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Notations

IN The set of natural numbers

R The set of real numbers

C The set of complex numbers

Mn(C) The set of C-valued n× n matrices for a C∗ algebra C
S1 The circle group

Tn The n-torus

ev Evaluation map

id The identity map

C∞(M) The space of smooth functions on a smooth manifold M

C∞c (M) The space of compactly supported smooth functions on M

Λk(C∞(M)) Hilbert bimodule of smooth k-forms of a smooth manifold M

⊗ Algebraic tensor product between two vector spaces or algebras

⊗̂ Injective tensor product of two C∗ algebras or nice algebras

⊗̄ Exterior tensor product of Hilbert bimodules

⊗in Interior tensor pruduct of Hilbert bimodules

⊗w von Neumann algebraic tensor product

⊕ Direct sum of two vector spaces

N (M) Total space of normal bundle of an embedded smooth manifold M

Q̂ Dual of a compact quantum group Q
σij Flip map between ith and jth copy of an algebra

M(C) The multiplier algebra of a C∗ algebra C
L(E,F ) The space of adjointable maps from Hilbert modules E to F

L(E) The space of adjointable maps from a Hilbert module E to itself

K(E,F ) The space of compact operators from Hilbert modules E to F

K(E) The space of compact operators from a Hilbert module E to itself

B(H) The set of all bounded linear operators on a Hilbert space H
A ∗ B Free product of two C∗ algebras A and B
<<,>> Frechet algebra valued inner product

<,> complex valued inner product
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Chapter 0

Introduction

This thesis explores quantum symmetries of spectral triples coming from classical com-

pact, connected, Riemannian manifolds and their cocycle twists. This is a part of a

bigger story under the name of “Noncommutative geometry”. The root of Non commu-

tative geometry can be traced back to the Gelfand-Naimark theorem which says that

there is an anti-equivalence between the category of (locally) compact Hausdorff spaces

and (proper, vanishing at infinity) continuous maps and the category of (not necessar-

ily) unital C∗ algebras and ∗-homomorphisms. This means that the entire topological

information of a locally compact Hausdorff space is encoded in the commutative C∗

algebra of continuous functions vanishing at infinity. This motivates one to view a

possibly noncommutative C∗ algebra as the algebra of “functions on some noncommu-

tative space”. If the underlying space has some extra structures, then certain dense

subalgebra of the C∗ algebras can be specified to capture those structures. It was the

remarkable idea of Alain Connes who constructed a spectral triple out of a Riemannian

spin manifold so that geometry of the manifold is encoded by the triple. To be precise,

the triple consists of an algebra of smooth functions on the manifold, the Hilbert space

of square integrable spinors and the Dirac operator. As before, even when there is no

space, one can consider a similar spectral triple consisting of (A,H,D) where H is a

separable Hilbert space, A ⊂ B(H) is a ∗-subalgebra (not necessarily closed in the C∗

norm) and D is an unbounded operator on H. Such a spectral triple can be viewed as

a geometrical object or ‘noncommutative manifold’.

Symmetries play a very crucial role in physics. Symmetries of physical systems (clas-

sical or quantum) were conventionally modeled by group actions, and after the advent of

quantum groups, group symmetries were naturally generalized to symmetries given by

quantum group action. In this context, it is natural to think of quantum automorphism

or the full quantum symmetry groups of various mathematical and physical structures.

The underlying basic principle of defining a quantum automorphism group of a given

3



Chapter 0: Introduction 4

mathematical structure consists of two steps : first, to identify (if possible) the group of

automorphisms of the structure as a universal object in a suitable category, and then,

try to look for the universal object in a similar but bigger category by replacing groups

by quantum groups of appropriate type.

The formulation and study of such quantum symmetries in terms of universal Hopf

algebras date back to Manin [38]. In the analytic set-up of compact quantum groups,

it was considered by S. Wang who defined and studied quantum permutation groups

of finite sets and quantum automorphism groups of finite dimensional algebras. Subse-

quently, such questions were taken up by a number of mathematicians including Banica,

Bichon, Collins and others (see, e.g. [2], [3], [13], [55]), and more recently in the frame-

work of Connes’ noncommutative geometry ( [16]) by Goswami, Bhowmick, Skalski,

Banica, Soltan, De-Commer, Thibault and many others who have extensively stud-

ied the quantum group of isometries (or quantum isometry group) defined in [22] (see

also [10], [12], [6] etc.). In this context, it is important to compute quantum isometry

groups of classical Riemannian manifolds. One may hope that there are many more

quantum symmetries of a given classical space than classical group isometries which

will help one understand the space better. However, in all the previous computations

of quantum isometry groups of classical compact connected Riemannian manifold M ,

they turned out to be the same as C(ISO(M)), where ISO(M) is the classical isometry

group of the manifold M . This led D. Goswami to conjecture that the quantum isom-

etry group of a compact, connected, Riemannian manifold M is same as C(ISO(M)),

i.e. there are no genuine quantum isometry of such manifolds. The main result of this

thesis is a proof of the above conjecture for stably parallelizable compact connected Rie-

mannian manifolds. This also allows us to explicitly describe quantum isometry groups

of a very large class of spectral triples obtained by deformation of classical spectral

triples. It is worth mentioning that after writing this thesis we have been able to relax

the condition of stably parallelizablity on the manifold in [18] and prove the original

conjecture.

We begin the thesis by recollecting some necessary preliminaries in Chapter 1 and

Chapter 2, giving an overview of the concerned area of the thesis. Chapter 1 mainly

recalls basics operator algebras and gives a glimpse of the formulation of noncommu-

tative geometry. Also it collects some well known facts (mostly without proofs) about

manifold theory and some topological algebras. Chapter 2 deals with the formulation

of quantum isometry group as in [22] and [10]. Although mostly it is a review of the

results of these papers a few new results have also been obtained (for example Theorem

2.3.12).

In chapter 3 of this thesis we extend the notion of a C∗ action of a compact quan-

tum group on a C∗ algebra and adopt an appropriate definition of a smooth action of
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a compact quantum group on a smooth manifold. Observe that for a smooth manifold

M , the algebra of smooth functions (denoted by C∞(M)) over the manifold is no longer

a C∗ algebra. Instead, it is a Fréchet algebra. So the right topology in the context of

a smooth action turns out to be the Fréchet topology. After defining and discussing

some technical issues with smooth action we deduce a necessary and sufficient condi-

tion for the ‘differential’ of the smooth action to make sense as a well defined bimodule

morphism on the C∞(M) bimodule of one forms. Then we define an inner product pre-

serving action of a compact quantum group and show that an inner product preserving

action automatically lifts to a bimodule morphism to the C∞(M) bimodule of k-forms.

In Chapter 4 we give two sufficient conditions for a smooth action to be isometric.

One of the conditions turns out to be necessary also. We use these results in Chapter

5 to calculate the quantum isometry group of a classical, compact, connected, Rieman-

nian manifold. We restrict our attention to a certain class of manifolds which are stably

parallelizable. We show that the quantum isometry group of such a Riemannian mani-

fold coincides with the classical isometry group of the manifold.

Most of the examples of non commutative spectral triples come from suitable defor-

mation of classical spectral triples. In Chapter 6, we consider the problem of describing

the quantum isometry group of a particular class of such non commutative spectral

triples i.e. the spectral triples obtained from classical spectral triples by twisting using

the actions of a CQGs admitting a unitary 2-cocycle. In this chapter we formulate

the notion of deformation of a von Neumann algebra on which a CQG with a unitary

2-cocycle has a von Neumann algebraic action. In fact, Nesheveyev et al had already

considered ( [40]) such deformation in the setting of C∗ or von Neumann algebras. In a

subsequent subsection we compare their formulation with ours and establish the equiv-

alence of the two approaches for the von Neumann algebraic case. We also partially

answer one of the questions raised in [40] in the affirmative (in case of a von Neumann

algebra). Next we define cocycle twist of a spectral triple and prove that the quantum

isometry group of a cocycle twisted spectral triple is same as the cocycle twist of the

quantum isometry group of the untwisted spectral triple. Using this result and the main

result of [18], we determine all the quantum isometries of the cocycle twisted spectral

triples coming from compact, connected, stably parallelizable Riemannian manifolds.

In the 7th Chapter we prove a generalization of the standard technique of averaging

a Riemannian metric with respect to a compact group action using the Haar state of

the group so that the action becomes inner product preserving. We extend this to the

set-up of compact quantum group actions satisfying certain conditions. We believe that

this as well as other techniques developed in this thesis will be useful in the study of

quantum isometry groups of arbitrary spectral triples.
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Chapter 1

Preliminaries

1.1 Classical differential geometry

1.1.1 Smooth manifolds

Definition 1.1.1. A manifold (without boundary) M of dimension n is a second count-

able Hausdorff topological space with a set of pairs {(Uα, φα) : α ∈ I} such that M =

∪α∈IUα and each φα(Uα) is homeomorphic to an open subset of Rn. It is said to admit a

smooth structure if on each {(Uα∩Uβ) : α, β ∈ I}, φαφ−1
β : φβ(Uα∩Uβ)→ φα(Uα∩Uβ)

is a smooth map between two open subsets of Rn. A manifold with such a smooth struc-

ture is called a smooth manifold. The open sets Uα’s are called trivializing neighborhoods

and (Uα, φα) is called a chart.

Examples

1. Any open subset U of Rn is an n-dimensional smooth manifold with {(U, id)} as the

obvious choice of trivializing neighborhood.

2. S1 ⊂ R2 is a smooth manifold of dimension 1. It has two trivializing neighborhoods

covering it. One is deleting its north pole and other deleting its south pole. In both

cases the corresponding homeomorphism is θ(∈ (0, 2π)) → (cos(θ), sin(θ)) ⊂ S1. It is

an example of a compact manifold.

3. If M and N are two smooth manifolds with {(Uα) : α ∈ I} and {(Vβ) : β ∈ J}
being corresponding trivializing neighborhoods, then M × N is a smooth manifold of

dimension 2n with {(Uα × Vβ) : (α, β) ∈ I × J} being the corresponding trivializing

neighborhoods. As a result Sn = S1 ×...×︸ ︷︷ ︸
n−times

S1 is an n-dimensional manifold.

Let Hn = {(x1, ..., xn) ∈ Rn : xn ≥ 0}. Then we have the following

Definition 1.1.2. Let M be a second countable topological space with every point M

admitting a neighborhood homeomorphic to an open subset of Hn. Then M is said to

7



Chapter 1: Preliminaries 8

be a manifold with boundary. The boundary defined by ∂M = {m ∈ M : φ(m) ∈
Rn−1 × 0 for some chart (U, φ)}.

Definition 1.1.3. A subset A of an n-dimensional manifold M with boundary ∂M is

called a neat submanifold of M , if boundary of A denoted by ∂A = A ∩ ∂M and A is

covered by charts (φ,U) of M such that A ∩ U = φ−1(Rm), where m < n for some m.

Let M be a smooth manifold of dimension n without boundary with {(Uα) : α ∈ I}
being the trivializing neighborhoods and φα’s the homeomorphisms. A real valued

function f on M is said to be smooth at a point m ∈ M if m ∈ Uα for some α,

f ◦ φ−1
α is smooth at m ∈ M . Using the smoothness of M , it can be shown this is

indeed well defined. The set of real valued smooth functions is denoted by C∞(M)R.

It is an algebra with pointwise multiplication. Its complexification is a ∗-algebra with

the involution coming from usual complex conjugation. We denote this ∗-algebra by

C∞(M). Similarly for the manifolds with boundary the notion of smooth functions can

also be defined taking care of the boundary points in an obvious way.

Orientation on manifolds

Definition 1.1.4. Let M be a smooth manifold of dimension n. By a pre-orientation

α on M we mean a choice αm of orientation on Tm(M) for each m ∈ M . A pre-

orientation α is said to be smooth if it satisfies the following smoothness condition:

To each m ∈M , there is a chart (U, φ) for M at m such that dφ−1
m : Rn → Tm(M)

carries the standard orientation class En of Rn to αm. A pre-orientation which is

smooth will be called an orientation and then we say M is orientable. A manifold with

a choice of orientation is called an oriented manifold.

Definition 1.1.5. A diffeomorphism φ : M → N between two smooth oriented man-

ifolds M and N is said to be orientation preserving if at each point m ∈ M , we have

Dφ : Tm(M)→ Tφ(m)N mapping the orientation of Tm(M) to that of Tφ(m)(N).

For the sake of completeness below we recall two standard facts about orientation

of smooth manifolds. (see [46])

Proposition 1.1.6. 1. On a connected manifold there can be at most two orientations.

2. An n-dimensional manifold is orientable if and only if it has a cover {Uα}α∈I with

{φα)α being the charts such that each transition functions φβφ
−1
α is an orientation pre-

serving diffeomorphisms of open subsets of Rn.

Smooth vector bundle

Definition 1.1.7. A locally trivial smooth vector bundle of rank n over a smooth man-

ifold M is a pair (E, π) such that
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1. π : E →M is a smooth map.

2. Each π−1(m) is isomorphic as a vector space to Rn.

3. There is a trivializing cover {(Uα) : α ∈ I} such that π−1(Uα) is diffeomorphic to

Uα × Rn for all α ∈ I. Also if {(Φα) : α ∈ I} are the corresponding diffeomorphisms,

then if (Uα∩Uβ) is non empty, Φ−1
α ◦Φβ : (Uα∩Uβ)×Rn → (Uα∩Uβ)×Rn is (id, Tαβ)

where Tαβ : Rn → Rn is a linear map for all α, β ∈ I.

Remark 1.1.8. The manifold E is said to be the total space of the vector bundle and

M is said to be the base space with π being called the projection map. A vector bundle

is said to be trivial if we can choose only one such trivializing neighborhood. We shall

often drop the word ”locally trivializing”.

Examples

1. Tangent and cotangent bundle

Let M be a smooth manifold of dimension n with (Uα, φα) being the charts.

On each trivializing neighborhood Uα, we can define smooth coordinate functions

{xi : 1 ≤ i ≤ n} which are by definition xi := ui ◦ φα where {ui : 1 ≤ i ≤ n}’s
are coordinate functions for Rn. Note that these are only locally defined functions.

Recall the tangent space of a manifold at a point m It can be proved that this is a

n-dimensional real vector space with basis given by the canonical derivations (with

m ∈ Uα) { ∂
∂xi

: 1 ≤ i ≤ n} defined by ∂
∂xi
|m(f) := ∂

∂ui
(f ◦ φ−1

α )(0) where φα(0) = m.

The tangent bundle (T (M), π) is by definition T (M) := {(m, v) : m ∈ M,v ∈ Tm(M)}
with π(m, v) = m. The unique smooth structure on T (M) is given by requiring π to

be smooth. It can be proved that T (M) is again a smooth manifold of dimension 2n.

(T (M), π) is a smooth vector bundle of rank n.

Also we can consider the dual vector space T ∗m(M) of Tm(M) at each m ∈ M .

This is again an n-dimensional vector space. We shall denote the dual basis cor-

responding to the basis { ∂
∂xi

: 1 ≤ i ≤ n} by {dxi : 1 ≤ i ≤ n}. Then sim-

ilarly (T ∗(M), π) is again a smooth locally trivial vector bundle of rank n, where

T ∗(M) := {(m, v) : m ∈M,v ∈ T ∗m(M)} and π(m, v) = m. This is called the cotangent

bundle of M .

If we consider k-fold tensor product of T ∗m(M) and denote it by T ∗m(M)⊗
k
, then defin-

ing Ωk(M) := {(m, v) : m ∈ M, v ∈ T ∗m(M)⊗
k} and π : Ωk(M) → M by π(m, v) = m,

(Ωk(M), π) is again a smooth vector bundle over M . If we consider k-fold wedge prod-

uct of T ∗m(M) and following similar construction we get another smooth vector bundle

(Λk(M), π) over M . Note that the cotangent bundle is nothing but (Λ1(M), π) which

is the same as (Ω1(M), π).
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C∞(M) bimodule of sections of a vector bundle

Definition 1.1.9. A smooth section of a smooth vector bundle (E, π) over a smooth

manifold M is a smooth map s : M → E such that π ◦ s = id on M .

By definition its clear that s(m) ∈ π−1(m) for all m ∈ M . The space of smooth

sections of a vector bundle (E, π) is denoted by Γ(E). It can be given a C∞(M)-

bimodule structure in the following way:

Let f, g ∈ C∞(M) and s ∈ Γ(E). Then the right and left actions are given by

(f.s.g)(m) := f(m)s(m)g(m). Then it is easy to check that (f.s.g) again belongs to

Γ(E).

Examples

1. Smooth vector fields

The space of smooth sections of the tangent bundle (T (M), π) over a manifold

M is called the vector fields of the manifold M . It is generally denoted by χ(M).

Although in general a smooth vector field does not have a global expression, it has

local expression in terms of local coordinates. Let X ∈ χ(M) and m ∈ M such that

m ∈ Uα for some trivializing neighborhood Uα with local coordinates (x1, ..., xn). Then

on Uα, X(m) =
∑n

i=1 ci
∂
∂xi
|m. Using the smoothness condition in fact we can show

that for all α, X|Uα =
∑n

i=1 f
α
i

∂
∂xi

for some fαi ∈ C∞(Uα). Any smooth vector field

X maps a C∞(M) function to a smooth function . For that take f ∈ C∞(M), then

(Xf) ∈ C∞(M) is defined by (Xf)(m) := X(m)(f). It can be shown that a vector field

X ∈ χ(M) is smooth if and only if (Xf) ∈ C∞(M) for all f ∈ C∞(M). With this Lie

Bracket of two smooth vector fields can be defined as follows:

Take X,Y ∈ χ(M) and f ∈ C∞(M) and ([X,Y ]f)(m) = X(m)(Y f) − Y (m)(Xf).

It is straightforward to verify that [X,Y ] ∈ χ(M) for X,Y ∈ χ(M). The Lie bracket

satisfies [X,Y ] = −[Y,X] and [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 for all X,Y, Z ∈
χ(M). In particular [X,X] = 0.

2. Space of k-forms: The de-Rham differential

The C∞(M) bimodule of smooth sections of the vector bundles (Ωk(M), π) and

(Λk(M), π) are denoted by Ωk(C∞(M)) and Λk(C∞(M)) respectively. Λk(C∞(M)) is

called the space of k-forms for all k. From the definition it follows that Λk(C∞(M))

vanishes for k ≥ (n+1) when the manifold M is n-dimensional. Like in the vector fields,

any smooth k-form s has a local expression s|Uα =
∑

1≤i1<i2<....<ik≤n f
α
i1i2...ik

dxi1 ∧
dxi2 ∧ ... ∧ dxik , where {dxi : 1 ≤ i ≤ n} is a basis for T ∗m(M) on Uα as discussed

earlier. Alternatively a k-form s at each point m ∈M , s(m) is a multilinear alternating

functional on T ∗m(M) ×...×︸ ︷︷ ︸
k−times

T ∗m(M). With this we can define the exterior derivative
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d : Λk(C∞(M))→ Λk+1(C∞(M)) in the following way:

Let θ be a k-form. Let X1, ..., Xk+1 ∈ χ(M). Then we can define a smooth function

θ̃(X1, ..., Xk+1) =
∑
i

(−1)i−1Xiθ(X1, ..., Xi−1, Xi+1, ..., Xk+1)

+
∑
i<j

θ([Xi, Xj ], X1, ...X̂i, ..., X̂j , ..., Xk+1)

Then for v1, ..., vk+1 ∈ T ∗m(M) choose vector fields X1, ..., Xk+1 ∈ χ(M) such that

Xi(m) = vi and define dθ(v1, ..., vk+1) := θ̃(X1, ..., Xk+1)(m). It can be shown that this

definition is independent of choice of chosen vector fields and dθ is multilinear linear

functional and d2 = 0. Also for f ∈ C∞(M), df is the usual differential of f i.e. in

local coordinates df = ∂f
∂xi
dxi on each Uα with local coordinates {xi : 1 ≤ i ≤ n}. This

is called the de-Rham differential. Below we state a well known fact connecting the

orientability of a smooth manifold and n-form.

Proposition 1.1.10. A smooth manifold of dimension n is orientable if and only if

it has a globally defined smooth n-form called the volume form. We shall denote the

globally defined volume form of an oriented manifold by dvol. (see [46])

Riemannian manifolds

Definition 1.1.11. A Riemannian manifold M is a manifold for which is given at each

m ∈M , a positive definite symmetric bilinear form <,> on each Tm(M) such that for

each coordinate (x1, ..., xn) the functions gij :=< ∂
∂xi
, ∂
∂xi

> are smooth functions.

Remark 1.1.12. Observe that it is enough to specify the functions gij to completely de-

termine the metric. Alternatively one can specify the same on the vector spaces T ∗m(M),

more precisely one can specify the functions gij =< dxi, dxj > to determine the metric.

We shall generally work with the cotangent bundle.

Classical Hilbert space of forms

Let M be an n-dimensional oriented Riemannian manifold and Λk(C∞(M))(k = 1, ..., n)

be the space of smooth k-forms over the manifold. The de-Rham differential d maps

Λk(C∞(M)) to Λk+1(C∞(M)). Let Ω ∼= Ω(M) = ⊕kΛk(C∞(M)). We will denote

the Riemannian volume element by dvol. The Hilbert space L2(M) is obtained by

completing C∞c (M) (compactly supported smooth functions) with respect to the pre

inner product defined by < f1, f2 >:=
∫
M f̄1f2 dvol. In an analogous way, one can

construct a canonical Hilbert space of forms. The Riemannian metric induces an inner

product on the vector space T ∗m(M) for all m ∈M and hence also on Λk(C∞(M)). This

gives a pre inner product on the space of compactly supported k-forms by integrating
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the compactly supported smooth function m →< ω(m), η(m) >m over M for ω, η ∈
Λk(C∞(M)). We denote the completion of this space by Hk(M). Let H = ⊕kHk(M).

Then one can view d : Ω(M)→ Ω(M) as an unbounded, densely defined operator (again

denoted by d) on H with domain Ω(M). We denote its adjoint by d∗.

Isometry groups of classical manifolds

Let M be a Riemannaian manifold of dimension n. Then the collection of all isometries

of M has a natural group structure and is denoted by ISO(M). Let C and U be

respectively compact and open subsets of M and let W (C,U) = {h ∈ ISO(M) : h.C ⊂
U}. The compact open topology is the smallest topology on ISO(M) for which the sets

W (C,U) are open. It follows (see [28]) that under this topology ISO(M) is a closed

locally compact group. Moreover, if M is compact, ISO(M) is also compact.

We recall the Laplacian L onM is an unbounded densely defined self adjoint operator

−d∗d on the space of zero forms H0(D) = L2(M,dvol) which has the local expression

L(f) = − 1√
det(g)

n∑
i,j=1

∂

∂xj
(gij
√
det(g)

∂

∂xi
f)

for f ∈ C∞(M) and where g = ((gij)) is the Riemannian metric and g−1 = ((gij)).

It is well known that on a compact manifold, the Laplacian has compact resolvents.

Thus, the set of eigen values of L is countable, each having finite multiplicities, and

accumulating only at infinity. Moreover there exists an orthonormal basis of L2(M)

consisting of eigen vectors of L which belongs to C∞(M). It can be shown (Lemma 2.3

of [22]) that for a compact manifold, the complex linear span of eigen vectors of L is

dense in C∞(M) in the sup norm.

The following result is in the form in which it has been stated and proved in [22]

(Proposition 2.1).

Proposition 1.1.13. Let M be a compact Riemannian manifold. Let L be the Laplacian

of M . A smooth map γ : M →M is a Riemannian isometry if and only if γ commutes

with L in the sense that L(f ◦ γ) = (L(f)) ◦ γ for all f ∈ C∞(M).

Using this fact, we give an operator theoretic proof of the fact that for a compact

manifold, ISO(M) is compact. As the action of ISO(M) commutes with the Laplacian,

it has a unitary representation on L2(M). As the action preserves the finite dimensional

eigen spaces of the Laplacian, ISO(M) is a subgroup of U(d1) × U(d2) × .... (where

{di : i ≥ 0} denote the dimensions of the eigen spaces of the Laplacian and U(d)

denotes the group of unitary operators on a Hilbert space of dimension d) which is a

compact group. As ISO(M) is closed, it is a closed subgroup of a compact group, hence

compact.
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Examples:

1. The isometry group of the n-sphere Sn is O(n+ 1) where the action is given by the

usual action of O(n+ 1) on Rn+1.

2. The isometry group of the circle S1 is S1 o Z2. Here Z2(= {0, 1}) action on S1 is

given by 1.z = z̄ where z is in S1 while the action of S1 is its action on itself.

Lie groups

Definition 1.1.14. A Lie group is a set G which is both a group and a smooth manifold

such that the group multiplication and the inverse operation are smooth with respect to

the manifold structures of G and G×G.

Examples

1. The general linear group of invertible linear transformations of Rn denoted by

GL(n,R) is an example of a Lie group considered as an open subset of Rn2
. This

is a disconnected Lie group. However if we consider GL(n,C), this becomes a con-

nected Lie group.

2. The group of orthogonal linear transformations of Rn denoted by O(n,R) is an ex-

ample of a compact Lie group. This is a Lie subgroup(which is both a subgroup and a

submanifold) of GL(n,R). Similarly the group of special orthogonal linear transforma-

tions SO(n,R) (component of O(n,R) with determinant 1) is also a Lie group.

3. Spin group

Definition 1.1.15. Let Q be a quadratic form on an n-dimensional vector space V .

Then the Clifford algebra Cl(V,Q) is the universal associative algebra C equipped with

a linear map i : V → C, such that i(V ) generates C as a unital algebra satisfying

i(v)2 = Q(v).1.

Let β : V → Cl(V,Q) be defined by β(x) = −i(x). Then, Cl(V,Q) = Cl0(V,Q) ⊕
Cl1(V,Q) where Cl0(V,Q) = {x ∈ Cl(V,Q) : β(x) = x}, Cl1(V,Q) = {x ∈ Cl(V,Q) :

β(x) = −x}. We will denote by Cn and CCn the Clifford algebras Cl(Rn,−x2
1 − ...− x2

n)

and Cl(Cn,−z2
1 − ...− z2

n).

We will denote the vector space C2[n
2

] by the symbol ∆n. It follows that CCn =

End(∆n) if n is even and equals End(∆n)⊕End(∆n) if n is odd. There is a represen-

tation CCn → End(∆n) which is the isomorphism when n is even and in the odd case, it

is the isomorphism with End(∆n)⊕ End(∆n) followed by the projection onto the first

coordinate. This representation restricts to Cn to be denoted by κn and called the spin

representation. This representation is irreducible when n is even and it decomposes into

two irreducible representations decomposing ∆n into a direct sum of two vector spaces

∆+
n and ∆−n .
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Pin(n) is defined to be the subgroup of Cn generated by elements of the form

{x : ||x|| = 1, x ∈ Rn}. Spin(n) is the group given by Pin(n) ∩ C0
n. There exists a

continuous group homomorphism from Pin(n) to O(n) which restricts to a two cover-

ing map λ : Spin(n)→ SO(n).

4. The isometry groups of classical compact Riemannian manifolds are Lie groups.

1.1.2 Principal fibre bundle

Definition 1.1.16. Let G be a Lie group and M be a smooth manifold. Then G is said

to act smoothly to the right of M if there is a smooth map φ : M × G → M such that

for each g ∈ G, the map g : M →M given by g(m) = φ(m, g) is a diffeomorphism and

φ(m, gh) = φ(φ(m, g), h). It is said to act transitively if for any two m,n ∈ M there

is a g ∈ G such that φ(g,m) = n and it is said to act freely if the only element of the

group fixing an element of the manifold is the identity.

It can be shown that if a Lie group G acts smoothly, transitively and freely then the

quotient space of M (denoted by M//G) under the action of G can be given a unique

manifold structure such that the map π : M →M//G is a smooth map.

Definition 1.1.17. A principal fibre bundle is a set (P,G,M) such that

(i) P and M are smooth manifolds and G is a Lie group.

(ii) G acts smoothly and freely to the right of P such that the corresponding quotient

manifold is the manifold M so that the projection map π : P → M is smooth and G

acts transitively on each fibre π−1(m).

(iii) P is locally trivial meaning that for each m ∈ M , there is a neighborhood U of m

such that there is a smooth map FU : π−1(U) → G commuting with the right action of

G on P and the map π−1(U) → U × G, p → (π(p), FU (p)) is a diffeomorphism. G is

called the structure group.

Example

Bundle of bases: The orthonormal frame bundle

Let M be a smooth Riemannian manifold of dimension n. Then we define BM :=

{(m, e1, ..., en)} where (e1, ..., en) is a basis of Tm(M). Define π : BM → M in

the obvious way. Then GL(n,R) acts transitively and freely on BM from right.

The action is given by φ((m, e1, ..., en), g) := (m,
∑n

i=1 gi1ei, ...,
∑n

i=1 ginei), where

g = ((gij))1≤i,j≤n ∈ GL(n,R). Then G acts freely on the right of BM . Let m ∈M and

m ∈ U such that U is a coordinate neighborhood of M with local coordinates (x1, ..., xn).

Then we define FU on π−1(U) by FU (m
′
, f1, ..., fn) = ((dxj(fi)))1≤i,j≤n ∈ GL(n,R) for

m
′ ∈ U . Then the functions yi := xiπ and yij := gijFU where gij ’s are standard coor-

dinates of GL(n,R) give local coordinate system on π−1(U) of BM . It is convenient to
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identify the bundle of bases as a subbundle of the bundle E = Hom(M × Rn,Ω1(M))

with fibres at m isomorphic to non singular linear transformations from Rn → T ∗m(M).

If we further demand that the linear transformations to be inner product preserving

with respect to the canonical Euclidean inner products of Rn and the Riemannian inner

product of T ∗m(M) we get what is called the orthonormal frame bundle and denoted by

OM . This is a principal fibre bundle with structure group O(n). The total space of the

orthonormal frame bundle is always an orientable, parallelizable smooth manifold.

Definition 1.1.18. Let (P,G,M) be a principal fibre bundle and F be a manifold on

which G acts from left. The associated bundle corresponding to (P,G,M) with fibre F

is defined as follows:

Let B
′

= P ×F with right action of G on B
′

defined by φ((p, f)g) = (φ(p, g), g−1f).

Let B = B
′
//G, the quotient space with respect to the action of G. Then if we define

π
′

: B → M by π
′
((p, f)G) = π(p), then B is the total space of the associated fibre

bundle. If m ∈ M , take U to be the coordinate neighborhood around m with FU :

π−1(U) → G, we have F
′
U : π

′−1
(U) → F given by F

′
U ((p, f)G) := FU (p)f . Then

π
′−1

(U) is homeomorphic to U × F . We give B a manifold structure by requiring these

homeomorphisms to be diffeomorphisms. With these structures, π
′

is a smooth map.

Example

The tangent bundle

Consider the bundle of bases B(M). Consider the manifold Rn and the structure group

GL(n,R) acing on it from left. Then the corresponding associated bundle is the Tangent

bundle of the manifold M with Rn as fibre.

1.1.3 Dirac operators

Definition 1.1.19. Let M be a smooth, oriented Riemannian manifold of dimension n.

Then we have the oriented orthonormal frame bundle OM over M , which is a principal

SO(n) bundle. Such a manifold is called a spin manifold if there exists a pair (P,Λ)

(called a spin structure) where

(1) P is a Spin(n) principal bundle over M .

(2) Λ is a map from P to F such that it is a 2-covering map as well as a bundle map

(i.e. maps a fibre over a point to the fibre over that same point) over M .

(3) Λ(pĝ) = Λ(p)g where λ(ĝ) = g.

Given such a spin structure, we consider the associated bundle S = P ×∆n where

Spin(n) acts on ∆n by its representation on ∆n. This is called the ”bundle of spinors”

S. Now on the space of smooth sections of spinors Λ(S), one can define an inner product
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by

< s1, s2 >S=

∫
M
< s1(x), s2(x) > dvol(x)

where dvol is the globally defined volume form (which exists on an oriented manifold).

The Hilbert space obtained by completing the space of smooth sections with respect

to this inner product is denoted by L2(S) and the members are called the square inte-

grable spinors. We assume the reader’s familiarity of theory of connections on Principal

fibre bundles and associated bundles. The reader might consult [14]. The Levi Civita

connection induces a canonical connection on S which we shall denote by ∇S .

Definition 1.1.20. Let M be an oriented, Riemannian spin manifold. Then the Dirac

operator D on M is the self adjoint extension of the following operator defined on the

smooth sections of S:

(Ds)(m) =

n∑
i=1

κn(Xi(m))(∇SXis)(m),

where (X1, ..., Xn) are local orthonormal (with respect to the Riemannian structure)

defined in a neighborhood of m.

In the above definition, we have viewed Xi(m) belonging to Tm(M) as an element

of the Clifford algebra ClC(Tm(M)), hence κn(Xi(m)) is a map on the fibre of S at m,

which is isomorphic to ∆n. The self adjoint extension of D is again denoted by the

same symbol D. We recall three important facts about the Dirac operator:

Proposition 1.1.21. (1) C∞(M) acts on S by multiplication and this action extends

to a representation, say π, of the C∗ algebra C(M) on the Hilbert space L2(S).

(2) For f ∈ C∞(M), [D,π(f)] has a bounded extension.

(3) Furthermore, the Dirac operator on a compact manifold has compact resolvents.

The Dirac operator carries a lot of geometric and topological informations. We give

two examples:

(a) The Riemannian metric of the manifold is recovered by

d(p, q) = supφ∈C∞(M),||[D,π(φ)]||≤1|φ(p)− φ(q)|.

(b) For a compact manifold, the operator e−tD
2

is trace class for all t > 0. The volume

form of the manifold can be recovered by the formula∫
M
f dvol = c(n)limt→0

Tr(π(f)e−tD
2
)

Tr(e−tD2)

where dim M = n, c(n) is a constant depending on the dimension.
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1.1.4 Group of orientation preserving Riemannian isometries of a Rie-

mannian spin manifold

We start this subsection with a Lemma.

Lemma 1.1.22. Let M be a compact metrizable space, B, B̃ Polish spaces (complete

separable metric space) such that there is an n-covering map Λ : B → B̃. Then any

continuous map ξ : M → B admits a lifting ξ̃ : M → B̃ which is Borel measurable and

Γ ◦ ξ̃ = ξ. In particular, if B̃ and B are topological bundles over M , with Λ being a

bundle map, any continuous section of B admits a lifting which is a measurable section

of B̃.

With this lemma in hand let M be a Riemannaian spin manifold (hence orientable)

with a fixed choice of orientation. Let f be a smooth orientation preserving Riemannian

isometry of M , and consider the bundles E = Hom(F, f∗(F )) and Ẽ = Hom(P, f∗(P ))

(where Hom denotes the set of bundle maps). We view df as a section of the bundle

in a natural way. By the previous Lemma, we obtain a measurable lift d̃f : M → Ẽ,

which is a measurable section of Ẽ. Using this, we define a map on the space of mea-

surable section of S = P ×Spin(n) ∆n as follows: Given a (measurable) section ξ of

S, say of the form ξ(m) = [p(m), v] where p(m) is in Pm, v in ∆n, we define U(ξ) by

U(ξ)(m) = [d̃f(f−1(m))(p(f−1(m))), v]. Note that sections of the above form constitute

a total subset in L2(S), and the map ξ → U(ξ) is clearly a densely defined linear map

on L2(S), whose fibre wise action is unitary since the Spin(n) action is so on ∆n. Thus

it extends to a unitary U on H = L2(S). Any such U induced by the map f , will bw

denoted by Uf (it is not unique since the choice of the lifting used in the construction

is not unique). With these, below we state a Theorem (whose proof is given in [10])

which will help us to formulate quantum analogue of orientation preserving Riemannian

isometry later.

