003) [SM03]. The one-way function tree (OFT)
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scheme takes a bottom-up approach where the new keys are derived from the leaves up to

the root. In [CGI+99], a variation of OFT was proposed that was called One-way Function

Chain (OFC) in [SM03]. In OFC, there is always a functional relationship among the node

secrets along the path in the key tree from some leaf to the root. In both OFT and OFC, the

node secrets and node keys are different unlike the LKH scheme. A length-doubling PRG is

used to compute the node secret and node keys. The left half f(seed) of the output is used

to construct the node secret and the right half g(seed) is used to construct the node key as

follows. Let xi and xj be the node keys of two sibling nodes in the tree. The node key x of

their parent is computed as

x = f(xi)⊕ f(xj)

and the node secret is computed as g(x). This functional chain changes over time and will

hold for the last leaf whose user was removed. This effectively halves the broadcast overhead

in the OFT scheme as compared to the LKH scheme for a single user eviction. This scheme

is forward as well as backward secure even for arbitrarily large number of evicted users.

The Complete Subtree Scheme; Naor, Naor, Lotspiech (Crypto, 2001) [NNL01,

NNL02]. Before the Subset Difference scheme of [NNL01, NNL02] that has been described

in Section 2.1.1, the NNL paper had proposed a simpler BE scheme. It was called the

Complete Subtree (CS) scheme. It falls under the subset cover framework described in 2.1.

Like the NNL-SD scheme, it assumes an underlying full binary tree T 0 with the users at its

leaf nodes. Each node in this tree is assigned a uniform random key for the subset of users

under it. A user gets the keys of all nodes from its leaf to the root node of T 0. Hence, the

user storage requirement is O(log n). The subset cover is found by finding maximal subtrees

of T 0 that do not contain any revoked user. In [NNL01, NNL02], this is described using a

reduced subgraph of T 0 called the Steiner Tree ST (R) containing only the nodes and edges

on the paths between revoked users and the root of T 0. The users in a subtree of T 0 that

“hang off” from this subgraph ST (R) form a subset of the cover Sc. It turns out that the

maximum header length of the CS scheme is O(r log n/r).

One may note the similarity of the CS scheme with that of the LKH key predistribution

scheme described above. The nodes of the underlying binary tree in both the schemes

represent subsets of users and are assigned some secret information that will be held only

by the users in that subtree. However, the CS scheme is stateless while the LKH scheme is

stateful. We have already discussed the advantages of the stateless BE schemes over stateful
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key predistribution schemes in Chapter 1.

BE Schemes with Underlying Trees of Arity > 2 [Asa02, FKTS08]. Two public key

BE schemes were proposed in [Asa02] that assigned keys to subsets following the Complete

Subtree (CS) method of [NNL01]. While the CS method assumed an underlying binary tree,

the schemes in [Asa02] were allowed to have arity greater than or equal to two. It utilized

the master-key technique of Chick-Tavares in [CT89]. This scheme obtained the header size

O(r(loga(n/r) + 1)) and required O(1) user storage. However, the key computing technique

required multiplication of large primes and hence was quite inefficient. The paper does not

discuss how to extend the Subset Difference technique of [NNL01] for trees of arity greater

than two.

The Subset Difference technique of [NNL01] was extended for ternary trees in [FKTS08].

The key assignment technique of [FKTS08] however could not be extended to higher arities.

To quote from their paper (page 236 of the WISA 2008 proceedings):

“However, in a general a-array tree with a ≥ 4, there exists sets of nodes that are

inconsecutive . . . Our hash chain approach fails with regard to these inconsecutive

points. Thus, the construction of a coalition resistant a-array SD method with

reasonable communication, computation, and storage overhead is an open issue.”

Analysis of Complete Subtree and Subset Difference Based Schemes [PB06,

EOPR08, AK08, MMW09]. An analysis of the expected header length of the SD and

LSD schemes was done in [PB06]. They proposed generating functions for counting the

number of ways p users out of total n users can be given access privilege so that the header

length will be h. Using this generating function, they found equations to compute the ex-

pected header length for a given n and r. However, they admitted that their equations were

“complex to compute and difficult to gain insight from”. Consequently, they went forward

to find approximations for the same.

The analysis of the expected header length in [PB06] was continued in [EOPR08] to

show that the standard deviations are small compared to the means as the number of users

gets large.

Other combinatorial studies of the SD method have been performed in [MMW09, AK08].

In particular, the accurate values of the maximum possible header length for a given n and



46 Previous and Related Works

varying ranges of r for the NNL-CS and NNL-SD schemes [NNL01, NNL02] were found

in [MMW09]. They also did comparative analysis of the NNL-CS and the NNL-SD schemes,

establishing the worst-case broadcast size for both these schemes.

Stateful Subset Cover [CGZ+04, JKL06]. According to [CGZ+04], statelessness comes

at a cost in terms of storage and message overhead when the number of privileged users is

much smaller than the total number of users. Rather than maintaining a large static key

tree T 0 that accommodates all potential users, they used a smaller dynamic key tree for

only currently privileged users. Current privileged users were assigned dynamically to the

positions in T 0 rather than using a fixed pre-assignment. The smaller key tree requires less

storage and dynamic assignment achieves a smaller rekeying cost. They empirically compared

performances and showed that the dynamic scheme significantly improved the performance

as compared to the NNL-SD scheme, reducing by half the rekey communication cost when

the number of privileged users were much smaller than the total number of users. Compared

to the NNL-SD scheme, the dynamic SD scheme did not need to know the maximum number

of potential group members in advance.

In [JKL06], it was shown how a key server using a BE scheme falling under the subset

cover framework, can establish a common session key Ks for a dynamically changing group

(i.e., multiple members can join and leave together). We know already from Section 2.1

that subset cover schemes define a family S of subsets of N , where each subset is associated

with a key. To distribute a new session key Ks, the key server generates the subset cover

Sc and encrypts Ks multiple times using the key Li of each subset Si ∈ Sc. In [JKL06],

they presented a technique where an additional state key is encrypted along with the new

session key. These new keys are held only by the current privileged users of the new session.

Thus, the scheme is stateful where at the time of distribution of a new session key, the state

key is used to transform all subset keys for the privileged users of that session. Since only

current privileged users have access to the state key, the key server does not need to avoid

covering all of R, but only those who were recently removed in the previous session (and

thus have a current state key). This improves the transmission efficiency of the SD scheme

whose header length is linear in the number r of revoked users. This technique could be

applied to any scheme that comes under the subset cover framework. It was applied on the

SD scheme [NNL01, NNL02] and the punctured interval scheme [JHC+05, CJKY08].



Traitor Tracing Techniques 47

Efficient Tree-Based Revocation in Groups of Low-State Devices [GST04]. Sev-

eral new techniques for BE were provided in [GST04] under the log-key restriction. Both

the static (zero-state) and dynamic (low-state) versions were proposed. Their static scheme

achieved communication overhead exactly the same as the NNL-SD scheme while the user

storage requirement was reduced to O(log n) and the decryption time increased to O(n).

The reduction in storage as compared to the NNL-SD scheme is due to the technique used

for assignment of keys to the subsets. For the key assignment, instead of a top-own traversal

from the root directly to a node, left and right preorder traversals were used so that each

user had to store only 2 seeds instead of O(log n) seeds for each ancestor as in the NNL-SD

scheme. On the other hand, the decryption required tree traversal that would take O(n)

time. The seed assignment could also be restricted within a set of (log n)/k consecutive

levels (for a fixed constant k) while there would be k such sets of levels. This resulted in the

stratified subset difference scheme for which the header length and the user storage would

grow k times while the decryption time required is at the best O(n1/k).

3.3 Traitor Tracing Techniques

The traitor tracing technique (based on the bifurcation property of the subsets that have

been assigned keys) for the NNL-SD scheme has been described before in Section 2.1.1. Here,

we identify some of the other techniques that have been used in the literature.

(Threshold) Traitor Tracing; Chor, Fiat, Naor (Crypto, 1994) [CFN94],

(IEEE-IT, 2000) [CFNP00], Naor, Pinkas (Crypto, 1998) [NP98]. Traitor tracing

was first defined in [CFN94, CFNP00] as the technique to identify the leaked secret keys

(of traitor devices) that are present in a pirate decoder by running experiments on it as

a black-box. They introduced k-resilient traceability schemes that would identify from a

pirate decoder, at least one traitor device and not accuse innocent parties even if up to k

traitors colluded and combined their keys. In a fully-resilient scheme, at least one traitor

can be traced from any pirate decoder that decrypts with non-negligible probability. In a

threshold tracing scheme, if the pirate decoder decrypts with probability less than 1 but

above some threshold, the scheme will be able to trace at least one traitor. They provided

several k-resilient traceability schemes (some were fully-resilient and others were threshold

tracing schemes) that used hash functions and any arbitrary symmetric key cryptosystem.
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The underlying security assumptions were either information theoretic or were derived from

the security of the respective symmetric key cryptosystems. They observed that threshold

tracing schemes were more efficient than fully resilient schemes.

Efficient Trace and Revoke Schemes; Naor, Pinkas (Fin. Crypto., 2000; IJIS,

2010) [NP00, NP10]. An efficient revocation scheme based on secret sharing is designed

that can revoke up to r users and is secure against their coalition. The scheme is efficient in

terms of user storage, communication overhead and computation of the new common group

key by virtue of the fact that none of these parameters depended on n. Traitor tracing

techniques are also developed for this scheme. Additionally, they introduce the idea of self-

enforcement for deterring users from revealing their keys to others. The self-enforcement

property is obtained by giving each user a personal key, which contains some sensitive pri-

vate information (say the user’s credit card number). This personal key is required for the

decryption of the content. It is reasonable to assume that users would be reluctant to disclose

such personal and sensitive keys to pirates. Such deterrence of the users from leaking their

secret keys may not succeed in preventing unintentional compromise of the secrets happening

without the user’s knowledge (like hack of the user device).

Dynamic Traitor Tracing; Fiat, Tassa (JoC, 2001) [FT01]. In scenarios where com-

promised keys are identified periodically, traitors have to be traced dynamically. In [FT01],

such scenarios are considered where instead of a pirate decoder being constructed, a pirate

re-broadcasts the original content to pirate users. This is accomplished by the use of wa-

termarking techniques 1. In their scheme the content is broken into segments and marked

so that a segment re-broadcasted by the pirates, can be linked to a particular subgroup of

users. Mark allocation for a segment is determined when the re-broadcast from the previous

segment is observed. They showed that by careful design of the mark allocation scheme

it is possible to detect all traitors. Quoting from [FT01], “the watermarking problem is to

generate multiple versions of watermarked content so that, given a black market copy of that

content, the watermarks embedded in that copy would lead to the identification of its source”.

A broadcaster can watermark the original content to create different versions. These water-

marks are used to trace the traitor devices from which keys were leaked. These dynamic

schemes are based on some “feedback” from the pirate network and decides the number and

1 Usually called fingerprinting.
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identity of active traitors on the fly.

3.4 Code-Based Traitor Tracing

Coding Constructions for Blacklisting Problems without Computational As-

sumptions; Kumar, Rajagopalan, Sahai (Crypto, 1999) [KRS99]. One-time re-

vocation of up to r users, secure against a coalition of all of them was proposed in [KRS99].

A constructive scheme using algebraic-geometric codes was proposed that required commu-

nication overhead of O(r2) and user storage of O(rn). Another scheme based on polynomials

was proposed with communication overhead O(rn) and user storage O(rn).

Sequential Traitor Tracing; Safavi-Naini, Wang (Crypto, 2000) [SNW00]. This

work considers the same scenario as Fiat and Tassa [FT01] and proposes a new type of

traceability scheme, called sequential traitor tracing. Here the marking allocation is pre-

determined and is independent of the re-broadcasted segment. It does not use the feedback

signal used for mark allocation in [FT01] and hence, (i) it will not be vulnerable to delayed

rebroadcast attack (where the attackers do not rebroadcast immediately, but decide to record

the content and rebroadcast it at a later time), and (ii) it does not require real-time compu-

tation for mark allocation and so allows very short time slots. This is very attractive as it

allows segments to be shortened and hence the overall convergence time reduces. The scheme

is analyzed and two general constructions are given: one based on a special type of function

family and the other on error correcting codes. The convergence time of these schemes is

obtained and show that the scheme based on error correcting codes has a convergence time

which is the same as the best known result for dynamic schemes.

Coding Theory Based Traceability Techniques; Staddon, Stinson, Wei (IEEE-IT,

2001) [SSW01b], Silverberg, Staddon, Walker (Asiacrypt, 2001; IEEE-IT 2003)

[SSW01a, SSW03]. In [SSW01b], the authors suggested that codes may be introduced

into copyrighted material transmitted using BE in order to implement traceability of schemes.

Codes with identifiable parent property (IPP), traceability (TA) codes, frameproof (FP)

codes, and secure-frameproof (SFP) codes were studied and equivalent formulations using

structures such as perfect hash families were proposed.
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In [SSW01a, SSW03], traceability schemes based on error-correcting codes were con-

structed. The tracing technique was based on list decoding algorithms and hence was much

faster compared to the previously known traceability techniques. The traitors could be iden-

tified in time polynomial in the length of the underlying code rather than the number of

codewords.

3.5 Key Predistribution Based Schemes

Unconditionally Secure Key Distribution and Broadcast Encryption; Blundo,

Mattos, Stinson (Crypto, 1996; TCS, 1998) [BMS96, BMS98], Stinson (DCC,

1997) [Sti97], Stinson, Wei (SACrypt, 1998; SIAMDM, 1998) [SW98a, SW98b],

Stinson, Trung (DCC, 1998) [SvT98]. All these works view most networks as broadcast

networks where all users have access to the data flowing through it. To ensure confidential-

ity in such a network, only the intended users should be able to decrypt them correctly.

A common key is needed to encrypt the plaintext message (1) when a center wants to

broadcast secretly to a subset of users, or (2) when a subset of users want to communicate

through a private conference. To do this, BE can be used to distribute the common key

to all privileged users from a center (trusted authority or TA). This common key can also

be dynamically computed through interactions among the privileged set of users through

schemes are called Interactive Key Distribution (IKD) schemes. There have been several

works [BMS96, BMS98, Sti97, SvT98, SW98a, SW98b] that have proposed IKD schemes

and used them as part of BE schemes.

In [BMS96, BMS98] families of unconditionally secure BE and IKD schemes were pro-

posed that could be used for a single broadcast or a single key distribution. The user storage

and communication overhead of these schemes were recognized as the two most important

parameters of these schemes. These families provide trade-offs between these two parameters.

These one-time schemes could be modified to general t-time schemes. In [Sti97], con-

struction of key predistribution schemes by combining Mitchell-Piper IKD patterns [MP88]

with resilient functions was described. Resilient functions were used to make IKD schemes

more efficient. A general method to combine IKD schemes along with secret sharing schemes

to get BE schemes was presented. Construction of the Fiat-Naor BE scheme [FN93] using

this method was also proposed.
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The work in [Sti97] was further extended in [SvT98] using combinatorial structures

like orthogonal arrays, perpendicular arrays, Steiner systems and universal hash families.

In [SW98a, SW98b] traceability of the above schemes were investigated and then key distri-

bution schemes with more efficient traceability were proposed.

BE Schemes from Linear Algebraic Techniques for Key Predistribution; Padro,

Gracia, Mollevi, Morillo (DCC, 2002; DAM, 2003) [PGMM02, PGMM03]. A

new model for key predistribution based on linear algebraic techniques was proposed in

[PGMM02] that provides a common mathematical formulation of the framework for key

predistribution. The security of these schemes do not depend upon any computational

assumption. The assignment of keys to subsets of users in these schemes depends upon a

choice of vectors in some vector space. From such a scheme, a key predistribution scheme for

the corresponding dual structure (obtained by exchanging privileged and revoked subsets)

can also be found.

A method to construct a family of broadcast encryption schemes from linear key pre-

distribution schemes was provided in [PGMM03]. These schemes were hence called linear

broadcast encryption schemes. All previously known BE schemes could be obtained in this

manner.

BE and KPS Schemes from PRGs [NNL01, NNL02, HS02, AKI03]. The NNL-SD

[NNL01, NNL02] and the HS-LSD [HS02] have been discussed in details in Section 2.1.1 and

Section 2.1.2 respectively. In [AKI03] the authors found a generic method to construct BE

schemes and KPSs from pseudo-random sequence generators (PRGs) by observing a general

“sequential key-derivation patterns” for doing so. Using this method, they found a technique

to construct BE schemes that would support an arbitrary number of users while at the same

time be secure against any set of colluding users. The NNL-SD and the HS-LSD schemes are

special cases of this method. Using their techniques they improved the user storage of the

NNL-SD and the HS-LSD schemes while maintaining the same communication overhead.

A dynamic subset difference scheme was devised in [CGZ+04] where the underlying tree

has only the currently privileged users. Hence, user storage is reduced as compared to the

NNL-SD scheme. Consequently, the scheme is stateful and the user keys have to be updated

from time to time. User are assigned positions in the tree dynamically. This involves some

re-keying cost.
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A method to convert stateless key revocation schemes based on the subset cover frame-

work to stateful schemes was proposed in [JKL06]. This work provided stateful variants of

the SD scheme that would require less communication bandwidth as compared to the LKH

scheme which is also stateful.

3.6 Combinatorial Works

Combinatorial Bounds for Broadcast Encryption; Luby, Staddon (Eurocrypt,

1998) [LS98]. In [LS98], it is assumed that in a BE system, each time the set of privileged

users changes, the center enacts a protocol to establish a new broadcast key. This new key can

be obtained only by the privileged users and and all subsequent transmissions are encrypted

using it. The inherent trade-off between the user storage (in terms of the number of keys

stored) and the communication overhead (the number of transmissions needed to establish

the new broadcast key) is studied in this work. For a given upper bound on the user storage,

a lower bound on the communication overhead is proved. These bounds are also shown to

be tight.

Efficient Methods for Integrating Traceability and Broadcast Encryption; Gafni,

Staddon, Yin (Crypto, 1999) [GSY99]. In [GSY99], general methods for integrating

traceability and broadcasting capability were studied. The integration problem was studied

from both directions. (1) The first method for adding any desired level of traceability to an

arbitrary broadcast encryption scheme was developed. The central idea behind the method

for adding traceability to broadcast encryption schemes is the use of randomness when

allocating keys to users. This allows the users’ key sets to be dispersed, and hence aids

traceability. (2) A new method for adding any desired level of broadcasting capability to

an arbitrary traceability scheme was also developed. The main idea behind this method

uses the inherent broadcasting capability in the underlying traceability scheme. By making

use of such inherent broadcasting structure, significant efficiency improvements could be

achieved over the method in [SW98b]. New constructions of broadcast encryption schemes

were proposed that were close to optimal in terms of the total number keys required. These

new schemes were the first to be both maximally resilient and fully scalable.
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Long-Lived Broadcast Encryption; Garay, Staddon, Wool (Crypto, 2000)

[GSW00]. In a BE scheme, the user keys may become unusable due to expiry of sub-

scription or because they were compromised and hence revoked. At some point, a user may

not be left with any usable secret key. In [GSW00], the authors suggest that if required,

the user keys of a BE scheme may be updated by the center. (For that, there should be a

unique uncompromised key for each such user.) Every time a certain number of users are

revoked for either of the above reasons, the center assumes the start of a new epoch (time

interval). At the end of each epoch, the smart cards of the legitimate users out of the d users

are re-keyed (or the cards may be replaced). They called these long-lived BE schemes and

pointed out that due to the revocation with re-keying technique, these schemes offered more

comprehensive solutions to piracy than traitor tracing schemes. Long-lived schemes were

also argued to be more efficient in the long run as compared to revocation schemes through

re-keying. These schemes were based on the idea of dividing the set of users into a cover-free

family of subsets [GSW00].

One-Way-Chain Based Schemes; Jho et al. (Eurocrypt, 2005)

[JHC+05, CJKY08]. Another interesting work on BE is [JHC+05, CJKY08]. It works on

the idea of “one key per punctured interval” in which the worst case header length has been

brought down to r (the number of revoked users) for the first time. This can also be decreased

below r at the cost of increasing user storage. But, the method is more complicated than

the SD scheme and the user storage requirement is rather high. For n = 228 and r = 210,

the header length is below r at the cost of 3.4× 108 times the storage of the SD scheme.

A Broadcast Encryption Scheme with Free-Riders but Unconditional Security;

Adelsbach, Greveler (DRM-TICS, 2005) [AG05]. In [AG05] two schemes were pro-

posed for efficient broadcast key establishment that enabled a sender to communicate to any

subset of users by allowing a small ratio of free-riders. The schemes do not require stateful

receivers. One of the schemes provided unconditional security. The free-riders would not

however be able to learn from the past whether they might become free-riders for a certain

transmission again in future. Hence, the number (or ratio) of free-riders (usually assumed

to be 0) was introduced as a new parameter for controlling the efficiency trade-offs in BE

schemes. The amount of free-riders could be varied to get varying communication overheads

and user storages.
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3.7 Public Key BE

To start with, in many scenarios, we may not want the sender to have the decryption

keys [NNL01, NNL02]. Broadcasting may also be decentralized2. The asymmetric key model

for broadcast encryption helps there. The group of privileged users will have a public key.

Anybody can broadcast information to those privileged users. Although, we only concentrate

on tree-based symmetric key BE schemes in this thesis, discussing the public-key based

schemes is essential for the sake of completeness of the related works in this area.

According to [NNL01, NNL02, DF03], a public key trace and revoke scheme combines

the functionality of broadcast encryption with the capability of traitor tracing. Specifically,

(1) a trusted center publishes a single public key file (associating public keys with subsets)

and distributes individual secret keys to the users of the system; (2) anybody can encrypt

a message so that all but a specified subset of revoked users can decrypt the resulting

ciphertext; and (3) if a (small) group of users combine their secret keys to produce a pirate

decoder, the center can trace at least one of the traitors given access to this decoder.

Here we list several important works on public key broadcast encryption.

Asymmetric Fingerprinting and Trials of Traced Traitors; Pfitzmann (Info. Hid-

ing, 1996) [Pfi96], Pfitzmann, Waidner (ACM CCS, 1997) [PW97]. Since traitor

tracing was first formally introduced in [CFN94], all traitor tracing mechanisms were sym-

metric key based until [Pfi96]. It was argued in [Pfi96] that in a symmetric key based tracing

scheme, the traitors could always claim that it was the center that leaked the keys. There

would be no mathematical proof of their guilt. In other words, symmetric key based tracing

schemes could never offer non-repudiation3. In [Pfi96], the first asymmetric traitor tracing

schemes were defined. Using these schemes, the center when confronted with treachery, ob-

tains information that he could not have produced on his own. That is therefore much better

evidence.

A technique to convert fingerprinting and traitor tracing schemes based on random codes

2 When there is no single center for broadcasting. Broadcast ciphertexts may come from a number of
parties.

3 Non-repudiation refers to the feature that would provide proof of the integrity and origin of a data. In
other words, it is a mechanism to ensure authentication. In this context, a traitor will not be able to deny
its role in the data leakage.
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to asymmetric schemes was proposed in [PW97]. Effectively one could have asymmetric

schemes that have the same collusion tolerance as the best symmetric schemes without

introducing any new restrictions.

Both these works emphasized on the techniques to ensure that the traitors were convicted

through mathematical proofs of their misdeeds. They separately identified the tracing pro-

tocol from the trial protocol. While the tracing protocol only intends to trace a traitor and

outputs the identity of the traitor and a string proof, the trial protocol enables the center

(information provider) to convince an arbitrary third party called the judge that the traced

user is a traitor. For this, the center uses the string proof from the tracing algorithm. Fur-

thermore, the judge would require the public key that uniquely identifies the accused user

to give a verdict. Depending on how many of these three parties’ inputs are involved in the

computations done by the judge, these trials would be called 2-party or 3-party trials.

An Efficient Public Key Traitor Tracing Scheme. Boneh, Franklin (Crypto,

1999) [BF99]. A simple and efficient solution to the traitor tracing problem was proposed

in [BF99]. The tracing algorithm was deterministic and all active traitors could be identified

while never accusing innocent users. The scheme was partially black-box though. A minor

modification to the scheme could make it resist an adaptive chosen ciphertext attack. Error

correcting codes were applied to the discrete log representation problem to get the traitor

tracing scheme.

All previous solutions to the traitor tracing problem [CFN94, NP98, Pfi96, PW97, SW98a]

were combinatorial with probabilistic tracing techniques. In [BF99], the techniques used were

algebraic and the tracing was deterministic. This approach being inherently public key, it was

more efficient than the public key instantiations of the previous combinatorial constructions.

Additionally, three models of traitor tracing were considered possible: non-black-box

tracing model, single-key-black-box tracing model, and general-black-box tracing model.

A Public-Key Traitor Tracing Scheme with Revocation Using Dynamic Shares;

Tzeng, Tzeng (PKC, 2001) [TT01, TT05]. The trace and revoke scheme proposed

in [TT01, TT05] used dynamic share and user revocation techniques. The header length

depended on the collusion and revocation thresholds and not on the number of privileged

users. Each receiver was required to store only one decryption key. The traitor tracing

algorithm assumed that the pirate decoder was a black-box. The distinctive feature of
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this scheme was that when the traitors were found, their private keys could be revoked

(up to some threshold z) without updating any private key of the remaining subscribers.

Furthermore, the decryption privilege of a revoked private key could be restored later. In

fact, the revocation capability could also be increased beyond z with dynamic assignment

of shares through the header. This property made this scheme highly practical. Previously

proposed public-key traitor tracing schemes had to update all existing private keys even

when revoking one private key only.

The scheme in [TT01, TT05] was as efficient as the one in [BF99] in many aspects. One

of them being that the traitor tracing scheme of [TT01, TT05] was fully k-resilient4.

Public-Key Schemes Based on the NNL-SD Scheme; Naor, Naor, Lotspiech

(Crypto, 2001) [NNL01, NNL02], Dodis, Fazio (DRM, 2002) [DF02]. In [NNL01,

NNL02] it was shown how any subset cover revocation algorithm can be used in the public

key mode. The trusted center would generate the private keys corresponding to each subset

in S. It would then provide each user with the secret keys of every subset it belongs to. The

sender(s) who generate the ciphertext should only have access to “the public key file”. The

function ELi of the subset cover framework should be a public key cryptosystem whereas

FKs may be as described before in Chapter 2. In principle, any public key encryption scheme

with desirable security can be used for ELi . However, not all yield a system with a reasonable

efficiency. A Diffie-Hellman type scheme best serves this mode.

The novelty of using a PRG for key assignment brought down the storage requirement of

the NNL-SD scheme. One may recall from Section 2.1.1 that seeds were assigned to nodes

in a full binary tree. A seed assigned to a node was further used to derive seeds for nodes

below and hence the keys that are assigned to the subsets. These were symmetric keys and

hence were shared between the users and the center. In the public key mode, the derived

symmetric key for a subset will be used as the random string that will be used to generate a

public-key-private-key pair. This mapping of the random bits with the key pairs has to be

efficient. It turns out that Diffie-Hellman scheme efficiently establishes this association.

The natural extension of the symmetric key SD scheme [NNL01, NNL02] resulted in

the following inefficiencies: (1) the public key for every subset had to be stored and as a

consequence, the public key file would be too large; and (2) the secret keys for the subsets

had to be generated from the random bits resulting in enormous increase of the decryption

4 All traitors could be traced if their number was k or less.
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time; or these secret keys would have to be stored at the user resulting in a huge increase

in the storage requirement. In [DF02], this problem was solved by reducing the public key

size to a constant while the user storage and communication overhead was the same as the

symmetric key version. It used the concept of Hierarchical Identity Based Encryption that

allows the derivation of decryption keys for a node from its ancestor.

A crucial point here is the assignment of identities to subsets. Starting from the root,

for any node in T 0, the edge to its left child is marked with 0 and the one to the right is

labelled with 1. The identifier for a node i denoted as ID(i) is the string of 0’s and 1’s formed

by concatenation of the labels of the edges on the path joining the root node to the node

i. Given a descendant j of a node i in T 0, ID(i) will be a prefix of ID(j). The notation

ID(j) \ ID(i) would denote the string formed by the concatenation of the labels on the path

from i to j. In other words, it is the suffix of ID(j) that follows right after the prefix ID(i)

in ID(j). Each subset Si ∈ S would thus be identified by

HID(Si,j) = (ID(i), [ID(j) \ ID(i)], ν)

where ν is a terminator indicating the end of the string.

Similar techniques to get public-key versions of the NNL-CS and HS-LSD schemes were

also described in [DF02].

Self Protecting Pirates and Black-Box Traitor Tracing; Kiayias, Yung (Crypto,

2001) [KY01]. A generic black-box traitor tracing model was proposed in [KY01] where

the pirate-decoder employs self-protection techniques against tracing. It was proved that

for black-box traitor tracing of self-protecting pirate decoders, if the number of traitor keys

is super-logarithmic in the number of users, it is not possible to trace without the decoder

noticing it, unless queries of a specific type are used. They fit BE schemes (like that of

Boneh-Franklin [BF99]) into their model and showed that they are not traceable in the

self-protecting traitor model, unless the efficiency features of these schemes are relinquished.

However, the Chor-Fiat-Naor scheme [CFN94] was still traceable under this model.

Public Key Trace and Revoke Scheme Secure Against Adaptive Chosen Cipher-

text Attack; Dodis, Fazio (PKC, 2003) [DF03]. The first chosen ciphertext (CCA2)

secure trace and revoke scheme based on the DDH assumption was constructed in [DF03].
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They were the first to provide a precise formalization of an appropriate notion of adaptive

security for Broadcast Encryption. The adversary was allowed to corrupt players at any

point during execution. Prior works (e.g., [NP00, TT01, TT05]) only achieved a very weak

form of non-adaptive security even against chosen plaintext attacks.

Multi-Service Oriented Broadcast Encryption; Narayanan, Rangan, Kim (ACISP

2003), Jiang, Gong (ACISP, 2004) [NRK03, JG04]. A multi-service oriented BE

(MOBE) scheme assumes that there are a set of services V = {v1, v2, . . . , vρ} provided by

the system and a user u ∈ N may avail any subset of these services in V . Such a scheme

will be called fully flexible. An example of such a system would be the Pay-TV system with

the provision to avail different channel packs.

The first few works on schemes for Pay-TV include [MQ95], [Woo98], [Woo98, Woo00]

and [MV01]. An overview of the conditional access system and the issues of copyright

protection and authentication in a Pay-TV systems were described in [MQ95]. A description

of the conditional access system was given and the need for the use of a trusted third party

was demonstrated. The design of efficient copyright protection by watermarking images and

image authentication by signatures were also briefly discussed.

In [Woo98, Woo00], the schemes described allow the broadcaster to offer a hierarchy of

packages to the users. In [MV01] however, the focus has been on unsubscription process

being totally transparent to the users. To achieve this they use techniques that associate

multiple decryption keys with one encryption key.

An RSA-based scheme was presented in [NRK03], where there was an increase in the

transmission overhead by a constant factor (and not by the number n of users or the number

ρ of services). The scheme was stateless and hence user memory was not required to be

updated. A session (called the billing period in this work) is assumed to be a period in which

there are no changes in subscription status. The session keys provided to each user changes

with each subscription status change of that user. This scheme was fully resilient to traitors.

However, as mentioned in [JG04], the amount of secure user memory required by the

scheme in [NRK03] was linear in the number of services subscribed to by that user. Moreover,

a service unsubscription required a unicast channel for each user that was still privileged.

Such a unicast channel had to be secured from everyone other than the concerned user

getting its session key updated. Hence, this scheme was not very suitable for systems with
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too many users or services with frequent subscription status updates (session changes).

In [JG04], the authors proposed theM framework for the MOBE problem. They achieved

the multi-service functionality from the subset cover method. A user’s key size in M was

independent of the number of users or services in the system. The revoked users do not get

involved in subscription process of users to a service. Furthermore, unsubscription is handled

scalably in the number of services and users, making the system flexible. This framework is

instantiated with the complete subtree scheme [NNL01, NNL02] and Asano’s scheme [Asa02].

Finally, in order to evaluate the security of the framework, the notion of dynamic security

was formally introduced. This captured threats from an adaptive adversary that might issue

queries such as subscription, rekeying, corruption and new service provision. It showed the

M framework to be secure under such a severe attack. Their proof was in the random oracle

model5.

Collusion Resistant Broadcast Encryption with Short Ciphertexts and Private

Keys; Boneh, Gentry, Waters (Crypto, 2005) [BGW05]. Two new public key BE

schemes for stateless receivers were proposed in [BGW05]. Both these systems were fully

secure against any number of colluding users. These constructions used groups with an

efficiently computable bilinear map. In the first construction both ciphertexts and private

keys were of constant size for any privileged subset of users. Each user’s private key was just

a single group element while the ciphertext had only two group elements for any arbitrary

set of privileged users. The public key size of this system was linear in the total number of

receivers. The second system was a generalization of the first. It provided a tradeoff between

ciphertext size and public key size. For example, a collusion resistant BE system could be

instantiated for n users where both ciphertexts and public keys were of size O(
√
n) for any

5 A random oracle is a black-box that is assumed to respond to every query with a random response
chosen from its output domain. When hash functions used in a scheme cannot be proved to possess the
mathematical properties required by the proof, they are assumed to be random oracles. The random oracle
model assumes every hash function to be a random oracle.

Starting from [CGH04], there have been several criticisms of the random-oracle model. It has been argued
that a scheme that is proven secure in the random-oracle model may have insecure implementations due to
construction of the random-oracle using hash functions. However, these constructions of random oracles are
of the type that in an extremely rare case, the bonafide user reveals the secret key. The Koblitz-Menezes
riposte [KM15] is based on precisely this point. For practical systems, the secret key will not be given
out in any circumstances and so the constructions provided to highlight the shortcomings of the random
oracle model are artificial. Whether or not one has confidence in the random oracle model, the [CGH04]
type constructions should not be used to discredit the random-oracle model for any practical cryptographic
system.
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subset of receivers. These systems could also be modified trivially to be used as group key

management methods with short key update messages.

Scalable Public-Key Tracing and Revoking; Dodis, Fazio, Kiayias, Yung (Dis-

tributed Computing, 2005) [DFKY05]. In certain scenarios, both the user population

and the set of content providers are dynamic (they may join or leave the system any time).

Thus scalable user management and scalable provider management are crucial. In [DFKY05],

the first public-key traitor tracing scheme for such a dynamic scenario was proposed. They

proposed an efficient scalable public key traitor tracing scheme in which the populations

of providers and users could change dynamically over time without incurring substantial

penalty in terms of system performance and management complexity. A formal model for

scalable public key traitor tracing was introduced and the first construction of such a scheme

was presented. This model mandated deterministic traitor tracing and unlimited number

of efficient provider and user management operations. As with other algebraic schemes,

black-box traceability could not be satisfied efficiently in the construction of [DFKY05]. A

formal adversarial model for the system was presented. The construction was proved to be

secure against both adversaries (1) that attempt to cheat the provider and user management

mechanism, and (2) adversaries that attempt to cheat the traitor tracing mechanism.

Privacy in Encrypted Content Distribution Using Private Broadcast Encryption;

Barth, Boneh, Waters (Fin. Crypto, 2006) [BBW06]. It may be important to both

restrict access of content to authorized users as well as to protect the identities of the users

in content distribution schemes. For example, an encrypted file should hide who can access

the content. Identity protection (also called recipient privacy) is achieved by introducing

a notion called private broadcast encryption in [BBW06]. A private broadcast encryption

scheme is used to encrypt a message to several recipients while hiding the identities of the

recipients, even from each other. A private broadcast scheme is constructed in [BBW06],

with a strong privacy guarantee against an active attacker, while being efficient in terms of

ciphertext length and encryption-decryption time.
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3.8 Miscellaneous

Renewable Traitor Tracing: a Trace-Revoke-Trace System for Anonymous At-

tack; Jin, Lotspiech (ESORICS, 2007) [JL07]. When traitors are identified, a renew-

able scheme can revoke and exclude the decryption keys used by the traitors during piracy.

A renewable scheme is stateless by definition. In a BE system that uses hybrid encryption

(as in the subset cover framework), the content encrypting (session) key or the content itself

may get leaked. In that case the traitors remain anonymous, and hence it might not be

possible to trace those traitors.

In [JL07], a renewable traitor tracing scheme was designed for this kind of anonymous

attack. In this scheme, the revocation information included in a newly released (after a trace-

revoke action) broadcast content will not only disallow traitors to playback the new content,

but also provide new tracing information for continuous tracing. Such a system is therefore

said to be a trace-revoke-trace system and hence [JL07] claim to have first proposed such

a system for anonymous attack. In this scheme, the content owner would choose different

points in the content and would encrypt these points differently and augment them to the

otherwise same encryptions of the content, giving a new version each. Each version would

also be differently watermarked. Each user gets one such unique version. Each device would

be able to decrypt its own part from the augmented portions. This effectively creates different

versions quite efficiently.

Unifying Broadcast Encryption and Traitor Tracing for Content Protection; Jin,

Lotspiech (ACSAC, 2009) [JL09]. It must be evident by now that the features trace-

ability and revocation demand different types of design. Schemes with both these features

combined in it, usually leave one of these two aspects weak. Moreover, pirate attacks on

these schemes may be through clone devices or through anonymous re-broadcasting. These

two types of attacks were usually considered to be orthogonal to each other and hence have

been tackled separately using two different trace-and-revoke schemes for each. In [JL09], the

authors present a unified trace-and-revoke scheme that offered a very efficient solution for

both revocation and traceability as well as simultaneously defending against the two types

of attacks in a unified way. They also showed the equivalence of the clone attack with the

anonymous re-broadcasting attack [JL09].





Chapter 4

The Complete Tree Subset Difference

Scheme and its Analysis

4.1 Introduction

In Chapter 1, we listed a summary of our contributions included in this chapter that were

published in [BS13]. We recollect them very briefly here.

Arbitrary Number of Users. The NNL-SD scheme described in Chapter 2 and all follow-

up works [HS02, GST04, PB06, AK08, MMW09] assume the total number of users n to be

a power of two. The actual number of users in real-life implementations may not be a power

of two. Hence, the center has to assume the existence of dummy users to make the number

of users a power of two. We relax this restriction to allow any arbitrary number of users

in the system by introducing the Complete Tree Subset Difference (CTSD) scheme. When

the number of users in the CTSD method is a power of two, it becomes exactly the same as

the SD scheme. Inclusion of dummy users results in the expected header length of the SD

scheme to be more than the CTSD scheme for practical values of n and r.

Combinatorial Analysis. We carry out a combinatorial study for the CTSD scheme and

the results so obtained also apply to the SD scheme. A new approach is used for the detailed

combinatorial analysis to count the number, N(n, r, h), of ways that r out of n users can

be revoked to get a header length of h in the CTSD scheme. This counting is formulated

using two recurrences. Using these recurrences, a dynamic programming based algorithm

is developed to compute N(n, r, h) in polynomial time. Previous to our work, to compute

N(n, r, h) for the SD method, one would have to run the SD algorithm on the possibly

exponentially many
(
n
r

)
revocation patterns. As mentioned in Chapter 1, we obtain several

interesting combinatorial results using these recurrences.

63
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Probabilistic Analysis. We propose a simple and efficient algorithm for computing the

expected header length for a given n and r in the CTSD and hence the SD method. The

algorithm requires O(r log n) multiplications and O(1) space. It can be used for all practical

values of the parameters and hence it provides a useful tool to practitioners implementing

either the SD or the CTSD method.

We show that the limiting upper bound on the expected header length is 1.25r. The only

previously known upper bound on the expected header length in the SD scheme for r revoked

users was proved to be 1.38r in [NNL01, NNL02]. They also commented that experimental

results indicated that the bound is probably 1.25r. Our analysis of the expected header length

shows that proving the precise limiting upper bound is more complicated than anticipated

in [NNL01, NNL02].

4.2 The Complete Tree Subset Difference Method

The Subset Difference (SD) method described in Chapter 2 [NNL01, NNL02] and all follow-

up work assumes the number n of users to be a power of two. We propose the Complete

Tree Subset Difference (CTSD) algorithm that can accommodate any arbitrary number of

users. Our algorithm considers a rooted complete binary tree T 0 with n leaves. One may

0
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15 16 17 18 19 20 21 22 23 24

Figure 4.1: The non-full complete tree T 0 with n = 13 users as its leaves. Privileged users
are indicated in green and the revoked users are indicated in red. Here, r = 3. The tree T 1

is a subtree of T 0 and is a full subtree having 8 leaf nodes whereas the tree T 2 is a non-full
complete subtree of T 0 with 5 leaf nodes.

note here that a complete binary tree has leaf nodes only at the bottom-most or last level
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and maybe also the last-but-one level. The leaves in the last level are filled from the left to

the right in the tree. In a full binary tree of height ` there are 2` leaves, all at the last level.

A full binary tree is also complete by definition. We will refer to trees that are complete but

not full as non-full. Each user in N is associated with a leaf of the complete binary tree T 0.

There are a total of 2n− 1 nodes in T 0. The root node of T 0 is labeled as 0. All subsequent

nodes are labeled as follows: the left child node of a node i is labeled as 2i+ 1 and the right

child is labeled as 2i+ 2. Hence, nodes 0 to n− 2 are the internal nodes and nodes n− 1 to

2n− 2 are the leaf nodes. The subtree of T 0 rooted at node i is denoted by T i. The number

of leaf nodes in the subtree T i is denoted by λi.

The collection S of subsets is defined as follows: The set Si,j is defined to contain users

in the subtree T i but not in T j. All subsets of users of the form Si,j(= T i \ T j), where

node j is in the subtree T i and hence a descendant of node i, is included in the collection S.

The set N of all users is also included in S. Once this collection S has been created, each

set Si,j in S has to be assigned a long-lived key Li,j. We will look at the key assignment in

Section 4.2.1.
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Figure 4.2: The subset difference subset S1,7 which includes leaves in T 1 but not in T 7 i.e.;
S1,7 = T 1 \ T 7 = {17, 18, 19, 20, 21, 22}.

During broadcast, the center will know the set R of revoked users and the message M to

be broadcast. It has to find the subset cover Sc for N \R. Sc contains pairwise disjoint sets

Si1,j1 , . . . , Sih,jh such that N \R =
⋃h
k=1 Sik,jk where each Sik,jk is taken from S. If the set

R is empty, then the only set in the cover Sc is N . Otherwise, the following cover-finding

algorithm is used: The center first constructs the Steiner Tree ST (R) induced by R on

T 0. The Steiner Tree ST (R) is a subgraph of T 0 that only retains the nodes and edges on
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paths from the root node 0 to a revoked leaf node. All the other paths in T 0 are deleted.

The cover-finding algorithm runs iteratively by maintaining a tree T that is a sub-graph of

ST (R). It starts by initializing T as a copy of ST (R). At every iteration, the algorithm

keeps removing nodes from T while adding subsets to Sc, until T has just one node left. At

any point of time in the algorithm, a leaf node in T corresponds to either a leaf node in T 0

or the root of a subtree in T 0 all whose leaves have already been covered till that iteration.

More precisely:

1. If there is only one leaf node in T , jump to step 6.

2. Find two leaves j1 and j2 of T whose first common ancestor i does not have any other

leaf node in its subtree in T . Here, out of the many possible such pairs j1 and j2 one

may choose the leftmost to have a specific algorithm.

3. Let i1 (respectively i2) be the immediate child node of i which is an ancestor of j1

(respectively j2) or is the node j1 (respectively j2) itself. If i1 6= j1 then add the set

Si1,j1 to the cover Sc. Similarly, if i2 6= j2 then add the set Si2,j2 to the cover Sc.

4. Delete the paths joining j1 and j2 with their common ancestor i. Hence, node i becomes

a leaf in T .

5. If there are more than one leaves remaining in T , go back to step 2.

6. If the only leaf node is the node 0, then there are no more subsets to be added to Sc.
Else, add the set S0,j to Sc. Here j is the leaf node remaining in T .

4.2.1 Key Assignment to each Subset Si,j in S

Pseudo-Random Generator G. In order to assign keys to each subset in S, the center

assigns uniform random seeds to every non-leaf node in T 0 and uses a cryptographic pseudo-

random generator G. The pseudo-random generator G outputs a pseudo-random string

that has three times the length of the input seed. The output string G(seed) is divided

into three equal parts GL(seed), GM(seed) and GR(seed). Hence, G(seed) = GL(seed) ‖
GM(seed) ‖ GR(seed). G : {0, 1}k → {0, 1}3k is a pseudo-random generator if no polynomial

time adversary can distinguish between its output for a random seed from a truly random

string of the same length. A hash function may be used in place of the PRG as was described

in Chapter 2.
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u

seedi

GR(seedi)
GR(GL(seedi))

GR(GL(GL(seedi)))

GR(GL(GL(GL(seedi))))

Figure 4.3: Secrets stored by u.

Seed Assignment to Nodes. Every non-leaf node i in T 0 is assigned a uniform random

string seedi. Each non-root node j of T 0 is assigned derived seeds from every ancestor i of j.

The left child 2i+ 1 of node i in T 0 derives the seed GL(seedi) from the random string seedi

of i. All descendants of 2i + 1 further get derived seeds from this derived seed GL(seedi)

of 2i + 1. Similarly, the right child 2i + 2 of node i in T 0 derives the seed GR(seedi) from

the random seed of i and all descendants of 2i + 2 get derived seeds from this derived seed

GR(seedi) of 2i+ 2. We denote the seed for a node j derived from the random seed of node

i as seedi,j. Following such an assignment of random and derived seeds for nodes in T 0, the

long lived key Li,j assigned to the set Si,j is GM(seedi,j).

Iu for each u ∈ N . Once the center is done with the assignment of random and derived

seeds to nodes, it has to distribute the secret information Iu to each user u ∈ N . The user

associated with a leaf j of T 0 must have been revoked when a set Si,j is in the cover Sc.
Hence, the user at leaf j should not be able to compute the Li,j for any of its predecessor i

in T 0. In fact, it should not be able to compute any Li,k where k, a descendant of i, is also

one of its ancestors. In other words, a user at leaf j should be able to compute an Li,k if

and only if i is an ancestor of j and k being a descendant of i, is not on the path joining

j with i. In a subtree T i of T 0 to which a user at leaf j belongs, the node i has a random

string seedi. The user at j gets the seeds of all nodes adjacent to the path joining i and j

that have been derived from seedi as shown in Figure 4.3. Say i1, . . . , im are those nodes

“falling off” from the path between node i and leaf j. The user at j will get the derived seeds

seedi,i1 , seedi,i2 , . . . , seedi,im . To summarize, the Iu for a user u at leaf j consists of all derived
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seeds seedi,k such that i is a predecessor of j and k is adjacent to the path joining i and j.

As derived in [NNL01, NNL02], the number of derived seeds in Iu is 1
2

log2 n+ 1
2

log n+ 1 for

n a power of two. For an arbitrary n, one has to consider the next higher power of two, say

2`0−1 < n ≤ 2`0 . The number of derived seeds in Iu will be 1
2
`2

0 + 1
2
`0 + 1.

4.2.2 Dummy Users and the Associated Penalty

The CTSD scheme works with the actual number of users that are present in the system.

