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Chapter 1

Introduction

The advancement of data acquisition technologies and computing resources have greatly

facilitated the analysis of massive data sets in various fields of sciences. Researchers from

different disciplines rigorously investigate these data sets to extract useful information

for new scientific discoveries. Many of these data sets contain large number of features

but small number of observations. For instance, in the fields of chemometrics (see e.g.,

Schoonover et al. (2003)), medical image analysis (see e.g., Yushkevich et al. (2001))

and microarray gene expression data analysis (see e.g., Eisen and Brown (1999), Alter

et al. (2000)), we often deal with data of dimensions higher than several thousands but

sample sizes of the order of a few hundreds or even less. Such high dimension, low

sample size (HDLSS) data present a substantial challenge to the statistics community.

Many well known classical multivariate methods cannot be used in such situations.

For example, because of the singularity of the estimated pooled dispersion matrix, the

classical Hotelling’s T 2 statistic (see e.g., Anderson (2003)) cannot be used for two-

sample test when the dimension of the data exceeds the combined sample size. Over the

last few years, researchers are getting more interested in developing statistical methods

that are applicable to HDLSS data. In this thesis, we develop some nonparametric

methods that can be used for high dimensional two-sample problems involving two

independent samples as well as those involving matched pair data.

In a two-sample testing problem, one usually tests the equality of two d-dimensional

probability distributions F and G based on two sets of independent observations

1
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x1,x2, . . . ,xn1 from F and y1,y2, . . . ,yn2
from G. This problem is well investigated in

the literature, and several parametric and nonparametric tests are available for it.

Parametric methods assume a common parametric form for F and G, where we

test the equality of the parameter values (which could be scalar or finite dimensional

vector valued) in two distributions. For instance, if F and G are assumed to be normal

(Gaussian) with a common but unknown dispersion, one uses the Fisher’s t statistic

(when d = 1) or the Hotelling’s T 2 statistic (when d > 1) to test the equality of their

locations (see e.g., Mardia et al. (1979); Anderson (2003)). Though these tests have

several optimality properties for data having normal distributions, they are not robust

against outliers and can mislead our inference if the underlying distributions are far from

being normal. Since the performance of parametric methods largely depends on the

validity of underlying model assumptions, nonparametric methods are often preferred

because of their flexibility and robustness.

In the univariate set up, rank based nonparametric tests like the Wilcoxon-

Mann-Whitney test, the Kolmogorov-Smirnov maximum deviation test and the Wald-

Wolfowitz run test (see e.g., Hollander and Wolfe (1999); Gibbons and Chakraborti

(2003)) are often used. These tests are distribution-free, and they outperform the

Fisher’s t test for a wide variety of non-Gausssian distributions. The Wilcoxon-Mann-

Whitney test is used to test the null hypothesis H0 : F = G when alternative hypothesis

HA suggests a stochastic ordering between F and G. However, the Kolmogorov-Smirnov

test and the Wald-Wolfowitz run test are used for the general alternative HA : F 6= G.

Several nonparametric tests are available for the multivariate two-sample problem as

well. If we assume a location model for F and G (i.e. F (x) = G(x−θ) for some θ ∈ R
d

and all x ∈ R
d), it leads to a two-sample location problem, where we test the equality

of the locations of F and G. Perhaps the most simplest among the nonparametric tests

for the multivariate two-sample location problem are those based on coordinate-wise

signs and ranks (see e.g., Puri and Sen (1971)). Randles and Peters (1990) developed

two-sample location tests based on interdirections. Möttönen and Oja (1995) and Choi

and Marden (1997) used spatial sign and ranks to develop two-sample location tests for

multivariate data. Hettmansperger and Oja (1994) and Hettmansperger et al. (1998)

also developed multivariate sign and rank tests, which can be used for two-sample
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and multisample location problems. Some good reviews of these tests can be found

in Marden (1999), Oja and Randles (2004) and Oja (2010). However, most of these

above mentioned multivariate tests including the Hotelling’s T 2 test perform poorly

for high dimensional data, and none of them can be used when the dimension exceeds

the combined sample size n = n1 + n2. In such cases, one can use the Hotelling’s

T 2 statistic based on the Moore-Penrose generalized inverse of the estimated pooled

dispersion matrix, but it usually leads to poor performance in high dimensions (see e.g.

Bickel and Levina (2004)). One should also note that unlike univariate nonparametric

methods, none of these multivariate tests are distribution-free in finite sample situations.

In these cases, one either uses the test based on the large sample distribution of the test

statistic or the conditional test based on the permutation principle.

Mardia (1967) was the first to propose a distribution-free test for the bivariate

location problem, but no distribution-free generalization of this test is available for

d > 2. Liu and Singh (1993) used the notion of simplicial depth to develop two sepa-

rate distribution-free tests for two-sample location and scale problems. Rousson (2002)

proposed a distribution-free test based on data depth and principle component direc-

tion, which is applicable to two-sample location scale model. But none of these depth

based tests can be used when the dimension is larger than the sample size. Recently,

several Hotelling’s T 2 type two-sample location tests have been proposed in the litera-

ture, which can be used in high dimension low sample size situations (see e.g., Bai and

Saranadasa (1996); Srivastava and Du (2008); Chen and Qin (2010); Srivastava et al.

(2013); Park and Ayyala (2013)). These tests are based on the asymptotic distribution

of the test statistics, where the dimension d is assumed to grow with the sample size

n. Most of these tests also allow different covariance matrices for the two distributions.

So, they can handle high dimensional Behrens-Fisher type problems.

Several nonparametric tests have been proposed for the general two-sample problem

as well, where we test the equality of two continuous multivariate distributions F and

G without making any further assumptions on them. Friedman and Rafsky (1979) used

minimal spanning tree for multivariate generalizations of the Wald-Wolfowitz run test

and the Kolmogorov-Smirnov test. Schilling (1986a) and Henze (1988) developed two-

sample tests based on nearest neighbor type coincidences. Other nonparametric tests
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for the general two-sample problem include Hall and Tajvidi (2002), Baringhaus and

Franz (2004, 2010), Aslan and Zech (2005), Liu and Modarres (2011) and Gretton et al.

(2012). These tests can be used for HDLSS data, but they are not distribution-free

in finite sample situations. Bickel (1969) showed that even the most natural multi-

variate generalization of the Kolmogorov-Smirnov statistic is not distribution-free for

d ≥ 2. Ferger (2000) proposed a distribution-free two-sample test from the perspective

of change point detection, but for proper implementation of this test, one needs to find

a suitable weight function and an appropriate asymmetric kernel function. Rosenbaum

(2005) proposed a simpler distribution-free test for the general two-sample problem

based on optimal non-bipartite matching (see e.g., Lu et al. (2011)). This test can be

used for HDLSS data if the Euclidean metric is used for distance computation.

Instead of having two independent sets of observations from F and G, one can have

n matched paired observations
(
x1

y1

)
,
(
x2

y2

)
, . . . ,

(
xn

yn

)
from a 2d-variate distribution

with d-dimensional marginals F and G for X and Y, respectively. Note that if F and

G satisfy a location model (i.e., F (x) = G(x− θ) for some θ ∈ R
d and all x ∈ R

d), the

distribution of X−Y is symmetric about θ, and testing the equality of the locations of

F and G is equivalent to test H0 : θ = 0. So, in such cases, it is a common practice to

consider it as a one-sample problem, where {ξi = xi − yi; i = 1, 2, . . . , n} are used as

sample observations to test H0 : θ = 0 against HA : θ 6= 0.

This one-sample problem is also well studied in the literature. If the distribution

of X − Y is assumed to be Gaussian, one uses the Student’s t-statistic (when d =

1) or the one-sample Hotelling’s T 2 statistic (when d > 1) to perform the test (see

e.g. Mardia et al. (1979); Anderson (2003)). In the univariate case, one can also

use distribution-free nonparametric tests (e.g., the sign test or the signed rank test)

based on linear rank statistics (see e.g., Hájek et al. (1999); Gibbons and Chakraborti

(2003)). Several attempts have also been made to generalize these rank-based tests

to multivariate set up. Hodges (1955) and Blumen (1958) proposed distribution-free

sign tests for bivariate data. Puri and Sen (1971) proposed tests based coordinate-

wise signs and ranks. Randles (1989, 2000) developed one-sample location tests based

on interdirections. Chaudhuri and Sengupta (1993) generalized Hodges’ bivariate sign

test to higher dimension. Other nonparametric tests for the multivariate one-sample
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problem include Bickel (1965); Hettmansperger et al. (1994); Möttönen et al. (1997);

Hettmansperger et al. (1997); Chakraborty et al. (1998) and Hallin and Paindaveine

(2002). For a brief overview of these tests, see Marden (1999); Oja and Randles (2004)

and Oja (2010). Some of these multivariate nonparametric tests are distribution-free for

some specific types of symmetric distributions, but none of them are distribution-free

under general symmetry of the distribution of X − Y. So, one either uses the large

sample test or the conditional test in such cases. However, these tests perform poorly

for high dimensional data, and they cannot be used when the dimension exceeds the

sample size. Recently, several one-sample tests have been proposed in the literature,

which are applicable to HDLSS data (see e.g., Bai and Saranadasa (1996); Srivastava

and Du (2008); Srivastava (2009); Chen and Qin (2010); Park and Ayyala (2013)).

However, these Hotelling’s T 2 type tests are mainly concerned with the mean vector

of a high-dimensional distribution, and they are not robust. These tests are based on

the asymptotic distribution of the test statistic, where the dimension increases with the

sample size.

In the next two chapters of this thesis, we propose two nonparametric methods

that can be used as general recipes for distribution-free multivariate generalizations of

several univariate rank based two-sample tests. In both of these cases, the resulting

tests are applicable to HDLSS data, and they retain the distribution-free property of

their univariate analogs. Similar methods are used to develop distribution-free rank

based tests for matched pair data as well.

In Chapter 2, we develop some two-sample tests using the idea of linear classifi-

cation. Here we project the multivariate observations x1,x2, . . . ,xn1 ,y1,y2, . . . ,yn2

using a one-dimensional linear projection along a direction β and then use univariate

distribution-free tests on the projected observations βTx1, . . . ,β
Txn1 ,β

Ty1, . . . , β
Tyn2

.

The projection direction β is estimated using a linear classifier that aims at separating

the data clouds from the two-distributions. Two popular linear classification methods,

support vector machines (SVM) (see e.g., Vapnik (1998)) and distance weighted discrim-

ination (DWD) (Marron et al. (2007)) are used for this purpose. In order to develop

a distribution-free test, we randomly split each of the two samples on X and Y into

two disjoint subsamples. We use SVM or DWD to estimate β based on one subsample
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containing some of the x’s and one subsample containing some of the y’s. Then we

project the observations in the remaining two subsamples using that estimated β and

compute the test statistic based on the ranks of those projected observations. Given a

fixed nominal level α, the test function is constructed accordingly. This procedure is

repeated for different random splits and the results are aggregated. One simple way of

aggregation is to use a test function, which is an average of the test functions obtained

for different random splits. But, this aggregated test function may take a fractional

value in the open interval (0, 1), and hence the implementation of the test may require

randomization at the final stage. We avoid this final stage randomization by using an

alternative method based on Bonferroni correction (see e.g., Dunn (1961)) or that based

on false discovery rate (FDR) that ensures the level property for aggregation of tests

with positively regression dependent test statistics (see e.g., Benjamini and Yekutieli

(2001)). The same strategy based on one-dimensional linear projection is also adopted

to construct multivariate distribution-free tests for matched pair data, where we con-

sider a classification problem involving two data clouds {ξi = xi−yi, i = 1, . . . , n} and

{ηi = yi − xi, i = 1, . . . , n} and use the SVM or the DWD classifier to estimate β.

Asymptotic results on the power properties of our proposed tests are derived when the

sample size is fixed and the dimension of the data grows to infinity as well as for situa-

tions when the sample size grows while the dimension remains fixed. We also investigate

the finite sample performance of our proposed tests by applying them to several high

dimensional simulated and real data sets. The contents of this chapter are partially

based on Ghosh and Biswas (2015).

In Chapter 3, we propose another nonparametric method based on shortest Hamil-

tonian path (SHP). In the case of two-sample problem involving two independent sets

of observations, we consider the n = n1 + n2 observations from F and G as the ver-

tices of an edge weighted complete graph, where the edge between two vertices has a

cost equal to the Euclidean distance between two corresponding observations. For any

Hamiltonian path (the path that visits each vertex exactly once), the sum of the costs

corresponding its n − 1 edges is defined as the cost of the Hamiltonian path. We find

the SHP (Hamiltonian path with the minimum cost) in this complete graph, and ranks

are assigned to the sample observations following that path. These ranks are used to
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construct rank based tests for multivariate data, which retain the exact distribution-

free property of their univariate analogs. Following this idea, we propose a multivariate

generalization of the univariate run test, which can be conveniently used in HDLSS

situations.

Using a similar idea, we also develop some distribution-free tests for matched pair

data, where we assume the distribution of X−Y to be symmetric and test whether it

is symmetric about the origin (or any given θ0 ∈ Rd). Given a sample of n observations

X = {ξi = xi−yi, i = 1, . . . , n}, we consider another set of n observations X ∗ = {ηi =
yi−xi, i = 1, . . . , n}. We consider these 2n observations as vertices of an edge weighted

complete graph as before. A path of length n− 1 in this graph is called a covering path

if it visits either ξi or ηi for each i = 1, . . . , n. The shortest among all such distinct

paths (i.e. the covering path with the minimum cost) is termed as the shortest covering

path (SCP). Signs and ranks of the sample observations are defined along this path. If

an observation on this path comes from X (respectively, X ∗) we consider its sign to be

positive (respectively, negative). Using this idea, we develop two run tests, one based

on the number of runs and the other based on the length of the longest run. These tests

are distribution-free and they can be used in HDLSS situations.

Under appropriate regularity conditions, we prove the consistency of all these pro-

posed tests in HDLSS asymptotic regime, where the sample size remains fixed and the

dimension of the data grows to infinity. Several simulated and real data sets are also

analyzed to evaluate their empirical performance. The contents of this chapter are

partially based on Biswas et al. (2014, 2015).

In Chapter 4, we propose some multivariate two-sample tests based on nearest neigh-

bor type coincidences. Unlike the tests proposed in Chapters 2 and 3, these tests are not

distribution-free in finite sample situations. Therefore, we use the permutation principle

to make them conditionally distribution-free. These proposed tests can be viewed as

modifications over the existing two-sample test based on nearest neighbors proposed by

Schilling (1986a) and Henze (1988). While investigating the high-dimensional behavior

of some popular classifiers, Hall et al. (2005) derived some conditions under which the

traditional nearest neighbor classifier fails in high dimension. We show that the nearest

neighbor test of Schilling (1986a) and Henze (1988) fails under the same set of condi-
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tions. In such cases, its power may even converge to zero as the dimension increases.

Our proposed tests overcome this limitation. Under fairly general conditions, we prove

their consistency in HDLSS asymptotic regime, where the sample size remains fixed

and the dimension grows to infinity. Several high dimensional simulated and real data

sets are analyzed to study their empirical performance. We further investigate some

theoretical properties of these tests in classical asymptotic regime, where the dimension

remains fixed and the sample size tends to infinity. In such cases, they turn out to be

asymptotically distribution-free and consistent under general alternatives. The contents

of this chapter are partially based on Mondal et al. (2015).

In Chapter 5, we propose a two-sample test based on averages of inter-point dis-

tances. Consider two independent observations X1,X2 from F and Y1,Y2 from G.

Under moment conditions on F and G, Baringhaus and Franz (2004) proved that

D(F,G) = 2E‖X1 −Y1‖ − E‖X1 −X2‖ − E‖Y1 −Y2‖ ≥ 0, where the equality holds

if and only if F = G. They used an empirical analog of D(F,G) for testing H0 : F = G

and rejected the null hypothesis for higher values of the test statistic. We point out

some limitations of this test in HDLSS set up. In particular, we show that this test may

have poor power in high dimension, especially when the scale difference between two

distributions dominates the location difference. In order to overcome this problem, we

derive another equivalent condition for F = G and construct a two-sample test based

on that criterion. Here also, we use the permutation principle to determine the cut-off.

Under appropriate regularity conditions, this proposed test is found to be consistent

in HDLSS asymptotic regime. We also investigate the behavior of this test in classical

asymptotic regime, where it turns out to be asymptotically distribution-free and consis-

tent under general alternatives. Several high-dimensional simulated and real data sets

are analyzed to evaluate its empirical performance. The contents of this chapter are

partially based on Biswas and Ghosh (2014).

Finally, Chapter 6 contains a comparative discussion among different nonparametric

methods proposed in this thesis, and it ends with a brief discussion on possible directions

for further research.



Chapter 2

Tests based on discriminating

hyperplanes

We know that two d-dimensional random vectors X and Y follow the same distribution

if and only if βTX has the same distribution as βTY for all β ∈ R
d. Therefore, if X ∼ F

and Y ∼ G, the null hypothesis H0 : F = G can be viewed as an intersection of the

hypotheses H0,β : Fβ = Gβ for varying choices of β ∈ R
d, where βTX ∼ Fβ (respec-

tively, βTY ∼ Gβ) if X ∼ F (respectively, Y ∼ G). Similarly, the alternative hypothe-

sis HA : F 6= G can be viewed as an union of the hypotheses HA,β : Fβ 6= Gβ (see e.g.,

Roy (1953) for union-intersection principle). Therefore, under the alternative HA, one

can expect to have some choices of the direction vector β for which Fβ differs from Gβ .

In this chapter, we use some multivariate statistical methods to find one such β. If the

multivariate sample observations x1, . . . ,xn1 ,y1, . . . ,yn2
are projected along β, we get

two sets of univariate observations βTx1, . . . ,β
Txn1∼Fβ and βTy1, . . . ,β

Tyn2
∼Gβ .

So, after finding β, one can use any suitable univariate distribution-free two-sample

test like the Wilcoxon-Mann-Whitney (WMW) test or the Kolmogorov-Smirvov (KS)

test on these projected observations.

Clearly, any test based on ranks of a fixed linear function of multivariate observa-

tions has the exact distribution-free property. However, in order to have good power

properties of such a test based on linear projection, one should choose the direction

vector β in such a way that the separation between the projected observations from

9
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the two populations is maximized along that direction in an appropriate sense. One

possible way to achieve this is to use the direction vector of a suitable linear classi-

fier that discriminates between two multivariate populations. The motivation for this

choice partially comes from the fact that for two multivariate normal distributions with

a common dispersion and different means, if one computes the univariate two-sample

t-statistic based on linear projections of the data points along the director vector used

in Fisher’s linear discriminant function, where the mean vectors and the common co-

variance matrix for the two distributions are estimated from the data, it leads to the

Hotelling’s T 2 statistic. Further, for two independent normal random vectors X and

Y with means µ1,µ2 and a common dispersion matrix Σ, the power of the univariate

t-test for testing H0,β : βTµ1 = βTµ2 based on βTX and βTY is a monotonically

increasing function of {βT (µ1 − µ2)}2/βTΣβ. So, the power of the test is maximized

when β is chosen to be a scalar multiple of Σ−1(µ1−µ2), which is the coefficient vector

of Fisher’s linear discriminant function.

Even when the underlying distributions are not normal, we have some nice connec-

tions between classification and hypothesis testing problems. Consider a classification

problem between two multivariate distributions F and G such that the prior probabili-

ties of these two distributions are equal. Let us also consider a discriminating hyperplane

{z : β0 +βT z = 0, z ∈ R
d} between these two distributions. Suppose that the classifier

classifies z as an observation from F (respectively, G) if β0 + βT z > 0 (respectively,

β0+βT z ≤ 0). Clearly, the average misclassification probability of this classifier is given

by 0.5[1 − {Fβ(−β0)−Gβ(−β0)}], which is minimized if and only if β maximizes the

Kolmogorov-Smirnov (KS) distance between Fβ and Gβ . Further, when F and G are

both elliptically symmetric unimodal distributions, which differ only in their locations,

we have the following proposition, which yields an interesting insight into the connec-

tion between classifiers having the optimal misclassification rate and tests having the

optimal power. The proof is given in Section 2.9.

PROPOSITION 2.1: Suppose that F and G are elliptically symmetric unimodal mul-

tivariate distributions, which differ only in their locations. Then the one sided KS test as

well as the one sided WMW test based on the ranks of βTx1, . . . ,β
Txn1 ,β

Ty1, . . . ,β
Tyn2
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have the maximum power if and only if β coincides with the direction vector that de-

termines the Bayes discriminating hyperplane associated with the classification problem

involving distributions F and G with equal prior probabilities.

Note at this point that a linear classifier, which has its class boundary defined by the

hyperplane {z : β0+βT z = 0, z ∈ R
d} classifies z as an observation from the distribution

F if it falls on one side of that hyperplane, and z is classified as an observation from

G if it falls on the other side. Suppose that it classifies z as an observation from F

(respectively, G) if β0 + βT z > 0 (respectively, β0 + βT z ≤ 0). So, when we project

the observations along the direction β, projected observations from F are likely to have

higher ranks than projected observations fromG. Therefore, it is appropriate to consider

the one sided KS test or the one sided WMW test (see e.g., Gibbons and Chakraborti

(2003)) based on the ranks of βTx1,β
Tx2, . . . ,β

Txn1 ,β
Ty1,β

Ty2, . . . ,β
Tyn2

.

2.1 Adaptive determination of the direction vector

It is well-known that Fisher’s linear discriminant function yields an optimal separation

between two classes of observations when the underlying distributions are Gaussian hav-

ing a common dispersion but different means. However, when one needs to estimate the

dispersion and the means from the data, the estimated discriminant function performs

poorly for high dimensional data. If the dimension exceeds the total sample size, the

estimated dispersion becomes singular, and it cannot be used to construct Fisher’s lin-

ear discriminant function. If one uses Fisher’s linear discriminant function based on the

Moore-Penrose generalized inverse of the pooled dispersion matrix in such situations, it

usually yields poor performance in high dimensions (see e.g., Bickel and Levina (2004)).

Support vector machine (SVM) (see e.g., Vapnik (1998); Burges (1998)) is a well-

known classification tool that can be used for linear classification between two distri-

butions when the data are high dimensional. Suppose that we have a data set of the

form {(zi, ωi); i = 1, 2, . . . , n = n1 + n2}, where ωi takes the value 1 and −1 if the

observation zi comes from the first population (i.e., zi = xj for some j) and the sec-

ond population (i.e., zi = yj for some j), respectively. When the data clouds from

the two distributions have perfect linear separation, SVM looks for two parallel hy-
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perplanes β0 + βT z = 1 and β0 + βT z = −1 such that (β0 + βT zi)ωi ≥ 1 for all

i = 1, 2, . . . , n, and the distance between these two hyperplanes 2/‖β‖ is maximum. In

practice, it finds the separating hyperplane β0 +βT z = 0 by minimizing 1
2‖β‖2 subject

to (β0 +βT zi)ωi ≥ 1 ∀ i = 1, 2, . . . , n. If the data clouds from the two distributions are

not perfectly linearly separable, SVM introduces slack variables ζi (i = 1, 2, . . . , n) and

modifies the objective function by adding a cost C0
∑n

i=1 ζi (C0 is a cost parameter) to

it. In such cases, SVM minimizes 1
2‖β‖2 +C0

∑n
i=1 ζi subject to (β0 +βT zi)ωi ≥ 1− ζi

and ζi ≥ 0 ∀ i = 1, 2, . . . , n, and it uses the quadratic programming technique for this

minimization. This optimization problem is often reformulated as the problem of min-

imizing Sn(β0,β) =
1
n

∑n
i=1[1− ωi(β0 + βT zi)]+ + λ0

2 ‖β‖2, where [t]+ = max{t, 0} and

λ0 = 1/C0 is a regularization parameter (see e.g., Hastie et al. (2004)).

Marron et al. (2007) proposed another classification technique called distance

weighted discrimination (DWD), which can also be used for linear classification in high

dimensions. If the data clouds from the two distributions are perfectly linearly separable,

DWD finds the separating hyperplane by minimizing
∑n

i=1{(β0 + βT zi)ωi}−1 subject

to ‖β‖ ≤ 1 and (β0 + βT zi)ωi ≥ 0 for all i = 1, 2, . . . , n. When the data clouds are

not linearly separable, DWD also introduces slack variables ζi to modify the objective

function by adding a cost C
∑

i=1 ζi, where C is a cost parameter. In such cases, DWD

finds the separating hyperplane β0 + βT z = 0 by minimizing
∑n

i=1 1/ri + C
∑n

i=1 ζi

subject to ‖β‖ ≤ 1, ζi ≥ 0 and ri = (β0 + βT zi)ωi + ζi ≥ 0 for all i = 1, 2, . . . , n. This

is equivalent to minimization of Dn(β0,β) =
1
n

∑n
i=1[V0{ωi(β0 + βT zi)}], where

V0(t) =





2
√
C − Ct if t ≤ 1/

√
C

1/t otherwise,

(see e.g., Qiao et al. (2010)). DWD uses the interior point cone programming to mini-

mize Dn(β0,β) and to estimate β.

2.2 Construction of distribution-free two-sample tests

Clearly, for any fixed and non-random β, the random variables βTx1, . . . ,β
Txn1 ,β

Ty1,

. . . ,βTyn2
form an exchangeable collection if F = G, and the ranks of these variables
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have the distribution-free property under H0. Let Tβ be a statistic based on the ranks

of βTx1, . . . ,β
Txn1 ,β

Ty1, . . . ,β
Tyn2

Assume that, for any specified level 0 < α < 1,

the test for the null hypothesis H0 : F = G based on Tβ is described by the test function

φα(Tβ) =





1 if Tβ > tα

γα if Tβ = tα

0 otherwise,

where one can choose tα and γα in such a way that EH0{φα(Tβ)} = α. Because of the

distribution-free property of Tβ , tα and γα depend neither on (F,G) nor on β. Further,

for standard nonparametric tests (e.g., the KS test or the WMW test), one can obtain

tα and γα from standard statistical tables or softwares.

Note that if β is estimated based on the whole sample using the SVM or the DWD

classifier, and then the multivariate observations are ranked after projecting them along

that estimated direction β̂, the resulting ranks do not have the distribution-free prop-

erty. This is due to the fact that β̂, which is constructed from a classification problem

based on the two samples, is not a symmetric function of the observations in the com-

bined sample, and the random variables β̂
T
x1, . . . , β̂

T
xn1 , β̂

T
y1, . . . , β̂

T
yn2

do not form

an exchangeable collection even if F = G. Therefore, in order to have a distribution-free

test, we adopt a strategy, which is motivated by the idea of cross-validation techniques

used in statistical model selection. In cross-validation, one splits the whole sample into

subsamples and then uses one subsample to estimate the model by optimizing a suit-

able criterion, while another subsample is used to assess the adequacy of the estimated

model. In a similar way, we randomly split each of the two samples into two disjoint

subsamples. We use a suitable linear classifier (e.g., SVM or DWD) to construct β̂

based on one subsample of containing m1 x’s and one subsample containing m2 y’s.

Then we project the observations in the remaining two subsamples (of size n1−m1 and

n2 −m2) using that β̂ and compute the test statistic T ̂β
and the test function φα(T ̂β

)

based on the ranks of those projected observations. The following theorem shows the

exact distribution-free property of φα. The proof of the theorem is given in Section 2.9.

THEOREM 2.1: φα is a distribution-free test function in the sense that E(F,G)(φα) =

α for all (F,G) such that F = G.
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In practice, we repeat this procedure for several random splits and aggregate the

results to come up with the final decision. For a given level α (0 < α < 1), one option

for aggregation is to consider a test function φ∗α, which is obtained by averaging the

test functions φα(T ̂β
) over M different random splits. From Theorem 2.1, it follows

that EH0(φ
∗
α) = α. However, φ∗α may take a fractional value in the interval (0, 1) for a

given data set. Therefore, the implementation of the test may require randomization at

the final stage. We can avoid this final stage randomization by using the idea of union-

intersection test based on Bonferroni correction (see e.g., Dunn (1961)). For each of the

M random splits, we perform the nonparametric test (e.g., one-sided WMW or KS test)

at level α/M , and finally accept the null hypothesis if and only if it is accepted for each

random split. One can also use an alternative method based on the idea of controlling the

false discovery rate (FDR) (see e.g., Benjamini and Hochberg (1995)). In this case, for

each random split, we compute the p-value associated with the nonparametric test. Let

p1, p2, . . . , pM be the p-values associated with the tests based on M random splits, and

p(1), p(2), . . . , p(M) be the corresponding order statistics. For a given level α (0 < α < 1),

we reject H0 if the set {i : p(i)/i ≤ α/M} is non-empty. FDR was introduced by

Benjamini and Hochberg (1995) for independent tests. Later, Benjamini and Yekutieli

(2001) showed that the method of Benjamini and Hochberg also controls FDR for tests

with positively regression dependent (PRD) test statistics. Benjamini and Yekutieli

(2001) also developed a FDR procedure, which does not require the the test statistics

to be positively regression dependent and works under arbitrary dependence structure.

In this method, after finding the p-values, one rejects H0 if the set {i : p(i)/i ≤ α/M0(i)}
is non-empty, where M0(i) = M

∑i
j=1 1/j for i = 1, 2, . . . ,M . Since M ≤ M0(i) ≤ iM

for all i = 1, 2, . . . ,M , this method is more conservative than the FDR procedure

that assumes positive regression dependence structure, but less conservative than the

Bonferroni method. So, in any given example, it is expected to yield power lying between

those of the Bonferroni method and the Benjamini-Hochberg procedure. However, here

we can safely assume that the tests corresponding to different random splits have PRD

test statistics because they are based on the same initial data set (see also Cuesta-

Albertos and Febrero-Bande (2010)), and since we are testing the same hypothesis

over different partitions, in our case, FDR coincides with the level of the resulting test.
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Therefore, the level of this resulting test can atmost be α (see Theorem 1.2 in Benjamini

and Yekutieli (2001) and Proposition 2.3 in Cuesta-Albertos and Febrero-Bande (2010)).

Henceforth, by FDR method, we will mean the FDR method proposed by Benjamini

and Hochberg (1995), and we will use it for our all theoretical and numerical work.

Recently, Wei et al. (2015) proposed some two-sample tests based on linear pro-

jections, where they also used a linear classifier to select the projection direction and

computed the test statistic based on the projected observations. But, they used the

full sample to estimate the direction vector and to compute the test statistic. So, their

tests were not distribution-free, and they had to use the permutation principle to make

them conditionally distribution-free. However, their conditional tests based on the t-

statistic and the MD statistic work well only for light tailed distributions. Unlike our

rank based methods, they are not robust. Their test based on the AUC statistic is

somewhat robust, but it does not have good power properties in HDLSS situations,

where the observations from the two distributions are linearly separable (see Wei et al.

(2015) for details). Our proposed tests based on WMW and KS statistics do not have

such problems in high dimension, which we will see in the subsequent sections.

2.3 Power properties of proposed tests for HDLSS data

We have already mentioned that unlike most of the existing two-sample tests, our tests

based on SVM and DWD can be used even when the dimension of the data is much larger

than the sample size. Here, we carry out some theoretical analysis of the power proper-

ties of these tests when the sample size n is fixed, and the dimension d diverges to infinity.

Throughout this section, we consider tests based on the one sided KS and the one sided

WMW statistics. We consider all three aggregation methods, the method based on the

average of test functions, the method based on Bonferroni correction and that based

on FDR as discussed above. Henceforth, we will refer to them as the Avg-Method, the

Bonf-Method and the FDR-Method, respectively. For our theoretical investigation, we

assume the observations on X = (X(1),X(2), . . . ,X(d))T and Y = (Y (1), Y (2), . . . , Y (d))T

to be independent, and they also satisfy the following assumptions.

(A1) Fourth moments of X(q) and Y (q) (q ≥ 1) are uniformly bounded.
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(A2) Let X1,X2 be two independent copies of X, and Y1,Y2 be two independent

copies of Y. For (U,V) = (X1,X2), (X1,Y1) and (Y1,Y2), the sum of all pairwise

correlations,
∑

q 6=q′ |corr{(U (q) − V (q))2, (U (q′) − V (q′))2}|, is of order o(d2).

(A3) There exist constants σ21 , σ
2
2 > 0 and ν such that d−1

∑d
q=1 V ar(X

(q)) → σ21,

d−1
∑d

q=1 V ar(Y
(q)) → σ22 and d−1

∑d
q=1{E(X(q))− E(Y (q))}2 → ν2 as d→ ∞.

Under (A1) and (A2), the weak law of large number (WLLN) holds for the sequence

{(U (q) − V (q))2; q ≥ 1}, i.e., d−1
∣∣∣
∑d

q=1(U
(q) − V (q))2 −∑d

q=1E(U (q) − V (q))2
∣∣∣ P→ 0

as d → ∞ (the proof is straight forward and therefore omitted). Under (A3), one can

compute the limiting value of d−1
∑d

q=1E(U (q)−V (q))2 or that of d−1
∑d

q=1(U
(q)−V (q))2

as d→ ∞. This limiting value turns out to be 2σ21 , σ
2
1 + σ22 + ν2 and 2σ22 for (U,V) =

(X1,X2), (X1,Y1) and (Y1,Y2), respectively.

Note that we need (A1) and (A2) to have WLLN for the sequence of dependent

and non-identically distributed random variables. If the components of X and Y are

independent and identically distributed (i.i.d.), WLLN holds under the existence of

second order moments of X(q) and Y (q). In that case, (A2) and (A3) get automatically

satisfied, and (A1) is not required.

Hall et al. (2005) looked at d-dimensional observations as infinite time series
(
X(1),X(2), . . .