Theorem 1.1.23. Let M be a compact Riemannian spin manifold (hence orientable

and fix a choice of orientation) with the usual Dirac operator D acting as an unbounded

self adjoint on the Hilbert space H of the square integrable spinors, and let S denote

the spinor bundle with Γ(S) being the C∞(M) module of smooth sections of S. Let

f : M →M be a smooth one to one map which is an orientation preserving Riemannian

isometry. Then the unitary Uf on H commutes with D and UfMφU
∗
f = Mφ◦f , for any

φ ∈ C(M), where Mφ denotes the operator of multiplication by φ on L2(S).

Conversely, suppose that U is a unitary on H such that UD = DU and the map

αU = UXU−1 for X ∈ B(H) maps C(M) into C(M)′′ = L∞(M), then there is a smooth

one to one orientation preserving Riemannian isometry f on M such that U = Uf .
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1.2 Topological ∗-algebras and their tensor products

A topological ∗-algebra is a ∗-algebra such that the algebraic multiplication and the

involution operations are continuous with respect to the topology it has. For this thesis

purpose we need to go beyond the topological ∗-algebras like C∗ and von Neumann

algebras and also need to consider their tensor products. This is quite well-known from

the literature. But for the sake of completeness and convenience of the reader we plan

to discuss them briefly.

1.2.1 C∗ algebras and tensor products

Definition 1.2.1. A C∗ algebra A is a Banach ∗-algebra such that the norm satisfies

the C∗ identity: ||x∗x|| = ||x||2 for all x ∈ A. A C∗ algebra is said to be unital or not

according to the fact that the C∗-algebra has a unit or not.

Given a locally compact Hausdorff space X, the algebra of continuous functions van-

ishing at infinity denoted by C0(X), with pointwise multiplication as algebra product,

complex conjugation as the involution and usual sup norm as the C∗ norm, is an ex-

ample of a C∗ algebra. It is non unital. However if the space X is compact, continuous

functions on X denoted by C(X) is a unital C∗ algebra. It is remarkable that in fact

any non unital commutative C∗ algebra is necessarily an algebra of continuous functions

vanishing at infinity on some locally compact Hausdorff space whereas any unital C∗

algebra is space of continuous functions on some compact Hausdorff space. This is due

to Gelfand. In this thesis we shall always be concerned with unital C∗ algebras and

thus decide to sketch (very briefly) the idea for the unital case.

For a C∗ algebra A one defines the maximal ideal space (denoted by sp(A)) as the

set of all multiplicative linear functionals on A. Then the map a → (â : h → h(a)),

for a ∈ A and h ∈ sp(A) establishes a C∗ isomorphism between A and C(sp(A)). The

space sp(A) is a subspace of the dual of A and endowed with the weak ∗-topology is a

compact Hausdorff space. For details of the proof the reader is referred to [19].

In case of a non commutative C∗ algebra A, what we can say is that there is a

Hilbert space H such that A can be faithfully represented as ∗ subalgebra of B(H).

It is a fact that for a C∗ homomorphism between two C∗ algebras injectivity implies

isometry. It follows easily from what is known as continuous functional calculus on a

C∗ algebra and for details again the reader is referred to first chapter of [19]. Returning

to representation of a general noncommutative unital C∗ algebra, the existence of such

a faithful representation heavily depends on construction of GNS triple. For that recall

that any linear functional on a C∗ algebra with norm one is called a state. Given such

a state φ on a C∗ algebra A, we have a triple (called GNS triple) (Hφ, πφ, ξφ) consisting

of a Hilbert space Hφ, a ∗-representation πφ of A in B(Hφ) and a cyclic vector ξφ in the
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sense that {πφ(x)ξφ : x ∈ A} is total in Hφ satisfying

φ(x) =< ξφ, πφ(x)ξφ > .

Let us denote the state space of A by S(A). Then taking the representation π :=

⊕φ∈S(A)πφ of A on the Hilbert space H := ⊕φ∈S(A)Hφ, we get a faithful and hence an

isometric embedding of A on the Hilbert space H. For details see [19].

Examples

1. Commutative C∗ algebra

For any compact Hausdorff space X, the space of continuous functions on X with the

usual ∗-algebra structure and sup norm is a unital C∗ algebra and as already noted,

any commutative C∗ algebra comes this way.

2. Compact operators

Given a separable Hilbert space H, any ∗-subalgebra of B(H) which is norm closed is an

example of a C∗-algebra. It is a well known fact that the algebra of compact operators

(which is the norm closure of finite rank operators) denoted by B0(H) is an example of

such a C∗-algebra. Its an example of a non unital C∗ algebra when the Hilbert space is

infinite dimensional.

3. Noncommutative two-torus

A large class of C∗ algebras is obtained by the following construction. Let A0 be

an associative ∗-algebra without a-priori a norm such that the set F = {π : A0 →
B(Hπ) ∗ − homomorphism, Hπ a Hilbert space} is non empty and ||.||u defined by

||a||u = sup{||π(a)|| : π ∈ F} is finite for all a ∈ A0. Then the corresponding completion

of A0 with respect to ||.||u is called the universal C∗ algebra corresponding to A0. Here

is an example:

Let θ belongs to [0, 1]. Consider the ∗-algebra A0 generated by two unitary symbols

U and V satisfying the relation UV = e2πiθV U . It has a representation π on the Hilbert

space L2(S1) defined by π(U)(f)(z) = f(e2πiθz), π(V )(f)(z) = zf(z) where f ∈ L2(S1)

and z ∈ S1. Then ||a||u is finite for all a ∈ A0. The resulting C∗ algebra is called the

noncommutative two torus and denoted by Aθ.
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4. Group C∗ algebra

Let G be a locally compact group with left Haar measure µ. One can make L1(G) a

Banach ∗-algebra by defining

(f ? g) =

∫
G
f(s)g(s−1t)dµ(s),

f∗(t) = ∆(t)−1f(t−1).

Here f, g ∈ L1(G), ∆ is the modular homomorphism of G.

L1(G) has a distinguished representation πreg on L2(G) defined by πreg(f) =∫
f(t)π(t)dµ(t) where π(t) is the unitary operator on L2(G) defined by (π(t)f)(g) =

f(t−1g)(f ∈ L2(G), t, g ∈ G). The reduced group C∗ algebra of G is defined to be

C∗r (G) := πreg(L1(G))
B(L2(G))

.

Remark 1.2.2. For G Abelian, we have C∗r (G) ∼= C0(Ĝ) where Ĝ is the group of

characters on G.

One can also consider the universal C∗ algebra as described in example 2 correspond-

ing to the Banach ∗-algebra L1(G). This is called the free or full group C∗ algebra and

denoted by C∗(G).

Remark 1.2.3. For the so-called amenable groups we have C∗(G) ∼= C∗r (G).

Now we briefly recall how we can form tensor products of two C∗ algebras. Given

two C∗ algebras A and B, we can form their algebraic tensor product (denoted by A⊗B
throughout this thesis) which will again be a ∗-algebra in the usual way. But it turns

out that the choice of equipping this algebraic tensor product with a C∗ norm is far

from unique. For details of this issue we refer the reader to Appendix T of [41]. One

such choice is what is called the spatial C∗ norm. It is given in the following way:

Given two C∗ algebras A and B, by the earlier discussion we can find two Hilbert

spaces H and K such that A and B are embedded isometrically in B(H) and B(K)

respectively. Then A⊗B has a natural representation on B(H⊗K) and hence has a C∗

norm inherited from B(H⊗K). This norm is called the spatial C∗ norm and it is a fact

that it does not depend upon the embeddings of A and B. Completion with respect to

this norm is called the spatial tensor product and throughout this thesis corresponding

C∗ algebra will always be denoted by A⊗̂B. There are other choices of C∗ norms on the

algebraic tensor product. But since we shall only use the spatial norm we don’t discuss

the other choices.

For a C∗ algebra A (possibly non unital), its multiplier algebra, denoted by M(A)

is defined as the maximal C∗ algebra which contains A as an essential two sided ideal,
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that is, A is an ideal in M(A) and for y ∈ M(A), ya = 0 for all a ∈ A implies y = 0.

The norm of M(A) is given by ||x|| = supa∈A,||a||≤1{||xa||, ||ax||}. There is a locally

convex topology called the strict topology on M(A), which is given by the family of

seminorms {||.||a, a ∈ A}, where ||x||a = Max(||xa||, ||ax||), for x ∈ M(A). M(A) is

the completion of A in the strict topology. For an example the multiplier algebra of the

C∗ algebra B0(H) is B(H) for a separable Hilbert space H. The corresponding strict

topology is the same as SOT (see section on von Neumann algebra for the definition of

SOT topology)∗ topology of B(H).

Given a separable Hilbert space H and a C∗ algebra A, we can consider the spatial

tensor product B0(H)⊗̂A and its multiplier algebra M(B0(H)⊗̂A).

Lemma 1.2.4. For a state φ on A the map (id⊗ φ) maps M(B0(H)⊗̂A) into B(H).

Proof:

First note that (id ⊗ φ) : B0(H)⊗̂Q → B0(H). Let X ∈ M(B0(H)⊗̂Q). Then there

exists Xn ∈ (B0(H)⊗̂Q) such that Xn → X in strict topology of M(B0(H)⊗̂Q), i.e.

XnA→ XA and AXn → AX in the C∗ algebra B0(H)⊗̂Q for all A ∈ B0(H)⊗̂Q.

We will show that (id⊗ φ)Xn ∈ B0(H) is strictly Cauchy in B0(H) and hence defining

(id⊗ φ)X as the strict limit of (id⊗ φ)Xn we can deduce that (id⊗ φ)X ∈ B(H).

Let T ∈ B0(H). Then (T ⊗ 1) ∈ B0(H)⊗̂Q and

||((id⊗ φ)Xn)T − ((id⊗ φ)Xm)T ||

= ||(id⊗ φ)(Xn(T ⊗ 1))− (id⊗ φ)(Xm(T ⊗ 1)||

≤ ||Xn(T ⊗ 1)−Xm(T ⊗ 1)|

2

Definition 1.2.5. Given a family (Ai)i∈I of unital C∗ algebras, their unital C∗ algebra

free product ∗i∈IAi is the unique C∗-algebra A together with unital ∗-homomorphisms

ψi : Ai → A such that given any C∗ algebra B and unital ∗ homomorphism φi : Ai → B
there exists a unique unital ∗-homomorphism Φ : A → B such that φi = Φψi.

Remark 1.2.6. It is a direct consequence of the above definition that given a family of

C∗ homomorphisms φi from Ai to B, there exists a C∗ homomorphism ∗iφi such that

(∗iφi)ψi = φi for all i.

1.2.2 von Neumann algebras

We recall that for a Hilbert space H, the strong operator topology (SOT) and the

weak operator topology (WOT) are the locally convex topologies on B(H) given
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by the family of seminorms F1, F2 respectively where F1 = {pξ : ξ ∈ H}, F2 = {pξ,η :

ξ, η ∈ H} and pξ(x) = ||xξ||,pξ,η(x) = | < xξ, η > | for x ∈ B(H).

Definition 1.2.7. A C∗ subalgebra B of B(H) is called a von Neumann algebra if it is

closed in the strong operator topology.

Here we crucially observe that the definition is dependent on the choice of ambient

Hilbert space. There is another intrinsic definition , but since we do not need von

Neumann algebra in great detail, we don’t go in that direction. Also since C∗ algebras

are convex, by Theorem 16.2 of [57], we can as well take the WOT closure of B in B(H).

It is also a standard fact that a C∗ algebra inside a B(H) is closed in SOT topology

if and only if it is the same as its double commutant in B(H) (von Neumann’s double

commutant theorem, see Theorem 18.6 of [57]).

Examples

1. Abelian von Neumann algebras

We start with a compact Hausdorff space X. Then we have a Borel measure on X. We

pick one such Borel measure and denote it by µ. Then we have the standard Hilbert

space (denoted by L2(X,µ)) of square integrable functions on X. Then C(X) (space of

all continuous functions on X) acts as multiplication operator on L2(X,µ) and is a C∗

subalgebra of B(L2(X,µ)). Its SOT closure in B(L2(X,µ)) is L∞(X,µ) acting again as

multiplication operator on L2(X,µ). It is an example of Abelian von Neumann algebra.

Like the C∗ case, we have a similar result for von Neumann algebra. More precisely we

have the following (Theorem 22.6 of [57])

Theorem 1.2.8. Every Abelian von Neumann algebra B acting on a seperable Hilbert

space H is C∗ isomorphic to some L∞(K,µ), where K is a compact Hausdorff space

and µ is a finite positive Borel measure on K with supp µ=K.

2. Group von Neumann algebra

Let G be a discrete group. Then we can form a Hilbert space from this group (denoted

by l2(G)) where the space is l2(G) = {f : G → C|
∑

g∈G |f(g)|2 < ∞} and the inner

product is given by < f, h >=
∑

g∈G f(g)h(g). With respect to this inner product we

have an orthonormal basis {χg(h) := δg,h : g ∈ G}. Then we can define left regular

representation λ of G on the Hilbert space l2(G) given by

λ : G→ B(l2(G))

g → (λ(g)χh = χgh)
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Then span{λ(G)} is a ∗-subalgebra of B(l2(G)). The SOT closure of span{λ(G)} in

B(l2(G)) is called the group von Neumann algebra.

1.2.3 Fréchet algebras and their tensor products: Nuclearity

A locally convex space is a vector space together with a locally convex topology given

by a family of seminorms. A locally convex space is called a Fréchet space if the

corresponding family of seminorms is countable (hence the space is metrizable) and the

space is complete with respect to its topology. Let A and B be two such locally convex

spaces with family of seminorms SA and SB respectively. Then one wants a family

of seminorms {γpq : p ∈ SA, q ∈ SB} (called cross seminorm) on the algebraic tensor

product A ⊗ B such that γpq(a ⊗ b) = p(a)q(b) for a ∈ A, b ∈ B. The problem is that

this choice is far from unique and there is a maximal and minimal such choice.

Firstly, equip A⊗B with the locally convex topology given by the family of semi

norms {γpq : p ∈ SA, q ∈ SB} where γpq(ξ) = inf
∑
p(ai)q(bi) and the infimum is

taken over all possible expressions of ξ =
∑
ai ⊗ bi. This is called the projective tensor

product. We denote the completion of A⊗B in this topology by A⊗̂πB. The projective

seminorm is maximal in the sense that if {θpq : p ∈ SA, q ∈ SB} is another family of

cross seminorms then for ξ ∈ A⊗ B, γpq(ξ) > θpq(ξ).

There is another topology which we can give to the algebraic tensor product. For that

for any subspace K of A(B), we denote its polar by K0, i.e. K0 = {φ ∈ A∗(B∗);φ(y) ≤
1, for y ∈ K}. Then we define a family of seminorms on A⊗ B by

λpq(ξ) = supa′∈E0
p ,b
′∈E0

q
(|

n∑
i=1

a
′
(ai)b

′
(bi)|),

where ξ =
∑n

i=1 ai ⊗ bi, Ep = {a ∈ A|p(a) ≤ 1} and Eq = {b ∈ B|q(b) ≤ 1}.
The topology induced by this family of seminorms on A ⊗ B is called the injective

topology and corresponding completion is called the injective tensor product of A and B.

We denote the injective tensor product of A and B by A⊗̂εB. The injective seminorm is

minimal in the sense that if {θpq : p ∈ SA, q ∈ SB} is another family of cross seminorms

then for ξ ∈ A⊗ B, λpq(ξ) < θpq(ξ).

Definition 1.2.9. A locally convex space A is said to be nuclear if for any other locally

convex space B, A⊗̂εB ∼= A⊗̂πB.

Remark 1.2.10. Since, the projective seminorm is maximal cross seminorm and injec-

tive seminorm is minimal cross seminorm, we conclude that for a nuclear locally convex

space, there is essentially only one topological tensor product with another locally convex

space.
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Furthermore if the Fréchet space is a ∗ algebra then we demand that its ∗ algebraic

structure is compatible with its locally convex topology i.e. the adjoint (∗) is continuous

and multiplication is jointly continuous with respect to the topology. Projective or

injective tensor product of two such Fréchet ∗ algebras are again Fréchet ∗ algebra. We

shall mostly use unital ∗ algebras. Henceforth all the Fréchet ∗-algebras will be unital

unless otherwise mentioned.

Examples

We discuss an example of a nuclear Fréchet algebra which will be needed in this thesis.

Let M be compact smooth n dimensional manifold. Recall from Section (1) the

∗-algebra C∞(M). We equip it with a locally convex topology : we say a sequence

fn ∈ C∞(M) converges to an f ∈ C∞(M) if for a compact set K within a single

coordinate neighborhood (M being compact, has finitely many such neighborhoods)

and a multi index α, ∂αfn → ∂αf uniformly over K. Equivalently let U1, U2, ..., Ul be a

finite cover of M . Then it is a locally convex topology described by a countable family

of seminorms given by:

pK,αi = sup
x∈K
|∂αf(x)|,

where K is a compact set within Ui, α is any multi index, i = 1, 2, ....l. C∞(M) is

complete with respect to this topology (example 1.46 of [45] with obvious modifications)

and hence this makes C∞(M) a locally convex Fréchet ∗ algebra. Note that, by choosing

a finite C∞ partition of unity on the compact manifold M , we can obtain finite set

{δ1, ..., δN} for some N ≥ n of globally defined vector fields on M which is complete in

the sense that {δ1(m), ..., δN (m)} spans Tm(M) for all m (need not be a basis). This is

a ∗-subalgebra of the C∗-algebra C(M).

1.3 Hilbert bimodules

Let A and B be two topological ∗-subalgebras of B(H), for some Hilbert space H. Then

a pre Hilbert bimodule E is an A−B bimodule with a C bilinear map <<,>>: E×E → B
with the following properties:

(i) << x, yb >>=<< x, y >> b (x, y ∈ E , b ∈ B)

(ii)<< x, y >>=<< y, x >>∗ (x, y ∈ E).

(iii)<< x, x >>≥ 0 and << x, x >>= 0 if and only if x = 0.

If furthermore B is a Fréchet ∗-algebra, then we can talk about convergence of a sequence

in E . We say a sequence an ∈ E converges to a ∈ E if << an − a, an − a >>→ 0 in the

Fréchet topology of B. The completion of E in this topology is called a Hilbert A − B
bimodule. If the second condition of (iii) is dropped then the Hilbert module is called
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pre Hilbert bimodule.

Examples

1. Any C∗ algebra A is an example of a Hilbert Fréchet bimodule with the bimodule

structure coming from the multiplication of the algebra and corresponding A valued

inner product is given by << a, b >>:= a∗b.

2. Consider a separable infinite dimensional Hilbert space H. For a C∗ algebra A,

the algebraic tensor product H ⊗ A can be given trivial Hilbert A bimodule struc-

ture. The bimodule structure is given by a(
∑k

i=1 ξi ⊗ ai)a
′ := (

∑k
i=1 ξi ⊗ aaia

′) for

a, ai, a
′ ∈ A and the corresponding A-valued sesquilinear form defined on H ⊗ A by

<< ξ ⊗ a, ξ′ ⊗ a′ >>=< ξ, ξ′ > a∗a′. The completion of H⊗A with respect to this pre

Hilbert bimodule structure is a Hilbert A bimodule will be denoted by H⊗̄A.

3. Hilbert bimodule structure on exterior bundles

Riemannian structure and C∞(M)-valued inner product on one-forms

Let M be a compact smooth manifold. Also let Λk(C∞(M)) be the space of smooth

k forms on the manifold M . We equip Λ1(C∞(M)) with the natural locally con-

vex topology induced by the locally convex topology of C∞(M) given by a family

of seminorms {p(U,(x1,...,xn),K,β)}, where (U, (x1, . . . , xn)) is a local coordinate chart,

β = (β1, β2, . . . , βr) is a multi-index with αi ∈ {1, 2, . . . , n} as before, K is a com-

pact subset, and p(U,(x1,...,xn),K,β)(ω) := supx∈K,1≤i≤n |∂βfi(x)|, where fi ∈ C∞(M)

such that ω|U =
∑n

i=1 fidxi|U . It is clear from the definition that the differential map

d : C∞(M)→ Ω1(C∞(M)) is Fréchet continuous.

Lemma 1.3.1. Let A be a Fréchet dense subalgebra of C∞(M). Then Λ1(A) :=

Sp {fdg : f, g ∈ A} is dense in Λ1(C∞(M)).

Proof:

It is enough to approximate fdg where f, g ∈ C∞(M) by elements of Ω1(A). By Fréchet

density of A in C∞(M) we can choose sequences fm, gm ∈ A such that fm → f and

gm → g in the Fréchet topology, hence by the continuity of d and the C∞(M) module

multiplication of Λ1(C∞(M)), we see that fmdgm → fdg in Λ1(C∞(M)). 2

By the universal property ∃ a surjective bimodule morphism π ≡ π(1) : Ω1(C∞(M))u →
Λ1(C∞(M)), such that π(δg) = dg. Ω1(C∞(M))u has a C∞(M) bimodule structure:
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f(
n∑
i=1

giδhi) =
n∑
i=1

fgiδhi

(
n∑
i=1

giδhi)f =
n∑
i=1

(giδ(hif)− gihiδf)

As M is compact, there is a Riemannian structure. Using the Riemannian struc-

ture on M we can equip Ω1(C∞(M)) with a C∞(M) valued inner product <<∑n
i=1 fidgi,

∑n
i=1 f

′
idg
′
i >>∈ C∞(M) by the following prescription:

for x ∈ M choose a coordinate neighborhood (U, x1, x2, ...., xn) around x such that

dx1, dx2, ..., dxn is an orthonormal basis for T ∗xM . Note that the topology does not

depend upon any particular choice of the Riemannian metric. Then

<<
n∑
i=1

fidgi,
n∑
i=1

f ′idg
′
i >> (x) = (

∑
i,j,k,l

f̄if
′
j(
∂̄gi
∂xk

∂g′j
∂xl

))(x)

We see that a sequence ωn → ω in Λ1(C∞(M)) if << ωn−ω, ωn−ω >>→ 0 in Fréchet

topology of C∞(M). With this Λ1(C∞(M)) becomes a Hilbert module.

Hilbert bimodule of higher forms

Let us now recall from [34] (pages 95-108) an algebraic construction of the C∞(M)

bimodule of k-forms Λk(C∞(M)) on a manifold M from the so-called universal

forms. Ω2(C∞(M))u = Ω1(C∞(M))u ⊗C∞(M) Ω1(C∞(M))u and Ωk(C∞(M))u =

Ωk−1(C∞(M))u ⊗C∞(M) Ω1(C∞(M))u.

Also Ω1(C∞(M)) ≡ Λ1(C∞(M)). For k ≥ 2, Ωk(C∞(M)) = Ωk−1(C∞(M)) ⊗in
Ω1(C∞(M)).

Ω̇(C∞(M)) = ⊕k≥0Ωk(C∞(M)).

By the universality of Ω2(C∞(M))u, we have a surjective bimodule morphism

π(2) : Ω2(C∞(M))u → Ω2(C∞(M)).

Let J2 be a submodule of Ω2(C∞(M)) given by J2 = {π(2)(δω)|π(ω) = 0 for ω ∈
Ω1(C∞(M))u} . In fact it is closed. Denote Ω2(C∞(M))

J2 by Λ2(C∞(M)). Simi-

larly Λk(C∞(M)) = Ωk(C∞(M))
Jk where Jk = {π(k)(δω)|π(k−1)(ω) = 0 for ω ∈

Ωk−1(C∞(M))u}. If ω and η belong to Ω1(C∞(M)), sometimes we denote the im-

age of ω ⊗ η in Ω2(C∞(M)) by ωη and in Λ2(C∞(M)) by ω ∧ η. Similar notations will

be used for products in Ωk(C∞(M)) and Λk(C∞(M)). With this, the familiar de Rham
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differential is given by

d : Λk(C∞(M))→ Λk+1(C∞(M))

[π(k)(ω)]→ [π(k+1)(δω)] ([ξ] := ξ + Jk for ξ ∈ Ωk(C∞(M)))

Note that for all k, Ωk(C∞(M)) is the module of smooth sections of a hermitian, smooth,

locally trivial vector bundle Ek = Λ1(M) ⊗...⊗︸ ︷︷ ︸
k−times

Λ1(M) on M , whose fibre at x can be

identified with the finite dimensional Hilbert space Exk := (T ∗xM)⊗
k
, the inner product

coming from the Riemannian structure. By construction, the closed submodule Jk is

nothing but the module of smooth sections of a sub bundle (say Vk) of Ek, so that
Ek
Vk
∼= Λk(M). At the fibres of x ∈M , we have the orthogonal decomposition of Hilbert

spaces Exk = V x
k ⊕ (V x

k )⊥ identifying the fibre of Λk(M) at x with (V x
k )⊥. So we have

the following orthogonal decomposition of the Hilbert bimodule Ωk(C∞(M)):

Lemma 1.3.2. Ωk(C∞(M)) = Λk(C∞(M))⊕ Jk.

In other words, Λk(C∞(M)) is an orthocomplemented closed submodule of Ωk(C∞(M)).

We can also derive the above orthogonal decomposition in a purely algebraic way.

For example for k = 2, let π(2)(δf ⊗ δg) ∈ Ω2(C∞(M)). Then π(2)(δ(δ(g)f)) =

−π(2)(δg⊗δf), hence π(2)(δ(fδg−δgf)) = π(2)(δf⊗δg+δg⊗δf). But π(fδg−δgf) = 0

in Ω1(C∞(M)). So 1
2π(2)(δf ⊗ δg+ δg⊗ δf) ∈ J2. Similarly 1

2π(2)(δf ⊗ δg− δg⊗ δf) ∈
Λ2(C∞(M)).

Thus, π(2)(ηδf ⊗ δg) = 1
2π(2)(η(δf ⊗ δg + δg ⊗ δf)) + 1

2π(2)(η(δf ⊗ δg − δg ⊗ δf)).

Also by definition << π(2)(δf ⊗ δg + δg ⊗ δf), π(2)(δf ⊗ δg − δg ⊗ δf) >>= 0

For k ≥ 2, observe that the permutation group Sk naturally acts on Ωk(M), where

the action is induced by the obvious Sk-action on the finite dimensional Hilbert space

(T ∗xM)⊗
k
, which permutes the copies of T ∗xM at x ∈M . Then we have the orthogonal

decomposition of the Hilbert space (T ∗xM)⊗
k

into the spectral subspaces with respect

to the action of Sk. Explicitly

(T ∗xM)⊗
k

= ⊕χ∈ŜkP
x
χ ((T ∗xM)⊗

k
),

where P xχ is the spectral projection with respect to the character χ. Observe that

when χ = sgn, i.e. χ(σ) = sgn(σ), then P xχ ((T ∗xM)⊗
k
) = Λk(T ∗xM) and V x

k =

⊕χ 6=sgnP xχ ((T ∗xM)⊗
k
).

Clearly this fibre-wise decomposition induces a similar decomposition at the Hilbert
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bimodule level, i.e.

Ωk(C∞(M)) = ⊕χ 6=sgnPχ(Ωk(C∞(M)))⊕ Psgn(Ωk(C∞(M)))

= Jk(C∞(M))⊕ Λk(C∞(M)),

where Pχ now denotes the spectral projection with respect to χ for the Sk-action on

Ωk(C∞(M)) coming from P xχ fibre wise.

Also observe that the above arguments go through if we replace C∞(M) by any

subalgebra A. In fact, if we are given any semi-Riemannian (possibly degenerate)

structure on M which gives a nonnegative definite bilinear C∞-valued form which is

faithful (i.e. strictly positive definite) on Ω1(A) then the action of the permutation

group Sk on the k-fold tensor product Ωk(A) is inner product preserving, hence different

spectral subspaces for Sk-action are easily seen to be mutually orthogonal w.r.t. the

C∞(M)-valued inner product. Thus, we have the following

Corollary 1.3.3. Ωk(A) = Λk(A)⊕ JAk , where Ω1(A) = {
∑
fidgi, fi, gi ∈ A},

Ωk(A) = Ωk−1(A)⊗A Ω1(A),

JAk = {π(k)(δω)|π(k−1)(ω) = 0 for ω ∈ Ωk−1(A)u} and

Λk(A) =
Ωk(A)

JAk
,

Moreover if A is Fréchet dense in C∞(M), Ωk(A), Λk(A) and JAk are dense in the

Hilbert modules Ωk(C∞(M)), Λk(C∞(M)) and Jk respectively.

Now for a C∗ algebra Q, Λk(C∞(M))⊗̄Q has a natural C∞(M)⊗̂Q bimodule struc-

ture. The left action is given by

(
∑
i

fi ⊗ qi)(
∑
j

[π(k)(ωj)]⊗ q
′
j) = (

∑
i,j

[π(k)(fiωj)]⊗ qiq
′
j)

The right action is similarly given. The inner product is given by

<<
∑
i

ωi ⊗ qi,
∑
j

ω
′
j ⊗ q

′
j >>=

∑
i,j

<< ωi, ω
′
j >> ⊗q∗i q

′
j .

Topology on Λk(C∞(M))⊗̄Q is given by requiring ωn → ω if and only if << ωn −
ω, ωn − ω >>→ 0 in C∞(M)⊗̂Q or C∞(M,Q).
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1.3.1 Tensor products of Hilbert bimodules: interior and exterior ten-

sor products

Let E1 and E2 be two Hilbert bimodules over two Fréchet ∗ algebras C and D respectively

where one of them is nuclear (say D) and they are ∗ subalgebras of some B(H1) and

B(H2) as before. We denote the algebra valued inner product for the Hilbert bimodules

by <<,>>. When the bimodule is a Hilbert space, we denote the corresponding scalar

valued inner product by <,>. Then E1 ⊗ E2 has an obvious C ⊗ D bimodule structure,

given by (a⊗b)(e1⊗e2)(a′⊗b′) = ae1a
′⊗be2b

′ for a, a′ ∈ C, b, b′ ∈ D and e1 ∈ E1, e2 ∈ E2.

Also on E1 ⊗ E2 define << e1 ⊗ e2, f1 ⊗ f2 >>=<< e1, f1 >> ⊗ << e2, f2 >> for

e1, f1 ∈ E1 and e2, f2 ∈ E2.

Lemma 1.3.4. Extending the above definition of <<,>> linearly we get a sesquilinear

form on E1 ⊗ E2.

Proof:

Observe that for z =
∑
ei ⊗ fi, << z, z >>=

∑
i,j << ei, ej >> ⊗ << fi, fj >> and

apply lemmas 4.2 and 4.3 of [33]. 2

In fact this semi inner product is actually an inner product on E1 ⊗ E2. For a proof

consult chapter 6 of [33]. Then taking the double completion (both on the bimodule

and the Fréchet algebra level) we get a C⊗̂D Hilbert bimodule which we shall denote

by E1⊗̄E2. This is called the exterior tensor product of two Hilbert bimodules. Note

that when one of the bimodule is a Hilbert space H (with trivial Hilbert C bimodule

structure) and another is a C∗ algebra A, then performing the exterior tensor product

we get the usual Hilbert C∗ bimodule H⊗̄A as discussed earlier. Also when H = CN ,

we have a natural identification of an element T = ((Tij)) ∈ MN (Q) with the right Q
linear map of CN ⊗Q given by

ei 7→ ej ⊗ Tji,

where {ei}i=1,...,N is a basis for CN .

Let B, C, D be three locally convex ∗ algebras. Also let E1 be an B − C Hilbert

bimodule E2 be a C − D Hilbert bimodule. Then E1 ⊗C E2 is an B −D bimodule in the

usual way. We can define a D valued inner product that will make E1⊗C E2 a pre-Hilbert

B −D bimodule. For that take ω1, ω2 ∈ E1 and η1, η2 ∈ E2 and define

<< ω1 ⊗ η1, ω2 ⊗ η2 >>:=<< η1, << ω1, ω2 >> η2 >> .

Again as before this is a sesquilinear form on E1 ⊗C E2. Let I = {ξ ∈ E1 ⊗C E2 such

that << ξ, ξ >>= 0}. Then define E1⊗in E2 = E1⊗C E2/I. We note that this semi inner

product is actually an inner product, so that I = {0} (see proposition 4.5 of [33]). The

topological completion of E1 ⊗in E2 is called the interior tensor product and we shall
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denote it by E1⊗̄inE2. We denote the projection map from E1 ⊗C E2 to E1 ⊗in E2 by

π. We also make the convention of calling a Hilbert A−A bimodule simply Hilbert A
bimodule.

Example

Recall Ωk(C∞(M)). As a C∞(M) bimodule this is nothing but

Ω1(C∞(M))⊗C∞(M)...⊗C∞(M)︸ ︷︷ ︸
k−times

Ω1(C∞(M)).

But for the Hilbert bimodule structure we take the interior tensor products recursively

i.e. Ω2(C∞(M)) = Ω1(C∞(M)) ⊗in Ω1(C∞(M)) and Ωk(C∞(M)) = Ω1(C∞(M)) ⊗in
Ωk−1(C∞(M)). It is straightforward to verify that this indeed gives the isomorphism

as Hilbert bimodules.

1.4 Quantum groups: Hopf ∗-algebras

Definition 1.4.1. A pair (A,∆) consisting of a unital ∗-algebra A and a unital ∗-
homomorphism ∆ : A → A ⊗ A is called a Hopf ∗-algebra, if (∆ ⊗ id)∆ = (id ⊗∆)∆

and there exists linear maps ε : A → C and κ : A → A such that

(ε⊗ id)∆(a) = (id⊗ ε)∆(a) = a and m ◦ (κ⊗ id)∆(a) = m ◦ (id⊗ κ)∆(a) = ε(a)1A,

where m : A⊗A → A is the multiplication map of the algebra A.

Examples

1. For any compact group G, the algebra C(G) is a Hopf ∗-algebra with ∆(f)(g, h) :=

f(gh), ε(f) := f(e) and κ(f)(g) := f(g−1) where e is the identity element of G.

2. Assume that Γ is a discrete group and let G = Γ̂, so C(G) = C∗r (Γ) and ∆(λγ) =

λγ ⊗ λγ . The elements λγ ∈ C∗r (Γ) are one dimensional representations of G and

since they already span a dense subspace of C(G), from the orthogonality relations we

conclude that there are no other irreducible representations. So the dense subspace

spanned by the matrix coefficients of irreducible representations is the group algebra

on Γ, spanned by the operators λγ which is a Hopf ∗-algebra with ∆(λγ) = λγ ⊗ λγ ,

ε(λγ) = 1 and κ(λγ) = λγ−1 .

Sweedler notation

We introduce the so called Sweedler notation for coproduct. If a is an element of a coal-

gebraH, the element ∆(a) ∈ H⊗H is a finite sum ∆(a) =
∑

i a1i⊗a2i where a1i, a2i ∈ H
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for all i. Moreover the representation is not unique. For notational simplicity we shall

supress the index i and write the above sum symbolically as ∆(a) = a(1) ⊗ a(2).

Definition 1.4.2. Let B be a ∗ algebra. A Hopf ∗ algebra (A,∆, ε, κ) is said to act on

B if there is a ∗ homomorphism α : B → B ⊗A satisfying

(i)(α⊗ id)α = (id⊗∆)α.

(ii)(id⊗ ε)α = id.