It may be argued that even if n is not a power of two, the SD scheme can be applied by

incorporating dummy users to make the total number of users to be a power of two. We

argue that this impacts the size of the transmission overhead. For an actual broadcast, there

are two ways to handle the dummy users – either consider all of them to be revoked or

consider all of them to be privileged.

Suppose that the dummy users are considered to be distributed randomly among all the

users. Then viewing them as revoked has very serious performance penalties. This is because

the average header length is linear in the number of revoked users, as is proved later. Having

a larger number of randomly distributed 1 revoked users leads to larger header size. If, on the

other hand, the dummy users are viewed as privileged, then the performance penalty will be

less.

Assuming the dummy users to be randomly distributed may not be fully justifiable. In an

actual implementation, they may be considered to be one block. Suppose that 2`−1 < n < 2`

and that the users numbered n + 1, . . . , 2` are the dummy users and the real users are

numbered 1 to n. The actual revoked users will be among the values 1 to n, whereas the

users numbered n+ 1, . . . , 2` will be considered to be either all revoked or all privileged.

We compare the expected header length of the CTSD method with the SD method in

Table 4.1. These values are obtained by running the header generation algorithms on all

possible (n, r)-revocation patterns. The SD algorithm is run assuming the dummy users to

form a block at the right end of the tree. In separate cases, these dummy users are considered

to be privileged and revoked as a group. Due to the exponentially many possible revocation

patterns, the algorithm could be run only for small values of n. We, however, expect the

1 The rationale behind the assumption that the revoked users are randomly distributed is the lack of any
known distribution for revoking users. However, analysis of the schemes based on more realistic assumptions
will be interesting and has been enlisted in the future directions of research in Section 8.4.
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results to be indicative of the general behavior. For 17 ≤ n ≤ 24 and 2 ≤ r ≤ 8, the expected

header length by the CTSD method is never more than that of the SD method and is almost

always less.

Figure 4.4: Plot showing how MHL varies with r in presence/absence of (privileged/revoked)
dummy users.

4.3 Combinatorial Analysis of the SD

and CTSD Methods

A given set of revoked users is called a revocation pattern. We denote a revocation pattern

on n users where r are revoked, as an (n, r)-revocation pattern. The number of possible

(n, r)-revocation patterns is
(
n
r

)
. In order to study the detailed combinatorial behavior of

the CTSD and hence the SD algorithm, we find a method to count the number of (n, r)-

revocation patterns that result in a header length of h.

Definition 3. In a subtree T j of T 0 with λj users, N(λj, r, h) is defined as the number of

(λj, r)-revocation patterns that are covered by exactly h subsets. Similarly, for λj users in
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Table 4.1: Comparison of the expected header lengths for 17 ≤ n ≤ 24 and 2 ≤ r ≤ 8 in
the CTSD method with the SD method working with dummy users forming a block at the
right end. The dummy users may be privileged or revoked. It shows that the CTSD scheme
always requires less bandwidth compared to the SD scheme with dummy users.

n r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8

17 (CTSD) 2.34 3.22 3.93 4.49 4.89 5.13 5.21
17 + 15 (dummy revoked) 3.06 3.87 4.49 4.96 5.29 5.46 5.49
17 + 15 (dummy privileged) 2.76 3.88 4.66 5.24 5.64 5.87 5.96

18 (CTSD) 2.36 3.29 4.05 4.67 5.14 5.45 5.60
18 + 14 (dummy revoked) 3.04 3.88 4.53 5.04 5.41 5.65 5.74
18 + 14 (dummy privileged) 2.67 3.76 4.53 5.09 5.51 5.78 5.92

19 (CTSD) 2.37 3.32 4.09 4.73 5.21 5.55 5.74
19 + 13 (dummy revoked) 3.12 4.01 4.72 5.27 5.69 5.97 6.11
19 + 13 (dummy privileged) 2.61 3.72 4.52 5.16 5.67 6.07 6.35

20 (CTSD) 2.39 3.38 4.19 4.86 5.39 5.77 6.02
20 + 12 (dummy revoked) 2.86 3.70 4.40 4.98 5.44 5.80 6.03
20 + 12 (dummy privileged) 2.56 3.66 4.48 5.15 5.69 6.12 6.44

21 (CTSD) 2.40 3.38 4.20 4.88 5.43 5.85 6.15
21 + 11 (dummy revoked) 3.69 4.44 5.07 5.60 6.02 6.35 6.56
21 + 11 (dummy privileged) 2.52 3.64 4.52 5.26 5.90 6.43 6.84

22 (CTSD) 2.42 3.43 4.27 4.98 5.58 6.06 6.42
22 + 10 (dummy revoked) 3.19 4.09 4.86 5.50 6.01 6.40 6.69
22 + 10 (dummy privileged) 2.49 3.62 4.53 5.31 5.99 6.56 7.03

23 (CTSD) 2.43 3.44 4.28 4.99 5.60 6.09 6.48
23 + 9 (dummy revoked) 3.27 4.20 5.01 5.68 6.23 6.66 6.98
23 + 9 (dummy privileged) 2.47 3.62 4.58 5.41 6.14 6.77 7.28

24 (CTSD) 2.45 3.48 4.33 5.07 5.71 6.24 6.67
24 + 8 (dummy revoked) 2.70 3.54 4.35 5.08 5.71 6.24 6.67
24 + 8 (dummy privileged) 2.45 3.60 4.59 5.45 6.19 6.83 7.34
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T j, T (λj, r, h) is defined as the number of (λj, r)-revocation patterns that are covered by h

subsets such that there is at least one revoked user in both subtrees of T j.

Since the tree T 0 has n (= λ0) leaves, N(n, r, h) = N(λ0, r, h) is the number of (n, r)-

revocation patterns covered by a header length of h. We obtain recurrences for N(n, r, h).

4.3.1 Some Notation

Level Number and Position of Nodes. Before we start deriving the expressions for

T (n, r, h) and N(n, r, h), we fix a few notation for the ease of description. A level number

of T 0 is indicated by `. In particular, the level of a node i is denoted by `i. The root node

0 is at the highest level `0. Hence, ` ∈ {0, . . . , `0}. Since every subtree T i is a complete

binary tree, 2`i−1 < λi ≤ 2`i . The number of nodes at level ` of T 0 is denoted by q`. We see

that the number of nodes at the last level is q0 = 2(n− 2`1). For ` ∈ {1, . . . , `0}, q` = 2`0−`.

The position of a node at a level from the left is denoted by t where t ranges from 1 to q`.

Hence, a node i is uniquely represented by the pair (`i, ti) – the level `i of T 0 to which it

belongs and its position ti from the left at that level. As an example, the root node 0 of T 0

is represented by (`0, 1). We will interchangeably use both i and (`i, ti) to denote a node.

` = 0

` = 1

` = 2

` = 3

` = 4 0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24

Figure 4.5: Level numbers in T 0. The path P0 is marked with blue. Nodes colored blue are
at position tP` for the respective level `.

Non-Full Subtrees at each Level of T 0. Let us take a closer look at the structure

of the tree T 0. In case T 0 is full, all its subtrees are also full. In case T 0 is non-full, we

observe that every level ` > 0 of T 0 can have at most one non-full subtree. To identify these
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subtrees, we look at the path joining the root node 0 of T 0 with node n − 2 and denote

it by P0. The node numbered n − 2 is the last non-leaf node. There is exactly one node

on P0 for every level ` > 0 of T 0. For level `, the position of the node lying on the path

P0 from the left, is denoted by tP` . Let j be a node on P0, say the node represented by

(`, tP` ). The part of the path P0 lying in the subtree T j is denoted as Pj. For the level `,

the subtree T j rooted at node (`, tP` ) is the only possibly non-full subtree rooted at level `.

The subtrees to the left and right of node tP` at level ` are all full. The subtrees to the left

(respectively right) of node tP` of level ` have 2` (respectively 2`−1) leaves. The number of

leaves in the only possibly non-full subtree rooted at level ` is denoted by λ`,P . The root node

of this subtree would be node (`, tP` ) of level `. Hence, 2`−1 < λ`,P ≤ 2`. More specifically,

λ`,P = n− ((tP` − 1)× 2`)− ((2`0−`− tP` )× 2`−1). Also, tP` =
⌈
q0
2`

⌉
. We define t

Pj
` for the path

Pj as the position of the node at level ` on Pj from the left in the subtree T j. Hence, tP` is

also denoted as tP0
` . One can see that t

Pj
` =

⌈
q0−(tP`j

−1)×(2`j )

2`

⌉
=
⌈
q0
2`

⌉
− (tP`j − 1)× (2`j−`).

4.3.2 Recurrences N(n, r, h) and T (n, r, h)

Theorem 3. For a subtree T i of T 0 with λi (2` < λi ≤ 2`+1) leaves,

N(λi, r1, h1) = T (λi, r1, h1) +
∑
j∈IN(i)

T (λj, r1, h1 − 1), (4.1)

where IN(i) is the set of all internal nodes in the subtree T i excluding the node i.

Proof. We show that a revocation pattern is counted in N(λi, r1, h1) if and only if it is

counted in exactly one of T (λi, r, h) or T (λj, r, h − 1) for some j ∈ IN(i). First we consider

a (λi, r)-revocation pattern that is counted in N(λi, r, h). There exists a minimal subtree

T j, with j ∈ IN(i), of T i that contains all the revoked leaves. If this subtree is rooted at i

itself, then that revocation pattern is counted in T (λi, r, h) and is covered by h subsets of

S. For any other node j 6= i, the revocation pattern is counted in T (λj, r, h − 1) and has

to be covered by h − 1 subsets of S. The rest of the λi − λj privileged users form one SD

subset of the cover. The total cover size will hence be h. Since a set R of revoked users has

a corresponding unique minimal subtree T j of T i containing all the users in R, hence it is

counted exactly once on the right side of (4.1).

Now, let us consider a (λi, r)-revocation pattern that has been counted in T (λi, r, h). By
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the definitions of T and N , the (λi, r)-revocation patterns that are counted in T (λi, r, h) are

also counted in N(λi, r, h). For some other revocation pattern, counted in T (λj, r, h− 1) for

some j ∈ IN(i), both subtrees of T j contain at least one revoked user in each. Hence, the

minimal subtree of T i containing the r revoked users for such a revocation pattern is T j.
For the revocation patterns counted in T (λj, r, h− 1), the privileged users of the subtree T j

have been covered with h−1 SD subsets of S. The rest of the λi−λj users are all privileged

and are covered by one more SD subset Si,j. Hence, the corresponding (λi, r)-revocation

pattern is counted in N(λi, r, h).

Theorem 4. For a subtree T i of T 0 with λi (2` < λi ≤ 2`+1) leaves,

T (λi, r1, h1) =

r1−1∑
r′=1

h1∑
h′=0

N(λ2i+1, r
′, h′)×N(λ2i+2, r1 − r′, h1 − h′), (4.2)

where λ2i+1 (respectively λ2i+2) is the number of leaves in the left (respectively right) subtree

of T i.

Proof. We show that a revocation pattern is counted in T (λi, r1, h1) if and only if it is

counted in the right hand side of (4.2). For a given λi, the number of leaves in the left

and right subtrees get fixed to λ2i+1 and λ2i+2 respectively. When a (λi, r1)-revocation

pattern is counted in T (λi, r1, h1), both the subtrees of T i must have at least one revoked

user. Assuming the left subtree of T i has r′ revoked users, the right subtree should have

r1 − r′ revoked users since the total number of revoked users is r1. Similarly, assuming

that the privileged users in this left subtree are covered by h′ sets of S, the privileged users

in the right subtree should be covered by h1 − h′ sets of S. The number of (λ2i+1, r
′)-

revocation patterns in the left subtree covered by h′ subsets is N(λ2i+1, r
′, h′). Similarly, the

number of (λ2i+2, r1− r′)-revocation patterns in the right subtree covered by h1− h′ subsets

is N(λ2i+2, r1 − r′, h1 − h′). Each such (λ2i+1, r
′)-revocation pattern in the left subtree

along with a (λ2i+2, r1 − r′)-revocation pattern in the right subtree gives rise to a (λi, r)-

revocation pattern in the tree T i that is covered by h1 subsets of S. Hence, for all values of

r′ ∈ {1, . . . , r1−1} and all values of h′ ∈ {0, . . . , h1}, N(λ2i+1, r
′, h′)×N(λ2i+2, r1−r′, h1−h′)

counts all the possible T (λi, r1, h1).

Any (λi, r1)-revocation pattern covered by h′ subsets will be counted in the expression

N(λ2i+1, r
′, h′)×N(λ2i+2, r1−r′, h1−h′). The ones counted in N(λ2i+1, r

′, h′)×N(λ2i+2, r1−
r′, h1 − h′) for fixed values of r′ and h′ are counted exactly once in it. For other values of
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Table 4.2: Boundary conditions on T (n, r, h) and N(n, r, h).

T (λi, r1, h1) r1 < 0 r1 = 0 r1 = 1 2 ≤ r1 < n r1 = n r1 > n

h1 = 0 0 0 0 0 1 0
h1 ≥ 1 0 0 0 from (4.2) 0 0

N(λi, r1, h1) r1 < 0 r1 = 0 r1 = 1 2 ≤ r1 < n r1 = n r1 > n

h1 = 0 0 0 0 0 1 0
h1 = 1 0 1 n from (4.1) 0 0
h1 > 1 0 0 0 from (4.1) 0 0

r′ and h′, the corresponding (λi, r1)-revocation patterns will be counted in the respective

N(λ2i+1, r
′, h′)×N(λ2i+2, r1− r′, h1− h′). Hence, a (λi, r1)-revocation pattern is counted on

the right hand side of (4.2) if and only if it is counted in T (λi, r1, h1).

Boundary Conditions. The boundary conditions on T (λi, r1, h1) and N(λi, r1, h1) are

given in Table 4.2. Other than the tabulated values, N(λi, r1, h1) = 0 for λi ≤ 0 and

T (λi, r1, h1) = 0 for λi ≤ 1. From recurrences in Theorems 3 and 4 and the boundary

conditions on these recurrences, one can find the value of N(n, r, h) for any given n, r and

h using dynamic programming.

4.3.3 Algorithms to Compute N(n, r, h) and T (n, r, h)

Substituting for j ∈ IN(i). To use these recurrences as an algorithm, the nodes j ∈ IN(i)

in (4.1) for a node i have to be explicitly identified and the corresponding λjs have to be

substituted. As described in Section 4.3.1 before, there are at most three types of subtrees

rooted at a level `j of T 0: full subtrees of height `i, full subtrees of height `i − 1 and a

non-full complete subtree of height `i.

(1) For a subtree T i that is full and is of height `i and to the left of the node at position tP`i
at level `i:

N(λi, r1, h1) = T (λi, r1, h1) +

`i−1∑
`j=1

(2`i−`j)× T (2`j , r1, h1 − 1). (4.3)
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(2) For a subtree T i that is full and is of height `i − 1 and to the right of the node at position

tP`i at level `i:

N(λi, r1, h1) = T (λi, r1, h1) +

`i−1∑
`j=2

(2`i−`j)× T (2`j−1, r1, h1 − 1). (4.4)

(3) For the only possibly non-full subtree T i for i = (`i, t
P
`i

) of height `i and at position tP`i
at level `i:

N(λi, r1, h1) = T (λi, r1, h1)

+

`i−1∑
`j=2

[(tPi`j − 1)× T (2`j , r1, h1 − 1) + T (λ`j ,P , r1, h1 − 1)

+ (2`i−`j − tPi`j )× T (2`j−1, r1, h1 − 1)]. (4.5)

Dynamic Programming. Computing N(n, r, h) and T (n, r, h) requires computing the

values of N(λi, r1, h1) and T (λi, r1, h1) for some smaller λi, r1 and h1. We use dynamic

programming technique where all values ofN(λi, r1, h1) and T (λi, r1, h1) for smaller λi, r1 and

h1 are pre-computed. The algorithm to compute T (n, r, h) from these pre-computed values

is obtained from (4.2) in a straightforward manner. The algorithm to compute N(n, r, h)

from these pre-computed values is obtained from (4.1). More specifically from either of (4.3)

or (4.5). Level `i of T 0 has tP`i − 1 full subtrees of height `i, (2`0−`i) − tP`i full subtrees of

height `i− 1 and one possibly non-full subtree. For every level in the tree T 0, T (λi, r, h− 1)

is pre-computed once for each of the three types of nodes and used to compute N(n, r, h).

Space and Time Complexity of the Algorithm. Using (4) to compute T (n, r, h) from

the pre-computed values of N(·, ·, ·) requires O(rh) memory operations and multiplications.

Equation (3) shows how N(n, r, h) is related to pre-computed values of T (·, ·, ·). Actual

computation is done using (4.3), (4.4) and (4.5). This requires O(1) memory operations

and a single addition for each of the dlog ne levels of T 0. Hence, the time complexity for

computing T (n, r, h) and then N(n, r, h) from pre-computed values is O(rh+ log n).

These pre-computed values in turn need to be computed. By the form of (4.3), (4.4)

and (4.5) there are log n subtrees to be considered. For each such subtree, O(rh) values need

to be computed and the computation of these will be based on values computed earlier. A
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dynamic programming algorithm proceeds in a bottom-up fashion by computing the O(rh)

values corresponding to smaller sub-trees and then using these to compute the values for

progressively larger sub-trees. This takes a total of O(r2h2 log n + rh log2 n) time. The

space requirement is given by the number of pre-computed values that need to be stored to

compute N(n, r, h). For each of the O(log n) sub-trees, a total of O(rh) values need to be

stored and so the space complexity is O(rh log n).

The above time and space complexities are required for a single set of values of n, r

and h. For a fixed n and r, it may be required to compute the values of N(n, r, h) for all

possible values of h. This would be a typical requirement for a broadcast center which will

have a fixed number of users and for a particular transmission knows the number of revoked

users. The corresponding time and space complexities can be obtained by substituting an

appropriate value for h. In Lemma 5 of Section 4.3.4, we show that h ≤ 2r − 1 which

gives the expressions O(r4 log n + r2 log n) and O(r2 log2 n) for time and space complexities

respectively. For large n and moderate values of r, these are practical complexities.

Further, allowing r to range over all the O(n) possible values leads to O(n4 log n +

n2 log2 n) time and O(n2 log n) space complexities respectively. If we are interested in com-

puting N(i, r, h) for all 2 ≤ i ≤ n and all possible values of r and h, then the time and space

complexities are O(n5 + n3 log n) and O(n3) respectively.

As an example, using this dynamic programming algorithm, we find that for n = 126,

r = 63 and h = 37, the floating point value of N(n, r, h) is 7.44× 1035. Note that computing

such a value would not be possible by direct enumeration. Attempting direct enumeration,

would require considering
(

126
63

)
possible revocation patterns which is way beyond the present

computational capabilities.

4.3.4 Upper Bounds on the Header Length

The header length is an important efficiency parameter of a broadcast encryption scheme.

So, upper bounds on the header length of the SD and CTSD schemes are of practical interest.

A detailed combinatorial analysis of upper bounds on the header length is presented in this

section.

The result below shows that the header length of the CTSD scheme is upper bounded

by 2r − 1.
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Lemma 5. N(λi, r1, h1) = 0 when h1 > 2r1 − 1. T (λi, r1, h1) = 0 when h1 ≥ 2r1 − 1.

Proof. First we show that T (λi, r1, h1) = 0 when h1 ≥ 2r1 − 1 in (4.1). We prove this

from (4.2) by induction on r1. The boundary conditions have been listed in Table 4.2. We

know that, 2`i−1 < λi ≤ 2`i . By induction hypothesis, when h′ > 2r′ − 1 and 1 ≤ r′ < r1,

N(λ2i+1, r
′, h′) = 0. If h′ ≤ 2r′−1, then h1−h′ > 2r1−1−h′ ≥ 2r1−1−2r′+1 = 2(r1−r′).

Then, again by induction hypothesis, N(λ2i+2, r1−r′, h1−h′) = 0. Hence, when h1 ≥ 2r1−1,

T (λi, r1, h1) = 0.

Now, if h1 > 2r1 − 1, the other terms on the right hand side of (4.1) are T (λi, r1, h1 − 1)

where h1 − 1 ≥ 2r1 − 1 for all terms and hence are all 0 as proved above. Hence, when

h1 > 2r1 − 1, N(λi, r1, h1) = 0.

We later show that for sufficiently large n, N(n, r, 2r−1) is positive and also characterize

the minimum n for which this happens. Next, we show that N(n, r, h) is monotonic on n for

fixed r and h.

Lemma 6. Let n1 ≥ n2. If N(n2, r, h) 6= 0 then N(n1, r, h) 6= 0. If T (n2, r, h) 6= 0 then

T (n1, r, h) 6= 0.

Proof. Let T (n2, r, h) 6= 0. From (4.2) we get:

T (n2, r, h) =
r−1∑
r′=1

h∑
h′=0

N(λ1, r
′, h′)×N(λ2, r − r′, h− h′).

Let RH = {(r1, h1) . . . , (rs, hs)} be such that both N(λ1, r
′, h′) and N(λ2, r − r′, h− h′) are

non-zero (and hence N(λ1, r
′, h′) × N(λ2, r − r′, h − h′) is non-zero) when (r′, h′) ∈ RH.

Hence, we can also write:

T (n2, r, h) =
∑

(r′,h′)∈RH

N(λ1, r
′, h′)×N(λ2, r − r′, h− h′).

Since λ1 < n2 (by the structure of T 0 with n2 leaves), hence by induction hypothesis, for any

λ ≥ λ1, N(λ1, r, h) 6= 0 implies N(λ, r, h) 6= 0. Similarly, since λ2 < n2, hence by induction

hypothesis, for any λ ≥ λ2, N(λ2, r, h) 6= 0 implies N(λ, r, h) 6= 0. When there are n1 leaves

in the tree let there be λ′1 leaves in the left subtree and λ′2 leaves in the right subtree of the

root node. Hence, by the construction of T 0, we get λ′1 ≥ λ1 and λ′2 ≥ λ2. In the expression
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for T (n1, r, h), for (r′, h′) ∈ RH, by induction hypothesis, N(λ′1, r
′, h′) and N(λ′2, r−r′, h−h′)

are both non-zero. Hence, for at least (r′, h′) ∈ RH, N(λ′1, r
′, h′) × N(λ′2, r − r′, h − h′) is

non-zero. Thus, T (n1, r, h) 6= 0.

Now, let N(n2, r, h) 6= 0. From (4.1) we get:

N(n2, r, h) = T (n2, r, h) +

n2−2∑
j=1

T (λj, r, h− 1).

Let I = {i1, . . . , it} be the nodes of T 0 (with n2 leaves) such that T (λi, r, h) 6= 0 for i ∈ I.

By induction hypothesis, for any λj < n2 and λi > λj, if T (λj, r, h) 6= 0 then T (λi, r, h) 6= 0.

Hence, we can also write:

N(n2, r, h) = T (n2, r, h) +
∑
i∈I

T (λi, r, h− 1).

Here, T (n2, r, h) 6= 0 implies T (n1, r, h) 6= 0 by the first part of this proof. By the construction

of the tree T 0, λ′i ≥ λi where λ′i is the number of leaves in the subtree rooted at node i of the

tree T 0 for n1 leaves. By induction hypothesis, at least for i ∈ I, since T (λi, r, h − 1) 6= 0,

hence T (λ′i, r, h− 1) 6= 0. Thus, N(n1, r, h) 6= 0.

Now, we prove that if r is not small compared to n, then T (n, r, 2r − 2) = 0.

Lemma 7. For n ≤ 22k+1 and r > 2k, T (n, r, 2r − 2) = 0.

Proof. For T (n, r, 2r−2) in (4.2), let h′ < 2r′−1, then h−h′ = 2r−2−h′ > 2r−2−2r′+1 =

2(r − r′) − 1. Hence by Lemma 5, N(λ2, r − r′, h − h′) = 0. Similarly, if h′ > 2r′ − 1,

N(λ1, r
′, h′) = 0. So, in the expression for T (n, r, 2r − 2), the terms on the right hand side

of (4.2) are 0 if h′ 6= 2r′ − 1. Hence,

T (n, r, 2r − 2) =
r−1∑
r′=1

N(λ1, r
′, 2r′ − 1)×N(λ2, r − r′, 2(r − r′)− 1). (4.6)

Now by induction on λi, we prove that N(λ1, r
′, 2r′−1) = 0 and N(λ2, r−r′, 2(r−r′)−1) =

0. The boundary conditions have been listed in Table 4.2. By induction hypothesis, for

λi ≤ 22m+1 where m < k and r′ > 2m let us assume T (λi, r
′, 2r′ − 2) = 0. In (4.6), let

r′ ≥ r
2

which implies r′ > 2k−1. Hence, for λi ≤ 22k−1, T (λi, r
′, 2r′ − 2) = 0 by the induction



Combinatorial Analysis of the SD and CTSD Methods 79

hypothesis. Also, by Lemma 5, T (λ1, r
′, 2r′ − 1) = 0. Putting these values in (4.1), we

get N(λ1, r
′, 2r′ − 1) = 0. Similarly, for r − r′ ≥ r

2
which implies r − r′ > 2k−1, we get

N(λ2, r − r′, 2(r − r′)− 1) = 0. Hence, from (4.6) T (n, r, 2r − 2) = 0.

Some Insight. Given a revocation pattern, if we revoke one more user from it, that can

result in either increase, decrease or no change in the cover size. An increase in cover size

mostly happens when the newly revoked user is not adjacent to any previously revoked user.

The cover size remains unchanged or decreases when the newly revoked user is adjacent to a

previously revoked user. Decrease in cover size happens when the user in a singleton subset

of the cover is revoked. As the number of revoked users increase, the maximum possible

cover size for that number of revoked users increases up to a certain point. After that the

maximum possible cover size decreases. One may also observe that for n > 2, i.e., `1 ≥ 1,

q0/2 = n − 2`1 . Since 2`1 is even for `1 ≥ 1, hence when n is even q0/2 is even and when n

is odd q0/2 is odd.

Lemma 8. The header length in the CTSD method for n users is at most
⌊
n
2

⌋
irrespective

of the number of revoked users.

Proof. First, we show that N(n, r, h) = 0 for h > n
2

for any r. We prove this by induction

on n. From (4.1) we have:

N(n, r, h) = T (n, r, h) +
n−2∑
i=1

T (λi, r, h− 1)

and hence, T (n, r, h) ≤ N(n, r, h). When λi < n and h− 1 ≥
⌊
n
2

⌋
, N(λi, r, h− 1) = 0. Thus,∑n−2

i=1 T (λi, r, h− 1) = 0. From (4.2) we get:

T (n, r, h) =
r−1∑
r′=1

h∑
h′=0

N(λ1, r
′, h′)×N(λ2, r − r′, h− h′).

When h′ > λ1

2
, N(λ1, r

′, h′) = 0 by induction hypothesis. When h′ ≤ λ1

2
, since h > n

2
,

h− h′ > n
2
− λ1

2
= λ2

2
. Therefore, N(λ2, r − r′, h− h′) = 0 by induction hypothesis. Hence,

N(n, r, h) = 0 for h > n
2

for any r.

Next, we show that the upper bound of
⌊
n
2

⌋
is actually achieved. First let us assume

that n is even and hence q0/2 is even. We construct a revocation pattern such that none of



80 The Complete Tree Subset Difference Scheme and its Analysis

the users are revoked initially. Now, let us form a revocation pattern by revoking one user

from each of the q0/2 subtrees rooted at level 1 with leaves at level 0 and one user each from

subtrees rooted at level 2 with leaves at level 1. Since all the privileged users would form

singleton subsets in the cover for this revocation pattern, hence the header length for the

revocation pattern thus constructed is of size q1 (= n
2
). Now, if we attempt to revoke any

other user, then by pigeonhole principle, one of the sets in the cover gets removed and hence

the header length decreases. Hence, for even n, the maximum header length is n
2
.

For odd n, q0/2 is odd. We construct a revocation pattern similarly by revoking one user

from each of the q0/2 subtrees rooted at level q1 with leaves at level q0 and one user each

from subtrees rooted at level 2 with leaves at level 1. Since q0/2 is odd, there will be one

subtree with leaves at both levels 0 and 1. This subtree is rooted at the node at position

tP2 . For this subtree, only one out of the three users in it is revoked. All the privileged users

other than the one generated from the above subtree would form singleton subsets. Hence

the cover size for the revocation pattern thus constructed is of size q1 (=
⌊
n
2

⌋
). This is again

the maximum header length by the same argument as above.

Hence, the maximum header length is
⌊
n
2

⌋
for n users.

In Lemma 5, it has been shown that the header length of the CTSD scheme is at most

2r − 1. For the special case of the SD method, this bound was proved in [NNL01, NNL02].

This bound is made more specific in Theorem 9 below for the CTSD and hence the SD

method.

Theorem 9. The maximum header length in the CTSD method for n users is min(2r −
1,
⌊
n
2

⌋
, n− r).

Proof. The bounds 2r− 1 and bn/2c have already been shown. We show the bound of n− r
on the header size. The proof of this is similar to the first part of the proof of Lemma 8, i.e.,

we show that N(n, r, h) = 0 for h > n− r.

For λi < n, we have h−1 > n−1−r ≥ λi−r and hence using induction, N(λi, r, h−1) = 0

which implies that T (λi, r, h− 1) is also zero. Again, consider the value of T (n, r, h) and the

recurrence expressing this in terms of N(λ1, r
′, h′) and N(λ2, r−r′, h−h′), where λ1+λ2 = n.

If h′ > λ1 − r′, then using induction, N(λ1, r
′, h′) = 0. So, suppose that h′ ≤ λ1 − r′. Using

h > n − r, we have h − h′ > (n − λ1) − (r − r′) = λ2 − (r − r′) and again using induction,

N(λ2, r − r′, h− h′) = 0.
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This shows that T (n, r, h) = 0 which combined with the fact that the other relevant

values of T (·, ·, ·) are zero, shows that N(n, r, h) = 0 for h > n− r.

Figure 4.6: Plot showing the variation of the maximum header length with the ratio r/n.

The bound given by Theorem 9 gives a complete picture as portrayed in Figure 4.6. If

r ≤ n/4, then the bound 2r − 1 is appropriate; if n/4 < r ≤ n/2, then the bound bn/2c
is appropriate; and for r > n/2, the bound (n − r) is appropriate. The last bound has an

important consequence. If the number of revoked users is greater than n/2, it may appear

that using individual transmission to the privileged users would be better than using the

CTSD method. But, The bound of (n − r) on the header size shows that this is not true.

Using the CTSD method is never worse than individual transmission to privileged users.

The bound of Theorem 9 holds for the SD scheme, i.e., for full trees. The only previously

proved upper bound for the SD scheme is 2r − 1. The other two bounds do not appear to

have been reported with proofs in the literature. In fact, there does not seem to be an easy

way to argue about these bounds without using the recurrences that we have derived.
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The Value of nr. Fix a value for r and denote by nr the minimum value of n such that

there exists an (n, r)-revocation pattern giving rise to a header of size 2r − 1. Lemma 5

shows that the upper bound on the header length is 2r − 1. By characterizing nr we show

that this upper bound on h is actually achieved.

Lemma 10. In the CTSD method, 2t−1 < r ≤ 2t if and only if 22t < nr ≤ 22t+1.

Proof. We first prove that if 2t−1 < r ≤ 2t, then 22t < nr ≤ 22t+1 (by showing that

N(22t, r, 2r−1) = 0 and N(22t+1, r, 2r−1) 6= 0). Although by Lemma 5, T (22t+1, r, 2r−1) =

0, we show that T (22t, r, 2r − 2) 6= 0 and hence at least one of the terms on the right hand

side of (4.1) is non-zero and hence N(22t+1, r, 2r − 1) 6= 0. From (4.2) we get:

T (22t, r, 2r − 2) =
r−1∑
r′=1

2r−2∑
h′=0

N(22t−1, r′, h′)×N(22t−1, r − r′, 2r − 2− h′).

When h′ > 2r′−1, N(22t−1, r′, h′) = 0 by Lemma 5. Similarly, when h′ < 2r′−1, 2r−2−h′ >
2r − 2− 2r′ + 1 = 2(r − r′)− 1 and hence N(22t−1, r − r′, 2r − 2− h′) = 0. Hence, we get

T (22t, r, 2r − 2) =
r−1∑
r′=1

N(22t−1, r′, 2r′ − 1)×N(22t−1, r − r′, 2(r − r′)− 1).

When r′ = d r
2
e (2t−2 < r′ ≤ 2t−1) by induction hypothesis, nr′ ≤ 22t−1 and hence by

Lemma 6, both N(22t−1, r′, 2r′ − 1) and N(22t−1, r − r′, 2(r − r′) − 1) are non-zero. Hence,

T (22t, r, 2r − 2) 6= 0 which implies N(22t+1, r, 2r − 1) 6= 0. Since T (nr, r, 2r − 1) = 0

and T (22t−1, r, 2r − 2) = 0 hence, nr < 22t+1. Next, we show that N(22t, r, 2r − 1) = 0. By

Lemma 5, T (22t, r, 2r−1) = 0. By Lemma 7, for all λi ≤ 22t−1 and r > 2t−1, T (λi, r, 2r−2) =

0 and hence N(22t, r, 2r − 1) = 0.

Next, we prove that for some 22t < nr ≤ 22t+1, the corresponding r is such that 2t−1 <

r ≤ 2t. Let the corresponding r be such that 2t
′−1 < r ≤ 2t

′
where t 6= t′. Then by the

argument above, we know that 22t′ < nr ≤ 22t′+1 which is a contradiction since nr is unique

for a given r by definition. Hence the corresponding r is such that 2t−1 < r ≤ 2t.

Theorem 11 below characterizes nr.

Theorem 11. In the CTSD method, let 2t−1 < r ≤ 2t. When r ≤ 2t−1 + 2t−2, let r1 = 2t−2

and r0 = r − 2t−2 and hence,

nr = nr0 + 22t−2 + 22t−1
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Table 4.3: Listing a few values of r and their corresponding nr.

r 1 2 3 4 5 6 7 8

nr 2 6 18 22 66 70 82 86

and when r > 2t−1 + 2t−2, let r0 = 2t−1 and r1 = r − 2t−1 and hence,

nr = 22t−1 + nr1 + 22t−1.

Proof. From Lemma 10 we know that for 2t−1 < r ≤ 2t, 22t < nr ≤ 22t+1. For such an nr,

λ1 = nr − 22t−1 and λ2 = 22t−1. From (4.1) we get

N(nr, r, 2r − 1) = T (nr, r, 2r − 1) + T (nr − 22t−1, r, 2r − 2) + T (22t−1, r, 2r − 2)

+
nr−2∑
i=3

T (λi, r, 2r − 2). (4.7)

From Lemma 5 we know that T (nr, r, 2r − 1) = 0. From Lemma 7 we know that when

r > 2t−1 and λi ≤ 22t−1, T (λi, r, 2r − 2) = 0. Hence the only non-zero component is

T (nr − 22t−1, r, 2r − 2). From (4.2) we get

N(nr, r, 2r − 1) = T (nr − 22t−1, r, 2r − 2) =
r−1∑
r′=1

2r−2∑
h′=0

N(λ3, r
′, h′)×N(λ4, r − r′, 2r − 2− h′).

By an argument similar to the one used in the proof for Lemma 10, we get

N(nr, r, 2r− 1) = T (nr− 22t−1, r, 2r− 2) =
r−1∑
r′=1

N(λ3, r
′, 2r′− 1)×N(λ4, r− r′, 2(r− r′)− 1).

By the construction of T 0 and the fact that T 2 does not have any revoked user, i.e.

T (22t−1, r, 2r − 2) = 0, it can be seen that 22t−2 < λ3 ≤ 22t−1 and 22t−2 ≤ λ4 < 22t−1.

When r ≤ 2t−1 +2t−2, let r′ = r0 = r−2t−2 and r−r′ = r1 = 2t−2. From the construction

of the complete tree T 0 for (nr0 + 22t−2 + 22t−1) users, it can be seen that λ3 = nr0 and

λ4 = 22t−2. Hence, N(λ3, r
′, 2r′ − 1) = N(nr0 , r0, 2r0 − 1) 6= 0 by the definition of nr.

Also, from Lemma 6 and Lemma 10 we know that for r = 2t (consequently nr < 22t+1)

and λ ≥ 22t+1, N(λ, r, 2r − 1) 6= 0. So for r1 = r − r′ = 2t−2 and λ4 = 22(t−2)+2 we
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get, N(λ4, r − r′, 2(r − r′) − 1) = N(22t−2, r1, 2r1 − 1) 6= 0. Hence, for r ≤ 2t−1 + 2t−2,

N(nr, r, 2r − 1) 6= 0 where nr = nr0 + 22t−2 + 22t−1.

Now, we show that for 2t−1 < r ≤ 2t−1 + 2t−2 (r0 = r − 2t−2 and r1 = 2t−2), N(nr −
1, r, 2r−1) = 0. In the tree T 0 for (nr0 +22t−2 +22t−1)−1 users, λ3 = nr0−1 and λ4 = 22t−2.

Since there are nr0 − 1 users in T 3, at most r0 − 1 revoked users can be accommodated in

T 3 so that N(λ3, r
′, 2r′ − 1) 6= 0 and hence r′ = r0 − 1 and r − r′ = 2t−2 + 1. By Lemma 10

for r − r′ > 2t−2, nr−r′ > 22t−2. But, λ4 = 22t−2 and hence N(λ4, r − r′, 2(r − r′) − 1) = 0.

Consequently, we get N(nr − 1, r, 2r − 1) = 0.

When r > 2t−1 +2t−2, let r′ = r0 = 2t−1 and r−r′ = r1 = r−2t−1. From the construction

of the complete tree T 0 for (22t−1 + nr1 + 22t−1) users, it can be seen that λ3 = 22t−1 and

λ4 = nr1 . Hence, N(λ4, r − r′, 2(r − r′) − 1) = N(nr1 , r1, 2r1 − 1) 6= 0 by the definition

of nr. From Lemma 6 and Lemma 10 we know that for r = 2t (consequently nr < 22t+1)

and λ ≥ 22t+1, N(λ, r, 2r − 1) 6= 0. So for r0 = r′ = 2t−1 and λ3 = 22(t−1)+1 we get,

N(λ3, r
′, 2r′ − 1) = N(22t−1, r0, 2r0 − 1) 6= 0. Hence, for r > 2t−1 + 2t−2, N(nr, r, 2r− 1) 6= 0

where nr = 22t−1 + nr1 + 22t−1.

Now, we show that for r > 2t−1+2t−2, i.e., r0 = 2t−1 and r1 = r−2t−1, N(nr−1, r, 2r−1) =

0. In the tree T 0 for (22t−1 + nr1 + 22t−1)− 1 users, λ3 = 22t−1 and λ4 = nr1 − 1. Since there

are nr1 − 1 users in T 4, at most r1 − 1 revoked users can be accommodated in T 4 so that

N(λ4, r − r′, 2(r − r′) − 1) 6= 0 and hence r − r′ = r1 − 1 and r′ = 2t−1 + 1. By Lemma 10

for r′ > 2t−1, nr′ > 22t−1. But, λ3 = 22t−1 and hence N(λ3, r
′, 2r′ − 1) = 0. Consequently,

we get N(nr − 1, r, 2r − 1) = 0.

From Theorem 11 it easily follows that for the SD method, for any r in the range 2t−1 <

r ≤ 2t, nr = 22t+1. This has been earlier proved in [MMW09].

4.3.5 Generating Function

For the SD scheme the number of users is a power of 2. In this case, we show that the

recurrences lead to a generating function for the sequence N(n, r, h). Let the number of

users be n = 2`0 and hence the tree T 0 is full and of height `0. For a full tree T 0, all subtrees

T i are full and at level `, there are 2`0−` subtrees with 2` leaves in each.

We define T`(r, h) = T (2`, r, h) and N`(r, h) = N(2`, r, h). Then the recurrences (4.1)
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and (4.2) for counting the number of revocation patterns become.

N`0(r, h) = T`0(r, h) +

`0−1∑
`=1

(
2`0−` × T`(r, h− 1)

)
. (4.8)

T`0(r, h) =
r−1∑
r1=1

h∑
h1=0

N`0−1(r1, h1)×N`0−1(r − r1, h− h1). (4.9)

The following result states the form of the generating function.

Theorem 12. The generating function for the sequence N`0(r, h) of numbers defined in (4.8)

above, is given by X`0(x, y) where

X`0(x, y) =
(
X`0−1(x, y)− xy2`0−1

)2

+ xy2`0 + 2`0x2y2`0−1

+

`0−1∑
`=1

(
2`0−`xy2`0−2` ×

(
X`−1(x, y)− xy2`−1

)2
)
. (4.10)

Proof. Let X`0(x, y) (respectively Y`0(x, y)) be the generating function for the sequence

N`0(2`0 − r, h) (respectively T`0(2`0 − r, h)).

X`0(x, y) =
2`0∑
r=0

2`0−r∑
h=0

N`0(r, h)xhy2`0−r Y`0(x, y) =
2`0∑
r=0

2`0−r∑
h=0

T`0(r, h)xhy2`0−r (4.11)

By definition, when `0 = 0, Y0(x, y) = 0 and X0(x, y) = 1+xy and when `0 = 1, Y1(x, y) = 1

and X1(x, y) = 1 + 2xy + xy2. Now, we note that:

X2
`0−1(x, y) =

2`0−1∑
r1=0

2`0−1−r1∑
h1=0

N`0−1(r1, h1)xh1y2`0−1−r1


×

2`0−1∑
r2=0

2`0−1−r2∑
h2=0

N`0−1(r2, h2)xh2y2`0−1−r2


=

N`0−1(0, 1)xy2`0−1

+
2`0−1∑
r1=1

2`0−1−r1∑
h1=0

N`0−1(r1, h1)xh1y2`0−1−r1


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×

N`0−1(0, 1)xy2`0−1

+
2`0−1∑
r2=1

2`0−1−r2∑
h2=0

N`0−1(r2, h2)xh2y2`0−1−r2


(4.12)

Putting N`0−1(0, 1) = 1 in (4.12) we get:

X2
`0−1(x, y) =

2`0−1∑
r1=1

2`0−1−r1∑
h1=0

N`0−1(r1, h1)xh1y2`0−1−r1


×

2`0−1∑
r2=1

2`0−1−r2∑
h2=0

N`0−1(r2, h2)xh2y2`0−1−r2


+xy2`0−1

2`0−1∑
r2=1

2`0−1−r2∑
h2=0

N`0−1(r2, h2)xh2y2`0−1−r2


+xy2`0−1

2`0−1∑
r1=1

2`0−1−r1∑
h1=0

N`0−1(r1, h1)xh1y2`0−1−r1


+x2y2`0 (4.13)

Let

C`0(x, y) =

2`0−1∑
r1=1

2`0−1−r1∑
h1=0

N`0−1(r1, h1)xh1y2`0−1−r1


×

2`0−1∑
r2=1

2`0−1−r2∑
h2=0

N`0−1(r2, h2)xh2y2`0−1−r2


=

2`0∑
r=2

2`0−r∑
h=0

xhy2`0−r
r−1∑
r1=1

h∑
h1=0

N`0−1(r1, h1)×N`0−1(r − r1, h− h1). (4.14)

Now we take a closer look at the generating function Y`0(x, y) of (4.11):

Y`0(x, y) =
2`0∑
r=0

2`0−r∑
h=0

T`0(r, h)xhy2`0−r
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=
2`0∑
r=0

2`0−r∑
h=0

xhy2`0−r
r−1∑
r1=1

h∑
h1=0

N`0−1(r1, h1)×N`0−1(r − r1, h− h1)

=
2`0∑
r=0

2`0−r∑
h=0

xhy2`0−r
r−1∑
r1=1

h∑
h1=0

N`0−1(r1, h1)×N`0−1(r − r1, h− h1)

=
2`0∑
r=2

2`0−r∑
h=0

xhy2`0−r
r−1∑
r1=1

h∑
h1=0

N`0−1(r1, h1)×N`0−1(r − r1, h− h1)

+
1∑
r=0

2`0−r∑
h=0

xhy2`0−r
r−1∑
r1=1

h∑
h1=0

N`0−1(r1, h1)×N`0−1(r − r1, h− h1)

=
2`0∑
r=2

2`0−r∑
h=0

xhy2`0−r
r−1∑
r1=1

h∑
h1=0

N`0−1(r1, h1)×N`0−1(r − r1, h− h1) (4.15)

In (4.15) above,

1∑
r=0

2`0−r∑
h=0

xhy2`0−r
r−1∑
r1=1

h∑
h1=0

N`0−1(r1, h1)×N`0−1(r − r1, h− h1) = 0.

The minimum value of r1 or r − r1 is 1. The maximum value for r1 or r − r1 such that

xhy2`0−r will have a non-zero coefficient N`0−1(r1, h1)×N`0−1(r − r1, h− h1) is 2`0−1.

Hence, C`0(x, y) = Y`0(x, y).

Let A`0−1(x, y) =
(∑2`0−1

r=1

∑2`0−1−r
h=0 N`0−1(r, h)xhy2`0−1−r

)
. It can be easily seen that

X`0−1(x, y) =
2`0−1∑
r=0

2`0−1−r∑
h=0

N`0−1(r, h)xhy2`0−1−r

=
2`0−1∑
h=0

N`0−1(0, h)xhy2`0−1

+
2`0−1∑
r=1

2`0−1−r∑
h=0

N`0−1(r, h)xhy2`0−1−r

= xy2`0−1

+ A`0−1(x, y) (4.16)

Putting the value of A`0−1(x, y) from (4.16) and the value of Y`0 from (4.15) into (4.13), we

get:

Y`0(x, y) = X2
`0−1(x, y)− 2xy2`0−1

X`0−1(x, y)− x2y2`0
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=
(
X`0−1(x, y)− xy2`0−1

)2

. (4.17)

Now, to find another relation between the generating functions X`0(x, y) and Y`0(x, y),

we multiply both sides of (4.8) with xhy2`0−r and sum both sides over 2 ≤ r ≤ 2`0 and

0 ≤ h ≤ 2`0 :

∑2`0

r=2

∑2`0−r
h=1 N`0(r, h)xhy2`0−r =

2`0∑
r=2

2`0−r∑
h=1

T`0(r, h)xhy2`0−r

+
2`0∑
r=2

2`0−r∑
h=1

`0−1∑
`=1

(
2`0−`xhy2`0−r × T`(r, h− 1)

)
.

(4.18)

Adding the values of N`0(r, h) and T`0(r, h)(= 0) for r < 2 and h ≥ 1 to both sides of (4.18)

above, we get:

∑2`0

r=0

∑2`0−r
h=1 N`0(r, h)xhy2`0−r = xy2`0 + 2`0x2y2`0−1 +

2`0∑
r=0

2`0−r∑
h=1

T`0(r, h)xhy2`0−r

+
2`0∑
r=0

2`0−r∑
h=1

`0−1∑
`=1

(
2`0−`xhy2`0−r × T`(r, h− 1)

)
.