)
truncated at length d and studied the high dimensional behavior of

pairwise distances assuming a form of ρ-mixing (see e.g., Kolmogorov and Rozanov

(1960)) for the time series. Assumption (A2) holds under that ρ-mixing condition.

Jung and Marron (2009) assumed some weak dependence among measurement variables

to study the high dimensional consistency of estimated principal component directions.

Assumption (A2) also holds under those conditions. Andrews (1988) and de Jong (1995)

also derived some sufficient conditions to have WLLN for the sequence of dependent and

non-identically distributed random variables. Instead of (A1) and (A2), one can assume

those conditions as well.

From our above discussion, it is quite transparent that under the assumptions (A1)-

(A3), the Euclidean distance between any two observations, when divided by d1/2,

converges in probability to positive constant as d tends to infinity. If both of them

are from the same distribution, it converges to σ1
√
2 or σ2

√
2 depending on whether



17 Power properties of proposed tests for HDLSS data

they are from F or G. If one of them is from F and the other one is from G, it

converges to
√
σ21 + σ22 + ν2. So, for large d, after re-scaling by a factor of d−1/2, n

sample observations tend to lie on the vertices of an n-polyhedron. Note that n1 out

of these n vertices are limits of n1 i.i.d observations from F , and they form a regular

simplex S1 of side length σ1
√
2. The other n2 vertices are limits of n2 data points

from G, and they form another regular simplex S2 of side length σ2
√
2. The rest of

the edges of the polyhedron connect the vertices of S1 to those of S2, and they are of

length
√
σ21 + σ22 + ν2. Under H0, when we have σ21 = σ22 and ν2 = 0, and the whole

polyhedron turns out to be a regular simplex on n points, while we may have ν2 > 0

under HA. In a sense, (A1)-(A3) and ν2 > 0 ensure that the amount of information

for discrimination between F and G grows to infinity as the dimension increases (see

Hall et al. (2005) for further discussion). In conventional asymptotics, we get more

information as the sample size increases, but here the sample size n is fixed and we

expect the amount of information to diverge as the dimension d tends to infinity. In

classical asymptotic regime, where d is fixed and n tends to infinity, consistency of a

test is a rather trivial property. The power of any reasonable test converges to unity as

the sample size increases. But when the sample size is fixed, and the dimension tends to

infinity, consistency of a test is no longer a trivial property, and many well known and

popular tests fail to have the consistency in this set up (see e.g., Wei et al. (2015)). The

next theorem establishes the consistency of our proposed tests in this high dimensional

asymptotic regime. The proof of the theorem is given in Section 2.9.

THEOREM 2.2: Let β̂ be computed using SVM or DWD applied to the two subsamples

of sizes m1 and m2, and T ̂β
be computed from the other two subsamples of sizes n1−m1

and n2 −m2. Assume that Tβ is either the one sided KS statistic or one sided WMW

statistic such that PH0(Tβ = tmax) < α, where tmax is the largest possible value of the

statistic Tβ computed based on two subsamples of sizes n1−m1 and n2−m2. Then under

the assumptions (A1)-(A3), if ν2 > 0, the power of the proposed test based on the Avg-

Method or the FDR-Method converges to unity. Under the same set of assumptions,

the power of the proposed test based on the Bonf-Method also converges to unity if

PH0(Tβ = tmax) < α/M , where M is the number of random splits.
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It is appropriate to mention here that not only for the one sided KS and the one

sided WMW statistics, the above result holds for any one sided linear rank statistic

(see e.g., Hájek et al. (1999)) of the form
∑m1

i=1 a(Ri), where the Ris are the rank of

the projected observations on X in the combined sample, and a is a monotonically

increasing function. Also, in view of the results in Hall et al. (2005), the convergence of

the powers of our tests to one actually holds even when both d and m = (m1+m2) grow

to infinity in such a way that m/d2 tends to zero and n−m is not too small. One should

notice that depending on the values of σ21 , σ
2
2 and ν2, both SVM and DWD need some

additional conditions on m1 and m2 for perfect classification of future observations,

otherwise they classify all observations to a single class (see Hall et al. (2005)). But, for

our tests based on SVM and DWD directions, we do not need such conditions for the

convergence of the power function to unity. Note also that the condition ν2 > 0 holds

in the commonly used set up for two-sample testing problems, where the population

distributions are assumed to have the same dispersion but different means. For the one

sided KS statistics as well as any one sided linear rank statistic (as mentioned above),

it is easy to see that T ̂β
takes its maximum value tmax if and only if the rank of the

linear function of any observation from F is smaller than that of any observation from

G in the combined sample. Hence, PH0(T ̂β
= tmax) = (n1 −m1)!(n2 −m2)!/(n−m)! is

smaller than α if n−m is suitably large.

2.4 Results from the analysis of simulated data sets

We begin with a comparison among the powers of our tests based on three methods of

aggregation discussed in Section 2.2. Note that in all these cases, we need to find β̂

either using the SVM classifier or using the DWD classifier on the observations in the

first subsample. For the SVM classifier, we used the R program ‘svmpath’ (see Hastie

et al. (2004)), which automatically selects the regularization parameter λ0. For the

DWD classifier, we used the MATLAB codes of Marron et al. (2007) with the default

penalty function. After finding β̂, observations in the second subsample were projected

along that direction to compute the test function and the p-value. This procedure

was repeated 50 times, and the results were aggregated over these 50 random splits.
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Unless mentioned otherwise, throughout this thesis, for all numerical work, all tests are

considered to have 5% nominal level.

We considered some examples involving spherically symmetric multivariate normal

and Cauchy distributions, where F and G had the same scatter matrix Id (the d × d

identity matrix) and differed only in their locations. Note that our proposed tests are

invariant under a common location shift and a common orthogonal transformation of

the data from F and G in view of the equivariance property of SVM and DWD clas-

sifiers under those transformations. For such an invariant two-sample test, its power

is a function of the norm of the difference between the locations of two spherical dis-

tributions. We chose F to be symmetric around the origin and G to be symmetric

around (∆, 0, . . . , 0)T . We considered two choices for d, and the value of ∆ was cho-

sen to be 1.5 and 2 for d = 30 and d = 90, respectively, so that all tests had powers

appreciably different from the nominal level of 0.05. Note that while normal distribu-

tions have exponential tails and finite moments of all orders, Cauchy distributions have

heavy polynomial tails and they do not have finite moments of any order. Assumptions

(A1)-(A3) hold for normal distributions, but not for Cauchy distributions. We chose

these two distributions in order to evaluate the performance of our tests not only when

(A1)-(A3) hold, but also in situations when they fail to hold. In each of these examples,

we generated 50 observations from each distribution to form the sample, which was then

used to perform different tests. We carried out 1000 Monte-Carlo experiments, and for

each test, we estimated its power by the proportion of times it rejected H0.

Recall that for the implementation of our tests, we need to divide the whole sample

into two subsamples. We carried out our experiment taking π proportion of observations

in the first sub-sample, and computed the power of the corresponding test pπ for nine

different choices of π (π = 0.1, 0.2, . . . , 0.9). The relative power for a given value of π

is computed as pπ/p∗, where p∗ = maxπ pπ. Figure 2.1 shows these relative powers for

our tests based on three methods. From this figure, it seems to be a good idea to use

π ∈ [0.2, 0.3]. We carried out our experiment with different choices of F and G, but in

most of the cases, our finding remained the same. Henceforth, we will use π = 0.25 for

our tests.
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(a) Tests based on average of the test functions
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(c) Tests based on false discovery rate

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

Proportion of observations in first subsample

R
el

at
iv

e 
po

w
er

(b) Tests based on Bonferroni correction

Figure 2.1: Relative powers of proposed tests for different sizes of first subsample.
(black and grey curves shows the results for examples with normal and Cauchy
distributions, respectively)

Table 2.1 shows the observed levels (when ∆ = 0) and powers of our proposed

tests for π = 0.25. Recall that the FDR-Method controls the level of the test when

the test statistics corresponding to different random splits are either independent or

positively regression dependent (PRD) (see Benjamini and Hochberg (1995); Benjamini

and Yekutieli (2001)). We computed correlation coefficients among these test statistics

over 1000 Monte-Carlo simulations, and in all cases, all of them turned out to be positive.

Observed levels of the tests based on the FDR-Method were below the nominal level.

These give an indication that the test statistics corresponding to different random splits

were PRD. Table 2.1 shows that while our tests based on the Avg-Method had observed

levels quite close to 0.05 in all cases, tests based on the Bonf-Method and the FDR-

Method had observed levels falling below their nominal levels in various cases. But

in spite of their conservativeness, in all these cases, the Bonf-Method and the FDR-

Method yielded powers significantly higher than those obtained using the Avg-Method.

Sometimes, some of the random splits led to slightly lower values of the test statistic,

and that affected the performance of the Avg-Method. However, the Bonf-Method and

the FDR-Method did not get much affected by this fact because a very strong evidence

in a single split is enough to reject H0 in these cases. We carried out our experiment

for different sample sizes and also for different choices of F and G, but the superiority

of these two methods was evident in almost all cases. Between them, the latter had a

slight edge. So, from now on, we will use tests based on the FDR-Method only.
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Table 2.1: Observed levels and powers (in %) of proposed tests
Normal Cauchy

d = 30 d = 90 d = 30 d = 90
∆ = 0 ∆ = 1.5 ∆ = 0 ∆ = 2 ∆ = 0 ∆ = 1.5 ∆ = 0 ∆ = 2

WMW-SVM Avg-Method 5.3 79.2 5.3 93.3 4.4 39.1 5.2 59.2
Bonf-Method 2.6 95.2 2.4 99.6 1.8 53.7 2.9 77.6
FDR-Method 2.8 96.4 2.7 99.6 1.9 59.2 3.3 83.0

WMW-DWD Avg-Method 5.0 93.1 4.5 97.3 4.1 41.6 4.4 57.3
Bonf-Method 2.0 96.6 2.8 99.8 2.4 51.4 2.5 71.0
FDR-Method 2.3 97.6 3.3 99.8 2.4 58.9 2.7 75.7

KS-SVM Avg-Method 5.5 71.7 5.7 88.4 4.9 43.3 5.1 64.6
Bonf-Method 2.8 94.2 2.8 99.6 2.0 70.7 2.6 87.8
FDR-Method 3.4 95.2 3.8 99.3 2.7 70.8 3.2 88.0

KS-DWD Avg-Method 5.2 88.9 4.7 94.7 5.6 46.8 4.5 64.0
Bonf-Method 2.8 96.0 2.7 99.6 3.0 69.2 2.3 84.4
FDR-Method 3.1 96.9 3.4 99.7 3.3 69.4 2.3 84.5

Next, we compared the performance of our tests (based on the FDR-Method) with

some popular two-sample tests available in the literature. The test based on the

Hotelling’s T 2 statistic, spatial sign and rank tests (Sp-sign and Sp-rank) (see e.g.,

Möttönen and Oja (1995); Choi and Marden (1997)), Puri and Sen (1971)’s coordinate-

wise sign and rank tests (PS-sign and PS-rank) were used for this comparison. For these

sign and rank tests, we used both, the test based on the large sample distribution of the

test statistic and the conditional test based on the permutation principle. In each case,

the best one (which happened to be the conditional test in most of the cases) has been

reported in Table 2.2. The codes for these tests are available in MNM (see Oja (2010)

for details) and other packages in R. As we have mentioned before, Bai and Saranadasa

(1996), Chen and Qin (2010), Park and Ayyala (2013) and Srivastava et al. (2013) pro-

posed some Hotelling’s T 2 type tests, which can be used even when the dimension is

larger than the combined sample size, and the scatter matrix of the two distributions

are different. We considered the last three for comparison.

Results are also reported for the test based on nearest neighbor (NN) type coinci-

dences (see e.g., Schilling (1986a); Henze (1988)), the Cramer test (see Baringhaus and

Franz (2004)), the multivariate run test (see Friedman and Rafsky (1979)) based on

minimal spanning tree (MST) and Rosenbaum’s Adjacency test (Rosenbaum (2005))

based on optimal non-bipartite matching (see e.g., Lu et al. (2011)). The codes for the

NN test (we used the test based on three neighbors) and the Cramer test are available



Chapter 2: Tests based on discriminating hyperplanes 22

in R packages ‘MTSKNN’ and ‘cramer’, respectively. For the MST run test and the

Adjacency test (based on Euclidean distance), we used our own codes. For comparison

among different two sample tests, along with our previous examples involving 30 and

90 dimensional normal and Cauchy distributions, we also considered similar examples

involving t distributions with 2 degrees of freedom. These three distributions were cho-

sen because of varying degrees of heaviness of their tails. Cauchy distributions do not

have finite first order moments, t2 distributions have first order moments, but they do

not have second order moments, and normal distributions have moments of all orders.

Table 2.2 shows that in the case of normal distributions, the Hotelling’s T 2 test

had observed levels close to the nominal level of 0.05, but in cases of t2 (t wih 2 d.f.)

and Cauchy distributions, they were marginally lower. Observed levels of Chen and

Qin’s test (CQ test) were slightly higher than 0.05 in some cases, whereas those of Park

and Ayyala’s test (PA test) were marginally below the nominal in the case of Cauchy

distributions. Srivastava’s test (SKK test) also had levels below 0.05 in cases of t2 and

Cauchy distributions, and in the case of Cauchy distributions, they were zero. However,

all conditional tests had observed levels close to 0.05 in almost all examples.

In examples involving normal distributions, the Hotelling’s T 2 test had good power

properties for d = 30, but it did not perform well for d = 90. PS-sign, PS-rank, Sp-sign

and Sp-rank tests also had similar behavior. The CQ test had the highest power in

these two cases, while SKK, PA, Cramer and our proposed tests also had competitive

performance. However, in cases of t2 and Cauchy distributions, CQ, SKK, PA and

Cramer tests did not have satisfactory performance at all. Note that CQ, SKK and PA

tests were designed for testing the equality of two mean vectors. Although the location

parameter is well defined in a Cauchy distribution, the mean vector does not exist. This

was the main reason for the poor performance by these tests. Even in the case of heavy

tailed t2 distribution, these non-robust methods could not perform well. In cases of

t2 and Cauchy distributions, the Hotelling’s T 2 test also had powers much lower than

many of its nonparametric competitors. The NN test had the highest power for d = 30,

but in the case of d = 90, our proposed tests outperformed their competitors when the

KS test statistic was used. Among other tests, PS-sign, PS-rank, Sp-sign and Sp-rank

tests could yield somewhat competitive results in the case of d = 30.
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Table 2.2: Observed levels and powers (in %) of two-sample tests
Σ p ∆ Hotel Sp Sp PS PS CQ SKK PA Cram NN MST Adj WMW KS

T2 sign rank sign rank test run (S) (D) (S) (D)

Normal I 30 0.0 5.1 4.2 4.3 6.4 6.7 5.0 3.8 3.7 4.7 4.5 5.2 5.7 2.8 2.3 3.4 3.1
1.5 98.7 98.4 98.6 77.3 96.8 99.3 99.0 99.9 98.6 75.1 52.9 45.7 96.4 97.6 95.2 96.9

90 0.0 5.4 4.9 4.5 4.4 6.2 5.7 4.0 3.9 5.3 4.3 5.4 5.1 2.7 3.3 3.8 3.4
2.0 35.0 37.5 37.2 16.5 36.9 100 100 99.8 100 82.7 59.9 49.7 99.6 99.8 99.3 99.7

Σ0 30 0.0 5.1 4.2 4.2 6.1 6.8 6.6 4.6 5.0 5.3 4.0 3.7 6.1 2.9 3.2 3.7 2.7
1.5 98.4 97.0 97.5 79.7 96.4 76.7 86.0 82.2 25.5 45.8 33.6 42.8 95.9 97.1 94.0 94.7

90 0.0 5.5 5.0 4.5 6.0 5.9 8.3 6.3 7.0 5.8 4.8 3.5 5.4 3.1 2.9 4.3 3.6
2.0 33.9 32.4 33.1 16.8 39.9 37.9 46.0 40.0 13.1 40.7 31.0 35.3 98.8 98.5 98.1 97.6

t (2 df) I 30 0.0 2.9 4.6 4.6 5.8 6.3 5.2 0.9 4.0 5.0 3.6 3.7 4.9 3.0 2.7 3.2 3.6
1.5 67.3 87.0 83.7 53.3 80.1 38.2 18.7 29.4 66.5 84.1 62.7 25.9 78.1 80.6 81.6 82.2

90 0.0 3.8 5.3 5.1 5.2 4.9 5.5 0.1 3.9 4.3 3.7 3.9 5.0 3.7 3.3 3.5 3.9
2.0 29.3 21.4 28.6 12.6 32.4 34.8 10.1 31.9 64.6 88.6 55.8 21.0 91.7 92.4 92.5 94.1

Σ0 30 0.0 3.0 4.2 4.7 6.9 7.4 6.1 3.5 5.2 5.0 3.4 3.9 3.8 2.8 2.7 3.1 3.3
1.5 67.4 87.4 84.9 50.2 81.9 14.0 12.4 14.3 23.2 59.5 40.4 25.2 82.3 81.0 83.1 83.0

90 0.0 3.9 5.0 5.6 5.7 5.3 7.0 3.9 6.3 4.4 3.4 3.7 4.6 3.8 3.5 3.6 3.2
2.0 29.5 21.3 29.0 11.9 31.8 9.2 7.1 9.6 11.7 49.6 34.0 20.9 94.6 93.9 93.4 94.5

Cauchy I 30 0.0 1.9 3.9 4.8 5.6 5.4 4.6 0.0 1.0 5.4 5.7 4.9 4.8 1.9 2.4 2.7 3.3
1.5 30.0 73.3 63.0 39.4 57.7 6.0 0.0 1.2 12.0 80.6 56.7 24.9 59.2 58.9 70.7 69.2

90 0.0 3.6 4.7 4.1 4.6 5.0 6.3 0.0 1.8 6.0 5.0 5.4 6.5 3.3 2.7 3.2 2.3
2.0 29.7 17.4 26.7 11.5 24.8 7.6 0.0 1.4 8.4 80.1 63.1 27.5 76.6 75.7 84.0 82.5

Σ0 30 0.0 1.9 4.0 4.7 5.6 5.8 6.8 0.8 2.8 4.8 4.3 4.0 5.5 2.0 2.4 3.7 2.3
1.5 29.9 72.0 63.4 37.3 60.6 7.9 3.4 1.2 7.7 37.0 25.3 22.9 58.7 56.0 71.2 64.7

90 0.0 3.7 3.5 3.9 5.5 6.1 7.2 0.6 3.2 5.5 5.7 4.4 5.0 3.4 2.3 3.4 3.0
2.0 29.2 15.5 24.3 12.8 29.8 8.4 3.6 0.6 7.0 23.7 17.9 20.1 86.2 75.1 89.3 82.6

We carried out our experiment also with elliptically symmetric normal, t2 and

Cauchy distributions, where Σ0 was used as the common scatter matrix of the two

distributions. The first half of the diagonal elements of Σ0 were unity, and the rest

were 2. All off-diagonal elements of Σ0 were 0.5 except those in the first row and the

first column, which were taken to be 0. This choice of Σ0 led to the same Mahalanobis

distance between the locations of F and G as it was in the case with the common

dispersion matrix I. In this set up, in the presence of high correlations among the mea-

surement variables, the power of the CQ test dropped down drastically. Performance

of the Cramer test, the MST run test and the NN test also deteriorated substantially.

In the example involving 30-dimensional normal distribution, the Hotelling’s T 2 test

had the highest power, while nonparametric sign and rank tests also performed well.

But, in the case of d = 90, our proposed tests outperformed all other tests considered

here. They outperformed their all competitors in cases of 90-dimensional t2 and Cauchy

distributions as well. In the case of d = 30, only the powers of the spatial sign test were

marginally higher.
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From Table 2.2, it seems to be a good idea to use our proposed tests based on

the WMW statistic and the KS statistic when the underlying distributions have light

tails and heavy tails, respectively. Even if the underlying distributions are normal, the

Hotelling’s T 2 statistic should be used only when the dimension is not large compared

to the sample size. The CQ test and the Cramer test can yield good performance in

high dimensions, but they have poor power properties when the measurement variables

are highly correlated and/or the underlying distributions have heavy tails. SKK and

PA tests also had similar problems. Nonparametric sign and rank tests and the NN test

are good options if the data dimension is not very large.

Tests based on linear functions of multivariate observations have also been proposed

by many other authors. We have already discussed about the tests proposed by Wei

et al. (2015) and their limitations. Rousson (2002) suggested to use the first principle

component direction for linear projection to develop a distribution-free test. Lopes et al.

(2011) proposed tests based on several random projections. These tests are applicable

even when the dimension of the data exceeds the sample size. We used some high

dimensional simulated data sets to compare the performance our proposed tests with

these tests based on random projections and principal component direction. Some of

the tests considered in Table 2.2, which can be applied to HDLSS data, were also

used for comparison. We carried out our experiment with two d-dimensional normal

(and Cauchy) distributions having the same scatter matrix Id but different location

parameters (0, 0, . . . , 0)T and (0.15, 0, 15, . . . , 0.15)T . We considered samples of size 50

from each distribution to perform different tests, and this procedure was repeated 1000

times as before. Observed powers of different tests are shown in Figure 2.2 for different

values of d starting from 3 to 600.

In the case of normal distribution, CQ, SKK, PA and Cramer tests had better per-

formance than their competitors. Our proposed tests had powers much higher than rest

of the tests considered here. In the case of Cauchy distribution, when CQ, SKK, PA

and Cramer tests failed, our proposed tests significantly outperformed all of their com-

petitors. This is consistent with what we observed before. Note that in these examples,

separation between the two distributions increases with the dimension. So, one would

expect that the power of a test should tend to unity as the dimension increases. But
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that did not happen for tests based on random projections and principle component

directions. In each of these two cases, we used both KS and WMW tests after finding

the direction vector, and the best one is reported here. From Figure 2.2, it is quite

evident that both of them had miserable performance in high dimensions.
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Figure 2.2: Powers of two-sample tests for varying choices of data dimension.

2.5 Results from the analysis of benchmark data sets

We analyzed four benchmark data sets for further evaluation of our proposed methods.

Three of them, Sonar data, Arcene data, Hill and valley data, and their descriptions

are available at the UCI machine learning repository (http://archive.ics.uci.edu/ml/

datasets/). The Colon data set is available in R package ‘rda’. Description of this mi-

croarray gene expression data set can be found in Alon et al. (1999). Several researchers

have extensively investigated these data sets, mainly in the context of classification. It

is well known that in all these examples, we have reasonable separation between two

competing classes. So, in each of these cases, we can assume the alternative hypothesis

to be the true, and different tests can be compared on the basis of their power functions.

Note that if we use the whole data set for testing, any test will either reject H0 or ac-
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cept it. Based on that single experiment, it is difficult to compare among different test

procedures. So, in each of these cases, we repeated the experiment 1000 times based

on 1000 different subsets chosen from the data (by taking equal number of observations

from the two classes), and the results are reported in Table 2.3. For each data set,

we report the results for three different choices of the sample (subset) size. Since the

dimension of the data was larger than the sample size in most of the cases, here we

report the results only for those tests which are applicable in HDLSS situations.

The Sonar data set was used by Gorman and Sejnowski (1988) in their study of

classification of sonar signals using a neural network. It contains 111 patterns ob-

tained by bouncing sonar signals off a ‘metal cylinder’ and 97 patterns obtained from

‘rocks’ at various angles and under various conditions. The transmitted sonar signal

is a frequency-modulated chirp, rising in frequency. Signals were obtained from var-

ious aspect angles, spanning 90 degrees for cylinder and 180 degrees for rocks. Each

number in a 60-dimensional pattern represents the energy within a particular frequency

band integrated over a certain period of time, where the integration aperture for higher

frequencies occur late. In this data set, the SKK test had the best performance, but

our proposed tests outperformed the rest of the tests considered here. In the case of

n = 80, PA, Cramer, MST run and NN tests had competitive performance, but in cases

smaller sample sizes, powers of our proposed tests, especially those based on the WMW

statistic, were higher than their competitors.

In the Hill and Valley data set, each record represents 100 points on a two-

dimensional graph. When these points are plotted in order (from 1 to 100) as the

Y coordinate, they create either a Hill (a bump in the terrain) or a Valley (a dip in the

terrain). There are two versions of this data set at the UCI machine learning repository;

a noisy version and a noise-free version. Each version has both training and test sets.

For our analysis, we considered the training set of the noise-free version consisting of

305 instances of ‘Hill’ and 301 instances of ‘Valley’. In this example, while all other

two-sample tests had powers close to the nominal level of 0.05, our proposed tests had

excellent performance. In the case of n = 100, they rejected H0 in all cases, and even in

the case of n = 70, their powers were close to unity. We also analyzed the noisy version

of the data, but the results were almost similar. So, here we do not report them.
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The Colon data set contains gene expression patterns for two types of cells. Gene

expressions in 40 tumor and 22 normal colon tissue samples were analyzed with an

Affymetrix oligonucleotide array for more than 6,500 human genes. Out of them, 2000

genes with highest minimal intensity across the samples were chosen, and for each of

them, the intensity score was normalized. so that the average intensity across the

tissues was 0, and its standard deviation was 1. The data set contains these normalized

intensities for 2000 genes for each of these 62 samples (see Alon et al. (1999) for details).

Though all these samples were not independent, we considered them to be independent

to carry out our analysis. In this data set, the CQ test had the highest power closely

followed by SKK and Cramer tests. Our proposed tests, the PA test and the NN test

had similar performance, and their powers were much higher than that of MST run and

Adjacency tests.

Table 2.3: Observed powers (in %) of two-sample tests in benchmark data sets
Sonar Hill & Valley Colon Arcene

(d = 60) (d = 100) (d = 2000) (d = 10000)
Sample size 40 60 80 40 70 100 20 24 30 40 50 60
Chen-Qin 39.8 65.3 86.9 1.3 1.0 0.2 93.9 97.7 100.0 51.1 54.8 67.7
Srivas. et al. 86.8 99.8 100.0 5.6 7.6 7.8 88.6 96.4 100.0 **** **** ****
Park-Ayyala 73.2 95.0 99.8 3.8 4.0 6.6 67.0 87.0 99.0 **** **** ****
Cramer 43.3 75.6 95.7 3.9 6.7 5.4 89.7 97.0 99.8 34.0 50.0 62.1
NN test 69.9 90.9 99.8 6.7 7.8 5.9 77.1 86.7 96.2 88.1 99.3 100.0
MST run 48.4 84.5 97.3 3.2 5.3 7.4 60.6 68.5 81.9 67.4 86.5 98.2
Adjacency 17.8 26.7 36.1 4.9 7.5 4.1 34.2 44.7 54.9 60.2 74.2 90.5
WMW-SVM 76.1 97.8 100.0 55.0 100.0 100.0 74.4 82.8 96.6 52.5 79.1 99.0
WMW-DWD 73.6 98.4 100.0 43.9 95.1 100.0 75.9 83.3 99.6 47.8 75.7 95.3
KS-SVM 72.9 97.3 100.0 55.5 100.0 100.0 71.2 82.1 95.7 63.0 86.3 94.9
KS-DWD 71.2 98.3 100.0 44.7 95.9 100.0 70.7 82.6 99.0 55.9 83.4 92.4

**** Because of computational problem, these tests could not be used.

The Arcene data set is one of five data sets of the NIPS 2003 feature selection

challenge. It was obtained by merging three mass-spectrometry data sets. All data

consist of mass-spectra obtained with the SELDI technique. The samples include cancer

patients (ovarian or prostate cancer) and healthy patients. There were 7000 original

features indicating the abundance of proteins in human sera having a given mass value.

In addition to that, 3000 features with no predictive power were added to increase the

number of features to 10000 (see Guyon et al. (2007) for details). There were separate
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training, test and validation sets in the UCI repository. For our analysis, we use random

subsets from the training set consisting of 44 cancer patients and 56 healthy patients.

In this high dimensional data set, because of computational difficulty, we could not

compute the powers of SKK and PA tests over 1000 subsets. The NN test had the

highest power in this data set. The MST run test and our proposed tests also had

competitive performance. They outperformed the other three tests considered here.

2.6 Tests for high dimensional matched pair data

Instead of having two independent sets of observations from F and G, we may have n

observations
(
x1
y1

)
,
(
x2
y2

)
, . . . ,

(
xn

yn

)
from a 2d-variate distribution with d-dimensional

marginals F and G for X and Y. In such cases, it is a common practice to consider

it as a one-sample problem, where {ξi = xi − yi; i = 1, 2, . . . , n} are used as sample

observations. Note that if we assume F (x) = G(x − θ) for all x and some θ ∈ R
d,

the distribution of ξ = X − Y is symmetric about θ, and testing the equality of the

locations of F and G is equivalent to test H0 : θ = 0. In such situations, one needs

to develop multivariate versions of one sample linear rank tests. Here we propose some

methods based on linear projection of observations that lead to multivariate generaliza-

tions of univariate sign, signed rank and other one-sample linear rank tests, which are

distribution-free, and they can be conveniently used even when the dimension of the

data is much larger than the sample size.

Here also, we split the whole sample into two subsamples. The first subsam-

ple of size m is used to estimate the projection direction. For this estimation, we

consider a classification problem between two data clouds {ξi, i = 1, 2 . . . ,m} and

{ηi = −ξi, i = 1, 2 . . . ,m}, and use the SVM or the DWD classifier to find the sepa-

rating hyperplane. The direction vector perpendicular to this hyperplane is used as β̂.

Note that if the distribution of ξ is elliptically symmetric (or the joint distribution of X

and Y is elliptically symmetric), the separating hyperplane {z : β0 +βT z = 0} leads to

the best classification between the distributions of ξ and η if and only if the expected

values of the one sided univariate sign and signed rank statistics are maximized when

the observations are projected along β (follows from arguments similar to that used in
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the proof of Proposition 2.1). Motivations for this classification approach also follow

from the interesting result given below. The proof is given in Section 2.9.

PROPOSITION 2.2: Suppose that Π is an elliptically symmetric multivariate distri-

bution having a non-zero location. Then, the sign and the signed rank tests based on

linear projections of the data will have the maximum power if and only if the obser-

vations are projected along the direction vector of the Bayes discriminating hyperplane

associated with the classification problem involving distributions Π and Π∗ with equal

prior probabilities, where ξ ∼ Π∗ if and only if −ξ ∼ Π.

After finding β̂ using the SVM or the DWD classifier, all n−m observations in the

second subsample are projected along β̂ to compute the univariate test statistic (i.e.,

sign or signed rank statistic) and the corresponding test function. This procedure is

repeated for several random splits, and the results can be aggregated using either of the

three methods discussed in Section 2.2. Following the same argument as used in the

proof of Theorem 2.1, one can verify that these proposed tests are distribution-free.

To carry out a theoretical investigation on the power properties of our tests, we

assume the observations on ξ to be independent, and we also consider the following

regularity conditions on the distribution of ξ = (ξ(1), ξ(2), . . . , ξ(d)), which are similar to

(A1)-(A3) stated before.

(B1) Fourth moments of ξ(q) (q ≥ 1) are uniformly bounded.

(B2) Let ξ1 and ξ2 be two independent copies of ξ. For V = ξ2,−ξ2 and 0,
∑

q 6=q′ |corr{(ξ1(q) − V (q))2, (ξ1
(q′) − V (q′))2}| is of order o(d2).

(B3) There exist constants σ20 > 0 and ν0 such that (i) d−1
∑d

q=1[E(ξ(q))]2 → ν20 and

(ii) d−1
∑d

q=1 V ar(ξ
(q)) → σ20 as d→ ∞.

Note that (A1) and (B1) are equivalent, and under (A3), ν20 = lim
d→∞

d−1
∑d

q=1[E(ξ(q))]2

= ν2. Theorem 2.3 below shows that under (B1)-(B3), the powers of the proposed sign

and signed rank tests converge to 1 as d tends to infinity. The proof of this theorem is

similar to the proof of Theorem 2.2, and it is given in Section 2.9.

THEOREM 2.3: Let β̂ be computed using the SVM or the DWD classifier on the first

subsample of size m, and the univariate distribution-free test statistic T (e.g., sign or
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signed rank statistic) is computed based on observations in the second sample projected

along β̂. Under H0, if this test statistic takes its maximum value with probability smaller

than α, under the regularity conditions (B1)-(B3), the powers of the Avg-Method and

the FDR-Method converge to 1 as d diverges to infinity. Similar result holds for the

Bonf-Method if under H0, the test statistic takes its maximum value with probability

smaller than α/M , where M is the number of random splits.

We carried out simulation studies to compare the level and the power properties of

our proposed tests based on sign and signed rank statistics with some existing methods.

In particular, we used one-sample versions of Hotelling’s T 2, CQ and PA tests, Puri and

Sen (1971)’s coordinate-wise sign (PS-sign) and signed rank (PS-rank) tests and tests

based on spatial signs (Sp-sign) and ranks (Sp-rank) (see e.g., Möttönen et al. (1997)).

For all these tests, we use the same abbreviations as in the two-sample case. The test

of Srivastava (2009) (referred to as the SR test) was also used for comparison. For sign

and rank tests, we report the results of conditional tests based on permutations since

they outperformed corresponding large sample tests. For our proposed methods based

on DWD, we used the MATLAB codes as before, but due to singularity of matrices in

the regularization path of SVM, the R program ‘svmpath’ could not be used. Instead

we used the SVM toolbox in MATLAB, where the regularization parameter was chosen

based on a pilot study.