1.4.1 Compact Quantum Groups

Definition 1.4.3. A compact quantum group (CQG in short) is a pair (Q,∆), where

Q is a unital C∗ algebra and ∆ : Q → Q⊗̂Q is a unital ∗-homomorphism (called the

comultiplication), such that

(i)(∆⊗ id)∆ = (id⊗∆)∆ as homomorphism Q → Q⊗̂Q⊗̂Q (coassociativity).

(ii) the spaces ∆(Q)(1⊗Q) = span{∆(b)(1⊗ a)|a, b ∈ Q} and (1⊗Q)∆(Q) are dense

in Q⊗̂Q.

Definition 1.4.4. A morphism from a CQG (Q1,∆1) to another CQG (Q2,∆2) is a

unital C∗ homomorphism π : Q1 → Q2 such that

(π ⊗ π)∆1 = ∆2π

Definition 1.4.5. A Woronowicz C∗-subalgebra of a CQG (Q1,∆) is a C∗-subalgebra

Q2 of Q1 such that (Q2,∆|Q2) is a CQG such that the inclusion map from Q2 → Q1 is

a morphism of CQG’s.

Definition 1.4.6. A Woronowicz C∗ ideal of a CQG (Q,∆) is a C∗ ideal J of Q such

that ∆(J) ⊂ Ker(π ⊗ π), where π is the quotient map from Q to Q/J

We recall the following isomorphism theorem:

Proposition 1.4.7. The quotient of a CQG (Q,∆) by a Woronowicz C∗ ideal I has

a unique CQG structure such that the quotient map π is a morphism of CQGs. More

precisely the coproduct ∆̃ on Q/I is given by ∆̃(q + I) = (π ⊗ π)∆(q).

Definition 1.4.8. A CQG (Q′,∆′) is called a quantum subgroup of another CQG (Q,∆)

if there is a Woronowicz C∗-ideal J of Q such that (Q′,∆′) ∼= (Q,∆)/J .

Examples

1. Let G be a compact group. Take Q to be the C∗ algebra of continuous functions on

G (denoted by C(G)). Then it can be proved that Q⊗̂Q = C(G × G) (see Appendix
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of [41]). So we can define ∆ by

∆(f)(g, h) := f(gh) for all g, h ∈ G.

Coassociativity follows from associativity of the group multiplication. For the span

density condition note that ∆(Q)(1 ⊗ Q) is a ∗-subalgebra spanned by all functions

of the form (g, h) → f1(g)f2(gh). Since such functions separate points of G, applying

Stone-Weierstrass theorem, we get the density.

In fact any compact quantum group (Q,∆) with A abelian is of the form C(G),

for some compact group G. Indeed, by Gelfand theorem, Q = C(G) for some compact

Hausdorff space G. Then since Q⊗̂Q = C(G × G), the unital ∗-homomorphism ∆ is

defined by a continuous map G×G→ G. Coassociativity means that

f((gh)k) = f(g(hk)) for all f ∈ C(G),

whence ((gh)k) = (g(hk)). So G is a compact semigroup. The span density condition

implies the cancellation property and hence G is a compact group.

2. Recall the C∗ algebra of example 4 of Subsection 1.2.1. In that example if we take

G to be a discrete group Γ with counting measure then an element γ is mapped to an

operator λγ on l2(Γ) defined by λγ(δγ′ ) = δγγ′ . If we define ∆ : C∗r (Γ)→ C∗r (Γ)⊗̂C∗r (Γ)

by ∆(λγ) = λγ ⊗ λγ , then (C∗r (Γ),∆) is a compact quantum group.

3. Assume q ∈ [−1, 1], q 6= 0. The quantum group SUq(2) is defined as follows:

The algebra C(SUq(2)) is the universal C∗ algebra generated by elements α and γ such

that

α∗α+ γ∗γ = 1, αα∗ + q2γ∗γ = 1, γ∗γ = γγ∗, αγ = qγα, αγ∗ = qγ∗α.

The comultiplication is defined by

∆(α) = α⊗ α− qγ∗ ⊗ γ,∆(γ) = γ ⊗ α+ α∗ ⊗ γ.

4. For n ∈ N, denote by As(n) the universal C∗ algebra generated by elements {uij |1 ≤
i, j ≤ n}, such that

U = ((uij)) is a magic unitary,

meaning that U is unitary, all its entries uij are projections, and the sum of the entries

in every row and column in U is equal to 1. The comultiplication is defined by

∆(uij) =
n∑
k=1

uik ⊗ ukj .



33 Quantum groups: Hopf ∗-algebras

This is called the quantum permutation group.

5. For an n×n positive invertible matrix Q = (Qij), let Au(Q) the universal C∗ algebra

generated by {uQkj : k, j = 1 . . . n} where u := ((uQkj)) satisfies

uu∗ = u∗u = In, u
′QūQ−1 = QūQ−1u′. (1.4.1)

Here u′ = ((uQji)) and ū = ((uQ
∗
ij)). The coproduct say ∆̃ is given by

∆̃(uQij) =

n∑
k=1

uQik ⊗ u
Q
kj .

1.4.2 Representation of CQG over Hilbert spaces:

The existence of Haar measure for a compact group plays a very crucial role in the

representation theory of compact groups. In case of compact group, the existence of

Haar measure translates into the existence of a convolution invariant state on C(G).

It turns out that for a general compact quantum group A also there is a bi invari-

ant state (to be called the Haar state and denoted by h) on Q in the sense that

(h ⊗ id)∆(q) = (id ⊗ h)∆(q) = h(q)1A for all q ∈ Q, where 1Q is the unit of Q.

The C∗-completion Qr of Q0 in the norm of B(L2(h)) (GNS space associated to h) is a

CQG and called the reduced quantum group corresponding to Q. If h is faithful then

Q and Qr coincide. In general there will be a surjective CQG morphism from Q to Qr
identifying the latter as a quantum subgroup of the former.

We would like to mention here that there is also a von Neumann algebraic framework

of quantum groups suitable for development of the theory of locally compact quantum

groups (see [31], [51] and references therein). In this theory, the von Neumann algebraic

version of CQG is a von Neumann algebra M with a coassociative, normal, injective

coproduct map ∆ from M to M⊗wM and a faithful, normal, bi-invariant state ψ

on M. Indeed, given a CQG Q, the weak closure Qr ′′ of the reduced quantum group

in the GNS space of the Haar state is a von Neumann algebraic compact quantum group.

Definition 1.4.9. Let (Q,∆) be a CQG. A unitary representation of Q on a Hilbert

space H is a C-linear map U from H to the Hilbert module H⊗̄Q such that

1. << U(ξ), U(η) >>=< ξ, η > 1Q, where ξ, η ∈ H.

2. (U ⊗ id)U = (id⊗∆)U .

3. Sp {U(H)Q} is dense in H⊗̄Q.

Given such a unitary representation we have a unitary element Ũ belonging to

M(B0(H)⊗̂Q) given by Ũ(ξ ⊗ b) = U(ξ)b, (ξ ∈ H, b ∈ Q) satisfying
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(id⊗∆)Ũ = Ũ12Ũ13.

Definition 1.4.10. A closed subspace H1 of H is said to be invariant if U(H1) ⊂
H1⊗̄Q. A unitary representation U of a CQG is said to be irreducible if there is no

proper invariant subspace.

It is a well known fact that every irreducible unitary representation is finite dimen-

sional.

We denote by Rep(Q) the set of inequivalent irreducible unitary representations

of Q. For π ∈ Rep(Q), let dπ and {qπjk : j, k = 1, ..., dπ} be the dimension and ma-

trix coefficients of the corresponding finite dimensional representation, say Uπ respec-

tively. Corresponding to π ∈ Rep(Q), let ρπsm be the linear functional on Q given by

ρπsm(x) = h(xπsmx), s,m = 1, ..., dπ for x ∈ Q, where xπsm = (Mπ)qπ∗km(Fπ(k, s)). Also

let ρπ =
∑dπ

s=1 ρ
π
ss. Given a unitary representation V on a Hilbert space H, we get a

decomposition of H as

H = ⊕π∈Rep(Q),1≤i≤mπH
π
i ,

where mπ is the multiplicity of π in the representation V and V |Hπi is same as the

representation Uπ. The subspace Hπ = ⊕iHπi is called the spectral subspace of type π

corresponding to the irreducible representation π. It is nothing but the image of the

spectral projection given by (id⊗ ρπ)V .

For each π ∈ Rep(Q), we have a unique dπ × dπ complex matrix Fπ such that

(1) Fπ is positive and invertible with Tr(Fπ) = Tr(F−1
π ) = Mπ > 0(say).

(2) h(qπijq
π∗
kl ) = 1

Mπ
δikFπ(j, l).

Recall from [43], the modular operator Φ = S∗S, where S is the anti unitary acting

on the L2(h) (where L2(h) is the GNS space of Q corresponding to the Haar state on

which Q has left regular representation) given by S(a.1) := a∗.1 for a ∈ Q. The one

parameter modular automorphism group (see [43]) say Θt, corresponding to the state

h is given by Θt(a) = ΦitaΦ−it. Note that here we have used the symbol Φ for the

modular operator as ∆ has been used for the coproduct. From (2), we see that

Φ|L2(h)πi
= F π, for all π and i. (1.4.2)

In particular Φ maps L2(h)πi into L2(h)πi for all i.

Let us discuss in some details a few facts about algebraic representation of Q on

a vector space without any (apriori) topology i.e. Γ : K → K ⊗ Q0 and (Γ ⊗ id)Γ =

(id ⊗ ∆)Γ, where K is some vector space. In this case the non degeneracy condition

Sp Γ(K)(1⊗Q0) = K ⊗Q0 is equivalent to the condition Γε := (id⊗ ε)Γ is identity on

K. Then we have the following:
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Proposition 1.4.11. Given two algebraic non degenerate representations Γ1,Γ2 of Q
on two vector spaces K and L respectively, we can define the tensor product and direct

sum of the representations (to be denoted by Γ1⊗Γ2 and Γ1⊕Γ2 respectively) by (Γ1⊗
Γ2)(k ⊗ l) := k(0) ⊗ l(0) ⊗ k(1)l(1)) and (Γ1 ⊕ Γ2)(k, l) := (k(0), l(0)) ⊗ k(1) + l(1). Then

Γ1 ⊗ Γ2 and Γ1 ⊕ Γ2 are algebraic non degenerate representations of Q on the vector

spaces K ⊗ L and K ⊕ L respectively.

Proof:

They are a consequence of the simple observations that (Γ1 ⊗ Γ2)ε = (Γ1ε ⊗ Γ2ε) and

(Γ1 ⊕ Γ2)ε = (Γ1ε ⊕ Γ2ε). 2

The subspace spanned by the matrix coefficients of inequivalent irreducible (hence

finite dimensional) representations of a CQG Q is denoted by Q0. Firstly, Q0 is a

subalgebra as the product of two matrix elements of finite dimensional unitary repre-

sentations is a matrix element of the tensor product of these representations. Moreover,

as the adjoint of a finite dimensional unitary representation is equivalent with a unitary

representation, Q0 is ∗ invariant. For the definitions of tensor product of two repre-

sentations and adjoint of a unitary representation the reader is again refereed to [35].

Below we state the analogue of Peter-Weyl theory for the representation theory of CQG.

In the following h stands for the Haar state of Q.

Proposition 1.4.12. (1) Q0 is a dense ∗-subalgebra of Q.

(2) Let {Uα : α ∈ I} be a complete set of mutually inequivalent, irreducible unitary

representations. We will denote the representation space and dimension of Uα by Hα
and nα respectively. Then the Schur’s orthogonality relation takes the following form:

For any α ∈ I, there is a positive invertible operator Fα acting on Hα such that for

any α, β ∈ I and 1 ≤ j, q ≤ dα, 1 ≤ i, p ≤ dβ

h(uαiju
β∗

kl ) =
1

Mα
δαβδikFα(j, l)

(3) {uαpq : α ∈ I, 1 ≤ p, q ≤ dα} form a basis for Q0. (4) Q0 is a Hopf ∗-algebra with

{∆(uαij) =
∑nα

k=1 u
α
ik ⊗ uαkj : 1 ≤ i, j ≤ nα} for all α ∈ I, the counit ε and the antipode

κ are defined on Q0 respectively by the formulae,

ε(uαij) = δij , κ(uαpq) = (uαqp)
∗,

for all α ∈ I and 1 ≤ p, q ≤ nα.

Here we would like to mention that corresponding to Q0 there might be several

CQG’s containing Q0 as a Hopf ∗-algebra and there is a universal compact quantum

group containing Q0 as a Hopf ∗-algebra. It is denoted by Qu. It is obtained as the
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universal enveloping C∗ algebra of Q0. We also say that a CQG Q is universal if

Q = Qu. For details the reader is referred to [31]. Examples (4) and (5) of CQG’s are

such examples of universal CQG’s.

Now we discuss free product of CQG’s which was developed in [53]. Let (Q1,∆1)

and (Q2,∆2) be two CQG’s and i1,i2 denote the canonical injections of Q1 and Q2

respectively into the C∗ algebra Q1 ∗Q2. Put ρ1 = (i1⊗ i1)∆1 and ρ2 = (i2⊗ i2)∆2. By

the universal property of Q1∗Q2, there exists a map ∆ : Q1∗Q2 → (Q1∗Q2)⊗̂(Q1∗Q2)

such that ∆i1 = ρ1 and ∆i2 = ρ2. It can indeed be shown that ∆ has the required

properties so that (Q1 ∗ Q2,∆) is a CQG.

Let {Qn}n∈N be an inductive sequence of CQGs, where the connecting morphisms

πmn from Qn to Qm (n < m) are injective morphisms of CQGs. Then from Proposition

3.1 of [53], we have that the inductive limit Q of Qn s has a unique CQG structure with

the following property: for any CQG Q′ and any family of CQG morphisms φn : Qn →
Q′ such that φmπmn = φn, the uniquely defined morphism limnφn in the category of

unital C∗ algebras is a morphism in the category of CQGs as well.

Combining the above two results, it follows that the free product C∗ algebra of an

arbitrary sequence of CQGs has a natural CQG stucture. Moreover the following result

was derived in [53].

Proposition 1.4.13. Let Γ1,Γ2 be two discrete abelain groups. Then the natural iso-

morphisms C∗(Γ1) ∼= C(Γ̂1) and C∗(Γ1) ∗ C∗(Γ2) ∼= C∗(Γ1 ∗ Γ2) are isomorphisms of

CQG’s

Let i1,i2 be the canonical injections of Q1 and Q2 respectively into the C∗ algebra

Q1 ∗ Q2. If U1 and U2 are unitary representations of CQGs Q1 and Q2 on Hilbert

spaces H1 and H2 respectively, then the free product representation of U1 and U2 is a

representation of the CQG Q1 ∗Q2 on the Hilbert space H1 ⊕H2 given by the Q1 ∗Q2

valued matrix (
(id⊗ i1)U1 0

0 (id⊗ i2)U2.

)
Similarly, the free product representation of an arbitrary sequence of CQG repre-

sentation can be defined.

1.4.3 Hopf ∗-algebra of matrix coefficients: Dual of a CQG

Let A be a finite dimensional Hopf ∗-algebra, then the algebraic dual U of A is again

a unital ∗-algebra with the product (called the convolution and we denote it by ∗) and

involution defined by

ω ∗ ν := (ω ⊗ ν)∆, ω∗ = ω̄κ,
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with ε as the unit, where ω̄ is defined by ω̄(a) = ω(a∗) for a ∈ A. Moreover it is a Hopf

∗-algebra with coproduct

∆̂(ω)(a⊗ b) = ω(ab) for a, b ∈ A.

The antipode is given by κ̂(ω) = ωκ and the counit by ε̂ = ω(1). The Hopf ∗-algebra

(U , ∆̂) is called the dual of (A,∆).

However we see that the Hopf ∗-algebra Q0 associated to a CQG Q is no longer finite

dimensional. When the Hopf ∗-algebra is not finite dimensional, then by the prescription

above we do not get a Hopf ∗-algebra, but we do get what is called a multiplier Hopf

∗-algebra which is very similar to a Hopf ∗-algebra. Although the general dual of an

infinite dimensional Hopf ∗-algebra can be considered, for our purpose we will consider

only the dual of Q0 in this thesis. We denote the dual of Q0 by Q̂0.

For every finite dimensional representation U of Q, we can define a representation

πU of Q̂0 on H by πU (ω) = (id ⊗ ω)U . It is a ∗-representation if U is unitary. Fix a

representative Uα of an inequivalent irreducible representation of Q. Then it follows

that the homomorphisms πUα define a ∗-isomorphism

Q̂0
∼= Πα∈IB(Hα).

The dual of ̂(Q0 ⊗Q0) is isomorphic to Πα,β∈IB(Hα ⊗ Hβ). Define a map ∆̂ : Q̂0 →
̂(Q0 ⊗Q0) by ˆ∆(ω)(a⊗ b) := ω(ab) for a, b ∈ Q0. Note that in general the image of ∆̂

does not lie in the algebraic tensor product Q̂0⊗Q̂0. But it is contained inM(Q̂0⊗Q̂0).

Defining ε̂(ω) := ω(1) and κ̂(ω) = ωκ we can verify that the pair (Q̂0, ∆̂) satisfies the

axioms of what is called a multiplier Hopf ∗-algebra. Since Q̂0 is nothing but a direct

sum of matrix algebras, we can give a unique C∗ norm, we can complete it with respect

to that C∗ norm. We denote the corresponding completion by Q̂ and (Q̂, ∆̂) is called

the dual discrete quantum group (on the C∗ level). For details about discrete quantum

group see section 8 of [35]. We record the following proposition which will be useful

later.

Proposition 1.4.14. In the following we denote the matrix coefficients of Q by {qαij :

1 ≤ i, j ≤ nα, α ∈ I. Let U be a unitary representation of a CQG Q on a Hilbert space

H. Then ΠU : Q̂ → B(H) defined by ΠU (ω)(h) := (id ⊗ ω)U(h) is a non degenerate

∗-homomorphism and hence extends as a ∗-homomorphism from M(Q̂) to B(H).

Proof:

Consider the spectral decomposition H = ⊕π∈I,1≤i≤mπHπi , U |Hπi , i = 1, ...,mπ is

equivalent to the irreducible representation of type π. Moreover fix orthonormal ba-
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sis eπij , j = 1, ..., dπ, i = 1, ...,mπ for Hπi such that

U(eπij) =
∑
k

eπik ⊗ qπkj

for all π ∈ Rep(Q). Now for a fixed π ∈ Rep(Q), p, r = 1, ..., dπ observe that

ΠU (ρπpr)(ξ) = 0 for all ξ ∈ Hπ′i and for π 6= π′. Also ΠU (ρπpr)(e
π
ij) = δjre

π
ip, i.e.

ΠU (ρπpr)|Hπi is nothing but the rank one operator |eπip >< eπir|. This proves that ΠU (ω)

is bounded for ω ∈ Q̂0, and moreover identifying Q̂0 with the direct sum of matrix al-

gebras ⊕π∈Rep(Q)Mdπ , we see that ΠU is nothing but the map which sends X ∈Mdπ to

X⊗1Cmπ in B(H). This proves that ΠU extends to a non-degenerate ∗-homomorphism.

2

We return to the Hop ∗-algebra Q0 of a compact quantum group (Q,∆). In general

the counit ε is not bounded on Q0 and can not be extended to the whole of Q, so is the

antipode κ. Now let U : H → H⊗̄Q be a unitary representation of Q on H. U decom-

poses into finite dimensional irreducible representations and H decomposes into finite

dimensional Hilbert spaces Hα. Let the irreducible representations be {Uα : α ∈ I} and

the corresponding Hilbert spaces be Hα. Let {eαi : 1 ≤ i ≤ nα} (where dim Hα = nα)

be orthonormal basis for Hα. If we denote Sp {eαi : 1 ≤ i ≤ nα, α ∈ I} by H0 then

from the condition (3) of a unitary representation, we can deduce that H0 is dense in

the Hilbert space H and U(H0) ⊂ H0 ⊗Q0 such that Sp {U(H0)Q0} = H0 ⊗Q0.

1.5 Noncommutative Geometry

In this section we recall some basic notions of noncommutative geometry. For a detailed

discussion, the reader is referred to [16].

1.5.1 Spectral triples

Motivated by the facts in Proposition 1.1.21, Alain Connes defined his formulation of

noncommutative manifold, based on the idea of a spectral triple:

Definition 1.5.1. A spectral triple is a triple (A∞,H,D) where H is a separable Hilbert

space, A∞ is a ∗-subalgebra of B(H), (not necessarily norm closed) and D is a self

adjoint (typically unbounded) operator such that for all a ∈ A∞, the operator [D, a]

has a bounded extension. Such spectral triple is also called an odd spectral triple. If in

addition, we have γ ∈ B(H) satisfying γ = γ∗ = γ−1, Dγ = −γD and [a, γ] = 0 for

all a ∈ A∞, then we say the quadruplet (A∞,H,D, γ) is an even spectral triple. The

operator D is called the Dirac operator corresponding to the spectral triple.
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Since in the classical case, the Dirac operator has compact resolvent if the manifold

is compact, we say the spectral triple is of compact type if A∞ is unital and D has a

compact resolvent.

Examples

1. Let M be a smooth spin manifold. Then from proposition 1.1.21, we see that

(C∞(M), L2(S), D) is a spectral triple. It is of compact type when the manifold is

compact.

We recall that when the dimension of the manifold is even, ∆n = ∆+
n ⊕ ∆−n . An

L2 section s has a decomposition s = s1 + s2, where s1(m), s2(m) belong to ∆+
n (m)

and ∆−n (m) respectively where ∆+−
n (m) denotes the subspace of the fibre over m. This

decomposition of L2(S) induces a grading operator γ on L2(S). It can be seen that D

anticommutes with γ.

2. This example comes from the classical Hilbert space of forms . One considers the

self adjoint extension of the operator d+ d∗ on H = ⊕kHk(M) which is again denoted

by d + d∗. C∞(M) has a representation on each Hk(M), which gives a representation

say π on H. Then it can be shown that (C∞(M),H, d + d∗) is a spectral triple. The

operator d+ d∗ is called the Hodge Dirac operator.

3. The noncommutative torus

We recall the noncommutative 2-torus Aθ is the universal C∗-algebra generated by two

unitaries U and V satisfying UV = e2πiθV U where θ is a number in [0, 1].

There are two derivations d1 and d2 on Aθ obtained by extending linearly the rule:

d1(U) = U, d2(V ) = 0

d1(U) = 0, d2(V ) = 0.

Then d1, d2 are well defined on the dense ∗-algebra of A∞:

A∞θ = {
∑
m,n∈Z

amnU
mV n : supm,n|mknlamn| <∞ for all k, l inN}.

There is a unique faithful trace on Aθ defined as follows:

τ(
∑

amnU
mV n) = a00.

Let H = L2(τ)⊕L2(τ) where L2(τ) denotes the GNS Hilbert space of Aθ with respect to

the state τ . We note that A∞θ is embedded as a subalgebra of B(H) by a→ diag(a, a).
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We now define D as (
0 d1 + id2

d1 − id2 0.

)
Then (A∞θ ,H,D) is a spectral triple of compact type.

1.5.2 The space of forms in noncommutative geometry

We start this subsection by recalling the universal space of one forms corresponding to

an algebra.

Proposition 1.5.2. Given an algebra B, there is a (unique upto isomorphism) B − B
bimodule Ω1(B)u and a derivation δ : B → Ω1(B)u (i.e. δ(ab) = δ(a)b + aδ(b) for all

a, b ∈ B), satisfying the following properties:

(i) Ω1(B)u is spanned as a vector space by elements of the form aδ(b) with a, b ∈ B.

(ii) For any B −B bimodule E and a derivation d : B → E, there is a unique B −B
linear map η : Ω1(B)→ E such that d = ηδ.

The bimodule Ω1(B) is called the space of universal one forms on B and the δ is called

the universal derivation. We can also introduce universal space of higher forms on B,

Ωk(B) for k = 2, 3, .. by defining them recursively as follows: Ωk+1(B) = Ωk(B)⊗BΩ1(B)

and also set Ω0(B) = B.

Now we briefly discuss the notion of the noncommutative Hilbert space of forms which

will need noncommutative volume form for a spectral triple of compact type. We refer

to [20] ( page 124 -127 ) and the references therein for more details.

Definition 1.5.3. A spectral triple (A∞,H, D) of compact type is said to be Θ-

summable if e−tD
2

is of trace class for all t > 0. A Θ-summable spectral triple is called

finitely summable when there is some p > 0 such that t
p
2 Tr(e−tD

2
) is bounded on (0, δ]

for some δ > 0. The infimum of all such p, say p′ is called the dimension of the spectral

triple and the spectral triple is called p′-summable.

Remark 1.5.4. We remark that the definition of Θ-summability to be used in this thesis

is stronger than the one in [16] ( page 390, definition 1. ) in which a spectral triple is

called Θ-summable if Tr(e−tD
2
) <∞.

For a Θ-summable spectral triple, let σλ(T ) = Tr(Te−
1
λ
D2

)

Tr(e−
1
λ
D2

)
for λ > 0. We note that

λ 7→ σλ(T ) is bounded.

Let

τλ(T ) =
1

log λ

∫ λ

a
σu(T )

du

u
for λ ≥ a ≥ e.
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For any state ω on the C∗ algebra B∞, T rω(T ) = ω(τ(T )) for all T in B(H) defines

a functional on B(H). As we are not going to need the choice of ω in this thesis, we will

suppress the suffix ω and simply write Limt→0+
Tr(Te−tD

2
)

Tr(e−tD2 )
for Trω(T ). This is a kind

of Banach limit because if limt→0+
Tr(Te−tD

2
)

Tr(e−tD2 )
exists, then it agrees with the functional

Limt→0+ . Moreover, Trω(T ) coincides ( upto a constant ) with the Dixmier trace ( see

chapter IV, [16] ) of the operator T |D|−p when the spectral triple has a finite dimension

p > 0, where |D|−p is to be interpreted as the inverse of the restriction of |D|p on the

closure of its range. In particular, this functional gives back the volume form for the

classical spectral triple on a compact Riemannian manifold.

Let Ωk(A∞) be the space of universal k-forms on the algebra A∞ which is spanned

by a0δ(a1) · · · δ(ak), ai belonging to A∞, where δ is as in Proposition 1.5.2. There

is a natural graded algebra structure on Ω ≡
⊕

k≥0 Ωk(A∞), which also has a natu-

ral involution given by (δ(a))∗ = −δ(a∗), and using the spectral triple, we get a ∗-
representation Π : Ω→ B(H) which sends a0δ(a1) · · · δ(ak) to a0dD(a1) · · · dD(ak), where

dD(a) = [D, a]. Consider the state τ on B(H) given by, τ(X) = Limt→0+
Tr(Xe−tD

2
)

Tr(e−tD2 )
,

where Lim is as above. Using τ , we define a positive semi definite sesquilinear form on

Ωk(A∞) by setting 〈w, η〉 = τ(Π(w)∗Π(η)). Let Kk = {w ∈ Ωk(A∞) : 〈w, w〉 = 0},
for k ≥ 0, and K−1 := (0). Let Ωk

D be the Hilbert space obtained by completing

the quotient Ωk(A∞)/Kk with respect to the inner product mentioned above, and we

define HkD := P⊥k Ωk
D, where Pk denotes the projection onto the closed subspace gen-

erated by δ(Kk−1). Clearly, HkD has a total set consisting of elements of the form

[a0δ(a1) · · · δ(ak)], with ai in A∞ and [ω] denoting the equivalence class P⊥k (w+Kk) for

ω belonging to Ωk(A∞). Then we can extend the map dD to the total subspace of HkD
by dD[a0δ(a1) · · · δ(ak)] := [δ(a0)δ(a1) · · · δ(ak)] and hence it maps into Hk+1

D . Then dD

is a densely defined unbounded operator on Hd+d∗ :=
⊕

k≥0HkD. If dom(d∗D) contains

Ωk
D(A∞) for all k, we can consider the operator D′ := d + d∗ ≡ dD + d∗D as a closable

densely defined operator. Assume it has a self adjoint extension. Then we denote the

extension again by d+ d∗. There is a ∗-representation πd+d∗ : A → B(Hd+d∗), given by

πd+d∗(a)([a0δ(a1) · · · δ(ak)]) = [aa0δ(a1) · · · δ(ak)]. Then it is easy to see that

Proposition 1.5.5. Under the above assumptions, (A∞,Hd+d∗ , d + d∗) is a spectral

triple.

We reamark that the assumptions about the domain and closability of d∗D and dD +

d∗D on Hd+d∗ are valid for a large class of spectral triples including all classical ones and

their Rieffel deformations. Moreover, we shall see in the next subsection that it is easy

to prove closability of at least dD|H0
D

under mild condition.
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1.5.3 Laplacian in Noncommutative geometry

Now, we discuss the notion of Laplacian in noncommutative geometry as introduced

in [22]. Let (A∞,H, D) be a spectral triple. Consider the operator dD : H0
D → H1

D.

Then the operator −d∗DdD : H0
D → H0

D is the natural candidate for the noncommutative

Laplacian. However to have a reasonable definition, one at least needs dD to be closable.

We now give some natural sufficient condition for closability of dD. Let us consider the

locally convex space B(H) with its ultra-weak topology. Then on B(H), dD(.) := [D, .]

is an unbounded derivation. The strongly continuous one parameter group generated

by dD is given by σt(X) = exp(itD)(X)exp(−itD) for X ∈ B(H). The following result

is proved in [22] (Lemma 2.6).

Lemma 1.5.6. Suppose that for every element a ∈ A∞, the map t(∈ R) 7→ σt(X) :=

exp(itD)Xexp(−itD) is differentiable at t = 0 in the norm topology of B(H), where

X = a or X = [D, a]. Then dD is closable. In this case, the densely defined unbounded

operator d∗DdD maps A∞ into its weak closure in B(H).

Now we state and prove a sufficient condition for the norm differentiability condition

in the previous Lemma.

Lemma 1.5.7. Suppose that a ∈ A∞ belongs to the domain of repeated commutator dnD
given by dnD(a) := [D, [D, [...[D, a]]]...] for n = 1, 2, 3. Then the condition of the Lemma

1.5.6 is satisfied. In particualr dD is closable.

Proof:

Since a ∈ dom(dD), 1
t (σt(a)− a)− [D, a] = 1

t

∫ t
0 (σ′s(a)− [D, a])ds. Since a ∈ dom(dD),

σ′s(a) = σs([D, a]). Also using the fact that a ∈ domd2
D, we get

(σs([D, a])− [D, a])

=

∫ s

0
σ′u([D, a])du

=

∫ s

0
σu([D, [D, a]])du

Using the face that {σt} is contractive, we get the estimate ||1t (σt(a) − a) − [D, a]|| ≤
t
2 ||[D, [D, a]]|| establishing that as t→ 0, 1

t (σt(a)− a) goes to [D, a] in norm topology.

Hence it proves the norm differentiability of σt(a) for all a ∈ A∞. Similarly using the

higher domain condition we can prove the norm differentiability of σt(X) for X = [D, a].

2

Now we impose some regularity conditions on the spectral triple so that we can define
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a noncommutative Laplacian.

Assumptions

1. (A∞,H, D) is a compact type, p-summable (for some p > 0) spectral triple.

2. a ∈ A∞ belongs to the domains of repeated commutator dnD, where dD(X) :=

[D,X] is considered as an unbounded derivation on the locally convex space B(H) with

its ultra-weak topology. Also assume that it is QC∞, that is, A∞ and {[D, a] : a ∈ A∞}
is contained in the domains of all powers of the derivation [|D|, ·].

We can adapt the proof of Proposition 3.4 of [23] (with R = I) to deduce

Lemma 1.5.8. τ defined by τ(X) = Limt→0
Tr(Xe−tD

2
)

Tr(e−tD2 )
is a positive trace on the C∗-

subalgebra generated by A∞ and {[D, a] : a ∈ A∞}.

We further assume that

3. τ is faithful on the C∗ subalgebra generated by A∞ and {[D, a] : a ∈ A∞}.
Now we see that the assumption (2) on the spectral triple implies that it satisfies

the condition of the Lemma 1.5.7. Hence in particular dD is closable.

Definition 1.5.9. Under the stated assumptions on the spectral triple (A∞,H, D) the

non commutative Laplacian L is defined to be the densely defined operator −d∗DdD. It

maps A∞ into (A∞)′′.
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Chapter 2

Quantum isometry groups

There are two approaches in the formulation of quantum isometry groups of a spectral

triple. One is based on a Laplacian on a spectral triple (developed by Goswami in

[22]) and the other is based on the Dirac operator of the spectral triple (developed by

Goswami and Bhowmick in [10]). Before discussing these two notions we shall first recall

what is meant by a C∗ action of a CQG on a C∗ algebra.

2.1 Action of a compact quantum group on a C∗ algebra

Definition 2.1.1. We say that the compact quantum group (Q,∆) (co)-acts on a unital

C∗ algebra B, if there is a unital C∗-homomorphism (called an action) α : B → B⊗̂Q
satisfying the following :

(i) (α⊗ id) ◦ α = (id⊗∆) ◦ α, and

(ii) the linear span of α(B)(1⊗Q) is norm-dense in B⊗̂Q.

It is known ( see, for example [42] ) that (ii) is equivalent to the existence of a norm-

dense, unital ∗-subalgebra B of B such that α(B) ⊆ B⊗Q0 and on B, (id ⊗ ε) ◦α = id

i.e. α is a Hopf ∗-algebraic action of Q0 on B in the sense of Definition 1.4.2. Given a

C∗ action α of a CQG Q on a C∗ algebra B0 of B which is the maximal ∗-subalgebra

of B over which the action α is algebraic i.e. B0 = {b ∈ B|α(b) ⊂ B ⊗ Q0}. From now

on given any action of a CQG Q on a C∗ algebra B, by B0 we shall always mean this

maximal ∗-subalgebra over which the action is algebraic. Later when we shall extend

the notion of action on Fréchet algebras, we shall use the same notation. Note that this

maximal subalgebras are dense in the corresponding topologies.

Proposition 2.1.2. (i) For any b ∈ B0, α(b) ⊂ B ⊗Q0.

(ii) B0 = B ⊕ ker(α).

Proof:

Recall from 1.4.12, {uβij : β ∈ Q̂ : i, j = 1, ..., dβ} is a basis for Q0. Hence we can write

45
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α(b) in terms of this basis as α(b) =
∑

β∈J
∑dβ

i,j=1 b
β
ij ⊗ u

β
ij , where J is a finite subset

of Q̂. Using the coassociativity of α, we get

∑
β∈J

dβ∑
i,j=1

α(bβij)⊗ u
β
ij =

∑
β∈J

dβ∑
i,j,s=1

bβij ⊗ u
β
is ⊗ u

β
sj .

Now recall the linear functionals ργkl from chapter 1. Applying (id⊗ id⊗ ργkl) for some

γ ∈ Q̂, to both sides of the above identity, we get

α(bγkl) =

dγ∑
i=1

bγil ⊗ u
γ
ik.

This means α(b) ⊂ B0 ⊗Q0.

For the second statement, write α(b) =
∑

β∈J
∑dβ

i,j=1 b
β
ij ⊗ uβij . If we take b′ =∑

β∈J
∑dβ

i=1 b
β
ii,

α(b′) =
∑
β∈J

dβ∑
i,k=1

bβki ⊗ u
β
ki.