(4.19)

Since for h = 0, N`0(2`0 , 0) = 1 (T`0(2`0 , 0) = 1) and for any r < 2`0 , N`0(r, 0) = 0 (T`0(r, 0) =

0), from (4.19) above,

X`0(x, y)− 1 = xy2`0 + 2`0x2y2`0−1 + Y`0(x, y)− 1

+

`0−1∑
`=1

2`0−` ×
2`0∑
r=0

2`0−r∑
h=1

T`(r, h− 1)xhy2`0−r


= xy2`0 + 2`0x2y2`0−1 + Y`0(x, y)− 1

+

`0−1∑
`=1

2`0−`xy2`0−2` ×
2`∑
r=0

2`0−r−1∑
h=0

T`(r, h)xhy2`−r

 . (4.20)
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Since 2`0 − r − 1 > 2` − r for 1 ≤ ` ≤ `0 − 1, hence from (4.20) we get:

X`0(x, y) = xy2`0 + 2`0x2y2`0−1 + Y`0(x, y) +
∑`0−1

`=1

(
2`0−`xy2`0−2` × Y`(x, y)

)
. (4.21)

Combining (4.17) and (4.21), we get:

X`0(x, y) =
(
X`0−1(x, y)− xy2`0−1

)2

+ xy2`0 + 2`0x2y2`0−1

+

`0−1∑
`=1

(
2`0−`xy2`0−2` ×

(
X`−1(x, y)− xy2`−1

)2
)
. (4.22)

A similar generating function was found by Park and Blake in [PB06]. It was directly

derived based on the structural properties of the tree. We have taken a different approach

of first finding the recurrence relations for the sequence N(n, r, h) and then deriving the

generating function from it. (It is to be noted here that these generating functions are for

the same sequences of N(n, r, h) - only having different closed forms.)

4.4 Expected Header Length in the CTSD and SD

Methods

In the previous section, we have studied upper bounds on the header length. In practice,

however, it is of interest to know the average header length. This will provide a broadcast

center with valuable information about the average communication bandwidth.

Given the number n of users such that 2`0−1 < n ≤ 2`0 , and the number r of revoked

users, there are
(
n
r

)
possible revocation patterns. Each such revocation pattern gives rise

to a subset cover for the privileged users and hence a header in the ciphertext C. We now

obtain an algorithm to compute the expected header length for a given n and r in the CTSD

scheme. In particular this algorithm applies to the SD method and is of significant practical

interest.

The Random Experiment.



90 The Complete Tree Subset Difference Scheme and its Analysis

We consider the random experiment where r out of the n initially un-revoked

leaves of the tree T 0 are chosen uniformly at random without replacement and

revoked.

This gives rise to a random (n, r)-revocation pattern and hence a corresponding random

subset cover Sc and its header length h. Let Xn,r be the random variable taking the value of

the header length h due to the (n, r)-revocation pattern of the above experiment. Next, we

associate a random variable with each node of the tree T 0. Let X i
n,r ∈ {0, 1} be a random

variable associated with node i of T 0. X i
n,r = 1 denotes the event that the cover contains a

subset Si,j = T i \T j where j is some node in the subtree T i. In other words, when X i
n,r = 1

we say that node i generates a subset for the cover. Similarly, X i
n,r = 0 denotes the event

that there is no subset Si,j in the cover. Since i is also represented by (`i, ti), X
i
n,r will also

be written as X`i,ti
n,r whenever the nodes need to be viewed level-wise and is appropriate in

the context.

The Expected Header Length. Since the header constitutes of subsets Si,j, each rooted

at a different node i, it is easy to see that, Xn,r = X0
n,r +X1

n,r + . . .+Xn−2
n,r . By linearity of

expectation:

E[Xn,r] = E[X0
n,r] + E[X1

n,r] + . . .+ E[Xn−2
n,r ]. (4.23)

Since all the random variables X t
n,r follow a Bernoulli distribution with probability Pr[X t

n,r =

1], we get:

E[Xn,r] = Pr[X0
n,r = 1] + Pr[X1

n,r = 1] + . . .+ Pr[Xn−2
n,r = 1]. (4.24)

Calculating each of these n−1 probability terms individually would give the expected header

length. However, the running time can be optimized. Recall that P0 is the unique path from

the root to a leaf node which contains the nodes at which the non-full subtrees of T 0 are

rooted. As we had discussed before, the subtrees T i for which i is not on P0 are full. For

a level ` of T 0 the subtrees to the left of P0 are all full and have equal number of leaves.

Hence, Pr[X i
n,r = 1] needs to be computed only once for every such node i to the left of P0

at level `. Similarly for nodes to the right of P0. Hence, efficient computation of E[Xn,r]

using (4.24), boils down to finding Pr[Xj
n,r = 1] level-wise. There are q` internal nodes at all

levels ` ≥ 2. At level 1, there are n − 2`1 = q0/2 internal nodes. The other q1 − (n − 2`1)



Expected Header Length in the CTSD and SD Methods 91

nodes at level 1 are leaves. Hence, (4.24) can also be written as:

E[Xn,r] =

`0∑
`=2

q∑̀
t=1

Pr[X`,t
n,r = 1] +

q0/2∑
t=1

Pr[X1,t
n,r = 1]. (4.25)

When r = 0, there is only one set N in the cover Sc and hence, E[Xn,0] = 1. Here on, we

will consider r ≥ 1.

Pr[X`i,ti
n,r = 1] for the Node i of T i. The sibling subtree T s of node i may be T i−1 on

its left or T i+1 on its right. To find the probability that node i generates a subset Si,j for

the cover, we observe that the event X i
n,r = 1 occurs when the sibling subtree T s of i has

at least one revoked node and exactly one of the subtrees of i has at least one revoked user.

We define the events Ri
sb, R

i
lt and Ri

rt for node i with respect to our random experiment.

Ri
sb denotes the event that the number of revoked nodes in the sibling subtree of T i is non-

zero. Ri
lt (respectively Ri

rt) denotes the event that the number of revoked nodes in the left

(respectively right) subtree T 2i+1 (respectively T 2i+2) is non-zero.

Lemma 13. For an internal non-root node i in T 0, the probability that the cover Sc contains

a set of the form T i \ T j where j is some node in the subtree T i, is given by Pr[X i
n,r = 1]

where

Pr[X i
n,r = 1] = Pr[Ri

sb ∧Ri
rt ∧Ri

lt] + Pr[Ri
sb ∧Ri

lt ∧Ri
rt].

For the root node 0, this probability is given by Pr[X0
n,r = 1] where

Pr[X0
n,r = 1] = Pr[R0

lt] + Pr[R0
rt].

Proof. For a non-root node i, a subset Si,j occurs in the cover when there is at least one

revoked user in exactly one of the subtrees T 2i+1 or T 2i+2 of i. The sibling subtree T s

should also have at least one revoked user. Hence the event X i
n,r = 1 can be divided into

two mutually exclusive and exhaustive events. First, when the sibling subtree and the right

subtree of T i have at least one revoked user in each and the left subtree does not have any:

(Ri
sb ∧ Ri

rt ∧ Ri
lt). Second, when the sibling subtree and the left subtree of T i have at least

one revoked user in each and the right subtree does not have any: (Ri
sb ∧Ri

lt ∧Ri
rt).

The root node 0 does not have any sibling subtree. Hence the event X0
n,r = 1 occurs

when all revoked users are either in the left or right subtree of 0. Hence the lemma.
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p

i

sb

2i+ 1

lt

2i+ 2

rt

p

i

sb

2i+ 1

lt

2i+ 2

rt

Figure 4.7: Figures demonstrating the events Ri
sb∧Ri

rt∧Ri
lt and Ri

sb∧Ri
lt∧Ri

rt respectively.
The triangles represent subtrees rooted at the respective nodes. Green denotes that the
subtree has no revoked user in it. Red denotes that the subtree has at least one revoked user
in it. The sizes of the subtrees are not to the scale of the number of users in them.

To simplify the computation of these probabilities in Lemma 13, we define a new notation

ηr(α, β) to indicate the probability of choosing r elements from a set of α elements such that

β out of these α elements are never chosen. So, if β ≥ α − r + 1, then ηr(α, β) = 0 by

definition. Else, for 0 < β < α− r + 1,

ηr(α, β) =

(
α−β
r

)(
α
r

) =

(
1− β

α

)(
1− β

α− 1

)(
1− β

α− 2

)
. . .

(
1− β

α− r + 1

)
. (4.26)

Theorem 14. For an internal non-root node i of T 0 whose sibling subtree has λs leaves,

Pr[X i
n,r = 1] = ηr(n, λ2i+1) + ηr(n, λ2i+2)− ηr(n, λs + λ2i+1)− ηr(n, λs + λ2i+2)
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− 2ηr(n, λ2i+1 + λ2i+2) + 2ηr(n, λs + λ2i+1 + λ2i+2). (4.27)

For the root node 0 of T 0,

Pr[X0
n,r = 1] = ηr(n, λ1) + ηr(n, λ2). (4.28)

Proof. The following two expressions can be obtained by usual probability arguments.

Pr[Ri
sb ∧Ri

rt ∧Ri
lt] = Pr[Ri

lt]− Pr[Ri
sb ∧Ri

lt]− Pr[Ri
rt ∧Ri

lt] + Pr[Ri
sb ∧Ri

rt ∧Ri
lt];

Pr[Ri
sb ∧Ri

lt ∧Ri
rt] = Pr[Ri

rt]− Pr[Ri
sb ∧Ri

rt]− Pr[Ri
lt ∧Ri

rt] + Pr[Ri
sb ∧Ri

lt ∧Ri
rt].

}
(4.29)

Next, we deduce the expression for finding Pr[Ri
sb ∧ Ri

lt ∧ Ri
rt] in terms of ηr(·, ·). This is

the probability of choosing r elements from n such that none of the users in the subtrees

T 2i+1, T 2i+2 or the sibling subtree T s of i are chosen. Consequently, Pr[Ri
sb ∧ Ri

lt ∧ Ri
rt] =

ηr(n, λs + λ2i+1 + λ2i+2). The other probabilities on the right hand sides of (4.29) can be

found similarly by excluding the users in the respective subtrees. From Lemma 13, and

substituting the probabilities on the right hand sides of (4.29) with their corresponding

ηr(·, ·) equivalents, we get:

Pr[X i
n,r = 1] = ηr(n, λ2i+1) + ηr(n, λ2i+2)− ηr(n, λs + λ2i+1)− ηr(n, λs + λ2i+2)

− 2ηr(n, λ2i+1 + λ2i+2) + 2ηr(n, λs + λ2i+1 + λ2i+2). (4.30)

For the root node, Pr[X0
n,r = 1] = Pr[R0

lt] + Pr[R0
rt] where Pr[R0

lt] = ηr(n, λ1) and Pr[R0
rt] =

ηr(n, λ2). Hence,

Pr[X0
n,r = 1] = ηr(n, λ1) + ηr(n, λ2). (4.31)

The Algorithm for Computing E[Xn,r]. Now that we have the expressions to find

Pr[X i
n,r = 1] for all i ∈ {0, . . . , n − 2} in Theorem 14, the values for λs, λ2i+1 and λ2i+2 for

node i have to substituted appropriately in (4.30) and (4.31). By doing these substitutions

for nodes at each level ` ∈ {1, . . . , `0} of T 0, we get the complete algorithm. For level

` ∈ {2, . . . , `0 − 1}, this computation is done in four steps: (1) for the node tP` of level `,
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ALGORITHM 1: Algorithm to compute E[Xn,r]

Input: n, r.

Output: E[Xn,r].

`0 = dlog ne;
tP1 = n− 2`0−1;
Compute Pr[X1,t

n,r = 1] using (4.30);
x = tP1 × Pr[X1,t

n,r = 1];
for ` = 2 to `0 − 1 do

tP` =
⌈
(n− 2`0−1)/2`−1

⌉
;

Compute Pr[X`,t
n,r = 1] for the node at tP` , its sibling, all nodes on the left and

right of tP` using (4.30);
Add Pr[X`,t

n,r = 1] for each node (`, t) to x;
end
Compute Pr[X0

n,r = 1] using (4.31);
x = x+ Pr[X0

n,r = 1];
E[Xn,r] = x;

(2) its sibling subtree, (3) all full subtrees to the left of the above two subtrees, and (4) all

full subtrees to the right of the two subtrees in 1 and 2. The subtree at position tP` at level

` is the only possible non-full subtree for level ` and is of height `. If tP` is odd, its sibling

subtree is full and of height `−1. If tP` is even, its sibling subtree is full and of height `. The

subtree at node tP`−1 of level ` − 1 is always a subtree of the tree rooted at node tP` of level

`. When tP`−1 is odd, the right subtree of the tree rooted at node tP` of level ` is full. When

tP`−1 is even, the left subtree of the tree rooted at node tP` of level ` is full. For the root node

0 and the nodes at level 1, the substitutions are more simple. A pseudo-code for computing

the expected header length is given as Algorithm 1.

To analyze the running time of the algorithm, we observe that each computation of

ηr(α, β) involves O(r) multiplications and there are a constant number of computations of

ηr(α, β) for each level of the tree. Hence, the algorithm requires O(r log n) multiplications

and O(1) space.

Remarks.

Simulation method for estimating the expected header length: Suppose it is de-

sired to obtain an idea of the average header length for n users of which r are revoked.

One can choose m random revocation patterns. For each such pattern, the actual
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header generation algorithm is executed and the header size is obtained. The average

header size over the m patterns provides an idea of the average header length. This

method, however, is less efficient than our algorithm to compute the expected header

length. For each of the m revocation patterns, the simulation will have to construct the

Steiner Tree to compute the generated subsets. Each such run will require Ω(r2 log n)

memory accesses and O(n) space for finding the cover and hence the header length.

In comparison, our algorithm requires O(r log n) multiplications and O(1) space and

finds the exact header length. Further, it is simpler to implement.

On the other hand, there is a situation where the simulation method may be useful. For

the probability analysis, it is usual to assume that revocations take place uniformly. In

practice, though, this may not be true. For non-uniform distributions, mathematical

analysis may not be possible. For such situations, there is no other option but to

use the simulation method to get an idea of the average header length. Additionally,

simulations may provide more information about the probability distribution than just

the average header length.

Approximation: In [PB06] a formula is given for the expected header length. However,

they mentioned that their equations were “complex to compute and difficult to gain

insight from”. Consequently, they went forward to find approximations for the same.

In contrast, our algorithm computes the exact value of the expected header length.

The Park-Blake approximations are quite close to the true values of the expected

header lengths with the approximation factors varying over the different values of r

and n. The exact algorithm that we provide is simpler to understand and implement.

Also, [PB06] work only with the SD scheme and so their results do not apply when the

number of users is not a power of two.

We have implemented our algorithm to compute the expected header length. Table 4.4 shows

that as r goes above a certain minimum, the expected header length of the CTSD method

is significantly better than the SD method. To summarize, the CTSD algorithm always

gives better transmission efficiency and its cumulative improvement over many messages is

significant on the bandwidth. Since replacing the SD algorithm with the CTSD scheme can

be done with very little additional cost the CTSD algorithm should be the more efficient

and practical choice.
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Table 4.4: The expected header lengths for the SD and CTSD schemes for different n and
r and the number of extra bytes needed per message of broadcast. Here we assume each
session key is 128 bits long. The additional number of bytes required by the SD scheme is
computed as 16 times the difference in header length of the two schemes.

r n < 2`0 (CTSD) CTSD E[Xn,r] n = 2`0 (SD) SD E[Xn,r] Extra KBytes

102 219 + 1 124.49 220 124.50 0.001KB
102 219 + 218 124.49 220 124.50 0.001KB
103 219 + 1 1242.49 220 1243.80 0.021KB
103 219 + 218 1243.36 220 1243.80 0.007KB

5× 103 219 + 1 6159.94 220 6192.74 0.525KB
5× 103 219 + 218 6181.80 220 6192.74 0.175KB

104 219 + 1 12188.73 220 12319.86 2.098KB
104 219 + 218 12276.12 220 12319.86 0.700KB
105 219 + 1 98555.30 220 111451.58 206.340KB
105 219 + 218 107134.01 220 111451.58 69.081KB

105 223 + 1 122870.35 224 123690.49 13.122KB
105 223 + 222 123417.07 224 123690.49 4.375KB
106 223 + 1 1082115.11 224 1163305.89 1299.056KB
106 223 + 222 1136173.35 224 1163305.89 434.128KB
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4.4.1 Asymptotic Analysis of the Expected Header Length for the

SD Method

It is of interest to find the maximum possible value of the expected header length. We carry

out this task for full binary trees. In this case, the CTSD method becomes the SD method.

For n = 2`0 , for any internal node i ∈ {0, . . . , n− 2}, λ2i+1 = λ2i+2 = 2`i−1. For any node

at level `i > 0, λs = 2`i . Substituting these values for a node (`, t), (4.30) becomes:

Pr[X`,t
n,r = 1] = 2[ηr(n, 2

`−1)− ηr(n, 2× 2`−1)− ηr(n, 3× 2`−1) + ηr(n, 4× 2`−1)]. (4.32)

This probability is independent of t. In other words, the probability of generating a subset

for the cover is equal for all nodes at level `. Hence, we define the following:

Definition 4. B
(`)
n,r: Let ` (1 ≤ ` ≤ `0) be a level number of the tree T 0 and n = 2`0. B

(`)
n,r

is defined as Pr[X`,t
n,r = 1] of (4.32) for the node (`, t) of T 0. Hence,

B(`)
n,r = 2[ηr(n, 2

`−1)− ηr(n, 2× 2`−1)− ηr(n, 3× 2`−1) + ηr(n, 4× 2`−1)].

Note that by this definition, for the only node (the root node) at level `0, B
(`0)
n,r =

2ηr(n, 2
`0−1) which is consistent with (4.31) for n = 2`0 . Hence, we define the following:

Definition 5. Hn,r: For a given n = 2`0 and r, the expected header length Hn,r due to the

subset cover algorithm of the CSD scheme is defined as:

Hn,r = E[Xn,r] =

`0∑
`=1

2`0−`B(`)
n,r.

Definition 6. Dn,r: For a given n = 2`0, the difference between the expected header lengths

for the number of revoked users being r and r − 1 is defined as Dn,r. Hence,

Dn,r = Hn,r −Hn,r−1.

We further observe that:

Hn,r = Hn,r−1 +Dn,r

= Hn,r−2 +Dn,r +Dn,r−1
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= Hn,r−3 +Dn,r +Dn,r−1 +Dn,r−2

= . . .

= H1 +
r∑
i=2

Dn,i

= 1 +
r∑
i=2

Dn,i. (4.33)

Using the definition of B
(`)
n,r we also get:

Dn,r = Hn,r −Hn,r−1

=

`0∑
`=1

2`0−`
(
B(`)
n,r −B

(`)
n,r−1

)
. (4.34)

In (4.34), ηr(n,m)− ηr−1(n,m) can be rewritten as follows:

ηr(n,m)− ηr−1(n,m) =
(n−m)r

(n)r
−

(n−m)r−1

(n)r−1

=
(n−m)(n−m− 1) . . . (n−m− r + 2)

n(n− 1) . . . (n− r + 2)
×

(
n−m− r + 1

n− r + 1
− 1

)

=
(n−m)(n−m− 1) . . . (n−m− r + 2)

n(n− 1) . . . (n− r + 2)
× −m
n− r + 1

=
(n−m)r−1

(n)r−1

× −m
n− r + 1

= −ηr−1(n,m)× m

n− r + 1
. (4.35)

Hence from (4.34) and (4.35) we get:

Dn,r+1 =

`0∑
`=1

2`0−`
(
B

(`)
n,r+1 −B(`)

n,r

)
=

2n

n− r

`0∑
`=1

1

2`

(
− 2`−1ηr(n, 2

`−1) + 2× 2`−1ηr(n, 2× 2`−1)

+ 3× 2`−1ηr(n, 3× 2`−1)− 4× 2`−1ηr(n, 4× 2`−1)
)
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=
n

n− r

[
−ηr(n, 1) + ηr(n, 2) + 3ηr(n, 3)− 3

`0−1∑
`=1

(
ηr(n, 2× 2`)− ηr(n, 3× 2`)

)]
.

(4.36)

Here, we have made use of the fact that ηr(α, β) = 0 when β ≥ α − r + 1. From (4.36), we

calculate the value of Hn,2 as follows:

Hn,2 = Hn,1

+
n

n− 1

[
−η1(n, 1) + η1(n, 2) + 3η1(n, 3)− 3

`0−1∑
`=1

(
η1(n, 2× 2`)− η1(n, 3× 2`)

)]

= 1 +
n

n− 1

[
3(n− 3)

n
+
n− 2

n
− n− 1

n
− 3

`0−2∑
`=1

(
n− 2× 2`

n
− n− 3× 2`

n

)]

= 1 +
n

n− 1

[
3(n− 3)

n
+
n− 2

n
− n− 1

n
− 3(n− 2)

2n

]

= 1 +
n

n− 1

[
3n− 14

2n

]

= 1 +
3− 14

n

2(1− 1
n
)
. (4.37)

Note that limn→∞Hn,2 = 5
2

= 1.25× 2.

Now we analyze Dn,r+1 in (4.36) for r > 2. We use the notation x ↑ a to indicate that x

increases to a and x ↓ a to indicate that x decreases to a.

Lemma 15. ηr(n, 3) = (n−3)r
(n)r

↑ 1 as n ↑ ∞.

Proof. For any given n, (n−3)r
(n)r

< 1.

lim
n→∞

ηr(n, 3)

= lim
n→∞

(n− 3)r
(n)r

= lim
n→∞

(n− 3)(n− 2) . . . (n− 3− r + 1)

n(n− 1) . . . (n− r + 1)
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= lim
n→∞

(1− 3
n
)(1− 2

n
) . . . (1− r+2

n
)

(1)(1− 1
n
) . . . (1− r−1

n
)

= 1. (4.38)

Hence, 3ηr(n, 3) ↑ 3 as n ↑ ∞.

Lemma 16. ηr(n, 2)− ηr(n, 1) ↑ 0 as n ↑ ∞.

Proof. For any given n, ηr(n, 2)− ηr(n, 1) < 0.

lim
n→∞

ηr(n, 2)− ηr(n, 1)

= lim
n→∞

[(
1− 2

n

)
. . .

(
1− 2

n− r + 1

)
−
(

1− 1

n

)
. . .

(
1− 1

n− r + 1

)]
= 0.

Hence, we claim that (−ηr(n, 1) + ηr(n, 2) + 3ηr(n, 3)) ↑ 3 as n ↑ ∞. n
n−r ↑ 1 as n ↑ ∞.

Finally, we look at
∑`0−2

`=1

(
ηr(n, 2× 2` − ηr(n, 3× 2`)

)
to complete the analysis.

`0−2∑
`=1

(
ηr(n, 2× 2`)− ηr(n, 3× 2`)

)
=

`0−2∑
`=1

(
(n− 2× 2`)r

(n)r
− (n− 3× 2`)r

(n)r

)

≥ 1

(n)r

`0−2∑
`=1

(
(n− r + 1− 2× 2`)r − (n− 3× 2`)r

)
=

1

(n)r

`0−2∑
`=1

(
(2`0 − 2`+1 − r + 1)r − (2`0 − 3× 2`)r

)
=

1

(n)r

`0−1∑
`=2

(
(2`0 − 2`0−`+1 − r + 1)r − (2`0 − 3× 2`)r

)
=

1

(n)r

`0−1∑
`=2

(((2` − 2

2`

)
n− r + 1

)r
−
((2` − 3

2`

)
n
)r)

≥ 1

nr

`0−1∑
`=2

(((2` − 2

2`

)
n− r + 1

)r
−
((2` − 3

2`

)
n
)r)
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=

`0−1∑
`=2

((2` − 2

2`
− r − 1

n

)r
−
(2` − 3

2`

)r)
. (4.39)

We define Kr as follows:

Definition 7. Kr:

Kr = lim
n→∞

∑
`≥2

((2` − 2

2`
− r − 1

n

)r
−
(2` − 3

2`

)r)

Hence,

Kr = lim
n→∞

∑
`≥2

((2` − 2

2`
− r − 1

n

)r
−
(2` − 3

2`

)r)

=
∑
`≥2

((2` − 2

2`

)r
−
(2` − 3

2`

)r)

=
∑
`≥2

1

2r`

((
2` − 2

)r
−
(

2` − 3
)r)

=
r∑
t=1

(−1)t
(
r

t

)
(2t − 3t)

∑
`≥2

2`(r−t)

2r`

=
r∑
t=1

(−1)t
(
r

t

)
(2t − 3t)

∑
`≥2

1

2`t
. (4.40)

Since
∑

`≥2
1

2`t
= 1

2t(2t−1)
, we get

Kr =
r∑
t=1

(−1)t
(
r

t

)
(2t − 3t)

2t(2t − 1)

=
r∑
t=1

(−1)t
(
r

t

)
(2t − 3t)

(2t − 1)
−

r∑
t=1

(−1)t
(
r

t

)
(2t − 3t)

(2t)

=
(
− 1

2

)r
+

r∑
t=1

(−1)t
(
r

t

)
(2t − 3t)

(2t − 1)
. (4.41)

We also define:
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Table 4.5: Ratio Hr
r

for different values of r.

r Dr
Hr
r

2 3
2

1.25
3 5

4
1.25

4 69
56

1.24553571
5 417

336
1.24464285

6 25953
20832

1.24483967

Definition 8. Hr and Dr:

Hr = lim
n→∞

Hn,r

Dr = lim
n→∞

Dn,r

The next result summarizes the above analysis.

Theorem 17. For all n ≥ 1, r ≥ 1, the expected header length Hn,r ↑ Hr, as n increases

through powers of two, where

Hr = 3r − 2− 3×
r−1∑
i=1

((
− 1

2

)i
+

i∑
t=1

(−1)t
(
i

t

)
(2t − 3t)

(2t − 1)

)
.

Proof. From (4.33), we get Hr = 1 +
∑r

i=2 Di. Further, from (4.36), (4.39) and (4.41), we

get Dr+1 = 3− 3Kr where Kr is given by (4.41).

Table 4.5 lists the values of Dr and Hr
r

for small values of r. This table shows the ratio
Hr
r

is always less than 1.25r.

In [NNL01, NNL02], a sketchy argument was given to show that Hn,r is bounded above

by 1.38r. It was mentioned that simulation results showed a tighter upper bound of 1.25r.

Values computed using Theorem 17 explain this observation. On the other hand, Theo-

rem 17 shows that the actual limiting value for the expected header length is much more

complicated than the simple 1.25r that was suggested in [NNL01, NNL02]. Our experiments

have shown that the convergence to this limiting value is quite fast. Further, the bound

given by Theorem 17 can be computed in O(r) time and O(1) space.
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Table 4.6: The expected header lengths for n = 200 and n = 256 for different r and the
number of extra bytes needed per message of broadcast (assuming each session key is 128-bit
long).

r n = 200 n = 256 Extra Bytes
10 12 12 0
20 23 23 0
30 32 33 16
40 40 42 32
50 46 50 64

Table 4.7: The expected header lengths for n = 1500 and n = 2048 for different r and the
number of extra bytes needed per message of broadcast (assuming each session key is 128-bit
long).

r n = 1500 n = 2048 Extra Bytes
50 61 61 0
100 116 118 32
150 167 172 80
200 213 223 160
250 255 270 240
300 293 314 336

4.4.2 Other Experimental Results

We return to the issue of comparing the CSD method to that of the SD method with dummy

users. The situation where the dummy users form a block has been discussed in details in

Section 4.2.2. Let us consider the situation where the dummy users are randomly distributed.

If these are all considered to be revoked, then there is a large penalty on the transmission

overhead. This is because the expected header length is linear in the number of revoked users.

So, suppose that the randomly distributed dummy users are viewed as being privileged by

the cover generation algorithm.

Running the algorithm to compute the expected header length for different values of n

and r we compare the transmission efficiency of the CSD method with the SD method with

dummy users. Additionally, we report other observations on the expected header length of
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Table 4.8: The expected header lengths for n = 10000 and n = 16384 for different r and
the number of extra bytes needed per message of broadcast (assuming each session key is
128-bit long).

r n = 10000 n = 16384 Extra Bytes
500 589 602 208
1000 1109 1162 848
1500 1561 1680 1904
2000 1947 2157 3360
2500 2267 2593 5216
3000 2521 2988 7472

Table 4.9: E[Xn,r]

r
for r = 2, 16 ≤ n < 32 for the CSD scheme.

n 16 17 18 19 20 21 22 23
E[Xn,r]

2
1.167 1.169 1.180 1.184 1.195 1.200 1.210 1.215

n 24 25 26 27 28 29 30 31
E[Xn,r]

2
1.225 1.217 1.214 1.209 1.208 1.207 1.208 1.207

the CSD method.

1. For a fixed n < 2`0 , as r goes above a certain minimum, the expected header length

of the CSD method is significantly shorter than the corresponding instantiation of the

SD method. As an example, for n = 10000, the expected header length is 1561 for

r = 1500 while for the corresponding n = 16384 of the SD method, the expected

header length is 1680 for the same r. Assuming the function FK used for encrypting

each block of digital data is AES-128, this difference of 119 in the expected header

length causes an extra bandwidth consumption of 1904 (= 119×16) bytes per message

on an average. Tables 4.6, 4.7 and 4.8 list the expected header lengths for n = 200,

1500 and 10000 and the corresponding next powers of two for different values of r.

2. For n = 200, by running the algorithm for computing the expected header length, we

observe that the expected header lengths are better compared to n = 256 for all r > 5.

Thus, CSD is more efficient in terms of the transmission overhead efficiency for all

r > 5 for n = 200. Similarly, CSD gains over SD when n = 1500 for all r > 7 and when

n = 10000, it gains for all r > 28. For real-time scenarios like Pay-TV, n = 10000 and
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r > 28 are practical numbers. Thus, the CSD method will provide better transmission

efficiency than SD for many practical purposes.

3. For full binary trees, we know from (4.37) that for r = 2, the limiting value of E[Xn,r]

2

is 1.25. By running our algorithm, we also observe that for n a power of two, the

expected header length increases with increasing n for all r ≥ 2.

4. For r = 2, as we keep increasing n from 2` to 2`+1−1, the ratio E[Xn,r]

r
increases almost

uniformly to reach a local maximum at n = 2` + 2`−1 and then decreases. The data in

Table 4.9 demonstrates this behavior for 16 ≤ n < 32. For 32 ≤ n < 64, the maximum

value of E[Xn,r]

r
is 1.225 observed at n = 24 and for 128 ≤ n < 256, the maximum value

is 1.271 and is observed at n = 192. However, as r increases, the behavior of the above

ratio changes, with local glitches disrupting the uniformity at most places.

4.5 Conclusion

In this chapter, we have proposed a new BE scheme which extends the tree-based NNL-SD

scheme of Chapter 2 [NNL01, NNL02]. The new Complete Tree Subset Difference method

is capable of accommodating any arbitrary number of users that may not be a power of two

and hence subsumes the NNL-SD scheme of Chapter 2 [NNL01, NNL02]. Almost all results

of the CTSD scheme that we subsequently prove are also new for the SD scheme.

Detailed combinatorial analysis of the CTSD scheme is done by finding two recurrences

to count the number of ways r out of n users can be revoked to result in a subset cover size

of h in the CTSD method. Using these recurrences, it is proved that the maximum possible

header length for a given r is 2r − 1. This is no worse than the SD scheme even though an

arbitrary number of users are accommodated. The maximum header length for all r is
⌊
n
2

⌋
.

The recurrences are the most efficient tool as per our knowledge to generate exhaustive data

for the above count. Using the recurrences, we also find and prove the expression for the

minimum number of users required to be in a system so that for a given r, the maximum

cover size would reach 2r − 1. For n a power of two, a generating function is found for

generating the same sequence as the recurrences.

Probabilistic analysis of the revocation patterns in the CTSD scheme gives the most

important result of this work: an efficient algorithm to compute the expected header length

for a given n and r. Using this algorithm, it is shown that for practical values of n and r,
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the CTSD scheme provides better transmission efficiency as compared to the SD scheme.

An asymptotic analysis is done using this algorithm that not only gives theoretical support

to the empirical upper bound of 1.25r mentioned in [NNL01, NNL02], but also gives an

expression to compute the maximum possible expected header length for a given r in the SD

algorithm in O(r) time.







Chapter 5

The (Layered) Complete Tree Subset

Difference Scheme and its Analysis

5.1 Introduction

In Chapter 1, we gave a brief description of our contributions in this chapter. We recollect

them very briefly here.

In this chapter, we work with the idea of layering described in Section 2.1.2 [HS02]. The

Halevy-Shamir (HS) layering works for n = 2`0 users where `0 is a perfect square. This limits

its usage to very specific number of users (24, 29, 216, 225). Two natural extensions of the HS

layering strategy are provided. These extensions work for values of `0 that may not be a

perfect square (and hence subsume the HS layering strategy).

We introduce the notion of storage minimal layering. For such a strategy, the user

storage requirement is the minimum possible that can be obtained from 2-way splitting of

SD subsets using layerings. An O(`3
0) time and O(`2

0) space dynamic programming algorithm

is presented to compute storage minimal layerings. It is shown that making the root level

non-special significantly improves the user storage while the effect on the average header

length is negligible. We also propose the constrained minimization layering strategy where

the user storage is reduced without affecting the header length for most practical values of

r.

We describe an algorithm to compute the expected header length of the layering based

SD schemes. This algorithm works for all possible values of the number of users (and not

only those values which are powers of two). Assuming that r out of n users are revoked

uniformly at random, our algorithm computes the expected header length in O(r log2 n)

time and O(log n) space.

The contents of this chapter were published in [BS14a].

109
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5.2 General Layering Strategy

In general, a layering strategy ` is denoted by the numbers of the special levels `0 > `1 >

... > `e−1 > `e = 0. Let ` = (`0, . . . , `e). The layering strategy has (e+ 1) special levels. It is

sometimes more convenient to use another formulation to denote the layering. For 1 ≤ i ≤ e,

define di = `i−1 − `i so that di’s are positive integers whose sum is `0. Conversely, given

any sequence of positive integers d = (d1, . . . , de) whose sum is `0, it is possible to define a

layering scheme where `i = `0 −
∑i

j=1 dj.

The user storage for any such layering strategy ` in general can be calculated as follows.

Corresponding to each special level `i, a user has to store `i labels. Now consider the nodes

in the layer bordered by `i and `i+1. Corresponding to any non-special level j in this layer a

user has to store j − `i+1 labels. So, the total number of labels that is required to be stored

by a user considering both special and non-special levels is given by the following formula.

storage0(`) =
e−1∑
i=0

`i +
e−1∑
i=0

`i−1∑
j=`i+1+1

(j − `i+1)

=
e−1∑
i=0

`i +
e−1∑
i=0

`i−`i+1−1∑
j=1

j

=
e−1∑
i=0

`i +
1

2

e−1∑
i=0

(`i − `i+1)(`i − `i+1 − 1). (5.1)

A recursive description can be obtained as follows.

storage0(`0, `1, . . . , `e) = `0 + `1 + · · ·+ `e +
(`0 − `1)(`0 − `1 − 1)

2

+
(`1 − `2)(`1 − `2 − 1)

2

+ · · ·+ (`e−1 − `e)(`e−1 − `e − 1)

2

= `0 +
(`0 − `1)(`0 − `1 − 1)

2
+ storage0(`1, . . . , `e). (5.2)
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Equation (5.1) can be formulated in terms of the layer lengths d = (d1, . . . , de) as follows.

storage0(`) = `0(e+ 1)−
e∑
i=1

(e− i+ 1)di +
1

2

e∑
i=1

di(di − 1). (5.3)

If all the di’s are equal to d and `0 = e×d, then storage0(`) is given by `0(e+d)/2. This shows

that the user storage using e layers of length d each is the same as the user storage using d

layers of length e each. If all the layer lengths are equal, then the problem of minimizing the

user storage is that of minimizing the sum e+d subject to the constraint ed = `0. From this

it is easy to see that the minimum value is attained for e = d =
√
`0 and the corresponding

value of user storage is `
3/2
0 . This justifies the choice made in [HS02] that was described in

Section 2.1.2. Note that the minimization here is in the context of all the layer lengths being

equal.

We look at some further combinatorial results on general layering strategies. It is easy

to note that the layering strategy with each di = 1 or with e = 1 results in the SD scheme.

In the following lemma, we look at two specific kinds of layerings that result in the same

storage requirement.

Lemma 18. Let `0 = d(e− 1) + p with 1 ≤ p ≤ d and consider the layering strategies ` and

`′ whose layer lengths are respectively given by (d, . . . , d︸ ︷︷ ︸
e−1

, p) and (d, . . . , d︸ ︷︷ ︸
e−d+p

, d− 1, . . . , d− 1︸ ︷︷ ︸
d−p

).

Then storage0(`) = storage0(`′).

Proof. From (5.1)

storage0(`)− storage0(`′)

= (d− p)− (d− p)(d− p+ 1)

2

−d(d− 1)

2
+
p(p− 1)

2
+ (d− 1)(d− p)

= −(d− p)2 − (d− p)
2

+
(d− p)2 − (d− p)

2
= 0.

We provide below some simple facts about storage.
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1. Let d = (d1, . . . , de) and suppose that di = d + δ and de−j+1 = d, i.e., the i-th

layer length from the top is d + δ and the j-th layer length from the bottom is d.

Suppose that d′ is obtained from d by incrementing di (i.e., changing its value to

d + δ + 1) and decrementing de−j+1 (i.e., changing its value to d − 1). Let ` and `′

be the corresponding sequences of special levels. A simple calculation based on (5.3)

shows that storage0(`) − storage0(`′) = (e − i − j − δ). So, if e > i + j + δ, then it is

possible to reduce storage by incrementing di and decrementing de−j+1. This simple

observation can be used to show that the storage requirement of a layering scheme

with unequal layer lengths can be reduced below a layering scheme with equal layer

lengths.

Let `0 be a positive integer and assume that d divides `0 such that `0 = d×e. Consider

the layering scheme with layer lengths d = (d, d, . . . , d). Let θ ≥ 1 be such that e > 2θ

and define

d′ = (d+ 1, . . . , d+ 1︸ ︷︷ ︸
θ

, d, . . . , d, d− 1, . . . , d− 1︸ ︷︷ ︸
θ

).

Then storage0(`) = storage0(`′) + θ(e− θ − 1). The gap θ(e− θ − 1) is positive.

2. Having a single layer of length de at the bottom of the tree is the same as having de+1

layers of length 1 each at the bottom. A simple calculation based on (5.3) shows this.

3. Suppose d = (d1, . . . , de) with d1 ≥ d2 ≥ · · · ≥ de and d′ = (dπ(1), . . . , dπ(e)) where π

is a permutation of {1, . . . , e}. Let ` and `′ be the corresponding sequences of special

levels. Then storage0(`) ≤ storage0(`′). The quantity `0(e + 1) and the quadratic

terms in (5.3) are the same in both cases. A simple argument then shows the required

inequality. As an example, suppose `0 = 12 and fix e = 8. Then the scheme having

(d1, d2, . . . , d8) = (2, 2, 2, 2, 1, 1, 1, 1) requires a storage of 50 labels whereas the scheme

having (d1, d2, . . . , d8) = (1, 1, 1, 1, 2, 2, 2, 2) requires a storage of 66 labels.

5.2.1 The HS Layering with Residual Bottom Layer

Let `0 be any positive integer and d ≤ `0. We write `0 = d(e−1) +p where 1 ≤ p ≤ d. Then

the special levels are

`0, `0 − d, `0 − 2d, . . ., `− d(e− 1), 0.
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So, the tree will have a total of e + 1 special levels (including the root level `0 and the leaf

level 0) and e layers out of which e − 1 layers are of length d each and the last layer is

of length p. Note that the length p of the bottom-most layer can equal d which will lead

to e layers each of length d. We find it convenient to always have level 0 (leaf level) as a

special level as this does not have any effect on either the user storage or the header length.

The Halevy-Shamir (HS) layering strategy is a special case where `0 is a perfect square with

d =
√
`0 and layer lengths d, d, . . . , d, p = d.

5.2.2 The e-HS Layering Strategy

We now consider a layering strategy where the layer lengths are balanced. Write `0 =

d(e − 1) + p = (e − d + p)d + (d − p)(d − 1) and define d′ = (d, . . . , d︸ ︷︷ ︸
e−d+p

, d− 1, . . . , d− 1︸ ︷︷ ︸
d−p

).

Let ` be the layering strategy with a residual bottom layer and `′ be the balanced layering

strategy. In Lemma 18, we have shown that storage0(`) = storage0(`′). So there is no

difference between these two strategies in terms of user storage. Experimental results show

that the average header lengths for both strategies are similar with that corresponding to

the balanced strategy being slightly smaller. As an example, for `0 = 18, d′ = (5, 5, 4, 4)

yields less expected header lengths than d = (5, 5, 5, 3) for all r between 256 and 16384 while

the user storage 75 is the same for both. We call the balanced strategy to be the extended

HS or e-HS layering strategy. This strategy coincides with the layering scheme given in

Section 2.1.2 [HS02] for n = 28.

Using (5.3), it can be verified that storage requirement is O(log3/2 n) for both the e-HS

and the residual bottom layer strategies.

5.2.3 Root at a Non-Special Level

In the HS layering described in Section 2.1.2 [HS02] as well as its extensions given in Sec-

tion 5.2.1 and Section 5.2.2 above, the root level `0 is always taken as a special level. It is

possible to obtain further reduction in user storage if we allow the root level to be a non-

special level. Having the root as a special level contributes `0 labels to the user storage. If

instead the root level is made non-special, then its contribution to the user storage will be

`0 − `1 labels. Given a sequence of level numbers `, let storage1(`) be the number of labels
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required to be stored when the root (top-most) level is not special (and so, `1 is the first

special level). Then the following relation holds.

storage1(`) = storage0(`)− `1. (5.4)

Combining this with (5.2) we get the following relation.

storage1(`0, . . . , `e) =
(`0 − `1)(`0 − `1 + 1)

2
+ storage0(`1, . . . , `e). (5.5)

So, not having the root at a special level reduces the storage requirement by `1 labels. This

can be quite significant as can be seen later from Table 5.3. Consider the e-HS layering

strategy where `0 = d× e and so ` = (`0, `1, . . . , `e) where `i− `i+1 = d for 0 ≤ i < e. In this

case, storage0(`) = `
3/2
0 and storage1(`) = `

3/2
0 − (`0 − `1/2

0 ).

It is important to understand the effect on the header length when the root level is not

special. During the computation of the cover, suppose that the root generates an SD subset,

i.e., the SD cover finding algorithm returns a subset of the form S0,j. Since the root is not at

a special level, this subset may be split into two if j is not in the first layer. We argue that

for reasonable values of r (the number of revoked users), this effect is negligible. In fact, the

argument is that the probability of the root generating an SD subset itself is small.

The root generates an SD subset only if exactly one of the two subtrees of the root node

contains all the revoked users. Intuitively this probability is low even for moderate values of

r. We provide some more justification. Suppose the revoked users are uniformly distributed,

i.e., r users are uniformly sampled one-by-one without replacement and revoked. Then the

probability that the left subtree does not have any revoked user (and consequently the right

subtree contains all of them) is(
1− n/2

n

)(
1− n/2

n− 1

)
· · ·
(

1− n/2

n− r + 1

)
=

(
1− 1

2

)(
1− 1

2
(
1− 1

n

)) · · ·(1− 1

2
(
1− r−1

n

))

The probability that the right subtree does not have any revoked user is also equal to this

value. So, the total probability that the header generates a subset is twice this value. For

practical applications of BE, the number n of users will usually be much larger than the
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number of revoked users r and so the ratio r/n will be small. Then the above expression

can be approximated by 2−r. This is negligible even for values of r as small as 20 or so.

Consequently, for practical situations, there will be almost no effect on the header length if

the root level is not made special.

5.2.4 Storage Minimal Layering

For a given value of `0, let SML0(`0) denote a layering strategy ` (or equivalently is given

by the sequence of differences d), such that storage0(`) takes the minimum value among all

possible layering strategies for a tree with `0 levels and having the root as a special level.

Let #SML0(`0) denote storage0(`) where ` is a storage minimal layering strategy. Similarly

define SML1(`0) and #SML1(`0) that exclude the root level from being special.

We describe a dynamic programming based algorithm to compute SML0(`0) (and subse-

quently SML1(`0)). The idea of the algorithm is explained as follows. For a fixed value of `0,

the number e of layers can vary from 1 to `0. The cases e = 1 and e = `0 correspond to the

SD scheme and in these two cases the user storage is known to be equal to `0(`0 + 1)/2. Let

SML0(e, `0) denote a storage minimal layering using exactly e layers. Clearly, the following

relation holds.

#SML0(`0) = min
1≤e≤`0

#SML0(e, `0). (5.6)

Also,

#SML0(e, `0) = min
(`0,...,`e)

storage0(`0, `1, . . . , `e), (5.7)

where the minimum is over all possible layering strategies (`0, `1, . . . , `e). Using (5.2)

#SML0(e, `0) = min
1≤`1<`0

(
`0 +

(`0 − `1)(`0 − `1 − 1)

2
+ #SML0(e− 1, `1)

)
.

(5.8)

This relation is the basis for the algorithm. Let Tab be an `0×`0 table such that Tab[e][`0] =

#SML0(e, `0). A simple O(`3
0) time dynamic programming algorithm can fill up this table

as given in Algorithm 2.
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ALGORITHM 2: Dynamic Programming Algorithm to find Tab
Input: `0.

Output: An `0 × `0 table Tab where Tab[e][`] contains the value of #SML0(e, `).

for ` = 1 to `0 do
Tab[1][`] = Tab[`][`] = `(`+ 1)/2;

end
for ` = 2 to `0 do

for e = 2 to `− 1 do

Tab[e][`] = min
1≤`1<`

(
`+

(`− `1)(`− `1 − 1)

2
+ Tab[e− 1][`1]

)
end

end

Using (5.6) provides #SML0(`0) as the minimum value in column number `0 of Tab.

Note that the minimum may occur for more than one possible value of e. These values of

`1 are reported during the computation. Let Λ(e, `0) be the list of all possible values of `1

for which (5.8) holds. The above method can be extended to generate all possible layering

strategies for which user storage is minimized.

An SML0 layering strategy ` can be generated as follows. Start with ` as the list contain-

ing only `0 and keep on appending in the following manner to obtain the complete sequence.

Let e be one of the possibilities for which Tab[e][`0] takes the minimum value; choose `1 as

any one value from Λ(e, `0) and append to `; choose `2 as any one value from Λ(e−1, `1) and

append to `; continue until 0 is appended to the list. All SML0 strategies can be generated

by looping over all possible values of e, all possible values of `1, all possible values of `2 and

so on.

Once Tab is prepared, computing #SML1(`0) using (5.5) is easy.

#SML1(`0) = min
e

min
`1

(
#SML0(e− 1, `1) +

(`0 − `1)(`0 − `1 + 1)

2

)
= min

e
min
`1

(
Tab[e− 1][`1] +

(`0 − `1)(`0 − `1 + 1)

2

)
. (5.9)

The first minimization is over the number of layers and the second minimization is over the

value of the first special level. The possible corresponding layering strategies can also be

easily recovered. It is to be noted that the SML1(`0) layerings are due to the minimization

of the user storage by assuming the root to be at a non-special level. It can be seen from



General Layering Strategy 117

Table 5.1: The number of SML0(`0) and SML1(`0) layering strategies for various values of
`0.