Again, we considered some examples involving high dimensional (d= 30 and 90)

normal, t2 and Cauchy distributions with (0, 0, . . . , 0)T and (∆, 0, . . . , 0)T as the loca-

tions for X and Y, respectively. To study the level properties of different tests, we used

∆ = 0, while for studying their powers properties, we chose the value of ∆ depending

on the problem (∆=0.75 and 1.0 for d=30 and 90, respectively) such that most of the

competing tests had power appreciably different from 0.05. In all these testing prob-

lems, we chose V ar(X) = V ar(Y) = 0.5 I + 0.5 11
′

and Cov(X,Y) = 0.5 11
′

, where

1 = (1, . . . , 1)
′

. We generated 100 observations from the joint distribution of X and Y

to constitute the sample, and each experiment was repeated 1000 times to compute the

levels and the powers of different tests, which are reported in Table 2.4.

In the case of normal distribution, the Hotelling’s T 2 test had observed levels close

to 0.05, but they were slightly lower in cases of t2 and Cauchy distributions. The SR
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test also had low levels for t2 and Cauchy distributions. The CQ test, the PA test and

all conditional tests had observed levels close to 0.05 in almost all cases, but for our

proposed tests based on FDR, they were substantially lower than the nominal level.

Table 2.4: Observed levels and powers (in %) of paired sample tests

Hotel. CQ SR PA Sp. Sp. PS PS Sign Sign S.Rank S.Rank
∆ T 2 sign rank sign rank SVM DWD SVM DWD

Normal 0.00 4.5 5.9 5.8 5.6 4.3 4.6 4.0 3.8 1.5 1.6 2.7 2.6
p = 30 0.75 98.6 99.9 99.8 99.8 98.1 98.3 84.9 96.4 86.4 98.4 92.6 99.2

Normal 0.00 4.9 4.6 3.8 4.2 4.9 5.0 4.7 4.0 2.7 3.0 2.6 2.9
p = 90 1.00 41.2 100.0 100.0 100.0 42.8 43.2 35.7 42.2 86.2 99.4 94.2 99.6

t (2 d.f.) 0.00 3.5 4.3 1.2 4.4 4.6 5.2 4.4 4.5 3.2 3.0 2.4 2.8
p = 30 0.75 68.5 37.4 19.8 28.7 89.7 84.5 62.8 69.1 80.7 86.7 81.0 85.8

t (2 d.f.) 0.00 3.6 5.4 0.1 4.9 3.8 4.3 4.1 3.9 2.7 2.3 3.1 2.9
p = 90 1.00 35.3 39.6 10.0 31.9 26.9 35.6 23.4 32.0 93.2 95.0 91.6 92.3

Cauchy 0.00 2.3 6.0 0.0 5.2 4.4 4.5 4.9 5.1 2.4 2.5 3.2 2.3
p = 30 0.75 30.4 7.6 0.0 6.4 76.2 67.6 54.2 55.8 69.6 74.8 58.4 62.0

Cauchy 0.00 3.4 5.5 0.0 4.0 5.9 5.5 4.0 5.9 1.3 1.7 2.2 1.9
p = 90 1.00 33.4 8.3 0.0 5.4 14.4 24.2 12.7 22.4 85.2 87.8 77.0 78.2

In terms of power properties, the overall performance of our proposed tests, particu-

larly those based on the DWD classifier, was better than most of the existing methods,

especially for d = 90. In the case of normal distribution, though CQ, PA and SR tests

had better performance than other methods, these three tests did not have satisfac-

tory performance in the examples involving t2 and Cauchy distributions. For d = 30,

Sp-sign and Sp-rank tests also had competitive performance, but for d = 90, our pro-

posed tests outperformed all other rank based tests considered here. In the case of

90-dimensional normal distribution, while all other rank based tests had powers less

than 0.45, our proposed tests based on DWD had powers more than 0.99. We observed

similar phenomenon also in the case of 90-dimensional Cauchy distribution, where our

proposed tests had much higher powers than their competitors. This is consistent with

our findings in Section 2.4.

We also analyzed the Colon data set to investigate the performance of different

tests for high dimensional data. In this data set, there were observations on normal as

well as cancer tissues from 22 individuals. For each of these tissue samples, there were

expression levels for 2000 genes. From these 22 pairs, we chose 18 pairs at random and

performed tests based on that. These experiment was repeated 500 times to compute

the powers of different tests. Since the dimension of the data set was much larger than
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the sample size, in this example, along with our proposed tests, we could use CQ, PA

and SR tests only. The CQ test had the best performance in this example, it rejected

the null hypothesis in 99.8% cases. The SR test and the PA test had powers 0.908 and

0.828 only. Our proposed tests also had comparable performance. While the sign and

the signed rank tests based on SVM had powers 0.818 and 0.880, those for the tests

based on DWD were 0.826 and 0.894, respectively.

2.7 Large sample properties of proposed tests

So far, we have proved the exact distribution-free property of our proposed tests and

shown the convergence of their power functions when the sample size is fixed and the

dimension grows to infinity. In this section, we will study their power properties when

the sample grows to infinity and the dimension of the data is not large. For studying

the large sample properties of our proposed two-sample tests based on SVM and DWD,

we assume that as the first subsample size m tends to infinity, m1/m converges to 1/2.

Otherwise, one has to make some adjustments for the unbalancedness in the data (see

e.g., Qiao et al. (2010)). However, if the dimension of the data is not large, especially

relative to the sample size, in addition to SVM and DWD, there are many other ways

to estimate the projection direction β. Unlike what happens for high dimensional data,

we can use very simple classifiers like Fisher’s linear discriminant rule to estimate β.

Alternatively, if Tβ is the univariate KS or WMW statistic computed using the obser-

vations in the first subsample projected along β, one can also find β̂ by maximizing Tβ

over the set {β : ‖β‖ = 1}. In cases of KS and WMW statistics, this maximization

leads to linear classifiers based on regression depths and half-space depths, respectively

(see, e.g., Ghosh and Chaudhuri (2005)). Clearly, the finite sample distribution-free

property established in Theorem 2.2 remains valid irrespective of the classification pro-

cedure so long as β̂ is computed from one subsample and univariate distribution-free

tests are implemented on linear projections of data points in the other subsample. Note

that in the case of multivariate two-sample location problem, where F (x) = G(x − θ)

with θ 6= 0, if β̂ /∈ Q = {β : βTθ = 0}, the power of the univariate test (WMW or

KS test) applied on the projected observations converges to 1 as the size of the second
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subsample tends to infinity. For instance, if the distribution of β̂ is absolutely continu-

ous, we have consistency of the resulting tests because the set Q has Lebesgue measure

zero. Further, even in the case of general alternative HA : F 6= G, if F and G sat-

isfy Carleman condition, (i.e., E(‖X‖r) < ∞ ∀ r ≥ 1 and
∑

r≥1(E(‖X‖r))−1/r = ∞),

the set Q0 = {β : Fβ = Gβ} has Lebesgue measure 0 (see Corollary 3.3 in Cuesta-

Albertos et al. (2007)), and consequently, the powers of our tests constructed using the

KS statistic converge to 1 as the size of the second subsample tends to infinity.

Suppose that F and G are elliptically symmetric, and they differ only in their lo-

cations µ1 and µ2. From Proposition 2.1, we know that in this case, KS and WMW

tests based on linear projections of the data have the maximum power if and only if the

observations are projected along β∗ = Σ−1(µ1 − µ2), where Σ is the common scatter

matrix of F and G. Let β̂D, β̂S , β̂F and β̂M be the estimates of β obtained from the first

subsample using DWD, SVM, Fisher’s linear discrimination and maximization of Tβ

(as described above), respectively. Then, the following theorem provides useful insights

into asymptotic power properties of the proposed multivariate two-sample tests.

THEOREM 2.4: For a fixed size of the second subsample, let γ(β) be the power of

the univariate KS (or WMW) test when the observations in the second subsample are

projected along β. Define γ∗ = supβ γ(β). If F and G are elliptically symmetric, and

they differ only in their locations, γ(β̂M ) converges to γ∗ as the first subsample size m

tends to infinity. If F and G have finite second moments, we also have this convergence

for γ(β̂F ), γ(β̂D) and γ(β̂S) when the regularization parameter λ0 used in SVM is of

the order o(m−1/2). Under the same set of conditions, the powers of these tests converge

to 1 if the sizes of both of the first and the second subsamples tend to infinity.

In the case of matched pair data, we may consider the situation when the 2d-

dimensional joint distribution of (X,Y) is elliptically symmetric and the corresponding

d-dimensional marginals of X and Y (F and G, respectively) differ only in their loca-

tions. Otherwise, we may assume the distribution of ξ = X−Y to be symmetric about

a non-zero location. In that case, we can either find β̂ using classification methods

like SVM and DWD applied to ξ’s and η’s as described in the previous section. As

an alternative, one can also construct β̂ using Fisher’s linear discrimination or max-
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imization of univariate sign SGm(β) = 1
m

∑m
i=1 I{βT (xi − yi) > 0} or signed rank

SGRm(β) =
∑m

i=1

∑m
j=i+1 I{βT (xi − yi) + βT (xj − yj) > 0}/(m2 ) statistic. Here I{·}

denotes the indicator function. Results, which are analogous to Theorem 2.4, concerning

asymptotic powers of multivariate paired sample tests constructed using sign and signed

rank statistics based on data points projected along β̂ can be derived under appropriate

conditions. We omit the mathematical details as those details are very similar to those

in two-sample problems (see our comments at the end of Section 2.9).

2.8 Tests based on real valued functions of the data

Recall now the statement of Theorem 2.1 and discussion preceding the theorem. It is

straight forward to verify that the distribution-free property asserted in Theorem 2.1

remains valid if the statistic T is computed based on any real valued function h of the

data corresponding to second subsample, where such a hmay be chosen based on the first

subsample. Linearity of h is not required for Theorem 2.1 to hold. Consequently, if one

constructs a nonlinear classifier based on the first subsample and use the corresponding

discriminant function to form the test statistic based on the second subsample, one

can get a distribution-free test with power properties depending on the choice of the

discriminant function. If the distributions of two multivariate samples are elliptic and

unimodal differing only in their location, the optimal Bayes classifier discriminating

between the two distributions happens to be linear when the prior probabilities are

equal. So, in such cases, it is reasonable to construct tests based on only linear functions

of the data. Also, if F and G both belong to the exponential family, the Bayes classifier

turns out to be a linear function of the sufficient statistics. So, after finding the sufficient

statistics for that family, the same method based on linear projection can be used there

as well. However, in more general situations, the Bayes classifier may not be a linear

function of the data, and there it is more appropriate to consider tests based on suitable

nonlinear functions of the data.

PROPOSITION 2.3: Suppose that h is a real valued measurable transformation of d-

dimensional observations, and it is chosen from the first subsample. Consider a univari-

ate rank statistic T (e.g., KS or WMW statistic), which is computed on the transformed
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observations in the second subsample. Then the resulting multivariate two-sample test

has the distribution-free property. Define γ0(h) as the power of the univariate test when

it is implemented on the observations transformed using the transformation function

h. If f and g are density function corresponding to the two distributions F and G,

respectively, γ0(h) is maximized when h(·) = g(·)/f(·), which is the likelihood ratio.

Therefore, in practice, one can construct consistent estimates f̂ and ĝ for f and

g from the first subsample, and transform the observations in the second subsample

using the transformation function T̂ (·) = ĝ(·)/f̂ (·). Kernel density estimates (see e.g.,

Silverman (1986); Scott (2015)) or nearest neighbor density estimates (see e.g., Lofts-

gaarden and Quesenberry (1965)) can be used for this purpose. Results analogous to

Theorem 2.4 can be proved for these transformations as well. However, nonparametric

estimation of f and g makes the convergence of the estimates rather slow, especially

in high dimension. Another option is to use nonlinear SVM classifier based on radial

basis or other basis functions (see e.g., Burges (1998)). Note that these nonlinear SVM

classifiers can be used even when the dimension is larger than the sample size.

2.9 Proofs and mathematical details

PROOF OF PROPOSITION 2.1: Without loss of generality, let us assume that F and

G have locations µ1 = 0 and µ2 = µ, respectively. Also, it is enough to consider

only those β’s for which βTµ > 0 and βTΣβ = 1, where Σ is the common scatter

matrix of F and G. For all such choices of β, the distribution of βTX remains the

same with location 0 and scatter 1. The distribution βTY also remains the same except

for its location βTµ > 0. Now, consider two direction vectors β1 and β2 such that

βT1 µ > βT2 µ > 0. Clearly, this implies that β1
TY is stochastically larger than β2

TY.

Consequently, the ranks of the corresponding linear functions of the observations have

a similar stochastic ordering. Hence, the powers of the one sided KS test and the one

sided WMW test are higher if the data are projected along β1. Therefore, in order to

maximize the power of any such test, one needs to maximize βTµ subject to βTΣβ = 1.

Since (βTµ)2 ≤ (βTΣβ)(µΣ−1µ), this maximum is achieved when β is a positive scalar

multiple of Σ−1µ, the direction vector corresponding to the Bayes classifier. 2
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PROOF OF THEOREM 2.1: For any split of the data into two independent subsam-

ples, β̂ is independent of the data points from which T ̂β
and φα(T ̂β

) are computed.

As a consequence, for any given β̂, the conditional size of the test, which is same as

the conditional expectation of the test function φα(T ̂β
), is α for any (F,G) such that

F = G, in view of the distribution-free property of the test statistic Tβ for any fixed

β. Since this conditional expectation does not depend on β̂ nor on the specific split

involved, we must have EH0(φα) = α. 2

PROOF OF PROPOSITION 2.2: If Π is elliptically symmetric with a non-zero loca-

tion, so is Π∗, and it differs from Π only in its location. So, the result can be proved

using arguments based on stochastic ordering as in the proof of Proposition 2.1. 2

PROOF OF THEOREM 2.2: Under (A1)-(A3), as d → ∞, ‖xi − xj‖/
√
d

P→ σ1
√
2

for 1 ≤ i < j ≤ n1, ‖yi − yj‖/
√
d

P→ σ2
√
2 for 1 ≤ i < j ≤ n2, and ‖xi − yj‖/

√
d

P→
√
σ21 + σ22 + ν2 for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2. So, after re-scaling, m1 observations from

F tend to lie on the vertices of a regular simplex S1 and m2 observations from G tend to

lie on the vertices of another regular simplex S2, while each vertex of S1 is equidistant

from all vertices of S2 and vice versa. Because of this symmetric nature of data geometry,

the discriminating surface constructed by SVM applied to the subsamples with sizes

m1 and m2 consisting of observations on X and Y bisects each of the m1m2 lines

joining the vertices of S1 and S2. So, if x̄ and ȳ are the means of these m1 and m2

observations on X and Y, and β̂ is the projection direction estimated by SVM, β̂

tends to be proportional to ȳ − x̄ in the sense that

∥∥∥∥
̂β

‖
̂β‖

− ȳ−x̄
‖ȳ−x̄‖

∥∥∥∥
P→ 0 as d → ∞.

Similar results hold if β is estimated using the DWD classifier as well (see proofs of

Theorems 1 and 2 in Hall et al. (2005)). So, both for SVM and DWD, the linear

transformations z → β̂
T
z and z → (ȳ − x̄)T z asymptotically (as d → ∞) lead to the

same ranking among the n−m projected observations of the second subsample. Since

zT1 (ȳ−x̄) > zT2 (ȳ−z̄) ⇔ ‖z1−x̄‖2−‖z1−ȳ‖2 > ‖z2−x̄‖2−‖z2−ȳ‖2, the transformation

z → ‖z− x̄‖2 − ‖z− ȳ‖2 also leads to the same ranking.

Now, for any xi from the subsample of size m1, d
−1(‖xi − x̄‖2 − ‖xi − ȳ‖2) P→

−(σ21/m1+σ
2
2/m2+ν

2), and for any yi from the subsample of size m2, d
−1(‖yi− x̄‖2−

‖yi− ȳ‖2) P→ (σ21/m1+σ
2
2/m2+ν

2). Therefore, after finding β̂ using the SVM classifier
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or the DWD classifier, we consider the one-sided alternative that suggests Ĝβ
to be

stochastically larger than F̂β
.

Now T ̂β
(e.g., the one sided KS statistic or the one sided WMW statistic) is com-

puted from two subsamples consisting of n1−m1 observations on X and n2−m2 obser-

vations on Y using the ranks of those observations projected along β̂, where ranking is

done after combining the two subsamples. Now, for each x from these first n1−m1 obser-

vations, we have d−1(‖x−x̄‖2−‖x−ȳ‖2) P→ (σ21/m1−σ22/m2)−ν2 and for each y from the

next n2−m2 observations, we have d−1(‖y− x̄‖2−‖y− ȳ‖2) P→ (σ21/m1−σ22/m2)+ ν
2.

So, when ν2 > 0, T ̂β
attains its maximum value tmax. If PH0(T ̂β

= tmax) < α, the

limiting p-value (as d → ∞) becomes smaller than α for each of the M partitions

(where M is assumed to be finite), and hence the test based on the FDR-Method re-

jects H0 with probability tending to one as d tends to infinity. Also, T ̂β
P→ tmax and

PH0(T ̂β
= tmax) < α imply that φα(T ̂β

)
P→ 1. Since any test function is bounded,

this proves that EHA
{φα(T ̂β

)} → 1. Consequently the power of the test based on the

Avg-Method, EHA
(φ∗α), converges to unity as d → ∞. If PH0(T ̂β

= tmax) < α/M , the

null hypothesis is rejected by a test of level α/M . So, the power of the test based on

the Bonf-Method also converges to 1 as d tends to infinity. 2

PROOF OF THEOREM 2.3: Under (B1) and (B2), WLLN holds for the sequence of

{ξ(q)21 , q ≥ 1}, {(ξ(q)1 − ξ(q)2 )2, q ≥ 1} and {(ξ(q)1 + ξ
(q)
2 )2, q ≥ 1}. So, using (B1)-(B3), one

can show that for all i = 1, . . . ,m, d−1/2‖ξi‖ = d−1/2‖ηi‖
P→ (ν20 + σ20)

1/2 as d → ∞
(here ηi = −ξi for all i). This implies that d−1/2‖ξi−ηi‖

P→ 2(ν20+σ
2
0)

1/2 = κ1 (say) for

i = 1, 2, . . . ,m. Again, for any i 6= j, we have d−1/2‖ξi−ξj‖ = d−1/2‖ηi−ηj‖
P→ (2σ20)

1/2

and d−1/2‖ξi−ηj‖
P→ (2σ20+4ν20 )

1/2 = κ2 (say). So, as d tends to infinity, after re-scaling

by a factor of d−1/2, ξ1, ξ2, . . . , ξm tend to lie on the vertices of a regular m-simplex

S◦
1 and η1,η2, . . . ,ηm tend to lie on the the vertices of another regular m-simplex S◦

2 ,

which is obtained from S◦
1 by reflecting it along all coordinate axes.

Now, from any vertex ξi on S◦
1 , the distances of the (m− 1) vertices of S◦

2 are equal

to κ2 and that of one other vertex ηi is κ1. This is easy to visualize for m = 2 (see

Figure 2.3). Note that κ2 < κ1. Naturally, SVM chooses the hyperplane that passes

through the origin and bisects each of these lines of length κ2.
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Now, consider a new observation ξ0. As d tends to infinity, after rescaling by a factor

of d−1/2, it tends to be equidistant from all vertices of S◦
1 , and that common distance

is (2σ20)
1/2. So, its squared distance from the centroid of the first set of observations

is given by 2σ20 − σ20(1 −m−1). Similarly, its (re-scaled) distances from all vertices of

S◦
2 tend to be κ1. Hence, its squared distance from the centroid of S◦

2 turns out to be

κ22 − σ20(1 −m−1). So, SVM correctly classifies ξ0 if 2σ20 < κ21 i.e. ν20 > 0. Also note

that here we have same number of observations in each of the two classes. So, SVM

and DWD have the same limiting behavior as d→ ∞ (see Hall et al. (2005)).
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Figure 2.3: Geometry of high dimensional data.

Let β̂ be the direction perpendicular to the separating hyperplane chosen by SVM or

DWD. From the above discussion it is clear that P{β̂T ξ > 0} = P{β̂T (X−Y) > 0} → 1

as d→ ∞. Now, using the same argument as used in the proof of Theorem 2.2, we can

show that the powers of sign and signed rank tests converge to 1 as d increases. 2

LEMMA 2.1: Let x1, . . . ,xm1

i.i.d.∼ F and y1, . . . ,ym2

i.i.d.∼ G. Define the WMW statis-

tic Um1,m2(β) =
1

m1m2

∑m1
i=1

∑m2
j=1 I{βT (xi − yj) > 0}, the KS statistic Km1,m2(β) =

supβ0 | 1
m1

∑m1
i=1 I{βTxi ≤ β0} − 1

m2

∑m2
i=1 I{βTyi ≤ β0}|, and their population analogs

U(β) = P (βT (X − Y) > 0) and K(β) = supβ0 |Fβ(β0) − Gβ(β0)|, where X ∼ F

and Y ∼ G. As min{m1,m2} tends to infinity, supβ |Um1,m2(β) − U(β)| and

supβ |Km1,m2(β)−K(β)| both converge to 0 almost surely.

PROOF: Using the arguments based on Hoeffding’s inequality (for U-statistic) and

Vapnik-Chervonenkis (VC) dimension (see e.g., Vapnik (1998)), we can show the almost
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sure convergence of supβ |Um1,m2(β) − U(β)| to 0 (see Theorem 3.1(i) in Ghosh and

Chaudhuri (2005) for details) as min{m1,m2} → ∞.

Now, define Em1,m2(β0,β) =
1
m1

∑m1
i=1 I{βTxi < β0} + 1

m2

∑m2
i=1 I{βTyi ≥ β0} and

E(β0,β) = P (βTX < β0) + P (βTY ≥ β0). Using the arguments based on Hoeffding’s

inequality and VC dimension, we have supβ0,β |Em1,m2(β0,β) − E(β0,β)| a.s.−→ 0. (see

Theorem 3.1(ii) in Ghosh and Chaudhuri (2005)). One can show that supβ0 E(β0,β) =
1 − K(β) and supβ0 Em1,m2(β0,β) = 1 − Km1,m2(β). So, supβ |Km1,m2(β) − K(β)| =
supβ0,β |Em1,m2(β0,β)− E(β0,β)| a.s.−→ 0 as min{m1,m2} → ∞. 2

REMARK: Lemma 2.1 holds even when d increases with the sample size at the rate

of min{m1,m2}t for some t ∈ (0, 1) (see Section 3 in Ghosh and Chaudhuri (2005)).

LEMMA 2.2: Consider the objective function Dm(β0,β) used in DWD classification

as discussed in Section 2.1. Suppose that m1 (respectively, m2) out of m observations

are from F (respectively, G), and m1/m tends to 1/2 as m → ∞. Define D(β0,β) =

0.5 {E[V0(β0 + βTX)] + E[V0(−β0 − βTY)]}, where V0 is defined as in Section 2.1.

Let (β̂D0m, β̂
D

m) be a minimizer of Dm(β0,β), and (βD0 ,β
D) be the unique minimizer of

D(β0,β). If F and G have finite second moments, β̂
D

m converges to βD almost surely

as m tends to infinity.

PROOF: Note that Dm(β0,β) can be expressed as Dm(β0,β) =
m1
m

1
m1

∑m1
i=1 V0(β0 +

βTxi) +
m2
m

1
m2

∑m2
i=1 V0(−β0 − βTyi). For any fixed β0 and β, V0(β0 + βTxi) (i =

1, 2, . . . ,m1) are i.i.d. bounded random variables. So, using Hoeffding’s inequality, we

can find a constant A0 such that for every ǫ > 0, P{| 1
m1

∑m1
i=1 V0(β0+βTxi)−E[V0(β0+

βTX)]| > ǫ} < 2e−A0m1ǫ2 . Since V0 is Lipschitz continuous, for any β+1 =
(
β01
β1

)

and β+2 =
(
β02
β2

)
, we have |V0(β01 + βT1 x) − V0(β02 + βT2 x)| ≤ ‖x‖ ‖β+1 − β+2‖.

Therefore, under the existence of second moments of F and G, following Theorem 19.4

and Example 19.7 of Van der Vaart (2000, pp. 270-71), one can show that the class of

functions {V0(β0 + βTx) : (β0,β) ∈ R
d} has finite VC dimension dv (say). So, using

the results on probability inequalities (see e.g., Devroye et al. (1996); Van der Vaart

(2000)), we get

P{sup
β0,β

∣∣ 1

m1

m1∑

i=1

V0(β0 + βTxi)− E[V0(β0 + βTX)]
∣∣ > ǫ} < 2mdv

1 e
−A0mǫ2 .
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Since
∑

m1≥1m
dv
1 e

−A0m1ǫ2 < ∞, using the Borel-Cantelli Lemma, one can show that

supβ0,β | 1
m1

∑m1
i=1 V0(β0 + βTxi) − E[V0(β0 + βTX)]| a.s−→ 0 as m1 → ∞. Similarly,

we have supβ0,β | 1
m2

∑m2
i=1 V0(−β0 − βTyi) − E[V0(−β0 − βTY)]| a.s−→ 0 as m2 → ∞.

Now, m1/m and m2/m both converge to 1/2 as m → ∞. So, supβ0,β |Dm(β0,β) −
D(β0,β)| a.s−→ 0 as m→ ∞.

Now, from the definition of (β̂D0m, β̂
D

m) and (βD0 ,β
D), it is quite transparent that

|Dm(β̂
D
0m, β̂

D

m) − D((βD0 ,β
D)| ≤ supβ0,β |Dm(β0,β) − D(β0,β)| a.s−→ 0 as m → ∞.

Again, we have Dm(β̂
D
0m, β̂

D

m) ≤ Dm((β
D
0 ,β

D) and D(β̂D0m, β̂
D

m) ≥ D((βD0 ,β
D) for all

m. This implies that |D(β̂D0m, β̂
D

m)−D((βD0 ,β
D)| converges to 0 on a set of probability

one. Now, on the same set, if (β̂D0m, β̂
D

m) converges, it has to converge to (βD0 ,β
D)

in view of uniqueness of (βD0 ,β
D) and the continuity of the function D(β0,β). Here

without loss of generality, we can assume that for all m, (β̂D0m, β̂
D

m) lies in the compact

surface of the unit ball in Rd+1. So, any subsequence of the sequence of these estimates

has a convergent subsequence converging to (βD0 ,β
D) on that set of probability one.

Hence, (β̂D0m, β̂
D

m) also converges to (βD0 ,β
D) almost surely. 2

LEMMA 2.3: If F and G are elliptically symmetric, and they differ only in their

location, β̂
M

m converges almost surely to a constant multiple of β∗ (defined in Section

2.7) as m tends to infinity. If F and G have finite second moments, we also have this

almost sure convergence for β̂
F

m and β̂
D

m and probability convergence for β̂
S

m when λ0,

the regularization parameter used in SVM, is of the order o(m−1/2).

PROOF: If F and G are elliptically symmetric and they differ in only in their lo-

cations, the Bayes discriminant function is linear with direction vector proportional to

β∗. Since β∗/‖β∗‖ is the unique maximizer of U(β) and K(β) (see Proposition 2.1 and

note that we maximize U(β) and K(β) over β with ‖β‖ = 1), from Lemma 2.1, we have

β̂
M

m
a.s.−→ β∗/‖β∗‖ both for WMW and KS statistics.

From Fisher consistency (see Qiao et al. (2010)) of DWD classifier, we have βD ∝ β∗,

where βD is as defined in Lemma 2.2. So, if F and G have finite second moments, the

almost sure convergence of β̂
D

m to a constant multiple of β∗ follows from Lemma 2.2.

The Fisher discriminant function computed from the data is given by β̂
F

m =

Σ̂
−1

(M1 − M2), where M1 and M2 are sample means for X and Y, and Σ̂ is the
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moment based estimate of the pooled dispersion matrix. Now, under the assumption of

existence of second order moments of F and G, we have β̂
F

m
a.s.−→ Σ−1(µ1 − µ2) = β∗.

Now, consider the case of SVM. First note that if F and G have disjoint supports,

there is nothing to prove. So, we assume that they have some overlapping regions.

Now, if F and G have finite second moments, they satisfy the assumptions (A1)-(A4)

of Koo et al. (2008). So, if λ0 is of the order o(m−1/2), β̂
S

m, the minimizer of Sm(β0,β)

converges (in probability) to βS , the minimizer of S(β0,β) = 0.5(E[1− (β0 +βTX)+]+

E[1 − (−β0 − βTY)+]) (follows from Theorem 1 of Koo et al. (2008)). Now, due to

Fisher consistency of SVM (see e.g., Lin (2002)), we have βS proportional to β∗. 2

PROOF OF THEOREM 2.4: If we can show the continuity of γ(β) with respect to β,

we can say that ∃ β∗ such that γ∗ = γ(β∗). Then, the convergence of the power function

to γ∗ follows from Lemma 2.3. Consider any fixed sequence {βm,m ≥ 1} that converges

to β. So, for any fixed size of the second subsample, (βTmx1, . . . ,β
T
mxn1−m1 ,β

T
my1, . . . ,

βTmyn2−m2
) converges to (βTx1, . . . ,β

Txn1−m1 ,β
Ty1, . . . ,β

Tyn2−m2
) almost surely and

hence in distribution. Now, note that Qβ = {(x,y) : βT (x− y) > 0} is an open set in

R
d with boundary having probability measure zero. Also, for any fixed (x,y), the set

Qx,y = {β : βT (x − y) > 0} is open in R
d. Since βTm(x − y) → βT (x − y), for any

(x,y) ∈ Qβ, we have βTm(x − y) > 0 for sufficiently large m. If Tβ denotes the value

of a univariate rank statistic (e.g., the KS statistic or the WMW statistic) computed

using the observations projected along β, the event {Tβ = r} can be expressed in terms

of finite unions and intersections of the sets Qij
β

= {(xi,yj) : βT (xi−yj) > 0}; 1 ≤ i ≤
n1−m1, 1 ≤ j ≤ n2−m2. So, P{Tβm

= r} → P{Tβ = r} for all r, and hence we have

the continuity of γ(β).

Since βm converges to β∗, and βT∗ (µ1−µ2) 6= 0, for any ǫ > 0, there exist an integer

M0 such that for all m ≥M0, P (βm /∈ Q) > 1− ǫ, where Q = {β : βT (µ1 − µ2) = 0}.
Now, if βm /∈ Q, powers of the tests based on WMW and KS statistics converge to 1 as

the size of the second subsample tends to infinity. So, when sizes of both the first and

the second subsamples tend to infinity, powers of these tests convergence to 1. 2

PROOF OF PROPOSITION 2.3: The distribution-free property of the resulting test

follows from the arguments used in the proof of Theorem 2.1.
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Assume that X ∼ F , Y ∼ G and correspondingly h(X) ∼ Fh and h(Y) ∼ Gh.

Since the most powerful tests are unbiased, we have Gh stochastically larger than Fh.

Now, consider any other transformation h′(.), and let us assume that h′(X) ∼ Fh′ and

h′(Y) ∼ Gh′ . Now, if Fh′(t) = Fh(t) ∀t, from the properties of the most powerful test,

we have Gh′(t) ≤ Gh(t) ∀t. So, the power of the resulting test gets maximized when the

likelihood ratio is used as the transformation function (follows from arguments similar

to that used in the proof of Proposition 2.1).

If Fh′(t) 6= Fh(t) for at least one t, one can find a monotone transformation ψ(.),

such that ψ ◦ h′(X) ∼ Fh. Since the power of the rank test remains invariant under

monotone transformation, h′(·) and ψ ◦ h′(·) lead to the same power. So, we have

Fψ◦h′(t) = Fh(t) ∀t. Now, using the same argument as above, we can claim that the

transformation h(·) leads to more power than the transformation h′(·) or ψ ◦ h′(·). 2

COMMENTS: In the case of matched pair data, we have m1 = m2. Though ξi and

ηj are independent for i 6= j, we have dependency between ξi and ηi. However, note

that the convergence of β̂
F

m does not require independence of observations on X and

Y. So, similar result holds for the matched pair data. In the proof of Lemma 2.1 and

Lemma 2.2, we did not use independence between observations on X and Y. Therefore,

analogous convergence results can be proved for β̂
M

m and β̂
D

m in the case of matched pair

data as well. The convergence result similar to that of |Sm(β0,β) − S(β0,β)| for the

matched pair data can be proved by writing Sm(β0,β) as a sum of the functions of the

xi’s and that of yi’s (like the alterative expression for Dm(β0,β) used in Lemma 2.2)

and then repeating the arguments used in the proof of Theorem 1 of Koo et al. (2008).

So, analogous convergence result for β̂
S

m can also be proved.



Chapter 3

Tests based on shortest path

algorithms

In Chapter 2, we proposed a general method based on linear projection of multivariate

observations for distribution-free multivariate generalizations of univariate rank based

two-sample tests. We have seen that the resulting WMW and KS tests based on SVM

and DWD classifiers work well if F and G have reasonable linear separation between

them, particularly when they differ in their locations. However, the implementation of

that generalization method requires splitting of the whole sample into two subsamples,

and the performance of the resulting tests depend on those subsample sizes. In this

chapter, we propose another method for distribution-free multivariate generalizations

of univariate rank based two-sample tests, which does not require any splitting of the

whole sample and works well even when the two distributions differ only in their scatters

or shapes. Here we find the shortest path that passes through all sample observations

from F and G, and the tests are constructed by ranking the observations along that

path. If we consider these sample observations as the vertices of a complete graph,

and the distance between each pair of observations is considered as the cost of the edge

connecting them, this shortest path connecting all observations is called the shortest

Hamiltonian path (SHP). Note that SHP is a spanning tree, but not necessarily the

minimal spanning tree (MST). The MST of a complete graph may or may not be a

path. If it is a path (i.e., no vertex has degree bigger than 2), it is the SHP. But in

43
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practice, it often contains some vertices with degrees larger than 2, and in such cases,

it differs from the SHP. Detailed descriptions of our SHP based two-sample tests are

given in the following sections.