It follows that α(b) = α(b′) i.e. (b− b′) ∈ ker(α) and b′ ∈ B. 2

Definition 2.1.3. Let (Q, α) has a C∗ action α on the C∗ algebra B. We say that the

action α is faithful if there is no proper Woronowicz C∗-subalgebra Q1 of Q such that

α is a C∗ action of Q1 on B.

Definition 2.1.4. Let (Q, α) has a C∗ action α on the C∗ algebra B. A continuous

linear functional φ on B is said to be invariant under α if

(φ⊗ id)α(b) = φ(b).1Q.

Now, we recall the work of Shuzhou Wang done in [55]. One can also see [5], [7].

Recall from chapter 1, the quantum permutation group As(n) which is defined to

be the C∗ algebra generated by aij ( i, j = 1, 2, ..., n ) satisfying the following relations:

a2
ij = aij = a∗ij , i, j = 1, 2, ...n,

n∑
j=1

aij = 1, i = 1, 2, ...n,

n∑
i=1

aij = 1, i = 1, 2, ...n,

with the coproduct on the generators is given by ∆(aij) =
∑n

k=1 aik ⊗ akj . Also the
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antipode κ on the canonical dense Hopf-∗ algebra is given by κ(aij) = aji, whereas

the counit is given by ε(aij) = δij . The name comes from the fact that the universal

commutative C∗ algebra generated by the above set of relations is isomorphic to C(Sn)

where Sn denotes the permutation group on n symbols.

Let us consider the category with objects as compact groups acting on on a n-point

set Xn = {x1, x2, ..., xn}. If two groups G1 and G2 have actions α1 and α2 respectively,

then a morphism from G1 to G2 is a group homomorphism φ such that α2(φ× id) = α1.

Then C(Sn) is the universal object in this category. It is proved in [55] that the quantum

permutation group enjoys a similar property.

We have that C(Xn) = C∗{ei : e2
i = ei = e∗i ,

∑n
r=1 er = 1, i = 1, 2, ..., n}. Then

QUn has a C∗ action on C(Xn) via the formula:

α(ej) =

n∑
i=1

ei ⊗ aij , j = 1, 2, ...n.

Proposition 2.1.5. Consider the category with objects as CQG s having a C∗ action

on C(Xn) and morphisms as CQG morphisms intertwining the actions as above. Then

As(n) is the universal object in this category.

Now we note down a simple fact for future use.

Lemma 2.1.6. Let α be an action of a CQG S on C(X) where X is a finite set. Then

α automatically preserves the functional τ corresponding to the counting measure:

(τ ⊗ id)(α(f)) = τ(f).1S .

Proof:

Let X = {1, ..., n} for some n ∈ IN and denote by δi the characteristic function of

the point i. Let α(δi) =
∑

j δj ⊗ qij where {qij : i, j = 1 . . . n} are the images of the

canonical generators of the quantum permutation group as above. Then τ -preservation

of α follows from the properties of the generators of the quantum permutation group,

which in particular imply that
∑

j qij = 1 =
∑

i qij . 2

Wang also identified the universal object in the category of all CQG s having a C∗

action α1 on Mn(C) ( with morphisms as before ) such that the functional 1
nTr is kept

invariant under α1. However, no such universal object exists if the invariance of the

functional is not assumed. The precise statement is contained in the following theorem.

Before that, we recall that Mn(C) = C∗{eij : eijekl = δjkeil, e
∗
ij = eji,

∑n
r=1 err =

1, i, j, k, l = 1, 2, ...n}.
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Proposition 2.1.7. Let QUMn(C), 1
n

Tr be the C∗ algebra with generators aklij and the

following defining relations:

n∑
v=1

akvij a
vl
rs = δjra

kl
is , i, j, k, l, r, s = 1, 2, ..., n,

n∑
v=1

asrlva
ji
vk = δjra

si
lk, i, j, k, l, r, s = 1, 2, ..., n,

aklij
∗

= alkji , i, j, k, l = 1, 2, ..., n,

n∑
r=1

aklrr = δkl, k, l = 1, 2, ..., n,

n∑
r=1

arrkl = δkl, k, l = 1, ..., n.

Then,

( 1 ) QUMn(C), 1
n

Tr is a CQG with coproduct ∆ defined by ∆(aklij ) =
∑n

r,s=1 a
kl
rs ⊗

arsij , i, j, k, l = 1, 2, ..., n.

( 2 ) QUMn(C), 1
n

Tr has a C∗ action α1 on Mn(C) given by α1(eij) =
∑n

k,l=1 ekl ⊗
aklij , i, j = 1, 2, ..., n. Moreover, QUMn(C), 1

n
Tr is the universal object in the category of

all CQG s having C∗ action on Mn(C) such that the functional 1
nTr is kept invariant

under the action.

( 3 ) There does not exist any universal object in the category of all CQG s having

C∗ action on Mn(C).

Proposition 2.1.8. Since, any faithful state on a finite dimensional C∗ algebra A is of

the form Tr(Rx) for some operator R, it follows from Theorem 6.1, ( 2 ) of [55] that the

universal CQG acting on any finite dimensional C∗ algebra preserving a faithful state

φ exists and is going to be denoted by QUA,φ.

Now let X be a compact, Hausdorff space. Then C(X) is a C∗ algebra. We say a

CQG Q acts continuously and faithfully on the space X if Q has a faithful C∗ action on

the C∗ algebra C(X). We show in the following example (which is due to Huang [29])

that a genuine CQG (i.e. non commutative as a C∗ algebra) can act continuously and

faithfully on a compact Hausdorff space.

Example:

Recall the quantum permutation group As(n). It acts continuously and faithfully on

C(Xn) where Xn is the finite space with n points {x1, ..., xn}. If ei for 1 ≤ i ≤ n be

the functions on Xn such that ei(xj) = δij and Y be a compact Hausdorff space then

(Lemma 3.1 of [29])
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Lemma 2.1.9. There exists an action α of the quantum permutation group As(n) on

Xn × Y given by α(ei ⊗ f) =
∑n

k=1 ek ⊗ f ⊗ aki for all 1 ≤ i ≤ n and f ∈ C(Y ).

Now Y1 be a closed subset of Y . We define an equivalence relation ∼ on Xn × Y as

follows: For y′, y′′ ∈ Y and x′, x′′ ∈ Xn, two points (x′, y′) and (x′′, y′′) are equivalent if

one of the followings is true:

(1)y′ = y′′ ∈ Y1.

(2)y′ = y′′ and x′ = x′′.

With this, we have (Lemma 3.2 and Proposition 3.7 of [29])

Lemma 2.1.10. The quotient space Xn × Y/ ∼ is compact and Hausdorff. Moreover

if Y is connected and Y1 is non empty, Xn × Y/ ∼ is also connected.

Also note that C(Xn × Y/ ∼) is a C∗ subalgebra of C(Xn × Y ). Then we have

(Proposition 3.4 and Theorem 3.5 of [29])

Theorem 2.1.11. If Y1 6= Y , the restriction α̃ of the action α on C(Xn × Y/ ∼) is a

faithful action of As(n) on the compact, connected, Hausdorff space Xn × Y/ ∼.

For a concrete example, take Y = [0, 1] and Y1 = {0}, then Xn × Y/ ∼ is a wedge

sum of n unit intervals by identifying (xi, 0) to a single point for all 1 ≤ i ≤ n. The

quantum permutation group As(n) which is non commutative for n ≥ 4 acts faithfully

on this space.

Now we turn to the formulation of quantum isometry groups based on Laplacian

and the Dirac operator. First we start with the formulation of quantum isometry group

based on Laplacian.

2.2 Formulation of the quantum isometry group based on

Laplacian

2.2.1 Characterization of isometry group for a compact Riemannian

manifold

Let M be a compact Riemannian manifold. Consider the category with objects be-

ing the pairs (G,α) where G is a compact metrizable group acting on M by the

smooth and isometric action α. If (G1, α) and (G2, β) are two objects in this cate-

gory, Mor((G1, α), (G2, β)) consists of group homomorphisms π from G1 to G2 such

that β ◦ π = α. Then the isometry group of M is the universal object in this category.

More generally, the isometry group of a classical compact Riemannian manifold,

viewed as a compact metrizable space ( forgetting the group structure ), can be seen to

be the universal object of a category whose object class consists of subsets ( not generally
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subgroups ) of the set of smooth isometries of the manifold. Then it can be proved that

this universal compact set has a canonical group structure. Thus, motivated by the

ideas of Woronowicz and Soltan Goswami considered in [22] a bigger category with

objects as the pair (S, f) where S is a compact metrizable space and f : S ×M → M

such that the map from M to itself defined by m 7→ f(s,m) is a smooth isometry for

all s in S. The morphism set is defined as above ( replacing group homomorphisms by

continuous set maps ).

Therefore, to define the quantum isometry group, it is reasonable to consider a

category of compact quantum groups which act on the manifold (or more generally,

on a noncommutative manifold given by spectral triple) in a ‘nice’ way, preserving the

Riemannian structure in some suitable sense, which is precisely formulated in [22], where

it is also proven that a universal object in the category of such quantum groups does

exist if one makes some natural regularity assumptions on the spectral triple.

2.2.2 The definition and existence of the quantum isometry group

Let (A∞,H, D) be a Θ-summable spectral triple of compact type. We recall from the

first chapter the Hilbert spaces of k-forms HkD, k = 0, 1, 2, ... and also the Laplacian

L = −d∗DdD.
To define the quantum isometry group, we need the following assumptions:

Assumptions

1. dD is closable and A∞ ⊆ Dom(L) where A∞ is viewed as a dense subspace of

H0
D.

2. L has compact resolvents.

3. L(A∞) ⊆ A∞.
4. Each eigenvector of L ( which has a discrete spectrum, hence a complete set of

eigenvectors ) belongs to A∞.
5. ( connectedness assumption ) The kernel of L is one dimensional, spanned by the

identity 1 of A∞, viewed as a unit vector in H0
D.

6. The complex linear span of the eigenvectors of L, denoted by A∞0 is norm dense

in A∞.

Definition 2.2.1. We say that a spectral triple satisfying the assumptions 1. - 6.

admissible. Note that in the last section of the first chapter we had to only assume the

regularity of the spectral triple so that a noncommutative Laplacian can be defined. But

for the formulation of the quantum isometry group based on laplacian we need to assume

that the spectral triple is admissible.

The following result is contained in Remark 2.16 of [22].
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Proposition 2.2.2. If an admissible spectral triple (A∞,H, D) satisfies the condition⋂
Dom(Ln) = A∞, and if α : Ā → Ā ⊗ S is a smooth isometric action on A∞ by a

CQG S, then for all state φ on S, αφ(= (id⊗ φ)α) keeps A∞ invariant.

In view of the characterization of smooth isometric action on a classical compact

manifold ( Proposition 1.1.13 in Chapter 1 ), Goswami gave the following definition

in [22].

Definition 2.2.3. A quantum family of smooth isometries of the noncommutative man-

ifold A∞ ( or more precisely on the corresponding spectral triple ) is a pair (S, α) where

S is a separable unital C∗ algebra, α : A → A ⊗ S ( where A denotes the C∗ alge-

bra obtained by completing A∞ in the norm of B(H0
D)) is a unital C∗ homomorphism,

satisfying the following:

a. Sp(α(A)(1⊗ S) = A⊗ S
b. αφ = (id⊗φ)α maps A∞0 into itself and commutes with L on A∞0 , for every state

φ on S.
In case, the C∗ algebra has a coproduct ∆ such that (S,∆) is a compact quantum

group and α is an action of (S,∆) on A, we say that (S,∆) acts smoothly and isomet-

rically on the noncommutative manifold.

Notations

1. We will denote by QL the category with the object class consisting of all quan-

tum families of isometries (S, α) of the given noncommutative manifold, and the set of

morphisms Mor((S, α), (S ′, α′)) being the set of unital C∗ homomorphisms φ : S → S ′

satisfying (id⊗ φ)α = α′.

2. We will denote by Q′L the category whose objects are triplets (S,∆, α) where

(S,∆) is a CQG acting smoothly and isometrically on the given noncommutative mani-

fold, with α being the corresponding action. The morphisms are the homomorphisms of

compact quantum groups which are also morphisms of the underlying quantum families.

Let {λ1, λ2, ...} be the set of eigenvalues of L, with Vi being the corresponding (

finite dimensional ) eigenspace. We will denote by Ui the Wang algebra Au,di(I) (

as introduced in the chapter 1 ) where di is the dimension of the subspace Vi. We

fix a representation βi : Vi → Vi ⊗ Ui on the Hilbert space Vi, given by βi(eij) =∑
k eik⊗u

(i)
kj for j = 1, 2, ...di, where {eij} is an orthonormal basis for Vi, and u(i) ≡ u(i)

kj

are the generators of Ui. Thus, both u(i) and u(i) are unitaries. The representations βi

canonically induce the free product representation β = ∗iβi of the free product CQG

U = ∗iUi on the Hilbert space H0
D such that the restriction of β on Vi coincides with βi

for all i.

The following Lemma ( Lemma 2.12 of [22] ) will be needed later and hence we

record it.
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Lemma 2.2.4. Consider an admissible spectral triple (A∞, H, D) and let (S, α) be a

quantum family of smooth isometries of the spectral triple. Moreover, assume that the

action is faithful in the sense that there is no proper C∗ subalgebra S1 of S such that

α(A∞) ⊆ A∞ ⊗ S1. Then α̃ : A∞ ⊗ S → A∞ ⊗ S defined by α̃(a ⊗ b) = α(a)(1 ⊗ b)
extends to an S linear unitary on the Hilbert S module H0

D ⊗ S, denoted again by α̃.

Moreover, we can find a C∗ isomorphism φ : U/I → S between S and a quotient of U
by a C∗ ideal I of U , such that α = (id ⊗ φ) ◦ (id ⊗ ΠI) ◦ β on A∞ ⊆ H0

D, where ΠI

denotes the quotient map from U to U/I.
If furthermore, there is a CQG structure on S given by a coproduct ∆ such that α

is a C∗ action of a CQG on A, then the map α : A∞ → A∞ ⊗ S extends to a unitary

representation ( denoted again by α ) of the CQG (S,∆) on H0
D. In this case, the ideal

I is a Woronowicz C∗ ideal and the C∗ isomorphism φ : U/I → S is a morphism of

CQG s.

Using this, the following result has been proved in [22], which defines and gives the

existence of QISOL.

Theorem 2.2.5. For any admissible spectral triple (A∞,H, D), the category QL has a

universal object denoted by (QISOL, α0). Moreover, QISOL has a coproduct ∆0 such

that (QISOL,∆0) is a CQG and (QISOL,∆0, α0) is a universal object in the category

Q′L. The action α0 is faithful.

We very briefly outline the main ideas of the proof. The universal object QISOL is

constructed as a suitable quotient of U . Let F be the collection of all those C∗-ideals I
of U such that the composition ΓI = (id⊗ΠI) ◦ β : A∞0 → A∞0 ⊗alg (U/I) extends to a

C∗-homomorphism from A to A⊗ (U/I). Then it can be shown that I0 (= ∩I∈FI ) is

again a member of F and (U/I0, ΓI0) is the required universal object. Thus,

Remark 2.2.6. QISOL is a quantum subgroup of the CQG U = ∗iAu,di(I). As Au,di(I)

satisfies κ2 = id, QISOL has tracial Haar state.

Remark 2.2.7. It is proved in [22] that to ensure the existence of QISOL, the as-

sumption (5) can be replaced by the condition that the action α is τ preserving, that

is, (τ ⊗ id)α(a) = τ(a).1. In [22] it was also shown ( Lemma 2.5, b ⇒ a ) that for

an isometric group action on a not necessarily connected classical manifold, the volume

functional is automatically preserved. It can be easily seen that the proof goes verbatim

for a quantum group action, and consequently we get the existence of QISOL for a (

not necessarily connected ) compact Riemannian manifold.

Unitary representation of QISOL on a spectral triple

We shall also need the following result proved in section 2.4 of [22].
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Proposition 2.2.8. QISOL has a unitary representation U ≡ UL on HD such that U

commutes with d+ d∗. Let δ be as in subsection 1.6.2. On the Hilbert space of k-forms,

that is. HkD, U is defined by:

U([a0δ(a1) · · · δ(ak)]⊗ q) = [a
(1)
0 δ(a

(1)
1 ) · · · δ(a(1)

k )]⊗ (a
(2)
0 a

(2)
1 · · · a

(2)
k )q,

where q belongs to QISOL, ai belongs to A∞0 , and for x in A0, ( the ∗-subalgebra

generated by the eigenvectors of L ) we write in Sweedler notation α(x) = x(1) ⊗ x(2) ∈
A0 ⊗ (QISOL)0 (α denotes the action of QISOL).

2.2.3 QISOL for Sn and Tn

In the example toward the end of Subsection 2.1 we saw that a genuine CQG (i.e. non

commutative as a C∗ algebra) can act faithfully on a compact, connected, Hausdorff

space. But in [11] and [9], it was observed that the quantum isometry group of n sphere

and n tori turn out to be classical i.e.

(1) QISOL(Sn) ≡ C(O(n+ 1)).

(2) QISOL(Tn) ≡ C(ISO(Tn)). For computation we refer the reader to [11] and [9].

2.3 Formulation of the quantum isometry group based on

the Dirac operator

The approach of formulation of quantum isometry group for a spectral triple had a

major draw back as it needed the existence of a “good“ Laplacian on the spectral

triple. A direct approach based on the Dirac operator of the spectral triple was called

for and that was successfully achieved by Goswami, Bhowmick in their paper [10]. In

consistency with the classical case, this is called quantum group of orientation preserving

Riemannian isometry. First recall Theorem 1.57 of chapter 1. Motivated by this we

give the following operator theoretic characterization of “set of orientation preserving

isometries ”. For the proof of the theorem see [10].

Theorem 2.3.1. Let X be a compact metrizable space and ψ : X ×M →M is a map

such that ψx defined by ψx(m) = ψ(x,m) is a smooth orientation preserving Riemannian

isometry and x 7→ ψx ∈ C∞(M,M) is continuous with respect to the locally convex

topology of C∞(M,M) mentioned before.

Then there exists a ( C(X)-linear ) unitary Uψ on the Hilbert C(X)-module H ⊗
C(X) (where H = L2(S)) such that for all x belonging to X, Ux := (id ⊗ evx)Uψ is a

unitary of the form Uψx on the Hilbert space H commuting with D and UxMφU
−1
x =

Mφ◦ψ−1
x

. If in addition, the manifold is even dimensional, then Uψx commutes with the

grading operator γ.
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Conversely, if there exists a C(X)-linear unitary U on H ⊗ C(X) such that Ux :=

(id ⊗ evx)(U) is a unitary commuting with D for all x, ( and Ux commutes with the

grading operator γ if the manifold is even dimensional ) and (id ⊗ evx)αU (L∞(M)) ⊆
L∞(M) for all x in X, then there exists a map ψ : X×M →M satisfying the conditions

mentioned above such that U = Uψ.

2.3.1 Quantum group of orientation-preserving isometries of an R-

twisted spectral triple

In view of the characterization of orientation-preserving isometric action on a classical

manifold ( Theorem 2.3.1 ), we give the following definitions.

Definition 2.3.2. A quantum family of orientation preserving isometries for the (

odd, compact type ) spectral triple (A∞,H, D) is given by a pair (S, U) where S is a

separable unital C∗-algebra and U is a linear map from H to H⊗S such that Ũ given by

Ũ(ξ⊗ b) = U(ξ)(1⊗ b) ( ξ in H, b in S ) extends to a unitary element of M(K(H)⊗S)

satisfying the following:

(i) for every state φ on S we have UφD = DUφ, where Uφ := (id⊗ φ)(Ũ);

(ii) (id ⊗ φ) ◦ ad
Ũ

(a) ∈ (A∞)′′ for all a in A∞ and state φ on S, where ad
Ũ

(x) :=

Ũ(x⊗ 1)Ũ∗ for x belonging to B(H). In case the C∗-algebra S has a coproduct ∆ such

that (S,∆) is a compact quantum group and U is a unitary representation of (S,∆) on

H, we say that (S,∆) acts by orientation-preserving isometries on the spectral triple.

In case the spectral triple is even with the grading operator γ, a quantum family of

orientation preserving isometries (A∞,H, D, γ) will be defined exactly as above, with

the only extra condition being that U commutes with γ.

From now on, we will mostly consider odd spectral triples. However let us remark

that in the even case, all the definitions and results obtained by us will go through with

some obvious modifications. We also remark that all our spectral triples are of compact

type.

Consider the category Q ≡ Q(A∞,H, D) ≡ Q(D) with the object-class consist-

ing of all quantum families of orientation preserving isometries (S, U) of the given

spectral triple, and the set of morphisms Mor((S, U), (S ′, U ′)) being the set of unital

C∗-homomorphisms Φ : S → S ′ satisfying (id ⊗ Φ)(U) = U ′. We also consider an-

other category Q′ ≡ Q′(A∞,H, D) ≡ Q′(D) whose objects are triplets (S,∆, U), where

(S,∆) is a compact quantum group acting by orientation preserving isometries on the

given spectral triple, with U being the corresponding unitary representation. The mor-

phisms are the homomorphisms of compact quantum groups which are also morphisms

of the underlying quantum families of orientation preserving isometries. The forgetful

functor F : Q′ → Q is clearly faithful, and we can view F (Q′) as a subcategory of Q.
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Unfortunately, in general Q′ or Q will not have a universal object. It is easily seen

by taking the standard example A∞ = Mn(C), H = Cn, D = I. Any CQG having

a unitary representation on Cn is an object of Q′(Mn(C),Cn, I). But by Proposition

2.1.7, there is no universal object in this category. However, the fact that comes to our

rescue is that a universal object exists in each of the subcategories which correspond to

the CQG actions preserving a given faithful functional on Mn.

On the other hand, given any equivariant spectral triple, it has been shown in [23]

that there is a (not necessarily unique) canonical faithful functional which is preserved

by the CQG action. For readers’ convenience, we state this result (in a form suitable to

us) briefly here. Before that, let us recall the definition of an R-twisted spectral data

from [23].

Definition 2.3.3. An R-twisted spectral data ( of compact type ) is given by a quadruplet

(A∞,H, D,R) where

1. ( A∞,H, D ) is a spectral triple of compact type.

2. R a positive (possibly unbounded) invertible operator such that R commutes with

D.

3. For all s ∈ R, the map a 7→ σs(a) := R−saRs gives an automorphism of A∞ (not

necessarily ∗-preserving) satisfying sups∈[−n,n] ‖σs(a)‖ <∞ for all positive integer n.

We shall also sometimes refer to (A∞,H, D) as an R-twisted spectral triple.

Proposition 2.3.4. Given a spectral triple (A∞,H, D) (of compact type) which is Q-

equivariant with respect to a representation of a CQG Q on H, we can construct a

positive (possibly unbounded) invertible operator R on H such that (A∞,H, D,R) is a

twisted spectral data, and moreover, we have

αU preserves the functional τR defined at least on a weakly dense ∗-subalgebra ED of

B(H) generated by the rank-one operators of the form |ξ >< η| where ξ, η are eigenvec-

tors of D, given by

τR(x) = Tr(Rx), x ∈ ED.

Remark 2.3.5. When the Haar state of Q is tracial, then it follows from the definition

of R in Lemma 3.1 of [23] that R can be chosen to be I.

Remark 2.3.6. If Vλ denotes the eigenspace of D corresponding to the eigenvalue, say

λ, it is clear that τR(X) = etλ
2
Tr(Re−tD

2
X) for all X = |ξ >< η| with ξ, η belonging to

Vλ and for any t > 0. Thus, the αU -invariance of the functional τR on ED is equivalent

to the αU -invariance of the functional X 7→ Tr(XRe−tD
2
) on ED for each t > 0. ED, that

is, for all |ξ >< η| with ξ, η belonging to Vλ, (τR ⊗ id)ad
Ũ

(|ξ >< η|) = τR(|ξ >< η|).1
Therefore, (τR ⊗ id)ad

Ũ
(|ξ >< η|) = τR(|ξ >< η|).1 = etλ

2
Tr(Re−tD

2 |ξ >< η|). On

the other hand, (τR ⊗ id)ad
Ũ

(|ξ >< η|) = etλ
2
(Tr(RetD

2
.) ⊗ id)αU (|ξ >< η|). ( by
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writing the formula of trace in terms of an orthonormal basis ) ) If, furthermore, the

R-twisted spectral triple is Θ-summable in the sense that Re−tD
2

is trace class for every

t > 0, the above is also equivalent to the αU -invariance of the bounded normal functional

X 7→ Tr(XRe−tD
2
) on the whole of B(H). In particular, this implies that αU preserves

the functional B(H) 3 x 7→ Limt→0+
Tr(xRe−tD

2
)

Tr(Re−tD2 )
, where Lim is as defined in subsection

1.6.2.

This motivates the following definition:

Definition 2.3.7. Given an R-twisted spectral data (A∞,H, D,R) of compact type, a

quantum family of orientation preserving isometries (S, U) of (A∞,H, D) is said to

preserve the R-twisted volume, (simply said to be volume-preserving if R is understood)

if one has (τR ⊗ id)(ad
Ũ

(x)) = τR(x).1S for all x in ED, where ED and τR are as in

Proposition 2.3.4. We shall also call (S, U) a quantum family of orientation-preserving

isometries of the R-twisted spectral triple.

If, furthermore, the C∗-algebra S has a coproduct ∆ such that (S,∆) is a CQG and

U is a unitary representation of (S,∆) on H, we say that (S,∆) acts by volume and

orientation-preserving isometries on the R-twisted spectral triple.

We shall consider the categories QR ≡ QR(D) and Q′R ≡ Q′R(D) which are the full

subcategories of Q and Q′ respectively, obtained by restricting the object-classes to the

volume-preserving quantum families.

Remark 2.3.8. We shall not need the full strength of the definition of twisted spectral

data here; in particular the third condition in the definition 2.3.3. However, we shall

continue to work with the usual definition of R-twisted spectral data, keeping in mind

that all our results are valid without assuming the third condition.

Let us now fix a spectral triple (A∞,H, D) which is of compact type. The C∗-

algebra generated by A∞ in B(H) will be denoted by A. Let λ0 = 0, λ1, λ2, · · · be the

eigenvalues of D with Vi denoting the ( di-dimensional, 0 ≤ di <∞ ) eigenspace for λi.

Let {eij , j = 1, ..., di} be an orthonormal basis of Vi. We also assume that there is a

positive invertible R on H such that (A∞,H, D,R) is an R-twisted spectral data. The

operator R must have the form R|Vi = Ri, say, with Ri positive invertible di×di matrix.

Let us denote the CQG Au,di(R
T
i ) by Ui, with its canonical unitary representation βi on

Vi ∼= Cdi , given by βi(eij) =
∑

k eik ⊗ u
RTi
kj . Let U be the free product of Ui, i = 1, 2, ...

and β = ∗iβi be the corresponding free product representation of U on H. We shall also

consider the corresponding unitary element β̃ in M(K(H) ⊗ U). For the proofs of the

following Lemma and following Theorem the reader is referred to [10].

Lemma 2.3.9. Consider the R-twisted spectral triple (A∞,H, D) and let (S, U) be a

quantum family of volume and orientation preserving isometries of the given spectral
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triple. Moreover, assume that the map U is faithful in the sense that there is no proper

C∗-subalgebra S1 of S such that Ũ belongs to M(K(H)⊗ S1). Then we can find a C∗-

isomorphism φ : U/I → S between S and a quotient of U by a C∗-ideal I of U , such

that U = (id⊗ φ) ◦ (id⊗ΠI) ◦ β, where ΠI denotes the quotient map from U to U/I.

If, furthermore, there is a compact quantum group structure on S given by a coprod-

uct ∆ such that (S,∆, U) is an object in Q′R, the ideal I is a Woronowicz C∗-ideal and

the C∗-isomorphism φ : U/I → S is a morphism of compact quantum groups.

Theorem 2.3.10. For any R-twisted spectral triple of compact type (A∞,H, D), the

category QR of quantum families of volume and orientation preserving isometries has a

universal (initial) object, say (G̃, U0). Moreover, G̃ has a coproduct ∆0 such that (G̃,∆0)

is a compact quantum group and (G̃,∆0, U0) is a universal object in the category Q′R.

The representation U0 is faithful.

Consider the ∗-homomorphism α0 : ad
Ũ0

, where (G̃, U0) is the universal object ob-

tained in the previous theorem. For every state φ on G̃, (id ⊗ φ) ◦ α0 maps A into

A′′. However, in general α0 may not be faithful even if U0 is so, and let G denote the

C∗-subalgebra of G̃ generated by the elements {(f ⊗ id) ◦ α0(a) : f ∈ A∗, a ∈ A}.

Definition 2.3.11. We shall call G the quantum group of orientation-preserving isome-

tries of R-twisted spectral triple (A∞,H, D,R) and denote it by QISO+
R(A∞,H, D,R)

or even simply as QISO+
R(D). The quantum group G̃ is denoted by Q̃ISO+

R(D).

If the spectral triple is even, then we will denote G and G̃ by QISO+
R(D, γ) and

Q̃ISO+
R(D, γ) respectively.

Let (Q, V ) be an object in the category Q
′
R(D). We would like to give a necessary

and sufficient condition on the unbounded operator R so that ad
Ṽ

preserves the R-

twisted volume. For that break the Hilbert space H (on which D acts) into finite

dimensional eigen spaces of the operator D i.e. let H = ⊕kHk where each Hk is a finite

dimensional eigen space for D. Since D commutes with V , V preserves each of the Hk’s
and on each Hk, V is a unitary representation of the compact quantum group Q. Then

we have the decomposition of each Hk into the irreducibles, say

Hk = ⊕π∈Ik⊂Rep(Q)Cdπ ⊗ Cmπ,k ,

where mπ,k is the multiplicity of the irreducible representation of type π on Hk and Ik is

some finite subset of Rep(Q). Since R commutes with V , R preserves direct summands

of Hk. Then we have the following

Theorem 2.3.12. ad
Ṽ

preserves the R-twisted volume if and only if

R|Hk = ⊕π∈IkFπ ⊗ Tπ,k,
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for some Tπ,k ∈ B(Cmπ,k), where Fπ’s are as in Subsection 2.1.

Proof:

Only if⇒: let {ei}dπi=1 and {fj}
mπ,k
j=1 be orthonormal bases for Cdπ and Cmπ,k respectively.

Also let R(ei⊗fj) =
∑

s,tR(s, t, i, j)es⊗ft. We have Ṽ ∗(ei⊗fj⊗1Q) =
∑

k ek⊗fj⊗q∗ik.
We denote the restriction of the trace of B(H) on Cdπ ⊗ Cmπ,k again by Tr. Let a ∈
B(Cdπ ⊗ Cmπ,k) and χ(a) := Tr(a.R). Then we have

(χ⊗ h)ad
Ṽ

(a)

=
∑
i,j

< Ṽ ∗(ei ⊗ fj ⊗ 1Q), (a⊗ 1)Ṽ ∗R(ei ⊗ fj) >

=
∑

i,j,k,s,t,u

< ek ⊗ fj ⊗ q∗ik, R(s, t, i, j)a(eu ⊗ ft)⊗ q∗su >

=
∑

i,j,k,s,t,u

R(s, t, i, j)

Mπ
< ek ⊗ fj , a(eu ⊗ ft) > δisFπ(k, u)

=
∑

i,j,k,t,u

R(i, t, i, j)

Mπ
< ek ⊗ fj , a(eu ⊗ ft) > Fπ(k, u)

On the other hand

χ(a) = Tr(a.R)

=
∑
i,j

< ei ⊗ fj , aR(ei ⊗ fj) >

=
∑
k,j,u,t

R(u, t, k, j) < ek ⊗ fj , a(eu ⊗ ft) >

Hence (χ⊗ h)ad
Ṽ

(a) = χ(a) ⇒:

∑
i,j,k,t,u

R(i, t, i, j)

Mπ
< ek ⊗ fj , a(eu ⊗ ft) > Fπ(k, u) (2.3.1)

=
∑
k,j,u,t

R(u, t, k, j) < ek ⊗ fj , a(eu ⊗ ft) > (2.3.2)

Now fix u0, t0 and consider a ∈ B(H) such that a(eu0 ⊗ ft0) = ep ⊗ fq and zero on the
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other basis elements. Then from (2), we get

∑
i,j,k

R(i, t0, i, j)

Mπ
< ek ⊗ fj , ep ⊗ fq > Fπ(k, u0) =

∑
k,j

R(u0, t0, k, j) < ek ⊗ fj , ep ⊗ fq >

⇒
∑
i

R(i, t0, i, q)

Mπ
Fπ(p, u0) = R(u0, t0, p, q)

This establishes that R|Hk = ⊕π∈IkFπ ⊗ Tπ,k with Tπ,k ∈ B(Cmπ,k).

The if part is straightforward and was essentially done in [23]. 2
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Chapter 3

Smooth and inner product

preserving action

3.1 Introduction

In the 2nd chapter we have defined continuous and faithful action of a compact quan-

tum group on a compact, Hausdorff space. If the compact space has a smooth manifold

structure then we can consider the notion of a smooth action of a CQG on that smooth,

compact manifold. In this chapter we shall define a smooth action of a CQG on a

smooth, compact manifold and see the connection between a smooth and a continuous

action of a CQG on a compact manifold. Also for such a smooth action α, we shall

deduce a necessary and sufficient condition for extending the smooth action as a well

defined bimodule morphism on the C∞(M) bimodule of smooth one forms on the man-

ifold. Then we shall define an inner product preserving smooth action of a CQG and

we shall show that an inner product preserving smooth action will lift to unitary repre-

sentations of the CQG on the bimodules of k-forms. We start with defining a smooth

action. For this chapter M will stand for a compact n-dimensional orientable manifold

(possibly with boundary).

3.2 Smooth action of a CQG

Definition 3.2.1. We call a Fréchet ∗ algebra A a nice algebra if it is a dense ∗-
subalgebra of a C∗ algebra A1 such that

1. There are finitely many densely defined closed ∗ derivations δ1, ..., δN on A1.

2. A ⊂ D(δi) and A is stable under δi for all i.

3. The topology of A is given by the family of seminorms {||x||α = ||δα(x)||}, where

{α = (i1, ..., ik) : 1 ≤ ij ≤ k, k ≥ 1 is a multi index or α = φ(null index), δα = δi1 ..δik ,

61
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δφ = id and ||.|| is the C∗ norm of A1.

Given two such nice algebras A(⊂ A1) and B(⊂ B1) with finitely many derivations

{δ1, ..., δn} and {η1, ..., ηm} respectively, we have A⊗B ⊂ A1⊗̂B1 and A⊗B has finitely

many derivations {δ1 ⊗ id, ..., δn ⊗ id, id ⊗ η1, ..., id ⊗ ηm}. We topologize A ⊗ B by

the family of seminorms {||.||αβ} as before where this time the norm ||.|| is the spatial

norm of A1⊗̂B1. We denote the completion with respect to this topology by A⊗̂B. It

is clearly again a nice algebra with finitely many derivations. It should be mentioned

that the construction of A⊗̂B may depend on the choice of derivations and the ambient

C∗ algebra. However if A is a nuclear algebra(for example C∞(M) with its canonical

locally convex topology), A⊗̂B does not depend upon such choices.