`0 no. of SML0(`0) layerings no. of SML1(`0) layerings

12 10 10
16 6 15
20 6 1
24 35 35
25 35 21
28 1 8

Table 5.2: List of SML0(`0) and SML1(`0) layering strategies denoted by the special levels
for `0 = 12.

10 Special levels for SML0(12) 10 Special levels for SML1(12)
12,7,4,2,1,0 8,4,2,1,0
12,8,4,2,1,0 8,5,2,1,0
12,8,5,2,1,0 8,5,3,1,0
12,8,5,3,1,0 9,5,2,1,0
12,7,3,1,0 9,5,3,1,0
12,7,4,1,0 9,6,3,1,0
12,7,4,2,0 8,4,1,0
12,8,4,1,0 8,4,2,0
12,8,4,2,0 8,5,2,0
12,8,5,2,0 9,5,2,0

(5.8) and (5.9) that in an SML0(`0) layering, if the root is made non-special, it might not

necessarily result in an SML1(`0) layering and vice versa.

Table 5.3 shows values of user storage for SML strategies for some `0. For comparison,

we also show the storage requirements for the SD scheme and the e-HS layering strategy.

Compared to the SD scheme, the e-HS layering strategy reduces the storage requirement very

significantly (both asymptotically as well as in practical numbers). Compared to the e-HS

scheme the value of #SML0(`0) is slightly smaller and the value of #SML1(`0) is about 18%

to 24% lower for the newly suggested values of `. So, given a value of `0, if the requirement

is to minimize the user storage, then the SML strategies offer better alternatives. They also

guarantee that using 2-way splitting of SD subsets with layering, further lowering of storage

cannot be achieved.

The effect of SML0(`0) and SML1(`0) strategies on the average header length is also shown

in Table 5.3. For computing the average header lengths, we have considered ten values of r

equally spaced between rmin and rmax. The reported values are the average header lengths
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of the different schemes normalized by the average header length of the SD scheme. As an

example, the first value 1.69 corresponding to the row for e-HS and `0 = 28 means that with

n = 228 users out of which r = 210 are uniformly revoked, the average header length of the

e-HS layering strategy is 1.69 times that of the SD scheme.

One may note the following points.

1. For a fixed `0, there may be more than one SML0(`0) (resp. SML1(`0)) strategy which

achieves storage of #SML0(`0) (resp. #SML1(`0)). Table 5.1 gives the number of SML

strategies for several values of `0. For `0 = 12, Table 5.2 lists all possible SML0(`0)

and SML1(`0) strategies for `0 = 12. There, however, need not be a single layering

strategy which minimizes expected header length for all possible values of r. Out of

these, one would be interested in the layering that would give the minimum expected

header length for most values of r under consideration. The SML strategies reported

in Table 5.3 have this feature.

2. For `0 = 32, Tab has been computed and reported in Table 5.4. It gives the values of

the minimum storage for every 1 ≤ `0 ≤ 32 and 1 ≤ e ≤ `0. For a particular `0 and

e, it also gives the values of `1 for which (5.8) holds. As an example, we see that for

`0 = 32 and e = 8, #SML0(e, `0) = 172 and the values of `1 are 24 and 25. All possible

SML0(`0) strategies for 1 ≤ `0 ≤ 32 can be obtained from this table and the SML1(`0)

strategies can subsequently be found using (5.9).

3. As discussed earlier, if the root level is made non-special in an SML0 strategy, it may

not lead to an SML1 strategy and vice versa. Table 5.2 shows that while the SML0

strategy ` = (12, 8, 4, 2, 1, 0) gives rise to an SML1 strategy ` = (8, 4, 2, 1, 0) by making

the root level non-special, the SML0 strategy ` = (12, 7, 4, 2, 1, 0) does not. On the

other hand, the SML1 strategy ` = (9, 5, 2, 1, 0) is not generated from an SML0 strategy.

4. Extensive experimentation have shown that for practical values of r, there is no signif-

icant difference between the average header lengths of SML0 and SML1 strategies that

differ at only the root being at a special level or not. For `0 = 12 and 16, the reported

SML0 strategy with the root level made non-special turns out to be an SML1 strat-

egy (as reported in Table 5.3) with minimum expected header lengths. This supports

the theoretical justification described before. However, for `0 = 20, it turns out that

making the root level of the SML0 strategy non-special does not give rise to an SML1
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strategy. For `0 = 24 and 28, it is again true that making the root level of the reported

SML0 strategy non-special gives rise to an SML1 strategy. But there are other SML1

strategies that further reduce the expected header lengths and hence we report those

strategies in Table 5.3.

5. In general, the header length of the e-HS scheme is smaller than that of SML0 and

SML1. This is somewhat expected, since user storage in SML is smaller. On the other

hand, the user storage is not the only determining factor. The actual layering strategy

also plays a role and in some cases it turns out that the average header length in SML

turns out to be smaller than that in e-HS. We do not have an analytical justification

for this. Intuitively, it appears that for the number of revoked users that have been

considered, the SML assigns keys to SD subsets which are more probable to occur

in the header. As a result, in such cases, we see that both user storage and average

header length are reduced. These are marked in bold and are particularly noticeable

for `0 = 24 and `0 = 28. In the context of the [AAC] standard, SML1 for `0 = 28 is of

particular significance.

5.2.5 Constrained Minimization of User Storage

From the viewpoint of minimizing communication bandwidth it is of interest to minimize

the average header length. This is minimized when the number of keys is maximized which

happens for the SD scheme, i.e., when all the levels are considered to be special levels or

there is only a single layer. Taking the average header length for the SD scheme as a

benchmark, one may ask the question as to how much the user storage can be reduced from

that required by the SD scheme without significantly increasing the corresponding values for

the average header length? The expression for the average header length (as can be derived

from (5.11), (5.13) and Proposition 20 given later) is rather complicated and it appears quite

impossible to have an analytical solution to this question. Instead, we use our average header

length computation program (developed in Section 5.3.3) to study this behavior for concrete

practical values of n, r and layering strategies `. It turns out that it is indeed possible

to significantly reduce the user storage values with minimal increase in the average header

length values.

Our approach is the following. The increase in header length due to layering occurs

because of the fact that certain SD subsets are split into two. If we can avoid making too
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many splits, then we can ensure that the header length does not increase by too much in

comparison to the SD scheme. Consider an SD subset of the form Si,j where node i is at

level `. We say that this subset is generated from the node i. Now, consider the expected

number of SD subsets that will be generated from all the nodes at level `. If this number

is ‘large’, then we make the level ` special. This ensures that SD subsets originating level `

will not be split. Overall, the strategy is to ensure that SD subsets originating from levels

which contribute most to the header are not split. This mitigates the effect of splits.

Suppose there are n users and r of them are revoked. In Section 4.4 [BS13] it has

been shown that the probability that a particular node at level ` generates a subset in the

header is 2(ηr(n, 2
`−1)− ηr(n, 2× 2`−1)− ηr(n, 3× 2`−1) + ηr(n, 4× 2`−1)) where ηr(n, x) =

(1−x/n)(1−x/(n−1)) · · · (1−x/(n− r+ 1)) if n > r−1 else 0. Since there are 2`0−` nodes

at level `, the expected number of subsets arising from all nodes at level ` is

2`0−`+1(ηr(n, 2
`−1)− ηr(n, 2× 2`−1)− ηr(n, 3× 2`−1) + ηr(n, 4× 2`−1)). (5.10)

This expression gives the expected contribution of a level to the header size for a given r.

For a fixed n and r, one can consider the problem of finding ` for which (5.10) is max-

imized. Analytically, this seems to be very difficult to do. Instead we have done exten-

sive experimentation. Empirical values suggest that the maximum occurs for some level

` ≤ `0 − blog2 rc. Also, for ` > `0 − blog2 rc, the value of (5.10) is quite small.

Based on this empirical evidence we suggest the following layering strategy.

• Make level `0 − blog2 rc special. Level 0 is also special.

• No level 0 < ` < `0 − blog2 rc is made special. In terms of user storage and expected

header length this is equivalent to making all levels ` < `0 − blog2 rc to be special.

• The root level is not made special.

• At most one level that is midway between `0 and `0 − blog2 rc is made special. While

this does not significantly affect header size, it can reduce the storage requirement.

We call this the constrained minimization layering (CML) strategy. This strategy will ensure

that if ` ≤ `0−blog2 rc, then no SD subset generated from level ` or below will be split. Splits

will occur only for SD subsets originating from levels above `. But, the expected number of

such subsets is small and so, splits will occur only for a small number of SD subsets.
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One issue with this strategy is that the value of r will not be known a priori while the

layering scheme will have to be decided upon during the design phase itself. A way out is

to make an assumption about the minimum number of revoked users that will occur in the

steady state operation of the BE scheme. For example, in AACS with 228 users one may

assume that in the steady state at least 210 users will be revoked due to equipment piracy

problems.

Suppose that rmin is the minimum number of users that will be revoked during each

broadcast. The above layering strategy is used with rmin. Suppose now that during a

broadcast, the number r of users that is actually revoked is greater than rmin. Then from

our empirical evidence the level for which the average header length is maximized will be

`0−blog2 rc. Since this value is less than `0−blog2 rminc, none of the subsets generated from

this level will be split. So, the feature of not splitting a large number of SD subsets is still

retained.

Table 5.5 shows a comparison between the SD scheme, the e-HS layering scheme and a

constrained minimization layering scheme as described above, in terms of both their user

storage requirement and the expected header length normalized with respect to the SD

scheme. The average header length depends on the number r of revoked users. So, for a

given n = 2`0 , we computed the expected header lengths for 10 equispaced values of r between

and including rmin and rmax. The values in the table illustrate the point that compared to

the SD scheme, the constrained minimization layering scheme substantially reduces the user

storage with a small increase in the average header length.

The layering scheme is designed assuming that the number of revoked users is at least

rmin. What happens if the number of revoked users in an actual broadcast is smaller than

rmin? Clearly, we cannot expect the average header length to still be almost equal to that

of the SD scheme. This effect is shown for some values of r in Table 5.6. Again the values

of the average header length are normalized by that of the corresponding SD scheme. For

comparison, we have also provided the average header lengths of the e-HS layering strategy.

It is to be noted that the expected header lengths of the CML scheme are mostly better than

the e-HS scheme. As an example, for n = 224, for r > 6, the CML strategy gives smaller

expected header lengths than the e-HS layering strategy. Table 5.6 shows that for any value

of n, the CML strategy leads to smaller expected header lengths for all r > 15.

To summarize, the constrained minimization layering strategy requires significantly less

user storage than the SD scheme. In terms of the expected header length, it is as good as



General Layering Strategy 125

the SD scheme for r ≥ rmin. If r < rmin, then it is better than e-HS layering but inferior to

the SD scheme. It is to be noted that if r is small, then the absolute size of the header itself

is not too large. As a result, the effective transmission overhead of the scheme will never be

too high compared to the actual body of the message.
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5.3 Header Length

The main point of the discussion in this section is to obtain an efficient algorithm for com-

puting the expected header length for the layered SD schemes including the LSD scheme.

The algorithm we obtain works for all possible values of the number of users. To ensure

this, we first need to extend the scheme to handle an arbitrary number of users. For the SD

scheme, this was done in Section 4.2 [BS13] by using the notion of complete binary trees.

Here, we extend the scheme of Section 4.2 [BS13] to handle layering as well.

5.3.1 Tackling Arbitrary Number of Users

In the NNL-SD and HS-LSD schemes described in Chapter 2, the number of users has been

taken to be a power of two, i.e., n = 2`0 . One has to consider dummy users in the system

to make the number of users a power of two. The inclusion of dummy users (considered

revoked or privileged) increase the expected header length in the system. Hence, this is not

always convenient as has been argued in details in Section 4.2.2 [BS13].

By modifying the structure of the tree, it is possible to handle an arbitrary number of

users. This modification is based on the notion of complete binary trees. These are trees

where the leaf nodes are at the last and maybe the second last levels. The last level has

all its nodes to the left side. An example of a complete subtree accommodating 13 users is

shown in Figure 5.1. In this case `0 = 4 and choosing d = 2 gives two layers and three special

levels as shown in the figure. When the number of users is a power of two, the corresponding

tree is called a full binary tree. This difference in terminology between full and complete

has been taken from the literature on data structures. We explain some terminology with

respect to Figure 5.1. The left and the right subtrees of node 3 are the subtrees rooted at

nodes 7 and 8 respectively. The sibling subtree of node 3 is the subtree rooted at node 4.

The only non-full subtrees are those rooted at nodes 0, 2 and 5. We call the path labelled

by the nodes 0, 2 and 5 to be the dividing path.

In general given n with 2`0−1 < n ≤ 2`0 , it is possible to accommodate n users as the

leaves of a complete binary tree with n leaves. The root node is at level `0. The leaves and

hence the users are either at level 0 or at level 1. Suppose the sequence of special levels is

` = (`0, . . . , `e). For users at level 0, the storage requirement is storage0(`) while for users at

level 1, the storage requirement is storage0(`)− (e+ p− 2) where p is the number of levels in
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the bottom-most layer. This reduction is due to the fact that these users need to store one

less label for each special level above it and for each level in its last layer. The distribution

of labels using the PRG is done as usual.

` = 0

Layer 1

` = 2

Layer 2

` = 4 0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24

Figure 5.1: A complete tree with 13 leaf nodes. The levels 0, 2 and 4 are special levels and
hence there are two layers. The nodes 0, 2 and 5 are roots of non-full complete subtrees and
hence they lie on the dividing path.

During a broadcast, the actual header generation is done in much the same way. First, as

in the SD scheme, the set of non-revoked users is covered exactly by subsets of the form Si,j

where i is a node in the tree and j is a node in the subtree rooted at i. If i is at a non-special

level and j is not in the same layer as i, then this set is further split into (Si,k)∪ (Sk,j) where

k is the first node appearing at a special level on the path from i to j.

Complications for complete but non-full trees arise due to the following reason. For the

internal nodes lying on the dividing path, the subtree rooted at it may not be full. A node

not on the dividing path and at level ` is the root of a subtree having either 2` leaves or 2`−1

leaves accordingly as whether the node is to the left or to the right of the dividing path.

As an example, in Figure 5.1, nodes 3, 4, 5 and 6 are at level 2. Node 5 is on the dividing

path and the subtree rooted at node 5 is non-full; nodes 3 and 4 are to the left of 5 and are

the roots of subtrees having 22 = 4 leaves; node 6 is to the right of node 5 and the subtree

rooted at 6 has 2 leaves.

The LSD scheme is based on full binary trees and this extension to complete binary

trees gives rise to the complete tree layered subset difference (CTLSD) scheme. The LSD

scheme had improved upon the SD scheme by reducing the user storage at the cost of

almost double the transmission overhead. The CTLSD scheme subsumes all these schemes

by accommodating an arbitrary number of users and allowing appropriate choices of the

layering strategy ` for specific applications.
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5.3.2 Maximum Header Length

Before considering the expected header length, we state the following bound on the worst

case header length.

Proposition 19. The maximum header length in the CTLSD scheme for n users out of

which r are revoked is min (4r − 2,
⌈
n
2

⌉
, n− r). If the root is a special level, then the bound

is min (4r − 3,
⌈
n
2

⌉
, n− r).

Proof. The bound is independent of the actual layering strategy. The upper bound of 2r− 1

for the SD scheme was already given in [NNL01, NNL02] and in Chapter 4 [BS13] it was

shown that this also holds for the CTSD scheme. Using the layering strategy, each subset

returned by the SD algorithm can split into at most two subsets. So, if the number of SD

subsets is at most 2r − 1, then there are at most 4r − 2 subsets.

Suppose the header consists of h subsets out of which h1 are singleton sets and h2 sets

have 2 or more elements each. For each node in a singleton privileged set, its sibling (if there

is one) must be a revoked user. Among all these leaves, there is only one which may not

have a sibling that is also a leaf node (and this is the first privileged user from the left at

level 1, for odd n). So, for the h1 privileged users, there are at least h1 − 1 other revoked

users. This accounts for at least h1 + h1 − 1 + 2h2 = 2h − 1 users. It is now easy to argue

that if h > dn/2e, then 2h − 1 is greater than n. Since the total number users is n, this

cannot happen. So h ≤ dn/2e.

Since each subset in the subset cover will have at least one privileged user, the maximum

number of subsets in the header is equal to the number of non-revoked users which is equal

to n− r.

The bound of 4r− 2 holds for both the cases when the root is or is not a special level. If

the root is a special level the bound of 4r− 2 can be improved to 4r− 3. We first provide a

short argument to justify that in the SD scheme if the header length is 2r− 1, then there is

a subset of the form S0,j in the header. As mentioned earlier, such a subset is added to the

header if and only if exactly one of the subtrees of the root node do not contain any revoked

user. So, if such a subset is not in the header, then both the subtrees of the root node contain

at least one revoked user. Suppose the number of revoked users in these two subtrees are r1

and r2 where r = r1 + r2. Applying the bound on the maximum header length, we have the

header to be of maximum length 2r1−1+2r2−1 = 2r−2. So, if the header length is 2r−1,
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then there must be a subset of the type S0,j in the header. Using the layering strategy, each

subset returned by the SD algorithm can split into at most two subsets. So, if the number

of SD subsets is at most 2r− 2, then there are at most 4r− 4 subsets. On the other hand, if

the number of SD subsets is equal to 2r− 1, then as argued above there must an SD subset

of the form S0,j in the header. Since the root node 0 is considered to be a special node, this

subset will not split while all other subsets may split into two. As a result, there can be at

most 4r − 3 subsets in the header.

5.3.3 Expected Header Length

Assume that the layering strategy is given by ` = (`0, `1, . . . , `e). Additionally, the informa-

tion as to whether the root level is or is not special is also provided as a bit β. If β = 0,

then the root node is special and if β = 1, the root node is not special. So, (`, β) provides

complete information about the layering strategy. For compactness, we denote this as `β.

The expected header length is computed under the same random experiment that was

stated in Section 4.4, where out of n users, a set of r users are chosen uniformly at random

and are revoked. The corresponding header length is then a random variable and let Yn,r

denote this header length. We are interested in E[Yn,r]. Due to the random revocation

of the users, for each internal node i, three possibilities arise: Si,j is added to the header;

(Si,k) ∪ (Sk,j) is added to the header; or nothing is added to the header. So, corresponding

to node i, either 0 or 1 or 2 subsets are added to the header. Denote this number by Y i
n,r.

Then Yn,r =
∑
Y i
n,r where the sum is taken over all internal nodes i.

Computing this directly is not convenient. So, we simplify it further. Let X i
n,r be a

binary valued random variable which takes the value 1 if and only if there is at least one

subset generated from i and let Zi
n,r be another binary valued random variable which takes

the value 1 if and only if there are exactly two subsets generated from i. (Note that if i is at

a special level, then the probability Zi
n,r = 1 is 0.) Then it follows that Y i

n,r = X i
n,r + Zi

n,r.

The reasoning is as follows. If i generates no subset, then both sides are zero; if exactly one

subset is generated, then Y i
n,r and X i

n,r are both 1 but, Zi
n,r is 0; if exactly two subsets are

generated then Y i
n,r is 2 and both X i

n,r and Zi
n,r are 1. By linearity of expectation, we have

E[Yn,r] = E
[∑

Y i
n,r

]
=
∑

E
[
X i
n,r + Zi

n,r

]
=

∑
E
[
X i
n,r

]
+
∑

E
[
Zi
n,r

]
. (5.11)
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The sum is over all internal nodes i of the tree. The quantity
∑
X i
n,r is exactly the expected

header length obtained using the SD algorithm. This is because i generates at least one

subset if and only if the SD algorithm results in i generating a subset. Let Xn,r =
∑
X i
n,r

and Zn,r =
∑
Zi
n,r. So,

E [Yn,r] = E [Xn,r] + E [Zn,r] . (5.12)

Algorithm 1 for computing E[Xn,r] has been already developed in Section 4.4 [BS13]. So, it

only remains to determine E[Zn,r].

Given n and a layering sequence `β we define the set SubsetsForSplit(n, `β) to consist

of pairs of nodes (i, j) such that i is not at a special level and j is in the subtree rooted

at i but not in the same layer as i. So, whenever an SD subset Si,j is such that (i, j) ∈
SubsetsForSplit(n, `β), it is split into two subsets. If i is at level `, then there are at most

`− 1 values of level for j such that (i, j) is in SubsetsForSplit(n, `β).

Let i be at a non-special level and let j be not in the same layer as i. Define the binary

valued random variable W i,j
n,r to take the value 1 if and only if the SD algorithm returns

the subset Si,j to the header, in which case the LSD algorithm will split this subset into

two sets. So, we have Zi
n,r =

∑
(i,j)∈SubsetsForSplit(n,`β) W

i,j
n,r. Again by linearity of expectation,

the task reduces to computing E[W i,j
n,r]. Since this is a binary valued random variable,

E[W i,j
n,r] = Pr[W i,j

n,r = 1]. So,

E[Zn,r] =
∑
i

E[Zi
n,r] =

∑
i

∑
(i,j)∈SubsetsForSplit(n,`β)

Pr[W i,j
n,r = 1]. (5.13)

Here the first sum is over all nodes i at non-special levels. For a fixed i and j, we show how

to compute Pr[W i,j
n,r = 1]. To do this, we need to characterize the event W i,j

n,r = 1 for a pair

(i, j) ∈ SubsetsForSplit(n, `β). This event occurs if and only if the following conditions hold.

• Node i is either the root (in which case it does not have any sibling tree) or the sibling

tree of i has at least one revoked user among its leaves.

• Either j is a leaf and is revoked or both subtrees of j have at least one revoked user

among its leaves.

• There are no revoked users in the set Si,j.
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i

j

rm sb

2j + 1

lt

2j + 2

rt

Figure 5.2: Figure demonstrating the event Ri
sb ∧ R

i,j
rm ∧ Rj

lt ∧ R
j
rt. The triangles represent

subtrees rooted at the respective nodes. The quadrilateral represents the union of all subtrees
in T i \ T j that contain the users in Si,j. Green denotes that the portion of the tree has no
revoked user in it. Red denotes that the subtree has at least one revoked user in it. The
sizes of the subtrees are not to the scale of the number of users in them.

Define the following events:

1. Rj
lt: there is at least one revoked user in the left subtree of j;

2. Rj
rt: there is at least one revoked user in the right subtree of j;

3. Ri
sb: there is at least one revoked user in the sibling subtree of i;

4. Ri,j
rm: there is at least one revoked user in the set Si,j.

Let (i, j) ∈ SubsetsForSplit(n, `β). Suppose i is not the root. If j is not a leaf node, the

event W i,j
n,r = 1 is equivalent to the event Ri

sb ∧R
i,j
rm ∧Rj

lt ∧R
j
rt. If j is a leaf node, the event

W i,j
n,r = 1 is equivalent to the event Ri

sb ∧ R
i,j
rm. Now suppose i is the root and is not special

(i.e., β = 1). If j is not a leaf, then the event W i,j
n,r = 1 is equivalent to Ri,j

rm ∧ Rj
lt ∧ R

j
rt. If

j is a leaf, then this can happen only if there is a single revoked user. So, for r = 1, the

probability of W i,j
n,r = 1 is 1 and for r ≥ 2, the probability of W i,j

n,r = 1 is 0.

Let λi (resp. λj; λs) be the number of leaves in the subtree rooted at i (resp. j; the

sibling subtree of i). Similarly, let λ2j+1 and λ2j+2 respectively be the number of leaves in

the left and right subtrees of j. So, λj = λ2j+1 + λ2j+2. The number of leaves in the set Si,j

is λi − λj. Note that since we are dealing with an arbitrary number of users, the subtrees
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that are being considered are not necessarily full. So, the values of the λ’s are not necessarily

powers of two.

Fix t users and consider the probability ηr(n, t) that was defined in Section 4.4 with

respect to the random experiment where none of the t users have been chosen. Recall that

the random experiment is to choose r users uniformly and without replacement from the set

of n users. As discussed earlier

ηr(n, t) =

(
1− t

n

)(
1− t

n− 1

)
· · ·
(

1− t

n− r + 1

)
.

This makes it convenient to express the probability that none among a set of users of certain

size is revoked. For example, the probability of Rj
lt is ηr(n, λ2j+1). Similarly, the probability

of the event Rj
lt ∧R

i,j
rm is ηr(n, λ2j+1 + λi − λj) = ηr(n, λi − λ2j+2). Such calculations will be

used in what follows.

Proposition 20. Let i and j be nodes such that (i, j) ∈ SubsetsForSplit(n, `β).

• If i is the root and j is a leaf, then Pr[W i,j
n,r = 1] = 1 if r = 1 and Pr[W i,j

n,r = 1] = 0 if

r ≥ 2.

• If i is the root and j is not a leaf, then

Pr[W i,j
n,r = 1] = ηr(n, λi − λj)− ηr(n, λ2j+1 + λi − λj)

−ηr(n, λ2j+2 + λi − λj)
+ηr(n, λ2j+1 + λ2j+2 + λi − λj). (5.14)

• If i is not the root and j is a leaf, then

Pr[W i,j
n,r = 1] = ηr(n, λi − λj)− ηr(n, λs + λi − λj). (5.15)

• If i is not the root and j is not a leaf, then

Pr[W i,j
n,r = 1] = ηr(n, λi − λj)− ηr(n, λs + λi − λj)

−ηr(n, λ2j+1 + λi − λj)
−ηr(n, λ2j+2 + λi − λj)
+ηr(n, λs + λ2j+1 + λi − λj)
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+ηr(n, λs + λ2j+2 + λi − λj)
+ηr(n, λ2j+1 + λ2j+2 + λi − λj)
−ηr(n, λs + λ2j+1 + λ2j+2 + λi − λj).

(5.16)

Proof. We consider the case when i is not the root and j is not a leaf. The other cases are

similar. When i is not the root and j is not a leaf, the event W i,j
n,r = 1 is equivalent to the

event Ri,j
sb ∧R

i,j
rm ∧Ri,j

lt ∧R
i,j
rt . We now compute as follows.

Pr[Ri,j
sb ∧R

i,j
rm ∧Ri,j

lt ∧R
i,j
rt ]

= Pr[Ri,j
sb ∧R

i,j
lt ∧R

i,j
rt |R

i,j
rm]× Pr[Ri,j

rm]

=
(

1− Pr[Ri,j
sb ∧R

i,j
lt ∧R

i,j
rt |R

i,j
rm]
)
× Pr[Ri,j

rm]

= (1− Pr[Ri,j
sb |R

i,j
rm]− Pr[Ri,j

lt |R
i,j
rm]− Pr[Ri,j

rt |R
i,j
rm]

+ Pr[Ri,j
sb ∧R

i,j
lt |R

i,j
rm] + Pr[Ri,j

sb ∧R
i,j
rt |R

i,j
rm]

+ Pr[Ri,j
lt ∧R

i,j
rt |R

i,j
rm]

−Pr[Ri,j
sb ∧R

i,j
lt ∧R

i,j
rt |R

i,j
rm])× Pr[Ri,j

rm]

= (Pr[Ri,j
rm]− Pr[Ri,j

sb ∧R
i,j
rm]− Pr[Ri,j

lt ∧R
i,j
rm]

−Pr[Ri,j
rt ∧R

i,j
rm] + Pr[Ri,j

sb ∧R
i,j
lt ∧R

i,j
rm]

+ Pr[Ri,j
sb ∧R

i,j
rt ∧R

i,j
rm] + Pr[Ri,j

lt ∧R
i,j
rt ∧R

i,j
rm]

−Pr[Ri,j
sb ∧R

i,j
lt ∧R

i,j
rt ∧R

i,j
rm])

= ηr(n, λi − λj)
−ηr(n, λs + λi − λj)
−ηr(n, λ2j+1 + λi − λj)
−ηr(n, λ2j+2 + λi − λj)
+ηr(n, λs + λ2j+1 + λi − λj)
+ηr(n, λs + λ2j+2 + λi − λj)
+ηr(n, λ2j+1 + λ2j+2 + λi − λj)
−ηr(n, λs + λ2j+1 + λ2j+2 + λi − λj). (5.17)

The above expression is obtained by conditioning on the event Ri,j
rm and so for the compu-
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tation to go through one needs to assume that the probability of this event is positive. In

the case where this probability is zero, one can directly verify that the probabilities on both

sides are zero.

Algorithm to compute Zn,r: For any fixed (i, j) ∈ SubsetsForSplits(n, `β), Proposition 20

provides a method for computing Pr[W i,j
n,r = 1]. Each of the η expressions can be computed

using r multiplications and since there are a constant number of η’s, the value of Pr[W i,j
n,r = 1]

can be computed using O(r) multiplications. Using (5.13) this immediately gives a method

for computing Zn,r. Doing this directly, however, is not very efficient. The first sum in (5.13)

is over all possible nodes i and the second sum is over the relevant j which are paired with

i. Since the number of nodes is O(n), a direct computation will lead to an algorithm whose

running time is O(rn2).

This can be significantly improved. To explain the idea, first consider n to be a power of

two so that the tree is a full binary tree. Fix a non-special node i and consider all possible j

for which the second sum in (5.13) has to be evaluated. From the expression for Pr[W i,j
n,r = 1]

it is easy to note that for a fixed (n and r and) i, the value of Pr[W i,j
n,r = 1] is determined

only by the number of leaves in the subtree rooted at j and consequently the number of

leaves in the left and the right subtrees of j. Since the tree is full, these values depend only

on the value of the level of node j. So, for each appropriate level below i, one can compute

the value of Pr[W i,j
n,r = 1] for one particular j at that level and then multiply by the number

of nodes in the subtree rooted at i at the level of j. As a result, the second sum in (5.13)

can be computed in O(r log λi) time where λi is the number of leaves in the subtree rooted

at i so that log λi is the level number of i. Since λi ≤ n, the second sum in (5.13) can be

computed using O(r log n) time.

Consider now the first sum in (5.13) (and still assume that n is a power of two). Again,

it is easy to note that the value of E[Zi
n,r] is determined by the value of the level number of

i. So, for each appropriate level, one can compute E[Zi
n,r] for one i and then multiply by the

number of nodes at that level. As a result, computing E[Zn,r] requires a total of O(r log2 n)

multiplications.

If n is not a power of two, then the tree is a complete but, non-full tree and we need to

revise the above description. The idea that all nodes at the same level contribute the same

value does not hold any more. This is because the number of leaves in the subtrees rooted

at nodes at the same level can be different. There is however, a way out which is based
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on the idea of the dividing path. One may recollect that the dividing path joins all nodes

that are roots of non-full subtrees. All nodes at the same level and on the same side of the

dividing path have the same number of leaf nodes. So, for each level, we compute separately

for three cases: for nodes to the left of the dividing path; for the node on the dividing path;

and for nodes to the right of the dividing path. For nodes at the same level and on the

same side of the dividing path, we compute Pr[W i,j
n,r = 1] once and multiply by the number

of nodes satisfying this condition. Similarly the computation of E[Zi
n,r] is carried out. The

level-wise computations of E[Zi
n,r] along with that of E[X i

n,r] in Algorithm 1 gives us the

algorithm to compute the expected header length. Overall, the complexity of the algorithm

is still O(r log2 n).

There is one complication that we have not explained. This is the problem of character-

izing the dividing path and counting the number of nodes at the same level and on the same

side of the dividing path. It turns out that given the value of n, this can always be done. The

details are provided in Section 4.4 [BS13] and so are omitted here. We have incorporated

these in our implementation of the algorithm to compute expected header length given any

value of n and r.

The expected header length of the CTLSD method is E[Yn,r]. As given in (5.12), this

quantity is equal to the sum of E[Xn,r] and E[Zn,r]. We have shown that E[Zn,r] can be com-

puted in O(r log2 n) time. The quantity E[Xn,r] is the expected header length of the CTSD

scheme and can be computed in O(r log n) time as has been described in Section 4.4 [BS13].

So, the overall complexity of the algorithm is O(r log2 n).

Table 5.7 provides some examples of running the algorithm for computing expected header

length for non-full trees using the CTSD and the CTLSD schemes. The chosen values of r are

10 equispaced values between rmin and rmax for the respective n. The CTLSD method is run

by adopting the constrained minimization layering strategy where all levels including and

below `0 − blog2 rminc are considered to be in one layer. The expected header length of the

CTLSD method is almost similar to the CTSD scheme while the user storage requirement

is a little more than half of the CTSD scheme. Hence, with an assumption on the minimum

number of revoked users, the CTLSD scheme with the constrained minimization layering

strategy would be the more practical choice.

Since the CTLSD scheme subsumes the HS LSD and the e-HS LSD schemes, this algo-

rithm computes the expected header length for these schemes too. In [HS02], it was men-

tioned that the expected header length for their layering scheme, i.e; HS layering is around
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2r. As we have seen earlier, by suitably placing the special levels, this can be brought down

significantly to about the expected header length of the SD scheme. On the other hand, for

the (e-)HS scheme, the expected header length can also be somewhat larger than 2r. For

example, for l0 = 28 and r = 2, the expected header length is 2.23r.

5.4 Conclusion

In this chapter, we have suggested new layering strategies for the SD scheme. At one end we

have shown that it is possible to decrease the user storage below that obtained by Halevy

and Shamir [HS02]. At the other end, we have shown that it is possible to attain header

length very close to that of the SD scheme while still requiring a significantly smaller number

of keys. The LSD scheme is extended to handle an arbitrary number of users leading to the

CTLSD scheme. We have obtained an efficient algorithm to compute the expected header

length in the CTLSD scheme. Our analysis of different scenarios is made possible by using

this algorithm.
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Chapter 6

Generalization of the Subset Difference

Scheme Using Trees of Higher Arity

6.1 Introduction

In Chapter 1, we pointed out that as the number of sets in the collection S grows, the header

length may come down at the cost of increasing the user storage. With this understanding,

this chapter extends the idea of SD sets introduced for binary trees in Chapter 2 [NNL01,

NNL02] to k-ary trees for any k ≥ 2. (We start off assuming n to be a power of k and later

extend it using the idea of complete trees instead of full trees.) Our treatment is general

and unified for all values of k.

As the arity k of the underlying tree increases, the number of subsets in S also increases

and as a result the header length generally decreases (with exceptions that have been dis-

cussed later). Working out the details of the scheme and the resulting analysis shows up a

rich complexity of behavior which is not apparent at the outset. We provide an extensive

analysis of the scheme covering the following points.

The Generalized Scheme. We propose a hierarchy of BE schemes parameterized by the

arity k of the underlying tree. For a fixed value of k, we get a BE scheme in this hierarchy.

A single cover generation algorithm which works for all k is developed. Putting k = 2 yields

the NNL-SD scheme of Chapter 2 [NNL01, NNL02]. The work of NNL provides a clever way

to use a pseudo-random generator so that user storage consists of 1+dlog2 ne(dlog2 ne+1)/2

seeds. The direct combination of this idea with the SD sets of a k-ary tree makes the user

storage to be 1 + (2k−1 − 1)dlogk ne(dlogk ne + 1)/2 seeds. We show that a modification

based on the use of cyclotomic cosets modulo 2k − 1 reduces the user storage to 1 + (χk −
2)dlogk ne(dlogk ne+ 1)/2 seeds, where χk is the number of cyclotomic cosets modulo 2k− 1.

141
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Traitor Tracing. The NNL paper [NNL01, NNL02] provides a mechanism for tracing

traitors. With some modification, this idea also fits the k-ary BE scheme. It turns out that

compared to binary trees, for k ≥ 3, tracing traitors can be done with fewer queries.

Header Length. For k-ary trees with n users, the maximum header length of a trans-

mission with r revoked users is shown to be min(2r − 1, n− r, dn/ke). Using the technique

developed in Chapter 4, we devise an algorithm to compute the expected header length of

these schemes for given values of k, n and r. The expression for the expected header length

can be computed in O(r log n) time and O(1) space. Using our implementation of this al-

gorithm we provide representative values to show the average header lengths for different

values of k.

Layering. The idea of layering is extended for the k-ary tree generalization of the SD

scheme. The choice of the layering strategy determines the user storage of the layered

version of the scheme. A dynamic programming algorithm is proposed to compute the

layering strategies for which the user storage is minimum. This generalizes the algorithm for

k = 2 which was given in Chapter 5 [BS14a].

The contents of this chapter are based on the paper [BS15].

6.2 The k-ary Tree Subset Difference Scheme

The description of the scheme is given in two parts – initiation and the cover generation

algorithm.

6.2.1 Initiation

Fix the arity of the underlying tree to be a positive integer k ≥ 2 and let the number n of

users to be a power of k, say n = k`0 . (Later, we describe how to handle the case when n is

not a power of k.) Let T 0 be a full k-ary tree having n = k`0 leaf nodes. There are `0 + 1

levels in T 0. The root node is considered to be at level `0 while the leaf nodes are considered
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to be at level 0. The total number of nodes in T 0 is

1 + k + k2 + . . .+ k`0 =
nk − 1

k − 1
.

The users are assumed to be at the leaf nodes of T 0. So, the set N of all users consists of

the leaf nodes of T 0.

Numbering of the Nodes in T 0. The nodes in T 0 are numbered as follows: the root is

numbered 0; the k children of an internal node i are numbered from left to right as ki + 1,

ki + 2, . . . , ki + k. The nodes in T 0 are identified by their numbers. So, the parent of any

node i is
⌊
i−1
k

⌋
. For a node i, we denote by T i the subtree of T 0 rooted at i.

The Collection S. Let i be an internal node and suppose J is a set of nodes in T i which

have a common parent (and so the nodes in J are siblings) such that 1 ≤ |J | < k. Let Si,J

be the set of leaf nodes in the subgraph

T i \
⋃
j∈J

T j.

Si,J is a subset of the leaf nodes of T 0 and so a subset of the set of all users N . Define S
to be the collection of all possible Si,J and also N . Keys are assigned only to the subsets of

users in S and to no other subsets of N .
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Figure 6.1: The k-ary tree T 0 with k = 3 and n = 27 users. The subset S0,{5,6}
contains all users (leaves) in the subtree T 0 but not in T 5 or T 6. Hence, S0,{5,6} =
{13, 14, 15, 22, 23, . . . , 39}.
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Number of Subsets in the Collection S. We count the number of subsets Si,J in S.

Fix an internal node i and suppose it is at level `. Let us now consider the number of subsets

of nodes J such that Si,J is in S. There are two conditions on J : all nodes in J have the

same parent and 1 ≤ |J | ≤ k− 1. The common parent of the nodes in J is an internal node

in T i. So an internal node in T i gives rise to 2k−2 possible subsets of nodes J . The number

of internal nodes in T i is 1 + k + k2 + . . .+ k`−1 = (k` − 1)/(k− 1). So for a fixed node i at

level `, there are a total of (2k − 2)((k` − 1)/(k − 1)) possible subsets Si,J .

In T 0, there are k`0−` internal nodes at level `. Therefore, the number of subsets generated

by all the nodes at level ` is (k` − 1)/(k − 1) × (2k − 2) × k`0−`. Summing this by varying

` from 0 to `0 we get the total number of subsets Si,J in S. Additionally, we have to count

the set N of all users. Hence, the total number of subsets in S is

|S| = 1 + (2k − 2)

`0∑
`=1

k` − 1

k − 1
(k`0−`)

= 1 +
2k − 2

k − 1

`0−1∑
`=0

(n− k`)

= 1 +
2k − 2

k − 1

(
n`0 +

n− 1

k − 1

)
. (6.1)

For n = 16, and k = 2, the number of subsets in S is 159. For n = 16, and k = 4, the number

of subsets in S is 323. We observe that for a fixed n, the number of subsets in the collection

increases with increasing k. Intuitively, it seems that increasing the number of subsets in S
by increasing k should decrease the header length. This, however, is not always true. Later,

we make a detailed analysis of both the maximum and the average header length of the

scheme.

Key Assignment to Subsets in S. Given an m-bit string, we need to obtain 2k − 1

m-bit strings. This is achieved as follows:

Let G : {0, . . . , 2k − 2} × {0, 1}m → {0, 1}m be a cryptographic hash function. Define

Gσ(seed)
∆
= G(σ, seed). This defines Gσ(seed) for an m-bit string seed and 0 ≤ σ ≤ 2k − 2.

One advantage of this method is that given σ it allows directly “jumping” to a particular

Gσ(seed). We note though that the description of the key assignment method given below

does not depend on the particular manner in which Gσ has been defined.
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The key assigned to a subset Si,J is defined indirectly. The procedure is described as

follows.

1. Every internal node i is assigned an independent and uniform random seed Li.

2. Every node j 6= i in the subtree T i is assigned a seed Li,{j} derived from Li using G in

the following manner.

(a) Suppose j is an immediate child of i and write j as j = ki + s + 1 for some

0 ≤ s ≤ k − 1. Define Li,{j} = G2s(Li).

(b) If j is not an immediate child of i, then let i = t0, . . . , tp = j be a sequence of

nodes from i to j. Let tq = ktq−1 + sq + 1 where 0 ≤ sq ≤ k − 1 for 0 ≤ q ≤ p.

Define Li,{j} = G2sp (G2sp−1 (· · ·G2s1 (Li))).

3. Let j (possibly equal to i) be an internal node in T i and let J ⊂ {kj+1, kj+2, . . . , kj+

k} with 2 ≤ |J | ≤ k − 1. The previous step has already defined the seed Li,{j}. Let s

be the unique integer in {0, . . . , 2k − 2} such that the k-bit binary representation of s

encodes J , i.e., the bth bit of this binary representation is 1 if and only if kj + b is in

J . Define Li,J = Gs(Li,{j}).

4. For each possible subset Si,J , the above procedure defines the seed Li,J . The key

assigned to the subset Si,J is G0(Li,J).

0

L0

1G1(L0) 2G2(L0) 3 G4(L0)

10G1(G4(L0))

32G2(G1(G4(L0)))

11 12

Figure 6.2: Seeds derived by node 32 and its ancestors 3 and 10 from L0. L0,{32} =
G2(G1(G4(L0))).
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seedi
i

j1 j2

Li,{j} = G100(seedi)
j G010(seedi) G001(seedi)

Li,{j1,j2} = G011(Li,{j})

Figure 6.3: Key of Si,{j1,j2} is G000(Li,{j1,j2}) = G000(G011(G100(seedi))).

To illustrate the assignment of seeds, let us consider the tree T 0 with k = 3 and n =

27 users as shown in Figure 6.1. The internal nodes 0, . . . , 12 get uniform random seeds

L0, . . . , L12 respectively. The seeds derived from L0 by nodes at levels 2 and 1 are as follows:

For level 2:

L0,{1} = G1(L0), L0,{2} = G2(L0), L0,{3} = G4(L0),

L0,{1,2} = G3(L0), L0,{2,3} = G6(L0), L0,{1,3} = G5(L0).

For level 1:

L0,{4} = G1(G1(L0)), L0,{5} = G2(G1(L0)), L0,{6} = G4(G1(L0)),

L0,{4,5} = G3(G1(L0)), L0,{5,6} = G6(G1(L0)), L0,{4,6} = G5(G1(L0)),

L0,{7} = G1(G2(L0)), L0,{8} = G2(G2(L0)), L0,{9} = G4(G2(L0)),

L0,{7,8} = G3(G2(L0)), L0,{8,9} = G6(G2(L0)), L0,{7,9} = G5(G2(L0)),

L0,{10} = G1(G4(L0)), L0,{11} = G2(G4(L0)), L0,{12} = G4(G4(L0)),

L0,{10,11} = G3(G4(L0)), L0,{11,12} = G6(G4(L0)), L0,{10,12} = G5(G4(L0)).

Similarly, the seeds derived from L0 for subtrees at level 0 and their combinations, can be

determined.

Figure 6.2 shows how node 32 of Figure 6.1 gets its derived seed from the uniform random

seed L0. There will be seeds derived from every such Li. An example of key assignment to

a subset Si,J where 2 ≤ |J | ≤ k − 1 is shown in Figure 6.3.
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Storage Per User. During initiation, a user will receive information (a set of derived

seeds), from which it can derive the keys of all subsets it belongs to and no more. A user is

associated to a leaf node in T 0. The SD subsets Si,J the user will belong to, will be rooted

at some ancestor node i of that leaf. However, none of the nodes in J will be an ancestor of

that leaf. Thus, a user belongs to all subsets Si,{j1,...,js} for which

• i is an ancestor of the user leaf, and

• none of the nodes j1, . . . , js are on the path joining the root node and the user leaf.

A user has to receive seeds such that it can generate the keys of all such subsets. We have

already seen how keys for subsets are derived from seeds assigned to nodes in T 0. Out of

these seeds, a user gets the derived seeds from which it can generate the keys of subsets to

which it belongs and no more.

The general strategy for assignment of seeds to users is as follows. Let us consider the

path joining the user leaf and the root node in T 0. Let i be a node on this path and hence

an ancestor of that user. The key for a subset Si,J to which the user belongs will be derived

from Li. None of the nodes in J are on the path joining the user leaf and i (a part of the

path with the root). Hence, the nodes in J are siblings that are either directly attached to

this path or are in a subtree attached to this path. The user gets the seeds derived from Li of

all nodes and their combinations that are directly attached with (or “falling-off” from) this

path. Using these seeds and G, the user can derive the keys of every subset Si,J to which it

belongs and no more.

To illustrate the assignment of seeds to the users, let us again consider the tree in Fig-

ure 6.1. As an example, we look at the information that has to be given to the user at leaf

13. For that, we first identify the subsets to which the user at 13 belongs. The user at leaf 13

has three ancestor nodes 4, 1 and 0. Hence, it belongs to subsets of the form S0,J , S1,J and

S4,J where nodes in the respective subsets J are not ancestors of the leaf 13. If the user at

leaf 13 gets the derived seed L0,{2}, it can derive using G, the key for any subset S0,J where

nodes in J are in the subtree rooted at node 2. Similarly, with the derived seed L0,{3}, the

user can derive the key for any subset S0,J where nodes in J are in the subtree rooted at

node 3. Additionally, it needs the key for the subset S0,{2,3}. We know that, if the user at

leaf 13 gets the derived seeds Li,J for every ancestor node i and the set J has a node (or a

combination of nodes) directly attached to the path joining the leaf 13 to the root node 0,

it can derive the key for any subset it belongs to.
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Using this strategy, the user at leaf node 13 gets the seeds for S0,J for the following J :

{2}, {3}, {2, 3}, {5}, {6}, {5, 6}, {14}, {15}, {14, 15}. It gets the seeds for S1,J for the

following J : {5}, {6}, {5, 6}, {14}, {15}, {14, 15}. It gets the seeds for S4,J for the following

J : {14}, {15}, {14, 15}. Hence, the user at leaf node 13 gets the following seeds:

derived from L0:

G2(L0), G4(L0), G6(L0),

G2(G1(L0)), G4(G1(L0)), G6(G1(L0)),

G2(G1(G1(L0))), G4(G1(G1(L0))), G6(G1(G1(L0))).

derived from L1:

G2(L1), G4(L1), G6(L1),

G2(G1(L1)), G4(G1(L1)), G6(G1(L1)).

derived from L4:

G2(L4), G4(L4), G6(L4).