3.1 SHP and multivariate two-sample tests

Consider a graph G on n vertices. A Hamiltonian path H in G is defined as a connected,

acyclic sub-graph of G with n − 1 edges, where no vertex has degree bigger than two.

In other words, H is a path in G that visits each vertex of G exactly once. For any

given G, a Hamiltonian path may or may not exist, but if G is a complete graph on n

vertices, there are n! Hamiltonian paths. However, for every path, there is another path

in the reverse order. So, if we consider them as the same path, there are n!/2 distinct

Hamiltonian paths. Now, consider G to be a complete graph on n vertices, where each of

the n(n− 1)/2 edges has a cost (e.g., the distance between the two vertices of the edge)

associated with it. For each H in G, one can compute the sum of the costs corresponding

to its n − 1 edges, which is defined to be the cost of H. The Hamiltonian path having

the minimum cost is defined as the shortest Hamiltonian path (SHP) H∗. For a graph

G, H∗ may not be unique, but if the costs corresponding to different edges come from

continuous distributions, it becomes unique with probability one. Figure 3.1 shows a

complete graph on four vertices {z1, z2, z3, z4} along with the costs corresponding to

different edges. There are 12 distinct Hamiltonian paths in this graph, where the path

z2 → z1 → z3 → z4 (or z4 → z3 → z1 → z2) is the shortest Hamiltonian path.

In a two-sample problem, where we have n1 independent observations x1,x2, . . . ,xn1

from F and n2 independent observations y1,y2, . . . ,yn2
from G, define zi = xi for

i = 1, . . . , n1 and zn1+i = yi for i = 1, . . . , n2. Now, consider a complete graph on

n = n1 + n2 vertices z1, . . . , zn, where the edge between zi and zj (1 ≤ i < j ≤ n)

has the cost ‖zi − zj‖, the Euclidean distance between zi and zj . We find the SHP

H∗ in this graph and rank the observations along H∗. For instance, if we consider

z2 → z1 → z3 → z4 as the SHP, ranks of z1, z2, z3 and z4 are taken as 2, 1, 3 and 4,

respectively. Univariate rank based tests (e.g., the WMW test or the KS test) can be

constructed using these ranks. In Fig. 3.1, if we assume that z1, z2 are from F and z3, z4
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Figure 3.1: Shortest Hamiltonian path in a complete graph on four vertices.

are from G, the two-sided WMW statistic and the two-sided KS statistic both take the

value 1. One should note that if the path is traversed in the reverse order (i.e., if we

consider z4 → z3 → z1 → z2 as the SHP), though the ranks of the observations change,

the values of the WMW and the KS statistics remain unchanged, and hence the resulting

tests lead to the same decisions as before. Similarly, one can construct a test based on

the number of runs along H∗. In Fig. 3.1, the number of runs turns out to be 2 (z2 → z1

and z3 → z4 or z4 → z3 and z1 → z2). Note that all these tests are based on pairwise

distances between the sample observations. So, when the Euclidean distance is used,

the corresponding test statistics become invariant under location change, rotation and

homogeneous scale transformation of the data though they may not have the maximal

invariance property for any of these transformations. These tests are fairly simple, and

they can be conveniently used for HDLSS data or even for functional data taking values

in a Banach space. Clearly, this proposed method based on SHP can be used for the

multivariate generalization of any univariate rank based two-sample test, but here we

concentrate only on multivariate generalization of the Wald and Wolfowitz (1940) run

test. This is chosen because of its better empirical performance.



Chapter 3: Tests based on shortest path algorithms 46

3.2 Multivariate run test based on SHP

As we have mentioned above, here we find H∗ in the complete graph G consisting of

n1 + n2 vertices each representing a sample observation and count the number of runs

T SHPn1,n2
alongH∗. Note that T SHPn1,n2

can be expressed as T SHPn1,n2
= 1+

∑n−1
i=1 ΛH∗

i , where ΛH∗

i

is an indicator variable that takes the value 1 if and only if the i-th edge of H∗ connects

two observations from two different distributions. If F and G are widely separated, one

would expect T SHPn1,n2
to be small, while under H0 : F = G, it is expected to be large.

So, we reject H0 for small values of T SHPn1,n2
. Friedman and Rafsky (1979) constructed a

similar multivariate run test based on graphs (referred as the MST run test in Chapter

2). They found the MST (M) in G and used the test statistic TMST
n1,n2

= 1 +
∑n−1

i=1 ΛM
i ,

where ΛM
i denotes the indicator variable that takes the value 1 if and only if the i-

th edge of M connects two observations from two different distributions. Naturally,

H0 is rejected for small values of TMST
n1,n2

. Note that if F and G are one-dimensional

distributions, both the SHP and the MST are obtained by joining the observations

z1, . . . , zn either in increasing or in decreasing order, and in that case, T SHPn1,n2
and TMST

n1,n2

match with the univariate run statistic. Therefore, the MST run test and our proposed

run test, both can be viewed as multivariate generalizations of the univariate run test.

From the above discussion, it is quite transparent that the MST run test and the

proposed run test both have the distribution-free property in one dimension. But, the

MST run test fails to retain this distribution-free property in higher dimension. Unlike

what happens in the case of SHP, the distribution of degrees of the vertices in the

MST is not fixed, and for a given data set, the conditional distribution of the MST run

statistic under H0 depends on the distribution of these degrees and the configuration of

the MST (see Friedman and Rafsky (1979) for details). However, our proposed run test

successfully retains this distribution-free property in higher dimensions. Note that T SHPn1,n2

and the univariate run statistic are the same function of ranks of the observations from

the two distributions; while T SHPn1,n2
uses the ranks computed along H∗. Now, under H0,

because of the exchangeability of z1, . . . , zn, irrespective of the underlying distribution

and data dimension, this rank vector has the same distribution as in the univariate case.

Therefore, T SHPn1,n2
has the distribution-free property, and its null distribution exactly
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matches with that of the univariate run statistic, which is given by

PH0(T
SHP
n1,n2

= 2r) = 2
(n1−1
r−1

)(n2−1
r−1

)
/
( n
n1

)
and

PH0(T
SHP
n1,n2

= 2r + 1) =
[(n1−1

r

)(n2−1
r−1

)
+

(n1−1
r−1

)(n2−1
r

)]
/
( n
n1

)

for r = 1, 2, . . . ,min{n1, n2}, where
(
a
b

)
= 0 if a < b (see e.g., Wald and Wolfowitz

(1940); Gibbons and Chakraborti (2003)). In that sense, T SHPn1,n2
can be viewed as the

most natural multivariate generalization of the univariate run statistic. However, unlike

the univariate case, this multivariate rank-based test may not have the semi-parametric

optimality discussed in Hallin and Werker (2003). If n1 and n2 are small, in order to

carry out our test, we can use the statistical table available for the univariate run test.

However, because of the discrete nature of T SHPn1,n2
, one may need to use randomization

at the cut-off point to match the size of the test with the level of significance. Note that

the multisample extension of the proposed test is quite straight forward, and the null

distribution of the test statistic can be found in Mood (1940).

If n1 and n2 are large, one can also use the test based on the asymptotic null

distribution of T SHPn1,n2
. Under H0, the expectation and the variance of T SHPn1,n2

are

EH0(T
SHP
n1,n2

) = 2n1n2/n + 1 and V arH0(T
SHP
n1,n2

) = 2n1n2(2n1n2 − n)/n2(n− 1), re-

spectively. Let us assume that as n → ∞, n1/n → λ for some λ ∈ (0, 1). Under

this condition, EH0(T
SHP
n1,n2

/n) → 2λ(1 − λ) and V arH0(T
SHP
n1,n2

/
√
n) → 4λ2(1 − λ)2 as

n → ∞. In this case, one can show that (see e.g., Wald and Wolfowitz (1940)), under

H0, T
SHP∗
n1,n2

=
√
n
[
T SHPn1,n2

/n− 2λ(1− λ)
] d→ N(0, 4λ2(1− λ)2).

However, unless n1 and n2 are very small, finding H∗ in a complete graph G is a

computationally hard problem. While one can easily find M in G in polynomial time,

finding H∗ is equivalent to the well-known travelling salesman’s problem, which is NP-

complete (see e.g., Garey and Johnson (1979)). However, there are some good heuristic

search algorithms available in literature (see e.g., Lawler et al. (1985)). In this article,

we have adopted a popular method based on Kruskal’s algorithm (see e.g., Kruskal

(1956)). First, it sorts the edges of G in increasing order of their costs. Next, it starts

from the edge with the minimum cost and selects the edges one by one according to

their costs. However, if an edge along with the previously chosen edges makes a cycle
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or if it makes the degree of a vertex more than two, we do not select that edge. The

algorithm terminates when n − 1 edges are chosen. The Hamiltonian path formed by

these n−1 edges is considered as the shortest Hamiltonian path. This algorithm worked

well for our test, and the reasons for its success are discussed in detail in Section 3.4.

3.3 An illustrative example with high dimensional data

We have already mentioned that our proposed run test and the MST run test both can be

used even when the dimension of the data exceeds the sample size. Now, we consider two

simple examples to investigate how these two tests perform in HDLSS situations. Let us

assume that the observations in F and G are distributed as Nd((µ, . . . , µ)
T , σ2Id) and

Nd((0, . . . , 0)
T , Id), respectively. Here, Nd stands for a d-variate normal distribution,

and Id denotes the d× d identity matrix. We consider two choices of µ and σ2, namely,

(µ = 0.3, σ2 = 1) and (µ = 0, σ2 = 1.3), which lead to a location problem and

a scale problem, respectively. In each case, we generated 20 observations from each

distribution to test H0 : F = G against HA : F 6= G. Each experiment was repeated

500 times, and the proportion of times a test rejected H0 was considered as an estimate

of its power. In the case of MST run test, which is not distribution-free, we used the

conditional test based on 500 permutations. We used different values of d ranging from

3 to 3000, and the results are presented in Fig. 3.2. Like our proposed run test, the

Adjacency test of Rosenbaum (2005) is also distribution-free. So, we have also used it

for comparison. To make it applicable to HDLSS data, we used the Euclidean metric

for distance computation as before. For this test, we used both, the distances between

the observations and the distances between the coordinatewise rank vectors to perform

the test. Since the former one yielded better results, in Fig. 3.2 we have reported the

estimated powers for that test.

Both in location and scale problems, as d increases, the separability between F and

G also increases. So, one should expect the powers of these tests to tend to unity as the

dimension increases. We observed that in the location problem (see Fig. 3.2(a)), but

not in the scale problem (see Fig. 3.2(b)). In the location problem, all three tests had

comparable performance, though our proposed test had an edge. But, the result was
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Figure 3.2: Powers of two run tests and the Adjacency test for varying choices of d.

more interesting in the case of scale problem. In this case, the powers of the proposed

test and the Adjacency test increased with d, but latter increased at a very, very slow

rate. While the power of the proposed run test rapidly increased to unity, that of the

MST run test surprisingly dropped down to zero as the dimension increased. In the

next section, we investigate the reasons behind such diametrically opposite behavior of

these two multivariate run tests for high dimensional data.

3.4 Behavior of multivariate run tests in high dimensions

To carry out a theoretical investigation on the behavior of our proposed test and the

MST run test for high dimensional data, here also, we assume to have n1 independent

observations on X = (X(1), . . . ,X(d))T from F and n2 independent observations on

Y = (Y (1), . . . , Y (d))T from G, while the observations on X and Y are also considered

to be independent. We consider the same set of assumptions (A1)-(A3) as in Chapter 2

and study the limiting behavior of the power functions of these two run tests when n1

and n2 are fixed as d diverges to infinity.

We have seen that, under (A1)-(A3), the pairwise distance between any two obser-

vations, when divided by d1/2, converges in probability to a positive constant. If both
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of them are from F (respectively, G), it converges to σ1
√
2 (respectively, σ2

√
2). If one

of them is from F and the other one is from G, it converges to (σ21 + σ22 + ν2)
1/2

. Here

σ21, σ
2
2 and ν2 have the same meaning as in Chapter 2. However, if the components

of X and Y vectors are independent and identically distributed, as they were in the

examples involving normal distributions in Section 3.3, we only need the existence of

second order moments of the component variables for these above convergence results.

Under (A1)-(A3), if ν2 > 0 or σ21 6= σ22 , the power of the proposed test converges to

unity as the dimension increases.

THEOREM 3.1: Assume that F and G both satisfy the assumptions (A1)-(A3). Also

assume that n1 and n2 are such that n1! n2!/(n1 + n2 − 1)! ≤ α. If ν2 > 0 or σ21 6= σ22,

the power of the proposed run test of level α converges to 1 as d tends to infinity.

The proof of the theorem is given in Section 3.8. Note that n1! n2!/(n1 +n2 − 1)! <

0.05 for all n1, n2 ≥ 5. So, for the large dimensional consistency of the proposed test

with 5% nominal level, it is enough to have 5 observations from each distribution.

Box plots in Fig. 3.3(b) show the distributions of T SHPn1,n2
for different choices of d in

the location problem discussed in Section 3.3. This figure clearly shows that T SHPn1,n2

converged to 2 as d increased. This happens when ν2 exceeds |σ21 − σ22|. But, if we

have ν2 < |σ21 − σ22 |, T SHPn1,n2
converges (in probability) to 3 as d tends to infinity. We

observed it in the scale problem (see Fig. 3.3(d)). If σ21 > σ22 (respectively, σ21 < σ22), H∗

starts and ends with observations from F (respectively, G) with all observations from G

(respectively, F ) in the middle. One can appreciate this by looking at Figure 3.4, which

shows the MST and the SHP for a two-class location and scale problems in dimension

3000, when we have five observations from each distribution. This whole phenomenon

can be mathematically explained in the proof of Theorem 3.1.

One should also note that Theorem 3.1 holds even for the implemented version of

the test, where T SHPn1,n2
is computed along the path obtained by Kruskal’s algorithm.

If ν2 > |σ21 − σ22 |, this algorithm first selects (n1 − 1) ‘XX’-type edges and (n2 − 1)

‘YY’-type edges to form two disjoint paths before joining them by an ‘XY’-type edge.

As a result, we have T SHPn1,n2
= 2. In the case of ν2 ≤ |σ21 − σ22 |, under the conditions of

Theorem 3.1, we have |σ21 − σ22 | > 0. Without loss of generality, let us assume σ21 < σ22,
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which implies 2σ21 < σ21 + σ22 + ν2 ≤ 2σ22 . So, Kruskal’s algorithm first selects (n1 − 1)

‘XX’-type edges to form a path on n1 nodes corresponding to n1 observations from F .

Only two of these n1 nodes will have degree 1 and the rest will have degree 2. Since all

nodes in H have degrees less than or equal to 2, it cannot have more than two ‘XY’-type

edges, and hence T SHPn1,n2
cannot exceed 3.

3 30 300 3000

5

10

15

20

25

30

T
n

1
,n

2

M
S

T

d

(a) Friedman and Rafsky’s run statisic (µ=0.3, σ2=1.0)
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(b) Proposed test statistic (µ=0.3, σ2=1.0)
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(c) Friedman and Rafsky’s run statisic (µ=0.0, σ2=1.3)
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(d) Proposed test statistic (µ=0.0, σ2=1.3)

Figure 3.3: Distributions of TMST
n1,n2

and T SHPn1,n2
for varying choices of d.

However, instead of leading to the actual H∗, Kruskal’s algorithm sometimes yields

a sub-optimal path in terms of its cost. But, the test does not get affected if the number

of runs along that path remains the same. In order to study the behavior of Kruskal’s

algorithm, we carried out an experiment with the location problem considered in Section

3.3. We chose n1 = n2 = 5 so that we could compute the actual H∗ by complete

enumeration. In the case of d = 3000, most of the times, we had two runs along the

actual H∗, where all observations from one distribution (F , say) were followed by all

observations from the other distribution (G, say). Clearly, any re-arrangement among

the observations from F (or from G) can change the cost of the path, but not the value

of the run statistic. In many cases, Kruskal’s algorithm led to such a re-arrangement.
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(a) Minimal Spanning Tree (µ=0.3, σ2=1.0) (b) Shortest Hamiltonian Path (µ=0.3, σ2=1.0)

(c) Minimal Spanning Tree (µ=0.0, σ2=1.3)

 

 
(d) Shortest Hamiltonian Path (µ=0.0, σ2=1.3)

Figure 3.4: Minimal spanning trees and shortest Hamiltonian paths for d = 3000.

Fig. 3.5(a) shows the box plots for efficiency scores of Kruskal’s algorithm computed as

the ratio of the cost of the actual H∗ and that of the Kruskal path (path obtained by

Kruskal’s algorithm) for different dimensions, and Fig. 3.5(b) shows the distribution of

the difference between the test statistics computed along these two paths. These figures

clearly show that Kruskal’s algorithm worked well, and its performance improved as the

dimension increased. For d = 3000, the test statistics computed along the two paths

were the same in more than 95% cases. We observed similar phenomenon for the scale

problem as well, and this can also be explained using a similar argument.

However, under (A1)-(A3), the performance of the MST run test depends on the

ordering ‘XX’-type, ‘XY’-type and ‘YY’-type distances. If ν2 > |σ21 − σ22 | (i.e.,

σ1
√
2, σ2

√
2 < (σ21 + σ22 + ν2)1/2), for large d, all ‘XY’-type distances become larger

than all ‘XX’-type and ‘YY’-type distances. In that case, each observation from F

(respectively, G) tends to have its first n1 − 1 (respectively, n2 − 1) neighbors from F

(respectively, G) itself. As a result, TMST
n1,n2

attains its minimum value 2 with probability

tending to one. We observed it in the location problem in Section 3.3 (see Fig. 3.3(a)),
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where we had σ21 = σ22 = 1 and ν2 = 0.09. So, in this case, unless n1 and n2 are very

small, the power of the MST run test converges to 1 as d tends to infinity. However, the

situation gets completely changed if ν2 < |σ21 − σ22 | (i.e., either σ1
√
2 or σ2

√
2 exceeds

(σ21 + σ22 + ν2)1/2). Without loss of generality, let us assume σ22 − σ21 > ν2 as it was the

case in the scale problem in Section 3.3. In this case, each observation from F has its

first n1 − 1 neighbors from F as before, but each observation from G has all of its first

n1 neighbors from F as well. So, TMST
n1,n2

converges (in probability) to n2 + 1 (see Fig.

3.3(c) and Fig. 3.4), which is equal to (even bigger than) its expected value under H0 if

n1 = n2 (n1 < n2), and much higher than the cut-off. This is the reason why this test

yielded poor performance in the scale problem. In fact, in such cases, depending on n1

and n2, the power of this test may even tend to zero as d tends to infinity.
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Figure 3.5: Performance of Kruskal’s algorithm in different dimensions.
(d= 3 (black), d= 30 (white), d= 300 (dark grey) and d= 3000 (light grey))

THEOREM 3.2: Suppose that F and G both satisfy the assumptions (A1)-(A3).

(i) If ν2 > |σ21 − σ22| and max{⌊n/n2⌋, ⌊n/n1⌋}/
(n1+n2

n1

)
≤ α, the power of the MST run

test of level α converges to 1 as d→ ∞ (Here, ⌊r⌋ denotes the highest integer ≤ r).

(ii) If ν2 < σ21 − σ22 and n1/n2 > (1 + α)/(1 − α) (interchange σ21 and σ22, if required,

and in that case, interchange n1 and n2, accordingly), the power of the MST run test

of level α converges to 0 as d→ ∞.
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The proof of the theorem is given in Section 3.8. Note that part (ii) of Theorem 3.2

gives only a sufficient condition when the MST run test fails. This test may fail in many

other cases. For instance, in the scale problem in Section 3.3, we had n1 = n2 = 20

(i.e., n1/n2 = 1), but the power of this test dropped down to 0 as d increased.

3.5 Results from the analysis of simulated data sets

We analyzed some simulated data sets to compare the performance of the proposed test

with some popular nonparametric two-sample tests available in the literature. Along

with the MST run test and the Adjacency test, we also considered the NN test (see,

e.g., Schilling (1986a); Henze (1988)) based on three neighbors and the Cramer test

(see e.g., Baringhaus and Franz (2004)) for comparison. We carried out our analysis for

n1 = n2 = 20 and n1 = n2 = 50. Unlike the proposed run test and the Adjacency test,

the other three tests do not have the distribution-free property. For them, we used the

conditional tests based on 500 permutations. Each experiment was repeated 500 times,

and the estimated powers of different tests are reported in Table 3.1 for two choices of

d (30 and 90).

As Example-1 and Example-2, we considered the location and the scale problems

discussed in Section 3.3. In Example-1 (location problem), Cramer test had the best

performance followed by the NN test. The proposed test had the third best performance

in this example. But, in Example-2 (scale problem), this proposed test outperformed all

of its competitors. In view of Theorems 3.1 and 3.2, good performance of the proposed

test and poor performance of the MST run test were expected in this example. Like

MST run test, the power of the NN test also dropped down to zero as the dimension

increased. The reason behind its poor performance will be discussed in Chapter 4.

In the next four examples (Example-3 to Example-6), we had ν2 = 0 and σ21 = σ22,

where ν2, σ21 and σ22 have the same meanings as in (A3). We used these examples to

investigate how the proposed test performs when the assumptions of Theorem 3.1 do

not hold. Example-3 and Example-4 deal with two multivariate normal distributions,

where F and G differ only in their correlation structures. In Example-3, F and G had

the scatter matrices ΣF = (((0.35)|i−j|))d×d and ΣG = (((−0.35)|i−j|))d×d, respectively.
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In Example-4, while all off-diagonal elements of ΣF were 0.1, those of ΣG were 0.3.

Note that (A1)-(A3) were valid in Example-3, but (A2) was violated in Example-4. In

Example-3, the NN test had the best performance followed by the proposed test. In

this example, the Cramer test failed to compete with other methods. In Example-4, the

proposed test clearly outperformed all of its competitors. The Adjacency test had the

next best performance, but even its power was not at all comparable to that of the pro-

posed test. In Example-5, F (multivariate normal distribution Nd((0, 0, . . . , 0)
T , 3Id))

and G (standard multivariate t-distribution with 3 degrees of freedom) had the same

mean vector and the same dispersion matrix, but they differed in their shapes. The

proposed test had excellent performance in this example as well. While the MST run

test and the NN test both failed to reject H0 even on a single occasion, the proposed test

could reject it in almost all cases. In Example-6, F was an equal mixture of two normal

distributions Nd(0.3 1d, Id) and Nd(−0.3 1d, 4Id), and G was also an equal mixture

of two normal distributions Nd(0.3 (1Td/2,−1Td/2)
T , Id) and Nd(0.3 (−1Td/2,1

T
d/2)

T , 4Id).

Here 1d = (1, . . . , 1)T denotes the d-dimensional vector with all elements unity. Again,

in this example, the proposed test outperformed its competitors.

Table 3.1: Observed powers (in %) of two-sample tests in simulated data sets
Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6

n d 30 90 30 90 30 90 30 90 30 90 30 90

40 MST run 29 62 04 01 39 44 07 03 00 00 09 09
Adjacency 27 52 09 14 32 39 12 15 31 43 14 39
Cramer 83 100 10 15 08 05 06 07 49 67 04 02
NN test 49 87 07 04 48 59 10 09 01 00 18 25
Proposed 35 66 22 62 44 50 18 55 85 99 28 56

100 MST run 62 96 06 02 94 97 13 10 00 00 18 19
Adjacency 50 87 11 16 87 93 18 27 71 85 42 88
Cramer 99 100 14 42 15 13 09 09 92 99 06 06
NN coin. 84 99 08 04 99 100 23 20 01 00 35 54
Propsed 69 98 39 95 98 99 42 94 99 100 67 98

Finally, we considered two examples with auto-regressive processes of order 1 and

order 2 (AR(1) and AR(2)). In one example, the observations X = (X(1), . . . ,X(500)) in

F were generated using the AR(1) model X(t) = 0.25+0.3X(t−1)+Ut for t = 1, . . . , 500,

and the observations Y = (Y (1), . . . , Y (500)) in G were generated using another AR(1)
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model Y (t) = 0.25 + 0.5Y (t−1) + Vt, where X
(0),Y (0), U1 . . . , U500,V1, . . . , V500 are i.i.d.

N(0, 1) variates. In the other example, the observations in F were generated using

the AR(2) model X(t) = 0.3X(t−1) + 0.2X(t−2) + Ut for t = 1, . . . , 500, and those in G

were generated using the model Y (t) = 0.4Y (t−1) + 0.3Y (t−2) + Vt for t = 1, . . . , 500,

where X(0),X(−1), Y (0), Y (−1), U1, U2, . . . , U500, V1, V2, . . . , V500 are i.i.d. N(0, 1). In

both cases, we repeated the experiment 500 times taking n1 = n2 = 20. We per-

formed this experiment for various choices of d starting from 3 to 3000, and the results

are presented in Fig. 3.6. The superiority of the proposed test in high dimension is

quite transparent from this figure, especially in the second example.
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(a) Example with AR(1) model

 

 

1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log(d)

Po
we

r

(b) Example with AR(2) models
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Figure 3.6: Powers of different two-sample tests for varying choices of d.

3.6 Results from the analysis of benchmark data sets

We analyzed five benchmark data sets for further assessment of the proposed method.

Three of these data sets, Sonar data, Colon data and Arcene data, were analyzed

in Chapter 2. The Trace data set is obtained from the UCR time series classifi-

cation/clustering page (http://www.cs.ucr.edu/∼eamonn/time series data/), and the

Ionosphere data set is taken from the UCI machine learning repository (http://archive.ics.

uci.edu/ml/datasets/). Detailed descriptions of these data sets are available at these

sources. All these data sets have been extensively used in the literature of supervised

classification, and in each of these cases, there is a reasonable separation between the
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competing classes. So, here also different tests can be compared on the basis of their

power functions. However, as we have mentioned before, it is difficult to compare among

different test procedures using a single experiment based on the whole data set. There-

fore, in each of these cases, we repeated the experiment several times taking random

subsets of the same size chosen from the whole data set. We will use the same strategy

for the analysis of benchmark data sets in the subsequent chapters. In this section,

we formed these subsets taking equal number of observations from the two classes, and

each experiment was repeated 500 times to compute the powers of different tests. The

results for different subset sizes (sample sizes) are shown in Fig. 3.7.

The Ionosphere data set contains 34-dimensional observations from two classes,

which correspond to ‘Good’ and ‘Bad’ radar returns. Radar data were collected by

a system in Goose Bay that consisted of a phased array of 16 high-frequency antennas.

The targets were free electrons in the ionosphere. Radar returns showing evidence of

some type of structure in the ionosphere are termed as ‘Good’, and the returns which do

not show any evidence are termed as ‘Bad’. There are 126 instances of ‘Good’ and 225

instances of ‘Bad’ radar returns (see also Sigillito et al. (1989) for details). In this data

set, the proposed test and the Cramer test had better performance than their competi-

tors (see Fig. 3.7(a)). For sample size less than 20, the latter had a slight edge, but the

proposed test had higher power afterwards. These two tests had power 1 for samples of

size 40 or higher. The performances of other three tests were also comparable. Among

them, the NN test yielded better performance.

Description of the Sonar data set has been given in Chapter 2. In this data set,

the NN test had the best overall performance closely followed by the proposed run test

(see Fig. 3.7(b)). In all cases, the difference between their powers was less than 0.02.

The MST run test also had comparable performance. The Cramer test had the highest

power for sample size 10, but it was outperformed by the NN test and the proposed

test for larger sample size. The Adjacency test did not have satisfactory performance

in this data set. For instance, when all other tests reached the maximum power 1, it

had power less than 0.3.

The Trace data set was designed to simulate instrumentation failures in a nuclear

power plant. The original data set consists of 16 classes each containing 50 instances,
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(c) Trace data−1 (d=275)
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(d) Trace data−2 (d=275)
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(e) Colon data (d=2000)
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(f) Arcene data (d=10000)

 

 

Figure 3.7: Powers of different two-sample tests in benchmark data sets.
(MST run test (light grey), Adjacency test (dark grey), Cramer test (black dashed),
NN test (dark grey dashed), proposed test (black) in benchmark data sets.)

where each instance has four features. For our analysis, we used a subset of this data

set, which is available at the UCI machine learning repository. It contains the second

feature of class 2 and 6, and the third feature of class 3 and 7, which are considered

as the four new classes. There are 200 instances, 50 for each class, where all instances

are linearly interpolated to have the same length of 275 data points. We considered all
(4
2

)
pairs of classes separately for testing, but in four out of these six cases, because of

high separability between two classes, almost all tests attained power 1 even when very

small samples were used. So, here we report the results only for two testing problems,

one between the first and the second classes (referred to as Trace data-1), and the other
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between the third and the fourth classes (referred to as Trace data-2). In both of these

cases, our proposed test had substantially higher power than all other tests considered

here (see Fig. 3.7(c) and Fig. 3.7(d)). The Cramer test had very poor performance in

these data sets, especially in Trace data-2.

Next, we analyzed Colon and Arcene data sets, where the data dimensions are larger

than 1000. Descriptions of these data sets have been given in Chapter 2. In Colon data

set, the Cramer test yielded the best performance, while the NN test had the second

position (see Fig. 3.7(e)). The MST run test and the proposed run test had almost

similar performance, and they performed better than the Adjacency test. In Arcene

data set, the proposed test and the NN test outperformed all other tests considered

here (see Fig. 3.7(f)). The proposed test had an edge over the NN test for small sample

sizes, but for samples of size 40 and 50, the latter had the highest power. Both of them

had power 1 for samples of size 60 or higher.

3.7 Tests for matched pair data

Like Section 2.6, here we deal with n paired observations
(
x1

y1

)
,
(
x2

y2

)
, . . . ,

(
xn

yn

)
from a

2d-variate distribution with d-dimensional marginals F and G forX andY, respectively.

In such cases, it is common practice to consider {ξi = xi−yi; i = 1, 2, . . . , n} as sample

observations and perform a one-sample test. Here also, we consider the distribution

of ξ = X − Y to be symmetric about some θ ∈ R
d and test the null hypothesis

H0 : θ = 0 against the alternative HA : θ 6= 0. First consider the case d = 1 and assume

that ξ1, . . . , ξn are i.i.d. univariate continuous random variables with a distribution

symmetric about 0. In this case, if we define Si = sign(ξi) and Ri as the rank of |ξi| in
{|ξ1|, . . . , |ξn|} for all i = 1, 2, . . . , n, it is easy to check that.

(a) P{(S1, . . . , Sn) = (s1, . . . , sn)} = 2−n for all (s1, . . . , sn) ∈ {−1, 1}n,
(b) P{(R1, . . . , Rn) = (r1, . . . , rn)} = 1/n! for all permutations (r1, . . . , rn)

of {1, . . . , n},
(c) (S1, . . . , Sn) and (R1, . . . , Rn) are independent.

So, if the test statistic is a function of (S1, . . . , Sn) and (R1, . . . , Rn) (e.g., linear rank

statistic), the resulting test becomes distribution-free in finite sample situations. To
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construct distribution-free tests for multivariate data, we extend the notions of signs

S1, . . . , Sn and ranks R1, . . . , Rn in such a way that the results (a)-(c) hold under H0.

We define ηi = −ξi for i = 1, . . . , n. Note that under H0, ξ1, . . . , ξn and η1, . . . ,ηn

have the same distribution, while under HA they differ in their locations. Now, consider

a complete graph G0 on 2n vertices z1, . . . , z2n, where zi = ξi and zn+i = ηi for i =

1, . . . , n. Also, assume that each edge of G0 has a cost associated with it. For instance,

the Euclidean distance between the two vertices of an edge can be considered as its

cost. Now, consider a path P of length n − 1 in G0 such that for every i = 1, . . . , n, P
covers either ξi or ηi. Clearly, there are 2

nn! such paths in G0. However, for every path,

there is another path in the reverse order. Again, for any path and its reverse path,

two other equivalent paths can be obtained if we replace all zi’s by zn+i (respectively,

zi−n) if i ≤ n (respectively, i > n). For each of these four paths, the total cost of the

n − 1 edges remains the same. If we consider these four equivalent paths as the same

path, the number of distinct covering paths (i.e., the paths that cover either ξi or ηi

for all i = 1, . . . , n) reduces to 2n−2n!. For each of these distinct covering paths, the

sum of the costs corresponding to its n − 1 edges is defined as its cost. Among these

distinct paths, we choose the one having the minimum cost, and we call it the shortest

covering path P0. This shortest covering path (SCP) may not be unique, but if the costs

corresponding to different edges come from continuous distributions, just like SHP, it

becomes unique with probability one.

Figure 3.8 shows a complete graph on 2n = 6 vertices in two-dimension along with

the costs corresponding to different edges. There are 12 distinct covering paths in this

graph, where the path z1 → z3 → z5 (or z5 → z3 → z1, or equivalently, z4 → z6 → z2

or z2 → z6 → z4) is the SCP.