Example

From the discussions in chapter 1, it is clear that C∞(M) is a ‘nice’ algebra in the

sense described above with C(M) being the ambient C∗ algebra. Also for a C∗ algebra

Q, C∞(M)⊗̂Q is again a nice algebra with the ambient C∗ algebra being C(M)⊗̂Q
and the derivations being {η1 ⊗ id, ..., ηm ⊗ id} where {η1, ..., ηm} are the derivations of

C∞(M). We could have taken any other set of derivations on Q. But for a C∗ algebra

all derivations being bounded, the topology would not have changed. We make the

convention of choosing the above derivations for a topological tensor product between

a nice algebra and a C∗ algebra. C∞(M) being a nuclear algebra the topology on

C∞(M)⊗̂Q does not depend upon the choice of derivations on C∞(M).

Let E be any locally convex space. Then we can define the space of E valued

smooth functions on a compact manifold M . Take a centered coordinate chart (U,ψ)

around a point x ∈ M . Then an E valued function f on M is said to be smooth

at x if f ◦ ψ−1 is smooth E valued function at 0 ∈ Rn in the sense of [50](definition

40.1). We denote the space of E valued smooth functions on M by C∞(M,E). We

can give a locally convex topology on C∞(M,E) by the family of seminorms given by

pK,αi (f) := supx∈K ||∂αf(x)||, where i,K, α are as before. Then we have the following

Proposition 3.2.2. 1. If E is complete, then so is C∞(M,E).

2. Suppose E is a complete locally convex space. Then we have C∞(M)⊗̂E ∼=
C∞(M,E).

3. Let M and N be two smooth compact manifolds with boundary. Then C∞(M)⊗̂C∞(N) ∼=
C∞(M,C∞(N)) ∼= C∞(M ×N) and contains C∞(M)⊗C∞(N) as Fréchet dense sub-

algebra.

4. Let A be a C∗ algebra. Then C∞(M)⊗̂A ∼= C∞(M,A) as Fréchet ∗ algebras.

For the proof of the first statement see 44.1 of [50]. The second statement also follows

from 44.1 of [50] and the fact that C∞(M) is nuclear. In particular the isomorphism
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does not depend on the choice of derivations.The third and fourth statements follow

from the second statement (replacing E suitably).

It is worth mentioning that what we call a ‘nice’ algebra is an example of a Fréchet

(D∗∞)-subalgebra of a C∗ algebra in the sense of [8] (See definition 1.2 and example

1.5 of [8]). Also see [15], where such algebras were studied under the name of smooth

subalgebras of a C∗ algebra. We state the following (Proposition 3.6) from [8]

Proposition 3.2.3. For i = 1, 2, let Bi be a Fréchet (D∗∞)-subalgebra of a C∗ algebra

Ai. Let φ : B1 → B2 be a ∗- homomorphism. Then the following hold:

(1) φ is C∗ norm decreasing.

(2) φ extends uniquely to a C∗ algebra homomorphism from A1 to A2.

(3) If φ is injective, then φ is an isometry for the respective C∗ norms.

Using the above proposition we can prove that a nice algebra is independent of its

embedding in a C∗ algebra. More precisely, we have the following

Lemma 3.2.4. If A is a nice algebra embedded in two C∗ algebras A1 and A2. Then

A1 and A2 are isomorphic as C∗ algebras.

Proof:

Consider the identity map i : A → A. By (2) of Proposition 3.2.3, we have two

extensions of this map as C∗ algebra homomorphisms, namely i12 : A1 → A2 and

i21 : A2 → A1. Also as the identity map is injective, by (3) of Proposition 3.2.3, both

i12 and i21 are isometric. Now we shall prove that i12◦i21 : A2 → A2 is the identity map.

For that let a2 ∈ A2. Then by density of A in A2, we have a sequence ai2(∈ A)→ a2 in

A2 in its C∗ norm. Now

||i12 ◦ i21(a2)− a2||

= ||i12 ◦ i21(a2)− ai2 + ai2 − a2||

≤ ||i12 ◦ i21(a2)− i12 ◦ i21(ai2)||+ ||ai2 − a2||

Now since both i12 and i21 are norm preserving, we have ||i12 ◦ i21(a2)− i12 ◦ i21(ai2)|| =
||ai2−a2|| proving that i12◦i21(a2) = a2 i.e. i12◦i21 is the identity map on A2. Similarly,

it can be shown that i21 ◦ i12 is the identity map on A1 proving that i12 and i21 are

inverses of each other. So A1 and A2 are isomorphic as C∗ algebras. 2

Proposition 3.2.5. If A1, A2, A3 are nice algebras as above and Φ : A1×A2 → A3 is

a bilinear map which is separately continuous in each of the arguments. Then Φ extends

to a continuous linear map from the projective tensor product of A1 with A2 to A3. If

furthermore, A1 is nuclear, Φ extends to a continuous map from A1⊗̂A2 to A3.
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As a special case, suppose that A1,A2 are subalgebras of a nice algebra A and also

that A1 is isomorphic as a Fréchet space to some nuclear space. Then the multiplication

map say m of A extends to a continuous map from A1⊗̂A2 to A.

Proof:

By the universal property of tensor product of algebras, Φ extends as a linear map from

A1 ⊗ A2 to A3. We continue to denote the extension by Φ itself. It is only left to

show that Φ is continuous with respect to the projective tensor product of A1 and A2.

For that let us choose a seminorm r for A3. Then since Φ is separately continuous,

we have two seminorms p on A1 and q on A2 such that there is a positive constant

C with r(Φ(a ⊗ b)) ≤ Cp(a)q(b) for all a ∈ A1 and b ∈ A2. Then for ξ =
∑
ai ⊗ bi,

r(Φ(ξ)) ≤
∑
Cp(ai)q(bi). So by definition of the seminorms of projective tensor product,

we have r(Φ(ξ)) ≤ C(p⊗ q)(ξ) proving the continuity of Φ. 2

Let M be a smooth, compact n-dimensional manifold and A, B be two C∗ algebras.

We take a set of derivations {µ1, ..., µN} for some N ∈ N such that they generate the

locally convex topology of C∞(M). C∞(M) is a nice algebra and by Lemma 3.2.4 we

can take the ambient C∗ algebra to be C(M) without loss of generality. A similar fact

holds for C∞(M,A) as well. Thus we can treat C∞(M,A) as embedded in C(M,A)

and the set of derivations {µ1 ⊗ id, ..., µN ⊗ id} generating the topology of C∞(M,A).

C∞(M,A) is nothing but the completion of C∞(M)⊗A with respect to this topology.

Now let {η1, ..., ηl} be any set of closed ∗ derivations of C(M,A) generating the locally

convex topology of C∞(M,A). Then by definition of topological tensor product of two

nice algebras in our sense, C∞(M,A)⊗̂B is the completion of C∞(M,A)⊗B with respect

to the family of seminorms given by the set of closed ∗ derivations {η1⊗ id, ..., ηl⊗ id}, as

B is a C∗ algebra. From now on for any derivation D on a nice algebra C, we shall denote

the corresponding derivation D⊗ id on another nice algebra C⊗̂D by D̂. In the following

we shall show that the tensor product C∞(M,A)⊗̂B does not depend on the choice of

closed ∗ derivations on C (M,A). In fact we shall show that for any choice of derivations

on C∞(M,A), C∞(M,A)⊗̂B = C∞(M,A⊗̂B), where C∞(M,A⊗̂B) is the completion

of C∞(M)⊗A⊗ B with respect to the topology generated by the seminorms given by

the closed ∗ derivations {µ1 ⊗ idA⊗̂B, ..., µN ⊗ idA⊗̂B} on the C∗ algebra C(M,A⊗̂B).

Moreover C∞(M) being nuclear, the tensor product does not depend upon the choice

of derivations on C∞(M). First we deduce a few results.

Lemma 3.2.6. Consider C∞(M,A) as a C∞(M) bimodule using the algebra in-

clusion C∞(M) ∼= C∞(M) ⊗ 1 ⊂ C∞(M,A). Let D : C∞(M) 7→ C∞(M,A)

be a derivation. Then given any coordinate neighborhood (U, x1, ..., xn), there exists
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a1, ..., aj ∈ C∞(M,A) such that for any m ∈ U ,

D(f)(m) =

n∑
i=1

ai(m)
∂f

∂xi
(m).

Proof:

It follows by standard arguments similar to those used in the proof of the fact that any

derivation on C∞(M) is a vector field. 2

Corollary 3.2.7. Let η be a derivation on C∞(M,A). Then there exists a norm

bounded derivation ηA : A → C∞(M,A) such that for all coordinate neighborhoods

(U, x1, ..., xn) and F ∈ C∞(M,A) and for all m ∈ U ,

(ηF )(m) =

n∑
i=1

ai(m)
∂F

∂xi
(m) + ηA(F (m))(m),

for some ai ∈ C∞(M,A).

Proof:

Define ηA(q) := η(1⊗ q). As any closed ∗ derivation on a C∗ algebra is norm bounded,

the result follows from the Lemma 3.2.6 and the observation that η(f ⊗ q) = η(f ⊗
1)(1⊗ q) + (f ⊗ 1)η(1⊗ q). 2

Lemma 3.2.8. Let F ∈ C(M,A⊗̂B) such that for all ω ∈ B∗, (id ⊗ id ⊗ ω)F ∈
C∞(M,A). Then F ∈ C∞(M,A⊗̂B).

Proof:

We first prove it when M is an open subset U of Rn with compact closure say K.

We denote the standard coordinates of Rn by {x1, ..., xn}. Let us choose a point x0 =

(x1
0, ..., x

n
0 ) on the manifold and h, h′ > 0 such that (x1

0, ..., x
i
0 +h, ..., xn0 ) and (x1

0, ..., x
i
0 +

h
′
, ..., xn0 ) both belong to the open set U for a fixed i ∈ {1, ..., n}. We shall show that

∂F
∂xi

(x0) exists. That is we have to show that

ΩF (x0;h) :=
F (x1

0, ..., x
i
0 + h, ..., xn0 )− F (x1

0, ..., x
i
0, ..., x

n
0 )

h

is Cauchy in A⊗̂B as h → 0. For that first observe that ((id ⊗ id ⊗ ω)F )(x) = (id ⊗
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ω)(F (x)) for all x ∈M and ω ∈ B∗, the space of bounded linear functionals on B. Now

(id⊗ ω)(ΩF (x0;h)− ΩF (x0;h′))

=
h′(((id⊗ id⊗ ω)F )(x1

0, ..., x
i
0 + h, ..., xn0 )− ((id⊗ id⊗ ω)F )(x1

0, ..., x
i
0, ..., x

n
0 ))

hh′

−h(((id⊗ id⊗ ω)F )(x1
0, ..., x

i
0 + h′, ..., xn0 )− ((id⊗ id⊗ ω)F )(x1

0, ..., x
i
0, ..., x

n
0 ))

hh′

=
h′
∫ h

0
∂
∂xi

((id⊗ id⊗ ω)F )(x1
0, ..., x

i
0 + u, ..., xn0 )du

hh′

−
h
∫ h′

0
∂
∂xi

((id⊗ id⊗ ω)F )(x1
0, ..., x

i
0 + v, ..., xn0 )dv

hh′

=

∫ h
0

∫ h′
0 dudv

∫ v
u

∂2

∂x2i
((id⊗ id⊗ ω)F )(x1

0, ..., x
i
0 + s, ..., xn0 )ds

hh′
,

where all the integrals involved above are Banach space valued Bochner integrals. Let

supx∈K || ∂
2

∂x2i
((id⊗ id⊗ ω)F )(x)|| = Mω. Then using the face that for a measure µ and

a Banach space valued function F , ||
∫
Fdµ|| ≤

∫
||F ||dµ, we get

||(id⊗ ω)(ΩF (x0;h)− ΩF (x0;h′))|| ≤Mωε,

where ε = min{h, h′}. Now consider the family βφx0;h,h′ = (φ⊗id)(ΩF (x0;h)−ΩF (x0;h′))

for φ ∈ A∗ with ||φ|| ≤ 1. Then for ω ∈ B∗

ω(βφx0;h,h′) = (φ⊗ id)(id⊗ ω)(ΩF (x0;h)− ΩF (x0;h′)).

So

|ω(βφx0;h,h′)|

≤ ||(id⊗ ω)(ΩF (x0;h)− ΩF (x0;h′))||

≤ Mωε.

Hence by the uniform boundedness principle we get a constant M > 0 such that

||(βφx0;h,h′)|| ≤ Mε. But ||(ΩF (x0;h) − ΩF (x0;h′))|| = sup||φ||≤1||β
φ
x0;h,h′ ||. Therefore

we get

||(ΩF (x0;h)− ΩF (x0;h′))|| ≤Mε for all h, h
′
< ε.

Hence ΩF (x0;h) is Cauchy as h goes to zero i.e. ∂F
∂xi

(x0) exists. By similar arguments

we can show the existence of higher order partial derivatives. So, for a general smooth,

compact manifold M , going to the coordinate neighborhood and applying the above
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result we can show that F ∈ C∞(M,A⊗̂B). 2

Applying the above Lemma for A = C, we get

Corollary 3.2.9. For f ∈ C(M,B), if (id ⊗ φ)f ∈ C∞(M) for all φ ∈ B∗, then

f ∈ C∞(M,B).

Lemma 3.2.10. The locally convex topology on C∞(M,A)⊗̂B does not depend upon

the choice of derivations on C∞(M,A), hence C∞(M,A)⊗̂B ∼= C∞(M,A⊗̂B).

Proof:

Let us fix a choice of closed ∗ derivations {η1, ..., ηl} of C(M,A) such that they generate

the locally convex topolgy of C∞(M,A). Our aim is to prove that the locally convex

space obtained by completing C∞(M,A)⊗B with respect to the topolgy given by the set

of derivations {η̂1, ..., η̂l} of C(M,A)⊗̂B is equal to C∞(M,A⊗̂B) i.e. C∞(M,A)⊗̂B =

C∞(M,A⊗̂B). First we show that

C∞(M,A⊗̂B) ⊆ C∞(M,A)⊗̂B,

and the inclusion map is Fréchet continuous. To prove the above inclusion it is enough

to show that if a sequence in C∞(M)⊗A⊗B is Cauchy in the topology of the L.H.S., it

is also Cauchy in the topology of R.H.S.. This follows from the descriptions of η′js given

in the Lemma 3.2.7. Moreover, observe that for any ω ∈ B∗, (id⊗ω)F ∈ C∞(M,A) for

any F ∈ C∞(M,A)⊗̂B. Hence by Lemma 3.2.8, we get C∞(M,A)⊗̂B ⊆ C∞(M,A⊗̂B)

as well i.e. the two spaces coincide as sets. So by closed graph theorem we conclude

that they are isomorphic as Fréchet spaces as well.

Let A1,A2,B be three nice algebras in our sense embedded in C∗ algebras Â1, Â2, B̂
respectively. Also we choose derivations {ζ1, ..., ζn}, {η1, ..., ηm} and {ξ1, ..., ξk} giving

the locally convex topologies of A1,A2,B respectively. Then we have the nice algebras

A1⊗̂B and A2⊗̂B respectively. The seminorms on Ai⊗̂B be {δi
ᾱβ̄
} for i = 1, 2 and

multiindices ᾱ and β̄ as discussed earlier. Now let u : A1 → A2 be a continuous

homomorphism. Then we have the following

Lemma 3.2.11. the mapping u ⊗ id is continuous with respect to the locally convex

topology on the nice algebras. We denote the continuous extension again by u⊗ id.

Proof:

Fix a seminorm {δ2
ᾱβ̄
} for some multiindices ᾱ, β̄ for A2⊗̂B. Now let X ∈ A2⊗B. Then

by definition ||δ2
ᾱβ̄

(u⊗ id)(X)|| = sup||ω||≤1,ω∈B∗ ||(id⊗ ω)(δ2
ᾱβ̄

(u⊗ id)(X))||. So

||δ2
ᾱβ̄(u⊗ id)(X)|| = sup||ω||≤1,ω∈B∗ ||(id⊗ ω)((ηᾱ ⊗ id)(id⊗ ξβ̄)(u⊗ id)(X))||

= sup||ω||≤1,ω∈B∗ ||ηᾱ(u((id⊗ ω)(id⊗ ξβ̄)X))||.
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So by continuity of u we have a multi index α′ and a constant C > 0 such that

||ηᾱ(u((id⊗ ω)(id⊗ ξβ̄)X))|| ≤ C||ζᾱ′(((id⊗ ω)(id⊗ ξβ̄)X))||. Hence

||δ2
ᾱβ̄(u⊗ id)(X)|| ≤ sup||ω||≤1,ω∈B∗C||(id⊗ ω)(δ1

ᾱ′β̄(X))||.

That is ||δ2
ᾱβ̄

(u⊗ id)(X)|| ≤ C||δ1
ᾱ′β̄

(X)|| for some constant C > 0 and some multi index

α
′
, proving the continuity of (u⊗ id). 2

Now we are ready to define a smooth action of a CQG Q on a compact manifold M

(with or without boundary).

Definition 3.2.12. Let Q be a compact quantum group. A C linear map α : C∞(M)→
C∞(M)⊗̂Q is said to be a smooth action of Q on M if

1. α is a continuous ∗ algebra homomorphism.

2. (α⊗ id)α = (id⊗∆)α (co-associativity).

3. Sp α(C∞(M))(1⊗Q) is dense in C∞(M)⊗̂Q in the corresponding Fréchet topology.

Again proceeding along the same lines of [48], we can have the maximal dense

subspace say A, over which α is algebraic. in fact A is a subalgebra. From now on we

shall use this maximal algebra and denote it by A.

Lemma 3.2.13. A smooth action α of Q on M extends to a C∗ action on C(M) which

is denoted by α again.

Proof:

It follows from (1) of Proposition 3.2.3. 2

Lemma 3.2.14. Given a C∗ action α : C(M) → C(M)⊗̂Q, α(C∞(M)) ⊂ C∞(M,Q)

if and only if (id⊗φ)(α(C∞(M))) ⊂ C∞(M) for all bounded linear functionals φ on Q.

Proof:

For the only if part see discussion in Subsection 4.2.

The converse part follows from Corollary 3.2.9.

Theorem 3.2.15. Suppose we are given a C∗ action α of Q on M . Then following are

equivalent:

1) α(C∞(M)) ⊂ C∞(M,Q) and Sp α(C∞(M))(1⊗Q) = C∞(M,Q).

2) α is smooth.

3) (id ⊗ φ)α(C∞(M)) ⊂ C∞(M) for all state φ on Q, and there is a Fréchet dense

subalgebra A of C∞(M) over which α is algebraic.

Proof:

(1)⇒ (2):
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Observe that it is enough to show that α is Fréchet continuous. Let fn → f in Fréchet

topology of C∞(M) and α(fn) → ξ in Fréchet topology of C∞(M,Q). Then fn → f

in norm topology of C(M). So by the C∗ continuity of α, α(fn) → α(f). Similarly,

α(fn) → ξ in the norm topology of C(M,Q). So α(f) = ξ and by the closed graph

theorem α is Fréchet continuous.

(2)⇒ (3):

Follows from the remark after definition 3.2.4. and Lemma 3.2.14.

(3)⇒ (1):

From Lemma 3.2.14, it follows that α(C∞(M)) ⊂ C∞(M,Q). The density condition

follows from densities of A and A⊗Q0 in C∞(M) and C∞(M,Q) respectively. 2

As we are interested in quantum group symmetries of certain Fréchet algebras, we

may wonder whether it is possible to allow some topological structures on quantum

groups (e.g. some kind of Hopf-Fréchet algebras) which are more general than the

C∗ algebraic structure. Indeed, any compact group G acting smoothly on a compact

smooth manifold M is necessarily a Lie group and one may consider C∞(G) (with its

Fréchet topology) as the symmetry object. However the action of G is completely de-

termined by the Hopf-algebraic coaction of the ∗-algebra C(G)0 on a suitable Fréchet

dense subalgebra of C∞(M). Thus, no greater generality is really achieved by consider-

ing C∞(G) instead of C(G). This is one reason for which we restricted the category of

quantum group to the usual C∗ algebraic compact quantum groups. The other reason

of not exploring any kind of Fréchet-algebraic compact quantum groups is the absence

of any general notion or theory of such structures in the noncommutative world. For

quantum groups coming from q-deformation of classical Lie groups one can possibly

consider some analogue of Fréchet topology, but we have no idea how, if at all, this can

be done for more general compact quantum groups acting smoothly on C∞(M).

Recall the definition of an isometric action of a compact quantum group Q on a

smooth, compact, Riemannian manifold M .

Theorem 3.2.16. QISOL (and hence any subobject in the category QL) has a smooth

action on C∞(M).

Proof:

We denote the C∗ action of QISOL on C(M) by α. By Sobolev embedding theorem,

for any state φ on QISOL, (id⊗ φ)(C∞(M)) ⊂ C∞(M). Let {eij : j = 1, ..., di} be the

orthonormal eigenvectors of L forming a basis for the eigen space corresponding to the

eigenvector λi. We denote the linear span of {eij : 1 ≤ j ≤ di, i ≥ 1} by A∞0 . Then this

is a subspace of C∞(M). Furthermore, it is easy to see that α is algebraic over A∞0
and hence total. The proof of the theorem will be complete by applying Lemma 3.2.15,
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if we can show that A∞0 is Fréchet dense in C∞(M) which is a consequence of Sobolev

theorem. However, we include a proof for the sake of completeness. The idea is similar

to that of Lemma 2.3 of [22].

By Theorem 1.2 of [21] There are constants C and C
′

such that ||eij ||∞ ≤ C|λi|
n−1
4

and di ≤ C
′ |λi|

n−1
2 , where n is the dimension of the manifold. For f ∈ C∞(M) there are

complex numbers fij such that
∑

ij fijeij converges to f in L2 norm. Since f ∈ dom(Lk)
for all k ≥ 1,

∑
ij |λi|2k|fij |2 < ∞ for all k. Choose and fix sufficiently large k such

that
∑

i≥0 |λi|n−2k < ∞. This is possible by the well-known Weyl asymptotics of the

eigenvalues of Laplacian.

L(
∑

ij fijeij) =
∑

ij λifijeij converges to L(f) in the L2 norm. By Cauchy-Scwartz

inequality, ∑
ij

|λifij |||eij ||∞ ≤ C(C
′
)
1
2 (
∑
ij

|fij |2|λi|2k)
1
2 (
∑
i≥0

|λi|n−2k) <∞.

Hence L(
∑

ij fijeij) =
∑

ij λifijeij converges to L(f) in the sup norm of C(M). Simi-

larly we can show that Lk(
∑

ij fijeij) converges in the sup norm of C(M) for any k. So

A∞0 is Fréchet dense in C∞(M).

2

3.2.1 Defining dα for a smooth action α

Let α : C∞(M)→ C∞(M,Q) be a smooth action and set dα(df) := (d⊗ id)α(f) for all

f ∈ C∞(M).

Theorem 3.2.17. dα extends to a well defined continuous map from Ω1(C∞(M)) to

Ω1(C∞(M))⊗̄Q satisfying dα(df) = (d⊗ id)α(f), if and only if

(ν ⊗ id)α(f)α(g) = α(g)(ν ⊗ id)α(f) (3.2.1)

for all f, g ∈ C∞(M) and all smooth vector fields ν on M .

Proof:

Only if part⇒We have dα(df.g) = (d⊗id)α(f).α(g), dα(g.df) = α(g).(d⊗id)α(f). But

df.g = g.df in Ω1(C∞(M)), which gives (d⊗ id)α(f).α(g) = α(g).(d⊗ id)α(f), ∀f, g ∈
C∞(M). Observe that as ν is a smooth vector field, ν is a Fréchet continuous map from

C∞(M) to C∞(M). Thus it is enough to prove (3.2.1) for f, g belonging to the Fréchet

dense subalgebra A as in Theorem 3.2.15 . Let α(f) = f(0) ⊗ f(1) and α(g) = g(0) ⊗
g(1)(Sweedler’s notation). Let x ∈M and (U, x1, ..., xn) be a coordinate neighbourhood

around x. Then [(d⊗ id)α(f)α(g)](x) =
∑n

i=1 g(0)(x)
∂f(0)
∂xi

(x)f(1)g(1)dxi|x.
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So

[(d⊗ id)α(f)α(g)](x) = [α(g)(d⊗ id)α(f))](x)

⇒ g(0)(x)
∂f(0)

∂xi
(x)f(1)g(1) = g(0)(x)

∂f(0)

∂xi
(x)g(1)f(1) (3.2.2)

for all i = 1, ..., n. Now let ai ∈ C∞(M) for i = 1, ..., n such that ν(x) =
∑n

i=1 ai(x) ∂
∂xi
|x

for all x ∈ U .

So

[(ν ⊗ id)α(f)α(g)](x)

=

n∑
i=1

ai(x)
∂f(0)

∂xi
(x)g(0)(x)f(1)g(1)

and

[α(g)(ν ⊗ id)α(f)](x)

=
n∑
i=1

ai(x)
∂f(0)

∂xi
(x)g(0)(x)g(1)f(1)

Hence by (3.2.2) [α(g)(ν⊗id)α(f)](x) = [(ν⊗id)α(f)α(g)](x) for all x ∈M i.e. [α(g)(ν⊗
id)α(f)] = [(ν ⊗ id)α(f)α(g)] for all f, g ∈ A.

Proof of the if part⇒ This needs a number of intermediate lemmas. Let x ∈M and

(U, x1, ..., xn) be a coordinate neighbourhood around it. Choose smooth vector fields

νi’s on M which are ∂
∂xi

on U . So [α(g)(νi ⊗ id)α(f)](x) =
∂f(0)
∂xi

(x)g(0)(x)g(1)f(1) and

[(νi ⊗ id)α(f)α(g)](x) =
∂f(0)
∂xi

(x)g(0)(x)f(1)g(1). Hence by the assumption

∑
i

∂f(0)

∂xi
(x)g(0)(x)g(1)f(1)dxi|x =

∑
i

∂f(0)

∂xi
(x)g(0)(x)f(1)g(1)dxi|x

⇒ [(d⊗ id)α(f)α(g)](x) = [α(g)(d⊗ id)α(f)](x)

Since x is arbitrary, we conclude that [α(g)(d ⊗ id)α(f)] = [(d ⊗ id)α(f)α(g)] for all

f, g ∈ A. So by Fréchet continuity of d and α we can prove the result for f, g ∈ C∞(M).

2

We use the commutativity to deduce the following:
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Lemma 3.2.18. For F ∈ C∞(Rn) and g1, g2, .., gn ∈ C∞(M)

(d⊗ id)α(F (g1, ..., gn)) =
n∑
i=1

α(∂iF (g1, ..., gn))(d⊗ id)α(gi), (3.2.3)

where ∂iF denotes the partial derivative of F with respect to the ith coordinate of Rn.

Proof:

As {(g1(x) . . . gn(x))|x ∈ M} is a compact subset of Rn, for F ∈ C∞(Rn), we get a

sequence of polynomials Pm in Rn such that Pm(g1, ..., gn) converges to F (g1, ..., gn) in

the Fréchet topology of C∞(M). We see that for Pm,

(d⊗ id)α(Pm(g1, ..gn))

= (d⊗ id)Pm(α(g1, ..., gn))

=

n∑
i=1

α(∂iPm(g1, ..., gn))(d⊗ id)α(gi),

using (d⊗ id)α(f)α(g) = α(g)(d⊗ id)α(f) as well as the Leibnitz rule for (d⊗ id).

The lemma now follows from Fréchet continuity of α and (d⊗ id). 2

Lemma 3.2.19. Let U be a coordinate neighborhood. Also let g1, g2, ..., gn ∈ C∞(M)

be such that (g1|U , . . . gn|U ) gives a local coordinate system on U . Then

(d⊗ id)α(f) =

n∑
j=1

α(∂gjf)(d⊗ id)α(gj),

for all f ∈ C∞(M) supported in U .

Proof:

Let F ∈ C∞(Rn)→ R be a smooth function such that f(m) = F (g1(m), ...., gn(m)) ∀m ∈
U. Choose χ ∈ C∞(M) with χ ≡ 1 on K = supp(f) and supp(χ) ⊂ U . Then χf = f as

χ ≡ 1 on K. Hence χF (g1, ..., gn) = f(χF = χf = f on U, χF = 0 outside U).

Also χ2F (g1, ..., gn) = χF (g1, ..., gn), since on K, χ2 = χ = 1 and outside K,

χ2F (g1, ..., gn) = χF (g1, ..., gn) = 0. Let T := α(χ) and S := α(F (g1, ..., gn)). Also

denote (d⊗ id)α(F (g1, ..., gn)) by S
′

and (d⊗ id)α(χ) by T
′
.

So we have T 2S = TS and by (3.2.1) we have T
′
T = TT

′
and S

′
S = SS

′
.
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T 2S
′

= α(χ2)(d⊗ id)α(F (g1, ..., gn))

= α(χ2)

n∑
i=1

α(∂iF (g1, ..., gn))(d⊗ id)α(gi) (by (3.2.3))

= α(χ)

n∑
i=1

α(χ∂iF (g1, ..., gn))(d⊗ id)α(gi)

= α(χ)

n∑
i=1

α(∂gif)(d⊗ id)α(gi) (as supp(∂gif) ⊂ K). (3.2.4)

TS
′

= α(χ)(d⊗ id)α(F (g1, ..., gn))

=

n∑
i=1

α(χ∂iF (g1, ..., gn))(d⊗ id)α(gi)

=

n∑
i=1

α(χ2∂iF (g1, ..., gn))(d⊗ id)α(gi)

= α(χ)

n∑
i=1

α(∂gif)(d⊗ id)α(gi) (3.2.5)

Combining (3.2.4) and (3.2.5) we get

T 2S
′

= TS
′

(3.2.6)

Now

T 2S = TS

⇒ (d⊗ id)(T 2S) = (d⊗ id)TS

⇒ 2TT ′S + T 2S′ = TS′ + T ′S(by Leibnitz rule and T ′T = TT ′)

⇒ 2TT ′S = T ′S (by (3.2.6))

⇒ 2α(χ)(d⊗ id)α(χ)α(F (g1, ..., gn)) = (d⊗ id)α(χ)α(F (g1, ..., gn))

⇒ 2α(χ2)(d⊗ id)α(χ)α(F (g1, ..., gn)) = α(χ)(d⊗ id)α(χ)α(F (g1, ..., gn))

⇒ 2(d⊗ id)α(χ)α(f) = (d⊗ id)α(χ)α(f)( using the assumption and χ2F = f)

⇒ (d⊗ id)α(χ)α(f) = 0 (3.2.7)
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So

(d⊗ id)α(f) = (d⊗ id)α(χf)

= (d⊗ id)α(χ)α(f) + α(χ)(d⊗ id)α(f)

= α(χ)(d⊗ id)α(f)( by (3.2.7))

= α(χ)(d⊗ id)α(χF (g1, ..., gn))

= α(χ)(d⊗ id)α(χ)α(F (g1, ..., gn)) + α(χ2)(d⊗ id)α(F (g1, ..., gn))

= (d⊗ id)α(χ)α(f) + α(χ2)(d⊗ id)α(F (g1, ..., gn))(Again by assumption)

= α(χ2)

n∑
i=1

α(∂iF (g1, ..., gn))(d⊗ id)α(gi)

=

n∑
i=1

α(χ2∂iF (g1, ..., gn))(d⊗ id)α(gi)

=

n∑
i=1

α(∂gif)(d⊗ id)α(gi)

2

Now to complete the proof of the theorem, we want to first define a bimodule morphism

β extending dα locally, i.e. we define βU (ω) for any coordinate neighborhood U and

any smooth 1-form ω supported in U as follows:

Choose C∞ functions g1 . . . gn as before such that they give a local coordinate

system on U and ω has the unique expression ω =
∑n

j=1 φjdgj . Then we define

βU (ω) :=
∑n

j=1 α(φj)(d ⊗ id)α(gj). We show that this definition is independent of

the choice of the coordinate function i.e. if (h1, . . . , hn) is another such set of coordi-

nate functions on U with ω =
∑n

j=1 ψjdhj for some ψj ’s in C∞(M), then∑n
j=1 α(φj)(d⊗ id)α(gj) =

∑n
j=1 α(ψj)(d⊗ id)α(hj).

To that end Let χ be a smooth function which is 1 on the support of ω and 0 outside

U . We have F1, . . . , Fn ∈ C∞(RN ) such that gj = Fj(h1, . . . , hn) for all j = 1, . . . , n on

U . Then χgj = χFj(h1, . . . , hn) for all j = 1, . . . , n .

Hence dgj =
∑n

k=1 ∂hk(Fj(h1, . . . , hn))dhk on U , so that ω =
∑

j,k χφj∂hk(Fj(h1, . . . , hn))dhk.

Hence ψk =
∑

j χφj∂hk(Fj(h1, . . . , hn)).

Also, note that, as χ ≡ 1 on the support of φj for all j, we must have φj∂hk(χ) ≡ 0, so

χφj∂hk(Fj(h1, . . . , hn)) = χφj∂hk(χFj(h1, . . . , hn)). Thus
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∑
k

α(ψk)(d⊗ id)α(hk)

=
∑
k,j

α(χφj∂hk(Fj(h1, . . . , hn)))(d⊗ id)α(hk)

=
∑
k,j

α(φj)α(∂hk(χFj(h1, . . . , hn)))(d⊗ id)α(hk)

=
∑
j

α(φj)(d⊗ id)α(χFj(h1, . . . , hn)) (by Lemma 3.2.18)

=
∑
j

α(φj)(d⊗ id)α(χgj)

=
∑
j

α(φj)(d⊗ id)α(gj)

Where the last step follows from Leibnitz rule and the fact that

α(φj)(d⊗ id)(α(χ))

=
∑
k

α(φj)α(∂hk(χ))(d⊗ id)(α(hk))

=
∑
k

α(φj∂hk(χ))(d⊗ id)(α(hk))

= 0 (using φj∂hk(χ)) ≡ 0).

Hence the definition is indeed independent of choice of coordinate system.

Then for any two coordinate neighborhoods U and V , βU (ω) = βV (ω) for any ω sup-

ported in U ∩ V . It also follows from the definition and Lemma 3.2.19 that βU is a

C∞(M) bimodule morphism and βU (df) = (d ⊗ id)α(f) for all f ∈ C∞(M) supported

in U . Now we define β globally as follows:

Choose (and fix) a smooth partition of unity {χ1, . . . , χl} subordinate to a cover

{U1, . . . , Ul} of the manifold M such that each Ui is a coordinate neighborhood. Define

β by:

β(ω) :=
l∑

i=1

βUi(χiω),
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for any smooth one form ω. Then for any f ∈ C∞(M),

β(df) =
l∑

i=1

βUi(χidf)

=
l∑

i=1

βUi(d(χif)− fdχi)

=

l∑
i=1

[(d⊗ id)α(fχi)− α(f)(d⊗ id)α(χi)]

=
l∑

i=1

(d⊗ id)α(f)α(χi) (by Leibnitz rule)

= (d⊗ id)α(f).

This completes the proof of the Theorem 3.2.17.

2

We end this subsection with an interesting fact which will be used later. For this, we

need to recall that C∞(M) is a nuclear locally convex space and hence so is any quotient

by closed ideals.

Lemma 3.2.20. If Q has a faithful smooth action on C∞(M), where M is compact

manifold, then for every fixed x ∈M there is a well-defined extension of the counit map

ε to the subalgebra Q∞x := {αr(f)(x) : f ∈ C∞(M)} satisfying ε(α(f)(x)) = f(x),

where αr is the reduced action discussed earlier.