Next we compute the number of seeds that the user will have to store. The number of

seeds derived from seed Li of an ancestor node i at level `, will be 2k−1 − 1 for each level

below `. Thus, the total number of derived seeds due to node i will be (2k−1 − 1)`. Since

there are `0 such ancestor nodes of the user at each level 1, . . . , `0, the total number of seeds

to be stored by the user will be

1 + (2k−1 − 1)

`0∑
`=1

` = 1 +
`0(`0 + 1)

2
(2k−1 − 1). (6.2)

The addition of 1 in the above expression is due to the key that is assigned to the set N of

all users. Each user will be required to store this key to decrypt a message that is broadcast

to all the users, i.e., when there are no revoked users. The factor (2k−1 − 1) in (6.2) can be

reduced using a modified method of distributing secret information to the users. We describe

how to do this in Section 6.5.

Full Resilience Against Colluding Users. Full resilience of a broadcast encryption

scheme is ensured if the collusion of all revoked users does not result in the correct decryption

of the encrypted message. This holds for the NNL-SD scheme and also holds for the current

scheme in a similar manner. The cryptographic assumption that is required is that for any
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seed, complete information about G0(seed), . . . , G2k−2(seed) does not reveal any information

about seed. Starting from this assumption, it is possible to argue in a manner similar to

that done in Section 2.1 [NNL01, NNL02], that the scheme achieves full resilience.

6.2.2 Cover Finding Algorithm

Once the initiation is over and users have been given their secret information, the center can

start broadcasting encrypted messages to the set of privileged users. If there is no revoked

user, the only set for which the messages are encrypted is the set N of all users. Otherwise,

for a given set of revoked users, the center finds the subset cover using the iterative algorithm

outlined below. The subset cover contains subsets of the form Si,J where all nodes in J are

siblings and hence are at the same level.

The algorithm runs on a list L of nodes in T 0 that lie on the paths joining revoked leaf

nodes to the root node. To start with, the list L consists of all revoked leaves from left to

right in T 0. In the course of the algorithm, L is appended with all nodes on the paths joining

the revoked leaves to the root. This is done as follows. Once L is populated with the revoked

leaves, the algorithm runs iteratively from left to right on L. In iteration t, it considers the

tth node j from the left in L. If j is not the root, the parent i of j is appended to L, if it is

not already present there. Hence L keeps growing on the right, with nodes at higher levels

on the tree (up to the root) getting added to its right end. The root node eventually gets

appended to L. The algorithm terminates after working on the root node.

For each node j in L, a summary of requisite information about the subtree T j is main-

tained in L along with the node j. Each node j in L has an associated set SDnodes[j]. The

set SDnodes[j] contains roots of all subtrees that will be subtracted from T j, in case an

SD subset is generated from node j. The cover finding algorithm ensures that all nodes in

SDnodes[j] for any node j are at the same level in T 0. For each leaf node j in the initial

list L, SDnodes[j] = {j}. If a node j gives rise to a subset Sj,J in the algorithm, then

J = SDnodes[j]. In the course of the algorithm, each such node j from which a subset

Sj,SDnodes[j] should be generated, have to be identified. To that end, each node in L gets

marked as “intermediate” or “covered” depending upon its position in the tree. Every itera-

tion of the algorithm works on a particular node and based on the mark of that node and

its siblings, subsets for the cover may or may not be generated. Let the tth node from the

left in L be denoted by L[t]. The node L[t] is processed in the tth iteration.
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The Algorithm. Takes as input the set R of revoked users and outputs the subset cover

Sc.

1. Initialize list L with the r revoked leaf nodes of T 0 in the same left-to-right order as

in the tree. Mark each node j ∈ L as covered and set SDnodes[j] = {j}.

2. Process the nodes in L iteratively from left to right as follows. At the tth iteration:

(a) If L[t] is the root node, go to step 3. If L[t+ 1] has the same parent as L[t], skip

step 2-(b) below.

(b) Let i be the parent of L[t]. Append i to L. Let {j1, . . . , jc} be the children of i

in L. The following mutually exclusive cases occur:

i. Case when all nodes j1, . . . , jc are covered:

A. If c < k, mark i as intermediate and set SDnodes[i] = {j1, . . . , jc}.
B. For c = k, mark i as covered and set SDnodes[i] = {i}.

ii. Case when c = 1 and j1 is intermediate:

Mark i as intermediate and copy SDnodes[j1] to SDnodes[i].

iii. Case when c > 1 and there is at least one intermediate node in {j1, . . . , jc}:
For j ∈ {j1, . . . , jc} that is intermediate, add Sj,SDnodes[j] to the cover Sc and

mark j as covered.

A. If c < k, mark i as intermediate and set SDnodes[i] = {j1, . . . , jc}.
B. For c = k, mark i as covered and set SDnodes[i] = {i}.

Continue step 2 for the next iteration with t = t+ 1.

3. If the root node is marked as intermediate, add S0,SDnodes[0] to the cover Sc.

During the iterations of step 2 in the above algorithm, all the k child nodes of the root may

eventually get marked as covered. In that case, the root node will already been marked as

covered before the algorithm reaches step 3. It implies that all privileged users have been

covered and hence no more SD subsets are added in step 3. The subset cover Sc output by

the algorithm is a collection of subsets of the form Si,SDnodes[i].

The performance of this generalised algorithm for the k-ary tree SD scheme in terms

of speed, memory required and accessed is asymptotically same as that of the NNL-SD

cover-finding algorithm. It may be noted here that for k = 2, this algorithm will check
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some redundant conditions that are not required for the NNL-SD scheme. Hence, an im-

plementation of this algorithm for k > 2 will require more instructions and will be slower.

Nonetheless, the output of this algorithm for k = 2 will be the NNL-SD subset cover and

an implementation optimised for k = 2 will be precisely the same as that of the NNL-SD

scheme. As the value of k increases, the height of the underlying tree would decrease for the

same number of users. Hence, the number of nodes required to be stored and accessed by

the algorithm should decrease. But we store SDnodes for each node in our algorithm. So,

the memory usage and access for higher values of k would increase compared to the lower

values. Our experience in executing the implementations show that for n > 108, r > 0.4n

and k > 8, the memory requirements go beyond that of a PC with 4 GBytes of RAM.

The understanding and hence the pseudo-code for our algorithm is cleaner compared

to the one for the NNL-SD scheme. This is because our algorithm does not involve the

arbitration of Steiner Trees that have been used in all papers related to the NNL-SD scheme

in the existing literature to the best of our knowledge. Our algorithm views the underlying

tree as an array and hence makes it closer to actual implementation and simple to visualize

without the need for the understanding of any extraneous structure.

Algorithm Demonstration. To demonstrate the above algorithm, let us consider the

revocation pattern R = {14, 15, 22} in the tree T 0 with 27 users in Figure 6.4. The list

L that is operated on iteratively in the algorithm, is eventually populated with the nodes

{14, 15, 22, 4, 7, 1, 2, 0}. These are nodes that lie on the paths joining revoked users with

the root node. Nodes 14, 15 and 22 are initially covered. The parent 4 of 14 and 15 is

appended to the list and marked as intermediate with SDnodes[4] = {14, 15}. Similarly,

7 is appended to the list and marked as intermediate with SDnodes[7] = {22}. Next 1

is appended and marked as intermediate with SDnodes[4] = {14, 15} copied to SDnodes[1].

Then 2 is appended and marked as intermediate with SDnodes[7] = {22} copied to SDnodes[2].

Finally, 0 is appended to the list. Since 0 has two children in the list which are not covered,

the subsets S1,SDnodes[1] and S2,SDnodes[2] are added to the cover Sc. Node 0 is marked as

intermediate with SDnodes[0] = {1, 2}. Finally, the subset S0,SDnodes[0] is added to Sc. Hence,

for R = {14, 15, 22}, Sc = {S1,{14,15}, S2,{22}, S0,{1,2}}.

Once the subset cover Sc has been constructed, the message M is encrypted using a

random session key, which in turn is encrypted for each set in the cover. These encryptions

of the session key are sent along with the encrypted message as the header part of the
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cipher-text. The number of sets in the cover, also called the header length, is the parameter

determining the transmission overhead of the scheme.

0

1

4

13 14 15

5

16 17 18

6

19 20 21

2

7

22 23 24

8

25 26 27

9

28 29 30

3

10

31 32 33

11

34 35 36

12

37 38 39

Figure 6.4: The subset cover Sc for R = {14, 15, 22} will contain the SD subsets S1,{14,15},
S2,{22} and S0,{1,2}.

Nodes that Generate a Subset. Nodes in L are the only nodes of T 0 that are processed

in the cover-finding algorithm. Hence, subsets in the cover are generated from nodes in L
only. In other words, if Sj,SDnodes[j] is in the cover, then j ∈ L and SDnodes[j] ⊂ L. The

following Lemma 21 identifies the properties of the node j and the set of nodes SDnodes[j].

Lemma 21. Suppose Sj,SDnodes[j] is in the subset cover. Node j and the nodes in SDnodes[j]

have the following properties:

(1-a) Not all k children of j are in L, and

(1-b) j is either the root or an internal node with a sibling in L.

(2-a) If SDnodes[j] = {v}, then v is either a leaf node or an internal node with all its children

in L.

(2-b) If |SDnodes[j]| > 1, then all nodes of SDnodes[j] are siblings.

(2-c) For any node j, |SDnodes[j]| < k.

Proof. First we show that j is either the root or an internal node with a sibling in L. At

step 3 of the cover finding algorithm described above, we see that SD subsets of the form

S0,SDnodes[0] may be generated. Hence, node j can be the root. If node j is not the root,

then the only other way a subset may be generated is in step 2-b-iii of the algorithm. In

this step, the algorithm considers a node i in L with a set {j1, . . . , jc} of its children in L
where c > 1. Every j ∈ {j1, . . . , jc} that is marked as intermediate at that point, generates

a subset. Hence, a non-root node j that generates a subset, must have a sibling in L.
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Next, we show that not all k children of j are in L. The root node generates a subset in

step 3 of the algorithm only if it is marked as intermediate. A node j that generates a subset

in step 2-b-iii, is marked as intermediate until that point. Hence j is not marked covered until

the subset Sj,SDnodes[j] is generated from it. This implies that in previous iterations, when

the children of j in L were being processed, it was not marked as covered. A node may be

marked as covered in either (1) step 2-b-i-B or 2-b-iii-B when all its children are in L, or (2)

step 2-b-iii after it has generated a subset. If j = L[t], then until the tth iteration, j remains

marked as intermediate if the number of children of j in L is smaller than k. Thus, not all k

children of j are in L.

In the cover finding algorithm, step 1 and the three mutually exclusive steps within step

2-b are the only places from where a set SDnodes[j] may arise. From step 1 of the algorithm,

we see that for each leaf node j, SDnodes[j] is a singleton. From steps 2-b-i-B and 2-b-iii-B,

we see that if all k children of an internal node j are in L, then SDnodes[j] is a singleton.

These are the only two ways in which SDnodes[j] for a node j can be a singleton.

A set SDnodes[j] with more than one node is created only in steps 2-b-i-A and 2-b-iii-A.

Clearly, the nodes in SDnodes[j] have a common parent i and hence are siblings of each other.

Hence, if |SDnodes[j]| > 1, then all nodes in SDnodes[j] are siblings. It is also clear from steps

2-b-i-A and 2-b-iii-A that SDnodes[j] can have at most k nodes. Hence, |SDnodes[j]| < k for

any j.

Correctness of the Algorithm. We prove that the algorithm described above, generates

subsets that were assigned keys during initiation as has been described in Section 6.2.1. We

also show that all privileged users are in some subset in Sc and no revoked user is included

in any of the subsets.

Theorem 22. A subset Sj,SDnodes[j] generated by the algorithm is such that

1. 1 ≤ |SDnodes[j]| < k,

2. all nodes in SDnodes[j] are siblings of each other, and

3. j is their ancestor.

The union of the subsets in Sc include all privileged leaves and no revoked leaves.
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Proof. From Lemma 21 we know that all nodes in SDnodes[j] are siblings of each other and

1 ≤ |SDnodes[j]| < k. It can be seen from steps 1 and 2-b of the algorithm that a node j1

gets inserted into a set SDnodes[j] only if j is an ancestor of j1.

A subset Si,SDnodes[i] output by the algorithm, represents all leaf nodes in the induced

subgraph

T i \ ∪j∈SDnodes[i]T j.

In other words, the subset Si,SDnodes[i] has leaves in T i that are not in the subtrees in

SDnodes[i]. It can be seen from steps 2-b-i and 2-b-iii that a covered node in L is always

within some subtree in the set SDnodes of its parent and ancestors thereon. Hence, once

marked covered, a node is not in any set Si,SDnodes[i] in Sc that is included thereafter. From

steps 1 and 2-b-1 of the cover finding algorithm, we know that each revoked leaf j is in

SDnodes[j] and hence in some subtree in SDnodes[i] for every ancestor i of j. This implies

that a revoked leaf can not be in any subset in Sc.

We next show that any privileged leaf is in a subset in Sc. Let us consider the path

joining a privileged leaf to the root in T 0. Since the root node is in L, hence there will be at

least one node on this path that is in L. Let j1 be the node on this path that is in L and is

nearest to the privileged leaf. All subsequent nodes above j1 are in L. Again, since the root

node is on the path (j1, . . . , 0), at least one of the nodes on this path generate a subset in

Sc. Let the node in (j1, . . . , 0) that is nearest to the privileged leaf and generates a subset

be j. Either j = j1 or j is an ancestor of j1 on the path (j1, . . . , 0). The subset Sj,SDnodes[j]

generated from node j has all leaves in T j but not in any of the subtrees in SDnodes[j].

The privileged leaf is in T j. We show that it is not in any of the subtrees in SDnodes[j].

From steps 1 and 2-b in the algorithm, we know that SDnodes[j] has nodes that have been

covered. Nodes between the privileged leaf and before j1 are not in L and hence cannot be

covered. Since j is the only node on the path (j1, . . . , j) that generates a subset, all nodes

on this path are intermediate until the subset Sj,SDnodes[j] is generated from j. Consequently,

SDnodes[j] does not have any of the nodes on the path joining the privileged leaf and j.

Hence, the privileged leaf is not in any of the subtrees rooted at nodes in ∪j′∈SDnodes[j]T j
′
.

Hence, the privileged user is in the subset Sj,SDnodes[j].

Relation to the NNL-SD Scheme. The case k = 2 of the above scheme is exactly

the NNL-SD scheme described in Chapter 2 [NNL01, NNL02]. So, the new scheme is a

generalization of the NNL-SD scheme and subsumes it. One important advantage of the
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new scheme is a uniform description of the cover generation algorithm irrespective of the

value of k. We note that this description is simpler than the description for k = 2 given

in [NNL01, NNL02] which is phrased in terms of Steiner trees. It turns out that the more

elementary description of the cover generation algorithm is cleaner which leads to an easier

implementation.

Relation to the Ternary Tree Scheme in [FKTS08]. For k = 3, the collection S that

we consider is the same as that in [FKTS08]. However, the method for assigning keys to

these subsets is different. The work [FKTS08] uses a hash chain method and mentions that

it does not extend to k-ary trees for k ≥ 4. On the other hand, our method of distributing

secret keys to the users is general and works for all k. In Section 6.5, we describe a modified

method of distributing secret keys which further lowers the user storage requirement.

6.2.3 Traitor Tracing

We would like to recollect here the definition of the bifurcation property [NNL01, NNL02]

that was described in Chapter 2. The bifurcation property states that given any subset that

is in the collection S and hence has been assigned a key, it is possible to partition the set

into two (or a constant number of) almost equal subsets from S. The bifurcation value is

defined to be the ratio of the size of the largest subset to that of the set itself.

For the k-ary tree SD scheme, a subset Si,J in its collection S is such that all nodes in

the set J are siblings and are in the subtree T i. If the parent of the nodes in J is i, then the

subset Si,J is split into equal sized subsets T j where j is a child of i and j /∈ J . Thus, each

child subtree of i whose root is not in J forms a subset in the split. All the subsets formed by

splitting Si,J will be of equal size and hence the bifurcation value in this case is 1/(k − |J |).
The worst case (maximum bifurcation value) occurs when there are two child subtrees of i

that are not in J (and are hence privileged). The maximum bifurcation value is 1/2. If the

parent of nodes in J is a descendant of i, then the subset Si,J will be split into exactly k

subsets each formed from a child subtree of node i. There will be one subset formed from

the child subtree of i that contains the nodes in J . This subset will be smaller than the rest

of the k − 1 equal-sized subsets. The bifurcation value in this case will be 1/k. All subsets

in the collection S of the layered k-ary tree SD scheme belong to the collection of subsets

that are assigned keys in the k-ary tree SD scheme. Hence, the bifurcation property also
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holds for those subsets. Thus, a traitor tracing mechanism can be devised for the scheme

introduced in this work in a manner similar to the one described in [NNL01, NNL02].

The number of queries required by the traitor tracing algorithm depends on the bifurca-

tion value. At every step of the traitor tracing algorithm, a subset S of users that contains a

traitor is divided into subsets S1, . . . , St using the bifurcation property as mentioned above.

Each subset St is tested for containment of a traitor. The ratio |St|/|S| is at most the bi-

furcation value. The size of the remaining subset from which the traitors have to be traced,

reduces with the bifurcation value. Hence, the traitor tracing algorithm will be more effi-

cient. The bifurcation value of the NNL-SD scheme is 2/3. The bifurcation value of the

k-ary tree SD scheme is 1/2 for k ≥ 3. Hence, the traitor tracing mechanism for the k-ary

tree SD scheme will be more efficient than the NNL-SD scheme.

6.3 Header Length Analysis

When there are no revoked users, the header length is 1. Henceforth, we assume the set R
of revoked users to be non-empty.

Theorem 23. Fix k ≥ 2, n ≥ 1 and 1 ≤ r ≤ n. Then the maximum header length that can

be achieved is min(2r − 1, n− r, n/k).

Note: When r is small, the bound 2r − 1 applies. For k = 2, the upper bound of 2r − 1

was given in [NNL01, NNL02]. The more general form of the bound for binary trees was

mentioned in Section 4.3.4 [BS13]. For k = 3, it has been shown that the scheme in [FKTS08]

has an upper bound of min(2r − 1, n/3).

Proof. The bound n− r on the header length arises since each of the n− r privileged users

can be covered by singleton subsets in the header.

The bound n/k is obtained as follows. Suppose the header consists of h subsets. Write

h = h1 + · · ·+ hk−1 + hk where for 1 ≤ i ≤ k − 1, hi is the number of subsets in the header

having exactly i privileged users and hk is the number of subsets in the header having at

least k privileged users.

Suppose S is a subset counted in hi for some i in [1, k − 1]. From the cover finding

algorithm, it necessarily follows that the leaf nodes in S are siblings and the other siblings
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of the nodes in S are revoked. So, to each subset S counted in hi, there corresponds a

total of k users (i users in S and the other k − |S| revoked siblings of the users in S).

As a result, the total number of users accounted for by h1, . . . , hk−1 is k(h1 + · · · + hk−1).

Since each subset counted in hk has at least k users, the total number of users n is at least

k(h1 + · · ·+ hk−1) + khk = k(h1 + · · ·+ hk−1 + hk) = kh. From this it follows that h ≤ n/k.

Now, we turn to the bound 2r − 1. The subtree T j may be written as a union of all its

child subtrees. Hence,

T j =
⋃

j′∈{kj+1,...,kj+k}

T j′ .

Thus, the node j can be replaced by {kj + 1, . . . , kj + k}. For a subset Si,J ∈ Sc, if j ∈ J
such that all k children of j are in L, we replace j with {kj + 1, . . . , kj + k} in J to get J ′.

J ′ = (J \ {j}) ∪ {kj + 1, . . . , kj + k}.

We keep replacing nodes in J ′ having k children in L by their children until all nodes in J ′

have less than k children in L. Some nodes in J ′ may have no children (leaf nodes) in L.

These are revoked leaf nodes of T 0 that were inserted in L in step 1 of the algorithm. The

new representation S ′c of the subset cover Sc will have

S ′c = (Sc \ Si,J) ∪ Si,J ′ .

However, the privileged users in Si,J ′ are exactly the privileged users in Si,J . We do this for

all subsets in Sc to complete the new representation S ′c of Sc.

We first show that all internal nodes in J ′ generate a subset each. From Lemma 21 we

know that for Si,J ∈ Sc, all nodes in J are in L and are siblings. During the transformation,

a node j ∈ J is replaced by k nodes which are also in L and are siblings of each other. Hence,

each node j ∈ J ′ has a sibling in L. Since j is in L and has less than k children, hence

from step 2-b of the algorithm we know that it is marked as intermediate unless a subset is

generated from it. From step 2-b-iii we know that an intermediate node having a sibling in

L, generates a subset. Hence, a node in J ′ is either a revoked leaf node or an internal node

that generates a subset.

We construct a graph Υ such that for each subset Si,J ′ in S ′c, node i and all nodes in J ′

are in Υ. For every subset Si,J ′ in S ′c, there is an edge (i, j) for each j ∈ J ′ in Υ. A node

j ∈ J ′ that is an internal node in T 0 generates a subset and hence is an internal node in Υ.
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A leaf node in J ′ is a leaf node in Υ.

We first show that Υ is a forest with one or more component trees. Once a subset Si,J

is included in Sc at step 2-b-iii of the algorithm, i is marked as covered and SDnodes[i] = i.

Hence for an ancestor i1 of i, any descendant of i is not in SDnodes[i1]. If Si1,J1 is included

in the cover, it may have i in J1. Since i generates a subset in the cover, the transformation

of J1 to J ′1 will not reach any descendant of i. Hence, J ′1 will not have any descendant of i.

Consequently, there will be an edge (i, j) in Υ for each j ∈ J ′ but there will be no other edge

between j and any other ancestor of j. Since this is true for any node j ∈ Υ, it is an acyclic

graph. Additionally, the cover might not have a subset generated from the root. Thus,

components of Υ may not be connected. Hence, it is a forest with one or more component

trees.

The nodes in Υ are either internal nodes in T 0 that generate a subset each, or revoked

leaf nodes. Hence, the number of internal nodes in Υ is the number of subsets in the subset

cover. For a subset Si,J ∈ Sc if |J | = 1, then by Lemma 21 the node in J is either an internal

node with all its k children in L or a leaf node. In the corresponding Si,J ′ ∈ S ′c, an internal

node in j ∈ J with all its k children in L has been replaced by its child nodes. Hence, if a

subset Si,J ′ ∈ S ′c is such that |J ′| = 1, then the set J ′ has a single leaf node. Hence, if an

internal node i in Υ has only one child, it will be a leaf. Any other internal node in Υ will

have at least two children in Υ.

The transformation ensures that each of the r revoked leaves of T 0 is a leaf in Υ. Hence,

there can be at most r internal nodes that have leaf nodes amongst their children in Υ. The

graph Υ is reduced to Υ′ by merging an internal node having a single leaf child, with its

child. Consequently, Υ′ is a forest with at most r leaves and internal nodes in Υ′ have at

least two children each. Hence, there are at most r − 1 internal nodes in Υ′. Thus, the

maximum number of internal nodes in Υ is r+ r− 1 = 2r− 1. Hence, there can be at most

2r − 1 subsets in the subset cover.

This upper bound of 2r − 1 on the maximum header length can be achieved for a given

r and any fixed value of k provided n can be made as large as required. For k = 2, this

bound has been shown to be tight in Section 4.3.4 [BS13]. For k = 3, let us consider the

tree T 0 of Figure 6.5 where the set of revoked users is R = {13, 16, 22, 25}. The nodes in P
are {13, 16, 22, 25, 1, 2, 0}. The subsets in the cover are S4,{13}, S5,{16}, S7,{22}, S8,{25}, S1,{4,5},

S2,{7,8} and S0,{1,2}. It can be seen from this figure that for higher arities (> 3), additional
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subtrees are added to all the internal nodes. Assuming that the revoked users remain the

same as marked in the figure, we notice the following. The subset S4,{13} gets additional

users that are attached to the node 4. Similarly, each of the subsets S5,{16}, S7,{22}, S8,{25},

S1,{4,5}, S2,{7,8} and S0,{1,2} get the additional users attached to the nodes 5, 7, 8, 1, 2 and 0

respectively. Hence, this upper bound is tight for any arity k in general provided n can be

chosen to be large.

For a given k and n = k`0 this maximum header length of 2r − 1 is achieved for r given

by Lemma 24.

Lemma 24. For a given k and n = k`0, the maximum header length of 2r − 1 is achieved

for r = 2`0−1.

Proof. We prove this by induction on `0. For `0 = 1, n = k and r = 1. Let j1 be the only

revoked leaf. The only subset in the cover is S0,{j1} and hence the header length is 2r−1 = 1.

We assume that the maximum header length that can be achieved for 2`0−2 revoked users in

a full tree of arity k and with k`0−1 users is 2`0−1 − 1. Let us consider a tree with n = k`0

users and r = 2`0−1 revoked users such that two of the subtrees (out of k) of the root node,

which are rooted at nodes j1 and j2, have r/2 = 2`0−2 revoked users in each and the rest of

the subtrees of the root node do not have any revoked user in them. Since each of these two

subtrees have k`0−1 users in each, hence by assumption they give rise to 2`0−1 − 1 subsets

each in the cover. Additionally, there will be a subset S0,{j1,j2} in the cover. Hence, the total

number of subsets generated by this construction for r = 2`0−1 is 2× (2`0−1−1)+1 = 2r−1.

We need to show that these subsets do not combine to reduce the header length. Two SD

subsets Si1,SDnodes[i1] and Si2,SDnodes[i2] can be combined into one SD subset if (1) SDnodes[i1] =

{i2} or SDnodes[i2] = {i1} or (2) if nodes in SDnodes[i1] are siblings of nodes in SDnodes[i2].

Any two SD subsets Si1,SDnodes[i1] and Si2,SDnodes[i2] from the subtrees rooted at j1 and j2

respectively cannot satisfy either of the above two conditions. For the same reason, the

subset S0,{j1,j2} cannot be combined with any of the SD subsets in these two subtrees. Hence,

none of these subsets combine to reduce the total number of subsets 2r − 1 in the subset

cover. Hence, for r = 2`0−1, the maximum header length of 2r − 1 is achieved for a fixed k

and n = k`0 .

Effect of k on the Header Length. In the Subset-Cover framework, the subsets in the

collection S are used to cover the privileged users. It seems intuitive that if the number of



160 Generalization of the Subset Difference Scheme Using Trees of Higher Arity

0

1

4

13 14 15

5

16 17 18

6

19 20 21

2

7

22 23 24

8

25 26 27

9

28 29 30

3

10

31 32 33

11

34 35 36

12

37 38 39

Figure 6.5: Example showing that the upper bound of 2r − 1 on the header length is tight
for k = 3. The subset cover for R = {13, 16, 22, 25} in the tree T 0 with k = 3, will contain
the SD subsets S4,{13}, S5,{16}, S7,{22}, S8,{25}, S1,{4,5}, S2,{7,8} and S0,{1,2}.
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Figure 6.6: Example where the header length of 4-ary is better than 2-ary: For n = 16
users, the header length for R = {15, 17} in the 2-ary tree is more for k = 2 than for
k = 4. For k = 2, the subset cover Sc = {S7,{15}, S8,{17}, S0,{3}}. For k = 4, the subset cover
Sc = {S0,{5,7}}.

subsets in the collection increases, the number of subsets required to form a cover would

decrease. As mentioned earlier, for n = 16, the number of subsets in the collection for k = 4

is more than that for k = 2. More subsets in the collection should reduce the header length.

In Figure 6.6 we see that the header length for the specific revocation pattern is smaller

for the 4-ary tree as compared to the 2-ary one. However, this may not always happen. In

Figure 6.7, the revocation pattern is such that the header length is smaller for the 2-ary tree

as compared to the 4-ary one. Hence, we see that the header length may not always reduce

by increasing the arity. By Theorem 23, the maximum header length is independent of the

underlying arity k. The expected header lengths for different values of k will give a better

idea about the effect of arity on the overall communication overhead.
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Figure 6.7: Example where the header length of 2-ary is better than 4-ary: For n = 16
users, the header length for R = {15, 16, 23} in the 2-ary tree is more for k = 4 than for
k = 2. For k = 2, the subset cover Sc = {S1,{7}, S2,{23}}. For k = 4, the subset cover
Sc = {S1,{5,6}, S3,{13}, S0,{1,3}}.

6.3.1 Expected Header Length

Fix k, n and r. Consider the same random experiment as described in Section 4.4, where one

has to randomly choose r out of the n users uniformly at random one-by-one and without

replacement. Consider the selected set of r users to be revoked. The expected header length

under this random experiment is given by the following result.

Theorem 25. Fix k ≥ 2, n = k`0 ≥ 1 and 1 ≤ r ≤ n. The expected header length in the

k-ary tree SD scheme is given by

k−1∑
c=1

(
k

c

)(
γ`0,c +

`0−1∑
`=1

(k`0−`)γ`,c

)

where

γ`,c = ηr(n, k
` − ck`−1)− ηr(n, k`+1 − ck`−1)

−
c∑
t=1

(−1)t+1

(
c

t

)
ηr(n, k

` − (c− t)k`−1)

+
c∑
t=1

(−1)t+1

(
c

t

)
ηr(n, k

`+1 − (c− t)k`−1) for 1 ≤ ` ≤ `0 − 1 (6.3)
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and

γ`0,c = ηr(n, k
`0 − ck`0−1)−

c∑
t=1

(−1)t+1

(
c

t

)
ηr(n, k

`0 − (c− t)k`0−1). (6.4)

Proof. Let Xn,r be the random variable taking the value of the header length. The expected

header length also depends on k and so strictly speaking we should be using the notation

Xn,r,k to denote this dependence. We have chosen the simpler notation Xn,r since for a

particular implementation, k will be fixed and so clear from the context.

Each subset in the cover Sc is rooted at some internal node i of T 0. Each such node in the

tree contributes at most one subset to the cover. Let X i
n,r be the random variable associated

with node i, that denotes its contribution to the header length. Hence, X i
n,r ∈ {0, 1}. The

event X i
n,r = 1 occurs when there is a subset Si,J in the cover and X i

n,r = 0 otherwise. It

can be seen from the cover finding algorithm described in Section 6.2.2 that the leaf nodes

of T 0 do not generate SD subsets. Hence, SD subsets are generated only from the internal

nodes in T 0. It follows that

Xn,r = X0
n,r +X1

n,r + · · ·+X
if
n,r, (6.5)

where if = nk−1
k−1
− n − 1 is the last internal node as per the labeling of the tree T 0. By

linearity of expectation,

E[Xn,r] = E[X0
n,r] + E[X1

n,r] + · · ·+ E[X
if
n,r]. (6.6)

To find the expected header length, one needs to compute the values of E[X i
n,r] for each i ∈

{0, 1, . . . , if}. Since X i
n,r ∈ {0, 1}, the random variable X i

n,r follows Bernoulli distribution.

Hence, E[X i
n,r = 1] = Pr[X i

n,r = 1]. Thus, to compute the expected header length E[Xn,r]

for a random revocation pattern, the probability Pr[X i
n,r = 1] that a node i generates a

subset has to be computed.

Let I be the set of all child nodes of i and let p be the parent node of i in T 0. Hence,

I = {ki + 1, . . . , ki + k} and p = b(i − 1)/kc. Let J ⊂ I be a non-empty subset of child

nodes of i. The event X i
n,r = 1 occurs when a subset Si,J is in the cover. For a subset Si,J

to be in the cover, the following have to be true with respect to node i in T 0:

• At least one but not all child subtrees of i would contain some revoked nodes; and
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• If i 6= 0 (for a non-root internal node), at least one sibling subtree of i would contain

a revoked node.

i

p

j1 j2

Figure 6.8: Example of a scenario for the event X i
n,r = 1 where a set Si,J occurs in the subset

cover. Child subtrees of i that are red in color, contain at least one revoked user in each.
Hence their root nodes j1 and j2 are in the set J . The other child subtrees of i (green in
color) do not contain any revoked user. Hence they are in the set I \ J . Sibling subtrees of
i that are red in color, contain at least one revoked user in each. Hence, at least one child
subtree of i (not all) has revoked users and at least one sibling subtree of i has revoked users.
Consequently, a subset rooted at node i is generated.

In order to formulate these conditions when a subset Si,J rooted at node i occurs in the

subset cover, we define some additional events with respect to the node i and a non-empty

subset of its child nodes J ⊂ I. The event Ri
j (where j ∈ J) is defined to occur when for a

revocation pattern, the subtree rooted at node j contains at least one revoked user. Hence,

event Ri
j occurs when the subtree rooted at node j does not contain any revoked user. Let

Ri
J =

∧
j∈J R

i
j be the event where each subtree rooted at nodes in J has at least one revoked

user. Hence, Ri
J is the event where none of the subtrees rooted at nodes in J have any

revoked user. For i 6= 0, event Ri
sb is defined to occur when the union of all sibling subtrees

of i (children of p other than i) contains at least one revoked node. Hence, a subset Si,J is

in the subset cover when the following condition is true(∧
j∈J

Ri
j

)
∧Ri

sb ∧Ri
I\J = Ri

J ∧Ri
sb ∧Ri

I\J .

Since a subset Si,J may occur for any non-empty set J ⊂ I, hence the event X i
n,r = 1 can

also be written as ∨
J⊂I,J 6=φ

(
Ri
J ∧Ri

sb ∧Ri
I\J

)
.

These events (Ri
sb ∧Ri

J ∧Ri
I\J) are mutually exclusive and they exhaustively form the event



164 Generalization of the Subset Difference Scheme Using Trees of Higher Arity

X i
n,r = 1. Hence, we can write

Pr[X i
n,r = 1] =

∑
J⊂I;J 6=φ

Pr[Ri
sb ∧Ri

J ∧Ri
I\J ]. (6.7)

It can be similarly seen that for the root node with children in {1, . . . , k}

Pr[X0
n,r] =

∑
J⊂{1,...,k};J 6=φ

Pr[Ri
J ∧Ri

I\J ]. (6.8)

The probability Pr[Ri
sb ∧Ri

J ∧Ri
I\J ] can be written as

Pr[Ri
sb ∧Ri

J ∧Ri
I\J ] = Pr[Ri

sb ∧Ri
J |Ri

I\J ]× Pr[Ri
I\J ]

= (1− Pr[Ri
sb ∧Ri

J |Ri
I\J ])× Pr[Ri

I\J ]

= (1− Pr[Ri
sb|Ri

I\J ]− Pr[Ri
J |Ri

I\J ] + Pr[Ri
sb ∧Ri

J |Ri
I\J ])

×Pr[Ri
I\J ]

= Pr[Ri
I\J ]− Pr[Ri

sb ∧Ri
I\J ]− Pr[Ri

J ∧Ri
I\J ]

+ Pr[Ri
sb ∧Ri

J ∧Ri
I\J ]) (6.9)

and for the root node, Pr[Ri
J ∧Ri

I\J ] can be written as

Pr[Ri
J ∧Ri

I\J ] = Pr[Ri
I\J ]− Pr[Ri

J ∧Ri
I\J ]. (6.10)

For the computation of (6.9) and (6.10) above, we observe that the event Ri
J occurs when

at least one j ∈ J does not contain any revoked user. Now let us consider two events A and

B in general such that the event A occurs when all the sub-events A1, . . . , Ac occur. Hence,

A = A1 ∧ . . . ∧ Ac.

Pr[A ∧B] = Pr[A1 ∧ . . . ∧ Ac|B] Pr[B]

= Pr[A1 ∨ . . . ∨ Ac|B] Pr[B]

= Pr[A1 ∧B] + . . .+ Pr[Ac ∧B]− Pr[A1 ∧ A2 ∧B]

− . . .− Pr[Ac−1 ∧ Ac ∧B]

+ . . .+ (−1)c+1
(
Pr[A1 ∧ . . . ∧ Ac ∧B]

)
. (6.11)
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Now, when A = Ri
J where At = Ri

jt and B = Ri
I\J , we get

Pr[Ri
J ∧Ri

I\J ] = Pr[Ri
j1
∧Ri

I\J ] + . . .+ Pr[Ri
jc
∧Ri

I\J ]

−Pr[Ri
j1
∧Ri

j2
∧Ri

I\J ]− . . .− Pr[Ri
jc−1
∧Ri

jc
∧Ri

I\J ]

+ . . .+ (−1)c+1
(

Pr[Ri
j1
∧ . . . ∧Ri

jc
∧Ri

I\J ]
)
. (6.12)

Similarly, for the expression Pr[Ri
J ∧Ri

I\J ∧Ri
sb] in (6.9) we get the following using the result

in (6.11)

Pr[Ri
J ∧Ri

I\J ∧Ri
sb] = Pr[Ri

j1
∧Ri

I\J ∧Ri
sb] + . . .+ Pr[Ri

jc
∧Ri

I\J ∧Ri
sb]

−Pr[Ri
j1
∧Ri

j2
∧Ri

I\J ∧Ri
sb]− Pr[Ri

jc−1
∧Ri

jc
∧Ri

I\J ∧Ri
sb]

+ . . .+ (−1)c+1
(

Pr[Ri
j1
∧ . . . ∧Ri

jc
∧Ri

I\J ∧Ri
sb]
)
. (6.13)

From (6.9), (6.12) and (6.13) we get

Pr[Ri
sb ∧Ri

J ∧Ri
I\J ] = Pr[Ri

I\J ]− Pr[Ri
sb ∧Ri

I\J ]− Pr[Ri
J ∧Ri

I\J ]

+ Pr[Ri
sb ∧Ri

J ∧Ri
I\J ]

= Pr[Ri
I\J ]− Pr[Ri

sb ∧Ri
I\J ]

−Pr[Ri
j1
∧Ri

I\J ]− . . .− Pr[Ri
jc
∧Ri

I\J ]

+ Pr[Ri
j1
∧Ri

j2
∧Ri

I\J ] + . . .+ Pr[Ri
jc−1
∧Ri

jc
∧Ri

I\J ]

− . . .+ (−1)c+2
(

Pr[Ri
j1
∧ . . . ∧Ri

jc
∧Ri

I\J ]
)

+ Pr[Ri
j1
∧Ri

I\J ∧Ri
sb] + . . .+ Pr[Ri

jc
∧Ri

I\J ∧Ri
sb]

−Pr[Ri
j1
∧Ri

j2
∧Ri

I\J ∧Ri
sb]− Pr[Ri

jc−1
∧Ri

jc
∧Ri

I\J ∧Ri
sb]

+ . . .+ (−1)c+1
(

Pr[Ri
j1
∧ . . . ∧Ri

jc
∧Ri

I\J ∧Ri
sb]
)
. (6.14)

To find these probabilities, we define ηr(n, x) to be the probability that r out of n elements

are chosen uniformly at random without replacement but x out of these n elements never

get chosen. In other words,

ηr(n, x) =

(
n−x
r

)(
n
r

) . (6.15)
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Let the number of users in the subtree rooted at node i be λi. Hence, the number of users in

all the sibling subtrees of i is λp−λi. Hence, the sum of the number of users in the subtrees

rooted at nodes in I \ J is λi −
∑

j∈J λ
j. From (6.14) and (6.15) we get

Pr[Ri
sb ∧Ri

J ∧Ri
I\J ] = ηr(n, λ

i −
∑
j∈J

λj)− ηr(n, λp −
∑
j∈J

λj)

−ηr(n, λi −
∑

j∈J\{j1}

λj)− . . .− ηr(n, λi −
∑

j∈J\{jc}

λj)

+ηr(n, λ
i −

∑
j∈J\{j1,j2}

λj) + . . .+ ηr(n, λ
i −

∑
j∈J\{jc−1,jc}

λj)

− . . .+ (−1)c+2ηr(n, λi)

+ηr(n, λ
p −

∑
j∈J\{j1}

λj) + . . .+ ηr(n, λ
p −

∑
j∈J\{jc}

λj)

−ηr(n, λp −
∑

j∈J\{j1,j2}

λj)− . . .− ηr(n, λp −
∑

j∈J\{jc−1,jc}

λj)

+ . . .+ (−1)c+1ηr(n, λp). (6.16)

Similarly for the root node, from (6.10), (6.12) and (6.15) we get

Pr[Ri
J ∧Ri

I\J ] = ηr(n, λ
i −
∑
j∈J

λj)

−ηr(n, λi −
∑

j∈J\{j1}

λj)− . . .− ηr(n, λi −
∑

j∈J\{jc}

λj)

+ηr(n, λ
i −

∑
j∈J\{j1,j2}

λj) + . . .+ ηr(n, λ
i −

∑
j∈J\{jc−1,jc}

λj)

− . . .+ (−1)c+2ηr(n, λi). (6.17)

From (6.6), (6.7), (6.8), (6.16) and (6.17) we get the algorithm for computing E[Xn,r]. In

Section 6.4, we discuss that this scheme may be further extended for an arbitrary number

of users (instead of a power of k). In such a case, the underlying tree may be assumed to

be a complete tree (with users at the last two levels of the tree) instead of a full tree. All

the above expressions for computing probabilities are also valid for complete trees where the

number of users may not be a power of k.

However, for the k-ary tree SD scheme as it has been described here, the number of users

is assumed to be a power of k. Hence, n = k`0 . Let c = |J | be the cardinality of the set J of
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some child nodes of i. Hence, 0 < c < k. There are `0 levels with internal nodes in the tree

T 0. All subtrees rooted at level ` have the same number of leaf nodes k`. For a non-root i

at level ` and a corresponding set of child nodes J (|J | = c), the contribution to the header

can be computed from (6.16) as

Pr[Ri
sb ∧Ri

J ∧Ri
I\J ] = ηr(n, k

` − ck`−1)− ηr(n, k`+1 − ck`−1)

−
c∑
t=1

(−1)t+1

(
c

t

)
ηr(n, k

` − (c− t)k`−1)

+
c∑
t=1

(−1)t+1

(
c

t

)
ηr(n, k

`+1 − (c− t)k`−1). (6.18)

Let γ`,c be the value of this probability given by (6.18) for a non-root node i at level `

(1 ≤ ` ≤ `0 − 1) and |J | = c. Since there are k`0−` nodes at level ` in the tree T 0, hence the

contribution of all the nodes at level ` and a fixed value of c is (k`0−`)γ`,c. For the root node

0 at level `0 and a corresponding set of child nodes J ⊂ {1, . . . , k} (|J | = c), the contribution

to the header can be computed from (6.17) as

Pr[R0
J ∧R0

I\J ] = ηr(n, k
`0 − ck`0−1)

−
c∑
t=1

(−1)t+1

(
c

t

)
ηr(n, k

`0 − (c− t)k`0−1). (6.19)

The value of this probability given by (6.19) for the root node at level `0 and |J | = c is

denoted by γ`0,c. Hence, the expected header length for a given k, `0 and r is given by

E[Xn,r] =
k−1∑
c=1

(
k

c

)(
γ`0,c +

`0−1∑
`=1

(k`0−`)γ`,c

)
. (6.20)

Algorithm to Compute the Expected Header Length. The result in Theorem 25

can be converted into an algorithm to compute the expected header length. The algorithm

takes as input the values of k, n and r. Here n = k`0 for some `0 ≥ 1 and 1 ≤ r ≤ n. The

algorithm computes the values of γ`,c for each level ` in the tree T 0 and each value of c. For

fixed values of ` and c, computing γ`,c requires computing a fixed number of ηr(·, ·). One
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Table 6.1: Table showing the results of the algorithm for computing the expected header
length. For each k, we have chosen n to be ka and kb which are the two closest powers of k
to 108. The column MHLk/r gives the ratio of the mean header length MHLk for k-ary tree
to the number r of revoked users.

k n r MHLk/r k n r MHLk/r

2 (226, 227)
105 (1.24, 1.24)

3 (316, 317)
105 (1.48, 1.48)

106 (1.23, 1.24) 106 (1.43, 1.46)
107 (1.23, 1.24) 107 (1.00, 1.31)

4 (413, 414)
105 (1.49, 1.50)

5 (511, 512)
105 (1.47, 1.48)

106 (1.45, 1.49) 106 (1.40, 1.46)
107 (1.08, 1.38) 107 (0.83, 1.32)

6 (610, 611)
105 (1.45, 1.46)

7 (79, 710)
105 (1.42, 1.43)

106 (1.38, 1.45) 106 (1.30, 1.42)
107 (0.82, 1.32) 107 (0.55, 1.24)

8 (88, 89)
105 (1.38, 1.42)
106 (1.05, 1.37)
107 (0.21, 0.97)

computation of ηr(·, ·) requires O(r) multiplications. Hence, computing γ`,c also requires

O(r) multiplications. Since there are logk n + 1 levels in the tree, hence computing the

expected header length requires O(r log n) multiplications. The algorithm requires constant

amount of space. Hence, we have an algorithm requiring O(r log n) time and O(1) space to

compute the expected header length in the k-ary tree SD scheme for given values of k, n

and r.

We have implemented the algorithm. Table 6.1 provides examples of outputs of the

algorithm for different values of k, n and r.

6.4 Tackling Arbitrary Number of Users

In the description of the scheme so far, we have assumed that n is a power of k. This may

turn out to be restrictive in practice. Here we describe how to modify the scheme so as to

be able to handle an arbitrary number of users. When n is a power of k, the underlying

structure is a full k-ary tree. In the more general case where n is not a power of k, we

work with a complete k-ary tree. This is an analogue of complete binary trees used in data



Tackling Arbitrary Number of Users 169

structures to describe heap algorithms.

The structure of a complete k-ary tree can be described as follows. Let `0 = dlogk ne and

k`0−1 < n ≤ k`0 . By an abuse of notation, we denote by T 0 the complete k-ary tree with n

leaf nodes. The leaf nodes are at levels 0 and 1. Suppose that there are n1 leaf nodes at level

0 and n2 leaf nodes are at level 1. Let n = k`0−1 + i with 1 ≤ i ≤ k`0 − k`0−1. Then a simple

calculation shows that n2 = k`0−1 − di/(k − 1)e and n1 = n − n2. In T 0, consider the path

joining the root node 0 to the right-most internal node at level 1. Clearly, all subtrees rooted

at nodes that are not on this path are full k-ary trees. In particular, subtrees rooted at nodes

at level ` that are to the left (respectively right) of this path are of height ` (respectively

` − 1). This path is consequently called the dividing path. If n is not a power of k, then

subtrees rooted on the dividing path may not be full k-ary trees.

Definition of the Collection S. This remains unchanged, i.e., S still consists of N and

subsets Si,J where i is an internal node in T 0 and J is a subset of nodes with a common

parent in the subtree of T 0 rooted at i. The method for assigning keys to the subsets also

remain unchanged. (In Section 6.5 later, we provide a different method for assigning keys.)

User Storage. The actual number of seeds that a user will require depends on whether the

user corresponds to a leaf at level 0 or a leaf at level 1. This number is at least (2k−1−1) `0(`0−1)
2

and at most (2k−1 − 1) `0(`0+1)
2

. All users are attached to some node of the dividing path.

Users to the left of the dividing path and attached to it at a level greater than 1, get

(2k−1 − 1) `0(`0+1)
2

(maximum number of) seeds; users to the right of the dividing path and

attached to it at a level greater than 1, get (2k−1−1) `0(`0−1)
2

(minimum number of) seeds. The

number of seeds assigned to users attached to the dividing path at level 1 (to the rightmost

internal node), is in the above mentioned range and can be easily calculated based upon the

number of children of the last two nodes of the dividing path.