We define S1, . . . , Sn and R1, . . . , Rn along P0. For each i = 1, . . . , n, Si takes

the value 1 (respectively, −1) if ξi (respectively, ηi) appears on P0, and Ri is defined

as the position of ξi (or ηi) along P0. Between the two terminal nodes of P0, as a

starting point, we choose the one which is closer to 0. Since ξ and η = −ξ have the

same distribution under H0, and ξ1, . . . , ξn form an exchangeable collection, it is easy

to check that S1, . . . , Sn and R1, . . . , Rn defined in this way satisfy properties (a)-(c)

mentioned earlier. So, if we construct a test statistic, which is a function of S1, . . . , Sn
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and R1, . . . , Rn, the resulting test becomes distribution-free. Like the univariate case,

we can use the linear rank statistic of the form T0 =
∑n

i=1 I{Si = 1}a(Ri), where I{·}
is the indicator function, and a : {1, . . . , n} → R is a score function. Using a(i) = 1

and a(i) = i for i = 1, . . . , n, one obtains the sign statistic
∑n

i=1 I{Si = 1} and the

signed-rank statistic
∑n

i=1Ri I{Si = 1}, respectively. Under H0, since ξ1, . . . , ξn and

η1, . . . ,ηn have the same distribution, we expect almost equal numbers of ξi’s and ηi’s

on P0. But, under HA, one would expect a dominance of either the ξi’s or the ηi’s on

P0. So, we should reject H0 for very small or very large values of T0, or in other words,

H0 is to be rejected for large values of T ∗
0 = max{T0,

∑n
i=1 a(i)− T0}.
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Figure 3.8: A complete graph on 2n = 6 vertices and the shortest covering path.

One can also construct a test based on the number of runs or that based on the length

of the longest run along P0. The number of runs can be expressed as T1 = 1+
∑n−1

i=1 Λi,

where Λi is an indicator variable that takes the value 1 if and only if the i-th edge of

P0 connects two observations with different S-values. The length of the longest run is

given by T2 = max0≤i<j≤n (j − i) I{Λi = 1,Λi+1 = . . . = Λj−1 = 0,Λj = 1}, where
Λ0 = Λn = 1 and for i = 1, . . . , n−1, the Λis are defined as above. Under H0, when two

data clouds ξ1, . . . , ξn and η1, . . . ,ηn are well mixed, T1 is expected to be large, while

T2 is expected to be small. But under HA, when they are well separated, we expect

small values of T1 and large values of T2. So, here we use one-sided cut-offs.
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In Fig. 3.8, along the path z1 = ξ1 → z3 = ξ3 → z5 = η2, both T1 and T2 take the

value 2, while the values of the sign statistic and the signed rank statistic are 2 and 3,

respectively. Barring the signed rank statistic, the values of the other three test statistics

do not depend on the choice of the starting point of P0, and they remain the same if

the path is traversed in the reverse order. The values of T1 and T2 also remain the same

along an equivalent path, where all zi’s are replaced by zn+i (respectively, zi−n) if i ≤ n

(respectively, i > n). Along this path, though T0 becomes
∑n

i=1 a(i) − T0, the value

of T ∗
0 remains the same. Therefore, all these tests lead to the same results as before if

this equivalent path is chosen. Here also, in the univariate case, where P0 is obtained

by joining the observations ξi (or ηi, if ξi < 0) in increasing order of magnitudes, T0

coincides with the univariate linear rank statistic. Usually, we do not use run tests for

the univariate one-sample location problem. But, alternative distribution-free tests for

that problem can also be constructed using univariate analogs of T1 and T2.

Note that the test statistics constructed in this way are the same functions of

(S1, . . . , Sn) and (R1, . . . , Rn) as their univariate analogs. So, irrespective of the underly-

ing distribution and the data dimension, null distributions of these test statistics exactly

match with those of their univariate counter parts, and the statistical tables available for

the univariate tests can be used to determine the cut-offs in multivariate cases as well.

Under H0, T0 is distributed as
∑n

i=1Wi, where PH0(Wi = 0) = PH0(Wi = a(i)) = 1/2

for each i = 1, . . . , n, and they are independent (see e.g., Gibbons and Chakraborti

(2003)). One can check that under H0, T1 − 1 follows a binomial distribution with pa-

rameters n− 1 and 1/2. The null distribution of T2 is given in Fu and Koutras (1994).

For the construction of a linear rank test with the nominal level α (0 < α < 1), we

consider a test function of the form φα(t) = I{t > tα} + γαI{t = tα}, where tα and γα

(0 ≤ γα < 1) are chosen in such a way that EH0(φα(T
∗
0 )) = α. For run tests, we reject

H0 when T1 is small or T2 is large. Because of the discrete nature of T1 and T2, here

also we need randomization at cut-off points so that the sizes of these tests match the

level of significance α.

If the sample size is large, we can also use the tests based on the asymptotic null

distributions of the test statistics. Asymptotic normality of T1 under H0 is obtained

using normal approximation to the binomial distribution, and that of T0 can be shown



63 Tests for matched pair data

using a central limit theorem for independent random variablesW1,W2 . . . ,Wn (see e.g.,

Gibbons and Chakraborti (2003)). The large sample distribution of T2 can be found in

Gordon et al. (1986).

3.7.1 Computation of test statistics

Unless the sample size is very small, finding P0 is also computationally difficult, and

it is an NP-complete problem (see e.g., Garey and Johnson (1979)). Here we use a

heurustic method based on Prim’s algorithm (see, Prim (1957)) for this purpose, where

the distance between two observations is used as the cost of the edge connecting them.

First we select the pair zi and zj (|j − i| 6= n) having the minimum distance between

them and define a set Ω = {i, j}. We join zi and zj by an edge to get a path of unit

length with zi and zj as its two ends. From each of these two ends, we calculate the

distance of zl, where l /∈ Ω and |l − l′| 6= n for any l′ ∈ Ω. If the minimum of these

distances is observed between zi and zr, we join zi and zr to get a path of length 2

(zj → zi → zr) with zj and zr as its two terminal nodes. We also update Ω by adding

r to it. Next, we consider the distances of all zl (l /∈ Ω and |l − l′| 6= n for any l′ ∈ Ω)

from these two terminal nodes and choose a new edge in the same way to get a path of

length 3. The set Ω is also updated by adding the index of the new selected node. We

proceed in this way until a path of length (n− 1) is chosen. Clearly, this path contains

either ξi or ηi for all i = 1, . . . , n, and it is considered as the SCP. Test statistics are

computed using the signs and the ranks (as defined before) of the observations along this

path. Though this path finding algorithm sometimes leads to a sub-optimal solution

in terms of cost, the test statistic computed along this path often remains the same as

that computed along the actual P0, especially in high dimensions. As a consequence,

the resulting tests generally perform well for HDLSS data. We will discuss this in detail

in the next subsection to make it more transparent.

3.7.2 Power properties of constructed tests in HDLSS set up

Let ξ1, . . . , ξn be n independent realizations of a d-dimensional random vector ξ =
(
ξ(1), . . . , ξ(d)

)
that follows a symmetric distribution with the location θ = (θ(1), . . . , θ(d))
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and the scatter matrix Σ. Here we study the power properties of our tests where n

is fixed and the d grows to infinity. For our theoretical investigation, we consider a

more general cost function of the form ρhψ(ξ1, ξ2) = h
(∑d

q=1 ψ(|ξ
(q)
1 − ξ

(q)
2 |)

)
, where

h : R+ → R+ and ψ : R+ → R+ are continuous, monotonically increasing functions

with h(0) = ψ(0) = 0 such that ρhψ is a distance in R
d. Clearly, this class of distance

functions include all lp distances with p ≥ 1. We modify the assumptions (B1)-(B3)

(stated in Section 2.6) accordingly and assume the following.

(B1◦) For V = ξ2 or −ξ2, second moments of ψ(|ξ(q)1 − V (q)|)’s are uniformly bounded.

(B2◦) For V = ξ2 or −ξ2,
∑

q 6=q′ Corr{ψ(ξ
(q)
1 , V (q)), ψ(ξ

(q′)
1 , V (q′))} is of order o(d2).

Note that if ψ is bounded, (B1◦) holds automatically. If ρhψ is the lp distance,

(B1◦) holds when the 2p-th moment of the ξ(i)’s are uniformly bounded. Like (B2),

the assumption (B2◦) implies a form of weak dependence among the measurement

variables. Now, define τd(θ) = d−1
∑d

q=1E
[
ψ(|ξ(q)1 + ξ

(q)
2 |) − ψ(|ξ(q)1 − ξ

(q)
2 |)

]
and

τ = lim infd→∞ τd(θ). In the case of Euclidean distance, (i.e., ψ(t) = t2), one can show

that τd(θ) = d−1
∑d

q=1(θ
(q))2 ≥ 0, where the equality holds if and only if θ(q) = 0 for q =

1, 2, . . . , d. Also, for any ψ, where ψ
′

(t)/t is a non-constant monotone function in (0,∞),

from Baringhaus and Franz (2010) it follows that E
[
ψ(|ξ(q)1 +ξ

(q)
2 |)−ψ(|ξ(q)1 −ξ(q)2 |)

]
≥ 0,

where the equality holds if and only if θ(q) = 0 for q = 1, 2, . . . , d. So, the result τd(θ) ≥ 0

also holds for such functions (e.g., ψ(t) = t or ψ(t) = t/(1+ t)), and there also τd(θ) = 0

implies θ = 0 . Therefore, under H0, while we have τ = 0, τ is expected to be pos-

itive under HA. The following theorem shows that in such cases, the powers of our

distribution-free tests based on T0, T1 and T2 converge to unity as d increases.

THEOREM 3.3: Assume that the distribution of ξ = X−Y satisfies (B1◦) and (B2◦).

If τ = lim infd→∞ τd(θ) > 0 and 2n−1 is larger than 1/α, the powers of the level α tests

based on T0, T1, and T2 converge to unity as d grows to infinity.

The proof of the theorem is given in Section 3.8. This theorem shows that for a test

of 5% level, it is enough to have six observations for its high-dimensional consistency.

Though our path finding method based on Prim’s algorithm may fail to select the

actual shortest covering path P0 in some of the cases, the above theorem holds even

for the implemented versions of the tests based on that algorithm. From the arguments
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given in the proof of Theorem 3.3, one can check that underHA, as d→ ∞, all ρhψ(ξi, ξj)

distances (i 6= j) become smaller than all ρhψ(ξi,ηj) distances with probability tending

to one. So, this algorithm first selects an edge connecting either two ξis or two ηis.

Now, if it selects an edge connecting two ξis (respectively, ηis), because of this ordering

of distances, only ξis (respectively, ηis) get selected in the subsequent stages. So, for

large d, the covering path selected by the algorithm contains either all ξis or all ηis with

probability tending to 1. Note that along this path, the arrangement of the ξis (or the

ηis) can differ from that in actual P0, but that re-arrangement only changes the cost of

the covering path, not the values of the resulting test statistics.

3.7.3 Analysis of simulated data sets

We analyzed some simulated data sets to compare the performance of our distribution-

free tests with some existing one-sample tests. For this comparison, we considered the

one-sample Hotelling’s T 2 test, PS-sign test, PS-rank test (see, Puri and Sen (1971)),

Sp-sign test and Sp-rank test (see e.g., Möttönen et al. (1997)). Codes for these tests

are available in different R packages. However, these tests are not applicable when the

dimension exceeds the sample size. So, in addition to them, we also considered the SR

test (see Srivastava (2009)), the CQ test (see Chen and Qin (2010)) and the PA test

(see Park and Ayyala (2013)), which can be used even in HDLSS situations. Note that

all these tests were used in Section 2.6. For nonparametric sign and rank tests, we used

both, the large sample test and the conditional test based on the permutation principle.

In each case, the best one (which happened to be the permutation test in almost all

cases) has been reported in Table 3.2.

For our proposed tests, we used three types of distance function: the Euclidean

distance, the l1 distance, and a bounded distance function with ψ(t) = t/(1 + t) and

h(t) = t. Among them, the tests based on the Euclidean distance had the best overall

performance. Also, the tests based on T1 and T2 performed better than the linear rank

tests based on sign and signed rank statistics. Note that under HA, ‘ξξ’-type and ‘ηη’-

type distances are expected to be smaller than ‘ξη’-type distances. So, our path finding

algorithm is supposed to start with either an ‘ξξ’-type edge or an ‘ηη’-type edge. Also,

if it starts with an ‘ξξ’-type edge, in the subsequent steps, it is supposed to choose
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‘ξξ’-type edges with high probability. But, if an ‘ξη’-type edge is chosen in the middle,

there is a high probability of choosing ‘ηη’-type edges in the subsequent steps. As a

result, even under HA, sometimes the values of T ∗
0 do not become large enough to reject

H0. We observed it in our experiments with sign and signed rank statistics. However,

the tests based on T1 and T2 did not get much affected by this phenomenon. Therefore,

here we report the results only for T1 and T2 based on the Euclidean distance.

First we considered some examples, where d is smaller than n. These examples

involve multivariate normal, t(2) (t with 2 degrees of freedom) and Cauchy distributions.

These distributions were chosen for varying degrees of heaviness of their tails. In each

case, we generated 50 observations from a distribution with the location parameter

∆1d = (∆, . . . ,∆)T and the scatter matrix Id to test H0 : ∆ = 0 against HA : ∆ 6= 0.

We considered two choices of d (30 and 40) and four choices of ∆ (0, 0.1, 0.2 and 0.3)

to study the level and the power properties of different tests. Each experiment was

repeated 500 times, and the powers (sizes in the case of ∆ = 0) of different tests were

estimated by the proportion of times they rejected H0.

Table 3.2 shows that in the examples involving normal distributions, all tests had

sizes close to 0.05, but in cases of t(2) and Cauchy distributions, the SR test had sizes

much below the nominal level. The Hotelling’s T 2 test and the PA test also had sizes

below 0.05 in the case of Cauchy distribution. All other tests rejected the true H0 :

∆ = 0 in nearly 5% of the cases.

In the examples involving normal distributions, CQ, PA, and SR tests had much

higher powers than their competitors, though all other tests performed quite well.

Among them, the test based on T1 had the best performance for d = 40. In the examples

involving 30-dimensional t(2) distributions, the Sp-rank test had the best performance

closely followed by PS-rank, Hotelling’s T 2, and Sp-sign tests. The PS-sign test and our

proposed run tests also had competitive performance. However, in the case of d = 40,

these run tests outperformed all other tests considered here. We observed similar re-

sults in the examples with Cauchy distributions as well. For d = 30, Hotelling’s T 2,

Sp-rank, PS-rank and these two run tests had comparable performance, but for d = 40,

the run tests outperformed them. CQ, PA, and SR tests had poor performance in these

examples.
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Table 3.2: Observed levels and powers (in %) of one-sample tests.
d δ Hot. T 2 Sp-sign Sp-rank PS-sign PS-rank CQ PA SR Run (T1) L.Run (T2)

Normal 30 0.0 4.8 4.8 4.8 4.4 5.2 4.4 4.4 4.4 6.2 5.6
0.1 24.4 26.4 24.8 12.6 21.2 52.0 48.8 47.4 17.2 13.6
0.2 85.4 88.6 86.8 63.6 84.4 99.8 99.8 99.8 78.4 48.2
0.3 99.8 100.0 99.8 97.8 99.6 100.0 100.0 100.0 100.0 92.8

40 0.0 5.0 4.8 5.2 5.2 5.2 4.8 5.0 3.8 4.8 4.8
0.1 17.4 17.6 17.0 10.8 17.8 58.6 55.6 52.6 17.6 14.6
0.2 64.6 68.2 66.4 39.6 65.2 100.0 100.0 100.0 85.2 57.4
0.3 96.4 98.0 97.2 88.0 95.4 100.0 100.0 100.0 100.0 97.2

t(2) 30 0.0 3.2 4.4 4.4 4.8 5.8 4.6 3.6 0.4 6.4 5.2
0.1 16.2 18.6 20.6 10.2 15.8 13.8 9.0 2.0 13.4 11.2
0.2 66.6 65.4 73.2 37.8 69.6 47.6 34.8 23.6 56.2 41.6
0.3 95.6 94.6 97.2 82.0 95.4 77.4 64.0 59.8 94.2 87.2

40 0.0 5.0 3.8 5.4 4.0 5.2 5.4 5.0 0.4 4.2 4.8
0.1 11.6 12.6 14.0 9.6 27.8 16.0 11.6 2.6 13.2 10.6
0.2 54.0 42.4 53.4 25.2 53.0 54.6 41.0 23.8 62.8 53.6
0.3 88.8 73.4 88.8 54.6 84.0 82.2 70.2 65.0 97.4 95.4

Cauchy 30 0.0 1.6 3.0 3.4 3.6 3.6 4.0 2.8 0.0 5.8 4.4
0.1 10.6 15.0 16.4 10.0 13.8 4.8 3.6 0.0 14.2 11.6
0.2 47.2 45.8 57.0 30.8 54.0 8.6 6.0 0.6 43.4 47.4
0.3 84.0 79.6 89.0 58.8 86.4 14.2 9.6 2.4 84.6 87.6

40 0.0 3.4 4.8 4.6 5.6 5.4 4.6 2.4 0.0 3.4 4.8
0.1 9.8 11.6 14.8 7.8 14.2 5.6 2.4 0.0 14.2 11.6
0.2 45.6 29.2 46.6 17.4 45.6 10.4 6.0 0.0 57.6 56.0
0.3 83.6 49.4 78.2 35.0 77.8 19.2 11.0 2.6 90.4 93.0

Mixture 30 0.0 3.6 4.6 3.2 13.8 3.4 8.6 6.8 8.6 6.8 6.4
0.1 3.6 5.0 3.4 14.0 4.2 9.8 8.6 9.8 21.8 11.6
0.2 3.8 5.4 3.8 10.2 4.2 12.6 12.0 12.6 92.6 52.4
0.3 3.8 6.2 3.4 9.4 5.0 21.2 18.4 21.2 100.0 95.8

40 0.0 6.2 6.2 4.2 19.6 4.4 8.6 7.4 8.6 5.2 3.4
0.1 6.2 6.0 4.6 17.4 4.4 9.4 8.6 9.4 26.2 10.2
0.2 6.0 6.0 4.8 16.2 5.6 14.0 12.8 14.0 98.0 52.8
0.3 6.2 6.6 4.0 11.2 5.0 20.8 18.0 20.8 100.0 98.4

We considered another example involving an equal mixture of four normal distribu-

tions all having the same scatter matrix 1
2Id. The locations of these normal distributions

were (−3+∆)1d, (−1+∆)1d, (1+∆)1d and (3+∆)1d. We carried out our experiment

for two choices of d and four choices of ∆ as before. In this example, CQ and SR

tests had sizes higher than 0.05. Because of near singularity of the estimated dispersion

matrix of coordinate-wise signs, the PS-sign test failed to maintain the level property.

All other tests had sizes close to the nominal level (see Table 3.2). The powers of the

two run tests were substantially higher than those of all other tests considered here. In

the case of ∆ = 0.3, while the test based on T1 rejected H0 on all occasions, and that

based on T2 had power more than 0.95, all other tests had powers less than 0.25.

Next we considered some examples with normal, t(2) and Cauchy distributions, when

d was much larger than n. In each case, we generated 20 observations from a distribution

having the location parameter (0.15, . . . , 0.15)T and the scatter matrix Id. The powers of
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different tests were computed based on 500 trials as before. We repeated the experiment

for values of d ranging from 3 to 3000, and the results are reported in Fig. 3.9(a)-3.9(c).
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Figure 3.9: Powers of different one-sample tests for varying choices of d.

In these examples, since the location of each variable differs from the origin, one

would expect the powers of these tests to tend to 1 as d increases. We observed this

phenomenon in most of the cases. In the case of normal distribution, the CQ test had

the best performance followed by the PA test. Though the SR test had the highest

power for small values of d, in high dimensions, it was outperformed by the CQ test,

the PA test, and the test based on T1. In the case of t(2)-distribution, the CQ test and

two run tests performed better than PA and SR tests, while the test based on T2 had

an edge in high dimensions. The SR test performed poorly; its power dropped down

to zero as d increased. In the examples involving Cauchy distributions, our run tests
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substantially outperformed all other tests considered here. This is consistent with what

we observed in Table 3.2. Again, for large d, the power of the SR test was close to zero.

These examples show the robustness of our tests against heavy-tailed distributions.

In cases of multivariate t(2) and Cauchy distributions, especially in the latter case, they

had excellent performance when the other tests failed. However, in the examples with

normal distributions, CQ and PA tests outperformed them. Even in that case, the

situation gets completely changed in the presence of contaminations. We carried out

one such experiment, where we generated 20 observations from the normal distribution

as before, but perturbed one out of these 20 observations by subtracting 2 from each

coordinate. This contamination heavily affected the performance of CQ, PA, and SR

tests. All of them had zero power for almost all values of d (see Fig. 3.9(d)). However,

the tests based on T1 and T2 did not get much affected. The powers of these two tests

converged to 1 as before as the dimension increased.

3.7.4 Analysis of PEMS-SF data

We also analyzed the PEMS-SF data available at the UCI machine learning repository.

This data set describes the occupancy rate, between 0 and 1, of different car lanes

of San Francisco bay area freeways between Jan. 01, 2008 and Mar. 30, 2009. For

each day, there is a time series of dimension 963 (the number of sensors) and length

6× 24 = 144 (measurements are sampled every 10 minutes). This data set has separate

training and test sets. For our analysis, we used the 126 observations in the test set

after removing Saturdays and Sundays. Figure 3.10(a) shows average occupancy rates

for different time points of a day computed over 126 days and 963 locations. In this

figure, one can observe two modes at 8:30 A.M. and 5:30 P.M., half an hour before and

after the office hours. Corresponding to these two time points, we have two distributions

of dimension 963. Here, we subtracted one vector (corresponding to 5:30 P.M.) from the

other (corresponding to 8:30 A.M.) and carried out our experiment to test whether the

location of the difference differs from the origin. The distributions of the difference for

different working days of the week are given in Fig. 3.10(b)-3.10(f). Clearly, for some

of the sensors, the location differs the origin. So, one would expect the null hypothesis

of no difference to be rejected.
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(a) Average occupancy at different time points

Figure 3.10: Occupancy rates of car lanes of San Francisco bay area freeways.

When we used 126 observations for testing, all five tests (CQ, PA, SR, and two run

tests) rejected H0. Based on that single experiment, it was not possible to compare

among different tests. So, we carried out our experiment using random subsets of size

5 and 10. Each experiment was repeated 500 times to estimate the powers of different

tests. CQ and SR tests had the highest power 1 both for n = 5 and n = 10. The tests

based on T1 and T2 also had power 1 for n = 10, but for n = 5, they had powers 0.812

and 0.806, respectively. The PA test had power 0.976 for n = 10, but in the case of

n = 5, it could not reject H0 even on a single occasion. To study the level properties

of different tests, along with these 126 observations, we added their negatives to have

a data cloud consisting of 252 observations, which is symmetric about the origin. We

chose random samples of size 5 and 10 from this cloud to perform these tests, and each

experiment was repeated 500 times as before. Both for n = 5 and n = 10, the tests

based on T1 (0.054 and 0.040, respectively) and T2 (0.056 and 0.044, respectively) had

sizes close to 0.05, but for the PA test, they were much below the nominal level (0.000

and 0.008, respectively). In the case of n = 10, CQ and SR tests also had sizes close
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to 0.05 (0.058 and 0.062, respectively) but in the case of n = 5, they failed to maintain

the level property and rejected H0 in 13.6% and 15.8% cases, respectively. This bias

towards the alternative hypothesis could be the reason for their high powers for n = 5.

3.8 Proofs and mathematical details

PROOF OF THEOREM 3.1: Recall that T SHPn1,n2
has the same null distribution as the

univariate run statistic, and hence PH0(T
SHP
n1,n2

≤ 3) = n1! n2!/(n1 + n2 − 1)!. Since

PH0(T
SHP
n1,n2

≤ 3) ≤ α, both T SHPn1,n2
= 2 and T SHPn1,n2

= 3 lead to the rejection of H0. So, it

is enough to prove that PHA
(T SHPn1,n2

> 3) → 0 as d→ ∞.

Define υ1 = σ1
√
2, υ2 = σ2

√
2 and υ3 = (σ21 + σ22 + ν2)1/2. As d tends to infinity,

‖xi−xj‖/
√
d converges in probability to υ1 for 1 ≤ i < j ≤ n1, ‖yi−yj‖/

√
d converges

in probability to υ2 for 1 ≤ i < j ≤ n2, and ‖xi − yj‖/
√
d converges in probability to

υ3 for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2. Clearly 2υ3 ≥ υ1 + υ2, where the equality holds if

and only if ν2 = 0 and σ21 = σ22 . Let H be a Hamiltonian path in the graph on n1 + n2

vertices. Now, H can either (i) start and end with observations from same distribution

or (ii) start with an observation from one distribution and end with an observation from

the other distribution. Let us consider these two cases separately.

In case (i), T SHPn1,n2
can take only odd values, i.e., T SHPn1,n2

= 2r+1 for some integer r > 0.

Now, if H starts and ends with observations from F , H contains n1 − r − 1 ‘XX’-type

edges, n2−r ‘YY’-type edges and 2r ‘XY’-type edges. So, the total cost of H converges

(in probability) to (n1−r−1)υ1+(n2−r)υ2+2rυ3 = (n1−1)υ1+n2υ2+r(2υ3−υ1−υ2).
Similarly, if H starts and ends with observations from G, the total cost of H converges

to (n1− r)υ1+(n2− r−1)υ2+2rυ3 = n1υ1+(n2−1)υ2+ r(2υ3−υ1−υ2). Now, under
the condition ν2 > 0 or σ21 6= σ22 , we have 2υ3 > υ1 + υ2. So, irrespective of whether

H starts (and ends) with F or G, the cost of H is minimum when r = 1. Therefore,

H∗, the shortest Hamiltonian path cannot have more that three runs, or in other words

PHA
(T SHPn1,n2

> 3 | T SHPn1,n2
is odd ) → 0 as d→ ∞.

In case (ii), we have T SHPn1,n2
= 2r for some integer r > 0. In this case, there are n1−r

‘XX’-type edges, n2 − r ‘YY’-type edges and 2r − 1 ‘XY’-type edges in H. So, the

total cost of H converges (in probability) to (n1 − r)υ1 + (n2 − r)υ2 + (2r − 1)υ3 =
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(n1 − 1)υ1 + (n2 − 1)υ2 + υ3 + (r − 1)(2υ3 − υ1 − υ2), which is minimum when r = 1.

Therefore, PHA
(T SHPn1,n2

> 2 | T SHPn1,n2
is even ) → 0 as d→ ∞. 2

PROOF OF THEOREM 3.2: (i) Under the condition ν2 > |σ21 − σ22|, TMST
m,n converges

in probability to 2 as d → ∞ (see Fig. 3.3(a) and our discussion in Section 3.4). So,

there is a subtree T1 on n1 vertices correspond to n1 observations from F and another

subtree T2 on n2 vertices correspond to n2 observations from G. These two subtrees are

connected by an edge e = {uv}, where u and v correspond to two vertices of T1 and T2,
respectively (see Fig. 3.11). Now, let us compute P (TMST

n1,n2
= 2) under the permutation

distribution. First note that if T1 and T2 both contain some vertices labeled as F and

some labeled as G, TMST
n1,n2

cannot be 2. So, if n1 = n2, there are only two possibilities.

Either all vertices of T1 or all vertices of T2 should be labeled as F (see Fig. 3.11(a)).

Therefore, in that case, P (TMST
n1,n2

= 2) turns out to be 2/
(n1+n2

n1

)
. Now, without loss of

generality, let us assume n1 > n2. First note that in this case, all vertices of T2 should

have the same label. If all of them are labeled as G, all vertices of T1 will get label F (see

Fig. 3.11(b)). If all vertices of T2 are labeled as F , to count the number of favourable

cases, first note that u must have label F . Also, at most one of its neighbors (vertices

that share an edge with u) can have label G. Suppose w (w 6= v) is the neighbor having

label G. Consider the collection Cw of all vertices in T1 that connect to u through w.

All vertices in this collection (that includes w itself) should have label G, and no other

vertices in T1 can have label G. So, the cardinality of Cw must be n2. Similarly, the

other neighbors of u can have label G only if the corresponding collection has cardinality

n2. So, if the collection corresponding to each of the k neighbors (including v) of u has

cardinality n2, the vertex w can be chosen in k−1 different ways, and the total number

of favourable cases turns out to be k (including the one, where all vertices of T2 has

label G). If u does not have any neighbor labeled as G, instead of u, the same argument

can be used on each of the neighbors of u barring v. Note that in order to have these

k favorable cases, we need if kn2 + 1 ≤ n or (n − 1)/n2 ≥ k. So, we cannot have more

than ⌊(n − 1)/n2⌋ favourable cases. Similarly, if n2 > n1, the number of favourable

cases cannot exceed ⌊(n − 1)/n1⌋. Recall that if n/n1 = n/n2 = 2 (i.e., n1 = n2), the

number of favourable cases is 2. So, combining all these results, under the permutation
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distribution, we get P (TMST
n1,n2

= 2) ≤ k/
( n
n1

)
, where k = max{⌊n/n1⌋, ⌊n/n2⌋}. If this

upper bound is smaller than α, the power of the MST run test of level α converges to

1 as d tends to infinity.

(a) n
1
=9, n

2
=9

v
u

(b) n
1
=16, n

2
=3 

v

u

w

Figure 3.11: Minimal spanning trees with TMST
n1,n2

= 2.

(ii) Under the given condition T = TMST
n1,n2

−1 converges to n1 in probability (see Fig.

3.3(c) and our discussion in Section 3.4). Note that T is a non-negative random variable,

and E(T | Z), the conditional expectation of the permutation distribution of T given the

data Z={x1,x2, . . . ,xn1 , y1,y2 . . . ,yn2
} does not depend on Z (see e.g., Friedman and

Rafsky (1979)), and E(T | Z) = 2n1n2/n ∀ Z, where n = n1+n2. Therefore, using the

Markov inequality, we have P (T ≥ n1 | Z) ≤ 2n2/n ⇒ P (T < n1 | Z) ≥ (n1 − n2)/n.

Now, n1/n2 > (1 +α)/(1−α) implies (n1 − n2)/n > α and that completes the proof.2

PROOF OF THEOREM 3.3: Let ξ1 and ξ2 be two independent copies of ξ and

define ηi = −ξi for i = 1, 2. One can check that under (B1◦) and (B2◦), the

weak law of large numbers holds for the sequence {ψ(|ξ(q)1 − V (q)|); q ≥ 1} (the

proof is straight forward, and hence it is omitted), where V = ξ2 or η2. There-

fore,
∣∣∣d−1

∑d
q=1 ψ(|ξ

(q)
1 − η

(q)
2 |)− d−1

∑d
q=1 ψ(|ξ

(q)
1 − ξ

(q)
2 |)− τd(θ)

∣∣∣ P→ 0 as d → ∞.

So, if we have n independent copies ξ1, . . . , ξn of ξ and τ > 0, for all i 6= j,

P
[∑d

q=1 ψ(|ξ
(q)
i − η

(q)
j |) >∑d

q=1 ψ(|ξ
(q)
i − ξ

(q)
j |)

]
→ 1 as d → ∞. Since h is monotoni-

cally increasing and n is finite, as d→ ∞, all ‘ξξ’-type and ‘ηη’-type distances become

smaller than all ‘ξη’-type distances with probability tending to one. So, the shortest

covering path P0 will contain n−1 edges connecting either all ξis or all ηis. As a result,

T0 will take either its minimum value 0 or its maximum value
∑n

i=1 a(i). Now, under
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H0, it takes each of these extreme values with probability 1/2n < α/2. Therefore, the

tests based on T0 will reject H0 with probability tending to 1. Since the path P0 tends

to cover either all ξis or all ηis, T1 converges in probability to its minimum value 1 and

T2 converges to its maximum value n. Since PH0(T1 ≤ 1) = PH0(T2 ≥ n) = 1/2n−1 < α,

the powers of these two tests also converge to unity as d grows to infinity. 2



Chapter 4

Tests based on nearest neighbor

type coincidences

In the previous chapters, we have used the NN test for the comparison purpose. Schilling

(1986a) and Henze (1988) proposed this multivariate two-sample test based on nearest

neighbors and proved its consistency in classical asymptotic regime. Under the general

alternative HA : F 6= G, the power of this test converges to unity when the dimension

is fixed and the sample size tends to infinity (see e.g., Schilling (1986a); Henze (1988)).

Though this test can be used even when the dimension exceeds the sample size, it often

fails to have the consistency in HDLSS asymptotic regime. In fact, we will see that even

when the separation between the two population increases with the dimension, its power

may converge to zero as the dimension increases. In order to overcome this limitation

of the NN test, in this chapter, we propose and investigate some alternative two-sample

tests based on nearest neighbors. These proposed tests also have the large sample

consistency under the general alternative HA : F 6= G, but more importantly, unlike

NN test, they have the high dimensional consistency under fairly general conditions.

Before we proceed, let us first recall the NN test. It rejects the null hypothe-

sis H0 : F = G for large values of the statistic TNN,k = 1
kn [

∑n1
i=1

∑k
r=1 Ixi

(r) +
∑n2

i=1

∑k
r=1 Iyi

(r)], where Iz(r) denotes the indicator variable that takes the value 1 if

and only if z and its r-th (r ≤ k) nearest neighbor come from the same distribution.

For finding the neighbor of z, here we use the leave-one-out method, where z itself

75
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is not considered as its neighbor. However, note that here we use this leave-one-out

method only to compute the test statistic for a given value of k, not to choose the value

of k based on the data. Since the NN test with k = 3 has been reported to perform

well in the literature (see e.g., Schilling (1986a)), throughout this thesis, we report all

numerical results for k = 3. Now let us consider a simple example involving two normal

distributions and see how the NN test performs in high dimension. Like Chapter 3,

here also we consider an example, where the components of F and G are i.i.d. normal

variates. In Chapter 3, we considered examples, where F and G differed either in their

locations or in their scales. Here we consider an example, where F and G differ both in

locations and scales. While the components of F are i.i.d. N(0, 1), those of G are i.i.d

N(0.2, 1.2). We generated 20 observations from each distribution to form the sample

and used the NN test to check whether the two distributions differ significantly. We

carried out this experiment for different values of d ranging between 2 and 1024, and for

each value of d, the experiment was repeated 500 times. Figure 4.1 shows the estimated

power of the NN test (i.e., proportion of times it rejected H0) for various choices of d.