Proof:

Replacing Q by Qr we can assume without loss of generality that Q has faithful Haar

state and α = αr. In this case Q will have bounded antipode κ. Let αx : C∞(M)→ Q∞x
be map αx(f) = α(f)(x). It is clearly continuous w.r.t. the Frechet topology of C∞(M)

and hence the kernel say Ix is a closed ideal, so that the quotient which is isomorphic to

Q∞x is a nuclear space. Let us consider Q∞x with this topology and then by nuclearity,

the projective and injective tensor products with Q (viewed as a separable Banach

space, where separability follows from the fact that Q faithfully acts on the separable

C∗ algebra C(M)) coincide with Q∞x ⊗̂Q and the multiplication map m : Q∞x ⊗̂Q → Q
is indeed continuous. Now, observe that Q∞x ⊗̂Q is isomorphic as a Fréchet algebra with

the quotient of C∞(M)⊗̂Q by the ideal Ker(αx ⊗ id) = Ix⊗̂Q. Moreover, it follows

from the relation ∆ ◦ α = (α ⊗ id) ◦ α that ∆ maps Ix to Ix⊗̂Q, and in fact it is

the restriction of the Fréchet-continuous map α⊗ id there, hence induces a continuous

map from Q∞x ∼= C∞(M)/Ix to Q∞x ⊗̂Q ∼= (C∞(M)⊗̂Q)/(Ix⊗̂Q). Thus, the composite
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map m ◦ (id ⊗ κ) ◦∆ : Q∞x → Q∞x ⊗̂Q is continuous and this coincides with ε(·)1Q on

the Fréchet-dense subalgebra of Q∞x spanned by elements of the form α(f)(x), with f

varying in a Fréchet-dense subalgebra of C∞(M) on which the action is algebraic. This

completes the proof of the lemma. 2

Remark 3.2.21. It is clear that ε extends to the ∗-algebra generated by Q∞x and Q0

and the extension is still a ∗-homomorphism. This follows from the facts that (i) ε is

∗-homomorphism on Q0, (ii) f 7→ ε(αr(f)(x)) = f(x) is continuous with respect to the

Fréchet topology of C∞(M), and (iii) Q∞x
⋂
Q0 is dense in Q∞x because it contains the

elements of the form αr(f)(x) for f varying in a Fréchet-dense ∗-algebra on which α is

algebraic (so that αr(f)(x) ∈ Q0).

3.3 Action which preserves a Riemannian inner product

3.3.1 Equivariant representation of a CQG over Hilbert Fréchet bi-

modules

We generalize the notion of unitary representation on Hilbert spaces to another di-

rection, namely on Hilbert bimodules over unital topological ∗-algebras. Let E be a

Hilbert C − D bimodule over topological ∗-algebras C and D and let Q be a compact

quantum group. If we consider Q as a bimodule over itself, then we can form the ex-

terior tensor product E⊗̄Q which is a C⊗̂Q − D⊗̂Q bimodule. Also let αC : C → C⊗̂Q
and αD : D → D⊗̂Q be topological actions of C and D on Q in the sense dis-

cussed earlier. Then using α we can give E⊗̄Q a C − D bimodule structure given

by a.η.a′ = αC(a)ηαD(a′), for η ∈ E⊗̄Q and a ∈ C, a′ ∈ D (but without any D valued

inner product).

Definition 3.3.1. A C-linear map Γ : E → E⊗̄Q is said to be an αD equivariant uni-

tary representation of Q on E if

1. Γ(ξ.d) = Γ(ξ)αD(d) and Γ(c.ξ) = αC(c)Γ(ξ)) for c ∈ C, d ∈ D.

2. << Γ(ξ),Γ(ξ
′
) >>= αD(<< ξ, ξ′ >>), for ξ, ξ′ ∈ E.

3. (Γ⊗ id)Γ = (id⊗∆)Γ (co associativity)

4. Sp Γ(E)(1⊗Q) = E⊗̄Q (non degeneracy).

In the definition note that condition (2) allows one to define (Γ ⊗ id). Given an α

equivariant representation Γ of Q on a Hilbert bimodule E , proceeding as in subsection

4.2, we can get spectral decomposition of E . We have Eπ := Im Pπ(= (id ⊗ ρπ)Γ).

Define E0 := Sp{Eπ : π ∈ Q̂} ⊕ ker(Γ). In case Γ is one-one which is equivalent to α

being one-one, E0 coincides with the spectral subspace. Then again it can be shown
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along the same lines of 2.1.2 that E0 is the maximal subspace over which Γ is algebraic

and E0 is dense in the Hilbert module E .

Lemma 3.3.2. Let E1 be a Hilbert B−C bimodule and E2 be a Hilbert C −D bimodule.

αB,αC,αD be topological actions on a compact quantum group Q of topological ∗-algebras

B, C,D respectively. Γ1 : E1 → E1⊗̄Q and Γ2 : E2 → E2⊗̄Q be αC and αD equivariant

unitary representations as discussed earlier. Then

<< Γ2(η), << Γ1(ω),Γ1(ω′) >> Γ2(η′) >>= αD << η,<< ω, ω′ >> η′ >> .

Proof:

<< Γ2(η), << Γ1(ω),Γ1(ω′) >> Γ2(η′) >>

= << Γ2(η), αC(<< ω,ω′ >>)Γ2(η′) >>

= << Γ2(η),Γ2(<< ω,ω′ >> η′) >>

= αD << η,<< ω), ω′ >> η′ >>

2

Theorem 3.3.3. Given an αD equivariant unitary representation Γ : E → E⊗̄Q of a

CQG Q on a Hilbert C − D bimodule E. Let E0, C0 and D0 be as defined earlier. Then

E0 is a Hilbert C0 −D0 bimodule.

Proof:

Note that E0 is dense in E and E0 is the maximal C linear subspace over which Γ is

algebraic. Similarly we have dense subalgebras C0 of C and D0 of D over which αC and

αD are algebraic. C0 and D0 are also maximal subspaces over which αC and αD are

algebraic.

Let e ∈ E0 and a ∈ D0. Then Γ(ea) = Γ(e)αD(a) = e(0)a(0) ⊗ e(1)a(1), where

Γ(e) = e(0) ⊗ e(1) and αD(a) = a(0) ⊗ a(1).

e(0) ∈ E0 and a(0) ∈ D0 implies Γ(E0D0) ⊂ E0D0 ⊗ Q0, that is Γ is algebraic on

C-linear subspace and hence by maximality E0D0 ⊂ E0. Similarly we can show that

C0E0 ⊂ E0.
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Finally let F = Sp {<< e, e′ >> |e, e′ ∈ E0} and for e, e′ ∈ E0 we have

αD(<< e, e′ >>)

= << Γ(e),Γ(e′) >> (by αD equivariance)

= << e(0), e
′
(0) >> ⊗e

∗
(1)e
′
(1)

⊂ F ⊗Q0

Again by maximality we have F ⊂ D0. Hence indeed E0 is a Hilbert C0 − D0

bimodule. 2

We can form direct sum and tensor product of equivariant representations extending

the algebraic constructions. We have

Lemma 3.3.4. Let Γ1, ...,Γk be α equivariant representations on the Hilbert A bimodule

E1, ..., Ek respectively. Then Γ1⊕ ...⊕Γk is again an α equivariant representation on the

direct sum bimodule E1 ⊕ ...⊕ Ek.

Proof:

Follows from the definition and 1.4.11.

Lemma 3.3.5. Let E1, E2,B, C,D, αB, αC , αD,Γ1,Γ2,Q be as in Lemma 3.3.2. By The-

orem 3.3.3, we have dense subspaces Ei0 of Ei for i = 1, 2 and dense ∗-subalgebras

B0, C0,D0 such that E10 is a Hilbert B0 − C0 bimodule and E20 is a Hilbert C0 − D0 bi-

module. Then we have an αD equivariant representation Γ of Q on the Hilbert B − D
bimodule E1⊗̄inE2.

Proof:

Recall from subsection on algebraic representations of CQG on vector spaces, the rep-

resentation Γ1 ⊗ Γ2 of Q on E10 ⊗ E20. The non degeneracy of Γ1 and Γ2 implies

the non degeneracy of Γ1 ⊗ Γ2. Also applying Lemma 3.3.2, it is easy to see that

(Γ1 ⊗ Γ2) ◦ π = (π ⊗ idQ)(Γ1 ⊗ Γ2) on E10 ⊗ E20, where π : E10 ⊗ E20 → E10 ⊗in E20

is the projection map as in subsection 2.2. Hence Γ1 ⊗ Γ2 descends to an algebraic

representation of Q on E10 ⊗in E20. Lemma 3.3.2 also implies the αD equivariance of

Γ1 ⊗ Γ2. So by density of E10 ⊗in E20 in E1⊗̄inE2 and density of E10 ⊗in E20 ⊗ Q0 in

E1⊗̄inE2⊗̄Q, we get the desired Γ. 2

In particular when E is the trivial C-bimodule of rank N , we have the following:

Lemma 3.3.6. Given an α equivariant representation Γ of Q on CN ⊗ C such that

Γ(ei⊗1A) =
∑N

j=1 ej⊗bji, bij ∈ C⊗̂Q for all i, j = 1, ..., N , where {ei; i = 1, ..., N} is an

orthonormal basis of CN , then U = ((bij))i,j=1,....,N is a unitary element of MN (C⊗̂Q).
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Proof:

Since Γ is α-equivariant, we have

<< Γ(ei ⊗ 1),Γ(ej ⊗ 1) >>= α(<< ei ⊗ 1, ej ⊗ 1 >>)

⇒
N∑

k,l=1

<< ek ⊗ bki, el ⊗ blj >>= α(δij1A)

⇒
N∑
k=1

b∗kibkj = δij1A⊗̂Q

Hence U∗U = 1MN (C⊗̂Q), i.e. U is a partial isometry in MN (C⊗̂Q). Viewing U as a

right C⊗̂Q linear map on the trivial module (C⊗̂Q)N (as discussed in this section 2.3.3),

it is enough to show that range of U is dense in (C⊗̂Q)N . This follows from density of

Sp Γ(CN ⊗ C)(1⊗Q) = CN ⊗ C⊗̂Q and observing that

Γ(ei ⊗ a)(1⊗ q)

=
∑
j

ej ⊗ bjiα(a)(1⊗ q)

= U(ei ⊗ 1C⊗̂Q)α(a)(1⊗ q)

⊂ R(U)

for a ∈ C, q ∈ Q. 2

3.3.2 Definition of inner product preserving action and its implica-

tions

Definition 3.3.7. We call a smooth action α on a Riemannian manifold M inner

product preserving if

<< (d⊗ id)α(f), (d⊗ id)α(g) >>= α << df, dg >> (3.3.1)

for all f, g ∈ C∞(M).

Remark 3.3.8. It is easy to see, by Fréchet continuity of the maps d and α, that

it suffices to verify equation (3.3.1) with f, g varying in some dense ∗-subalgebra of

C∞(M).

Theorem 3.3.9. If α is inner product preserving for a Riemannian structure then

there is an α equivariant unitary representation (in the sense described earlier) dα on

Ω1(C∞(M)) satisfying dα(df) = (d⊗ id)α(f) for all f ∈ C∞(M).
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Proof:

For any ω ∈ Ω1(C∞(M)) such that ω =
∑k

i=1 fidgi for fi, gi ∈ C∞(M), we define

dα(ω) :=
∑k

i=1(d⊗ id)α(gi)(α(fi)). We need to check that dα is a well defined bimodule

morphism. To that end let ω =
∑m

i=1 fidgi be a one form such that ω = 0 i.e. <<∑m
i=1 fidgi,

∑m
i=1 fidgi >>= 0. By definition

<< dα(ω), dα(ω) >>

= <<

m∑
i=1

(d⊗ id)α(gi)α(fi),

m∑
i=1

(d⊗ id)α(gi)α(fi) >>

=

m∑
i,j=1

α(fi)
∗ << (d⊗ id)α(gi), (d⊗ id)α(gj) >> α(fj)

=

m∑
i,j=1

α(f̄i << dgi, dgj >> fj)

= α(
m∑

i,j=1

<< fidgi, fjdgj >>)

= α(<< ω,ω >>).

So dα(ω) = 0 proving that dα is a well defined bimodule morphism and hence α(f)(d⊗
id)α(g) = (d ⊗ id)α(g)α(f) for f, g ∈ C∞(M) by 3.2.17. The α equivariance of dα

can be proved by similar computations. The coassociativity of dα follows from that of

α. To prove the span density condition first choose the maximal dense subalgebra A
of C∞(M) over which α is algebraic and Sp α(A)(1 ⊗ Q0) = A ⊗ Q0. We shall show

that Sp dα(Ω1(A))(1 ⊗ Q0) = Ω1(A) ⊗ Q0, for then the span density condition will

follow from the density of Ω1(A) ⊗ Q0 in Ω1(C∞(M))⊗̄Q. To that end first observe

that it suffices to prove that for f, g ∈ A, there are ωi ∈ Ω1(A) and qi ∈ Q0 such that∑
i dα(ωi)(1⊗ qi) = fdg⊗ 1. Now since (f ⊗ 1) ∈ A⊗Q0, there are fi ∈ A and qi ∈ Q0

for some i = 1, ...,m such that
∑m

i=1 α(fi)(1 ⊗ qi) = f ⊗ 1. Similarly there are gi ∈ A
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and q
′
i ∈ Q0 for some i = 1, ..., n such that

∑n
i=1 α(gi)(1⊗ q′i) = g ⊗ 1. Then

i=m,j=n∑
i=1,j=1

dα(fidgj)(1⊗ q′jqi)

=
m∑
i=1

(α(fi)
n∑
j=1

(d⊗ id)α(gj)(1⊗ q
′
j)(1⊗ qi))

=
m∑
i=1

(α(fi)(d⊗ id)(
n∑
j=1

α(gj)(1⊗ q
′
j))(1⊗ qi))

=
m∑
i=1

(α(fi)(1⊗ qi))(dg ⊗ 1)

= (fdg ⊗ 1).

So dα is an α equivariant unitary representation on the C∞(M) bimodule of one forms.

2

Let us fix a smooth inner product preserving action α on C∞(M) for the rest of this

subsection. We have

Lemma 3.3.10. dα(k) : Ωk(C∞(M)) → Ωk(C∞(M))⊗̄Q is an α equivariant unitary

representation for all k = 1, . . . , n.

Proof:

As α is inner product preserving, by the Theorem 3.3.9, we see that dα is an α-

equivariant unitary representation on the bimodule Ω1(C∞(M)).For 2 ≤ k ≤ n, take

E1 = Ωk−1(C∞(M)), E2 = Ω1(C∞(M)), Γ1 = dα(k−1), Γ2 = dα, B = C = D = C∞(M)

, αB = αC = αD = α and apply Lemma 3.3.5 to get the desired dα(k). 2

Now we want to show that dα(k) actually descends to the C∞(M) bi module

Λk(C∞(M)) of sections of smooth k-forms which is actually a quotient submodule

of Ωk(C∞(M)). To this end we recall from first chapter the algebraic construction

of the C∞(M) bimodule of k-forms Λk(C∞(M)) on a manifold M from the so-called

universal forms. Now for the smooth action α we pass to the maximal dense sub-

algebra A of C∞(M) on which α is algebraic. By the Lemma 3.3.10, dα(k) ex-

tends to a well defined bimodule morphism from Ωk(C∞(M)) to Ωk(C∞(M))⊗̄Q
such that << dα(ω), dα(ω′) >>= α(<< ω, ω′ >>) for all ω, ω′ ∈ Ωk(C∞(M)). So

in particular << dα(ω), dα(ω′) >>= α(<< ω, ω′ >>) for ω, ω′ ∈ Ωk(A) and Sp

dα(Ωk(A))(1 ⊗ Q0) = Ωk(A) ⊗ Q0. Also as dα(k) is inner product preserving, by

maximality of A, we have << ω,ω′ >>∈ A for ω, ω′ ∈ Ωk(A).
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Remark 3.3.11. Let ω ∈ Ωk−1(A). Then by construction it is easy to see that

dα(k)(dω) = (d⊗ id)dα(k−1)(ω) for ω ∈ Ωk−1(A).

Now Recall that by Corollary 1.3.3, Ωk(A) = Λk(A)⊕JAk and JAk is a complemented

submodule of Ωk(A). We have the following:

Lemma 3.3.12. dα(k) leaves JAk invariant.

Proof:

Let ω ∈ Ωk−1(A) such that ω = 0. Then dω ∈ JAk . We have by Remark 3.3.11,

dα(k)(dω) = (d⊗ id)dα(k−1)(ω). But by α-equivariance of dα(k−1), we get

<< dα(k−1)(ω), dα(k−1)(ω) >>= α << ω, ω >>= 0.

Hence dα(k) leaves JAk invariant. 2

Lemma 3.3.13. dα(k) : Λk(A)→ Λk(A)⊗Q0, is α equivariant and Sp dα(k)(Λ
k(A))(1⊗

Q0) = Λk(A)⊗Q0.

Proof:

We have for ω, ω
′ ∈ Ωk(A), << ω, ω

′
>>∈ A. If τ

′
is the faithful state of C(M)

corresponding to the volume, then τ := (τ
′ ⊗ h)α is a faithful, α invariant state on A,

where h is the Haar state of Q. Using this state, we define a scalar valued inner product

on Ωk(A) by

< ω,ω
′
>:= τ(<< ω,ω

′
>>),

for all ω, ω
′ ∈ Ωk(A). We denote the Hilbert space obtained as the completion of A

bimodule Ωk(A) with respect to this inner product by H. Also we denote the closed

subspace obtained as the completion of the submodule JAk with respect to this inner

product inside the Hilbert space H by F and we denote the orthogonal projection onto

this subspace by p.

For e, e
′ ∈ Ωk(A),

< dα(k)(e), dα(k)(e
′) >

= (τ ⊗ id) << dα(k)(e), dα(k)(e
′) >>

= (τ ⊗ id)α(<< e, e′ >>).1Q (by α equivariance of dα(k))

= τ(<< e, e′ >>).1Q (by α invariance ofτ)

= < e, e′ > 1Q

Hence for any h ∈ H, we can define U(h) := limn→∞dα(en) where en is a sequence

from Ωk(A) converging to H in the Hilbert space sense and the right hand side limit is



Chapter 3: Smooth and inner product preserving action 84

taken in the Hilbert C∗ module H⊗̄Q. Then we have < U(h), U(h′) >=< h, h′ > .1Q.

The fact that Sp U(H)Q is dense in the Hilbert C∗ module H⊗̄Q follows from the fact

that Sp dα(k)(Ω
k(A))(1 ⊗ Q0) = Ωk(A) ⊗ Q0. Hence U is a unitary representation of

the CQG Q on the Hilbert space H.

Then by Proposition 6.2 of [35], U leaves both pH and p⊥H invariant. Let P be the

orthogonal projection onto the complemented submodule JAk .

Claim p⊥H ∩ Ωk(A) = P⊥Ωk(A) = Λk(A).

Proof of the claim:

Let e ∈ p⊥H ∩ Ωk(A). Then < e, Pe >= 0, since Pe ∈ JAk ∈ F . That implies

τ(<< e, Pe >>) = 0

⇒ τ(<< Pe, Pe >>) = 0

⇒ << Pe, Pe >>= 0(since τ is faithful on A)

⇒ Pe = 0.

Hence e ∈ P⊥Ωk(A). Conversely suppose f ∈ P⊥Ωk(A). Then < f, Pe >= τ(<<

f, Pe >>) = 0. But since PΩk(A) is dense in pH, f ∈ p⊥H. This completes the proof

of the claim.

As U agrees with dα(k) on p⊥H∩Ωk(A), dα(k) leaves both JAk and JA⊥k invariant.

Let ξ ∈ JAk ⊗̄Q0. So there exists ei ∈ Ωk(A) and qi ∈ Q0 such that
∑k

i=1 dα(k)(ei)(1⊗
qi) = ξ in the Hilbert Fréchet module Ωk(A)⊗Q0. Now for any e ∈ Ωk(A),

(P ⊗ id)dα(k)(e)

= (P ⊗ id)dα(k)(Pe+ P⊥e)

= (P ⊗ id)dα(k)(Pe)(as dα(k)(P
⊥e) ∈ P⊥Ωk(A)⊗Q0)

= dα(k)(Pe)

So

(P ⊗ id)(

l∑
i=1

dα(k)(ei)(1⊗ qi))

=

l∑
i=1

dα(k)(Pei)(1⊗ qi)

Hence Sp dα(k)(JAk )(1 ⊗Q0) = JAk ⊗Q0. Similarly considering the projection P⊥ we

can conclude that Sp dα(k)(Λ
k(A))(1⊗Q0) = Λk(A)⊗Q0. The α equivariance follows

from that of dα(k) on Ωk(A). 2
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Corollary 3.3.14. The restriction of the α-equivariant representation dα(k) of Q on

the Hilbert module Ωk(C∞(M)) onto the closed submodule Λk(C∞(M)) is again an

α-equivariant representation.

Proof:

Follows from the densities of Λk(A) and Q0 in the Hilbert bimodule Λk(C∞(M)) and

the C∗ algebra Q respectively and the Lemma 3.3.13. 2

Here we also make the convention dα0 ≡ α. As dα is a well defined bimodule

morphism, by Theorem 3.2.17, α(f)(x) commute among themselves for different f ’s

and also commute with ((φ ⊗ id)α(g))(x)’s where f, g ∈ C∞(M) and φ is any smooth

vector field. For x ∈ M let us denote by Qx the unital C∗-subalgebra of Q generated

by elements of the forms α(f)(x), ((φ⊗ id)α(g))(x), where f, φ are as before. Using the

lift of dα(2) to Λ2(C∞(M)), we can show more. Indeed, we now claim that actually

((φ⊗ id)α(g))(x)’s commute among themselves too, for different choices of φ and g. In

other words:

Lemma 3.3.15. Qx is commutative.

Proof:

The proof is very similar to the proof of Proposition (4) of [37] for the case q = 1. The

statement of the lemma is clearly equivalent to proving d̃α(f)(= (d ⊗ id)(α(f))) and

d̃α(g) commute for f, g ∈ C∞(M). For x ∈ M , choose smooth one-forms {ω1, . . . , ωn}
such that they form a basis of T ∗M at x. Let Fi(x), Gi(x), i = 1, . . . , n be elements of

Q (actually in Qx) such that d̃α(f)(x) =
∑

i ωi(x)Fi(x), d̃α(g) =
∑

i ωi(x)Gi(x). Now

dα(2) leaves invariant the submodules of symmetric and antisymmetric tensor product

of Λ1(C∞(M)), thus in particular, Csij = Csji, C
a
ij = −Caji for all i, j, where Csij and Caij

denote the Q-valued coefficient of wi(x) ⊗ wj(x) in the expression of dα(2)(df ⊗ dg +

dg ⊗ df)|x and dα(2)(df ⊗ dg − dg ⊗ df)|x respectively. By a simple calculation using

these relations, we get the commutativity of Fi(x), Gj(x) for all i, j. 2

We also have the following observation which follows from the constructions of dα(k)’s

and the definition of Qx.

Lemma 3.3.16. For every k ≥ 0, x ∈ M and ω, ω
′ ∈ Λk(C∞(M)), we have <<

ω
′ ⊗ 1Q, dα(k)(ω) >> (x) ∈ Qx.
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Chapter 4

Characterizations of isometric

action

4.1 Introduction

In this chapter first we shall show that an isometric action α of a CQG Q on an n-

dimensional compact Riemannian manifold is inner product preserving. Then we give

two sufficient conditions with which the converse also holds. We have already seen

in the previous chapter that an isometric action is automatically smooth (Theorem

3.2.16) and hence by the results of the previous chapter it lifts to α-equivariant unitary

representation on the bimodule of k-forms for all k = 1, ..., n. We say an isometric

action is also orientation preserving for an oriented manifold if dα(n)(dvol) = dvol.1Q.

4.2 Geometric characterization of an isometric action

In this section first we shall prove that an isometric action is automatically inner product

preserving in our sense. Then we will prove a partial converse to this. More precisely

we shall prove that an inner product preserving action is isometric provided either of

the following holds:

(a) The manifold is orientable and the action is orientation preserving.

(b) The action preserves the functional coming from the Riemannian volume measure.

For that first recall from chapter 3, the definition of an inner product preserving action

of a CQG on a compact Riemannian manifold.

As before let α : C∞(M)→ C∞(M)⊗̂Q be a smooth action (as introduced earlier)

and let us fix the maximal Fréchet dense subalgebra A of C∞(M) over which the action

is algebraic i.e. α(A) ⊂ (A ⊗ Q0) and Sp α(A)(1 ⊗ Q0) = A ⊗ Q0. Note that for

f ∈ C∞(M), (d⊗ id)α(f) ∈ Ω1(C∞(M))⊗̄Q.

87
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Lemma 4.2.1. If α commutes with the geometric Laplacian L on A, i.e. α is isometric,

then α is inner product preserving.

Proof:

Let α be isometric i.e. it commutes with the geometric Laplacian. Then for f, g ∈ A,

<< (d⊗ id)α(f), (d⊗ id)α(g) >>

= << df(0), dg(0) >> ⊗f∗(1)g(1)

= [L(f(0)g(0))− L(f(0))g(0) − f(0)L(g(0))]⊗ f∗(1)g(1)

On the other hand

α(<< df, dg >>)

= α[L(f̄g)− L(f̄)g − f̄L(g)]

= [L(f(0)g(0))− L(f(0))g(0) − f(0)L(g(0))]⊗ f∗(1)g(1)( since α commutes with L).

So by Remark 3.3.8 of chapter 3, we conclude that α is inner product preserving. 2

Now we proceed to prove the sufficient conditions (a) and (b) for a smooth action to

be isometric made in the beginning of this section. The condition (b) is actually both

necessary and sufficient.

Theorem 4.2.2. A smooth action of a CQG on a compact Riemannian manifold is

isometric if and only if it preserves the Riemannian inner product and the functional

coming from Riemannian volume measure.

Proof:

Let α : C∞(M) → C∞(M)⊗̂Q be an isometric action. Then by Lemma 4.2.1, the

action is inner product preserving. Also by [22] (see Lemma 2.10), the action preserves

the functional coming from the Riemannian volume measure. Conversely let the ac-

tion preserves both the Riemannian inner product and the functional coming from the

Riemannian volume measure. As the action is inner product preserving we have an α

equivariant representation dα of Q over the C∞(M) bimodule Ω1(C∞(M)) satisfying

dα(df) = (d⊗ id)α(f). Let us denote the Riemannian volume measure by µ. We define

the inner product on C∞(M) by

< f, g >=

∫
M
fgdµ.

for f, g ∈ C∞(M). We denote the completed Hilbert space by H0. Similarly defining

inner product on Ω1(C∞(M)) we denote the completed Hilbert space by H1. As α is
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Riemannian volume preserving and dα is α equivariant, both α and dα extend as unitary

representations of Q over the Hilbert spaces H0 and H1 respectively. We denote the

corresponding unitaries by U0 and U1 respectively. The de-Rham differential operator

d can be viewed as a closable densely defined unbounded operator between the Hilbert

spaces H0 and H1. Then (d ⊗ id) is a densely defined unbounded operator between

Hilbert modules H0⊗̄Q and H1⊗̄Q. We have U1(df ⊗ 1) = (d ⊗ id)U0(f ⊗ 1) for

f ∈ C∞(M). Let ω ∈ Ω1(C∞(M)) be such that ω ∈ dom(d∗). Then we claim that

U1(ω⊗ 1) ∈ dom(d∗⊗ 1) and (d∗⊗ id)U1(ω⊗ 1) = U0(d∗⊗ id)(ω⊗ 1). As ω ∈ dom(d∗),

ω ⊗ 1 ∈ dom(d∗ ⊗ 1). Let
∑
fi ⊗ qi ∈ C∞(M)⊗Q. Then

< U1(ω ⊗ 1), (d⊗ id)U0(
∑

fi ⊗ qi) >

= < U1(ω ⊗ 1), U1(d⊗ id)(
∑

fi ⊗ qi) >

= < ω ⊗ 1, (d⊗ 1)(
∑

fi ⊗ qi) > .

Now since (ω ⊗ 1) ∈ dom(d∗ ⊗ id), there is a constant C > 0, such that | < ω ⊗ 1, (d⊗
1)(
∑
fi ⊗ qi) > | < C|

∑
fi ⊗ qi|. That implies that U1(ω ⊗ 1) ∈ dom(d∗ ⊗ 1) and

(d∗ ⊗ id)U1(ω ⊗ 1) = U0(d∗ ⊗ id)(ω ⊗ 1). Now for f ∈ C∞(M), df ∈ dom(d∗). So we

have

(d∗ ⊗ id)U1(df ⊗ 1) = U0(d∗ ⊗ id)(df ⊗ 1).

That is α(d∗d(f)) = (d∗d ⊗ id)α(f) for f ∈ C∞(M). Hence α commutes with the

Laplacian. 2

To prove the sufficient condition (a), first we recall the Hodge ∗ operator. For that

we assume the manifold to be orientable and fix a choice of orientation. We introduce

the Hodge star operator, which is a point wise isometry ∗ = ∗x : ΛkT ∗xM → Λn−kT ∗xM .

Choose a positively oriented orthonormal basis {θ1, θ2, ..., θn} of T ∗xM . Since ∗ is a

linear transformation it is enough to define ∗ on a basis element θi1 ∧ θi2 ∧ ...∧ θik(i1 <

i2 < ... < ik) of ΛkT ∗xM . Note that

dvol(x) =
√
det(< θi, θj >)θ1 ∧ θ2 ∧ ... ∧ θn

= θ1 ∧ θ2 ∧ ... ∧ θn

Definition 4.2.3. ∗(θi1 ∧ θi2 ∧ ... ∧ θik) = θj1 ∧ θj2 ∧ ... ∧ θjn−k where θi1 ∧ θi2 ∧ ... ∧
θik ∧ θj1 .. ∧ θjn−k = dvol(x).

Since we are using C as the scalar field, we would like to define ω̄ for a k form ω. In
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the set-up introduced just before the definition we have some scalars ci1,...,ik such that

ω(x) =
∑
ci1,...,ikθ

i1∧θi2∧...∧θik . Then define ω̄ to be ω̄(x) =
∑
c̄i1,...,ikθ

i1∧θi2∧...∧θik .
Then the equation << ω, η >>= ∗(ω̄ ∧ ∗η) defines an inner product on the Hilbert

module Λk(C∞(M)) for all k = 1, ..., n which is the same as the C∞(M) valued inner

product defined earlier. Then the Hodge star operator is a unitary between two Hilbert

modules Λk(C∞(M)) and Λn−k(C∞(M)) i.e. << ∗ω, ∗η >>=<< ω, η >>. For further

details about the Hodge star operator we refer the reader to [44].

We have

(∗ ⊗ id) : Λk(C∞(M))⊗Q → Λn−k(C∞(M))⊗Q.

Since Hodge ∗ operator is an isometry, (∗⊗ id) is continuous with respect to the Hilbert

module structure of Λ̇(C∞(M))⊗̂Q. So we have

(∗ ⊗ id) : Λk(C∞(M))⊗̄Q → Λn−k(C∞(M))⊗̄Q.

We derive a characterization for (∗ ⊗ id) : Λk(C∞(M))⊗̄Q → Λn−k(C∞(M))⊗̄Q for all

k = 1, ..., n.

Lemma 4.2.4. Let ξ ∈ Λn−k(C∞(M))⊗̄Q and X ∈ Λk(C∞(M))⊗̄Q. Then the follow-

ing are equivalent:

(i) For all Y ∈ Λk(C∞(M))⊗̄Q,

ξ ∧ Y =<< X̄, Y >> (dvol⊗ 1Q) (4.2.1)

(ii) ξ = (∗ ⊗ id)X.

Proof:

(i)⇒ (ii):

Let m ∈ M . Choose a coordinate neighborhood (U, x1, x2, ...., xn) around x in M

such that {dx1(m), ..., dxn(m)} is an orthonormal basis for T ∗m(M) for all m ∈ U .

Now for any l ∈ {1, ..., n}, let Σl be the set consisting of l tuples (i1, ..., il) such that

i1 < i2 < ... < il and ij ∈ {1, ..., n} for j = 1, ..., l. For I = (i1, ..., il) ∈ Σl, we write

dxI(m) for dxi1 ∧ ... ∧ dxil(m). Also for I(= (i1, ..., ip)) ∈ Σp, J(= (j1, ..., jq)) ∈ Σq, we

write (I, J) for (i1, ..., ip, j1, ..., jq).

Now fix I ∈ Σk. Then we have a unique I ′ ∈ Σn−k such that

(∗(dxI))(m) = ε(I)dxI′(m),

where ε(I) is the sign of the permutation (I, I ′). As X ∈ Λk(C∞(M))⊗̄Q, for m ∈ M ,
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we have qI(m) ∈ Q such that

X(m) =
∑
I∈Σk

dxI(m)qI(m).

Also for ξ ∈ Λn−k(C∞(M))⊗̄Q, we have wJ(m) ∈ Q such that

ξ(m) =
∑

J∈Σn−k

dxJ(m)wJ(m).

Hence

((∗ ⊗ id)X)(m) =
∑
I∈Σk

ε(I)dxI′(m)qI(m),

where I ′ ∈ Σn−k is as mentioned before.

Now we fix some L ∈ Σk and choose Y ∈ Λk(C∞(M))⊗̄Q such that Y (m) =

dxL(m)1Q. Hence

(ξ ∧ Y )(m) =
∑

J∈Σn−k

dxJ ∧ dxLwJ(m).

But for a fixed L ∈ Σk, there is a unique J ′ ∈ Σn−k such that

dxJ ′(m) ∧ dxL(m) = ε(L)dvol(m).

Hence

(ξ ∧ Y )(m) = ε(L)wJ ′(m)dvol(m).

On the other hand

<< X̄, Y >> (m)dvol(m)

=
∑
I∈Σk

< dxI(m)qI(m)∗, dxL(m)1Q > dvol(m)

= qL(m)dvol(m).

Hence we have qL(m) = ε(L)wJ ′ . So varying Y , we have

ξ(m) =
∑
L∈Σk

ε(L)dxJ(m)qL(m),

implying that (∗ ⊗ id)X = ξ.

The other direction of the proof is trivial. 2.

Lemma 4.2.5. Let N be an m-dimensional compact, oriented, Riemannian manifold

(possibly with boundary) with dvol ∈ Λm(C∞(N)) being a globally defined nonzero
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form. Moreover, let η be a smooth inner product preserving action on N such that

dη(m)(dvol) = dvol⊗ 1. Then η commutes with the geometric Laplacian.

Proof:

First we note that as η is an inner product preserving smooth action, by 3.3.14 it lifts

to an α-equivariant unitary representations dη(k) : Λk(C∞(N)) → Λk(C∞(N))⊗̄Q for

all k = 1, ...,m. First we claim that We have ∀ k = 1, ...,m, dη(m−k)(∗ω) ∧ β =<<

dη(k)(ω), β >> (dvol⊗ 1Q) ∀ β ∈ Λk(C∞(N))⊗̄Q.
For that let β = dη(k)(ω

′)(1⊗ q′). Then

dη(m−k)(∗ω) ∧ β

= dη(m−k)(∗ω) ∧ dη(k)(ω
′)(1⊗ q′)

= η << ω, ω′ >> (dvol⊗ q′) (by Lemma 3.3.16)

On the other hand from unitarity of dη(k),

<< dη(k)ω, dη(k)(ω
′
)(1⊗ q′) >>

= η << ω, ω
′
>> (1⊗ q′).