Cover Generation Algorithm. The algorithm remains by and large the same. It is

only at the initial stage that some modification is required. The cover generation algorithm

for full k-ary trees progresses by processing the nodes in the list L one by one. This list

is maintained as a queue and is initialized by inserting all the revoked users into it in the

left-to-right order. All the users and so all the revoked users are necessarily at level 0.

In the case of complete trees, some of the users may be at level 1. So, the initialization
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of L is done by inserting all the revoked nodes at level 0 in the left-to-right order. At this

point, the users at level 1 are not inserted into the list. The nodes in L are now processed

one-by-one as in the cover generation algorithm. As part of this processing, the parents of

these nodes get appended to L. These parents are (internal) nodes at level 1. When the

processing of the last revoked node at level 0 which is in L is completed, all nodes at level 1

which have at least one revoked child have been added to L in the left-to-right order. Now,

all nodes corresponding to revoked users at level 1 are inserted into L. From this point

onwards there is no further change in the cover generation algorithm. It proceeds exactly as

in the case of full trees and generates the cover. It is not difficult to argue that the algorithm

correctly generates the cover. We have implemented this cover generation algorithm and

used it in the analysis of average header length.

Header Length Analysis. Moving from a full to a complete k-ary tree does not affect

the upper bound on the header length of the algorithm. It is min(2r − 1, n− r, dn/ke). For

expected header length, as in the case of full k-ary trees, in theory, it is possible to develop

an algorithm to compute the expected header length for the complete k-ary tree SD scheme.

As before let X i
n,r be the binary valued random variable which takes the value 1 if and

only if the node i gives rise to a subset in the header. Hence, Pr[X i
n,r = 1] has to be computed

using (6.16) and (6.17). To that end, the number of nodes under the subtree rooted at a node

i has to be calculated and substituted appropriately in the equations. Note that the subtrees

rooted at nodes on the dividing path may or may not be full. Thus, in order to compute

Pr[X i
n,r = 1] for a node i using (6.16) and (6.17) it is required to consider a large number of

cases depending on the relative position of a node with respect to the dividing path. While

this can be done, the resulting algorithm becomes quite complicated and becomes difficult

to implement.

In view of this difficulty, we have chosen not to implement the exact algorithm for finding

the expected header length for complete k-ary trees. Instead, we have opted for a simulation

study of the expected header length. For given values of k, n and r, we generate random

revocation patterns using Floyd’s algorithm [BF87] to sample r users from the set of n users.

For each such random revocation pattern, the cover generation algorithm finds the exact

cover and hence we get the header length for a particular revocation pattern. Taking the

average of the header lengths obtained on different runs gives a statistical estimate of the

expected header length. The number of iterations is chosen so that the average value of the
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header length stabilizes.

We have implemented this method. The result has been checked for accuracy in the

following manner. In the case when n is a power of k, we have developed and implemented

the algorithm to find the actual value of the expected header length. For such values of n,

the results of the simulation study has been compared to the output of the exact algorithm

and has been found to have tallied very well. Later, we report comparative performance

analysis based on the simulation study of the expected header length.

6.5 Reducing User Storage

Given a k ≥ 2, let n (not necessarily a power of k) be the number of users. By usk(n) we

denote the maximum number of m-bit seeds required to be stored by any of the n users

in the system such that a user is able to generate the key associated to any subset in S of

which it is a member. From (6.2), it appears that usk(n) is 1 + (2k−1 − 1)`0(`0 + 1)/2 where

`0 = dlogk ne. In comparison to the case k = 2, for k > 2, the factor (2k−1 − 1) contributes

to the blow-up in the key size. In this section, we describe methods by which this blow-up

can be somewhat mitigated leading to values of usk which are lower than that given by (6.2).

For small values of k, in comparison to (6.2), the decrease in user storage that is attained is

significant.

The reduction in user storage described in this section is achieved by deriving the seeds in

a different fashion. The collection S remains unaltered and so the cover generation algorithm

does not change. Also, the header length analysis (both maximum and expected), remains

unaltered.

6.5.1 The Case k = 3

To explain the basic idea, we start by considering the case of k = 3. In this case, from (6.2)

the maximum number of seeds required to be stored by any user is 1 + 3`0(`0 + 1)/2, where

`0 = dlog3 ne. We show that this can be reduced to 1 + `0(`0 + 1).

Consider the tree T 0 where each internal node has (at most) 3 children. (For ease of

understanding, one may initially assume T 0 to be a full 3-ary tree.) Let j be an internal

node of T 0 and its children are nodes numbered 3j + 1, 3j + 2, 3j + 3. Users in T j get seeds
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derived from the seeds associated to j. There are two kinds of seeds associated to j: the

uniform random seed Lj and the derived seed Li,{j} where i is some ancestor of j. For any

such seed L, there are seven seeds Lσ = Gσ(L), 0 ≤ σ ≤ 6 which are derived from L. If L is

of the form Li,{j}, then L0 is the key associated to the subset Si,{j}, while all the other Lσ’s

are distributed to the users in T j in the following manner. (We identify σ with their 3-bit

binary representations.)

Users in T 3j+1 get: L011, L010, L001.

Users in T 3j+2 get: L101, L100, L001.

Users in T 3j+3 get: L110, L100, L010.

Hence, corresponding to the label L associated to j, each user in T j gets three seeds. We

show that by adopting a different strategy for generating the Lσ’s, it is possible to provide

each user in T j with two seeds, from which it can generate the three required seeds.

The idea is based on replacing G by another cryptographic hash function H : {0, 1, 2} ×
{0, 1}m → {0, 1}m. For b = 0, 1, 2, we denote H(b, seed) as Hb(seed). We define G0(seed) to

be H2(seed). Suppose σ is a t-bit string b1 · · · bt. Then Hσ is defined to be

Hbt(· · · (Hb1(seed) · · · ).

Consider again a seed L associated with the internal node j from which seeds for users

in T j are to be derived. For a t-bit binary string σ with t ≥ 1, define L̂σ to be equal to

Hσ(L). A simple way of viewing this is the following. Consider an auxiliary full binary tree

structure (independent of T 0) of height t. Each path from the root to a leaf in this tree is of

length t and is encoded as follows. Moving to the left child from a node is encoded by 0 and

moving to the right child is encoded by 1. Then any node in the tree is encoded by a binary

string σ which represents the path from the root to that node. The seed L is associated to

the root node of the auxiliary tree. The action of H on the seed of a node to derive the seeds

of its children, results in the association of the seed L̂σ to the node encoded by σ.

The different L’s to be distributed to the users in T j are defined from the L̂’s by a

suitable permutation on the set of all 3-bit strings. More concretely, we define

L001 = L̂000, L011 = L̂001, L010 = L̂010, L110 = L̂011,

L100 = L̂100, L101 = L̂101, L000 = L̂110, L111 = L̂111.
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The new assignment of seeds to users in T j is as follows:

Users in T 3j+1 get: L̂00, L̂010.

Users in T 3j+2 get: L̂10, L̂000.

Users in T 3j+3 get: L̂01, L̂100.

Since L001 = L̂000 = H0(L̂00), L011 = L̂001 = H1(L̂00) and L010 = L̂010, users in T 3j+1 can

generate the required seeds. Similarly, the users in T 3j+2 and T 3j+3 can generate the seeds

required by them.

The above method shows that for any seed associated to any internal node j, the number

of derived seeds to be stored by users in T j reduces to 2 from 3. As a result, the number of

seeds required to be stored by any user is (at most) 1 + 2 × `0(`0 + 1)/2 = 1 + `0(`0 + 1).

This is summarized in the following result.

Proposition 26. Suppose k = 3 and there are n users with `0 = dlog3 ne. Then the maxi-

mum number of m-bit seeds required to be stored by any user is us3(n) = 1 + `0(`0 + 1).

Given n, the expressions for us2 and us3 are as follows:

us2(n) = 1 +
1

2
× dlog2 ne (dlog2 ne+ 1) and us3(n) = 1 + dlog3 ne (dlog3 ne+ 1) .(6.21)

It is interesting to form a comparative study of us2 and us3. This is done using the following

sequence of results.

Lemma 27. Let ` ≥ 1. Let s be the least positive integer such that 2s > 3`. Then 3` + 1 ≤
2s < 2s+2 < 3`+2 + 1. In other words, there are at least three powers of two between 3` + 1

and 3`+2 + 1.

Proof. Let 2s = 3` +x for some x ≥ 1. Since s is the least positive integer such that 2s > 3`,

it follows that 2s−1 < 3`. From this, we get 3`/2 +x/2 < 3` so that x < 3`. Now, 2s+2 < 3`+2

if 4× 3` + 4x < 3`+2 if x < (5/4)3`. Since we already have x < 3`, the result follows.

Lemma 28. Let ` be a positive integer and s be the least positive integer such that 2s > 3`+1.

Then the following holds.

1. If ` is even then 3s ≥ 4(`+ 1). Further, the inequality is strict for even ` ≥ 4.
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2. If ` ≥ 5 is odd then 3s ≥ 4(`+ 1). Further, the inequality is strict for odd ` ≥ 7.

Proof. We prove (1), the proof of (2) being similar. The proof is by induction on even ` ≥ 2.

The base case is for ` = 2 and then s = 4 and so the result holds. For the induction step, we

first note that by Lemma 27, there are at least 3 powers of 2 between 3` + 1 and 3`+2 + 1. So

the least power of 2 which is greater than 3`+2 + 1 is at least 2s+3. By induction hypothesis,

we have 3s > 4(` + 1) and so 3(s + 3) = 3s + 9 > 4(` + 1) + 8 = 4(` + 3). This shows the

induction step. For ` = 4, the inequality is strict and by the induction step, it follows that

the inequality is strict for all even ` ≥ 4.

Lemma 29. Let ` ≥ 4 and s be the least positive integer such that 2s > 3` + 1. Then for

any n with 2s + 1 ≤ n ≤ 3`+1, us2(n) > us3(n).

Proof. From the range of n it follows that us3(n) = (`+ 1)(`+ 2). In the given range for n,

us2(n) ≥ (s+ 1)(s+ 2)/2.

We first prove the result by induction on even ` ≥ 4. For ` = 4, s = 7 and the result holds.

For the induction step, suppose the result holds for `, i.e., (s+ 1)(s+ 2)/2 > (`+ 1)(`+ 2).

Also, by Lemma 28, we have 3s ≥ 4(`+ 1). Consider the case for `+ 2. By Lemma 27, the

least power of 2 which is greater than 3`+2 +1 is at least 2s+3 and we have to consider n in the

range 2s+3 +1 ≤ n ≤ 3`+3. In this range us3(n) = (`+3)(`+4) and us2(n) = (s+4)(s+5)/2.

The following computation shows the inductive step.

(s+ 4)(s+ 5)/2 = 3s+ 6 + (s+ 1)(s+ 2)/2

> 4(`+ 1) + 6 + (`+ 1)(`+ 2)

= (`+ 3)(`+ 4).

A similar argument by induction on odd ` ≥ 5 shows the result.

Lemma 30. Let ` ≥ 7 and s be the least positive integer such that 2s > 3` + 1. Then for

any n with 3` + 1 ≤ n ≤ 2s, us2(n) > us3(n).

Proof. In the given range, us3(n) = (` + 2)(` + 3) and us2(n) = s(s + 1)/2. The induction

is by separate induction for odd ` ≥ 7 (with corresponding s = 12) and even ` ≥ 8 (with

corresponding s = 13). The base cases can be directly verified. The separate induction steps

follow by an argument similar to that for Lemma 29.
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We finally get the following result.

Proposition 31. Define I to be the following set of integers.

I = {3} ∪ [22 + 1, 32] ∪ [24 + 1, 33] ∪ [25 + 1, 34] ∪ [27 + 1, 35] ∪ [28 + 1, 36] ∪ [210 + 1,∞].

For n ∈ I, us2(n) > us3(n) and for n ∈ Z \ I, us2(n) < us3(n).

Proof. For n ≤ 1024, the result can be seen by direct computations. (Some of the cases also

follow from Lemma 29.) For n > 1024, the combined effect of Lemma 29 and Lemma 30

shows the result.

The above provides the complete comparison of the user storages for k = 2 and k = 3

and precisely proves that for n > 1024 the user storage required by the ternary tree based

scheme is smaller than the user storage required by the binary tree based scheme. A similar

observation with less refinement and without proof was made in [FKTS08].

6.5.2 The Case k = 4

As in the case for k = 3, let j be an internal node and L be a seed associated with j. Users

in T j obtain seeds Lσ derived from L using Gσ where in this case σ is a 4-bit string. More

precisely, users in T 4j+b, 1 ≤ b ≤ 4, get seeds Lσ such that σ is a non-zero 4-bit string whose

bth position from the left is zero. So, for the label L, each user in T j gets 7 seeds.

In a manner similar to that of k = 3, it is possible to provide each user in T j with 4

seeds such that from these seeds all the required 7 seeds can be derived. The idea is again

based on using the function H to define certain seeds L̂’s and then define the L’s in terms

of the L̂’s. The definition of the L̂’s using H is the same as that in the case for k = 3. So,

all we need to provide is the definition of L’s in terms of the L̂’s. This is done as follows:

L0111 = L̂0000, L0110 = L̂0001, L0100 = L̂0010, L0101 = L̂0011,

L1011 = L̂0100, L0011 = L̂0101, L0010 = L̂0110, L1101 = L̂1001,

L1001 = L̂1010, L0001 = L̂1011, L1110 = L̂1100, L1100 = L̂1101,

L1000 = L̂1110, L1010 = L̂1111.

The distribution of seeds to the users in T j is the following.
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Users in T 4j+1 get: L̂00, L̂0110, L̂0101, L̂1011.

Users in T 4j+2 get: L̂01, L̂101, L̂111.

Users in T 4j+3 get: L̂001, L̂10, L̂1101, L̂1110.

Users in T 4j+4 get: L̂0001, L̂0010, L̂0110, L̂11.

Using these seeds, each user can create the L’s that it is supposed to get. For example, users

in T 4j+1 should be able to create L0001, L0010, L0011, L0100, L0101, L0110, L0111. These can be

obtained from the seeds obtained by the users in T 4j+1 in the following manner.

L0111 = L̂0000 = H0(H0(L̂00)); L0110 = L̂0001 = H1(H0(L̂00));

L0100 = L̂0010 = H0(H1(L̂00)); L0101 = L̂0011 = H1(H1(L̂00));

L0011 = L̂0101; L0010 = L̂0110; L0001 = L̂1011.

In a similar manner, users in the other subtrees of T j can create the seeds required by them.

Corresponding to the seed L associated with node j, the number of seeds to be stored by

users in the subtree T 4j+2 is 3, while users in all the other subtrees require to store 4 seeds.

From this we get the following result.

Proposition 32. Suppose k = 4 and there are n users with `0 = dlog4 ne. Then the maxi-

mum number of m-bit seeds required to be stored by any user is us4(n) = 1 + 2`0(`0 + 1).

Note that this is a significant improvement over the requirement of storing 1+3.5`0(`0+1)

seeds as indicated by (6.2). The value of us4(n), however, is greater than us2(n) for n ≥ 4.

So, the user storage for binary trees is less than that for 4-ary trees.

6.5.3 The Technique for General k

Let k ≥ 3 and consider the k-ary tree T 0. As before, for any internal node j, there are two

kinds of seeds associated with it: one uniform random label Lj and several labels Li,{j} each

derived from some ancestor i of j. Let L be any such seed. Users in the tree T j get seeds

derived from L with users in the subtree T kj+b getting all seeds Lσ = Gσ(L) where σ is any

non-zero k-bit string having a zero at position b from the left.

In the cases of k = 3 and k = 4, we have seen alternative ways of deriving Lσ. The idea

has been to derive the L̂σ’s using H and then define the Lσ’s in terms of the L̂σ’s. For the



Reducing User Storage 177

case of general k, it is still possible to derive the L̂σ’s using H. The problem, however, is in

defining the L’s in terms of the L̂σ’s. For k = 3 and k = 4, this has been done in a somewhat

ad-hoc fashion and does not extend to the case for general k. The technique is however clear

- we try to arrange the L̂σ’s such that σ’s with the same prefix are grouped together. Below

we describe a more systematic method of deriving the Lσ’s from L.

The idea is based on the notion of cyclotomic cosets. There are several equivalent ways

of viewing cyclotomic cosets. The description that we give below is primarily based on cyclic

shifts of bit strings. This is equivalent to the more conventional description [MS78] as we

point out later.

The intuition behind using cyclotomic cosets viewed as cyclic shifts of bit strings is as

follows. A matrix with elements from each coset forming a row would have at least one

column such that a particular bit position is 0 for all elements in that column. Each of

these elements in the matrix can be viewed as bit strings each representing a subset. If the

elements of the matrix are generated row-wise in lexicographic ordering or the coset leaders,

the columns of the matrix not only have one bit position as zero, the subsequent bit positions

on the cyclic right also have the 0’s and 1’s grouped together in a recursive fashion. This

leads us to creating a tree structure so that we get a general algorithm for finding a way to

derive keys with lesser number of keys to be stored by each user.

Let σ be a k-bit string. Then the cyclotomic coset containing σ is the set of all k-bit

strings that can be obtained by one or more circular left shifts of σ. Clearly there can be at

most k elements in any cyclotomic coset and further, the number of elements in a cyclotomic

coset is necessarily a divisor of k. So, if k is a prime, then the number of elements in any

cyclotomic coset is either 1 or k. The all-zero string forms a cyclotomic coset by itself as does

the all-one string. These are the only two cyclotomic cosets consisting of single elements.

Given k, let χk denote the total number of cyclotomic cosets defined from k-bit strings.

The above can be described in terms of modulo arithmetic as follows. Let s be an integer

in [0, 2k − 2]. Then 2s mod 2k − 1 corresponds to a cyclic left shift of the k-bit binary

representation of s. So, the cyclotomic coset containing the k-bit binary representation of s

is essentially also the set of integers s, 2s mod 2k − 1, . . ..

If α is a generator of the field GF (2k), then α raised to the powers of elements (seen as

integers) of one cyclotomic coset form the roots of one irreducible polynomial. Using this

correspondence, the number I(m) of irreducible polynomials of degree m over GF (2) is given
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as [MS78]

I(m) =
1

m

∑
d|m

µ(d)2m/d, (6.22)

where µ() is the Möbius function. The factorization of x2k − x consists of all irreducible

polynomials whose degrees divide k. The number of such polynomials is the number χk of

cyclotomic cosets of k-bit strings and is obtained by summing I(m) over all m which divides

k. Using elementary results on the Möbius function, this turns out to be the following

expression

χk =
1

k

∑
t|k

φ(t)2k/t, (6.23)

where φ() is the Euler totient function.

Given two binary strings σ and τ of the same length, we define σ ≺ τ if the integer

represented by σ is smaller than the one represented by τ . In the following, we will assume

that the elements of any cyclotomic coset are ordered from left-to-right based on ≺ and the

first element will be called the coset representative. Further, we assume that the cyclotomic

cosets are themselves ordered based on their coset representatives.

Let C0, . . . , Cχk−1 be the ordering of the cyclotomic cosets. Then C0 is the coset contain-

ing the all-zero string and Cχk−1 is the coset containing the all-one string. We will consider

only the cosets C1, . . . , Cχk−2. These are ordered in a matrix fashion with the ith row of the

matrix consisting of the elements of Ci. Examples of the matrix for k = 3, k = 4 and k = 5

are given in Table 6.2. If k is prime, each row of the matrix will have k strings and if k is

composite, the number of elements in the rows will be divisors of k.

Let us denote the matrix for k by M (k). Let the columns of M (k) be denoted by

V
(k)

1 , . . . , V
(k)
k . Note that if k is composite, some of the V

(k)
b will have blanks (the empty

string) in their components. The non-empty strings in any column V
(k)
b are obtained by

a circular left shift of the corresponding elements in the column V
(k)
b−1. Extending this, the

non-empty strings in V
(k)
b are obtained as circular left shifts by b places of the corresponding

elements in the column V
(k)

1 . By construction, the first bit of each entry of V
(k)

1 is 0. By the

left shift property, the bth bit position of each non-empty string in V
(k)
b is 0.

Based on the matrix M (k) we define an auxiliary tree T (k). This tree is not a sub-tree
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Table 6.2: Examples of M (k) for k = 3, k = 4 and k = 5.

k = 3 k = 4 k = 5

001 010 100
011 110 101

0001 0010 0100 1000
0011 0110 1100 1001
0101 1010
0111 1110 1101 1011

00001 00010 00100 01000 10000
00011 00110 01100 11000 10001
00101 01010 10100 01001 10010
00111 01110 11100 11001 10011
01011 10110 01101 11010 10101
01111 11110 11101 11011 10111

of T 0. (Note the difference in the notation between T 0 and T (k).) Its role is to define the

Lσ’s in a manner such that the number of seeds required to be stored by a user reduces from

the number (2k−1 − 1) given by (6.2). There are a total of k levels in T (k) with the root at

level 0 and the level numbers increasing as we move down the tree. (Note that this level

numbering is opposite to the one used in T 0. This is for notational convenience.) The root

note of T (k) has k children. By T
(k)
b , b = 1, . . . , k, we denote the k subtrees rooted at these k

nodes. Each T
(k)
b is a binary tree having k levels numbered 1 to k− 1 and the the number of

leaf nodes in T
(k)
b is the number of non-empty strings in the column V

(k)
b of M (k). The root

node of T
(k)
b is labelled by (b,λλλ), where λλλ is the empty string. (For simplicity, we sometimes

write b instead of (b,λλλ).) The other nodes of T
(k)
b are labelled by a pair (b, τ), where τ is a

binary string which encodes the path from the root of T
(k)
b to the node. The tree T

(k)
b is not

balanced. The construction of T
(k)
b based on V

(k)
b is described as follows.

1. The bth bit of each non-empty string in V
(k)
b is 0. This bit position corresponds to

the root node (b,λλλ) of T
(k)
b at level 1. Starting from the bth bit, we cyclically move

right over the bit positions in the non-empty strings of V
(k)
b . Apart from bit position

b, there are k − 1 other positions in the non-empty strings in V
(k)
b . To these positions

correspond the levels numbered 2 to k of T
(k)
b .

2. There are two nodes at level numbered 2 of T
(k)
b and these are labelled as (b, 0) and

(b, 1). These nodes have binary trees rooted at them. All strings in V
(k)
b whose (b+1)st

bit position is 0 form the leaf nodes of the tree rooted at (b, 0). Similarly, all strings

in V
(k)
b whose (b+ 1)st bit position is 1 form the leaf nodes of the tree rooted at (b, 1).

3. Continuing the above, suppose the tree T
(k)
b has been constructed up to level l < k−1.

To construct the nodes at level l+1, we look at the (b+ l+1)th bit position (cyclically
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from the right) of the strings in V
(k)
b . Let (b, τ) be a node at level l of T

(k)
b , so that

τ is an (l − 1)-bit string. Then 0τ is a substring in bit positions b to b + l in one of

the strings in V
(k)
b . Considering bit position b+ l+ 1, the string 0τ is extended in two

possible ways: 0τ0 and 0τ1. This gives rise to two children of (b, τ) labelled as (b, τ0)

and (b, τ1).

As a consequence of this construction, to the leaf nodes of T
(k)
b are associated the seeds

Lσ where σ ranges over the non-empty strings in V
(k)
b . The top-to-bottom order in V

(k)
b

corresponds to the left-to-right order of the leaf nodes in T
(k)
b . The structure of T (k) for k =

3, 4 and 5 and the associated seeds Lσ’s are shown in Figures 6.9, 6.10 and 6.11 respectively.

$ L

1a1

1, 0

L001

a2 1, 1

L011

2a3

2, 0

L010

a1 2, 1

L110

3a2

3, 0

L100

a3 3, 1

L101

Figure 6.9: The structure of tree T (3). The seeds of the

nodes marked with ac are assigned to all users in T 3j+c.

Consider again an internal node

j of T 0 and a seed L associated

with the node j from which seeds

Lσ’s for the users in the subtree T j

are to be derived. The derivation of

these seeds is done with the struc-

ture of T (k) and two hash functions

F : [1, t] × {0, 1}m → {0, 1}m and

H : {0, 1, 2} × {0, 1}m → {0, 1}m.

The function H is as used in Sec-

tions 6.5.1 and 6.5.2 while the func-

tion F is new. As before, we will

use the notation Fb(·) and Hc(·) to denote the functions F (b, ·) and H(c, ·) respectively. For

a binary string τ , the notation Hτ is as defined earlier.

The functions F and H together replace the function G used in Section 6.2.1 in the

following manner. For any seed, the corresponding key is defined to be H2(seed) which in

Section 6.2.1 was defined as G0(seed). The bth child of T (k) is given the seed L̂b = Fb(L).

For any other node of T
(k)
b labelled by a pair (b, τ), we associate the seed L̂b,τ = Hτ (Fb(L)) =

Hτ (Lb). Any leaf node of T
(k)
b is labelled by a pair (b, τ) and has an associated Lσ. We define

Lσ = L̂b,τ . This provides the definition of all the Lσ’s that are required to be distributed to

the users in the subtree T j.
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We next look at the assignment of seeds to users. Each user in T kj+b should be given

a set of seeds such that it is able to generate all Lσ such that σ is a non-zero k-bit string

whose bth position from the left is 0; also, it should not be able to generate any other seed.

This is achieved by giving each user a subset of the L̂’s.

The seeds distributed to the users in T (kj+b) are L̂c,τ such that the following condition

holds. In the subtree of T (k) rooted at the parent of the node labelled (c, τ) there is at least

one leaf which is labelled by Lσ where the bth bit from the left in σ is 1.

For k = 5, the assignment using T (5) shown in Figure 6.11 is the following.

Users in T 5j+1 get: L̂1,λλλ, L̂2,0, L̂3,00, L̂3,10, L̂4,000, L̂4,010.

Users in T 5j+2 get: L̂5,λλλ, L̂1,0, L̂2,00, L̂2,10, L̂3,000, L̂3,010.

Users in T 5j+3 get: L̂4,λλλ, L̂5,0, L̂1,00, L̂1,10, L̂2,000, L̂2,010.

Users in T 5j+4 get: L̂3,λλλ, L̂4,0, L̂5,00, L̂5,10, L̂1,000, L̂1,010.

Users in T 5j+5 get: L̂2,λλλ, L̂3,0, L̂4,00, L̂4,10, L̂5,000, L̂5,010.
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The total number of seeds assigned to any user is given by the following result.

Proposition 33. Let k ≥ 3, n ≥ 1 and `0 = dlogk ne. Then usk(n) = (χk− 2)(`0(`0 + 1))/2.

Proof. Consider the tree T (k). The root node has k children T
(k)
1 , . . . , T

(k)
k . Seeds of the form

L̂b,τ associated with the nodes of these trees are assigned to the different users. The leaf

nodes of T
(k)
b are also labelled by the seeds Lσ’s which are elements of V

(k)
b , the bth column of

the matrix M (k). Recall that the non-empty strings in the bth column of M (k) are obtained

by a cyclic left shift of the corresponding strings in the (b− 1)th column of M (k).

As a result, the σ’s corresponding to the labels Lσ’s of the leaf nodes of T
(k)
b are obtained

by a cyclic left shift of the respective ζ’s corresponding to the labels Lζ ’s of the leaf nodes

of T
(k)
b−1. Due to this, the following symmetry property holds. For b > 1, if the users in T kj+b

get x seeds of the form L̂1,τ , then the users in T kj+1 get (at most) x seeds of the form L̂b,τ .

A consequence of this symmetry property is that the number of seeds given to the users

in T kj+1 is equal to the number of seeds of the form L̂1,τ which are assigned to all the users.

By construction, if τ ends with a 0, then the corresponding L̂1,τ is assigned to some user.

So, the only seeds of the form L̂1,τ which are not assigned to any user are those ending with

a 1. These seeds correspond exactly to the nodes of T
(k)
1 which are the right children of some

node.

The number of leaf nodes of T
(k)
1 is the number of strings in V

(k)
1 which in turn is equal

to χk− 2. Since T
(k)
1 is a binary tree, the number of internal nodes of T

(k)
1 is equal to χk− 3.

So, the total number of nodes of T
(k)
1 is 2χk − 5. Each internal node has exactly one child

node and so the number of nodes which are right children is equal to the number of internal

nodes of T
(k)
1 which is χk − 3. As a result, the number of nodes of T

(k)
1 which are labelled

by (1, τ) with τ ending with 0 is equal to 2χk − 5− (χk − 3) = χk − 2.

Note that χ3 = 4 and χ4 = 6 and so the user storage given by this result agrees with

the user storage given in Propositions 26 and 32 respectively. The methods of deriving the

seeds, however, are different.

In Table 6.3, we provide a comparison of the user storage given by Proposition 33 to that

given by (6.2). In concrete terms, the reduction is quite significant. Comparing to the user

storage for k = 2, the increase is only a few times. This can be seen from the values of us2(n)

and usk(n) for k > 2 and different values of n as given in Table 6.5.
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Table 6.3: Reduction of user storage achieved by Proposition 33 in comparison to 6.2. In
each case, `0 = dlogk ne.

k = 3 k = 4 k = 5
Eqn. (6.2) 1 + 1.5`0(`0 + 1) 1 + 3.5`0(`0 + 1) 1 + 7.5`0(`0 + 1)
usk 1 + `0(`0 + 1) 1 + 2`0(`0 + 1) 1 + 3`0(`0 + 1)

k = 6 k = 7 k = 8
Eqn. (6.2) 1 + 15.5`0(`0 + 1) 1 + 31.5`0(`0 + 1) 1 + 63.5`0(`0 + 1)
usk 1 + 6`0(`0 + 1) 1 + 9`0(`0 + 1) 1 + 18.5`0(`0 + 1)

6.6 The Layered k-ary Tree Subset Difference Scheme

The idea of layering the levels of the underlying binary tree T 0 of the NNL-SD scheme

in order to reduce the user storage was introduced in Section 2.1.2 followed by a detailed

description and analysis in Chapter 5 [HS02]. Here we apply the same technique to reduce

the storage of the k-ary tree generalization of the SD scheme.

As before, we work with an underlying full k-ary tree with n = k`0 leaf nodes. Nodes at

equal distances from the root are said to be at the same level. There are `0 = logk n levels in

the tree T 0. Some of these levels are marked as special. A layer is defined to be the levels in

between and including two consecutive special levels. Hence, a layering strategy ` is defined

by the numbers of the special levels `0 > `1 > . . . > `e−1 > `e = 0.

Let ` = (`0, `1, . . . , `e−1, `e) be a layering strategy. There are e+ 1 special levels in `. An

alternate representation of the layering strategy is by the length of each layer. For 1 ≤ i ≤ e,

we define di = `i−1 − `i so that di’s are positive integers whose sum is `0. At the same time,

given any sequence of positive integers d = (d1, . . . , de) whose sum is `0, it is possible to

define a layering scheme where `i = `0 −
∑i

j=1 dj.

The Collection S and Key Assignment. Let j be an internal node in T i having k

children in T 0 namely {kj+1, . . . , kj+k}. Let J ⊂ {kj+1, . . . , kj+k} such that 0 < |J | < k.

Subsets in the collection S are of the form Si,J as has been described in Section 6.2.1 for the

k-ary tree SD scheme. Each internal node i is assigned a uniform random seed Li as before.

However, unlike the k-ary tree SD scheme, not all subsets of the form Si,J are assigned keys.

With the introduction of layering, only certain subsets of the form Si,J are assigned keys.
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These subsets are of the following type:

• If i is at a special level, then J can be any set of nodes that are siblings in the subtree

T i.

• If i is not at a special level, then J will be a set of nodes that are siblings in the subtree

T i and in the same layer as i.

We have seen in Section 6.2 and Section 6.5 two different techniques to derive the key Li,J

for a set Si,J . (One may recollect here that the collection S of subsets remains unchanged

for both key assignment techniques.) For the layered version of the scheme, we assume that

the second technique of Section 6.5 that requires less user storage, is used to assign keys to

subsets.

User Storage. Given a layering strategy ` = (`0, `1, . . . , `e−1, `e) in a tree with n = k`0

leaves, we compute the number of seeds that a user needs to store. For an ancestor i of the

user that is at a special level `, the user has to store (χk − 2) seeds derived by sets of nodes

that are directly attached to (or “falling off from”) the path between the user leaf and i.

Hence the total number of seeds to be stored for an ancestor at a special level is (χk − 2)`.

Similarly, for an ancestor of the user that is at a non-special level ` which is between two

special levels `i−1 and `i (`i−1 < ` < `i) the user has to store (χk − 2)(` − `i) seeds. Hence

the user storage for the layering strategy ` is

storagek0(`) = (χk − 2)×

 e−1∑
i=0

`i +
e−1∑
i=0

`i−1∑
j=`i+1+1

(j − `i+1)

 , (6.24)

where `0 = dlogk ne. The expression to compute storagek0(`) in (6.24) for general k is derived

by a similar logic as used in Chapter 5 [BS14a] for k = 2. The storage requirement derived

for k = 2 from (6.24), is exactly the same as found in Chapter 5 [BS14a].

6.6.1 Storage Minimal Layering

Now, let us consider two extreme layering strategies and find their storage requirement.

The first layering strategy has only the top-most and bottom-most levels as special and hence
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` = (`0, 0). It can be easily seen that this scheme is the same as the k-ary tree SD scheme

and hence has the same storage requirement as that of the k-ary tree SD scheme.

As more special levels are introduced in between these two levels, the user storage should

go down. This is because, the number of seeds derived from the nodes at non-special levels

above the bottom-most layer, reduces in the user storage.

However, we see that as we continue marking more and more levels as special, we finally

get the layering strategy ` = (`0, `0 − 1, . . . , 1, 0) where all the levels are marked as special.

The resultant scheme is again exactly the same as the k-ary tree SD scheme. Hence, as for

binary trees in Chapter 5 [BS14a], there should exist a layering strategy of the k-ary trees

that results in minimum storage.

For a given k and `0, let SMLk0(`0) denote a layering strategy ` (or equivalently given

by the sequence of differences d), such that storagek0(`) takes the minimum value among all

possible layering strategies. Let #SMLk0(`0) denote the storage requirement storagek0(`) for

the storage minimal layering strategy ` = (`0, `1, . . . , `e).

The storage minimal layering strategy SMLk0(`0) can be found using a dynamic program-

ming algorithm as follows. We first fix the number e of layers in a layering strategy. Out of all

the storage requirements of these layering strategies one will be minimum. Let SMLk0(e, `0)

denote a layering strategy that requires minimum storage amongst all layerings with e lay-

ers. The number of layers e can be at least 1 and at most `0. Hence, SMLk0(`0) will be the

minimum of all these layering strategies over all values of e. So we get

#SMLk0(`0) = min
1≤e≤`0

#SMLk0(e, `0). (6.25)

Similarly, #SMLk0(e, `0) is the minimum storage requirement amongst all the layering strate-

gies for a given number of layers e. So we get

#SMLk0(e, `0) = min
(`0,`1,...,`e)

storagek0(`0, `1, . . . , `e). (6.26)

We write the expression to compute storagek0(`0, `1, . . . , `e) on the right hand side of (6.24)

in a recursive fashion as follows

storagek0(`0, `1, . . . , `e) = (χk − 2)×
(
`0 +

(`0 − `1)(`0 − `1 − 1)

2

)
+ storagek0(`1, . . . , `e).

(6.27)
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Table 6.4: Ranges of n (< 230) such that #SML2
0 > #SML3

0.

Range of n (#SML2
0,#SML3

0) Range of n (#SML2
0,#SML3

0)

{24 + 1, . . . , 33} (11, 10) {26 + 1, . . . , 34} (18, 16)
{27 + 1, . . . , 35} (22, 22) {29 + 1, . . . , 36} (30, 28)
{211 + 1, . . . , 37} (40, 36) {212 + 1, . . . , 38} (45, 44)
{214 + 1, . . . , 39} (55, 52) {215 + 1, . . . , 310} (61, 60)
{217 + 1, . . . , 311} (73, 70) {219 + 1, . . . , 312} (85, 80)
{220 + 1, . . . , 313} (91, 90) {222 + 1, . . . , 314} (105, 100)
{223 + 1, . . . , 315} (112, 110) {225 + 1, . . . , 316} (126, 122)
{228 + 1, . . . , 318} (148, 146)

Using (6.27) and (6.26), we get a recursive definition of #SMLk0(e, `0) in terms of #SMLk0(e−
1, `1) as follows

#SMLk0(e, `0) = min
1≤`1<`0

(
(χk − 2)×

(
`0 +

(`0 − `1)(`0 − `1 − 1)

2

)
+ #SMLk0(e− 1, `1)

)
.

(6.28)

This recursive definition of (6.28) is the basis for our dynamic programming algorithm. A

similar dynamic programming algorithm to compute the SML2
0(`0) for layering in binary

trees has been proposed in Section 5.2.4 [BS14a]. The above algorithm is a generalization

using k-ary trees of that algorithm using binary trees.

Empirical Analysis. In Proposition 6.5.2 we have seen that the storage requirement of

the k-ary tree SD scheme for k = 3 is less than that of k = 2 (the binary tree case) for n ≥ 210.

We know from Section 5.2 [HS02, BS14a] that the user storage of a subset difference based

scheme can be reduced using different layering strategies. Hence, it is of interest to check

the effect of layering on the k-ary tree SD scheme.

We have implemented the dynamic programming algorithm for finding the storage mini-

mal layering in the k-ary tree SD scheme. Executing this algorithm for computing the storage

minimal layering for k = 3 for different values of n and comparing with the case when k = 2,

we find the range of n where the storage due to k = 3 is less than the storage due to k = 2.

Table 6.4 lists those ranges for n < 230 and the corresponding storage requirements.
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6.7 A Comparative Study

Table 6.5 provides a comparative study of the mean header length MHLk and the user storage

usk as k varies from 2 to 8. For the study, we have varied n from 103 to 108. Since n is not

a power of k, the complete tree extension of the scheme described in Section 6.4 has been

used. The reported results for MHLk has been done using the simulation program. (Earlier,

in Table 6.1 we have provided results based on running the algorithm for computing the

expected header length when n is a power of k.) User storage is obtained from Proposition 33.

We observe the following from Table 6.5:

• For small values of r/n, MHLk/r > MHL2/r while for larger values of r/n, MHLk/r <

MHL2/r. This indicates that for a given k > 2, there is a threshold value δk ∈ (0, 1)

such that for r/n > δk, the mean header length of the k-ary tree SD scheme is smaller

than that for k = 2.

• For a fixed k, the values of MHLk/r are (almost) the same for a given ratio r/n for

any arbitrary n. This behavior is captured in Table 6.6 and the corresponding plot

of its data is given in Figure 6.12. The almost straight red line in Figure 6.12 shows

the behavior for k = 2. For other values of k, the points where the respective curves

intersect this straight line correspond to r/n = δk. These approximate values of δk

are shown in Table 6.7. We see that as k increases the value of δk decreases and

consequently, the performance of the k-ary tree SD scheme is better than k = 2 for a

larger range of values of r.

A Practical Consideration. An important application of broadcast encryption is pay-

per-view of cable TV and DTH services. In cable TV systems, a set of basic channels are free

to air and are not scrambled. Hence, everyone with a cable TV connection can view these

channels. All other channels are encrypted. For paid channels or pay-per-view programs, it

is quite likely that the number of users subscribing to the channel/program is substantially

less than the total number of customers n of the cable company. Hence, the number of

revoked users is of the magnitude of n. (Such an assumption may not be true of other

applications of broadcast encryption such as DRM in audio/video players.) As an example,

consider a Pay-TV application with n = 108 users. From Table 6.5, it can be seen that for

r = 0.4n and assuming 128-bit keys, the bandwidth savings of k = 8 over k = 2 for that
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Table 6.5: User storage and mean header lengths in the complete k-ary tree scheme for
values of k between 2 and 8. For a fixed n, we report MHLk/r for three different choices of
r namely, r = (0.1n, 0.2n, 0.4n).

n k usk MHLk/r n k usk MHLk/r

103

2 55 (1.10, 0.98, 0.72)

104

2 105 (1.11, 0.97, 0.71)
3 56 (1.27, 1.06, 0.72) 3 90 (1.26, 1.07, 0.72)
4 60 (1.21, 0.96, 0.59) 4 112 (1.20, 0.96, 0.59)
5 90 (1.11, 0.84, 0.50) 5 126 (1.11, 0.84, 0.49)
6 120 (1.03, 0.73, 0.42) 6 252 (1.02, 0.73, 0.41)
7 180 (0.95, 0.65, 0.36) 7 270 (0.94, 0.65, 0.36)
8 340 (0.86, 0.58, 0.32) 8 510 (0.86, 0.58, 0.31)

105

2 153 (1.11, 0.97, 0.71)

106

2 210 (1.11, 0.97, 0.71)
3 132 (1.27, 1.06, 0.72) 3 182 (1.27, 1.07, 0.72)
4 180 (1.20, 0.96, 0.59) 4 220 (1.20, 0.96, 0.59)
5 216 (1.11, 0.84, 0.49) 5 270 (1.11, 0.84, 0.49)
6 336 (1.02, 0.73, 0.41) 6 432 (1.02, 0.73, 0.41)
7 378 (0.94, 0.65, 0.36) 7 648 (0.94, 0.65, 0.36)
8 714 (0.87, 0.58, 0.31) 8 952 (0.87, 0.58, 0.31)

107

2 300 (1.11, 0.97, 0.71)

108

2 378 (1.11, 0.97, 0.71)
3 240 (1.27, 1.06, 0.72) 3 306 (1.27, 1.06, 0.72)
4 312 (1.20, 0.96, 0.59) 4 420 (1.20, 0.96, 0.59)
5 396 (1.11, 0.84, 0.49) 5 468 (1.11, 0.84, 0.49)
6 540 (1.02, 0.73, 0.41) 6 792 (1.02, 0.73, 0.41)
7 810 (0.94, 0.65, 0.36) 7 990 (0.94, 0.65, 0.36)
8 1224 (0.87, 0.58, 0.31) 8 1530 (0.87, 0.58, 0.31)

Table 6.6: List of values of the ratio MHLk/r (for any n) corresponding to the varying ratio
r/n for each k. For a given k > 2, the values in bold indicate the minimum value of r/n
from where the scheme performs better than that for k = 2.

HHH
HHk
r/n

(0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00)

2 (1.23, 1.18, 1.11, 0.97, 0.84, 0.71, 0.58, 0.46, 0.33, 0.22, 0.11, 0.00)
3 (1.46, 1.37, 1.27, 1.06, 0.88, 0.72, 0.57, 0.43, 0.31, 0.20, 0.10, 0.00)
4 (1.47, 1.35, 1.20, 0.96, 0.76, 0.59, 0.47, 0.36, 0.27, 0.18, 0.10, 0.00)
5 (1.44, 1.28, 1.11, 0.84, 0.63, 0.49, 0.39, 0.31, 0.24, 0.17, 0.09, 0.00)
6 (1.41, 1.22, 1.02, 0.73, 0.54, 0.41, 0.33, 0.27, 0.21, 0.15, 0.09, 0.00)
7 (1.38, 1.16, 0.94, 0.65, 0.47, 0.36, 0.28, 0.23, 0.19, 0.14, 0.08, 0.00)
8 (1.34, 1.11, 0.87, 0.58, 0.41, 0.31, 0.25, 0.21, 0.17, 0.13, 0.08, 0.00)
16 (1.22, 0.78, 0.55, 0.31, 0.21, 0.16, 0.13, 0.10, 0.09, 0.08, 0.06, 0.00)
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Figure 6.12: Plot showing how MHLk/r varies with r/n.

Table 6.7: Values of the threshold δk.

k 3 4 5 6 7 8 16

δk 0.44 0.19 0.11 0.07 0.05 0.04 < 0.01

channel/program is 244 Mbyte per session. The user storage, on the other hand, increases

from 5.9 Kbyte to 23.9 Kbyte. Due to steadily decreasing memory prices, the cumulative

benefit of savings in communication bandwidth over a period of time is likely to outweigh

the cost of extra memory.

6.8 Conclusion

The most popular BE scheme is the NNL-SD scheme described in Chapter 2 [NNL01, NNL02]

that is defined on a binary tree structure. We present a generalization of the scheme which

works with a k-ary tree for any k ≥ 2. As a result, our work subsumes the NNL-SD scheme.

We present detailed analysis of the user storage and the header length, the two important

efficiency parameters of a BE scheme. This shows that if the number of revoked users is
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of the order of the number of total users, then using a k greater than 2 results in lower

communication overhead at the cost of increased user storage. For applications where the

increase in user storage can be tolerated, our work provides a wider variety of trade-off

options between user storage and bandwidth.





Chapter 7

The Augmented Binary Tree Subset

Difference Scheme

7.1 Introduction

Like in Chapter 6, our goal in this chapter is to explore methods to reduce the commu-

nication bandwidth in the NNL-SD scheme. We have already seen that the k-ary tree SD

scheme reduces the communication overhead at the cost of increased storage. However, this

reduction happens only for certain values of r such that the ratio r/n is greater than a

threshold. In this chapter we propose a new scheme that reduces the expected header length

for all values of r.

In Chapter 1 we discussed the basic combinatorial intuition behind reducing the header

length of a BE scheme. If we can somehow manage to increase the number of subsets in S,

then it may become easier to cover the privileged users using a smaller number of subsets. We

follow up on this intuition. In Chapter 6 header lengths were in general reduced by altering

the structure of the underlying tree. In the schemes with larger arity of the underlying

tree resulting in smaller header lengths, all subsets for a smaller arity were not necessarily

included. Our goal in this chapter is to explore methods to include all subsets from a scheme

while increasing the number of subsets in S in order to reduce the header length.

The new scheme that we introduce in this chapter uses the same underlying binary tree

T 0 as in the NNL-SD scheme. Additionally, we use small trees of height a rooted at internal

nodes of T 0 to identify additional subsets which are to be assigned keys. In the scheme, a is

a parameter whose value is greater than or equal to 1. Accordingly, the new scheme is called

as the a-augmented binary tree subset difference (a-ABTSD) scheme. For a = 1, the new

scheme is the same as the NNL-SD scheme. For a > 1, the flexibility of having additional

subsets arises. As a result, the new scheme is a proper generalization of the NNL-SD scheme.

For a scheme with n users, the user storage is still O(log2 n). The difference with the

NNL-SD scheme is that the constant in the big-oh notation is proportional to 2k−1 where

193



194 The Augmented Binary Tree Subset Difference Scheme

k = 2a. So, for a fixed n, the a-ABTSD scheme is meaningful only if a is small. The worst

case header length of the a-ABTSD scheme is 2r− 1 (irrespective of the value of a) as in the

case of the NNL-SD scheme. It has been shown though that for any particular set of revoked

users, the header size of the new scheme is never more than that of the NNL-SD scheme.

The main gain in using the a-ABTSD scheme is the reduction in the average header

length. It turns out that for all values of r, the average header length of the new scheme for

a > 1 is lower than that of the NNL-SD scheme. The lowering effect of the header length

becomes more pronounced as either r increases or as a increases. Our results show that

in scenarios where reducing communication bandwidth is a major concern, the new scheme

provides an attractive alternative to the NNL-SD scheme.

This work is under submission. The draft of the submitted version is available online

at [BS14b].