In this example, since each and every component variable provides some evidence

against H0, one would expect the power of any reasonable test to increase to 1 as

d increases. Surprisingly, that was not the case for the NN test. Initially its power

increased with d, but then it dropped down to zero (see Figure 4.1). Our proposed tests

(described in the next section) could overcome this limitation of the NN test. Their

powers converged to unity as the dimension increased (see the power curves for tests

based on TNN1,k and TNN2,k in Figure 4.1). In the next section, we first investigate the

reasons behind the failure of the NN test in the above example, and then we develop

our proposed tests based on nearest neighbor type coincidences.

4.1 Construction of new tests based on nearest neighbors

Let X1, X2 be two independent observations from F , where the component variables

are i.i.d. N(µ1, σ
2
1), and Y1,Y2 be two independent observations from G, where the

component variables are i.i.d. N(µ2, σ
2
2). Clearly, ‖X1−X2‖2/2σ21 and ‖Y1−Y2‖2/2σ22

both follow chi-square distribution with d degrees of freedom, while ‖X1 −Y1‖2/(σ21 +
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Figure 4.1: Powers of nearest neighbor tests for varying choices of data dimension.

σ22) follows non-central chi-square distribution with d degrees of freedom and the non-

centrality parameter (µ2−µ1)2/(σ21 +σ22). It is easy to check that as d→ ∞, d−1‖X1−
X2‖2

p→ 2σ21 , d
−1‖Y1 −Y2‖2 P→ 2σ22 and d−1‖X1 −Y1‖2 P→ σ21 + σ22 + (µ2 − µ1)

2. In

fact, these above convergence results hold as long as the components of F and G are

i.i.d. with finite second moments (follows from weak law of large numbers (WLLN)) or

even when they are dependent and non-identically distributed, but satisfy assumptions

(A1)-(A3) mentioned in Chapter 2.

In our example, we had µ1 = 0, µ2 = 0.2, σ21 = 1 and σ22 = 1.2 leading to 2σ21 <

σ21 + σ22 + (µ2 − µ1)
2 < 2σ22 . Therefore, in high dimension, each observation from

F had its all k = 3 neighbors from F , but no observation from G had any of its

neighbors from G. As a result, TNN,k attained the value 1/2, which was close to its

expected value under H0. Consequently, the NN test could not reject H0 even on a

single occasion. Now, let us define T1,k = 1
n1k

∑n1
i=1

∑k
r=1 Ixi

(r), the proportion of

neighbors of X-observations that come from F and T2,k = 1
n2k

∑n2
i=1

∑k
r=1 Iyi

(r), the

proportion of neighbors of Y-observations coming from G. Under H0, T1,k and T2,k are

expected to be close to the proportions (n1 − 1)/(n− 1) and (n2 − 1)/(n − 1), which

are their respective expected values under H0. But under the alternative, the deviations

T1,k − EH0(T1,k) and T2,k − EH0(T2,k) are expected to be large. Note that the NN test
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statistic TNN,k is given by TNN,k = (n1T1,k+n2T2,k)/n, and hence TNN,k−EH0(TNN,k) =

{n1(T1,k − EH0(T1,k)) + n2(T2,k − EH0(T2,k))}/n. In our example, T1,k converges to 1

and T2,k converges to 0. So, in this type of examples, while T1,k − EH0(T1,k) turns

out to be positive, T2,k − EH0(T2,k) becomes negative. Because of this cancellation of

positive and negative terms, depending on the values of n1 and n2, the magnitude of

TNN,k −EH0(TNN,k) may become very small. As a consequence, the NN test often fails

to reject H0. We also observed this in the scale problem discussed in Section 3.3.

We can easily overcome this problem if we slightly modify TNN,k to avoid this can-

cellation and use either

TNN1,k = {n1|T1,k − EH0(T1,k)|+ n2|T2,k − EH0(T2,k)|}/n or

TNN2,k = {n1[T1,k − EH0(T1,k)]
2 + n2[T2,k − EH0(T2,k)]

2}/n

as test the statistic. A similar idea was also used by Liu et al. (2010) in a slightly

different context. Like the NN test, here also we reject H0 for large values of the test

statistics, where the cut offs are determined using the permutation principle. Note

that if we define ϑi = Ti,k − EH0(Ti,k) and wi = ni/n for i = 1, 2, we have T ◦
NN,k =

TNN,k −EH0(TNN,k) = w1ϑ1 + w2ϑ2, while TNN1,k and TNN2,k can be expressed as

TNN1,k = w1|ϑ1|+ w2|ϑ2| = T ◦
NN,k + w1(|ϑ1| − ϑ1) + w2(|ϑ2| − ϑ2),

TNN2,k = w1ϑ
2
1 + w2ϑ

2
2 = (T ◦

NN,k)
2 + w1w2(ϑ1 − ϑ2)

2.

Therefore, under the alterative HA, if both ϑ1 and ϑ2 are positive with very high

probability, TNN1,k and T
◦
NN,k often take same values. But, since TNN1,k is stochastically

larger than T ◦
NN,k, the cut-off obtained from the permutation distribution of TNN1,k is

expected to be larger than that for the test based on T ◦
NN,k. So, in such cases, the

test based on TNN,k or T ◦
NN,k can outperform the test based on TNN1,k. For instance,

if two distributions F and G differ only in their locations, the NN test is expected to

yield better performance than the test based on TNN1,k. But if either ϑ1 or ϑ2 takes

negative values with high probability, as it was in our example, the test based on TNN1,k

is expected to outperform the NN test, and we have observed it in Figure 4.1.

From the expression of TNN2,k, it is clear that TNN2,k is stochastically larger than

(T ◦
NN,k)

2. Therefore, under HA, if the difference between ϑ1 and ϑ2 is small with high
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probability, because of the same reason as described above, the test based on T ◦
NN,k or

(T ◦
NN,k)

2 may perform better than that based on TNN2,k. For instance, in a location

problem with n1 = n2, the test based on TNN2,k may have lower power than the NN

test. But if F and G differ also in their scatters and/or shapes, this additional term

TNN2,k−(T ◦
NN,k)

2 may play a significant role to improve the performance of the resulting

test. We have observed this in Figure 4.1, and we will see it again in subsequent sections.

4.2 Behavior of proposed tests for HDLSS data

Now, we carry out a theoretical investigation to study the power properties of the

NN test and the proposed tests based on TNN1,k and TNN2,k when the sample size

remains fixed and the dimension grows to infinity. For this investigation, we consider

X = (X(1),X(2), . . . ,X(d))T and Y = (Y (1), Y (2), . . . , Y (d))T to be independent, and

they satisfy the assumptions (A1)-(A3) stated in Chapter 2.

We have seen that if x1,x2, . . . ,xn1 are n1 independent observations from F and

y1,y2, . . . ,yn2
are n2 independent observations from G, under (A1)-(A3) as d→ ∞,

(a) d−
1
2 ‖xi − xj‖ P−→ σ1

√
2 for 1 ≤ i < j ≤ n1.

(b) d−
1
2 ‖yi − yj‖

P−→ σ2
√
2 for 1 ≤ i < j ≤ n2.

(c) d−
1
2 ‖xi − yj‖

P−→
√
σ21 + σ22 + ν2 for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2,

where σ21, σ
2
2 and ν2 are the limiting values (as d → ∞) of d−1

∑d
q=1 V arX

(q),

d−1
∑d

q=1 V arY
(q) and d−1

∑d
q=1[E(X(q)−Y (q))]2, respectively (as in (A3)). Hall et al.

(2005) showed that if ν2 < |σ21 − σ22|, the nearest neighbor classifier (see e.g., Cover and

Hart (1967), Fix and Hodges (1989)) fails in high dimension, where it tends to classify

all observations to a single class. The NN test fails under the same condition. The

following theorem shows that in such cases, depending on the values of n1 and n2, its

power may even converge to zero.

THEOREM 4.1: Suppose that F and G satisfy (A1)-(A3) and ν2 < σ21 − σ22 (in-

terchange F and G, if required, and also interchange n1 and n2 accordingly). If

n2/(n − 1) < (1 − α)/2 and k < min{n1, n2}, the power of a level α test based on

TNN,k converges to zero as d→ ∞.
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The proof of the theorem is given in Section 4.6. Note that, Theorem 4.1 gives only

a sufficient condition under which the NN test fails. This test may fail in many other

situations. For instance, in the example in Figure 4.1, we had n2/(n − 1) > 1/2 >

(1− α)/2, but the power of the NN test converged to 0 as d increased.

Now, let us look at the power properties of the tests based on TNN1,k and TNN2,k.

If F and G satisfy (A1)-(A3) and ν2 6= |σ21 − σ22 |, depending on the values of σ21 , σ
2
2

and ν, (T1,k, T2,k) converges to (1, 0), (0, 1) or (1, 1) in probability. Therefore, TNN1,k

(respectively, TNN2,k) converges to a value not smaller than K
(1)
n1,n2 = n0/n (respectively,

K
(2)
n1,n2 = (n0−1)2/(n−1)2), where n0 = min{n1, n2}. So, if we can show that under the

permutation distribution E(T 2
NN1,k)/K

(1)2
n1,n2 < α (respectively, E(TNN2,k)/K

(2)
n1,n2 < α),

the consistency of the test based on TNN1,k (respectively, TNN2,k) follows from the

Markov inequality. If ν2 = |σ21 − σ22 | > 0, we can comment on the convergence of

either T1,k or T2,k but not on both. In such cases, for the consistency of these tests, it is

enough to show that E(T 2
NN1,k)/C

(1)2
n1,n2 < α and E(TNN2,k)/C

(2)
n1,n2 < α, where C

(i)
n1,n2 =

n0 K
(i)
n1,n2/n for i = 1, 2. Now, note that E(TNN2,k) = w1V ar(T1,k) + w2V ar(T2,k)

and E(T 2
NN1,k) ≤ 2(w1V ar(T1,k) + w2V ar(T2,k)). So, if we can make w1V ar(T1,k) +

w2V ar(T2,k) sufficiently small for some choices of (n1, n2), for that sample size, the

powers of these tests will converge to 1 as d increases.

It can be shown that (see Section 4.6.1) under the permutation distribution,

w1V ar(T1,k) + w2V ar(T2,k) ≤ ψ1(n1, n2, k)
∑n

j=1 δ
2
j + ψ2(n1, n2, k), where ψ1(n2, n2, k)

is of the order O(1/(n2k2)), ψ2(n1, n2, k) is of the order O(1/n) and δj (j = 1, 2, . . . , n)

is the number of observations, which have zj (here zj = xj for j = 1, 2, . . . , n1 and

zn1+j = yj for j = 1, 2, . . . , n2) as one of its k neighbors. For any fixed d, the

δjs are bounded, but this bound increases with d. Given that
∑n

j=1 δj = nk and

0 ≤ δj ≤ n − 1 for all j = 1, 2, . . . , n,
∑n

j=1 δ
2
j can be as large as n(n − 1)k (note

that
∑n

j=1 δ
2
j ≤ (n− 1)

∑n
j=1 δj ≤ n(n− 1)k). Therefore, to make ψ1(n1, n2, k)

∑n
j=1 δ

2
j

sufficiently small, one can consider k to be an appropriate increasing function of n (e.g.,

k =
√
n), and n to be reasonably large.

THEOREM 4.2: Suppose that F and G satisfy (A1)-(A3), where ν2> 0 or σ21 6= σ22.

If φ1(n1, n2, k) = ψ1(n1, n2, k)n(n − 1)k + ψ2(n1, n2, k) < αC
(2)
n1,n2 , the power of a level
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α (0 < α < 1) test based on TNN2,k converges to unity as the dimension increases. If

φ1(n1, n2, k) < αC
(1)2
n1,n2/2, we also have this convergence of power for a level α test based

on TNN1,k.

The proof of the theorem follows immediately from our above discussion. However,

Hall et al. (2005) rightly pointed out that in HDLSS setting, where we deal with high

dimensional data and have very limited number of observations at our disposal, it is not

a great idea to use larger values of k. We also observed the same during our analysis

of simulated and real data sets. In most of the cases, larger values of k did not lead

to any substantial improvement over the results obtained using k = 3, and in some

cases, they made the thing worse. So, we do not recommend this method. In order

to make our tests consistent in HDLSS set up, we adopt a different strategy. We put

a bound on the δjs, the in-degrees of the zjs. Note that if δj ≤ t (k ≤ t ≤ n − 1),

under the condition
∑n

i=1 δj = kn,
∑n

j=1 δ
2
j cannot exceed nkt (note that

∑n
j=1 δ

2
j ≤

t
∑n

j=1 δj ≤ nkt). Therefore, if n is not too small, using a small value of t, we can make

ψ1(n1, n2, k)
∑n

j=1 δ
2
j sufficiently small and hence make the tests based on TNN1,k and

TNN2,k consistent in HDLSS situations.

THEOREM 4.3: Suppose that F and G satisfy (A1)-(A3), where ν2> 0 or σ21 6=
σ22. If the in-degrees of the observations are bounded by t and φ2(n1, n2, k, t) =

ψ1(n1, n2, k)nkt + ψ2(n1, n2, k) ≤ αC
(2)
n1,n2 , the power of a level α (0 < α < 1) test

based on TNN2,k converges to unity as d increases. If φ2(n1, n2, k, t) < αC
(1)2
n1,n2/2, we

also have this convergence for a level α test based on TNN1,k.

The proof of the theorem also follows from our above discussion. To construct a

nearest neighbor graph with in-degrees bounded by t, we start with the smallest pairwise

distance. If the distance between zi and zj is the smallest, we consider zi as a neighbor

of zj and vice versa. In that case, in-degrees and out-degrees of both zi and zj are

increased by 1. Next, we consider other pairwise distances one by one in increasing

order. Suppose that the pairwise distance between zr and zs is chosen at a stage.

Now, if the out-degree of zr (respectively, zs) is smaller than k and the in-degree of zs

(respectively, zr) is smaller than t, we consider zs (respectively, zr) as a neighbor of zr

(respectively, zs) and modify the out-degree of zr (respectively, zs) and the in-degree
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of zs (respectively, zr), accordingly. We stop when the in-degrees and the out-degrees

of all zis (i = 1, 2, . . . , n) reach the respective upper bounds t and k.

4.3 Results from the analysis of simulated data sets

We analyzed six simulated data sets to compare the performance of our proposed tests

with the NN test (see e.g., Schilling (1986a); Henze (1988)) and some other existing two

sample tests that can be used in HDLSS situations. In particular, we used the MST

run test (see Friedman and Rafsky (1979)), Hall and Tajvidi (2002)’s test (HT test)

based on nearest neighbors and the Cramer test (see Baringhaus and Franz (2004)). In

all these cases, we used conditional tests based on 500 permutations. In each of these

examples, we used n1 = n2 = 20. Each experiment was repeated 500 times to estimate

the powers of different tests, and they are reported in Table 4.1 for three choices of d.

In most of these examples, the test based on TNN2,k performed slightly better than

that based on TNN1,k. Therefore, in Table 4.1, we have reported the results for the

proposed test based on TNN2,k only. Here, we have used both versions of the test; the

usual one and the one where we put an upper bound on the in-degrees, as discussed

in Section 4.2. For the implementation of the bounded version, we chose the largest

possible upper bound t that ensures w1V ar(T1,k) + w2V ar(T2,k) < αC
(2)
n1,n2 . In Table

4.1, the usual version is referred to as TNN2,k, while the bounded version is referred to

as TBoundNN2,k .

In Example 1, two normal distributions F and G had the same scatter matrix

Σ = ((σij)) with σij = (−0.5)|i−j|, but they differed in their locations. While F was

symmetric about the origin, G had the center at (0.3, 0.3, . . . , 0.3)T . In this example,

the Cramer test had the best performance followed by the NN test. As expected (see

our discussion in Section 4.1), our proposed tests could not compete with the NN test

in this location problem. They could only beat the HT test.

We observed a diametrically opposite picture in Example 2, where two normal dis-

tributions had the same mean vector (0, 0, . . . , 0)T but different scatter matrices Σ (as

in Example 1) and 1.3 Σ. In this example, the HT test had the best performance closely

followed by the proposed tests. In view of Theorem 4.1, the NN test was expected to
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have poor performance in this example. The MST run test and the Cramer test also

failed to perform well. The reason for the failure of the MST run test in the scale

problem has already been discussed in Chapter 3. We will discuss about the reason for

such performance of the Cramer test in the next chapter.

Table 4.1: Observed powers (in %) of two-sample tests in simulated data sets
Example-1 Example-2

d NN HT MST Cramer TNN,2 T
Bound
NN,2 NN HT MST Cramer TNN,2 T

Bound
NN,2

25 49.8 9.6 30.4 75.6 22.2 23.0 6.4 47.8 3.8 7.0 44.8 44.4
50 68.2 17.8 44.6 97.8 26.6 27.2 5.4 85.8 3.0 10.6 76.8 76.0
100 89.8 36.8 67.2 100.0 46.6 47.8 4.8 99.2 2.4 13.6 95.8 96.6

Example-3 Example-4

d NN HT MST Cramer TNN,2 T
Bound
NN,2 NN HT MST Cramer TNN,2 T

Bound
NN,2

25 95.6 19.4 90.2 12.0 70.8 73.0 9.2 17.2 3.6 4.8 35.4 36.0
50 97.4 29.8 84.6 11.2 71.6 78.6 9.4 29.6 4.8 6.6 64.4 64.8
100 96.2 45.4 82.4 12.6 77.4 86.0 6.6 58.8 2.6 5.4 97.0 97.4

Example-5 Example-6

d NN HT MST Cramer TNN,2 T
Bound
NN,2 NN HT MST Cramer TNN,2 T

Bound
NN,2

25 3.8 98.6 0.2 44.0 99.6 99.4 10.8 51.4 7.6 3.2 55.2 55.2
50 0.0 99.2 0.0 57.4 100.0 100.0 20.0 73.2 8.4 3.2 85.6 87.4
100 0.0 99.6 0.0 76.2 100.0 100.0 37.4 93.0 14.4 4.2 98.6 99.0

Next, we considered some examples (Examples 3-6) with ν = 0 and σ21 = σ22 , where

ν, σ21 and σ22 have the same meaning as in (A3). We used these examples to investigate

how the proposed tests perform when the assumptions of Theorems 4.2 and 4.3 do

not hold. Example 3 dealt with two multivariate normal distributions, where F and

G differed only in their correlation structures. While the scatter matrix of F had the

(i, j)-th entry 0.5|i−j|, that of G had the (i, j)-th entry (−0.5)|i−j|. The next three

examples (Examples 4-6) were taken from Chapter 3 (see Examples 4-6 in Section 3.5).

In Example 3, the NN test had the highest power. The MST run test and our

proposed tests also performed well, and they had higher powers than the other two

tests considered here. The power of the Cramer test was not satisfactory at all. In

Example 4, along with the Cramer test, the NN test and the MST run test also had

miserable performance. Their powers were close to or even lower than the nominal

level. In this example, our proposed tests outperformed all of their competitors. The

HT test had somewhat better performance than NN, MST run and Cramer tests, but

their powers were not at all comparable to those of our proposed tests. Our proposed
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tests had excellent performance in Example 5 as well. While the MST run test and

the NN test both failed to reject H0 even on a single occasion, they rejected H0 in

all cases. The performance of the HT test was also comparable to the proposed tests,

but the Cramer test had relatively low power. Our proposed test outperformed its all

competitors also in Example 6. The MST run test and the Cramer test had miserable

performance in this example. Only powers of the HT test were somewhat comparable.

4.4 Results from the analysis of benchmark data sets

We analyzed five benchmark data sets for further evaluation of the proposed meth-

ods. Descriptions of Arcene data, Sonar data and Trace data have been given in the

previous chapters. The other two data sets, ECG data and Gun-point data were ob-

tained from the University of California, Riverside time series classification/clustering

page http://www.cs.ucr.edu/∼eamonn/time series data/. For the Trace data set, which

contains observations from four classes, we considered two two-sample problems as be-

fore, one between class-1 and class-2 and the other between class-3 amd class-4. We

refer to them as Trace data-1 and Trace data-2, respectively. For each of these data sets,

we repeated the experiment several times based on different random subsets of the same

size chosen from the whole data set maintaining (as close as possible) the proportions

of observations from the two distributions. In the case of Arcene data, we considered

100 random subsets to estimate the powers of different tests. In all other cases, we used

500 subsets. The results for different subset sizes are shown in Figure 4.2.

In Section 4.3, we have seen that barring Example-3, in all other cases, TNN2,k and

TBoundNN2,k led to similar results (see Table 4.1). So, instead of reporting the results for

both of them, here we report the result for the test based on TNN2,k only. This is chosen

because of its computational advantage. Here also, we use the NN test, the MST run

test, the Cramer test and the HT test for comparison.

In the Sonar data set, barring the HT test, all other methods performed well. Among

them, the NN test had the highest power for all choices of the sample size. The MST

run test and the proposed test had almost similar performance. They outperformed the

Cramer test for sample size larger than 40.
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The ECG data contain measurements of cardiac electrical activity as recorded from

electrodes at various locations on the body. Each observation contains 96 measurements

recorded by one electrode during heartbeat. Observations were analyzed by domain

experts, who tagged 133 observations as normal and the rest 67 as abnormal. In this

data set, the proposed test and the NN test outperformed their competitors, while the

latter had an edge. The Cramer test had good performance when the sample size was

small, but its power did not increase appreciably when larger samples were used.
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(a) Sonar data (d=60)
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(b) ECG data (d=96)
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(c) Gun Point data (d=150)
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(d) Trace data 1 (d=275)
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(e) Trace data 2 (d=275)
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(f) Arcene data (d=10000)

Figure 4.2: Powers of different two-sample tests in benchmark data sets
(NN test= black solid curve, HT test= black dotted curve, MST run test=light grey
solid curve, Cramer test= dark grey dotted, Proposed test= dark grey solid curve).

The Gun Point data set comes from the video surveillance domain. It contains 100

observations for each of the two classes, ‘Gun draw’ and ‘Point’. At the beginning,

the actors have their hands by their sides. In the first case, actors draw a replicate
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gun from a hip-mounted hostler, point it at a target for one second and then return

it to the hostler. In the second case, the actors point their index fingers to a target

for one second and return their hand to their sides. In both cases, the centroid of the

hand was tracked 150 times during the process. In this data set, the proposed test had

the best performance. The performance of the NN test and the MST run test were

also comparable, but the Cramer test had relatively low power. The HT failed to yield

satisfactory performance in this data set.

In both examples with the Trace data, i.e., Trace data-1 and Trace data-2, the

proposed test outperformed all other tests considered here. In Trace data-2, the Cramer

test and the HT test had miserable performance. They had poor performance in Trace

data-1 as well.

Finally, we analyzed the Arcene data set. In this data set, the NN test and the

proposed test had comparable performance, and they outperformed their competitors

for sample size larger than 20. The HT test had the highest power for sample size

smaller than 20, but this test and the Cramer test failed to compete with other test

procedures when larger samples were used.

4.5 Large sample behavior of proposed tests

Now, we study the asymptotic behavior of our proposed tests when the dimension

remains fixed and the sample size grows to infinity. First note that if the sample size is

large, instead of conditional tests based on the permutation principle, one can use the

tests based on the asymptotic null distributions of TNN1,k and TNN2,k, which are given

by the following theorem.

THEOREM 4.4: Suppose that n grows to infinity in such a way that n1/n → λ for

some λ ∈ (0, 1). Then, for any fixed dimension d and any fixed k,

(a)
√
nTNN1,k is asymptotically distributed as a sum of correlated half normals.

(b) nTNN2,k is asymptotically distributed as a weighted sum of independent chi squares.

From the proof of Theorem 4.4 (given in Section 4.6), it is clear that in order to

implement the tests based on the large sample distributions of TNN1,k and TNN2,k,

one needs to find a consistent estimate for Σw, the asymptotic dispersion matrix of
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W =
√
n
[
T1,k − EH0(T1,k) T2,k − EH0(T2,k)]

T under H0. A brief description of this

estimation procedure is given in Section 4.6.2. Interestingly, the elements of Σw do

not depend on the common underlying distribution. So, these tests based on TNN1,k

and TNN,2 are asymptotically distribution-free. Note that when d is fixed, in-degrees

of the observations are automatically bounded. So, here we do not need to consider

the bounded versions of these tests separately. The following theorem shows the large

sample consistency of these proposed tests, and the proof is given in Setion 4.6.

THEOREM 4.5: Suppose that F and G have continuous densities f and g, respec-

tively. If n grows to infinity in such a way that n1/n → λ for some λ ∈ (0, 1), the

powers of the proposed large sample tests based on TNN1,k and TNN2,k converge to unity

as n increases.

4.6 Proofs and mathematical details

PROOF OF THEOREM 4.1: Under the given condition, each and every observation,

irrespective of whether it is from F or G, have all of its neighbors fromG with probability

tending to one (see our discussion in Section 4.2) as d increases. So, TNN,k
P→ n2/n as

d→ ∞. Hence, it is enough to show that the cut-off under the permutation distribution

of TNN,k is bigger than n2/n. Now, given a sample, let E denote the expectation under

the permutation distribution P. Following Schilling (1986a), one can check that this

expectation is independent of the sample, and E(TNN,k) = n1(n1−1)+n2(n2−1)
n(n−1) . Now,

consider the non-negative random variable YNN,k = 1 − TNN,k. Since E(YNN,k) =

2n1n2/n(n− 1), using Markov inequality, we get P(YNN,k ≥ n1/n) ≤ 2n2/(n − 1). So,

n2/(n − 1) < (1− α)/2 implies P(TNN,k ≤ n2/n) = P(YNN,k ≥ n1/n) < 1− α. 2

PROOF OF THEOREM 4.4: Let us define zi = xi for i = 1, 2, . . . , n1 and zn1+i = yi

for i = 1, 2, . . . , n2. Also define Ω
0
1 = {1, 2, . . . , n1} and Ω0

2 = {n1+1, n1+2, . . . , n1+n2}.
For r = 1, 2 and j = 1, 2, . . . , k, let Sr,j denote the number of observations zi (i ∈
Ω0
r) which have exactly j of its k nearest neighbors from Ω0

r . Rogers (1976) showed

that the vector of Sr,j values, when appropriately centered and scaled, asymptotically

follows a multivariate normal distribution under H0 with limiting covariance structure

independent of F = G. Since T1,k = 1
n1k

∑k
j=1 jS1,j and T2,k = 1

n2k

∑k
j=1 jS2,j are finite
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linear combinations of the Sr,js, under the null hypothesis H0, W =
[
W1 W2

]T
=

√
n
[
T1,k − EH0(T1,k) T2,k − EH0(T2,k)

]T
is asymptotically bivariate normal with its

centre at the origin.

(a) Let Σw be the dispersion matrix of the asymptotic null distribution of W and

define V = [V1 V2]
T = Σ

−1/2
w W. Clearly, V is asymptotically distributed as a stan-

dard normal vector (i.e., V1 and V2 are asymptotically N(0, 1) variables and they are

asymptotically independent). Let cij (i, j = 1, 2) be the (i, j)-th element of Σ
1/2
w . Note

that
√
nTNN1,k can be expressed as

√
nTNN1,k = n1

n |W1| + n2
n |W2|, where n1/n → λ

and n2/n→ 1−λ as n→ ∞. So,
√
nTNN1,k is asymptotically distributed as |U1|+ |U2|,

where U1 = λ(c11Ψ1 + c12Ψ2), U2 = (1 − λ)(c21Ψ1 + c22Ψ2) for Ψ1 and Ψ2 being two

independent standard normal variates. Clearly, both U1 and U2 are zero mean nor-

mal variables (hence |U1| and |U2| are half-normals) but they are correlated, where the

correlation depends only on the elements of Σw and λ.

(b) Define W0 = [
√
n1/n W1

√
n2/n W2]

T . Since
√
n1/n → λ (0 < λ < 1) as

n→ ∞, under H0, W0 asymptotically follows a bivariate normal distribution symmetric

about 0. Clearly, the elements ofΣ0
w, the scatter matrix of the asymptotic distribution of

W0, can be expressed in terms of the elements of Σw and λ. If λ∗1 and λ∗2 (λ∗1 ≥ λ∗2 > 0)

are two eigenvalues of Σ0
w, it can be expressed as Σ0

w = HΛ∗HT , where H is an

orthogonal matrix and Λ∗ = Diag(λ∗1, λ
∗
2). Define L = (L1 L2)

T = HTW0. Clearly,

L is asymptotically normal with the location 0 and the scatter Λ∗. So, L2
1/λ

∗
1 and

L2
2/λ

∗
2 are asymptotically independent chi-square variables with one degree of freedom.

Now, the proof follows from the fact that nTNN2,k = W ′

0W0 = L
′

L = L2
1 + L2

2 =

λ∗1(L
2
1/λ

∗
1) + λ∗2(L

2
2/λ

∗
2). 2

PROOFOF THEOREM 4.5: Recall the definitions of T1,k = n−1
1 k−1

∑n1
i=1

∑k
r=1 Ixi

(r)

and T2,k = n−1
2 k−1

∑n2
i=1

∑k
r=1 Iyi

(r) given in Section 4.1. Note that

V ar(T1,k) = n−2
1 k−2

∑n1
i=1

∑k
r=1 V ar(Ixi

(r))

+n−2
1 k−2

∑n1
i=1

∑k
r=1

∑k
s=1s 6=r Cov(Ixi

(r), Ixi
(s))

+n−2
1 k−2

∑n1
i=1

∑n1
j=1,j 6=i

∑k
r=1

∑k
s=1Cov(Ixi

(r), Ixj
(s)).



89 Proofs and mathematical details

Now, the first two terms on the right side are of the orders O(n−1
1 k−1) and O(n−1

1 ),

respectively. So, both of them converge to zero as n1 tends to infinity. Henze (1988)

showed that (see Lemma 4.2 in p. 779) limn→∞E(Ix1(r) | x1 = x) = λf(x)/[λf(x) +

(1−λ)g(x)]. For any two distinct points x and x
′

, Henze (1984) (see p. 270) also showed

that limn→∞E(Ix1(r)Ix2(s) | x1 = x,x2 = x
′

) = λ2f(x)f(x
′

)/
{
[λf(x) + (1 − λ)g(x)]

[λf(x
′

) + (1 − λ)g(x
′

)]
}

(though Henze (1984, 1988) formally proved these results for

k = 1 and r = s = 1, the results for other choices of r, s and k follow from the arguments

given in these articles). These two results and a simple application of the dominated

convergence theorem imply that for all r, s, and i 6= j, Cov(Ixi
(r), Ixj

(s)) → 0 as

n→ ∞. Therefore, the third term and hence V ar(T1,k) also converge to 0 as n increases.

Similarly, one can show that V ar(T2,k) also converges to 0 as n increases. So, as n→ ∞,

|Ti,k − E(Ti,k)| P→ 0 for i = 1, 2. So, under H0, both TNN1,k and TNN2,k converge to

0 in probability. Hence, the critical values, i.e., the 100(1 − α)-th percentiles of the

null distributions of TNN1,k and TNN2,k, also converge to zero. Therefore, for the large

sample consistency of the proposed tests, it is enough to show that under HA both

TNN1,k and TNN2,k converge to positive constants.

Note that EH0(T1,k) = (n1 − 1)/(n − 1) → λ and EH0(T2,k) = (n2 − 1)/(n −
1) → 1 − λ as n → ∞, while it follows from the dominated convergence theorem

that EHA
(T1,k) →

∫
λf(z)

λf(z)+(1−λ)g(z)f(z)dz and EHA
(T2,k) →

∫
(1−λ)g(z)

λf(z)+(1−λ)g(z)g(z)dz as

n→ ∞. Therefore, from the continuous mapping theorem, we have

TNN1,k
P→ λ

∣∣∣∣
∫
λ(1− λ)[f(z)− g(z)]

λf(z) + (1− λ)g(z)
f(z)dz

∣∣∣∣+(1−λ)
∣∣∣∣
∫
λ(1− λ)[g(z)− f(z)]

λf(z) + (1− λ)g(z)
g(z)dz

∣∣∣∣ .

Similarly, we have

TNN2,k
P→ λ

[∫
λ(1− λ)[f(z)− g(z)]

λf(z) + (1− λ)g(z)
f(z)dz

]2
+(1−λ)

[∫
λ(1− λ)[g(z)− f(z)]

λf(z) + (1− λ)g(z)
g(z)dz

]2
.

These limiting values of TNN1,k and TNN2,k are 0 only if

∫
f(z)− g(z)

λf(z) + (1− λ)g(z)
f(z)dz =

∫
g(z)− f(z)

λf(z) + (1− λ)g(z)
g(z)dz = 0 ⇒

∫
[f(z)− g(z)]2

λf(z) + (1− λ)g(z)
dz = 0 ⇒ f = g almost

everywhere. 2
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4.6.1 Upper bound of w1V ar(T1,k) + w2V ar(T2,k) under permutation

Let Ω1 be the collection of all indices i such that zi is labeled as an observation from F

under permutation and Ω2 = {1, 2, . . . , n} − Ω1. For 1 ≤ i 6= j ≤ n, now define

aij =





1 if zj is one of the k neighbors of zi

0 otherwise
and bij =





1 if i, j ∈ Ω1

0 otherwise.

So, for a given set of observations z1, . . . , zn, the aijs are fixed, but the bijs are random.

Under the permutation distribution, E(bij) = P (bij = 1) = ϕ1 = n1(n1 − 1)/n(n − 1).