So by replacing β by finite sums of the type
∑

i dη(k)(ωi)(1 ⊗ qi), we can show that

ω ∈ Λk(C∞(N)) and β ∈ Sp dη(k)Λ
k(C∞(N))(1⊗Q),

dη(m−k)(∗ω) ∧ β =<< dη(k)(ω), β >> (dvol⊗ 1Q).

Now, since Sp dη(k)(Λ
k(C∞(N))(1⊗Q) is dense in Λk(C∞(N))⊗̄Q, we get a sequence

βn belonging to Sp dη(k)(Λ
k(C∞(N)))(1⊗Q) such that βn → β in the Hilbert module

Λk(C∞(N))⊗̄Q.

But we have

dη(m−k)(∗ω) ∧ βn =<< dη(k)(ω), βn >> (dvol⊗ 1Q).

Hence the claim follows from the continuity of <<,>> and ∧ in the Hilbert module

Λ̇(C∞(N))⊗̄Q. 2

Now combining Lemma 4.2.4 and the previous result we immediately conclude the fol-

lowing:

dη(m−k)(∗ω) = (∗ ⊗ id)dη(k)(ω) for k ≥ 0. (4.2.2)
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Now we can prove that η commutes with the geometric Laplacian of N . For φ ∈
C∞(N)),

η(∗d ∗ dφ)

= (∗ ⊗ id)dη(m)(d ∗ dφ) (by equation 4.3.2)

= (∗d⊗ id)dη(m−1)(∗dφ)

= (∗d⊗ id)(∗ ⊗ id)dη(dφ) (again by equation 4.3.2)

= (∗d⊗ id)(∗ ⊗ id)d̃η(φ)

= (∗d⊗ id)(∗d⊗ id)η(φ)

= (∗d ∗ d⊗ id)η(φ).

2
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Chapter 5

Quantum Isometry Group of a

Stably Parallelizable, Compact,

Connected Riemannian Manifold

5.1 Introduction

In this chapter we shall show that if a CQG Q acts isometrically on a compact, con-

nected, stably parallelizable Riemannian manifold M , then Q must be commutative as

C∗ algebra i.e. Q ∼= C(G) for some compact group G. Using this we can conclude that

the quantum isometry group of a compact, connected, stably parallelizable manifold is

C(ISO(M)).

5.2 Basics of normal bundle

First we recall the basics of normal bundle of a compact Riemannian manifold. We

state some basic definitions and facts about the normal bundle of a manifold without

boundary embedded isometrically in some Euclidian space. For details of the topic we

refer to [46]. Let M ⊆ RN be a smooth embedded submanifold of RN such that the

embedding say j is an isometry. For each point x ∈ M define the space of normals to

M at x to be

Nx(M) = {v ∈ RN : v ⊥ Tx(M)}.

The total space N (M) of the normal bundle is defined to be

N (M) = {(x, v) ∈M × RN ; v ⊥ Tx(M)}

95
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with the projection π on the first coordinate. Then define Nε(M) = {(x, v) ∈
N (M); ||v|| ≤ ε}. With the introduced notations we have

Fact: N (M) is a manifold of dimension N . (see page no. 153 of [46]).

Lemma 5.2.1. (i) Let BN−n
ε (0) be a closed euclidean (N − n) ball of radius ε centered

at 0. If M is a compact n-manifold without boundary embedded isometrically in some

Euclidean space RN such that it has trivial normal bundle, then there exists an ε > 0

and a global diffeomorphism F : M ×BN−n
ε (0)→ Nε(M) ⊆ RN given by

F (x, u1, u2, ..., uN−n) = j(x) +
N−n∑
i=1

ξi(x)ui

where (ξ1(x), ..., ξN−n(x)) is an orthonormal basis of Nx(M) for all x, and x 7→ ξi(x) is

smooth ∀ i = 1, ..., (N − n).

(ii) With the diffeomorphism F as above we get an algebra isomorphism πF :

C∞(Nε(M)) → C∞(M × BN−n
ε (0)) given by πF (f)(x, u1, u2, ..., uN−n) = f(j(x) +∑N−n

i=1 ξi(x)ui).

(iii) F is actually a Riemannian isometry between the product Riemannian manifold

M × BN−n
ε (0) and Nε(M) ⊂ RN , where BN−n

ε (0) is equipped with the usual Euclidean

Riemannian structure inherited from RN−n.

(iv) Under the diffeomorphism F , the Riemannian volume measure of M ×BN−n
ε (0) is

carried to the Lebesgue measure of RN .

Proof:

(i) is a consequence of the tubular neighborhood lemma. For the proof see [46].

(ii) Let (Ui, φi) be a coordinate chart for M . So (F (Ui), φiF
−1) is a coordinate chart

for Nε(M). F is smooth ⇒ (φiFφ
−1
i ) : φi(Ui) ⊂ Hn → Hn is continuous, smooth in

φi(Ui) ∩ int Hn and all the partial derivatives extend continuously on φi(Ui) ∩ ∂Hn.

Let fm → f in τ topology of C∞(Nε(M)). We need to show πF fm → πF f in τ

topology of C∞(M) i.e. for a compact set K within Ui, and a multiindex α, ∃ an n0

such that

sup
x∈K
|∂α(πF (fm))− ∂α(πF (f))| < ε ∀ m ≥ n0.

We compute for α = 1. Let yi’s be coordinate functions for Nε(M) on F (Ui)

|∂1(πF (fm))(x)− ∂1(πF (f))(x)| = |
n∑
i=1

∂Fi
∂x1

(x)(
∂fn
∂yi
− ∂f

∂yi
)F (x)|
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By definition ∂Fi
∂x1

is bounded on K ∀ i and fm → f in N . Hence ∃ n0 ∈ N such that

sup
x∈K
|(∂1(πF fm)− ∂1(πF f))(x)| < ε ∀ m ≥ n0

For any multi index α we can do similar calculation. So by closed graph theorem πF is

continuous.

Using the same urguement for πF−1 which is π−1
F , we get

πF : C∞(Nε(M)) ∼= C∞(M).

(iii) Let (U, x1, ..., xn) be a coordinate neighborhood ofM . Then (U×BN−n
ε (0), x1, ..., xn, u1, ..., uN−n)

is a coordinate neighborhood of M ×BN−n
ε (0), where (u1, ..., uN−n) is the standard co-

ordinates of RN−n. So F (U × BN−n
ε (0)) is a coordinate neighborhood for Nε(M).

We denote the corresponding coordinates for Nε(M) by (y1, ..., yn, v1, ..., vN−n). As

(ξ1(x), ξ2(x), ..., ξN−n(x)) form an onb of the normal space at j(x). Then the above

coordinate functions are given by

G : Nε(M)
F−1

→ M ×B(N−n)
ε (0)

ξ×id→ RN (ξ is a coordinate map for M) :

y → (π(y),U(y))→ (x1, ..., xn, u1, ..., uN−n).

First observe that F |M×0 is nothing but the embedding j of M in RN . We have

Nε(M) ⊂ RN and let (p1, p2, ..., pN ) be the usual coordinate functions for RN . Without

loss of generality let φ ∈ C∞(Nε(M)) and y ∈ Nε(M) be an interior point (for points

on the boundary the proof will be similar) and φ ∈ C∞(NεM) and y ∈ NεM such that

G−1(0, ...0) = y. Let ξi(y) = (ξ1
i (y), ...ξNi (y)) for all i = 1, ..., N − n. Then

( ∂
∂vi
φ)(y) = d

dt |t=0φ(G−1(0, ...t, ...0)) (t in ith position)

= d
dt |t=0φ(ξ−1(0) + tξi)

=
∑N

k=1 ξ
k
i (y) ∂φ∂pk |y,

where pj ’s are coordinate functions for RN . Therefore we have

∂
∂vi

=
∑N

k=1 ξ
k
i

∂
∂pk

.

That is, ∂
∂vi
|y is nothing but the vector ξi = (ξik(y); k = 1, . . . , N) under the canonical

identification of RN with TyRN . As ξi(y) ∈ Nπ(y)(M) and ∂
∂yk
∈ dj(Tπ(y)(M)) for every
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y, < ∂
∂vi
|y, ∂

∂yk
|y >= 0. Also this implies that { ∂

∂vk
}N−nk=1 is a set of orthnormal vectors

of RN . Hence < ∂
∂vk

, ∂
∂vl

>=< ∂
∂uk

, ∂
∂ul

>. Also dF ( ∂
∂xk

) = ∂
∂yk

. As dF is nothing but

dj on M and j is an isometry, we have < ∂
∂yk

, ∂
∂yl

>=< ∂
∂xk

, ∂
∂xl

>. Hence F is an

isometry.

(iv) It is an easy consequence of the definitions of the Riemannian volume measure and

(iii).

We now introduce the notion of stably parallelizable manifolds.

Definition 5.2.2. A manifold M is said to be stably parallelizable if its tangent bundle

is stably trivial.

We recall the following from [47]:

Proposition 5.2.3. A manifold M is stably parallelizable if and only if it has trivial

normal bundle when embedded in a Euclidean space of dimension higher than twice the

dimension of M .

Proof:

see discussion following the Theorem (7.2) of [30]. 2

We note that parallelizable manifolds (i.e. which has trivial tangent bundles) are in

particular stably parallelizable. Moreover, given any compact Riemannian manifold M ,

its orthonormal frame bundle OM is parallelizable. Also given any stably parallelizable

manifold M , the total space of its cotangent bundle is again stably parallelizable.

5.3 Lifting an action to the tubular neighborhood of a

stably parallelizable manifold

Now as before let M be a compact, oriented Riemannain n-manifold . Assume fur-

thermore that M is stably parallelizable and let M ⊂ RN be an isometric embedding

with trivial normal bundle, for sufficiently large N ≥ n. Let Q be a CQG which acts

faithfully on M as in the sense mentioned earlier. Now as in subsection 4.2, we have

the maximal Fréchet dense subalgebra β0 of C∞(M) over which α is algebraic and

Sp (α(β0))(1⊗Q0) = β0 ⊗Q0.

Now since M is a manifold with a trivial normal bundle, Recall from Lemma 5.2.1,

the global diffeomorphism F and corresponding isomorphism

πF : C∞(NεM)→ C∞(M ×BN−n
ε (0)).
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Define

α̂ : β0 ⊗ C∞(BN−n
ε (0))→ β0 ⊗ C∞(BN−n

ε (0))⊗Q0 by α̂ = σ23 ◦ (α⊗ id)

and extend α̂ as a Fréchet continuous map by Lemma 3.2.11.

Now we have πF : C∞(NεM)→ C∞(M×Bε(0)), which implies that πF−1 : C∞(M×
Bε(0))→ C∞(NεM). Hence

(πF−1⊗idQ) : C∞(M ×Bε(0))⊗̂Q → C∞(NεM)⊗̂Q.

Set A0 := πF−1(β0⊗C∞(Bε(0))). Then A0 is a Fréchet dense subalgebra of C∞(Nε(M)).

So, defining

Φ := (πF−1 ⊗ id) ◦ α̂ ◦ πF : C∞(NεM)→ C∞(NεM)⊗̂Q,

we see that by construction, Φ is algebraic over A0 and moreover, Sp Φ(A0)(1⊗Q0) =

A0⊗Q0. Φ is also Fréchet continuous by Lemma 3.2.11. Hence Φ is a smooth action of

Q on NεM .

Lemma 5.3.1. If α is inner product presreving, so is Φ.

Proof:

Note that by Remark 3.3.8 of Chapter 3, it suffices to show that << (d⊗ id)Φ(φ), d⊗
id)Φ(ψ) >>= Φ(<< dφ, dψ >>) for φ, ψ ∈ A0. Now Consider φ, ψ ∈ A0 of the form

φ(y) = ξ ◦ π(y) and ψ(y) = η ◦ U(y), where ξ, η are smooth functions. Then Φ(φ)(y) =

α(ξ)(π(y)), Φ(ψ) = ψ ⊗ 1, and moreover it is easy to observe that << dφ, dψ >>= 0

and

<< dΦ(dφ), dΦ(dψ) >>

= << (d⊗ id)Φ(φ), (d⊗ id)Φ(ψ) >>

= 0

Using this and Leibnitz formula we get << dΦ(df1), dΦ(df2) >>= Φ(<< df1, df2 >>

) for f1, f2 of the form fi = (ξi ◦ π)ηi ◦ U , i = 1, 2.

As a general element of A0 is a finite sum of product functions of the form (ξ◦π).(η◦
U). 2

Lemma 5.3.2. If α preserves the Riemannian volume measure of M , then Φ preserves

the Riemannian volume measure of Nε(M), which is the restriction of Lebesgue measure

of RN .
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Proof:

We denote the Lebesgue measure of RN , restricted to Nε(M) by µ, the Riemannian

volume measure of M by ν and the Lebesgue measure of BN−n
ε (0) by ν ′. Then by (iv)

of lemma 5.2.1, we have for any G ∈ C∞(Nε(M)),∫
M×BN−nε (0)

πF (G)dνdν ′ =

∫
Nε(M)

Gdµ.

Also for any f ∈ C∞(M ×BN−n
ε (0))⊗̂Q,∫

Nε(M)
(πF−1 ⊗ id)fdµ =

∫
M×BN−nε (0)

fdνdν ′.

Hence it is enough to prove that α̂ preserves the Riemannian volume measure of M ×
BN−n
ε (0). For that let

∑k
i=1 fi ⊗ qi ∈ C∞(M) ⊗ C∞(BN−n

ε (0)). As α preserves the

Riemannian volume measure of M , we have

∫
M×BN−nε (0)

α̂(
k∑
i=1

fi ⊗ gi)(x, u1, ..., uN−n)dνdν ′

=
k∑
i=1

∫
M
α(fi)(x)dν

∫
BN−nε (0)

gi(u1, ..., uN−n)dν ′

=

∫
M×BN−nε (0)

(

k∑
i=1

fi ⊗ gi)dνdν ′.

As M×BN−n
ε (0) is a compact manifold, we can conclude that

∫
M×BN−nε (0) α̂(f)dνdν ′ =∫

M×BN−nε (0) fdνdν
′ for any f ∈ C∞(M ×BN−n

ε (0)). 2

5.4 Nonexistence of genuine quantum group action

Let {yi : i = 1, .., N} be the standard coordinates for RN . We will also use the same

notation for the restrictions of yi’s if no confusion arises.

Definition 5.4.1. A twice continuously differentiable, complex-valued function Ψ de-

fined on a non empty, open set Ω ⊂ RN is said to be harmonic on Ω if

LRNΨ ≡ 0,

where LRN ≡
∑N

i=1
∂2

∂y2i
.
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We note the following result.

Lemma 5.4.2. Let C be a unital commutative C∗ algebra and x1, x2, . . . , xN be self

adjoint elements of C such that {xixj : 1 ≤ i ≤ j ≤ N} are linearly independent and C
be a unital C∗ algebra generated by {x1, x2, ..., xN}. Let Q be a compact quantum group

acting faithfully on C such that the action leaves the span of {x1, x2, ..., xN} invariant.

Then Q must be commutative as a C∗ algebra, i.e. Q ∼= C(G) for some compact group

G.

Proof:

Let us introduce a convenient terminology: call a finite dimensional vector subspace V

of a commutative algebra quadratically independent if the dimension of the subspace

{vw, v, w ∈ V } is equal to the square of the dimension of V . Clearly, this is equivalent

to the following: for any basis {v1, v2, . . . , vk} of V , {vivj , i ≤ j ≤ k} will be linearly

independent, hence a basis of V ⊗symV . From this definition we also see that any nonzero

subspace of a quadratically independent space V is again quadratically independent.

Let us now denote the action of Q by α and set V := Sp{xi, i = 1, . . . , N} which

is a quadratically independent subspace of dimension N in C. We claim that without

loss of generality we can assume the existence of an inner product on V for which α|V
is a unitary representation. Indeed, we recall the maximal algebraic subspace C0 which

is a direct sum of ker(α) and the spectral subspace for the action. In fact, as α is

∗-preserving, we can have a similar decomposition of the real algebra Cs.a. consisting

of self-adjoint elements of C. Thus, we can decompose V into real subspaces V0 ⊕ V1,

where V0 ⊆ Ker(α) and V1 ⊆ Cs.a. is contained in the spectral subspace for the action. In

particular, α is injective on the algebra generated by V1. Moreover, V1 must be nonzero,

because otherwise Q will be 0, and thus V1 is quadratically independent. Replacing V

by V1 if necessary, we can assume that V is contained in the spectral subspace for

the action α, so in particular, α is a non-degenerate algebraic representation on V and

moreover, both α and the Haar state (say h) of Q are faithful on the ∗-algebra generated

by the elements of V . Choose some faithful positive functional φ on the unital separable

C∗ algebra C and consider the convolved functional φ = (φ ⊗ h) ◦ α which is clearly

faithful on the ∗-algebra generated by {xi}’s and also Q-invariant, so that α gives a

unitary representation w.r.t. the inner product say < ·, · >φ coming from φ on V . As

A is commutative and xi are self-adjoint, so are xixj for all i, j, and hence < xi, xj >φ’s

are real numbers. Thus, Gram-Schmidt orthogonalization on {x1, ...xN} will give an

orthonormal set {y1, ..., yN} consisting of self-adjoint elements, with the same span as

V = Span{x1, ..., xN}. Replacing xi’s by yi’s, let us assume for the rest of the proof

that {x1, ..., xN} is an orthonormal set, there are Qij ∈ Q, i, j = 1, . . . , N such that
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Q = C∗(Qij , i, j = 1, . . . , N) and

α(xi) =
N∑
j=1

xj ⊗Qij , ∀i = 1, . . . , N.

Since x∗i = xi for each i and α is a ∗-homomorphism, we must have Q∗ij = Qij ∀i, j =

1, 2, ..., N.

The condition that xi,xj commute ∀i, j gives

QijQkj = QkjQij∀i, j, k, (5.4.1)

QikQjl +QilQjk = QjkQil +QjlQik. (5.4.2)

As Q = ((Qij)) ∈MN (Q) is a unitary, Q−1 = Q∗ = QT := ((Qji)), since in this case

entries of Q are self-adjoint elements.

Clearly, the matrix Q is an N -dimensional unitary representation of Q, so Q−1 =

(id⊗ κ)(Q), where κ is the antipode map.

So we obtain

κ(Qij) = Q−1
ij = QTij = Qji. (5.4.3)

Now from ( 5.4.1 ) , we have QijQkj = QkjQij . Applying κ on this equation and using

the fact that κ is an antihomomorphism along with ( 5.4.3 ) , we have QjkQji = QjiQjk

Similarly , applying κ on ( 5.4.2 ), we get

QljQki +QkjQli = QliQkj +QkiQlj ∀i, j, k, l.

Interchanging between k and i and also between l, j gives

QjlQik +QilQjk = QjkQil +QikQjl ∀i, j, k, l. (5.4.4)

Now, by (5.4.2 )-( 5.4.4 ) , we have

[Qik, Qjl] = [Qjl, Qik],

hence

[Qik, Qjl] = 0.

Therefore the entries of the matrix Q commute among themselves. However, by

faithfulness of the action of Q, it is clear that the C∗-subalgebra generated by entries

of Q must be the same as Q, so Q is commutative. 2

Lemma 5.4.3. Let W be a manifold (possibly with boundary) embedded in some RN
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and {yi}’s for i = 1, ..., N , be the coordinate functions for RN restricted to W . If W

has non empty interior in RN , then {1, yiyj , yi : 1 ≤ i, j ≤ N} are linearly independent.

Proof:

If possible let on W c.1+
∑
cijyiyj+

∑
k dkyk = 0 for some cij , dk . Pick an interior point

y ∈ W . Then at y, we can take partial derivatives in any direction. Hence applying
∂
∂yi
|y ∂
∂yj
|y to c.1 +

∑
cijyiyj +

∑
k dkyk = 0, we conclude that cij = 0 ∀ i, j. Similarly

we can prove dk’s are 0 and hence c = 0 . 2

Lemma 5.4.4. Let Φ be a smooth action of a CQG on a compact subset of RN which

commutes with LRN , Then Φ is affine i.e.

Φ(yi) = 1⊗ qi +
N∑
j=1

yj ⊗ qij , for some qij , qi ∈ Q

for all i = 1, ..., N , where y′is coordinates of RN .

Proof:

As Φ commutes with the geometric Laplacian and LRN ∂
∂yj

= ∂
∂yj
LRN , LRN yj = 0 for

all j, we get

(LRN ⊗ id)(
∂

∂yj
⊗ id)Φ(yi)

= (
∂

∂yj
⊗ id)Φ(LRN yi)

= 0.

Let Dij(y) = (( ∂
∂yi
⊗ id)Φ(yj))(y). Note that as dΦ is an Φ-equivariant unitary rep-

resentation, by Lemma 3.3.6 ((Dij(y)))i,j=1,...,N is unitary for all y ∈ Nε(M). Pick

y0 in the interior of NεM(which is non empty). Then the new Q valued matrix

((Gij(y))) = ((Dij(y)))((Dij(y0)))−1 is unitary (since Dij(y) is so). Gij(y) is unitary for

all y ⇒ |ψ(Gij(y))| ≤ 1 and |ψ(Gii(y0))| = 1. ψ(Gii(y)) is a harmonic function on an

open connected set Int(NεM) which attains its supremum at an interior point. Hence by

corollary 1.9 of [1] we conclude that ψ(Gii(y)) = ψ(Gii(y0)). ((Gij(y))) being unitary for

all y, Gij = δij .1Q. Then ((Dij(y)))((Dij(y0)))−1 = 1MN (Q). So ((Dij(y))) = ((Dij(y0)))

for all y ∈ Nε(M). Hence Φ is affine with qij = Dij(y0) 2

Remark 5.4.5. This is the only place where we have made use of the assumption that

the manifold is connected.
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Corollary 5.4.6. Let M be a smooth, compact, orientable, connected, stably paralleliz-

able manifold. Then if α is an isometric action of a CQG Q on M , then Q must be

commutative as a C∗ algebra i.e. Q ∼= C(G) for some compact group G.

Proof:

As the action is isometric, it preserves the Riemannian inner product and the functional

coming from the Riemannian volume measure. As the manifold is stably parallelizable,

we can embed it isometrically into some RN such that it has trivial normal bundle. Then

we lift the action to the tubular neighborhood of the manifold such that it preserves the

Riemannian inner product of the tubular neighborhood and the functional corresponding

to the Riemannian volume measure by Lemmas 5.3.1 and 5.3.2. So by Theorem 4.2.2, it

commutes with the geometric Laplacian of the tubular neighborhood, which is a subset

of RN for some N . As the tubular neighborhood has non empty interior in RN , applying

Lemma 5.4.4, Lemma 5.4.3 and Lemma 5.4.2, we complete the proof. 2

Corollary 5.4.7. The quantum isometry group of a compact, connected, stably paral-

lelizable manifold M is commutative as a C∗ algebra i.e. isomorphic to C(ISO(M)).



Chapter 6

QISO of cocycle twisted

manifolds

6.1 Introduction

Most of the examples of noncommutative manifolds are obtained by deforming classical

spectral triples. It was shown in [10] that the quantum isometry group of a Rieffel-

deformed noncommutative manifold can be obtained by a similar deformation (Rieffel-

Wang, see [54]) of the quantum isometry group of the original (undeformed) noncommu-

tative manifold. In this chapter our goal is to generalize Bhowmick-Goswami’s results

about Rieffel-deformation to any cocycle twisted spectral triple. Combining this with

the fact (proved in the previous chapter) that the quantum isometry group of a classical

compact, connected, stably parallelizable Riemannian manifold is the same as the clas-

sical isometry group of such manifolds (i.e. there is no genuine quantum isometry for

such manifold), we shall be able to compute the quantum isometry group of non com-

mutative manifolds obtained from classical (compact, connected, stably parallelizable)

manifolds using unitary 2-cocycle. We shall also relax the assumption of existence of a

dense ∗-algebra for which the action is algebraic in case of Rieffel deformed manifolds.

6.2 Discrete quantum group

Let Q be a compact quantum group. Recall the dense Hopf ∗-algebra Q0 spanned by

the matrix coefficients of its inequivalent irreducible representations. Also recall the

dual discrete quantum group Q̂ of Q. With these notations we have the following

To define the cocycle twist of a CQG Q, we first briefly discuss about discrete

quantum group from [52].

Let A0 = ⊕α∈IMnα for some index set I, where Mnα is a complex nα × nα matrix.

105
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Any element in A0 looks like
∑

α∈I aα for aα ∈Mnα and for all but finitely many indices

α, aα is non zero. Then A0 ⊗ A0 = ⊕α,βMnα ⊗Mnβ , algebraic multipliers of A0 and

A0 ⊗A0 are Πα∈IMnα and Πα,β∈IMnα ⊗Mnβ respectively.

A comultiplication on A0 is a ∗- homomorphism ∆ : A0 → Malg(A0 ⊗ A0) such

that it extends to a unital ∗-homomorphism from Malg(A0) to Malg(A0⊗A0) such that

it is coassociative meaning (∆ ⊗ id) ◦ ∆ = (id ⊗ ∆) ◦ ∆ and both ∆(a)(1 ⊗ b) and

(a⊗ 1)∆(b) ∈ A0 ⊗A0 for a, b ∈ A0.

Definition 6.2.1. A discrete quantum group is a pair (A0,∆) where A0 = ⊕α∈IMnα

and ∆ is a comultiplication as above with the following conditions:

(1) T1 : A0 ⊗A0 → A0 ⊗A0 given by T1(a⊗ b) := ∆(a)(1⊗ b) is bijective on A0 ⊗A0.

(2) T2 : A0 ⊗ A0 → A0 ⊗ A0 given by T2(a ⊗ b) := (a ⊗ 1)∆(b) is also bijective on

A0 ⊗A0.

Let eα denote the minimal central projection which is identity on Mnα and 0 else-

where. Also let pγ :=
∑

α≤γ eα. Then pγ is also a central projection on A0. If

b =
∑

α≤γ bα ∈ A0, bpγ = b.

Now given a discrete quantum group (A0,∆), recall from [52], we have an antipode

κ : A0 → A0 which is an antihomomorphism and invertible on A0. We also have the

counit ε : A0 → C with m ◦ (id⊗ κ)(∆(a)(1⊗ b)) = ε(a)b for all a, b ∈ A0.

Also given a discrete quantum group (A0,∆), for fixed α, β ∈ I, the set {γ ∈
I; ∆(eγ)(eα ⊗ eβ) 6= 0} is finite and hence we can define

∆ : ΠMnα → Π(Mnα ⊗Mnβ )

by prescribing the βγ th coordinate of ∆((aα)α) by
∑

∆(aγ′) such that ∆(aγ′)(eβ⊗eγ) 6=
0. Recall that there is a bijection of the index set I such that κ(Mnα) = Mnα′ . So define

κ : ΠMnα → ΠMnα by

κ((aα)α) = ((aα′)α′)

where κ(aα) = aα′ for some α and α′. For similar reasons we can define ε(
∑

α∈I aα) =∑
α∈I ε(aα) and m : Π(Mnα ×Mnβ )→Mnα by

m(
∑

aα ⊗ bβ) = ((aαbα)).

Then we have (ε⊗ id)∆((aα)α) = ((aα)α) for all ((aα)α) ∈ ΠMnα . To see that let η ∈ I
and ∆((aα)α) = ((

∑
γ∈I ∆(aγ)))βγ′ where γ’s are such that ∆(aγ)(eβ ⊗ eγ′) 6= 0 and
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hence

(ε⊗ id)∆((aα)α).eη

=
∑

(ε⊗ id)∆(aγ)(1⊗ eη)

= aη.

The last line follows since (ε⊗ id)∆(aγ)(1⊗ eη) = aγeη. So (ε⊗ id)∆((aα)α) = (aα)α.

Also

m ◦ (κ⊗ id)∆((aα)α).eβ

=
∑
γ∈I

m ◦ (κ⊗ id)(∆(aγ)(1⊗ eβ))

=
∑
γ∈I

ε(aγ)eβ

= ε((aα)α)eβ

Hence m ◦ (κ⊗ id)∆((aα)α) = ε((aα)α) = ε((aα)α).1 on ΠMnα . Conversely, let (A0,∆)

be as above with an invertible map κ : A0 → A0 and ε : A0 → C defined as above with

m ◦ (κ⊗ id)(∆(a)(1⊗ b)) = ε(a)b,

for a, b ∈ A0. So with similar arguments as above we can extend the maps to Malg(A0)

and Malg(A0 ⊗A0) and get the identities

(ε⊗ id)∆ = (id⊗ ε)∆ and m ◦ (κ⊗ id)∆(.) = ε(.)1,

on ΠMnα .

So we can define R : A0 ⊗A0 → A0 ⊗A0 by

R(a⊗ b) := (id⊗m)[(id⊗ κ⊗ id)(((∆⊗ id)(a⊗ 1))(1⊗ 1⊗ b)].

Then

R ◦ T1(a⊗ b) = (id⊗m)[(id⊗ κ⊗ id)((∆⊗ id)∆(a))(1⊗ 1⊗ b)]

= (id⊗ ε)∆(a)⊗ b

= a⊗ b

Similarly we can show that T1 ◦R(a⊗ b) = a⊗ b and hence T1 is invertible on A0⊗A0.

Similarly we can show that T2 is invertible on A0⊗A0. So combining all these we have

Proposition 6.2.2. Let A0 be a direct sum of matrix algebras with ∆ being the comulti-
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plication on A0. If there is an invertible map κ : Malg(A0)→Malg(A0) which maps A0

onto A0 such that m ◦ (κ⊗ id)(∆(a)) = m ◦ (id⊗ κ)(∆(a)) = ε(a) for all a ∈Malg(A0)

and (ε⊗ id)∆(a) = (id⊗ ε)(∆(a)) = a for all a ∈Malg(A0). Then (A0,∆) is a discrete

quantum group.

6.3 Cocycle twist of a CQG

Definition 6.3.1. By a unitary 2-cocycle σ of a compact quantum group Q, we mean

a unitary element of M(Q̂⊗̂Q̂) satisfying

(1⊗ σ)(id⊗ ∆̂)σ = (σ ⊗ 1)(∆̂⊗ id)σ.

Let (Q,∆) is a CQG with a unitary 2-cocycle σ ∈ M(Q̂ ⊗ Q̂). σ viewed as a linear

functional on Q0 ⊗Q0 satisfies the cocycle condition (see page 64 of [36])

σ(b(1), c(1))σ(a, b(2)c(2)) = σ(a(1), b(1))σ(a(2)b(2), c),

for a, b, c ∈ Q0 ( Sweedler’s notation). We can deform Q0 using σ to obtain a new Hopf

∗-algebra Qσ0 . Then Qσ0 and Q̂0σ again form a non degenerate pairing. We twist the

product of the algebra Qσ0 by the following formula:

a.σb := σ−1(a(1), b(1))a(2)b(2)σ(a(3), b(3)),

for a, b ∈ Q0. The coproduct remains unchanged. The ∗ structure and κ gets changed

by the formulae:

a∗σ :=
∑

v−1(a(1))a
∗
(2)v(a(3)),

κσ(a) := U(a(1))κ(a(2))U
−1(a(3)).

(see page 65 of [36]). All the proofs are done in [36], although for completeness, we

include a proof (of the associativity of the new twisted product) here. The other proofs

can be done with similar computations.

Lemma 6.3.2. The new twisted product .σ is associative.

Proof:

Let α : A0 → A0⊗H be an action of a Hopf ∗-algebra H on an algebra A0. If we define

a ∗ b := a(0)b(0)σ
−1(a(1), b(1)), then ∗ is an associative product on A0. For that observe
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that

(a ∗ b) ∗ c = a(0)(0)b(0)(0)c(0)σ
−1(a(1), b(1))σ

−1(a(0)(1)b(0)(1), c(1))

= a(0)b(0)c(0)σ
−1(a(1)(2), b(1)(2))σ

−1(a(1)(1)b(1)(1), c(1))

and

a ∗ (b ∗ c) = a(0)b(0)(0)c(0)(0)σ
−1(b(1), c(1))σ

−1(a(1), b(0)(1)c(0)(1))

= a(0)b(0)c(0)σ
−1(a(1), b(1)(1)c(1)(1))σ

−1(b(1)(2), c(1)(2))

Now using the cocycle condition, we get

(a ∗ b) ∗ c = a ∗ (b ∗ c) (6.3.1)

Define ∆f : H → H ⊗ H by ∆f (a) = a(2) ⊗ a(1). Then we define ∆̄ : H ⊗ H →
H ⊗H ⊗H ⊗H by

∆̄ := f23(∆f ⊗∆),

where f23 is the flip map between 2nd and 3rd copy. Then using the coassociativity of

∆, it is easy to see that ∆̄ is also coassociative. Now define ᾱ : H → H ⊗ H ⊗ H by

ᾱ := (∆f ⊗ id)∆. Then we claim that (id⊗ ∆̄)ᾱ = (ᾱ⊗ id)ᾱ. For that we observe that,

for q ∈ H,

(ᾱ⊗ id)ᾱ(q) = (ᾱ⊗ id)(∆f ⊗ id)∆(q)

= q(1)(2)(1)(2) ⊗ q(1)(2)(1)(1) ⊗ q(1)(2)(2) ⊗ q(1)(1) ⊗ q(2)

Similarly

(id⊗ ∆̄)ᾱ = q(1)(2) ⊗ q(1)(1)(2) ⊗ q(2)(1) ⊗ q(1)(1)(1) ⊗ q(2)(2)

Now using the coassociativity of ∆, we can show that (id⊗ ∆̄)ᾱ = (ᾱ⊗ id)ᾱ. Now we

proceed to define a 2-cocycle ψ on H ⊗H, that is a convolution invertible linear map

ψ : H ⊗H ⊗H ⊗H → C by

ψ(p⊗ q ⊗ r ⊗ s) = σ(p, r)σ−1(q, s).
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We claim that ψ satisfies

ψ(x(1)y(1), z)ψ(x(2), y(2)) = ψ(x, y(1)z(1))ψ(y(2), z(2)),

for x, y, z ∈ H ⊗H.

Let x = p ⊗ q, y = r ⊗ s, z = t ⊗ u. Then ∆̄(p ⊗ q) = p(2) ⊗ q(1) ⊗ p(1) ⊗ q(2). Hence

x(1) = p(2) ⊗ q(1) and x(2) = p(1) ⊗ q(2). Similarly y(1) = r(2) ⊗ s(1), y(2) = r(1) ⊗ s(2),

z(1) = t(2) ⊗ u(1) and z(2) = t(1) ⊗ u(2). Then

ψ(x(1)y(1), z)ψ(x(2), y(2))

= ψ(p(2)r(2) ⊗ q(1)s(1), t⊗ u)ψ(p(1) ⊗ q(2), r(1) ⊗ s(2))

= σ(p(2)r(2), t)σ
−1(q(1)s(1), u)σ(p(1), r(1))σ

−1(q(2), s(2))

= σ(r(1), t(1))σ(p, r(2)t(2))σ
−1(q, s(1)u(1))σ

−1(s(2), u(2))

On the other hand ,

ψ(x, y(1)z(1))ψ(y(2), z(2))

= ψ(p⊗ q, r(2)t(2) ⊗ s(1)u(1))ψ(r(1) ⊗ s(2), t(1) ⊗ u(2))

= σ(p, r(2)t(2))σ
−1(q, s(1)u(1))σ(r(1), t(1))σ

−1(s(2), u(2))

Now using the action ᾱ of H ⊗H on H, we define a new twisted product ∗ψ on H by

a ∗ψ b = a(0)b(0)ψ(a(1), b(1)),

where ᾱ(a) = a(0) ⊗ a(1). Then we can easily see that ∗ψ is nothing but .σ and hence

by (2), we conclude that .σ is associative. 2

We can prove that (Qσ0 ,∆σ, κ, ε) with the deformed algebra structure is again a

unital Hopf ∗ algebra. But we don’t know yet whether there is any compact quantum

group containing (Qσ0 ,∆, κσ, ε) as a Hopf ∗ algebra. Now we turn to prove the existence

of such a CQG by duality.