7.1.1 Some Notation

We know that under the subset cover framework described in Chapter 2 [NNL01, NNL02],

for a user u, Su denotes the subsets in S which contain u, i.e., Su = {S : S ∈ S and u ∈ S}.
For each broadcast session, the center knows the set of revoked users R. It forms a partition

Sc of the set of privileged users N \ R using subsets in S, i.e., Sc ⊆ S; for S1, S2 ∈ Sc,
S1 ∩ S2 = ∅; and ∪S∈ScS = N \R. This set of subsets Sc is called the subset cover and the

algorithm to find Sc is called the cover generation or cover finding algorithm.

A full binary tree T 0 of height `0 forms the underlying structure for the NNL-SD scheme

that has been described in Chapter 2. We recollect here that each user is associated with a

unique leaf of T 0. There are a total of `0 + 1 levels in the tree T 0. The leaf nodes are at

level 0; any internal node is at level ` + 1 if its children are at level `. So, the root node is

at level `0. By level(i) we denote the level number of the node i in the tree T 0. If J is a set

of nodes all of which are at the same level, we will denote this common level by level(J).

The Collection NNL-S. For the NNL-SD scheme, let us denote the collection of subsets

which are assigned keys by NNL-S. Then

NNL-S = {N} ∪ {Si,j : i is a non-leaf node of T 0 and j is a non-root node of T i}. (7.1)
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The size of the collection NNL-S is 1 + `02`0+1 − 2`0 + 1 = 2 + `02`0+1 − 2`0 .

Key Assignment to Subsets in NNL-S. A key K0 is assigned to the subset N . For key

assignment to the other subsets in S, a cryptographic hash function

G : {0, 1, 2} × {0, 1}m → {0, 1}m (7.2)

is chosen by the center and is made available to all users in the system. Here m is the

key-size of the underlying symmetric cipher. For t = 0, 1, 2, let Gt(·)
∆
= G(t, ·). Each subset

Si,j ∈ S is assigned a key as follows.

• Every internal node i in T 0 is assigned a uniform random m-bit seed Li.

• All non-root nodes j in the subtree T i derive seeds from Li in the following manner.

Let j = t0, . . . , tp = i be the sequence of nodes in the path from j to i. Then for

ı = p − 1, . . . , 0, tı = 2tı+1 + sı where sı ∈ {1, 2}. Define the label Li,j associated to

Si,j to be Li,j
∆
= Gs0(· · ·Gsp−2(Gsp−1(Li)) · · · ).

• The key Ki,j associated to the subset Si,j is defined to be Ki,j
∆
= G0(Li,j).

The Set Iu for a User u. For a user u consider the set NNL-Su of subsets in NNL-S which

contain u. If Si,j is such a subset, then i is an ancestor of the leaf node u and j is not an

ancestor of u. The user u should be able to generate the keys of all such subsets and no

more. User u is at level 0 and suppose i is at level `. Further suppose u = i0, i1, . . . , i` = i be

the path from u to i. Let j1, . . . , j` be the siblings of i1, . . . , i` respectively. Corresponding to

the ancestor i at level `, user u is given the ` seeds Li,j1 , . . . , Li,j` . Since u has `0 ancestors,

the total number of seeds given to u is `0(`0 + 1)/2 plus the key K0 assigned to the set N .

This assignment of seeds to u was earlier explained in details in Section 2.1.1. Denote the

set of all seeds given to u by NNL-Iu, i.e.,

NNL-Iu

= {K0} ∪
{Li,j : i is an ancestor of u

and j is the sibling of some node in the path from u to i}.
(7.3)
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It can be seen that from the seeds that u gets, it can derive the keys for all subsets to which

it belongs and no more.

7.2 The a-Augmented Binary Tree Subset Difference

Scheme

The a-Augmented Binary Tree Subset Difference (a-ABTSD) scheme is a generalization

of the NNL-SD scheme. It assumes an underlying full binary tree T 0 as in the case of the

NNL-SD scheme and imposes additional structure on this tree. The size of the structure

is determined by a parameter a. For a = 1, the scheme turns out to be the same as the

NNL-SD scheme.

Underlying Structure. As in the case of the NNL-SD scheme, there are n = 2`0 users

associated with the leaves of the underlying full binary tree T 0. The nodes and levels are

also numbered as in the NNL-SD scheme.

For ease of later description, we introduce a few notions. Suppose J1 and J2 are two

sets of nodes of T 0 such that there is a node j ∈ J1 and nodes j1, j2 ∈ J2 such that

J1 \ {j} = J2 \ {j1, j2} and j1, j2 are the two children of j. Then the set J2 can be thought

of as being obtained from J1 by replacing {j1, j2} by j. Call the operation of replacing j1, j2

by their parent j to be a moving-up step.

Given a set J , it is possible to repeatedly apply the moving-up operation to get a set

J ′ such that the moving-up operation can no longer be applied on J . We call J ′ to be a

reduced set. Given a set J , there is a unique reduced set which can be obtained by repeatedly

applying the moving-up step.

Let T be a full binary tree and J be a non-empty subset of the leaf nodes of T . If J is

either singleton, or, J can be reduced to a singleton set using moving-up operation, then J

is called a simple subset of T ; otherwise, J is called a non-simple subset of T . Figure 7.1

and Figure 7.2 show examples of simple and non-simple subsets respectively. By Js(T ) we

denote the set of all simple subsets of T . Similarly, Jns(T ) denotes the set of all non-simple

subsets of T . Note that both Js(T ) and Jns(T ) consist of subsets of the set of leaf nodes of

T .
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Figure 7.1: A full binary tree T with the set
J1 = {7, 8, 9, 10} of leaf nodes that can be
reduced to a singleton set J ′1 = {1}. Hence,
J1 is a simple subset of T .
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Figure 7.2: A full binary tree T where the
set J2 = {7, 9, 10, 12} of leaf nodes may be
reduced to J ′2 = {7, 4, 12} which is not sin-
gleton. Hence, J2 is a non-simple subset of
T .

For the new scheme, T 0 is endowed with an additional structure in the following manner.

Define an a-tree Aja to be a subgraph of T 0 which is the full binary tree rooted at node j

and of height a. So, the number of nodes in an a-tree is 1 + 2 + . . . + 2a = 2a+1 − 1. The

scheme is parameterized by the number a.

We provide an example to illustrate this notion. In Figure 7.3 where a = 2, the subtree

rooted at node 4 is the a-tree A4
2 containing the nodes {4, 9, 10, 19, 20, 21, 22}. Another a-tree

A1
2 is the subgraph containing the nodes {1, 3, 4, 7, 8, 9, 10}.

For a fixed value of a in T 0, each a-tree is uniquely identified by its root node. Alterna-

tively, suppose J is a non-empty subset of leaf nodes of an a-tree Aja such that the nodes in

J are at level ` (of T 0). Then the root j is the unique ancestor at level `+ a of the nodes in

J . So, given J , the node j is uniquely determined and we will call j to be the a-pivot of J .

The level number of the root node of any a-tree in T 0 is at least a. Hence, for a full

binary tree with n = 2`0 leaves, the number of distinct a-trees is the number of internal

nodes at levels between `0 and a. Since there are 2`0−` nodes at level ` in T 0, hence the

number of a-trees is

1 + 2 + . . .+ 2`0−a = 2`0−a+1 − 1.

For any internal node i of T 0 and any non-root node j in T i, T i \ T j is the subgraph

of T i obtained by taking away T j. We generalize this notion in the following manner. As

before, let i be a non-leaf node in T 0 and let J = {j1, . . . , jc} be a non-empty subset of

non-root nodes in T i. Define Ti,J to be the subgraph of T i formed by taking away all of
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T j1 , . . . , T jc from T i. In other words,

Ti,J = T i \
(
T j1 ∪ · · · ∪ T jc

)
.

Let Si,J denote the set of leaf nodes of the subgraph Ti,J .

Suppose J1 and J2 are two sets of nodes in T i such that J2 is obtained from J1 by a

moving-up step. Then it is easy to see that the set of leaf nodes of Ti,J1 is the same as the set

of leaf nodes of Ti,J2 and so Si,J1 = Si,J2 . We say (i, J1) and (i, J2) are two representations of

the set Si,J1 = Si,J2 . If J ′ is a reduced set obtained by successively applying the moving-up

operation to a set J , then Si,J = Si,J ′ . By an extension of terminology, we will call the

representation (i, J ′) to be the reduced form representation of the set Si,J .

The Collection S. Let i be an internal node of T 0 and J be a non-simple subset of Aja
where j is a node of T i. We call such a pair (i, J) to be allowed.

Suppose (i, J) is an allowed pair where the nodes in J are at level `. Then the level of

the a-pivot j of J is `+ a and so the level of i is at least `+ a. This shows that there cannot

be an allowed pair (i, J) where the level of i is less than a.

The collection S consists of the following subsets:

• all NNL-SD subsets Si,j; and

• Si,J for all allowed pairs (i, J).

In other words,

S = NNL-S ∪ A-S, (7.4)

where A-S ∆
= {Si,J : (i, J) is allowed}.

For Si,J ∈ A-S, J is non-simple and so J cannot be reduced to a singleton set using

moving-up operations. As a result, Si,J is not equal to any NNL-SD subset. So, the collec-

tions NNL-S and A-S are disjoint.

If a = 1, then any J which is a non-empty subset of the leaf nodes of an a-tree is

necessarily simple. So, there are no allowed pairs (i, J) showing that A-S = ∅. As a

consequence, in this case, the a-ABTSD scheme collapses to the NNL-SD scheme.
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Figure 7.3: The binary tree T 0 that is the underlying structure of the a-ABTSD scheme for
n = 16 users is shown here. The red leaf nodes denote revoked users while the black ones de-
note privileged users. Here we assume a = 2. The subset S0,{7,9,10} = {17, 18, 23, 24, . . . , 30}
from the collection S (A-S in particular) is also shown. It has all users in the subtree T 0

but not in T 7 ∪T 9 ∪T 10. Since J = {7, 9, 10} is a non-simple subset of the a-tree A1
2, (1, J)

is an allowed pair. Using the moving up operation, the subset J may also be represented as
S0,{7,4}.

As an example, let us consider the tree T 0 in Figure 7.3 with 16 users. It shows the

subset that has been formed by excluding the users in T 7, T 9 and T 10 from the users in

T 0. The subset is denoted as S0,{7,9,10}. Nodes {7, 9, 10} are leaves of the a-tree A1
2. Note

that the set {7, 4} can be obtained from the set {7, 9, 10} by a moving-up operation. So,

S0,{7,9,10} = S0,{7,4}.

Key Assignment to Subsets in S. The key assignment strategy is an extension of the

strategy for the NNL-SD scheme. The collection S consists of two sub-collections NNL-S
and A-S. We assume as in the case of the NNL-SD scheme that each internal node i of T 0

is assigned an independent and uniform random m-bit seed Li. Further, for any non-root j

in T i, the seed Li,j is also defined using Gt as in the NNL-SD scheme and the key for the

NNL-SD subset Si,j is Ki,j = G0(Li,j). In other words, keys to the subsets in NNL-S are

assigned as in the NNL-SD scheme. For convenience of notation, we define Li,i
∆
= Li.

Let T be a full binary tree of height a and as defined earlier Jns(T ) is the set of all
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non-simple subsets of T . We define a cryptographic hash function

H[T ] : Jns(T )× {0, 1}m → {0, 1}m. (7.5)

Keys to the subsets in A-S are defined using the hash function H. Note that H is defined

with respect to the tree T . This is because the domain of H depends on T . On the other

hand, we expect H to act on any full binary tree of height a in the same manner. So, when

T is clear from the context, we will write H instead of H[T ].

Let k = 2a which is the number of leaf nodes in any a-tree. Suppose Si,J is in the

collection A-S. Then (i, J) is an allowed pair and suppose the a-pivot of J is j. Then J is

necessarily a non-simple subset of Aja, i.e., J ∈ Jns(Aja). The key Ki,J assigned to Si,J is

Ki,J
∆
= H[Aja](J, Li,j). (7.6)

Note that j can be equal to i and in that case Li,i is simply Li.

Number of Subsets in the Collection. As mentioned earlier, the count of the number

of NNL-SD subsets is 2 + `02`0+1− 2`0 . We now consider the number of subsets in A-S. The

following result gives the number of simple and non-simple subsets of a full binary tree of

height a.

Lemma 34. Let T be a full binary tree of height a and k = 2a. Then the number of simple

subsets of T , i.e. |Js(T )| equals 2k − 1. Consequently, the number of non-simple subsets of

T , i.e. |Jns(T )|, equals 2k − 2k.

Proof. T has k = 2a leaf nodes and a total of 2k − 1 nodes. If J is a simple subset of T ,

then J is either a singleton subset of the set of leaf nodes of T or J can be reduced to one of

the internal nodes of T . So, the number of simple nodes of T is 2k− 1. The total number of

non-empty subsets of the leaf nodes of T is 2k − 1. Out of these 2k − 1 are simple subsets.

As a result, there are 2k − 2k non-simple subsets of T .

Fix a node i of T 0 with level(i) = `. Out of the 2`+1 − 1 nodes in T i, 2`−a+1 + . . . + 2`

nodes are at the bottom-most a levels. These nodes cannot be the a-pivot for any set J

such that the pair (i, J) is allowed. Each of the remaining 2`−a+1− 1 nodes in T i will be the

root of an a-tree that generate subsets. For a node i, each such a-tree will generate 2k − 2k
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subsets of the form Si,J where J is non-simple. Thus, the total number of subsets of the

form Si,J in A-S is

`0∑
`=a

2`0−`(2`−a+1 − 1)(2k − 2k − 2) = (2k − 2k)((`0 − a)2`0−a+1 − 2`0−a+1 + 1).

Hence, the total number of subsets in the collection S is

|S| = |NNL-S|+ |A-S|
= 2 + `02`0+1 − 2`0 + (2k − 2k)((`0 − a)2`0−a+1 − 2`0−a+1 + 1). (7.7)

Iu per User u. Let u be a user, i.e. a leaf node of T 0. The information provided to u

consists of two disjoint subsets which we call I
(1)
u and I

(2)
u .

The Subset I
(1)
u . The first part is the same as that in the NNL-SD scheme, i.e., I

(1)
u =

NNL-Iu. Recall that NNL-Iu consists of seeds Li,j where i is an ancestor of u and j is the

sibling of some node in the path from u to i. As mentioned earlier, the number of m-bit

seeds in I
(1)
u is |I(1)

u | = 1 + `0(`0 + 1)/2. From the seeds in I
(1)
u , u can derive keys of the

following type:

• key Ki,j corresponding to any NNL-SD subset Si,j containing u;

• key Ki,J corresponding to any subset Si,J containing u such that the a-pivot of J is in

the subtree rooted at the sibling of some node in the path from u to i.

The seeds in I
(1)
u are not actual keys for subsets. These actual keys have to be derived from

the seeds by one or more applications of the hash functions G and/or H.

The Subset I
(2)
u . Let T be a full binary tree of height a and v be a leaf node of T . Let

Jns,v(T ) denote the set of all non-simple sets of T not containing v. In other words, J is in

Jns,v(T ) if J is a non-empty subset of the leaf nodes of T , J cannot be reduced to singleton

subset and v /∈ J .

Lemma 35. Let T be a full binary tree of height a and v be a leaf node of T . Then

|Jns,v(T )| = 2k−1 − 2k + a+ 1.
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Proof. Consider a non-empty subset of the leaf nodes of T not containing v. Since T has k

leaf nodes, there are a total of 2k−1 − 1 possibilities for J . Further J cannot be reduced to

any of the ancestors of v in T .

Define S(2)
u to be collection of subsets Si,J in A-S satisfying the following conditions:

• i is an ancestor of u and the a-pivot j of J is also an ancestor of u;

• the ancestor v of u at level(J) is not in J .

Define

I(2)
u = {Ki,J : Si,J is in S(2)

u }. (7.8)

The size of I
(2)
u is calculated as follows. If i is at level `, then the possible levels for the

a-pivot j of J are a, a + 1, . . . , `. Fix a level `′ of j. We now need to find the number of

non-simple subsets J satisfying the above conditions. There are k = 2a leaf nodes of Aja.
The ancestor v of u at level `′ is a leaf node of Aja. By the above condition, v should not be

in J and so there are k − 1 leaf nodes of Aja which can be in J . Any subset J ′ of the leaf

nodes of Aja which does not contain v cannot be reduced to any of the singleton nodes in

the path from v to j (both inclusive). There are a total of (2k− 1)− (a+ 1) nodes in Aja to

which it may be possible to reduce J ′ by applying moving-up operations. So, the number of

J satisfying the required conditions is 2k−1 − 1− (2k − a− 2). For a node i at level `, there

are (` − a + 1) possible choices for j and for each j there are 2k−1 − 2k + a + 1 choices for

J . So, the number of keys in I
(2)
u is

|I(2)
u | =

`0∑
`=a

(`− a+ 1)(2k−1 − 2k + a+ 1)

=
1

2
× (2k−1 − 2k + a+ 1)(`0 − a+ 2)(`0 − a+ 1). (7.9)

Recall that for a user u, Su denotes the collection of subsets in S which contain u. Also,

NNL-Su denotes the collection of all NNL-SD subsets which contain u. Define A-Su to be

the collection of all subsets from A-S which contain u. Then Su is the disjoint union of

NNL-Su and A-S. The set I
(1)
u provides u with information to generate keys for any subset

in NNL-Su. Similarly, the set I
(2)
u provides u with information to generate keys for any subset
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in A-S. Further, the two sets I
(1)
u and I

(2)
u are disjoint and their union is the set Iu which

provides u with information to generate keys for any subset in Su. The total number of

m-bit seeds that u needs to store is the cardinality of Iu and is given by the following.

|Iu| = |I(1)
u |+ |I(2)

u |

= 1 +
`0(`0 + 1)

2
+

(2k−1 − 2k + a+ 1)(`0 − a+ 2)(`0 − a+ 1)

2
. (7.10)

For a fixed k and as n grows, the expression in (7.10) is O(log2 n) which is the same as that

of the NNL-SD scheme. This is much better than the number of keys being proportional to

n. On the other hand, for a fixed n as k increases, the number of keys also increases. The

set I
(2)
u consists of actual keys for the subsets in S(2)

u . Later we show how to define the hash

function H such that the definition of I
(2)
u can be altered to provide information using which

seeds in S(2)
u can be derived. This results in decreasing the factor (2k−1 − 2k + a+ 1) in the

above expression.

7.3 Cover Finding Algorithm

The algorithm takes as input the set R of revoked users and outputs the subset cover Sc.
If R = ∅ then the only set in the subset cover is the set N of all users. If R 6= ∅, then

the subset cover consists of NNL-SD subsets Si,j or Si,J for allowed pairs (i, J). The subset

cover algorithm that we describe below identifies NNL-SD subsets Si,j with Si,{j}. For any

allowed pair (i, J), the algorithm obtains Si,J ′ where J ′ is the reduced form of J .

The algorithm runs iteratively and maintains a list L of nodes on the paths joining

revoked leaf nodes with the root. The list L is initially populated with the revoked leaf

nodes, all marked as covered. The algorithm runs from left to right on this list and keeps

adding the parent nodes of each node in the list until the root. Each node j in the list has

an associated list SDnodes[j] of its descendant nodes. For a node j at level level(j) ≥ a,

the nodes in SDnodes[j] are in an a-tree rooted at j or at some descendant of j. For a

node j at level level(j) < a, the list SDnodes[j] will have nodes from the subtree T j. While

investigating the child nodes of i in the list, SDnodes[i] and the status of i are updated. The

algorithm works as follows.
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Algorithm C. Takes as input the set R 6= ∅ of revoked users and outputs the subset cover

Sc. Each subset in Sc is in reduced form.

1. Form the initial list L with all revoked leaf nodes of T 0. Mark each node j as covered

and set SDnodes[j] = {j}. Set Sc to be the empty set.

2. Process nodes in L from left to right. Let L[t] be the node that is processed at the tth

iteration. If L[t] is the root node, go to step 3. Let i be the parent of L[t]. At the tth

iteration:

(a) If L[t] and L[t+1] have the same parent, proceed to the next iteration for L[t+1].

(b) Else, append i to L. Node i can have at most two children in L. Let the children

of i in L be {j1, jc} where (1 ≤ c ≤ 2). The following mutually exclusive cases

occur:

i. Case when all c children of i are covered:

A. If c = 1, mark i as intermediate and set SDnodes[i] = {j1}.
B. For c = 2, mark i as covered and set SDnodes[i] = {i}.

ii. Case when c = 1 and j1 is intermediate:

Mark i as intermediate and copy SDnodes[j1] to SDnodes[i].

iii. Case when c = 2 and at least one node in {j1, j2} is intermediate:

A. If for some j ∈ {j1, j2}, there is a j′ ∈ SDnodes[j] such that level(j) −
level(j′) ≥ a, then for each j ∈ {j1, j2} that is marked as intermediate, add

Sj,SDnodes[j] to Sc. Subsequently, mark i as covered and set SDnodes[i] =

{i}.
B. Otherwise, mark i as intermediate and set SDnodes[i] to SDnodes[j1] ∪

SDnodes[j2].

3. If the root node is marked as intermediate, add S0,SDnodes[0] to the cover Sc.

The subset cover Sc output by the algorithm is a collection of subsets of the form Si,SDnodes[i].

Figure 7.4 shows an example where a = 2, n = 32 and R = {31, 33, 39, 43}. Hence, the

list L eventually gets populated with the nodes {31, 33, 39, 43, 15, 16, 19, 21, 7, 9, 10, 3, 4, 1, 0}
that lie on the paths joining the revoked leaves with the root node. The subsets generated

by the algorithm working on the above list are S9,{39}, S10,{43}, S3,{31,33} and S0,{1}.
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The cover generation algorithm outputs sets of the type Sj,SDnodes[j]. To show the cor-

rectness of the algorithm we need to argue two things.

1. Each subset produced by Algorithm C is in S.

2. The subsets that are produced form a partition of the set of privileged users.

Lemma 36. If Algorithm C produces a subset Si,J , then every element of J has been marked

covered.

Proof. J is of the form SDnodes[j] for some node j. Further, all nodes in SDnodes[j] are

marked covered. This can be seen from the manner in which the SDnodes[j] is built up.

Nodes enter SDnodes[j] either in Step 1 or in Step 2(b)(i) and in both cases they are marked

covered; the set SDnodes[j] grows in Step 2(b)(iii)(B) through the union of two other sets of

the same type and hence the property of having only covered nodes is preserved.

Lemma 37. If a subset Si,J is produced by Algorithm C, then J is a reduced set.

Proof. All nodes in J are marked covered. Let if possible j1 and j2 be siblings in J and i is

their parent. Then both j1 and j2 are marked as covered. When the node i is considered in

Step 2(b), then c is 2 and Step 2(b)(i)(B) is executed which results in SDnodes[i] being set

to {i} and j1, j2 do not enter any SDnode[i]. So, they cannot be members of any J such that

Si,J is produced by Algorithm C at a later point of time.

Lemma 38. For any set SDnodes[j], if i1, i2 ∈ SDnodes[j], then level(i1) − level(i2) < a.

Further, all nodes of SDnodes[j] belong to some a-tree.

Proof. Let J = SDnodes[j]. If J is a singleton set, then this is clearly true; if J contains

more than one element, then J must have been formed by the merger of two SDnodes set in

Step 2(b)(iii)(B). Such merger can take place only if the maximum of the differences in the

levels of the nodes in the resulting set is less than a.

For the last statement, again it is easy to see this if J is a singleton set. On the other

hand, if J has been formed by merger (one or more times), then each such merger is a union

of the SDnodes of two siblings. Consequently, this corresponds to a moving-up operation

within the same a-tree.

Lemma 39. Any subset produced by Algorithm C is in the collection S.
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Proof. Suppose Sj,SDnodes[j] is produced. Then all the nodes in J = SDnodes[j] are in the

subtree rooted at j. By Lemma 38, the nodes in J are in some a-tree and by the previous

statement, the root of this a-tree is also in T j. So, Sj,J is in S.

Lemma 40. If u is a leaf node corresponding to a revoked user, then Algorithm C visits all

ancestors of u.

Proof. Whenever a node i is processed by Algorithm C, its parent is added to L. Further,

every node in L is processed before the algorithm terminates. Since the initial list L contains

the node u, every ancestor of u is processed by Algorithm C.

Lemma 41. Any privileged (i.e., non-revoked) user is in one of the subsets produced by

Algorithm C.

Proof. Let v be a privileged user. Since there is at least one revoked user, there is a minimal

subtree T i of T 0 which contains both v and some revoked user u. Let j1 and j2 be the two

children of i and suppose v is a leaf node of T j2 . By the minimality of T i, it follows that u

is necessarily in T j1 and further all leaf nodes of T j2 are privileged.

Since i is an ancestor of the revoked node u, by the previous lemma, Algorithm C will

process both nodes i1 and i. The node i is added to L when node i1 is processed. Since all

nodes in T i2 are privileged, node i2 does not enter L. So, i has exactly one child in L and

either by Step 2(b)(i)(A) or by Step 2(b)(ii), i is marked intermediate and SDnodes[i] is set

to either {j1} or to SDnodes[j1]. In both cases, v is in Si,SDnodes[i]. From this point onwards,

Algorithm C ensures the following. If i′ is an ancestor of i, then either the set Si′,SDnodes[i′] is

produced, or, Si′,SDnodes[i′] contains v. Since, the second case cannot continue indefinitely, at

some point of time, Algorithm C will produce a set Si′,SDnodes[i′] for some ancestor i′ of i and

so v will be in this subset.

From Lemmas 40 and 41, we get the following result on the correctness of Algorithm C.

Theorem 42. Algorithm C produces a sub-collection of subsets of S which form a partition

of the set of privileged users.

The complexity of Algorithm C is given by the following result.

Theorem 43. Algorithm C requires O(r log n) time where r is the number of revoked nodes.
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Proof. As proved in Lemma 40, the algorithm processes every ancestor of any revoked node.

There are O(log n) such ancestors and so the total time taken by the algorithm is proportional

to r log n.

It has already been remarked that for a = 1, the a-ABTSD scheme collapses to the

NNL-SD scheme. The following result shows that for a > 1 and any revocation pattern, the

header length of the a-ABTSD scheme is never more than that of the NNL-SD scheme.

Theorem 44. For a given R (revocation pattern) the header length due to the NNL-SD

scheme is at least as large as that of the a-ABTSD scheme.

Proof. For a given value of a, let Ja be the collection of all nodes j in T 0 such that

Sj,SDnodes[j] ∈ Sc. Let us consider a node i in T 0 that have both children {j1, j2} in L
and at least one of them is marked as intermediate. When a = 1, for every intermediate

child j of i, there is a j′ ∈ SDnodes[j] such that `j − `j′ ≥ 1. Hence, Sj,SDnodes[j] ∈ Sc and

hence j ∈ Ja=1. For a > 1, if for some j ∈ {j1, j2}, there is a j′ ∈ SDnodes[j] such that

`j − `j′ ≥ a, only then all intermediate children of i generate SD subsets. Otherwise, i

is marked as intermediate and SDnodes[j] is included in SDnodes[i] and is carried upwards.

Hence, Ja=1 ⊆ Ja>1. Thus, the header length due to a revocation pattern for the a-ABTSD

scheme will be at most that of the NNL-SD scheme.

It follows from Theorem 44 above that the worst case header length for the a-ABTSD

scheme will be less than or equal to that of the NNL-SD scheme. From [NNL01, NNL02]

we know that for a given r, the worst case header length of the NNL-SD scheme is 2r − 1.

Hence we get the following theorem.

Theorem 45. For a given r in the a-ABTSD scheme, the maximum header length that can

be achieved for any n, is 2r − 1.

To show that this upper bound is tight, we consider the a-ABTSD scheme with a = 2 for

n = 32 users in Figure 7.5 where R = {31, 39}. The subset cover for this revocation pattern

is Sc = {S3,{31}, S4,{39}, S0,{1}}. Hence, the header length is 2|R| − 1 = 3. A similar example

can be constructed to show the tightness of this upper bound for any general value of a with

larger values of n. The subtrees rooted at nodes 3, 4, 5 and 6 in Figure 7.5 where a = 2, are

of height a+ 1 = 3 each. For any general a, these subtrees should be full subtrees of height

a + 1 each. It is to be noted that the tree T 0 in such a case will be of height a + 3 and
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the total number of users will be 2a+3. There will be two revoked users, one in each of the

subtrees rooted at nodes 3 and 4. The subset cover will have three subsets. Two of these

subsets will be rooted at nodes 3 and 4. The third subset will be S0,{3,4} = S0,{1}. Hence,

the upper bound given by Theorem 45 is tight for any a ≥ 1.
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7.4 Other Issues

In this section, we consider two issues. The first one is the ability to extend the scheme to

handle arbitrary number of users and the second one is the issue of traitor tracing.

7.4.1 Accommodating an Arbitrary Number of Users

We know from Chapter 2 that the NNL-SD [NNL01, NNL02] scheme assumes the number

n of users to be a power of two. The a-ABTSD scheme retains this assumption and hence

assumes an underlying full binary tree. In practice this may be restrictive. We extend the a-

ABTSD scheme for an arbitrary number of users by assuming a complete binary tree instead

of full. A complete binary tree with 2`0−1 < n ≤ 2`0 leaves is formed by adding child nodes

to the leaf nodes of a full tree with 2`0−1 leaf nodes, starting from the left. These newly

added leaves are said to be at level 0. The old leaves are at level 1. The newly constructed

complete tree has n leaves, some of which are filled from the left of level 0 and the others (if

2`0−1 < n < 2`0) are on the right at level 1.

Since the underlying tree T 0 is a complete tree (that may not be full) and hence an a-tree

may also be a non-full complete binary tree. Thus, an a-tree Aia is a complete tree rooted at

node i in T 0 and is of height a. Let us call the path joining the root node and the right-most

internal node at level 1 to be the dividing path. Any subtree of T 0 rooted at a node other

than the dividing path, is full. Hence, only the a-tree rooted at the node on the dividing

path at level a may be non-full. The subsets that are included in the collection S are formed

as before. A subset Si,J ∈ S is such that all nodes in J are within a single (possibly non-full

but complete) a-tree.

The user storage requirement of the a-ABTSD scheme assuming n = 2`0 is given by

(7.10) where `0 is the height of the underlying tree. Let us denote this storage requirement

as usa(2
`0). Then the user storage of the scheme assuming the complete tree structure will

be at least usa(2
`0−1) and at most usa(2

`0), depending on where a user is placed in the tree

with respect to the dividing path. All users are attached to some node on the dividing path.

Users that are to the left (respectively right) of the dividing path and are attached to it at

nodes on or above level a, receive usa(2
`0) seeds (respectively usa(2

`0−1) seeds). For the users

that are attached to the dividing path at a level less than a, the number of seeds can be

easily calculated from the number of users attached to the dividing path at those levels.
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The cover generation algorithm for the complete tree version of the scheme would have an

additional pre-processing step for the leaf nodes at level 0. First, all the revoked leaf nodes at

level 0 are inserted into the list L in left-to-right order. These nodes are processed one after

another as in the cover generation algorithm. The parent of each leaf in L gets appended to

it and their respective data structures are appropriately updated. Once all revoked leaves

at level 0 have been processed, all their parents at level 1 are in the list. The remaining

revoked leaf nodes that are at level 1 in T 0, are then appended to L. Then onwards, the

cover generation algorithm proceeds exactly as it did for full trees. The worst-case header

length remains 2r − 1 for the complete tree version of the scheme. We have implemented

this algorithm and results are reported later.

7.4.2 Traitor Tracing

From the discussion on traitor tracing of Chapter 2 we know that the bifurcation property

states that given any subset that is in the collection S and hence has been assigned a key, it

is possible to partition the set into two (or a constant number of) almost equal subsets from

S. The bifurcation value is defined to be the ratio of the size of the largest subset to that of

the set itself.

For the a-ABTSD scheme that we have proposed in this work, keys are assigned to subsets

that are in general different from those in the NNL-SD scheme. Hence, the traitor tracing for

these schemes do not directly follow from the NNL-SD traitor tracing algorithm. However,

the subsets of this scheme do follow the bifurcation property. Here we state very briefly how

these subsets can be split into roughly equal sized subsets from their respective collection S.

In the a-ABTSD scheme, the subsets in the collection S are of the forms Si,j or Si,J . Any

subset of the form Si,j can also be written as Si,J where J is a simple subset of Aja. Assume

that all subsets in S are of the form Si,J where J is a non-empty subset of the leaf nodes of

Aja for some j in the subtree rooted at i. Subsets where J = {j} is a singleton set are split

into two as was done in Chapter 2 for the NNL-SD scheme. The node j will be in either of

the two subtrees rooted at 2i + 1 or 2i + 2. If j is in T 2i+1, the subsets after split will be

S2i+1,j and Si,2i+1. If j is in T 2i+2, the subsets after split will be S2i+2,j and Si,2i+2. Hence,

the maximum bifurcation value in this case is 2/3.

For the subsets Si,J where |J | > 1, let us consider the a-tree Aia rooted at node i. The

a-tree Aja containing the nodes in J is either this same a-tree (when i = j) or it is rooted at
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a descendant j of i. In any case, the subsets formed by the split are as follows. The subtrees

rooted at leaves of Aia form a subset each in the split. From each of these 2a subtrees, all users

under nodes in J are excluded. As a result, some of these 2a subtrees may be completely

excluded. When i = j, the maximum bifurcation value is 1/(2a − |J |) which in the worst

case would be 1/2. In case j is in the subtree of i, the nodes in J will be contained in at least

one (but not all) of the 2a subtrees under the a-tree Aia. The users in the subtrees of J are

excluded from the respective subtrees at the leaves of Aia. Since j is in the subtree of i, one

of the child subtrees of i would not have any node in J . There will be at least 2a−1 subtrees

at the leaves of Aia that will not have any node in J . As a result, the bifurcation value in

this case will be between 1/2a−1 and 1/2a. This goes to show that the bifurcation property

also holds for subsets in the a-ABTSD scheme. Hence, traitor tracing mechanisms can be

devised for the scheme introduced in this work in a manner similar to the one described in

Chapter 2 [NNL01, NNL02].

The number of queries required by the traitor tracing algorithm depends on the bifurca-

tion value. At every step of the traitor tracing algorithm, a subset S of users that contains a

traitor is divided into subsets S1, . . . , St using the bifurcation property as mentioned above.

Each subset St is tested for containment of a traitor. The ratio |St|/|S| is at most the bi-

furcation value. The size of the remaining subset from which the traitors have to be traced

reduces with the bifurcation value. The bifurcation value of the NNL-SD scheme is 2/3. The

bifurcation value of the a-ABTSD scheme is at most 2/3 for a ≥ 2. Hence, traitor tracing

in the a-ABTSD scheme will be at least as efficient as the NNL-SD scheme, if not better on

an average.

7.5 Reducing User Storage

A user u is provided with the set Iu as secret information. This set is the union of two

disjoint sets I
(1)
u and I

(2)
u where

|I(1)
u | = 1 + `0(`0 + 1)/2

and

|I(2)
u | = (2k−1 − 2k + a+ 1)(`0 − a+ 2)(`0 − a+ 1)/2.
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So the user storage is |Iu| = 1 + `0(`0 + 1)/2 + (2k−1 − 2k + a+ 1)(`0 − a+ 2)(`0 − a+ 1)/2

where k = 2a (see (7.10)). For a given `0, the quantity |I(1)
u | = 1 + `0(`0 + 1)/2 is fixed

and does not change with the value of a. As the value of a increases, the component

|I(2)
u | = (2k−1 − 2k + a+ 1)(`0 − a+ 2)(`0 − a+ 1)/2 increases. The main increase is due to

the exponential factor 2k−1 which is actually doubly exponential in a. Here we describe a

technique to somewhat mitigate this increase. For small concrete values of a, the decrease

in user storage is quite significant.

Recall that the information provided in I
(2)
u is used by u to generate keys for the subsets

in A-Su. For a specified value of a, the new key generation method will provide a user u with

a different set, to be denoted II(2)
u (a), which will enable u to generate keys for the subsets in

A-Su.

It is to be noted that the technique for decreasing user storage described in this section

does not change the definition of the collection S of subsets to which keys are assigned in

the a-ABTSD scheme. Hence, the cover generation algorithm remains the same. Only the

method of assigning seeds to nodes and keys to SD subsets is altered.

Suppose the number of users is n. Then as discussed earlier, the user storage is not

the same for all users. Denote by usa(n) the maximum user storage with n users, i.e.,

usa(n) = maxu |Iu|. For 2`0−1 < n ≤ 2`0 , usa(n) = usa(2
`0).

7.5.1 The Basic Idea

Consider a subset Si,J for an allowed pair (i, J). Let j be the a-pivot of J . Then J is a

non-simple subset of the set of leaf nodes of Aja, i.e., J ∈ Jns(Aja). The key Ki,J is assigned

to Si,J using the hash function H as Ki,J = H[Aja](J, L) where j is the a-pivot of J and

L = Li,j (7.6). Let u be a user and consider the set I
(2)
u . The key Ki,J is in I

(2)
u if the

following condition holds: the a-pivot j of J is an ancestor of u and the ancestor v of u at

level(J) is not in J .

Let T be a full binary tree of height a having k = 2a leaf nodes. Any subset J of the leaf

nodes of T can be encoded by a k-bit string str(J) where the ı-th bit from the left of str(J)

is 1 if and only if the ı-th leaf node of T is in J . By extension of this notation, str(Jns(T ))

denotes the set of k-bit strings encoding the non-simple subsets of T . Define

H : str(Jns(T ))× {0, 1}m → {0, 1}m. (7.11)
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For σ ∈ str(Jns(T )) and L ∈ {0, 1}m define Lσ = H(σ, L). If w is a leaf node of T , define

keys[L, T ](w) to be the set of all Lσ such that the w-th bit of σ is 0.

Let i be an internal node of T 0 and j be a node of T i. Let v be a leaf node of the a-tree

Aja. The seed Li,j is the derived seed from Li which is assigned to the node j. Let w be a

leaf node of Aja. The keys in keys[Li,j,Aja](w) are to be made available to users in T w. This

is captured by the following definition.

Using the definition of H in (7.11), the key Ki,J for the subset Si,J is defined to be

Ki,J = H(str(J), Li,j), (7.12)

where as before, j is the a-pivot of J . Suppose u is a user. Then the set I
(2)
u is the following.

I(2)
u =

⋃
i

⋃
j

keys[Li,j,Aja](v), (7.13)

where i is an ancestor of u; j is node on the path from u to i and level(j) ≥ a; v is the

ancestor of u at level level(j)− a.

Our basic idea of reducing key storage is that instead of directly providing keys[Li,j,Aja](v)

we provide sufficient information for the keys in this set to be computed. This is achieved

by defining the function H in a different manner. Note that the function H can itself be

defined with respect to a full binary tree T of height a and without reference to the tree T 0.

Once H is defined, the definition of Ki,J follows and the set keys[Li,j,Aja](v) is also obtained

from the definition of keys[L, T ](w).

In the rest of this section, we show how to define suitable H. In the next subsection,

we describe this method for the special case of a = 2 and in the subsequent subsection we

consider the case of general a.

7.5.2 The Case a = 2

For a = 2, k = 2a = 4. For a = 2, the factor 2k−1 − 2k + a + 1 = 3 and so from (7.10) the

maximum number of seeds to be stored by a user is

1 + `0(`0 + 1)/2 + 3`0(`0 − 1)/2. (7.14)
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We show how to reduce the factor 3 to 2 by suitably defining the function H.

Let T be a full binary tree of height a. Then the simple subsets of T are encoded by the

6 strings 0001, 0010, 0100, 1000, 0011, 1100 and the non-simple subsets of T are encoded by

the 8 strings

0101, 0110, 0111, 1001, 1010, 1011, 0101, 1001, 1101, 0110, 1010, 1110.

So, given an m-bit string L and a string σ encoding a non-simple subset of T , we have to

define Lσ = H(σ, L). Let the leaf nodes of T from the left be θ0, . . . , θ3. Then

keys[L, T ](θ0) = {L0101, L0110, L0111}; keys[L, T ](θ1) = {L1001, L1010, L1011};
keys[L, T ](θ2) = {L0101, L1001, L1101}; keys[L, T ](θ3) = {L0110, L1010, L1110};

Each of these sets contains 3 m-bit strings which gives the factor 3 in (7.14). Since L and T
will be clear from the context we will drop them from the notation. We show how to define

H such that any of the sets keys(θ0), . . . , keys(θ3) can be obtained from 2 m-bit strings.

$

0 a4

0, 0

L1110

0, 1 a2

L1010

1 a3

1, 0

L1101

1, 1 a1

L0101

2 a2

2, 0

L1011

2, 1 a3

L1001

3 a1

3, 0

L0111

3, 1 a4

L0110

Figure 7.6: The structure of T4 for a = 2.

We define a new tree

T4. This tree has no re-

lation to the tree T 0. It

is solely used to define

the function H. The

tree T4 is defined as fol-

lows. The root node

has four children nodes

numbered 0, 1, 2, 3. The

child node numbered i

has two children num-

bered (i, 0) and (i, 1). The structure is shown in Figure 7.6.

Define, two hash functions F1 : {0, 1, 2, 3}×{0, 1}m → {0, 1}m and F2 : {0, 1}×{0, 1}m →
{0, 1}m. These hash functions are chosen by the broadcast center and made available to the

users in the system.
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Given an m-bit seed L, define

L̂i = F1(i, L) for i = 0, 1, 2, 3;

L̂i,b = F2(b, L̂i) = F2(b, F1(i, L)) for i = 0, 1, 2, 3 and b = 0, 1.

}
(7.15)

Define

L1110 = L̂1,0, L1010 = L̂1,1, L1101 = L̂2,0, L0101 = L̂2,1,

L1011 = L̂3,0, L1001 = L̂3,1, L0111 = L̂4,0, L0110 = L̂4,1.

Then each of the sets keys(θ0), . . . , keys(θ3) can be obtained from 2 m-bit seeds as indicated

below.

keys(θ0) : L̂3 and L̂1,1;

keys(θ1) : L̂2 and L̂0,1;

keys(θ2) : L̂1 and L̂2,1;

keys(θ3) : L̂0 and L̂3,1.

It is easy to verify that the above information is sufficient to obtain any set keys(θi). For ex-

ample, the users under the node 4j+3 in T 0 will be able to get the seeds {L0101, L0110, L0111}.

Fix a user u and an ancestor i of u at level `. For every node j which is an ancestor of u

at levels between 2 and `, the set II(2)
u (2) contains two m-bit seeds. Since ` can vary from 2

to `0, we have

|II(2)
u (2)| = 2× `0(`0 − 1)

2
= `0(`0 − 1). (7.16)

Based on this we obtain the following improvement to (7.14).

us2(2`0) = 1 + `0(`0 + 1)/2 + `0(`0 − 1). (7.17)

7.5.3 General Case

The technique for a = 2 is somewhat specific since in this case the number of non-simple

subsets of an a-tree turns out to be 8 which is a power of 2. More generally, Lemma 34 shows

that the number of non-simple subsets of an a-tree is 2k − 2k where k = 2a. The expression
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2k − 2k will not be a power of 2 for a > 2. For this case, we directly use the technique from

Chapter 6 [BS15] which dealt with the same problem in a different context. We explain this

below.

The k-ary Tree Subset Difference Scheme. The underlying structure of the NNL-SD

scheme is the binary tree T 0. Chapter 6 [BS15] generalizes the idea to work with k-ary trees

for any k ≥ 2. So, suppose that T 0 is a k-ary tree. Then each internal node has k children.

Let i be an internal node of T 0 and J be a non-empty subset of nodes having a common

parent j. Let Si,J denote the leaf nodes of the graph formed by taking away from T 0 the

subtrees whose root nodes are in J . The collection S for the k-ary tree scheme consists of

all such subsets Si,J .

Key assignment in the k-ary tree scheme is done as follows. Each node is assigned a seed

Li and a hash function is iteratively used to define the seed Li,j for any node j in the subtree

rooted at i. Given Li,j and the subset J of children nodes of j, a key Li,J is defined. In

Chapter 6 [BS15] this is first defined directly and then later it is shown how to define this

in a different manner so that the user storage reduces.

Coming back to the a-ABTSD scheme, we note the similarity between the subsets and

the key assignment procedure of the two schemes. The relevant difference is that in the k-ary

tree scheme the subset J is a non-empty subset of the children nodes of j, whereas in the

a-ABTSD scheme, the subset J is a non-simple subset of the leaf nodes of the a-tree rooted

at j. For both cases, the key to Si,J is assigned from the seed Li,j. So, in both cases the

problem is given an m-bit seed L and the subset J , how to define the key based on L and

J?

A solution to this problem has been given in Chapter 6 [BS15] which uses the notion

of cyclotomic cosets. We do not repeat the solution here and instead refer the reader to

Chapter 6 for details. Our main observation is that the solution provided in Chapter 6 also

works in the present case. The difference is that the method of Chapter 6 assigns keys to

all non-empty subsets of the children nodes of j, whereas in the present case, we only need

to assign keys to all non-simple subsets of the leaf nodes of the a-tree rooted at j. This

difference, however, is not significant. We simply ignore the keys that are assigned to the

simple subsets.

On the other hand, it is also possible to actually modify the key assignment procedure in
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Table 7.1: Effect of reduction of user storage. In the second row the entry for a = 2 is
from (7.16) and the entries for a = 3 and a = 4 are from (7.18).

storage a = 2 a = 3 a = 4

2|I(2)
u |/(`0 − a+ 2)(`0 − a+ 1) from (7.9) 3 116 32741

2|II(2)
u (a)|/(`0 − a+ 2)(`0 − a+ 1) 1 36 4116

Chapter 6 so that keys are only assigned to non-simple subsets. We have carried this out for

a = 3 and k = 2a = 8. The work required us to examine the 2k−1 = 256 non-empty subsets

and eliminate the keys assigned to 2k−1 = 15 simple subsets. These details are quite tedious

and so we do not report them. Directly using the key assignment procedure from Chapter 6

in the present context shows that II(2)
u (a) for a user u consists of (χk−2)(`0−a+2)(`0−a+1)/2

m-bit keys where χk is the number of cyclotomic cosets of k-bit strings, i.e., for a > 2,

II(2)
u (a) =

(χ2a − 2)× (`0 − a+ 2)(`0 − a+ 1)

2
. (7.18)

So, for a > 2,

usa(2
`0) = 1 +

`0(`0 + 1)

2
+

(χ2a − 2)× (`0 − a+ 2)(`0 − a+ 1)

2
. (7.19)

For the case of a = 2 and k = 4, χ4 = 6. Hence, from (7.19) us2(2`0) would be 1 + `0(`0 +

1)/2+2`0(`0−1). Previously, however, we have seen that us2(2`0) = 1+`0(`0+1)/2+`0(`0−1).

So, for the case of a = 2, directly using the solution from Chapter 6 is sub-optimal. This is

one of the reasons why we considered the case of a = 2 as a special case.

For small value of a the reduction that is achieved is shown in Table 7.1. It is clear that

the reduction achieved is significant in practical terms.