Similarly for i 6= j 6= p 6= q, we have E(bijbjp) = (n1 − 2)ϕ1/(n − 2) and E(bijbpq) =

(n1 − 2)(n1 − 3)ϕ1/(n − 2)(n − 3). If we take aii = bii = 0 for i = 1, 2, . . . , n, we have

n1kT1,k =
∑n

i=1

∑n
j=1 aijbij. Therefore,

V ar[n1kT1,k] =
∑n

i=1

∑n
j=1(aij + aijaji)V ar(bij)

+
∑n

i=1

∑n
j=1

∑n
p=1,p 6=i aijapjCov(bij , bpj)

+
∑n

i=1

∑n
j=1,j 6=i

∑n
p=1 apiapjCov(bpi, bpj)

+
∑n

i=1

∑n
j=1,j 6=i

∑n
p=1 aipapjCov(bip, bpj)

+
∑n

i=1

∑n
j=1,j 6=i

∑n
p=1 apiajpCov(bpi, bjp)

+
∑n

i=1

∑n
j=1

∑n
p=1,p 6=i,j

∑n
q=1,q 6=i,j aijapqCov(bij , bpq).

For j = 1, . . . , n, define δj =
∑n

i=1 aij, the number of observations whose one of

the k neighbors is zj. Now, note that
∑n

i=1

∑n
j=1 aij = nk,

∑n
i=1

∑n
j=1 aijaji ≤ nk,

∑n
i=1

∑n
j=1

∑
p=1,p 6=i aijapj =

∑n
j=1 δj(δj − 1),

∑n
i=1

∑n
j=1,j 6=i

∑n
p=1 apiapj = nk(k− 1),

∑n
i=1

∑n
j=1,j 6=i

∑n
p=1 aipapj =

∑n
i=1

∑n
j=1,j 6=i

∑n
p=1 apiajp ≤ k

∑n
i=1

∑n
p=1 aip = nk2

and
∑n

i=1

∑n
j=1

∑n
p=1,p 6=i,j

∑n
q=1,q 6=i,j aijapq ≥ nk(n − 2)(k − 2). Also, observe that

Cov(bij , bpq) < 0 while the other covariances are positive. Therefore,

V ar[n1kT1,k] ≤ 2nk(ϕ1 − ϕ2
1) +

[∑n
j=1 δ

2
j − 2nk + 3nk2

] [
(n1−2)ϕ1

n−2 − ϕ2
1

]

+
[
(n1−2)(n1−3)ϕ1

(n−2)(n−3) − ϕ2
1

]
[nk(n− 2)(k − 2)].

Replacing n1 by n2 and ϕ1 by ϕ2 = n2(n2 − 1)/n(n − 1), we get an upper bound for

V ar(T2,k). Combining both, we get w1V ar(T1,k+w2V ar(T2,k) ≤ ψ1(n1, n2, k)
∑n

j=1 δ
2
j+

ψ2(n1, n2, k), where ψ1(n1, n2, k) = 1
nk2

∑2
i=1

1
ni

[
(n1−2)ϕ1

n−2 − ϕ2
1

]
and ψ2(n1, n2, k) =
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∑2
i=1

{
2
nik

(ϕi − ϕ2
i ) +

3k−2
nik

[
(ni−2)ϕi

n−2 − ϕ2
i

]
+

[
(ni−2)(ni−3)ϕi

(n−2)(n−3) − ϕ2
i

]
(n−2)(k−2)

nik

}
. If we

assume that n1 and n2 are of the same order as n, it can be shown that ψ1(n1, n2, k) =

O(1/(n2k2)) and ψ2(n1, n2, k) = O(1/n).

4.6.2 Estimation of Σw

For r = 1, 2, . . . , k and i = 1, 2, . . . , n, let the r-th nearest neighbor of zi be denoted

by NNi(r). Now, for i 6= j, let us consider the following five mutually exclusive and

exhaustive probabilities:-

p1(r, s) = PH0(NNi(r) = zj , NNj(s) = zi), p2(r, s) = PH0(NNi(r) = NNj(s)),

p3(r, s) = PH0(NNi(r) = zj , NNj(s) 6= zi), p4(r, s) = PH0(NNi(r) 6= zj , NNj(s) = zi)

and p5(r, s) = PH0(NNi(r) 6= zj, NNj(s) 6= zi, NNi(r) 6= NNj(s)).

Define Ii(r) as the indicator variable that takes the value 1 if zi and its r-th nearest

neighbor belong to the same sample. Now,

V arH0(n1kT1,k) = V arH0(
∑n1

i=1

∑k
r=1 Ii(r))

= EH0 [(
∑n1

i=1

∑k
r=1 Ii(r))

2]− [EH0(
∑n1

i=1

∑k
r=1 Ii(r))]

2

=
∑n1

i=1

∑n1
j=1

∑k
r=1

∑k
s=1 PH0(Ii(r) = Ij(s) = 1)− (kn1(n1−1)

(n−1) )2

=
∑n1

i=1

∑k
r=1 PH0(Ii(r) = 1) +

∑n1
i=1

∑k
r=1

∑k
s=1,s 6=r PH0(Ii(r) = Ii(s) = 1)

+
∑n1

i=1

∑n1
j=1,j 6=i

∑k
r=1

∑k
s=1 PH0(Ii(r) = Ij(s) = 1)− (kn1(n1−1)

(n−1) )2.

Note that
∑n1

i=1

∑k
r=1 PH0(Ii(r) = 1) = kn1(n1 − 1)/(n − 1),

∑n1
i=1

∑k
r=1

∑k
s=1,s 6=r PH0(Ii(r) = Ii(s) = 1) = 2n1

(
k
2

)
(n1 − 1)(n1 − 2)/(n − 1)(n − 2)

and
∑n1

i=1

∑n1
j=1,j 6=i

∑k
r=1

∑k
s=1 PH0(Ii(r) = Ij(s) = 1) = n1(n1−1)

∑k
r=1

∑k
s=1 p0(r, s),

where p0(r, s) = p1(r, s) +
n1−2
n−2 [p2(r, s) + p3(r, s) + p4(r, s)] +

(n1−2)(n1−3)
(n−2)(n−3) p5(r, s).

We obtain V arH0 [n2kT2,k] by replacing n1 by n2 in the above expression. Also,

CovH0(n1kT1,k, n2kT2,k) = CovH0(
∑n1

i=1

∑k
r=1 Ii(r),

∑n2
j=1

∑k
s=1 Ij(s))

=
∑n1

i=1

∑n2
j=1

∑k
r=1

∑k
s=1 PH0(Ii(r) = Ij(s) = 1)− (EH0(n1kT1))

2

= n1n2
(n1−1)(n2−1)
(n−2)(n−3)

∑k
r=1

∑k
s=1 p5(r, s) − (kn1(n1−1)

(n−1) )(kn2(n2−1)
(n−1) ).

Now, using p1(r, s) = (n − 1)−1PH0(NNj(s) = zi | NNi(r) = zj), we easily ob-

tain p3(r, s) = p4(r, s) = 1
(n−1) − p1(r, s) and p5(r, s) = (n−3)

(n−1) + p1(r, s) − p2(r, s).
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So, pi(r, s), i = 1(1)5 can be represented in terms of p1(r, s)and p2(r, s) only (see also

Schilling (1986a)). Therefore, the estimation problem now reduces to estimating the

limiting values (as n→ ∞) of np1(r, s) and np2(r, s).

For any x0 ∈ R
d and ρ>0, define SP (x0, r) = {x ∈ R

d : ‖x − x0‖ ≤ r}, where
‖ · ‖ represent the Euclidean norm. Define SP1 = SP (X1, ‖X2 − X1‖) and SP 2 =

SP (X2, ‖X2 − X1‖). Schilling(1986b) showed that (see Theorem 2.1 in p. 391) the

limiting value of np1(r, s) is given by

np1(r, s) ∼ (1− Cd)

min(r′,s′)∑

l=0

(
r′ + s′ − l

l, r′ − l, s′ − l

)
(1− 2Cd)

lCr
′+s′−2l
d ,

where, r′ = r − 1, s′ = s − 1, and Cd is the proportion of volume of SP1 ∪ SP 2 that

belongs to SP1 only. It was also shown in Schilling (1986b) (see p. 394) that

np2(r, s) ∼ Kd

1∑
i,j=0

l̄∑
l=0

(
l+ǫ1+ǫ2+1
l,ǫ1,ǫ2,1

) ∫
E∗

i,j

V oll{S∗
1 ∩ S∗

2}V olǫ1{S∗
1 − S∗

2}

V olǫ2{S∗
2 − S∗

1}V ol−(l+ǫ1+ǫ2+2){S∗
1 ∪ S∗

2}du,

where Kd= Volume of d dimensional unit sphere, l̄ = min(r + i − 2, s + j − 2), ǫ1 =

r − l + i− 2, ǫ2 = s− l + j − 2, V ol(E) = Volume of E, S∗
1 = SP (0, ‖u‖) is the sphere

around 0, S∗
2 = SP (e, ‖u− e‖) is a sphere around a unit vector e, E∗

i,j = (S∗
1)
i ∩ (S∗

2)
j ,

(S∗
1)

0 = (S∗
1)
c and (S∗

2)
0 = (S∗

2)
c. These two quantities can be estimated by Monte

Carlo simulation.



Chapter 5

A test based on averages of

inter-point distances

Inter-point distances play an important role for constructing nonparametric methods for

the multivariate two-sample problem. For X1,X2
i.i.d.∼ F and Y1,Y2

i.i.d.∼ G, let DFF ,

DGG andDFG denote the distributions of the inter-point distances ‖X1−X2‖, ‖Y1−Y2‖
and ‖X1−Y2‖, respectively. Under mild conditions, Maa et al. (1996) proved that DFF ,

DGG and DFG are identical if and only if F = G. Therefore, under the alternative

HA : F 6= G, the differences in the distributions of these inter-point distances contain

useful information about the separation between F and G. Note that irrespective of

the dimension of the data, DFF , DGG and DFG are one-dimensional distributions, and

we try to extract separation information contained in these univariate distributions to

get evidence against H0. Several nonparametric two-sample tests based on inter-point

distances have been proposed in the literature. The MST run test (Friedman and Rafsky

(1979)), the NN test (Schilling (1986a); Henze (1988)), the Cramer test (Baringhaus

and Franz (2004)), the Adjacency test (Rosenbaum (2005)) and the HT test (Hall and

Tajvidi (2002)) are all based on inter-point distances. We also used inter-point distances

to construct our tests in Chapters 3 and 4. Since these tests are based on inter-point

distances, they are invariant under location change, rotation and homogeneous scale

transformation of the data, and they can be conveniently used for HDLSS data or even

for functional data taking values in an infinite dimensional Banach space. Recall that
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in Chapter 3, we constructed a run test based on SHP that overcomes the limitations

of the MST run test in high dimensions. In Chapter 4, we proposed a test based on

nearest neighbors which has better consistency properties in high dimensions compared

to the NN test of Schilling (1986a) and Henze (1988). In this chapter, we propose a

test based on averages of three types of inter-point distances, which can be viewed as a

modification over the Cramer test (Baringhaus and Franz (2004)). The description of

this test is given in the following section.

5.1 Description of the proposed test

If X1,X2
i.i.d.∼ F and Y1,Y2

i.i.d.∼ G, from Maa et al. (1996), we know that F = G ⇔
DFF = DGG = DFG. Now, consider two bivariate distributions. Let the distribution

of (‖X1 −X2‖, ‖X1 −Y1‖)T be denoted by DF , and that of (‖Y1 −X1‖, ‖Y1 −Y2‖)T

be denoted by DG. Clearly, DF has marginals DFF and DFG, while DG has marginals

DFG and DGG. One can check that when F and G differ, DF and DG differ as well,

and vice versa. Further, if DF and DG have finite means µDF
and µDG

, we also have

the following result.

LEMMA 5.1: Suppose that X1,X2
i.i.d
∼ F and Y1,Y2

i.i.d
∼ G. Also assume that µFF =

E(‖X1 −X2‖), µGG = E(‖Y1 −Y2‖) and µFG = E(‖X1 −Y1‖) exist. Then, µDF
=

(µFF , µFG)
T and µDG

= (µFG, µGG)
T are equal if and only if F = G.

The proof of the lemma is given in Section 5.6. From this lemma, it is clear that

instead of testing H0 : F = G against HA : F 6= G, one can equivalently test the

null hypothesis H
′′

0 : µDF
= µDG

against the alternative H
′′

A : µDF
6= µDG

. If

we have n1 independent observations x1, . . . ,xn1 from F and n2 independent obser-

vations y1, . . . ,yn2
from G, we calculate the estimates of µFF , µFG and µGG given

by µ̂FF =
(n1

2

)−1 ∑n1
i=1

∑n1
j=i+1 ‖xi − xj‖, µ̂FG = (n1n2)

−1
∑n1

i=1

∑n2
j=1 ‖xi − yj‖ and

µ̂GG =
(
n2
2

)−1∑n2
i=1

∑n2
j=i+1 ‖yi − yj‖, respectively. So, µDF

and µDG
are estimated

by µ̂DF
= (µ̂FF , µ̂FG)

T and µ̂DG
= (µ̂FG, µ̂GG)

T , respectively. While µ̂DF
and µ̂DG

are expected to be close under H0, the distance between µ̂DF
and µ̂DG

is expected to

be large under the alternative. So, we reject H0 for higher values of the test statistic

Tn1,n2 = ‖µ̂DF
− µ̂DG

‖2 = (µ̂FF − µ̂FG)2+(µ̂FG− µ̂GG)2.When n1 and n2 are small, we
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use the permutation method to calculate the cut-off. When they are large, this cut-off

is chosen using the large sample distribution of Tn1,n2 given in Section 5.5.

To investigate the performance of this proposed test, we considered three examples

involving normal distributions discussed in Chapters 3 and 4, where the components of

F were assumed to be i.i.d. N(0, 1) while those of G were assumed to be N(µ, σ2). We

considered three choices of for (µ, σ), (i) µ = 0.3, σ = 1 (ii) µ = 0, σ = 1.3 and (iii)

µ = 0.2, σ = 1.2. Note that the first two examples were used in Chapter 3, whereas the

third one was used in Chapter 4. In all these cases, we used n1 = n2 = 20 and different

values of d ranging between 2 and 500. Each experiment was repeated 500 times as

before. Figure 5.1 shows the powers of the proposed test in these three examples along

with those of the MST run test, the NN test and the Cramer test.

Figure 5.1: Powers of different two-sample tests for varying choices of d.
(MST run test (black solid), NN test (light grey),

Cramer test (dark grey) and proposed test (black dotted))

We have seen that in each of these examples, the separation between F and G

increases with d. So, one should expect the powers of these tests to tend to unity

as d increases. We observed that in the case of location problem (see Figure 5.1(a)),

but not in other two cases. In the location-scale problem, although the power of the

Cramer test increased with d, those of the MST run and the NN tests dropped down to

zero as d increased (see Figure 5.1(c)). In the case of scale problem, all of these three

methods yielded poor performance (see Figure 5.1(b)). But in all these three cases,

the power of our proposed test converged to 1 as the dimension increased. In the scale

problem and the location-scale problem, it outperformed all the three competing tests
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considered here. Only in the case of location problem, the Cramer test had the best

performance. The reasons behind such performance of MST run test, the NN test have

already been discussed in previous chapters. In this chapter, we investigate the behavior

of the Cramer test (see Baringhaus and Franz (2004)) and the proposed test for high

dimensional data.

5.2 Behavior of the proposed test in high dimensions

In this section, we investigate the behavior of the proposed test when n1 and n2 are

fixed, and the dimension d diverges to infinity. For this investigation, we assume the

regularity conditions (A1)-(A3) mentioned in Chapter 2. The following theorem shows

the behavior of the power function of the proposed test under these regularity conditions.

THEOREM 5.1: Suppose that we have n0 independent observations from each of F

and G (i.e., n1 = n2 = n0 ), which satisfy (A1)-(A3). Also assume that either ν2 > 0 or

σ21 6= σ22. Then, unless n0 is very small (i.e.,
(
2n0

n0

)
≤ 2/α), the power of the proposed

test of level α converges to 1 as d tends to infinity.

In the proof of Theorem 5.1 (see Section 5.6), one can see that for all choices of n1

and n2, as d → ∞, under the assumptions (A1)-(A3), we have Tn1,n2/d
P→ υ∗0 , where

υ∗0 = (σ1
√
2 −

√
σ21 + σ22 + ν2)2 + (σ2

√
2 −

√
σ21 + σ22 + ν2)2. Also, it is clear from the

proof that for n1 = n2 = n0, the limiting p-value (as d → ∞) of the permutation

test, i.e., the limiting value of P (Tn1,n2/d ≥ υ∗0) under the permutation distribution

is 2/
(
2n0
n0

)
. So, for a test of level 0.05 (respectively, 0.01), it is enough to have four

(respectively, five) observations from each class for the convergence of the power to unity.

The case n1 6= n2 calls for more complicated calculations, but for n1 ≥ 4 and n2 ≥ 4

(or n1 ≥ 5 and n2 ≥ 5), it can be viewed as the case n1 = n2 = 4 (or n1 = n2 = 5) with

some additional information on at least one of the distributions. So, the resulting test

is expected to have more power, and one can expect it to have the large dimensional

consistency for all such choices of n1 and n2. Figure 5.2, which shows the limiting

p-values for different choices of n1 ≥ 4 and n2 ≥ 4, justifies this claim. In this figure,

one can notice that in the three examples discussed in Section 5.1, the limiting p-values

were almost the same, and in each example, for any fixed choice of n1 (respectively,
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n2), the limiting p-value was non-increasing in n2 (respectively, n1). We carried out our

investigation for various other choices of the parameters ν, σ21 and σ22 , but this basic

pattern remained the same.
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(a) Location problem: µ=0.3, σ2=1
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(b) Scale problem: µ=0, σ2=1.3
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(c) Location−scale problem: µ=0.2, σ2=1.2
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Figure 5.2: Limiting p-values for different choices of n1 and n2.

Note that the Cramer test rejects H0 for large values of the test statistic TCRn1,n2
=

2µ̂FG − µ̂FF − µ̂GG. It is easy to see that when n1 and n2 are fixed and d → ∞,

under the assumptions (A1)-(A3), µ̂FF/
√
d

P→ σ1
√
2, µ̂GG/

√
d

P→ σ2
√
2, µ̂FG/

√
d

P→
√
σ21 + σ22 + ν2, and hence the scaled version of the test statistic, TCRn1,n2

/
√
d, converges

to 2
√
σ21 + σ22 + ν2−σ1

√
2−σ2

√
2 (= υ∗, say) in probability. Now, υ∗ is positive unless

σ21 = σ22 and ν2 = 0, and a consistency result similar to Theorem 5.1 can be proved for

the Cramer test as well. But, in Section 5.1, we have seen that in the location-scale

problem and the scale problem, especially in the latter case, it did not perform well.

Note that in such cases, we had ν2 < |σ21 − σ22|. Now, ν2 < |σ21 − σ22 | implies that
√
σ21 + σ22 + ν2 lies between σ1

√
2 and σ2

√
2. So, even when both (µ̂FG − µ̂FF ) and

(µ̂FG− µ̂GG) are significantly different from zero, they are likely to be of different sign.

As a result, when they are added up, TCRn1,n2
= (µ̂FG− µ̂FF ) + (µ̂FG− µ̂GG) may take a

value close to zero, and consequently, H0 : F = G may get accepted. We observed this

phenomenon several times in the location-scale problem and the scale problem in Section

5.1. In the case of scale problem, υ∗ was also close to zero. So, even for d = 500, the

Cramer test did not have satisfactory power. But, if we take the sum of (µ̂FG−µ̂FF )2 and
(µ̂FG− µ̂GG)

2, such cancellations are not possible, and H0 is more likely to be rejected.

That is why our test based on Tn1,n2 = (µ̂FG − µ̂FF )
2 + (µ̂FG − µ̂GG)

2 had better

performance in these two examples. Note that Tn1,n2 can also be expressed as Tn1,n2 =
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1
2

[
(2µ̂FG − µ̂FF − µ̂GG)

2 + (µ̂FF − µ̂GG)
2
]
, where the first part (2µ̂FG− µ̂FF − µ̂GG)2

is the square of the Cramer test statistic. We have seen that the Cramer test works

well when F and G differ in location, but it is not very sensitive against small changes

in scale. The second part (µ̂FF − µ̂GG)
2 compensates for that and makes the test

sensitive against scale alternatives. However, in the case of location problem, the term

(µ̂FF − µ̂GG)
2 serves as noise. Therefore, in such cases, the proposed test is unlikely to

outperform the Cramer test, and that is what we observed in our experiment.

Baringhaus and Franz (2010) proposed a class of rigid motion invariant two sam-

ple tests that includes the Cramer test. They considered a continuous function

φ : [0,∞) → [0,∞) and defined µφFF = Eφ(‖X1 − X2‖2), µφGG = Eφ(‖Y1 − Y2‖2)
and µφFG = Eφ(‖X1 −Y1‖2). They proved that if φ is non decreasing and it satisfies

some appropriate regularity conditions, the inequality 2µφFG − µφFF − µφGG ≥ 0 is satis-

fied, where the equality holds if and only if F = G. So, replacing µφFF , µ
φ
GG and µφFG

by their empirical analogs, a class of test statistics 2µ̂φFG− µ̂φFF − µ̂φGG was constructed.

Note that when H0 fails to hold, due to monotonicity of φ, depending on the ordering

of the three types of distances, here also µ̂φFG can lie between µ̂φFF and µ̂φGG. In such

cases, due to cancellation of positive and negative terms, the test statistic may take

small values leading to the acceptance of H0. But such cancellations are not possible

if we use (µ̂φFG − µ̂φFF )
2 + (µ̂φFG − µ̂φGG)

2 as the test statistic. As a consequence, the

resulting test can have better power properties in such situations.

5.3 Results from the analysis of simulated data sets

We carried out further simulation studies to evaluate the performance of our proposed

test in high dimensional data. For this study, we used some examples involving 500

dimensional normal and Laplace distributions as well as some examples involving auto-

regressive processes. In all these cases, we generated 20 observations from each of the

two distributions, F and G, to constitute the sample and used it to test H0 : F = G

against HA : F 6= G. Each experiment was carried out 200 times, and the estimated

power of the proposed test is reported in Table 5.1. To facilitate comparison, powers of

MST run (Friedman and Rafsky (1979)), NN (Schilling (1986a); Henze (1988)), Cramer
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(Baringhaus and Franz (2004), HT (Hall and Tajvidi (2002)) and Adjacency (Rosen-

baum (2005)) tests are also reported. Recall that the Adjacency test is distribution-free.

For all other methods, we used the conditional tests based on 500 permutations.

We began with some examples involving normal distribution. Recall that in Section

5.1, we used some examples with multivariate normal distributions, where the com-

ponent variables X(1), . . . ,X(d) (and Y (1), . . . , Y (d)) were independent and identically

distributed. So, here we considered some examples, where both in F and G, the com-

ponent variables were positively correlated. While F had the mean vector (0, 0, . . . , 0)T

and the dispersion matrix Σ, those for G are taken to be (µ, µ, . . . , µ)T and σ2Σ, re-

spectively, where Σ had the (i, j)-th entry (0.5)|i−j| for i, j = 1, 2, . . . , d. Here also, we

considered three different choices of µ and σ2
[
(µ, σ2)=(0.25, 1), (0, 1.25) and (0.1, 1.1)

]

to have three different types of problems. Once again, in cases of scale problem and

location-scale problem, the proposed test yielded the highest power among all two-

sample tests considered here. Only in the case of location problem, the Cramer test

and the NN test performed better than the proposed test. However, the proposed test

and the HT test had comparable performance in this example as well, and they yielded

much higher powers than those of the Adjacency test and the MST run test.

We obtained similar results when we carried out our experiment with Laplace dis-

tributions, where the component variables in F and G were assumed to be independent

and identically distributed. We considered three different types of problems (location,

scale and location-scale) as before, and in each case, the component variables in F and

G had the same means and variances as in the corresponding examples with normal

distributions. Again, in the location problem, the Cramer test and the NN test had the

best performance, but in other two cases, the proposed test and the HT outperformed

their competitors. In the case of location-scale problem, the proposed test performed

better than the HT test, while in other two cases, they had nearly the same power.

Next, we considered an example, where the component variables in F were i.i.d.

standard normal variates, while those in G were i.i.d. standard Laplace variates. In this

example, while the proposed test, the HT test and the Cramer test rejected H0 in all

of the 200 cases, the NN test and the MST run test could not reject it even on a single

occasion. The Adjacency test had power 0.885.
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Table 5.1: Observed powers (in %) of two-sample tests in simulated data sets

Normal Laplace Normal vs. AR(1) AR(2)
location scale loc-scale location scale loc-scale Laplace process process

Cramer 100.0 20.0 37.0 100.0 28.0 48.5 100.0 12.5 8.5
NN 94.5 0.0 11.5 100.0 0.5 15.0 0.0 6.0 6.0

MST run 77.0 0.0 7.5 91.0 0.0 6.0 0.0 3.0 4.0
HT 83.5 100.0 92.5 70.0 100.0 79.0 100.0 88.5 96.5

Adjacency 67.5 9.0 11.0 86.5 10.0 11.5 88.5 10.5 6.0
Proposed 82.0 100.0 94.0 69.5 100.0 85.5 100.0 91.0 99.0

Finally, we used two examples involving auto-regressive (AR) processes of order 1

(AR(1)) and order 2 (AR(2)), respectively. In the first example, we generated the obser-

vations in F using the AR(1) modelX(t) = 0.25+0.3X(t−1)+Ut for t = 1, . . . , 500, where

X(0), U1, U2, . . . , U500
i.i.d.
∼ N(0, 1). Observations in G were generated using another

AR(1) model Y (t) = 0.25+0.4Y (t−1)+Vt, where Y
(0), V1, V2, . . . , V500

i.i.d.
∼ N(0, 1). Note

that in this example, F and G have difference both in locations and scales. In the second

example, F and G differ only in their scales. In this example, the observations in F were

generated using the AR(2) model X(t) = 0.3X(t−1)+0.2X(t−2)+Ut for t = 1, 2, . . . , 500,

and those in G were generated using the model Y (t) = 0.35Y (t−1) + 0.25Y (t−2) + Vt for

t = 1, 2, . . . , 500, where X(0),X(−1), Y (0), Y (−1), U1, U2, . . . , U500, V1, V2, . . . , V500 are all

i.i.d. standard normal variates. In these two examples, the proposed test had excellent

performance, and it outperformed its all competitors. While NN, MST run, Cramer and

Adjacency tests failed to yield satisfactory results (see Table 5.1) in these two examples,

the proposed test had powers 0.91 and 0.99, respectively.

5.4 Results from the analysis of benchmark data sets

We analyzed three benchmark data sets, namely, ECG data, Arcene data and Synthetic

Control Chart data, for further evaluation of the proposed test. The first two data sets

have already been introduced in previous chapters. The Control chart data set and

its description are available at the UCI machine learning repository (http://www.ics.

uci.edu/ml/datasets). Though this data set contains observations from six classes, for

our analysis, we considered only two classes labeled as ‘Cyclic’ and ‘Normal’. For each

of these data sets, we repeated the experiment 500 times based on 500 different subsets
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chosen from the data at random, and the results for different subset sizes are reported

in Table 5.2.

In the ECG data set, we considered subsets of three different sizes. In the case

of n1 = 20, n2 = 10, i.e., when the subset sizes were proportional to the number of

observations from that class in the pooled sample, the Cramer test, the NN test and

the proposed test performed better than other three tests. In the case of equal subset

size n1 = n2 = 10, the NN test had the best performance, but the performance of

the proposed test and that of Cramer and HT tests were also comparable. The MST

run test and the Adjacency test had relatively low power. In the case of n1 = 10 and

n2 = 20, all methods except the Adjacency test rejected H0 in more than 92% of the

cases, while the NN test had the best performance.

Figure 5.3: ‘Normal’ (on left) and ‘Cyclic’ (on right) classes in Control chart data.

The Control chart data is a synthetically generated time series data set, which

contains 60-dimensional observations from each of 6 classes. However, we considered

only two classes (‘Normal’ and ‘Cyclic’) for our experiment. The time series in the

normal class are purely white noise, while those in cyclic class contain some cyclic

pattern (see Figure 5.3). There are 100 observations from each class, but we used

subsets of size 5 (i.e., n1 = n2 = 5). In this data set, the HT test and the proposed test

rejected H0 in all the 500 cases, while the Cramer test failed only once. The NN test had

power 0.916, but the MST run test and the Adjacency test yielded poor performance.

In the case of Arcene data, we considered three choices of n1 and n2 (see Table 5.2).

In all these cases, the NN test had the best performance closely followed by the MST

run test. The proposed test also had reasonably high power, and it outperformed the

Cramer test and the HT test on all these three occasions.
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Table 5.2: Observed powers of two-sample tests (in %) in benchmark data sets.

Data sets ECG Control chart Arcene
(n1,n2) (20,10) (10,10) (10,20) (5,5) (25,30) (25,25) (30,25)
Cramer 97.8 86.2 95.8 99.8 75.8 69.6 73.6
NN 98.0 90.2 98.8 91.6 99.4 98.8 99.2

MST run 88.0 75.2 92.2 29.8 97.2 94.4 96.6
HT 89.8 85.6 94.6 100.0 70.8 66.2 67.4

Adjacency 61.2 54.8 73.0 18.4 87.2 81.0 85.2
New 96.0 86.8 92.8 100.0 80.8 75.2 79.4

5.5 Large sample propoerties of the proposed test

So far, we have investigated the behavior of the proposed test in HDLSS situations.

In this section, we study its large sample properties when the dimension of the data

remains fixed. Here also, we use the test statistic Tn1,n2 to test H0 : F = G against

HA : F 6= G and reject H0 for higher values of Tn1,n2 . However, it is computationally

expensive to use the permutation method when n1 and n2 are too large. So, here we

construct the test based on the large sample distribution of Tn1,n2 . This asymptotic

distribution is given by the following theorem.

THEOREM 5.2: Consider two sets of independent observations X1,X2, . . . ,Xn1 and

Y1,Y2, . . . ,Yn2 from F , which has finite second moments. Also assume that as n =

(n1 + n2) → ∞, n1/n → λ for some λ ∈ (0, 1). Then, nTn1,n2 is asymptotically

distributed as 2ς2

λ(1−λ)χ
2
1, where ς

2 = V ar{E(‖X1 −X2‖|X1)}, and χ2
1 denotes the chi-

square distribution with 1 degree of freedom.

To construct a test based on this large sample distribution, one needs to find

consistent estimates for λ and ς2. From the condition stated in the theorem, it is

clear that λ̂ = n1/(n1 + n2) is consistent for λ. To find a consistent estimate for

ς2, first note that it can also be expressed as ς2 = Cov(‖X1 − X2‖, ‖X1 − X3‖) =

E(‖X1 −X2‖‖X1 −X3‖)− E2(‖X1 −X2‖). Now define

V ◦
1 =

[(n1
3

)−1 ∑

1≤i<j<l≤n1

‖xi − xj‖‖xi − xl‖
]
−

[(n1
2

)−1 ∑

1≤i<j≤n1

‖xi − xj‖
]2

and V ◦
2 =

[(n2
3

)−1 ∑

1≤i<j<l≤n2

‖yi − yj‖‖yi − yl‖
]
−

[(n2
2

)−1 ∑

1≤i<j≤n2

‖yi − yj‖
]2
.
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From the results on the probability convergence of U-Statistics (see e.g., Lee (1990)),

one can check that V ◦
1 and V ◦

2 both are consistent for ς2. Consequently, one can use

ς̂2 = (n1V
◦
1 + n2V

◦
2 )/(n1 + n2) as a consistent estimator ς2 and show that under H0,

T ∗
n1,n2

= (n1 + n2)λ̂(1− λ̂)Tn1,n2/2ς̂
2 d→ χ2

1. So, any test based on T ∗
n1,n2

turns out to

be asymptotically distribution-free. We compute T ∗
n1,n2

from the data, and for a test

of nominal level α, we reject H0 if T ∗
n1,n2

exceeds χ2
1,α, where P (χ

2
1 > χ2

1,α) = α. The

following theorem shows the large sample consistency of the proposed test under the

general alternative. Note that unlike the proposed test, the Cramer test and the HT test

do not have the asymptotic distribution-free property. So, one has to use the bootstrap

or the permutation method to find out the cut-off, which involves substantially higher

computing cost.

THEOREM 5.3 : Suppose that F and G both have finite second moments, and as

n1, n2 → ∞, n1/(n1 + n2) → λ for some λ ∈ (0, 1). Then, the power of the proposed

test based on T ∗
n1,n2

converges to 1 as n1 and n2 both tend to infinity.

Figure 5.4 shows the power curve of the proposed test based on the large sample

distribution of T ∗
n1,n2

in normal location and scale problems. To facilitate comparison,

it also shows the power curves of the other five tests considered in Section 5.3. For MST

run, NN and Adjacency tests, we used the tests based on large sample distributions of

the test statistics (see e.g., Schilling (1986a); Henze and Penrose (1999); Rosenbaum

(2005)). In the case of Cramer test, we used the codes for the large sample test based

on bootstrap approximation available at the R package ‘cramer’. Since the large sample

distribution of the HT test statistic is not known, we used its conditional version based

on the permutation principle. Here F was considered to be a normal with the mean

(0, 0, . . . , 0)T and the scatter matrix Id, while G differed from F either in location

(µ, µ, . . . , µ)T or in scatter σ2Id. We used d = 5 and n1 = n2 = 100 and each experiment

was carried out 200 times to estimate the powers of different tests. In the location

problem, the Cramer test had the best performance, but in the case of scale problem,

once again, the proposed test outperformed all of its competitors. We observed the same

phenomenon when we carried out our experiments with Laplace distribution. Therefore,

we do not report it here. Clearly, these results are consistent with what we observed in
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Section 5.3. We also considered another example, where all the five component variables

in F were i.i.d. standard normal variates, and those in G were i.i.d. standard Laplace

variates. In this example, the proposed method had an excellent performance. While

Cramer, NN, MST run, HT and Adjacency tests had powers 0.605, 0.380, 0.340, 0.635

and 0.265, respectively, it rejected H0 in 99% of the cases.
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Figure 5.4: Power curves of two-sample tests in normal location and scale problems.
(Cramer (dark grey solid), MST run (black solid), NN (light grey solid), Adjacency
(light grey dashed), HT (black dashed), proposed (black dotted) tests)

5.6 Proofs and mathematical details

PROOF OF LEMMA 5.1: If F = G, there is nothing to prove. So, let us prove the

‘only if’ part. If E(‖X1 −X2‖), E(‖Y1 −Y2‖) and E(‖X1 −Y1‖) are equal, we have

2E(‖X1 − Y1‖) − E(‖X1 − X2‖) − E(‖Y1 − Y2‖) = 0. Now, from Baringhaus and

Franz (2004), we know that for F and G with finite expected norm, 2E(‖X1 −Y1‖)−
E(‖X1 −X2‖)− E(‖Y1 −Y2‖) = 0 implies F = G. 2

PROOF OF THEOREM 5.1: If F and G satisfy (A1)-(A3), using the results (a)-

(c) stated in Section 4.2, for fixed n1, n2 and d → ∞, we have µ̂FF/
√
d

P→ σ1
√
2,

µ̂GG/
√
d

P→ σ2
√
2 and µ̂FG/

√
d

P→
√
σ21 + σ22 + ν2. Let these three limiting values be

denoted by υ1, υ2 and υ3, respectively. So, a re-scaled version of our test statistic,
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T dn1,n2
/d (instead of Tn1,n2 , here we use T dn1,n2

to show its dependence on d) converges

to υ∗0 = (υ1 − υ3)
2 + (υ2 − υ3)

2 in probability.

Now, let us consider the permutation distribution of T dn1,n2
when n1 = n2 = n0. If

n0 − r observations (r = 0, . . . , n0) from F and r observations from G are assumed to

come from one distribution and the rest from the other, as d → ∞, the value of the

test statistic converges to υ∗r = (υ1,r − υ3,r)
2 +(υ2,r − υ3,r)

2 in probability, where υ1,r =
[(n0−r

2

)
υ1 +

(r
2

)
υ2 + (n0 − r)rυ3

]
/
(n0

2

)
, υ2,r =

[(r
2

)
υ1 +

(n0−r
2

)
υ2 + (n0 − r)rυ3

]
/
(n0

2

)

and υ3,r =
[
(n0 − r)rυ1 + r(n0 − r)υ2 + {(n0 − r)2 + r2}υ3

]
/n20. So, as d → ∞, the

permutation distribution tend to have (n0 + 1) mass points υ∗0 , υ
∗
1 , . . . , υ

∗
n0

with proba-

bilities
(n0

n0

)(n0

0

)
/
(2n0

n0

)
,
( n0

n0−1

)(n0

1

)
/
(2n0

n0

)
, . . . ,

(n0

0

)(n0

n0

)
/
(2n0

n0

)
, respectively.

Now, we will show that υ∗r ≤ υ∗0 for all choices of r, where the equality holds for

r = 0 and r = n0. First note that, under the given condition (σ21 6= σ22 or ν2 > 0),

we have 2υ3 − υ1 − υ2 > 0. Also, note that υ1,r, υ2,r and υ3,r can be expressed as

υ1,r = υ1 +
(
r
2

)
(υ2 − υ1)/

(
n0
2

)
+ (n0 − r)r(υ3 − υ1)/

(
n0
2

)
, υ2,r = υ2 +

(
r
2

)
(υ1 −

υ2)/
(n0

2

)
+ (n0 − r)r(υ3−υ2)/

(n0

2

)
and υ3,r = υ3 + (n0 − r)r(υ1+υ2−2υ3)/n

2
0. So, we

have υ2,r − υ1,r = (υ2 − υ1)
[(n0

2

)
− r(n0 − r)− 2

(r
2

)]
/
(n0

2

)
. Now it is easy to check that

−1 ≤
[(n0

2

)
− r(n0 − r)− 2

(r
2

)]
/
(n0
2

)
≤ 1, which implies |υ2,r−υ1,r| ≤ |υ2−υ1| or (υ2,r−

υ1,r)
2 ≤ (υ2 − υ1)

2. Unless υ1 = υ2, here the equality holds only when r = 0 or r = n0.

Again, we have 2υ3,r−υ1,r−υ2,r = (2υ3−υ1−υ2)
[
1− r(n0 − r)/n20 − r(n0 − r)/

(
n0
2

)]
.

Since −1 ≤
[
1− r(n0 − r)/n20 − r(n0 − r)/

(n0

2

)]
≤ 1, we have (2υ3,r − υ1,r − υ2,r)

2 ≤
(2υ3 − υ1 − υ2)

2, where the equality holds only when r = 0 or r = n0. So, we have

υ∗r = 1
2 [(2υ3,r − υ1,r − υ2,r)

2 + (υ2,r − υ1,r)
2] ≤ 1

2 [(2υ3 − υ1 − υ2)
2 + (υ2 − υ1)

2] = υ∗0 ,

where equality holds only for r = 0 and r = n0.

Therefore, as d → ∞, under the permutation distribution, the test statistic takes

the value υ∗0 or higher with probability tending to 2/
(
n0
2

)
. So, for all n0 with 2/

(
n0
2

)
< α,

the new test rejects H0 with probability tending to 1 as d tends to infinity. 2

PROOF OF THEOREM 5.2: Note that nTn1,n2 can be expressed as nTn1,n2 =

1
2

[
{√n(µ̂FF − µ̂GG)}2+ {√nTCRn1,n2

}2
]
, where TCRn1,n2

is the Cramer test statistic. From

Baringhaus and Franz (2004), under H0, we have nT
CR
n1,n2

= Op(1) or
√
nTCRn1,n2

= op(1).

Again, under H0, µFF = µGG, and hence
√
n(µ̂FF − µ̂GG) =

√
n{(µ̂FF −µFF )− (µ̂GG−
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µGG)}. Now, µ̂FF − µFF =
(n1

2

)−1∑
1≤i<j≤n1

(‖xi − xj‖ − µFF ) is a U -statistic with

a symmetric kernel function. Therefore, from standard results on U -statistic (see e.g.,

Lee, 1990),
√
n1(µ̂FF − µFF )

d→ N(0, 4ς2), where ς2 = V ar(E(‖X1 −X2‖|X1)). Sim-

ilarly,
√
n2(µ̂GG − µGG)

d→ N(0, 4ς2), and they are independent. So, using the fact

that n1/n → λ as n → ∞, we have
√
n(µ̂FF − µ̂GG) =

√
n/n1

[√
n1(µ̂FF − µFF )

]
−

√
n/n2

[√
n2(µ̂GG − µGG)

] d→ N(0, ( 1λ + 1
1−λ)4ς

2). Therefore, nTn1,n2

d→ 2ς2

λ(1−λ)χ
2
1 as

n1 and n2 both tend to infinity. 2

PROOF OF THEOREM 5.3: Here, T ∗
n1,n2

= nλ̂(1− λ̂)Tn1,n2/2ς̂
2 d→ χ2

1 as n1, n2 → ∞,

and we reject H0 at level α if T ∗
n1,n2

> χ2
1,α. So, the power of the test is given by

PHA
(T ∗
n1,n2

> χ2
1,α) = PHA

[
λ̂(1− λ̂)Tn1,n2/2ς̂

2 > χ2
1,α/n

]
.

Now, from the results on probability convergence of U-statistic, we have µ̂FF
P→ µFF ,

µ̂GG
P→ µGG and µ̂FG

P→ µFG as n1, n2 → ∞. This implies λ̂(1 − λ̂)Tn1,n2/2ς̂
2 P→

λ(1 − λ){(µFF − µFG)
2 + (µFG − µGG)

2}/2ς2 as n1 and n2 tend to infinity. Since

(µFF − µFG)
2 + (µFG − µGG)

2 = 0 ⇔ µFF = µFG = µGG, from Lemma 5.1, we have

(µFF −µFG)
2 + (µFG−µGG)

2 = 0 if and only if F = G. So, under HA, as n1, n2 → ∞,

λ̂(1−λ̂)Tn1,n2/2ς̂
2 converges (in probability) to a positive quantity, but χ2

1,α/n converges

to 0. Therefore, the power of the test PHA

[
λ̂(1 − λ̂)Tn1,n2/2ς̂

2 > χ2
1,α/n

]
converges to

1 as n1 and n2 both tend to infinity. 2



Chapter 6

Concluding Remarks

In this thesis, we have proposed and investigated four different types of tests for the

multivariate two-sample problem. While two types of them (tests proposed in Chapter

2 and 3) have the exact distribution-free property, the other two types (tests proposed

in Chapters 4 and 5) are conditionally as well as asymptotically distribution-free. All

these tests are applicable to HDLSS data, where the dimension is much larger than the

sample size, and good performances of these tests for such high dimensional data have

been demonstrated using theoretical as well as numerical results.

The WMW test and the KS test based on linear classification (discussed in Chapter

2) provide good lower-dimensional views of separability between two distributions, and

they are particularly useful when the two distributions differ in their locations. However,

if the underlying distributions differ only in their scatters and/or shapes, these tests may

not be sensitive enough to yield good power. In such cases, it is better to adopt any

of the other three methods. Unlike the method based on linear classification, for the

tests based on SHP (discussed in Chapter 3), we do not need to split the whole sample

into two sub-samples to achieve the distribution-free property. Therefore, if the sample

size is very small, the run test based on SHP may outperform the tests based on linear

projection, where we need to sacrifice some observations for estimating the optimal

discriminating surface. The test proposed in Chapter 5 is based on sample moments

of three types of inter-point distances. If the underlying distributions have exponential

tails and they differ in their locations and/or scales, this test often outperforms the

107
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tests based on SHP and nearest neighbor type coincidences (proposed in Chapters 3

and 4, respectively). However, if the underlying distributions have heavy tails, the tests

based on SHP and nearest neighbors are preferred. These two types of tests are more

robust against outliers and extreme values generated from heavy tailed distributions.

Among these two types of tests, there is no clear winner. Depending on the nature of

the difference between the two distributions, one of them outperforms the other. For

instance, while the former one performs better in the location problem, in the scale

problem, the latter one yields better performance. During our theoretical investigation,

though we have assumed either a difference in location or a difference in scale to prove

the high dimensional consistency of the proposed tests, our empirical results clearly

show that most of these tests, particularly those based on SHP and nearest neighbors,

can yield excellent performance even when the two populations have the same location

and the same scale, and they differ only in their shapes.

Following the idea of corresponding two-sample tests, in this thesis, we have de-

veloped two general methods for multivariate generalizations of the univariate paired-

sample tests as well. One of these methods is based on the idea of discriminating

hyperplane (see Chapter 2), while the other is based on the idea of SCP (see Chapter

3). Both of these methods lead to tests having the exact distribution-free property in

finite sample situations. In the first case, we need to split the whole sample into two

sub-samples to achieve this distribution-free property, but no such splitting is required

for the tests based on SCP. Therefore, one should prefer the latter one when the sample

size is very small. Here it is needless to mention that all these tests for matched pair

data can be used even when the dimension exceeds the sample size, and good power

properties of these tests for HDLSS data have been established using both theoretical

and numerical results. Using a similar type of technique based on differences of observa-

tions and their negatives (see Chapters 2 and 3), it is possible to develop paired sample

versions of our two-sample tests based on nearest neighbors or that based on averages

of inter-point distances. But note that paired sample tests are mainly constructed for

the location problem, and we have seen in Chapters 4 and 5 that in the case of location

problem, our proposed tests based on nearest neighbors and average inter-point dis-

tances are somewhat inferior to the NN test (Schilling (1986a); Henze (1984)) and the
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Cramer test (Baringhaus and Franz (2004)), respectively. So, we do not recommend to

construct any paired sample version of these proposed tests. Instead, using the ideas of

the NN test and the Cramer test, multivariate paired sample tests can be constructed.

But, we did not investigate them in this thesis.

The two-sample and paired sample tests proposed in this thesis are all invariant

under location shift, rotation and homogeneous scale transformation of the data, but

they are not affine invariant. So, when the component variables are not of comparable

units and scales, sometimes it can be a better idea to standardize whole the data set

(if n is large compared to d) or standardize the component variables (if d is larger

than n), and use those standardized observations for testing. This standardization will

make these tests scale invariant, but they will lose their rotational invariance property.

Several researchers (see e.g., Srivastava et al. (2013); Park and Ayyala (2013)) have

pointed out that the rotational invariant tests have drawback in power when variances

are inhomogeneous. Standardization can be helpful in such situation.

In this thesis, we have proved the consistency of all proposed tests in HDLSS asymp-

totic regime. Under reasonable regularity conditions, the powers of these tests increase

to unity when the sample size remains fixed and the dimension increases. This high

dimensional consistency makes them useful for HDLSS data. However, these tests are

consistent in classical asymptotic regime as well, where the dimension remains fixed

and the sample size grows to infinity. Except for the tests based on SHP and SCP,

we have proved this large sample consistency for all other proposed tests. Though the

large sample consistency of the two-sample tests based on SHP is also apparent from

our empirical study (see Table 3.1), a formal proof needs to be sketched. Similarly, a

formal proof is yet to be framed for the paired sample test based on SCP. One may

also be interested in investigating the power properties of our proposed tests when both

the dimension and the sample size increase simultaneously. We have not carried out

this theoretical investigation in this thesis. This could be an interesting area for future

research.

Another interesting area for investigation would be the multisample extension of

these proposed two-sample tests. Székely and Rizzo (2004) proposed a multisample

version of the Cramer test (Baringhaus and Franz (2004)), where they considered the
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Cramer test statistic for each pair of classes and then added them to come up with

the final test statistic. Following a similar idea, we can easily develop a multisample

test based on averages of inter-point distances, which is expected to outperform Székely

and Rizzo’s test in various situations including the cases when the distributions differ

in their scales. Clearly, this idea can be used for other tests as well, but sometimes it

makes the resulting test computationally very expensive, especially when the number

of distributions is not very small. In such cases, one needs to find alternative methods.

As we have mentioned before, following the idea of Friedman and Rafsky (1979), it is

possible to construct a multisample run test based on SHP. The test will retain the

distribution-free property, and the cut-off can be determined using the results in Mood

(1940). However, one needs to investigate its theoretical and empirical performance.

Schilling (1986a) pointed out that the NN test has a natural extension for more than

two distributions. Our tests based on nearest neighbors have similar natural extensions

as well, but the behavior of the resulting tests needs to thoroughly investigated. Also,

it is not clear to us how to use the idea based on linear classification to develop a

meaningful distribution-free tests when there are more than two-classes. This seems to

be a challenging problem at this moment.



Appendix A

Some existing tests for the

multivariate two-sample problem

In this thesis, we have proposed some nonparametric tests for the multivariate two-

sample problem and compared their performance with some popular tests available in

the literature. A brief description of those existing tests are given below.

A.1 Tests involving two independent samples

Suppose that we have n1 independent observations x1, . . . ,xn1 from F and n2 indepen-

dent observations y1, . . . ,yn2
from G, and we want to test null hypothesis H0 : F = G

against the alternative HA : F 6= G. Several multivariate tests are available for this

two-sample problem, and some of them have been used in this thesis. Before, we de-

scribe them, let us first define the combined sample {z1, . . . , zn} of size n = n1 + n2,

where zi = xi for i = 1, . . . , n1 and zn1+i = yi for i = 1, . . . , n2.

• Hotelling T 2 test (see e.g., Anderson (2003)): It assumes F and G to be normal

with the same scatter and uses the test statistic

T 2 =
n1n2
n

(x̄− ȳ)T S̃−1(x̄− ȳ),

where x̄ = n−1
1

∑n1
i=1 xi, ȳ = n−1

2

∑n2
i=1 yi and S̃ = [

∑n1
i=1(xi − x̄)(xi − x̄)T +

∑n2
i=1(yi− ȳ)(yi− ȳ)T ]/(n1+n2− 2). The null hypothesis H0 is rejected for large

111
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values of T 2. Under H0,
n−d
d(n−1)T

2 follows Fd,n−d distribution (F distribution with

d and n− d degrees of freedom), and it is used to find the critical value.

• Puri and Sen’s coordinate-wise sign and rank tests (PS-sign and

PS-rank tests) (see Puri and Sen (1971)): Consider a score function a :

{1, 2, . . . , n} → R and define z∗i = [a(R
(1)
i ), . . . , a(R

(d)
i )]T for i = 1, . . . , n, where

R
(q)
i (q = 1, 2, . . . , d) is the rank of z

(q)
i in {z(q)1 , z

(q)
2 , . . . , z

(q)
n }, and z

(q)
i is the

q-th coordinate of zi. Now define L1 = 1
n1

∑n1
i=1 z

∗
i , L2 = 1

n2

∑n
i=n1+1 z

∗
i and

Ṽ = 1
n1+n2−2

[∑n1
i=1(z

∗
i −L1)(z

∗
i −L1)

T +
∑n

i=n1+1(z
∗
i −L2)(z

∗
i −L2)

T
]
. Clearly,

a Hotelling T 2 type statistic Ta = n1n2
n (L1 − L2)

T Ṽ −1(L1 − L2) can be used for

testing the null hypothsis. The PS-sign test uses the score function a(i) = 1

(respectively, −1) if i > n/2 (respectively, i ≤ n/2) and the PS-rank test uses

the score function a(i) = i. Each of them rejects H0 when the observed value of

Ta exceeds the critical value, which is determined either using the permutation

method or using the asymptotic null distribution of Ta.

• Spatial sign and rank tests (Sp-sign and Sp-rank tests) (see e.g., Oja

(2010)): Note that the spatial sign function Sgn(·) is defined as

Sgn(z) =





z
‖z‖ if z 6= 0

0 otherwise.

Choose a d × d non-singular matrix A and a d-dimensional vector b such that

1
n

∑n
i=1 Sgn(A(zi − b)) = 0 and d

n

∑n
i=1 Sgn(A(zi − b))[Sgn(A(zi − b))]T = Id.

For instance, Tyler (1987)’s algorithm can be used to find A and b. Spatial rank

(Rank) of zi (i = 1, 2, . . . , n) is defined as Rank(zi) =
1
n

∑n
j=1 Sgn(A(zi − zj)).

The spatial sign (Sp-sign) test uses the test statistic

TSpS = d

[
n1

∥∥∥ 1

n1

n1∑

i=1

Sgn(A(zi − b))
∥∥∥
2
+ n2

∥∥∥ 1

n2

n∑

i=n1+1

Sgn(A(zi − b))
∥∥∥
2
]
.

The spatial rank (Sp-rank) test uses the test statistic

TSpR =
d

C2
z

[
n1

∥∥∥ 1

n1

n1∑

i=1

Rank(zi)
∥∥∥
2
+ n2

∥∥∥ 1

n2

n∑

i=n1+1

Rank(zi)
∥∥∥
2
]
,

where C2
z = 1

n

∑n
i=1 ‖Rank(zi)‖2.
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The null hypothesis H0 is rejected for higher values of test statistics. When the

sample size is large, one can use the large sample distributions of TSpS and TSpR

under H0 to calculate the corresponding critical values. Otherwise, they can be

computed using the permutation principle.

• Multivariate run test based on minimal spanning tree (MST run test)

(see Friedman and Rafsky (1979)): Consider z1, z2, . . . , zn as n vertices of an edge-

weighted complete graph G, where the edge joining zi and zj has the cost ‖zi−zj‖.
Let M be the MST of this graph G. The MST run test uses the test statistic given

by TMST
n1,n2

= 1 +
∑n−1

i=1 ΛM
i , where ΛM

i denotes the indicator variable that takes

the value 1 if and only if the i-th edge of M connects two observations from two

different distributions. This test rejects H0 for smaller values of TMST
n1,n2

, where the

cut-off can be obtained either using the permutation method (if n is small) or the

asymptotic null distribution of TMST
n1,n2

(if n is large).

• Test based on number of nearest neighbor type coincidences (NN test)

(see e.g., Schilling (1986a); Henze (1988)): For any fixed choice of k, the NN test

statistic is given by

TNN,k =
1

nk

[
n1∑

i=1

k∑

r=1

Ixi
(r) +

n2∑

i=1

k∑

r=1

Iyi
(r)

]
,

where Iz(r) denotes the indicator variable that takes the value 1 if and only if z

and its r-th (r ≤ k) nearest neighbor come from the same distribution. The NN

test rejects H0 for large values of TNN,k. Cut-off can be determined either using

the permutation method or from the large sample distribution of TNN,k under H0.

• Hall and Tajvidi’s test based on nearest neighbors (HT test) (see Hall

and Tajvidi (2002)): Define the indicator function Icz(r) = 1− Iz(r), where Iz(r)

is as defined in the NN test. The HT test considers the test statistic

THT =
1

n1

n1∑

i=1

n2∑

k=1

∣∣∣∣∣

k∑

r=1

Icxi
(r)− k

n2
n− 1

∣∣∣∣∣+
1

n2

n2∑

i=1

n1∑

k=1

∣∣∣∣∣

k∑

r=1

Icyi
(r)− k

n1
n− 1

∣∣∣∣∣ .

A weighted version of this statistic is also available. Hall and Tajvidi (2002)
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proposed to use the permutation method to determine the cut-off, and H0 is

rejected if the observed value of THT exceeds that cut-off.

• Cramer test (see Baringhaus and Franz (2004)): It uses the test statistic

TCRn1,n2
=

2

n1n2

n1∑

i=1

n2∑

j=1

‖xi−yj‖−
1(n1

2

)
n1∑

i=1

n1∑

j=i+1

‖xi−xj‖−
1(n2

2

)
n2∑

i=1

n2∑

j=i+1

‖yi−yj‖

and rejects H0 for large positive values of TCRn1,n2
. The cut-off can be computed

either using the permutation method or the method based on asymptotic boot-

strapped distribution under H0.

• Adjacency test based on non-bipartite matching (Adjacency test) (see

Rosenbaum (2005)): First assume that n = n1 + n2 is even i.e., n = 2r for some

integer r ≥ 1. For any non-bipartite matching (see e.g., Lu et al. (2011)), where r

non-overlapping pairs {(zi1 , zi2); i = 1, 2, . . . , r} are formed by taking two indices

i1 and i2 from {1, 2, . . . , n} at a time, define
∑r

i=1 ‖zi1 − zi2‖ as the associated

cost. Now, consider the matching that leads to the lowest cost and call it optimal

non-bipartite matching. In this optimal matching, the number of pairs having

both observations from the same distribution is considered as the test statistic

TAdj . If n is odd, a pseudo observation is included in the combined sample, whose

distance from any one of the n data points is taken as zero. After obtaining the

(n + 1)/2 optimal pairs, the pair with the pseudo observation is discarded and

the rest (n − 1)/2 pairs are considered to compute TAdj . This test statistic has

the exact distribution-free property under H0, and that distribution is used to

determine the cut-off. Naturally, H0 is rejected for large values of TAdj . Instead of

Euclidean distance, the distance between marginal rank vectors can also be used

to define the cost, find the associated optimal matching and to compute TAdj.

• Chen and Qin’s test (CQ test) (see Chen and Qin (2010)): The CQ test

statistic is given by

TCQ =
1√
vCQn

[∑n1
i 6=j x

T
i xj

n1(n1 − 1)
+

∑n2
i 6=j y

T
i yj

n2(n2 − 1)
− 2

∑n1
i=1

∑n2
j=1 x

T
i yj

n1n2

]
,
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where vCQn = 2
n2
1(n1−1)2

tr{∑n1
i 6=j(xi − x̄(i,j))x

T
i (xj − x̄(i,j))x

T
j }

+ 2
n2
2(n2−1)2

tr{
∑n2

i 6=j(yi − ȳ(i,j))y
T
i (yj − ȳ(i,j))y

T
j }

+ 4
n2
1n

2
2
tr{∑n1

i=1

∑n2
j=1(xi − x̄(i))x

T
i (yj − ȳ(j))y

T
j },

x̄(i) = 1
n1−1

∑
j 6=i xj, ȳ(i) = 1

n2−1

∑
j 6=i yj, x̄(i,j) = 1

n1−2

∑
r 6=i,j xr, ȳ(i,j) =

1
n2−2

∑
r 6=i,j yr and tr(A) denotes the trace of the matrix A. The test is per-

formed based on the asymptotic null distribution of TCQ when d also is assumed

to increase with n. The null hypothesis is rejected for higher values of TCQ.

• Test of Srivastava, Katayama and Kano (SKK test) (see Srivastava et al.

(2013)): Define Sx = 1
n1−1

∑n1
i=1(xi − x̄)(xi − x̄)T , Dx= diagonal matrix of Sx,

Sy = 1
n2−1

∑n2
i=1(yi − ȳ)(yi − ȳ)T , Dy= diagonal matrix of Sy, D0 = n−1

1 Dx +

n−1
2 Dy and R = D

−1/2
0

(
Sx
n1

+
Sy
n2

)
D

−1/2
0 . The SKK test statistic given by

TSKK =
(x̄− ȳ)TD−1

0 (x̄− ȳ)− d√
vSKKn cd,n

,

where vSKKn = 2tr(R2)− 2(tr(D−1
0 Sx))2

n2
1(n1−1)

− 2(tr(D−1
0 Sy))2

n2
2(n2−1)

and cd,n = 1+ p−3/2tr(R2).

The test is performed based on the asymptotic null distribution of the test statistic

when n and d both diverge to infinity. H0 is rejected for higher values of TSKK .

• Park and Ayyala’s test (PA test) (see Park and Ayyala (2013)): Define x̄(i),

ȳ(i), x̄(i,j), ȳ(i,j) as in the CQ test and Sx, Sy as in the SKK test. Also define

Sx(i) =
1

n1−2

∑n1
j=1, j 6=i(xj − x̄(i))(xj − x̄(i))

T and Sx(i,j) =
1

n1−3

∑n1
r=1, r 6=i,j(xr −

x̄(i,j))(xr − x̄(i,j))
T . The matrices Sy(i) and Sy(i,j) can be defined accordingly.

Now, consider three other matrices

S1(i,j) = (n1 + n2 − 4)−1[(n1 − 3)Sx(i,j) + (n2 − 1)Sy],

S2(i,j) = (n1 + n2 − 4)−1[(n1 − 1)Sx + (n2 − 3)Sy(i,j)],

S12(i,j) = (n1 + n2 − 4)−1[(n1 − 2)Sx(i) + (n2 − 2)Sy(j)],

and their diagonal versions D1(i,j), D2(i,j) and D12(i,j), respectively. The PA test

statistic is given by

TPA = n1+n2−6

(n1+n2−4)
√
vPA
n

[
1

n1(n1−1)

∑
1≤i 6=j≤n1

xTi D
−1
1(i,j)xj

+ 1
n2(n2−1)

∑
1≤i 6=j≤n2

yTi D
−1
2(i,j)yj − 2

n1n2

∑n1
i=1

∑n2
j=1 x

T
i D

−1
12(i,j)yj

]
,
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where vPAn = (n1+n2−4
n1+n2−6)

2
{

2
n2
1(n1−1)2

∑
i 6=j x

T
i D

−1
1(i,j)(xj − x̄(i,j))x

T
j D

−1
1(i,j)(xi − x̄(i,j))

+ 2
n2
2(n2−1)2

∑
i 6=j y

T
i D

−1
2(i,j)(yj − ȳ(i,j))y

T
j D

−1
2(i,j)(yi − ȳ(i,j)) +

4
n2
1n

2
2

∑n1
i=1

∑n2
j=1 x

T
i

D−1
12(i,j) (yj − ȳ(i,j))y

T
j D

−1
12(i,j)(xi − x̄(i,j))

}
. The test is performed using the

asymptotic null distribution of the test statistic when n and d both diverge to

infinity. The null hypothesis H0 is rejected for large values of TPA.

A.2 Tests for matched pair data

Here we deal with n independent pairs of observations
(
x1

y1

)
,
(
x2

y2

)
, . . . ,

(
xn

yn

)
from a

2d-variate distribution with d-dimensional marginals F and G forX andY, respectively.

We consider the location model, i.e., F (x) = G(x− θ) for all x ∈ R
d and some θ ∈ R

d,

and we test H0 : θ = 0 against the alternative HA : θ 6= 0. In such cases, it is a common

practice to consider {ξi = xi − yi, i = 1, . . . , n} as sample observations and perform

one sample tests. Some of the existing one sample tests that we have used in this thesis

are briefly described below.

• Hotelling T 2 test (see e.g., Anderson (2003)): It uses the test statistic T 2 =

nξ̄
T
S−1

ξ
ξ̄, where ξ̄ = n−1

∑n
i=1 ξi and Sξ = (n − 1)−1

∑n
i=1(ξi − ξ̄)(ξi − ξ̄)T

are the sample mean and the sample covariance matrix, respectively. The null

hypothesis H0 is rejected at level α (0 < α < 1) if the observed value of T 2

exceeds nd
n−dFd,n−d(α), where Fd,n−d(α) is the upper α point of the F -distribution

with d and n− d degrees of freedom.

• Puri and Sen’s coordinate-wise sign and rank tests (PS-sign and

PS-rank tests) (see Puri and Sen (1971)): Consider a score function a :

{1, 2, . . . , n} → R and define ξ◦i = (S
(1)
i a(R

(1)
i ), S

(2)
i a(R

(2)
i ), . . . , S

(d)
i a(R

(d)
i ))T for

i = 1, . . . , n, where S
(q)
i = sign(ξ

(q)
i ) and R

(q)
i is the rank of |ξ(q)i | in the set

{|ξ(q)1 |, |ξ(q)2 |, . . . , |ξ(q)n |} (here ξ
(q)
i denotes the q-th (q = 1, 2, . . . , d) coordinate of

ξi). Now consider a Hotelling T 2 type test statistic Ta = nξ̄◦
T
S−1

ξ
◦ ξ̄

◦ based on the

score function a. Ta gives the PS-sign statistic when a(i) = 1 for all i = 1, 2, . . . , n,

and it gives the PS-rank statistic if a(i) = i for i = 1, 2, . . . , n. In each of these two

cases, H0 is rejected for higher values of the test statistic, where the cut-off is ob-
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tained either using the permutation method or from the large sample distribution

of Ta under H0.

• Spatial sign and rank tests (Sp-sign and Sp-rank tests) (see e.g., Oja

(2010)): Find a d×d non-singular matrix A such that d
n

∑n
i=1 Sgn(Aξi)[Sgn(Aξi)]

T

= Id, where Sgn is the spatial sign function defined in Section A.1. One can use

Tyler’s shape matrix (see e.g., Tyler (1987)) for this purpose. The Sp-sign test

uses the test statistic TSpS = nd‖ 1
n

∑n
i=1 Sgn(Aξi)‖2.

Now, define the spatial rank of ξi as Rank(ξi) =
1
n

∑n
j=1 Sgn(A(ξi − ξj)). In the

case of Sp-rank test, the matrix A is chosen such that d
n

∑n
i=1 Rank(ξi)[Rank(ξ)]

T =

C2
ξ
Id, where C

2
ξ
= 1

n

∑n
i=1 ‖Rank(ξi)‖2. The Sp-rank test uses the test statistic

given by TSpR = nd
4C2

ξ
‖ 2
n(n+1)

∑
i≤j Sgn(A(ξi + ξj))‖2.

In each of these cases, either the permutation method or the large sample distri-

bution of the test statistic can be used to determine the critical value, and H0 is

rejected for higher values of TSpS and TSpR.

• Chen and Qin’s test (CQ test) (see Chen and Qin (2010)): The one sample

CQ test statistic is given by

TCQ =

1
n(n−1)

∑
i 6=j ξ

T
i ξj√

2
n(n−1)tr(

∑
i 6=j(ξi − ξ̄(i,j))ξ

T
i (ξj − ξ̄(i,j))ξ

T
j )
,

where ξ̄(i,j) =
∑n

k=1,k 6=i,j ξk is the sample mean computed excluding ξi and ξj .

The null hypothesis is rejected if the observed value of TCQ exceeds the cut-off

determined by the asymptotic null distribution of the test statistic, when n and

d both increase to infinity.

• Srivastava’s test (SR test) (see Srivastava (2009)): The SR test statistic is

given by

TSR =
n ξ̄

T
D−1

ξ
ξ̄ − (n−1)d

n−3√
2
[
tr(R2

ξ
)− d2

n−1

] ,

where ξ̄ = n1−
∑n

i=1 ξi, Dξ is the diagonal matrix of the sample covariance matrix

Sξ = 1
n−1

∑n
i=1(ξi − ξ̄)(ξi − ξ̄)T and Rξ = D

−1/2

ξ
SξD

−1/2

ξ
. This test is based
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on the asymptotic null distribution of TSR, when d increases with n. The null

hypothesis is rejected when the observed value of TSR is large.

• Park and Ayyala’s test (PA test) (see Park and Ayyala (2013)): The PA test

uses the test statistic

TPA =
n− 5

n(n− 1)(n − 3)

∑

i 6=j

ξTi D
−1

ξ(i,j)
ξj,

where Dξ(i,j) is the diagonal matrix of Sξ(i,j) =
1

n−3

∑n
r=1, r 6=i,j(ξr − ξ̄(i,j))(ξr −

ξ̄(i,j))
T and ξ̄(i,j) = 1

n−2

∑
r 6=i,j ξr. This test rejects H0 if the observed value of

TPA is higher than the cut-off obtained from the asymptotic distribution, which

is derived under H0 when both n and d diverge to infinity.
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