7.5.4 Full Resilience

A user obtains secret information Iu which allows it to obtain a set of keys. Let us denote

this set as Ku. It is to be noted that under certain reasonable cryptographic assumptions

on the hash functions G, F1 and F2, user u does not obtain any information about keys

that are not in Ku. Further, if K is a set of keys and UK is the set of all users such that

K∩Ku = ∅, then ∪u∈UKu does not provide any information about K (again under reasonable
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cryptographic assumptions on G, F1 and F2). This can be argued formally along the lines of

the argument provided in Section 2.1 [NNL01, NNL02]. We skip the details and only remark

that this can be intuitively seen by considering the hash functions to be one-way and the

outputs of the hash functions to be independent.

7.6 Experimental Studies

The main point of this work is to reduce the header length. As we have already seen, the

header length is never more than that of the NNL-SD scheme. This result, however, does

not indicate what will happen on average. In this section, we report on this aspect and also

compare the average header length and user storage as a varies.

In order to compute the expected header length, one may consider the same random

experiment as described in Section 4.4 where r users out of n are randomly revoked without

replacement. Then for every non-leaf node i in T 0, one can associate a binary valued random

variable Xi which takes the value 1 if a subset of the form Si,j or Si,J is generated and takes

the value 0 otherwise. The header length is then
∑
Xi and by linearity of expectation, the

expected header length is
∑

Pr[Xi = 1].

In order to find Pr[Xi = 1] one has to consider the situations for which the event Xi = 1

can occur. Let us consider two sibling nodes i1 and i2 in T 0. A subset Si1,J1 is generated

from i1 if sibling subtrees in J1 are the only subtrees within the subtree T i1 that have at

least one revoked node each. Moreover, the level of the nodes in J1 should be at least a

levels below that of i1. If such a subset is generated from i1, then there has to be at least

one revoked leaf in the subtree T i2 and a subset Si2,J2 will be generated. Similarly, if the

subset Si2,J2 generated from i2 is such that the sibling subtrees in J2 are the only subtrees

in T i2 with revoked users and the level of nodes in J2 is at least a levels below i2, then T i1

will have at least one revoked leaf and a subset Si1,J1 will be generated from i1. This gives

rise to a large number of cases in the computation of Pr[X i
n,r = 1]. While in principle it is

possible to exhaust all the cases, the resulting algorithm will be quite complicated. It did

not seem useful to us to obtain such an algorithm.

Instead, we chose a simulation based approach to get a fair idea of the expected header

length. First, we fix the parameter a for the scheme. For given values of n and r, we gener-

ate random revocation patterns using Floyd’s Algorithm [BF87]. For each such revocation
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pattern, the cover generation algorithm finds the exact cover and hence we get the header

length. The number of iterations is chosen so that the average value of the header length

stabilizes. It turns out that 100 iterations are sufficient.

Table 7.2 shows that for different values of r, the expected header length of the 1-ABTSD

scheme (the complete tree version of the NNL-SD scheme) is always more than that of the a-

ABTSD scheme with a > 1. In fact, as a increases, there is a steep fall in the expected header

length for fixed n and r. As an example, we see that for n = 224 and r = 0.4n = 6710886,

the expected header length due to the NNL-SD scheme is 2.29 times that of the a-ABTSD

scheme with a = 3.

We compare the performance of the a-ABTSD scheme by varying the parameter a. Ta-

ble 7.2 shows how the mean header length for a given value of a (MHLa) varies with n and

r. We observe the following:

1. For a fixed n, as the parameter a is increased, the user storage increases.

2. For fixed n and a, the ratio MHLa/r decreases steadily as r increases. This behavior is

true for all a ≥ 1 (including the NNL-SD scheme).

3. For fixed n and r, as a increases, the ratio MHLa/r decreases steadily. This holds for

any value of r.

4. For fixed a and r/n, the value of MHLa/r is approximately the same for all values of

n. Hence, these properties hold good for the full-tree versions (with n = 2`0) of the

scheme too.

For certain values of r/n, the ratio MHLa/r is shown in Table 7.3. This behavior is further

depicted by plotting the values of Table 7.3 in Figure 7.7.

Practical Impact. Broadcast encryption is used in paid services like cable TV and on-

line broadcasting services (audio, video, gaming and document sharing) for implementing

digital rights management [DRMa]. Our scheme with a > 1 would reduce the commu-

nication overhead of a system that uses the NNL-SD scheme. For any value of r/n, the

mean header length for a > 1 will be less than a = 1 (NNL-SD scheme). From Table 7.2,
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Table 7.2: User storage and mean header lengths in the complete a-ABTSD scheme for
values of a between 1 and 4. For a fixed n, we report MHLa/r for three different choices of
r namely, r = (0.1n, 0.2n, 0.4n).

n a usa(n) MHLa/r n a usa(n) MHLa/r

103

1 55 (1.11, 0.97, 0.71)

104

1 105 (1.11, 0.97, 0.71)
2 145 (0.96, 0.78, 0.53) 2 287 (0.96, 0.78, 0.53)
3 1279 (0.75, 0.53, 0.31) 3 2757 (0.75, 0.53, 0.31)
4 115247 (0.52, 0.31, 0.16) 4 271629 (0.52, 0.30, 0.16)

105

1 153 (1.11, 0.97, 0.71)

106

1 210 (1.11, 0.97, 0.71)
2 425 (0.96, 0.78, 0.53) 2 590 (0.96, 0.78, 0.53)
3 4233 (0.75, 0.53, 0.31) 3 6024 (0.75, 0.53, 0.31)
4 432123 (0.52, 0.30, 0.16) 4 629652 (0.52, 0.30, 0.16)

107

1 300 (1.11, 0.97, 0.71)

108

1 378 (1.11, 0.97, 0.71)
2 852 (0.96, 0.78, 0.53) 2 1080 (0.96, 0.78, 0.53)
3 8902 (0.75, 0.53, 0.31) 3 11428 (0.75, 0.53, 0.31)
4 950634 (0.52, 0.30, 0.16) 4 1234578 (0.52, 0.30, 0.16)

Table 7.3: List of values of the ratio MHLa/r (for any n) corresponding to the varying ratio
r/n for each a. Note that as the value of a increases, the scheme performs better in terms
of communication overhead as compared to a smaller value of a.

HHH
HHa
r/n

(0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00)

1 (1.23, 1.18, 1.11, 0.97, 0.84, 0.71, 0.58, 0.46, 0.33, 0.22, 0.11, 0.00)
2 (1.20, 1.08, 0.96, 0.78, 0.64, 0.53, 0.44, 0.35, 0.27, 0.18, 0.10, 0.00)
3 (1.15, 0.93, 0.75, 0.53, 0.39, 0.31, 0.25, 0.20, 0.17, 0.13, 0.08, 0.00)
4 (1.07, 0.73, 0.52, 0.30, 0.21, 0.16, 0.13, 0.10, 0.09, 0.08, 0.06, 0.00)
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we see that for a system with n = 106 user of which r = 0.4n = 4 × 105 users are re-

voked, the expected header length of the 2-ABTSD scheme is 0.96r whereas that of the

1-ABTSD scheme is 1.11r. This means that a system using the NNL-SD scheme will on

an average require the header to be smaller by 0.05r per session as compared to the 1-

ABTSD scheme. In concrete terms, assuming that keys in these systems are 128-bit long,

for r = 4 × 105, on an average, the header length will be smaller by 312.5KB per ses-

sion. Thus, each session will save around 0.31MB of additional bandwidth per channel.

Figure 7.7: Plot showing how MHLa/r varies with r/n.

Depending upon the

length of each session,

the savings per channel

can be significant. This

practical saving of com-

munication bandwidth,

however, comes at a

cost. Assuming 128-

bit key size, the stor-

age for a = 1 is

26.25KB, whereas that

of the 2-ABTSD scheme

is around 73.75KB. Due

to steadily falling mem-

ory prices, the benefit

of savings in commu-

nication bandwidth will

outweigh the cost of ex-

tra memory.

In applications like the standard for DRM in optical discs [AAC], the header is stored in

a fixed portion of the optical disc. There is an allotted amount of space for the header. This

amount of storage allotted for the header may be fixed and hence there would be a limit on

the number of revoked users that the system will be able to tolerate. For a given value of r,

the average header length due to a > 1 will always be less compared to the NNL-SD scheme

(a = 1). In other words, for an instantiation of the scheme with a > 1, a particular value of
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the expected header length will occur for larger values of r. Given n and r, the maximum

header length for a > 1 will be at most as much as the NNL-SD scheme and in general less.

As a result of the reductions in the average as well has worst-case header lengths, the system

with a > 1 will be able to tolerate more number of revoked users compared to the NNL-SD

scheme.

7.7 Conclusion

Several scenarios implementing BE, require improving the communication efficiency and

can tolerate an increase in the user storage. Our goal in this chapter has been to bring

down the communication cost. It can be intuitively said that increasing the number of

subsets to which keys are assigned, should improve the communication overhead. Based on

this intuition, we have proposed the a-augmented binary tree subset difference scheme (a-

ABTSD) scheme. This scheme is a generalization of the NNL-SD scheme. It is parameterized

by a (height of the augmenting structure), offering varying efficiencies of the user storage

and communication overhead. We proved that the header length for any given set of revoked

users in this scheme is at most as much as the NNL-SD scheme. The expected header length

however, has been experimentally seen to be always less than the NNL-SD scheme for any

value of r. Although the storage requirement for both these schemes are asymptotically the

same as the NNL-SD scheme, in concrete terms they are more than the NNL-SD scheme.

This is the trade-off for the decreased average communication overhead.





Chapter 8

Applications, Implementation Aspects

and Future Directions

This chapter is divided into two parts. First, we point out the various real-life applications

of BE. This is an elaboration of the brief summary of the applications that was provided in

Chapter 1. It includes a very brief account of the content protection systems that have been

employed over the years and their short-comings. Following that, we discuss the impact of

our results on real-life scenarios that use the NNL-SD scheme and its variants.

8.1 Real-Life Applications of BE

It has been discussed several times in the previous chapters that a BE framework assumes

a broadcasting center and a set of users. Broadly, there are two primary security issues that

arise out of such scenarios: (1) protection of electronic content from unauthorized access,

and (2) privacy of users who access that content. Using a trusted server as the broadcasting

center is the most commonly used method for protecting both electronic content and the

privacy of users who can access it. Whenever a user wishes to access content, it contacts

the server, authenticates itself, and is sent the content over a secure channel. As long as

the server behaves correctly, (1) only authorized users will be able to correctly decrypt the

content, and (2) no one else other than a user itself (not even other authorized users) will be

able to find out which content it is authorized to access. This is the functional framework

we have assumed in this thesis.

For scenarios where the broadcasting center may not be trusted, the above framework fails

to provide protection of content access or privacy of users. In case the server is compromised

both data content and user privacy are subject to attack. An example scenario is the case of

content providers who will often not distribute their data directly, but for economic reasons

outsource distribution to third parties or use peer-to-peer networks. In this case, the content

owners will no longer be directly in control of data distribution. Here, we shall not discuss
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such systems where the server is not trusted.

We look at different practical scenarios in the following and see how BE can solve the

security issues that arise in these scenarios. The BE scenarios described in this section bring

out different real-life situations that have some amount of commonality that is captured and

has been found to be addressed by BE schemes. It would indeed be nice to be able to report

more details of the parameters governing the implementations of BE in these scenarios.

However, it is not difficult to guess that the statistical data for these scenarios are sensitive

to the businesses or relevant institutions. Unfortunately, we have not been able to gather

any significant data that could be reported. Given the unavailability of such data, our intent

in this chapter is to provide short descriptions of the scenarios we have come across and the

available references that could be quoted to use BE.

All our works in this thesis are within the ambit of the NNL-SD scheme described in

Chapter 2 [NNL01, NNL02]. It has been stated several times earlier that the NNL-SD

scheme has been suggested for use by the [AAC] standard for DRM [DRMa] in optical

discs. Hence, we put additional emphasis on the DRM systems for content protection in

optical discs. Given the dominance of Pay-TV systems in the content protection industry,

the congregation of our results presented later in the chapter takes examples of parameters

from this application.

8.1.1 Content Protection in Optical Discs

First let us see how the problem of content protection in optical discs fits into the BE

framework. A BE system is initialized by a licensing authority (Licensing Authority (LA))

that generates the keys to be used by the center and the users of the system. The hardware

and software players of these optical discs are produced by manufacturers who purchase

licenses to embed decryption keys into the players. The broadcasting center here are the

various production houses that sell their content (movies, songs, etc.). The copyrighted

content is encrypted with keys from the LA on optical discs. The hardware and software

players are the users of the BE system that allow run-time decryption of the copyrighted

content from these optical discs.

Keys stored in these players may get leaked. These keys may be used for large-scale

manufacture of pirate hardware players to be sold in the market. The hardware players will

be cheaper since the keys will not be obtained from the licensing authority. The leaked keys
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may also be used to build software players. The copyrighted content that are decrypted

using these software players may be redistributed. Leaked device keys when detected using

traitor tracing techniques, they are revoked so that future content cannot be decrypted using

those keys.

Here, we look at the various content protection systems and standards that have been

adopted for content protection in optical discs and how the shortcoming(s) of one system

(often ending in complete collapse of the system) led to another system to be developed.

Content Scrambling System (Content Scrambling System (CSS)). The Con-

tent Scrambling System (CSS) was devised by the DVD Copy Control Association (DVD

CCA) [DVD] and was introduced in 1996. CSS included both player-host mutual authenti-

cation and data encryption. It was used to protect the content of DVDs from piracy and to

enforce region-based viewing restrictions.

The idea of region codes worked as follows. Each DVD contained a region code deter-

mining the region of the world in which it could be viewed. Each player knew the region in

which it was supposed to be sold. If the region code of the player did not match the region

code on the DVD, the player would not read the DVD. This was to help the MPAA1 [MPA]

ensure that DVDs don’t leak out into parts of the world ahead of their respective scheduled

“first screening”.

CSS utilized a proprietary 40-bit stream cipher algorithm. The CSS key sets were licensed

by the DVD CCA to manufacturers of DVD movie releases as well as hardware drives and

software players. The weakness of the CSS system lay in the size of the key. This key length

was grossly inadequate in the face of increasing computing power. In addition, structural

flaws in CSS resulted in reduction of the effective key length to only around 16 bits. A

brute-force attack worked even without the region codes. This allowed region-free DVD

player software to work with region-locked drives.

One of the first free computer programs capable of decrypting content on a commercially

produced DVD video disc was DeCSS created by Jon Lech Johansen and two people who have

1 Motion Picture Association of America (MPAA) is a trade association that represents the six major
Hollywood studios. It sets guidelines for film content (the Production Code) and administers the MPAA
film rating system. More recently, the MPAA has advocated for the motion picture and television industry
through lobbying to protect creative content from piracy and for the removal of trade barriers. The MPAA
has made consistent attempts to curb copyright infringement, including recent attempts to limit the sharing
of copyrighted works via peer-to-peer file-sharing networks.
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remained anonymous, by reverse engineering CSS. Before the release of DeCSS, there was no

way for computers running a Linux-based operating system to play video DVDs. DeCSS was

developed without a license from the DVD CCA. The release of DeCSS resulted in a Norway

criminal trial and subsequent acquittal of Jon Lech Johansen. The chief complaint against

DeCSS (and similar programs) is that once the unencrypted source video is available in

digital form, it could be copied without degradation. So DeCSS could be used for copyright

infringement.

Content Protection for Recordable Media and Pre-Recorded Media

(CPRM/CPPM). Content Protection for Recordable Media and Pre-Recorded Media

(CPRM/CPPM) was a DRM system developed by the 4C Entity, LLC2 (comprising of IBM,

Intel, MEI, and Toshiba) for content protection in secure digital (SD) cards3 and DVD-audio

discs. It was agreed upon in mid-2000.

CPPM used the Cryptomeria Cipher (C2) as the successor to the CSS algorithm for

content encryption. C2 was a proprietary block cipher defined and licensed by the 4C

Entity. The C2 symmetric key algorithm had a 10-round Feistel structure that had a key

size of 56 bits and a block size of 64 bits. Implementations of C2 required the secret values of

the substitution box (S-box), which were only available under a license from the 4C Entity.

The 4C Entity licensed a different set of S-boxes for each application (such as DVD-Audio,

DVD-Video and CPRM). It proved to be stronger than CSS.

Full-round C2 was broken in [BKLM09] in three different scenarios. This work presented

(1) an attack with time complexity 224 to recover the S-box in a chosen-key scenario, (2)

a 248 time complexity boomerang attack to recover the key with a known S-box using 244

adaptively chosen plaintext-ciphertext pairs, and (3) a 253.5 time complexity attack when

both the key and S-box are unknown.

Advanced Access Content System (AACS). The Advanced Access Content System

(AACS) is a standard for digital rights management and content protection of the post-DVD

generation of optical discs. The theoretical foundations of the AACS standard was laid by

2 Limited Liability Company (LLC) is a flexible form of enterprise in the US that blends elements of
partnership and corporate structures that may not be organized for profit [Wik].

3 The Secure Digital (SD) format included four card families available in three different form factors. The
four families are the original Standard-Capacity (SDSC), the High-Capacity (SDHC), the eXtended-Capacity
(SDXC), and the SDIO which combines data storage with I/O functions.
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the work of Naor et. al. [NNL01, NNL02] (described in Chapter 2) in 2001 that introduced

the SD scheme which formed the basis of the AACS standard. Since its public release in

2005, the specification standard has been adopted for content protection in HD DVD and

Blu-ray Disc (BD). It was developed by AACS Licensing Administrator, LLC (AACS LA),

a consortium that included Disney, Intel, Microsoft, Panasonic, Warner Bros., IBM, Toshiba

and Sony.

The main difference between AACS and CSS lay in how the device decryption keys and

codes were organized. In CSS, all players of a given model group carried a single shared

decryption key. Content was encrypted under the title-specific key (the session key), which

was further encrypted under each model’s key. Thus each disc contained a collection of

encrypted session keys, one for each licensed player model. Consequently, a licensor could

revoke a given player model by omitting to encrypt future title keys with the player model’s

key. Revoking all players of a particular model was costly since it caused many users to lose

playback capability. Furthermore, since the same decryption key was shared by all players

of a model, key compromise was significantly more likely.

The NNL-SD scheme that was suggested for use by AACS, provides each individual

player with a unique set of decryption keys. AES is used with 128-bit keys for encrypting

the content. Hence, a licensor could revoke (the decryption keys of) individual players. Thus,

compromised and published keys were revoked by the AACS LA in future content, making

the keys/player useless for decrypting new titles.

In addition to the traitor tracing for pirate decryption boxes that was provided by Naor

et. al. [NNL01, NNL02] (described in Chapter 2), AACS also incorporated traitor tracing

techniques to trace re-broadcasted content. The standard allowed for short sections of a

movie to be encrypted with different keys to make unique versions. A given player would

only be able to decrypt exactly one version of each section. The manufacturer would embed

unique digital watermarks (involving sequence keys) in these sections for each copy of the

distributed content. Upon subsequent analysis of the pirated release, the compromised keys

could be identified and revoked.

Since appearing in devices in 2006, several AACS decryption keys have been extracted

from software players and published on the Internet, allowing decryption by unlicensed

software. One of the techniques used by hackers for key-extraction is by using debuggers to

inspect the memory of software player programs. In fact, this issue is common and inherent to

all existing DRM systems that allow decryption in software. The keys used to finally decrypt
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the content has to be available somewhere in the memory and hence is susceptible to attacks.

A hacker named “muslix64” [Mus] used the specifications on the AACS website [AAC] to

create software that can decrypt any HD-DVD movie given the title key (which is actually

the session key). Measures like providing software patches and updating device keys with

new uncompromised ones have also not succeeded because the attackers would have used

only a few keys which could be traced and revoked, and just after the systems were updated

(which was costly for hardware updates), they started using the keys that were held back.

This made the update process futile.

Another possible reason for the failure of the AACS standards to stop piracy through

revocation for DVD players is that DVD players became cheaper compared to the latest

movie releases. Using a new DVD player for each new movies release would not hurt the

profit margins of the DVD video pirates.

Self-Protecting Digital Content (SPDC). Self-Protecting Digital Content (SPDC)

[SPD] designed by Cryptography Research, Inc. [Res] was designed to provide an additional

layer of security for a content protection system, in addition to the key management systems

such as AACS. A primary goal of the SPDC framework was to provide renewability of

the encryption system in the event that an entire class of devices becomes vulnerable to

compromise. The SPDC systems are hence dynamic that allow compromised keys to be

replaced by new ones. SPDC executes code from the encrypted content on the device,

so that the content providers can change DRM systems. If some weakness is found in the

method of playback used in previously released content, code embedded into content released

in the future will change the method. Thus, a fresh attack has to be launched on the new

method. If a certain model of players are compromised, code specific to the model can be

activated to verify that the particular player has not been compromised. The player can

be fingerprinted if found to be compromised and the information can be used to detect

the traitor. Code inserted into content can add fingerprints to the output that specifically

identifies the player. Hence, in case the content is re-distributed on a large scale, it can be

used to trace the player.

BD+ is a component of the Blu-ray Disc DRM system that was developed by Cryptogra-

phy Research, Inc. and the Blu-ray Disc Association leaders Twentieth Century Fox, Sony,

and Panasonic. The BD+ virtual machine embedded in authorized players, use the SPDC

framework for content protection. The content providers can include executable programs



Real-Life Applications of BE 231

on Blu-ray Discs to test for threats, patch the existing system and if required, circumvent

the vulnerability that may have been introduced in the device. Hence, the SPDC framework

plays a significant role in safeguarding the capabilities of the AACS system that in turn

takes care of the content protection.

8.1.2 Pay-TV

Television subscription has been handled using two different techniques. The first technique

uses cables to deliver the programs to the subscriber homes. The second technique scram-

bles channels to be broadcasted through wireless broadcasting frequencies such that only

subscribers will be able to view the programs. Both these techniques (especially the second)

uses BE systems to ensure that only a subscriber is able to view a channel or program.

Several works [MQ95, Woo98, Woo00, MV01, NRK03] have addressed the issues associ-

ated with Pay-TV systems. These systems use BE for the subscription management. The

service provider is the broadcasting center. The user equipment called set-top-boxes (STBs)

are provided by the service provider. Hence, each service provider employs its own BE sys-

tem. The channels are encrypted in a manner such that the STBs of only the subscribed users

will be able to view them. The cryptographic algorithms and keys are typically stored in

the smart cards. Smart cards have embedded integrated circuits and can be re-programmed

if necessary. Televisions now-a-days come with the capabilities of STBs inbuilt.

According to the white-paper [Ros], PayTV often leads the way in content protection

technologies and hence is the most important industry driving these technologies. To quote

from the document:

“. . . among digital content delivery modalities, Pay-TV is unique for two reasons:

one technical and one economical. The technical reason is that many digital Pay-

TV systems provide some kind of communication channel from the client device,

such as a set-top box, back to the server at the head end. That means that the

device is able to “phone home” for various purposes, such as to register itself

on the network or respond to various types of security messages. Such two-way

communication capability can facilitate some of the advanced security techniques

discussed here that would otherwise be impossible to implement. Contrast this

with delivery modalities such as physical media (DVDs, Blu-ray discs), where no
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server connectivity can be assumed at all, or even Internet delivery modalities

such as PC downloads, where consumers expect to be able to use content offline.

The economic reason for Pay-TV’s uniqueness is that the incentives of Pay-

TV operators (such as cable and satellite providers) and content owners (such

as movie studios) regarding content protection are aligned. The content owner

doesn’t want its copyrights infringed, and the operator doesn’t want its signal

stolen. Again, contrast this with other delivery modalities: makers of consumer

electronics (such as Smart-Phones) generally don’t build content protection tech-

nologies into their devices, and content retailers would rather not have to pay the

cost of implementing DRM and similar technologies. As we’ll see in this white

paper, some of the more notable failures in content protection technology have

been due to consumer device makers trading security off in favor of lower unit

cost. ”

8.1.3 File Sharing in Encrypted File Systems

Encrypted File Systems implement read access control by encrypting the contents of files such

that only users with read permission will be able to perform decryption. Typical encrypted

file systems, such as Windows EFS, encrypt each file under its own session key, and then

encrypt the session key separately under the keys of the users authorized to access the file.

To quote from [BGW05],

“Abstractly, access control in an encrypted file system can be viewed as a broadcast

encryption problem. The file system is the broadcast channel and the key KF is

broadcast (via the file header) to the subset of users that can access file F . Many

encrypted file systems implement the straightforward broadcast system where the

number of ciphertexts in the file header grows linearly in the number of users

that can access the file. As a result, there is often a hard limit on the number of

users that can access a file. For example, the following quote is from Microsoft’s

knowledge base: “EFS has a limit of 256 Kbytes in the file header for the EFS

metadata. This limits the number of individual entries for file sharing that may

be added. On average, a maximum of 800 individual users may be added to an

encrypted file.” ”



Real-Life Applications of BE 233

Here, the key KF is the session key and the file F is the message. This clearly brings out

the importance of reducing the header length in BE schemes that are used in Encrypted File

Systems. Although Windows EFS uses public-key BE, there may be other scenarios where

the computation power may be assumed to be limited or the speed of decrypting the session

key for each session may be crucial. A very common example where the decryption speed

is crucial is a shared file server which has to handle millions of online sessions at a time. A

symmetric key BE system requiring small header lengths per session would be very suitable

for such scenarios.

8.1.4 Sending Encrypted Email to Mailing Lists

OpenPGP is arguably the most widely used email encryption standard. The OpenPGP

standard was originally derived from PGP (Pretty Good Privacy), first created by Phil

Zimmermann in 1991. The standard was defined by the OpenPGP Working Group of

the Internet Engineering Task Force (IETF) proposed standard RFC 4880 [CDF+07].

In [BGW05, BBW06], it was pointed out that when encrypting a message to multiple re-

cipients, OpenPGP functions as a broadcast encryption system. It encrypts each message

under a session key and then encrypts the session key for the intended users using their keys.

Such systems may have varied efficiency requirements. Reducing communication overhead

and user storage may both be important.

8.1.5 Online Content Sharing and Distribution

In commercial online content distribution (like websites that allow viewing of videos against

a fee), a company may wish for its digital media to be available only to paying users. It

was mentioned in [BBW06] that such applications use BE schemes to implement content

protection. As an example of smaller scale, suppose a department’s faculty need to access

the academic transcripts of graduate applicants. If electronic copies of the transcripts were

stored on the department’s file-server, they should only be accessible by the faculty and the

respective students and not by anyone else.

Movie rental companies like Netflix use BE systems for copyright protection [JL07]. In

these scenarios, the respective centers would assign users with their long-lived secret informa-

tion. The data (movie files, academic transcript image files, etc.) would be encrypted with
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a random session key and the session key would be attached in encrypted form as header

with the encrypted data such that only privileged users will be able to decrypt the data.

It was also pointed out in [BBW06] that it is often equally important to protect the

identities of the users who are able to access protected content. Commercial sites will often

not want to disclose identities of customers because competitors might use this information

for targeted advertising. A website that provide subscription-based adult material would

wish to keep the identities of their customers private. We however do not address this issue

of anonymity in this thesis.

Apple Inc.’s Fairplay and Windows Media DRM (WMDRM) are two very popular DRM

systems used in online content distribution systems. The iTunes Store is a software-based

online digital media (songs, apps, TV episodes, films, books) store. It uses FairPlay – a

DRM technology – to guard the digital media (other than songs) available on iTunes Store

against unauthorized access. WMDRM for the Windows Media platform was designed to

provide delivery of audio and/or video content over an IP network to a PC or other playback

device in such a way that the distributor can control how that content is used.

8.1.6 Online Gaming

Fifth generation and later video game consoles (Microsoft’s XBox, Sony’s PlayStation, Nin-

tendo’s Wii) have revolutionized living room computing entertainment [Wik]. The console

vendors usually have an online multiplayer gaming and digital media delivery service. The

gaming console usually receives regular updates during its lifetime. These online services

are available in free and subscription-based varieties. These services include: playing games

online; downloading games and their demos; purchasing and streaming music, television

programs and films through video portals; and access third-party content services through

media streaming applications. In addition to online multimedia features, these consoles typi-

cally allow users to stream media from local PCs. Several peripherals and additional services

have been released which helped this industry grow from gaming-only to encompassing all

multimedia.

All subscription-based online services need to be protected using DRM technologies and

as with every multi-user system, BE may be used to implement DRM in these systems. To

implement a BE system, the service provider would be the center while the consoles will be

the user equipment.
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8.1.7 Web-Based Electronic Commerce

The financial institution that facilitates the buying and selling of financial securities between

a buyer and a seller is called a brokerage firm. In addition to carrying out a stock or bond

trade, the brokerage firm is entrusted with the responsibility of researching the markets to

provide appropriate recommendations, up-to-date stock prices and quotes.

An online broker helps its clients perform trades via automated, computerized trading

systems. The firm will want to ensure that the broadcasts of online stock quotes and pro-

prietary market analysis (often carrying trade secrets) are available only to the clients and

are not leaked to an outsider. BE can be used to ensure confidentiality of these broadcasts.

The firm will have a central server for broadcasting and handling the client requests. The

investor clients will be provided with a trading platform that acts as the hub for transactions

for the user.

Reducing communication overhead per session for these broadcasts is important to ensure

increased speed of data being fed. At the user end, the Internet connectivity may not be of

very high speed. Reducing the overhead will be of practical importance in such scenarios.

8.1.8 Peer-to-Peer DRM

The term “peer-to-peer” (P2P) refers generally to software that enables a device to locate

a content file on another networked device and copy it to its own local storage [ER05]. P2P

technology often attracts people who use it to reproduce or distribute copyrighted music and

movies without authorization of rights owners. Early P2P systems did not use encryption

and had no DRM implementation. By establishing an access control mechanism (DRM)

for these shared digital content, unauthorized reproduction may be rendered useless. The

system would work in a manner similar to DRM in optical discs. The production house

while publishing the digital content would encrypt it such that only legitimate (software)

players will have the decryption capabilities. Napster was a very popular P2P network used

to share multimedia content followed by Gnutella, Freenet and others.
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8.1.9 Military Broadcasts

Broadcasting information from the headquarters or military base (center) to the outposts

or handheld receivers (user devices) with soldiers have to be cryptographically secured so

that even if the enemy intercepts the signals, it will not be able to extract any significant

information. An example of such a system is the Global Broadcast Service (GBS) [Wik, FAS]

which is a combined United States space and Command, Control, Communications, and

Intelligence (C3I) system. It provides a one-way high-throughput of information to forces

garrisoned, deployed, or on the move. GBS uses the popular commercial direct broadcast

satellite technology. The European counterpart of GBS is Joint Broadcast System (JBS).

The GBS is supported with multi-level security which should include the use of BE for

confidentiality. To quote from [FAS],

“The GBS system consists of broadcast management, space, and terminal seg-

ments. The broadcast management segment, integrates, encrypts and packages

multi-media information and provides a bit stream to the Primary Injection

Points (PIP) for Radio Frequency (RF) transmission to the satellite. The user

receive terminal, consisting of a small satellite antenna, low noise block and re-

ceiver, will receive and convert the RF down-link signal into a bit stream for

receive broadcast management decryption and distribution to end users.”

8.1.10 Home Networks

In today’s homes, multiple digital devices are connected to a peer-based cluster and seam-

lessly work together. It was mentioned in [JL09] that such networks need a content protection

system that would allow a recording device inside the home network to bring the streaming

content into the home network in a secure way that devices and only devices in the same

home network can playback the recording. The technology will enable the secure sharing of

premium quality HD content across a consumer’s all audio-video devices at its home net-

work. The recorded content should however be such that in case of a piracy attack, it can be

used to obtain forensic information, to identify the source devices that participated in the

attack. The identified traitor devices will have to be revoked for future content access.

The High-Definition Audio-Video Network Alliance (HANA) [Wik] is a cross-industry

collaboration that was set up to address the end-to-end needs of connected, HD, home
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entertainment products and services. To quote from [Wik], HANA is

“. . . based on broadcast encryption, the same basic technology used in 4C and

AACS content protection. Similar to AACS, a compromised device or class of

devices is repairable by revocation of device the keys which can occur any time

new content is imported into the domain, or a connection is made to a content

service. ”

IBM, a HANA member, developed a content protection technology called Advanced Secure

Content Cluster Technology (ASCCT). ASCCT was designed specifically for home networks.

The BE setup in a HANA home network is called an “authorized domain”. Devices (users

of the BE system) while joining a HANA network receive BE keys and hence become part of

the authorized domain. When content is received into the authorized domain, it is encrypted

by the BE system. A non-authorized device will not be able to decrypt, rendering its copy

useless. To share content, a device must join a network at which time its keys from any

previous domain are destroyed and the previous content rendered unreadable.

The xCP (eXtensible Content Protection system) technology, based on IBM’s Cluster

Protocol (backed by Intel, Matsushita and Toshiba) works with peer-to-peer BE systems. It

connects devices like MP3 players, DVD players, cell phones, PDAs, televisions and enter-

tainment systems in vehicles. Any device in the network with the hard-disk is set up as the

BE center to which the other devices become users.

A very popular home network solution standard is Digital Living Network Alliance

(DLNA) [DLNa]. The DLNA trade group was founded by Sony in 2003 to define the inter-

operability guidelines for devices on home networks. Although the DLNA guidelines are not

publicly accessible by individuals, according to [DLNb],

“With more than 4 billion DLNA-certified products in the market - including

TVs, Blu-ray players, storage devices, media boxes, smartphones, tablets, game

consoles and software chances are good you already have more than one compliant

device or application in your home. Depending on the manufacturer, the product

may use a branded version of DLNA such as SmartShare (LG), SimplyShare

(Philips), or AllShare (Samsung), but rest assured its all the same technology

and it will all interoperate. ”

A key component of the DLNA standard is DRM and content protection and our guess is
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they use BE like the others mentioned before.

8.1.11 Mobile Broadcast

The mobile phone industry standards body, Open Mobile Alliance (OMA), developed a

leading DRM technical specification called OMA DRM Version 2.0 in late 2004 4. BE

is expected to constitute the core of the OMA DRM specification. Many mobile service

providers use OMA DRM for their content services. For example, most of the ring-tones

pre-installed on mobile phones have implemented DRM. Another example is Mobile TV

broadcast for which the OMA BCAST Smart-card profile has been recommended by all the

industries to be the unified standard [Wik]. The mobile service providers have a broadcasting

center of the BE setup while the mobile devices are the user equipment.

Content Management License Administrator (CMLA) [CML] was developed at the same

time as OMA DRM with the overall objective of enabling a wide and trusted ecosystem for

the distribution of premium digital content. Another objective of CMLA was to develop

and operate the trust system to enable commercialization of the OMA DRM specification.

CMLA example deployments include a full spectrum of mobile services like mobile broadcast

streaming for major sporting events and download services of music and movies. Within

CMLA Mobile Broadcast protected services, any digital content such as music, images,

video or even applications may be distributed. CMLA Mobile Broadcast service offerings

may be independently defined by service providers or broadcasters including free-to-air, pre

or post-paid subscription based, and pay-per-view services.

4 According to [DRMb], this standard is being used till date.
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8.2 Practical Impact of our Contributions

The importance of the subset difference technique and especially the NNL-SD scheme in

practical scenarios have been emphasized several times. The theoretical impact of this thesis

was explained in Chapter 1. Our work began with developing tools to better analyze and

understand the subset difference technique. Through those exercises we understood that

the behaviour of any BE scheme is governed by the choice of the collection S of subsets to

which keys are assigned. The analysis and the results conformed with and strengthened our

intuition that as the size of the collection S is increased, generally the user storage increases

while the expected header length decreases and vice versa. This has been the crux of our

understanding in coming up with new techniques for achieving practically useful trade-offs.

We obtained generalizations of the NNL-SD and HS-LSD schemes that have opened up

interesting avenues of optimization and trade-offs of the two most important parameters of

any BE scenario - the header length and the user storage. Here we see how our contributions

would impact practical use of BE. It was mentioned in Section 8.1.2 that Pay-TV is one

of the leading industry applications using BE for content protection. We see the effect of

using our results in the context of Pay-TV systems (they apply equally well for any similar

practical scenario). The estimates of the number of users in the system have been done

based on the data available on the internet [Cab, FCC06].

The techniques used for these generalizations evolved from the analysis of the subset

difference technique. In Chapter 4 we have described combinatorial and probabilistic analysis

of the SD technique and devised an algorithm to compute the expected header length of

the NNL-SD scheme. The main idea behind this method is to compute the probability of

contribution of each node in the underlying tree that add up to give the expected header

length. This technique works for all known subset difference based schemes including all

the extensions and generalizations of the NNL-SD scheme that have been proposed in this

thesis. Using this algorithm we showed that for n = 223 + 1 and r = 106 (in Table 4.4),

using the CTSD scheme that we proposed, around 1300 Kbytes can be saved per session.

To understand how important this bandwidth saving may be, we see that for a Pay-TV

connection with download speed 10 Mbytes per second (through ADSL channels), one can

save around 13% bandwidth for sessions that are one second long 5. For a Pay-TV connection

5 The justification for assuming the length of a Pay-TV session to be no longer than in seconds is as follows.
A stateless system can not store any dynamic information. Hence, the session key has to be extracted from
the broadcast after every reboot. A typical set-top-box of a Pay-TV system typically takes a few seconds to
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with download speed 100 Mbytes per second (through optical fiber channels), one can save

around 1.3% bandwidth for sessions that are one second long.

The storage requirement of the SD scheme was successfully reduced in Chapter 5. The

minimum storage that could be achieved using two-way splitting of SD subsets was proposed.

With an idea of the minimum number of revoked users that will exist in the system, the

average communication bandwidth requirement could also be reduced. This can be used

in miniscule devices for which storage might be costly. In-ear receivers used in military

broadcasts are a good example. With the advent of TV viewing services on mobile devices

with access to high-speed internet and sufficient bandwidth, our results on reduction of

storage can be very useful. For n = 228 users in a Pay-TV scenario, using the SML1 layering

strategy, the user storage is reduced from 406 in the NNL-SD scheme to 119 which is 70.69%

reduction in the user storage. More importantly, this is the minimum possible storage that

can be obtained by the two-way splitting of the SD subsets. Compared to the e-HS-LSD

scheme, the savings is 18.49%. However, the use of the SML0 or SML1 strategies result in the

header length performance to be roughly as bad as that of the e-HS-LSD layering strategy.

Hence, the most interesting result in practical terms is the CML strategy where for n = 228,

the user storage reduces by 46.06% while for most values of r while the expected header

length remains the same.

In most applications of BE that have been listed in Section 8.1, the communication

bandwidth is the costliest parameter and hence is often the most important driving force of

the respective industry. Examples are Pay-TV, online content sharing, mobile broadcasts,

etc. We have proposed two schemes with different trade-offs, both of which reduce the

communication overhead of the NNL-SD scheme, at the cost of increased user storage. The

k-ary tree SD scheme proposed in Chapter 6 reduces the communication overhead for most

practical number of revoked users (greater than a threshold) while the a-ABTSD scheme of

Chapter 7 reduces the average communication overhead for any number of revoked users.

For n = 228 users in a Pay-TV scenario, taking k = 4, the user storage increases by 37.25%

while for r = 0.4n 6 the header length decreases by 16.9%. Taking a = 2 (closest to k = 4),

start including the booting time of the operating system in the set-top-box. Hence, the length of a session
can only be a few seconds at the most.

6 We could not find any public data on the distribution of subscribers to channels. However, if we consider
Pay-TV channels, they are either part of the basic subscription or they require additional subscription
fees. For channels that are part of the basic subscription, the revoked users will only be those who have
unsubscribed from the Pay-TV service altogether. The number of such revoked users will keep growing with
time. For any non-basic channel that requires additional subscription fees, it is our guess that at least 40%
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the user storage increases almost by 186% while for r = 0.4n the header length decreases

by 25.35%. In both these scenarios, a one-time increase in the storage cost will decrease the

cumulative communication cost significantly. While the k-ary tree SD scheme works well

only after the ratio r/n crosses a threshold, the a-ABTSD scheme always performs better

than the NNL-SD scheme in terms of the header length for larger values of their respective

parameters k and a. These reductions of the communication overhead can be used to attain

significant savings of the bandwidth and hence the cost.

8.3 Implementations

The works in this thesis have been supported by several implementations. They include

implementations of the subset cover algorithms, the combinatorial tools like recurrences

used for analysis of the subset cover algorithms, probability and expected header length

computations, dynamic programming algorithms, and several others. All these programs

have been written in the C programming language. A collection of these implementations

and some of the respective output files have been uploaded on the web that can be accessible

through the link [BS]. These are very basic implementations done as and when required and

they do not comply with any coding standard. Here we provide some details.

Each program is kept in a separate directory. A directory name indicates the chapter

number (example: “Ch4” denotes Chapter 4) for which the program has been written. Each

directory contains a “makefile” that can be used in a Unix-based system to compile the

respective program and link it to the appropriate libraries used.

As mentioned before, the analysis done in Chapter 4 played an important role in the

understanding of the subset difference technique. The generalization of the NNL-SD scheme

was initially done for incomplete7 binary trees for [BS11]. Then, incomplete trees were

replaced by complete trees to achieve better results in [BS13]. The implementations of

all the subset cover finding algorithms used and proposed in this thesis, have used arrays

to store only those nodes in the tree that lie on the paths joining the revoked leaf nodes

to the root of the tree. The header length analysis for these schemes were verified using

programs written for the worst case and expected values (computed by running the subset

cover finding algorithm on random revocation patterns and the combinatorial tools that

of all users of the system will not be subscribing to it.
7 Trees that may have leaf nodes at any non-root level.



242 Applications, Implementation Aspects and Future Directions

were developed). For large values of n, this analysis was done using a MySQL database to

store the results. The behavior of the NNL-SD scheme using dummy users (that may be

privileged or revoked) were also analyzed using programs. The dummy users were assumed

to be clustered at the right-most end of the tree. Analysis has also been done assuming the

distribution of the revoked users at the leaves to be random throughout. The algorithm to

compute the expected header length in the CTSD scheme, that was proposed in Chapter 4

helped in generating a lot of relevant data very efficiently.

Chapter 5 deals with the layering of the underlying trees. The primary intent behind

layering of the trees, has been to reduce the user storage. Using the implementation of the

general layering strategy that we introduced, the individual and collective effect of various

layering strategies could be analyzed. The significance of making the root of the tree non-

special was verified using this implementation. The dynamic programming algorithm to

compute the storage minimal layering has provided us all concrete instances of the SML

strategies. The probabilities that the different levels of the underlying tree would generate

subsets, was computed. This provided important insights that could be used in determining

strategies that may be adopted for layering in a more profitable way. It was understood that

it is sufficient to make a portion of the underlying tree behave as in the NNL-SD scheme,

in order to reduce storage without significant increase in the expected header length. The

constrained minimization of the storage successfully achieved this.

The generalization of the subset difference based schemes using underlying trees of general

arity k, was proposed in Chapter 6. We implemented the subset cover finding algorithm for

the k-ary tree SD scheme using complete trees. This algorithm has been useful in the header

length analysis for random revocation patterns. A program to compute cyclotomic cosets

modulo 2k−1 helped us in identifying the additional tree structure that was used in reducing

the user storage for the scheme. Comparisons of the k-ary tree SD scheme behavior for k = 2

and k = 3 were done by finding the user storage and the subset cover for selected revocation

patters. The implementation of the a-ABTSD scheme of Chapter 7 was run for random

revocation patterns to analyze the expected header length behavior.

8.4 Possible Future Directions

As mentioned in Chapter 1, the problem of securely broadcasting information to users of

a system may have requirements specific to applications. The criteria set at the beginning of
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this thesis may not all be necessary for an application. Each such application may have its

own specific needs leading to scopes for optimization and improvement of existing schemes.

However, since this thesis has been set with a clear goal, before concluding it let us look at

some possible directions of future research that stems out immediately from that goal.

• More hierarchies of optimization: Like any BE scheme, the NNL-SD scheme is

characterized primarily by the collection of subsets to which keys are assigned. In

Figure 1.5 we see that any BE scheme (represented by its collection of subsets) is only

a step in the hierarchy of optimization between the singleton set scheme and the power

set scheme.

– In this thesis, we have provided two different techniques for choosing the subsets

in the collection to obtain more such steps along the hierarchy between the NNL-

SD and the power set scheme. One of them is the a-ABTSD scheme that clearly

improves the NNL-SD scheme in terms of the header length. It will be interesting

to have other techniques of choosing the collection of subsets that result in smaller

header lengths as compare to the NNL-SD scheme with at least as good or possibly

better trade-offs among the parameters of BE compared to the ones proposed in

this thesis. A very important goal in this context would be the simultaneous

improvement of the header length as well as the user storage while the other

parameters stay practically usable.

– The NNL-CS and the HS-LSD schemes are two other steps in the hierarchy be-

tween the singleton set scheme and the NNL-SD scheme. Techniques to obtain

schemes that would provide more steps in the hierarchy between the singleton set

scheme, the NNL-CS scheme, the HS-LSD scheme and the NNL-SD scheme will

be interesting for applications where user storage space is constrained.

– We have explored layering based techniques for obtaining hierarchies between the

NNL-SD and HS-LSD. It will also be interesting to know if there are other such

techniques to reduce user storage.

– Obtaining hierarchies of optimization using techniques other than subset differ-

ence (some have been enlisted in Chapter 3) will be very interesting.

• Header Length: In applications like Pay-TV, header length is the costliest parameter.

The following are the possible directions in improving the header length and its analysis.
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– All header length analyses of the NNL-SD based schemes done in this thesis,

assume that the distribution of the revoked users are uniform. However, for

certain applications, this may not be true. For example, for DRM in optical

discs, the users may have been assigned keys such that subtrees in the underlying

tree represent regions of sale of the disc players. In such a case, user revocation

may be required for the keys of an entire region. The header length analysis of

the NNL-SD and other related schemes with more appropriate distributions will

be a significant contribution to the area.

– In symmetric key BE, the header length is one of the most important parameters

that determines the cost of usage. Although the Cheon-Jho-Kim-Yoo [JHC+05,

CJKY08] work successfully reduces the worst case header length below r, the

user storage becomes impractical. Reducing the worst case header length below r

with a practical amount of user storage will be an important contribution to this

area. As mentioned before, the choice of the collection of subsets S as well as the

technique for assignment of keys will play important roles in this regard.

• The public-key variants of the hierarchies obtained in this thesis (and others) may

follow directly from the results by Dodis-Fazio [DF02]. It will be interesting to check

if parameters of the public-key versions of specific schemes can be improved.

• In stateless BE schemes, once a user has received secret keys from the center, the user

secrets do not change over time. The revocation of users ensure that future broadcasts

are secure. However, once a user’s secrets are leaked, all previous broadcasts intended

for that user (that may have been recorded by an adversary) can be decrypted. Hence,

stateless BE schemes (including the NNL-SD scheme and its variants) do not ensure

forward security. However, if users can update their own states with time, it may be

possible to achieve forward security in BE schemes that receive secret keys only once

from the center. Making the NNL-SD and other stateless symmetric key BE schemes

forward secure will be important contributions.

We hope that the new techniques and other findings of this thesis will be useful both

in theory and practice in taking forward the area of research in symmetric key broadcast

encryption and possibly others too.
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[BBC+08] Côme Berbain, Olivier Billet, Anne Canteaut, Nicolas Courtois, Henri Gilbert,

Louis Goubin, Aline Gouget, Louis Granboulan, Cédric Lauradoux, Marine
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