Recall the dual (Q̂0, ∆̂) which is a discrete quantum group. Hence we have ∆̂ :

Malg(Q̂0) →: Malg(Q̂0 ⊗ Q̂0), κ̂ : Malg(Q̂0) → Malg(Q̂0) such that κ̂ is invertible and

maps Q̂0 onto Q̂0, ε̂ : Malg(Q̂0) → C such that (ε̂⊗ id)∆̂(a) = (id⊗ ε̂)∆̂(a) = a for all

a ∈Malg(Q̂0), m◦(κ̂⊗ id)∆̂(a) = m◦(id⊗κ̂)∆̂(a) = ε̂(a).1 for all a ∈Malg(Q̂0). We can

deform the coproduct ∆̂σ : Q̂0
σ
→ Malg(Q̂0

σ
⊗ Q̂0

σ
) defined by ∆̂σ(a) := σ.∆̂(a).σ−1.

Then it is easy to see that ∆̂σ extends to Malg(Q̂0
σ
) → Malg(Q̂0

σ
⊗ Q̂0

σ
) such that
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(id⊗ ∆̂σ)∆̂σ = (∆̂σ ⊗ id)∆̂σ. This easily follows from the cocycle condition. We do not

change the algebra structure of Q̂0. Also ε̂ is not changed.

Let U = m ◦ (id ⊗ κ̂)(σ). It can be easily shown that U ∈ Malg(Q̂σ0 ) and U is

invertible with U−1 ∈Malg(Q̂σ0 ). Now we define

κ̂σ : Malg(Q̂σ0 )→Malg(Q̂σ0 ),

by κ̂σ(a) := Uκ̂(a)U−1. Note that Q̂σ0 being an ideal in Malg(Q̂σ0 ), κ̂σ(a) ∈ Q̂σ0 for all

a ∈ Q̂σ0 .

Also we can show that κ̂σ is invertible and κ̂−1
σ maps Q̂σ0 into Q̂σ0 . Using similar

computations as in [36], we can show that on Malg(Q̂σ0 ),

(ε̂⊗ id)∆̂σ = (id⊗ ε̂)∆̂σ = id,

and

m ◦ (κ̂σ ⊗ id)∆̂σ(.) = m ◦ (id⊗ κ̂σ)∆̂σ(.) = ε̂(.)1.

Now let a, b ∈ Q̂σ0 . Then ∆̂σ(a)(1⊗ b) = σ∆̂σ−1(1⊗ b). Let pγ be the central projection

where b =
∑

α≤γ bα ∈ Q̂0. So

∆̂σ(a)(1⊗ b) = σ∆̂(a)σ−1(1⊗ pγ)(1⊗ b)

= σ∆̂(a)(1⊗ pγ)σ−1(1⊗ b)(since pσ is central)

∈ Q̂σ0 ⊗ Q̂σ0

The last line follows since ∆̂(a)(1⊗pγ) ∈ Q̂σ0⊗Q̂σ0 . So T σ1 maps Q̂σ0⊗Q̂σ0 into Q̂σ0⊗Q̂σ0 . If

we define Rσ1 by Rσ1 (a⊗b) := (1⊗ κ̂σ)((1⊗ κ̂σ−1(b))∆̂σ(a)). But ((1⊗ κ̂σ−1(b))∆̂σ(a)) ∈
Q̂σ0 ⊗Q̂σ0 and κ̂σ maps Q̂σ0 into Q̂σ0 proving that T σ1 is a bijection. Similarly defining Rσ2 ,

we can prove that T σ2 is a bijection. Hence applying Proposition 6.2.2, we can conclude

that (Q̂σ0 , ∆̂σ) is again a discrete quantum group. Hence Qσ0 is a Hopf ∗ algebra of the

CQG dual to (Q̂σ0 , ∆̂σ).

Definition 6.3.3. The cocycle twist of a CQG (Q,∆) by a unitary 2-cocycle σ on Q is

defined to be the universal CQG containing (Qσ0 ,∆, κσ, ε) as a Hopf ∗ algebra.

Let us now discuss how one gets a unitary 2-cocycle on a CQG from such a unitary

2-cocycle on its quantum subgroup. Given two CQG’s Q1, Q2 and a surjective CQG

morphism π : Q1 → Q2 which identifies Q2 as a quantum subgroup of Q1 (we shall use

the notation Q2 ≤ Q1 to mean that Q2 is a quantum subgroup of Q1), it can be shown

that π maps the Hopf ∗-algebra (Q1)0 onto (Q2)0. By duality we get a map say π̂ from

(Q2)′0 to (Q1)′0 and it is easy to check that this indeed maps the dense multiplier Hopf

∗-algebra (̂Q2)0 ⊂ Q̂2 to (̂Q1)0. Indeed π̂ lifts to a non degenerate ∗-homomorphism
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from M(Q̂2) to M(Q̂1). So given a unitary 2-cocycle σ on Q2, we get a unitary 2-

cocycle σ′ := (π̂ ⊗ π̂)(σ) ∈ M(Q̂1⊗̂Q̂1). It is easy to check that σ′ is again a unitary

2-cocycle on Q1. We shall often use the same notation for both σ′ and σ i.e. denote σ′

by σ under slight abuse of notation for convenience.

Lemma 6.3.4. Qσ2 is a quantum subgroup of Qσ′1 .

Proof:

First we claim that π : (Q1)σ′0 → (Q2)σ0 is a surjective Hopf ∗-algebra morphism. Since

the coproducts remain unchanged , we only need to check that π is again a ∗-algebra

homomorphism. For that observe that for a, b ∈ (Q1)σ
′

0 ,

π(a.σ′b) = π[σ′(a(1), b(1))a(2)b(2)(σ
′)−1(a(3), b(3))]

= σ′(a(1), b(1))π(a(2), b(2))(σ
′)−1(a(3), b(3))

= σ(π(a(1)), π(b(1)))π(a(2))π(b(2))σ
−1(π(a(3)), π(b(3)))

= π(a).σπ(b)

Similarly we can show that π(a∗σ′ ) = (π(a))∗σ . Hence Qσ′1 contains (Q2)σ0 as a Hopf

∗-algebra and hence by the universality of Qσ′1 we conclude that there is a surjective

CQG morphism from Qσ′1 onto Qσ2 .

2

Lemma 6.3.5. For a universal CQG Q with a unitary 2-cocycle σ, (Qσ)σ
−1 ∼= Q.

Proof:

First we claim that as Hopf ∗-algebra (Qσ0 )σ
−1 ∼= Q0. Again for that it is enough to
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check the ∗-algebra structure. For that let a, b ∈ Q0.

a(.σ)σ−1b = σ−1(a(1), b(1))a(2).σb(2)σ(a(3), b(3))

= σ−1(a(1)(1), b(1)(1))a(1)(2).σb(1)(2)σ(a(2), b(2))

= σ−1(a(1)(1), b(1)(1))σ(a(1)(2)(1)(1), b(1)(2)(1)(1))a(1)(2)(1)(2)b(1)(2)(1)(2)

σ−1(a(1)(2)(2), b(1)(2)(2))σ(a(2), b(2))

= σ−1(a(1)(1), b(1)(1))σ(a(1)(2), b(1)(2))a(2)(1)b(2)(1)

σ−1(a(2)(2)(1), b(2)(2)(1))σ(a(2)(2)(2), b(2)(2)(2))

= ε(a(1))ε(b(1))a(2)(1)b(2)(1)ε(a(2)(2))ε(b(2)(2))

= ε(a(1))ε(b(1))a(2)b(2)

= ab

Similarly we can show for ∗-structure. So (Qσ)σ
−1

contains Q0 as a Hopf ∗-algebra.

Hence by the definition, Q is a quantum subgroup of (Qσ)σ
−1

. Now by universality of

Q, (Qσ)σ
−1 ∼= Q. 2

6.3.1 Unitary representations of a twisted compact quantum group

Let Q be a universal compact quantum group (as in the sense of 2.1) with a dual unitary

2-cocycle σ. Then our goal of this brief subsection is to prove that there is a bijective

correspondence between the sets of inequivalent irreducible representations of Q and

Qσ given by,

Rep(Qσ) = {πσ|π ∈ Rep(Q)},

dim(πσ)=dim(π) for all π, where the corresponding representation being the same as a

linear map. To this end let us begin with a unitary representation U of Q on a Hilbert

space H. Write H = ⊕k≥1Hk, where on Hk, U is irreducible and equivalent to some

π ∈ Rep(Q). Hence each Hk is finite dimensional. Let {eki }
dπ
i=1 be a basis of Hk (π is the

irreducible type which is equivalent to U on Hk) and we write U(eki ) =
∑dπ

j=1 e
k
j ⊗ qπji.

Theorem 6.3.6. U viewed as a same linear map is again a unitary representation of

the cocycle twisted compact quantum group Qσ (note that for this we don’t need the

CQG to be universal).

Proof:

Recall the discrete quantum group Q̂0 and its corresponding twisted discrete quantum

group (Q̂0)σ. As noted previously Qσ0 and (Q̂0)σ again form a non-degenerate dual
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pairing. Since the ∗-algebra structure of Q̂0 does not change, (Q̂0)σ has the same

matrix units as Q̂0. Let mπ
pq be one such matrix unit. Then by the definition of twisted

antipode and twisted ∗ on Qσ0 , we get (denoting the dual pairing by <>)

< κσ(qπij)
∗σ ,mπ

pq >

= < qπij ,m
π∗
pq >

= < qπij ,m
π
qp >(since the ∗ structure does not change)

= δiqδjp

But we know < qπji,m
π
pq >= δiqjp. Hence by non-degeneracy of the pairing κσ(qij) = q∗σji .

So U is again a unitary representation of the twisted CQG. 2

We shall denote the same U by Uσ when viewed as a unitary representation of Qσ.

If we denote an element a ∈ Q viewed as an element of Qσ by [a], then Uσ = (id⊗ [.])U .

As Q is a universal CQG, noting the fact that for a universal CQG, (Qσ)σ
−1 ∼= Q (by

Lemma 6.3.5), we can conclude that for a universal CQG Q,

Rep(Qσ) = {πσ|π ∈ Rep(Q)},

dim(πσ)=dim(π) for all π, where the corresponding representation being the same as a

linear map.

Proposition 6.3.7. (i) The Haar state for the deformed compact quantum group stays

the same as in the undeformed compact quantum group.

(ii) The operator F σπ corresponding to the twisted CQG Qσ given by δikF
σ
π (j, l) =

Mdπh(qπij .σq
π∗σ
kl ) is related to Fπ by the following.

F σπ = cπA
∗
πFπAπ,

where cπ is some positive constant and Aπξ := (id⊗ v)πσξ, where v is as in Subsection

5.2.1.

Proof:

(i) By Theorem 6.3.6, the matrix coefficients of irreducible representations do not change

for Qσ. The Haar state for Qσ say hσ is uniquely determined by hσ(qπij) = 0 for all

i, j and non trivial representations π and hσ(1) = 1. But since the Haar state h of Q
satisfies the above properties, we conclude that hσ = h.

(ii) By equation (1), we see that the modular operator Φ|L2(h)πi
= F π for all π and i. Let

Φσ be the modular operator for the CQG Qσ and Sσ be the corresponding anti unitary

operator. Then recalling the definition of the deformed ∗ of Qσ (equation (4)), we see
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that Φσ = SC, where C = AB = BA, A is the operator given by A(a) = (id⊗ v)∆(a)

and B is given by B(a) = (v−1 ⊗ id)∆(a) for a ∈ Q0. Then the modular operator

Φσ = Sσ∗Sσ = A∗B∗ΦBA. We know Φσ|L2(h)πi
= F σπ for all π and i. Since A and A∗

both map L2(h)πi into itself for all π and i, B∗ΦB also does so. Fix some i and let P πi
be the projection onto Sp {qπij : j = 1, ..., dπ}. It is clear from the definition of B that

B(qπkl) =
∑

m b
π
kmq

π
ml and B∗(qπkl) =

∑
m d

π
kmq

π
ml, for some constants bkm and dkm’s.

Then

P πi (B∗ΦB(qπij))

= (
∑
k

bikdki)(
∑
m

Fπ(j,m)qπim),

where Φ(qπij) =
∑

m Fπ(j,m)qπim. Now if we denote (
∑

k bikdki) by cπ,i , we note that

B∗ΦB|L2(h)πi
= cπ,iΦ|L2(h)πi

.

In particular taking cπ = cπ,1 and denoting the restrictions of A and A∗ on Sp

{qπ1j : 1 ≤ j ≤ dπ} by Aπ and A∗π respectively we write F σπ = cπA
∗
πFπAπ and as

F σπ is positive, invertible, cπ must be a positive constant. 2

6.4 Action on von Neumann algebras by conjugation of

unitary representation

We now discuss an analogue of “action” (as in [42]) in the context of von Neumann

algebra implemented by a unitary representation of the CQG. Given a unitary repre-

sentation V of a CQG Q on a Hilbert space H, often we consider the ∗ homomorphism

ad
Ṽ

on B(H) or on some suitable von Neumann subalgebraM of it. We say ad
Ṽ

leaves

M invariant if (id⊗ φ)ad
Ṽ

(M) ⊂M for every state φ of Q. Then taking ρπ as above,

we defineMπ = Pπ(M), where Pπ = (id⊗ ρπ)ad
Ṽ

:M→M is the spectral projection

corresponding to the representation π. We defineM0 := Sp {Mπ;π ∈ Rep(Q)}, which

is called the spectral subalgebra. Then we have the following:

Proposition 6.4.1. M0 is dense in M in any of the natural locally convex topologies

of M, i.e. M0
′′ =M.

Proof:

This result must be quite well-known and available in the literature but we could not

find it written in this form, so we give a very brief sketch. The proof is basically
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almost verbatim adaptation of some arguments in [32] and [51]. First, observe that the

spectral algebraM0 remains unchanged if we replace Q by the reduced quantum group

Qr which has the same irreducible representations and dense Hopf-∗ algebra Q0. This

means we can assume without loss of generality that the Haar state is faithful. The

injective normal map β := adV restricted to M can be thought of as an action of the

quantum group (in the von Neumann algebra setting as in [32], [51]) Qr ′′ (where the

double commutant is taken in the GNS space of the Haar state) and it follows from the

results in [51] about the implementability of locally compact quantum group actions

that there is a faithful normal state, say φ, on M such that β is Qr ′′-invariant, i.e.

(φ ⊗ id)(β(a)) = φ(a)1 ∀a ∈ M. We can replace M, originally imbedded in B(H), by

its isomorphic image (to be denoted by M again) in B(L2(φ)) and as the ultra-weak

topology is intrinsic to a von Neumann algebra, it will suffice to argue the ultra-weak

density of M0 in M ⊂ B(L2(φ)). To this end, note that Vaes has shown in [51]

that β :M→M⊗Qr ′′ extends to a unitary representation on L2(φ), which implies in

particular thatM0 is dense in the Hilbert space L2(φ). From this the ultra-weak density

follows by standard arguments very similar to those used in the proof of Proposition 1.5

of [32], applying Takesaki’s theorem about existence of conditional expectation. For the

sake of completeness let us sketch it briefly. Using the notations of [51] and noting that

δ = 1 for a CQG, we get from Proposition 2.4 of [51] that Vφ commutes with the positive

self adjoint operator ∇φ ⊗Q where ∇φ denotes the modular operator i.e. generator of

the modular automorphism group σφt of the normal state φ. Clearly, this implies that

β := adVφ satisfies the following:

β ◦ σφt = σφt ⊗ τ−t,

where τt is the automorphism group generated by Q−1. Next, as in Proposition 1.5

of [32], consider the ultra-strong ∗ closureMl of the subspace spanned by the elements

of the form (id ⊗ ω)(β(x)), x ∈ M , ω is a bounded normal functional on Q′′r . It is

enough to prove that Ml =M, as that will prove the ultra-strong ∗ density (now also

the ultra-weak density) of Ml in M. This is clearly a von Neumann subalgebra as β

is coassociative, and σφt (id ⊗ ω)(β(x)) = (id ⊗ ω ◦ τt)(β(σφt (x))). Then by Takesaki’s

theorem ( [49], 10.1) there exists a unique normal faithful conditional expectation E

fromM toMl satisfying E(x)P = PxP where P is the orthogonal projection as in [32].

Clearly, the range of P contains elements of the form (id⊗ω)(β(x)). So in particular it

contains M0, which is dense in L2(φ). Thus P = 1 and E(x) = x proving Ml =M.

2

From this, it is easy to conclude that
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Lemma 6.4.2. 1. ad
Ṽ
|M0 is algebraic i.e. ad

Ṽ
(M0) ⊂M0 ⊗Q0.

2. M0 is the maximal subspace over which ad
Ṽ

is algebraic i.e. M0 = {x ∈M|ad
Ṽ

(x) ∈
M⊗Q0}.
3. IfM1 ⊂M is SOT dense ∗-subalgebra such that ad

Ṽ
leavesM1 invariant, then ad

Ṽ

is algebraic over Sp{Pπ(M1)|π ∈ Rep(Q)} and Sp{Pπ(M1)|π ∈ Rep(Q)} is SOT dense

in M0.

Proof:

The statements (1) follows from the lines of argument as in the Theorem 1.5 of [42]

whereas (2) follows by arguing along the lines of Proposition 2.2 of [48] and noting that

adṼ is 1-1. (3) follows from (2) and the obvious SOT continuity of each Pπ. 2

For x ∈ M0, we shall use the natural analogue of Swedler’s notation, i.e. write

ad
Ṽ

(x) = x(0) ⊗ x(1).

6.4.1 Deformation of a von Neumann algebra by dual unitary 2-

cocycles

Let Q be a CQG with a dual unitary 2-cocycle σ. Also assume that it has a unitary

representation V on a Hilbert space H and choose a dense subspace N ⊂ H on which V

is algebraic i.e. V (N ) ⊂ N ⊗Q0. Then the spectral subalgebraM0 is SOT dense inM
and ad

Ṽ
(M0) ⊂ M0 ⊗Q0 by Proposition 6.4.1. Now using the dual unitary 2-cocycle

σ ∈M(Q̂⊗̂Q̂), we can define a new representation of M0 on N by,

ρσ(b)(ξ) := b(0)ξ(0)σ
−1(b(1), ξ(1)), for ξ ∈ N ,

where ad
Ṽ

(b) = b(0) ⊗ b(1) and V (ξ) = ξ(0) ⊗ ξ(1).

Lemma 6.4.3. 1. ρσ(b) extends to an element of B(H) for all b ∈M0.

2. ρσPπ is SOT continuous, where Pπ is the spectral projection corresponding to π ∈
Rep(Q).

Proof:

1. Let ad
Ṽ

(b) =
∑k

i=1 b
i
(0) ⊗ b

i
(1) and V (ξ) =

∑l
j=1 ξ

j
(0) ⊗ ξ

j
(1). Define σi ∈ M(Q̂) by

σi(q0) := σ−1(bi(1), q0) for all i = 1, ..., k. So by Theorem 1.4.14, we have ΠV (σi) ∈ B(H)

for all i = 1, ..., k. By definition of ρσ on N ,

ρσ(b)ξ =
k∑
i=1

bi(0)ΠV (σi)(ξ).

Using the facts that ΠV (σi) and bi(0)’s are bounded operators we can conclude that

ρσ(b) ∈ B(H) for all b ∈M0.
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2. With similar reasoning we can prove 2. 2

Definition 6.4.4. We call (ρσ(M0))′′ the deformation ofM by σ and denote it byMσ.

Now in [40], Neshveyev has given a notion of cocycle twist of a C∗ algebra with

respect to unitarily implemented action of general locally compact quantum groups. As

we work with compact quantum groups only, so every dual unitary 2-cocycle is regular.

Let σ be a dual unitary 2-cocycle on a CQG Q. For this subsection we shall not need

cocycle twisted compact quantum groups. Rather we shall need the reduced twisted

group C∗ algebra which we shall denote by C∗r (Ĝ;σ) where C(G) will stand for the

compact quantum group Q. L∞(G;σ) will denote the weak closure of the twisted group

C∗ algebra in B(L2(G)), where L2(G) is the GNS Hilbert space of Q corresponding to

the Haar state h. Suppose furthermore that there is a unitary representation V of Q
on a Hilbert space H and A ⊆ B(H) is a unital C∗ algebra such that α := adV gives a

C∗ action of Q on A. Then we have the deformed C∗ algebra Aσ constructed in [40],

which is viewed there as a subalgebra of B(H ⊗ L2(G)). We also denote by M the

weak closure of A in B(H) and let Mσ be the weak closure of Aσ in B(H ⊗ L2(G)).

Recall PG,rπ for π ∈ Rep(G). Then it is clear that (id ⊗ PG,rπ )X ∈ B(H) ⊗alg Qσ0 for

any X ∈ (B(H)⊗̄Q′′). Also we denote by pG,lπ and pG,rπ the Hilbert space projections

on L2(G) corresponding to the spectral projections PG,lπ and PG,rπ respectively. Then

both pG,rπ ’s and pG,lπ ’s are mutually orthogonal projections whose sum converges to the

identity operator on L2(G) strongly.

Lemma 6.4.5. Given any C∗ (or von Neumann algebraic) action β on a C∗ (or von

Neumann) algebra C ⊂ B(K) and X ∈ C such that Xπ := P Cπ (X) = 0 for all π ∈ Rep(Q)

and β is one-one (for example of the form adV for some unitary V ), then X = 0.

Proof:

We use γ for the adW action. We have Xπ = 0 i.e. (id ⊗ ρπ)β(X) = 0. So β(id ⊗
ρπ)β(X) = 0. Hence by using the fact that (β ⊗ id)β = (id⊗ γ)β, we obtain,

(id⊗ id⊗ ρπ)(id⊗ γ)β(X) = 0.

But then (id ⊗ ρπ)γ := PG,rπ . So (id ⊗ PG,rπ )β(X) = 0. β(X) ∈ (B(K)⊗̄Q′′). Then

for any u ∈ K, ((id ⊗ PG,rπ )β(X))(u ⊗ 1Q) = 0, i.e. (id ⊗ pG,rπ )(β(X)(u ⊗ 1Q) = 0.

But since
∑

π∈Rep(Q) p
G,r
π converges strongly to identity operator on L2(G), we get

β(X)(u ⊗ 1Q) = 0 for all u ∈ H. So 1Q being a separating vector for Q′′ ∈ B(L2(G)),

we conclude that β(X) = 0 and hence X = 0 as β is one one. 2
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Remark 6.4.6. The above Lemma clearly holds true if the right action is replaced by

the left action.

Now we shall show that these two frameworks of deformation are in deed equivalent.

For a dual unitary 2-cocycle σ on C(G), we define Qσ0 ∈ B(L2(G)) by the following:

As a vector space Q0 and Qσ0 are same. But the new representation of Qσ0 in B(L2(G))

is given by q ∗ ξ := q(1)ξ(1)σ
−1(q(2), ξ(2)), where q, ξ ∈ Q0 (observe that Q0 is dense

in the Hilbert space L2(G)) and ∆(q) = q(1) ⊗ q(2), ∆(ξ) = ξ(1) ⊗ ξ(2). Here ∆ is the

coproduct of C(G). That Qσ0 ⊂ B(L2(G)) can be shown along the same way as Lemma

4.7 of [24].

Identifying Qσ0 with Q0 as vector space, we have the same counit map ε : Qσ0 → C.

There is a canonical left action, say ∆σ, of G on C∗r (G;σ), which coincides with the

coproduct ∆ as a linear map on the dense ∗-subalgebra Qσ0 identified with Q0 as vector

spaces. The counit map ε satisfies (id ⊗ ε)∆σ = (ε ⊗ id)∆σ = id. However, we should

mention that ε on Qσ0 need not be a homomorphism.

Now we introduce the generalised fixed point subalgebras and spaces (we use the

notations V and W to denote the unitary representation of C(G) on Hilbert spaces H
and L2(G) respectively as before):

Definition 6.4.7. For a subalgebra (not necessarily closed) B of B(H ⊗ L2(G)) the

generalised fixed point subalgebra Bf corresponding to B is given by

Bf := {X ∈ B : (adV ⊗ id)(X) = (id⊗ adW )(X)}.

Similarly, the generalised fixed point subspaceWf for a Hilbert subspaceW ⊆ H⊗L2(G)

is defined to be

Wf := {ξ ∈ W : (V ⊗ id)(ξ) = (id⊗W )(ξ)}.

There are two possible G-actions of B(H)⊗̄B(L2(G)) given by σ23(adV ⊗ id) and

σ23(id⊗ adW ), where σ23 flips the second and the third tensor copies and by definition

these two actions coincide on Bf . For B and π ∈ Rep(G) the corresponding spectral

projection PBπ is given by the restriction of (P
B(H)
π ⊗ id) or (id⊗ PG,lπ ) on Bf .

The following observation will be crucial.

Lemma 6.4.8. Let L be the range of V viewed as a Hilbert space isometry from H to

H⊗ L2(G). Then we have the following:

(i) V : H → (H⊗ L2(G))f is a unitary operator.

(ii) Any X in (B(H)⊗ B(L2(G)))f leaves L invariant.



Chapter 6: QISO of cocycle twisted manifolds 120

Proof:

(i) That V is an isometric operator has been observed previously. So we need to show

that R(V ) = (H ⊗ L2(G))f . To that end first note that H decomposes into spectral

subspaces corresponding to the unitary representation V of C(G). More precisely H
is the norm closure of Sp{Hπ : π ∈ Rep(G)}, where Hπ = Sp{eπ,i : i = 1, ..., dπ}. dπ
is the dimension of the π-th spectral subspace of C(G). Also V (eπ,i) =

∑
j e

π,j ⊗ qπji,
where qπji’s are matrix coefficients (see [35]). So we have a basis for the Hilbert space

H⊗ L2(G) given by the set

{eπ,i ⊗ qπ
′

i′j
: π, π

′ ∈ Rep(G); i ∈ {1, ..., dπ}; i
′
, j ∈ {1, ..., dπ′}}.

So we can write a vector ξ ∈ (H⊗ L2(G))f as∑
π,π′,i,i′,j

cπ,π
′

i,i
′
,j
eπ,i ⊗ qπ′i′j .

Then

(V ⊗ id)(ξ) =
∑

π,π′,i,i′,j,k

cπ,π
′

i,i′ ,j
eπ,k ⊗ qπki ⊗ qπ

′
i′j ,

(id⊗W )(ξ) =
∑

π,π′,i,i′,j,l

cπ,π
′

i,i′ ,j
eπ,i ⊗ qπ′

i′ l
⊗ qπ′lj .

Now for π 6= π′, and for all l, k, i, i′, j, eπ,k⊗qπki⊗qπ
′

i′j and eπ,i⊗qπ′
i′ l
⊗qπ′lj are different basis

vectors. Hence cπ,π
′

i,i′,j = 0 for all i, i′, j whenever π 6= π′. So ξ =
∑

π,i,i′,j c
π
i,i′,je

π,i ⊗ qπi′,j .
Then

(V ⊗ id)(ξ) =
∑

π,i,i′,j,k

cπi,i′,je
π,k ⊗ qπki ⊗ qπi′j . (6.4.1)

(id⊗W )(ξ) =
∑

π,i,i′,j,l

cπi,i′,je
π,i ⊗ qπ

i′ l
⊗ qπlj . (6.4.2)

Fixing k = n in (1) and i = n in (2)∑
π,i,i′,j

cπi,i′,jq
π
ni ⊗ qπi′j =

∑
π,i′,j,l

cπn,i′,jq
π
i′ l
⊗ qπlj

Fixing i = i0 on L.H.S. and i
′

= n, l = i0 on R.H.S. of the above expression we get,∑
π,i′,j

cπi0,i′,jq
π
i′j

=
∑
π,j

cπn,n,jq
π
i0j .
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So for a fixed i0 if i
′ 6= i0, cπ

i0,i
′ ,j

= 0. Hence the vector ξ can be written as

ξ =
∑
π,i,j

cπi,je
π,i ⊗ qπij .

Again

(V ⊗ id)(ξ) =
∑
π,i,j,k

cπi,je
π,k ⊗ qπki ⊗ qπij . (6.4.3)

(id⊗W )(ξ) =
∑
π,i,j,l

cπi,je
π,i ⊗ qπil ⊗ qπlj . (6.4.4)

Fix k = m, i = n in (3) and i = m, l = n in (4) to obtain∑
π,j

cπn,je
π,m ⊗ qπnj =

∑
π,j

cπm,je
π,m ⊗ qπnj .

Hence cπm,j = cπn,j for all m,n i.e. ξ takes the form
∑

π,i,j c
π
j e
π,i ⊗ qπij . So ξ =

V (
∑

π,j c
π
j e
π,j).

(ii) Let ξ ∈ L. Then by definition of L, (V ⊗ id)(ξ) = (id ⊗ W )(ξ). As X ∈
(B(H)⊗ B(L2(G)))f , we also have by defintion,

(adV ⊗ id)(X) = (id⊗ adW )(X).

So

(V ⊗ id)(Xξ) = [(adV ⊗ id)(X)](V ⊗ id)(ξ)

= [(id⊗ adW )(X)](id⊗W )(ξ)

= (id⊗W )(Xξ).

Hence by definition Xξ ∈ L. 2

Recall the definition of Xπ for all π ∈ Rep(G). For X ∈ (B(H)⊗̄L∞(G;σ))f , Xπ ∈
(B(H)⊗id Qσ0 ). Also X leaves L invariant. Then we have

Lemma 6.4.9. If X ∈ (B(H)⊗̄L∞(G;σ))f and X|L = 0, then Xπ|L = 0, where Xπ =

(id⊗ ρπ ⊗ id)((adV ⊗ id)(X)) = (id⊗ ρπ ⊗ id)((id⊗ adW )(X)).

Proof:

Let ξ ∈ H0. Then using Sweedler’s notation we shall write V (ξ) = ξ(0) ⊗ ξ(1). Also we
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denote the operator ξ(∈ H) 7→ ξ(0) ⊗ κ(ξ(1)) ∈ H ⊗Q by V ′. Then

Xπ(V ξ) = [(id⊗ PG,lπ )X](V ξ)

= [(id⊗ ρπ ⊗ id)(id⊗ adW )(X)](V ξ)

= [(id⊗ ρπ ⊗ id)W̃23(X ⊗ 1)W̃ ∗23](V ξ)

= (id⊗ ρπ ⊗ id)[W̃23(X ⊗ 1)W̃ ∗23(V ξ ⊗ 1)]

= (id⊗ ρπ ⊗ id)[W̃23(X ⊗ 1)W̃ ∗23(ξ(0) ⊗ ξ(1) ⊗ 1)]

= (id⊗ ρπ ⊗ id)[W̃23(X ⊗ 1)(ξ(0) ⊗ ξ(1)(1) ⊗ κ(ξ(1)(2)))]

= (id⊗ ρπ ⊗ id)[W̃23(X ⊗ 1)(ξ(0)(0) ⊗ ξ(0)(1) ⊗ κ(ξ(1)))]

= (id⊗ ρπ ⊗ id)[W̃23(X ⊗ 1)(V ⊗ id)(V ′(ξ))],

where W̃23 is the corresponding unitary to (id ⊗W ). Since X|L = 0, the above com-

putation implies that Xπ(V ξ) = 0 for all ξ ∈ H0. By density of H0 in H we can argue

that Xπ|L = 0 for all π ∈ Rep(G). 2

It can be easily seen that (B(H)⊗̄L∞(G;σ))f is a von Neumann subalgebra of the opera-

tor algebra B(H⊗(L2(G)). Also by (ii) of the Lemma 6.4.8, anyX ∈ (B(H)⊗L∞(G;σ))f

leaves L invariant. So we can consider the restriction of X on L and let Φ(X) = X|L,

which is clearly a normal ∗- homomorphism. With these we have

Lemma 6.4.10. The map Φ is a C∗ or von Neumann algebraic isomorphism.

Proof:

Observe that as Φ is a normal ∗- homomorphism, it suffices to show that the map

Φ is both one-one and onto. We first prove that Φ is surjective. Fix some operator

T ∈ B(L). Then V ∗TV ∈ B(H). Then Ṽ (V ∗TV ⊗ 1)Ṽ ∗ ∈ B(H ⊗ L2(G)). Let η ∈ L.

So we have some ξ ∈ H such that V (ξ) = η. Also we observe that Ṽ ∗V (ξ) = ξ ⊗ 1.

Then TV (ξ) = V V ∗TV (ξ) = Ṽ (V ∗TV (ξ)⊗ 1). That is

Ṽ (V ∗TV ⊗ 1)Ṽ ∗V (ξ) = TV (ξ).

Hence

Ṽ (V ∗TV ⊗ 1)Ṽ ∗|L = T.

It is obvious that Ṽ (V ∗TV ⊗ 1)Ṽ ∗ ∈ (B(H)⊗̄B(L2(G))f . So the map Φ is onto.

To show Φ is one-one, we have to show that for any X ∈ (B(H)⊗̄L∞(G;σ))f such

that X|L = 0, X = 0 on the Hilbert space (H⊗L2(G)). By Remark 6.4.6 after Lemma

6.4.5, it suffices to show that Xπ = 0 as an operator on (H⊗L2(G)) for all π ∈ Rep(G),

where Xπ’s are as in Lemma 6.4.9. As X|L = 0, by Lemma 6.4.9, Xπ|L = 0 for all

π ∈ Rep(G). As for X ∈ (B(H)⊗̄B(L2(G))f , Xπ ∈ B(H) ⊗alg Qσ0 , (id ⊗ ε)Xπ makes
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sense for all π ∈ Rep(G). Then

V ((id⊗ ε)Xπ(ξ)) = (adV (id⊗ ε)Xπ)V (ξ)

= Xπ(V ξ)

= 0(as Xπ|L = 0)

Since V is an isometry, (id⊗ ε)Xπ(ξ) = 0 for all ξ, i.e. (id⊗ ε)Xπ = 0. Again applying

adV , we conclude that Xπ = 0 as an element of B(H⊗ L2(G)). 2

Recall the definition of Qσ0 . If C(G) has a C∗ action on A ∈ B(H) implemented by

a unitary V , then as before we have a norm dense subalgebra A0A such that α(= idV )

is algebraic over A0. We denote the vector space isomorphism between Q0 and Qσ0 by

πσ. Define ασ : A0 → A0 ⊗alg Qσ0 by (id⊗ πσ)α. Then we have

Lemma 6.4.11. V ∗ασ(a)V = ρσ(a) for all a ∈ A0.

Proof:

Let ξ ∈ H0 and V (ξ) = ξ(0) ⊗ ξ(1) (Sweedler’s notation). also let α(a) = a(0) ⊗ a(1).

Then we have

ασ(a)V (ξ)

= a(0)ξ(0) ⊗ a(1) ∗ ξ(1)

= a(0)ξ(0) ⊗ a(1)(1)ξ(1)(1)σ
−1(a(1)(2), ξ(1)(2)).

On the other hand

V (ρσ(a)(ξ)) = V (a(0)ξ(0)σ
−1(a(1), ξ(1)))

= a(0)(0)ξ(0)(0) ⊗ a(0)(1)ξ(0)(1)σ
−1(a(1), ξ(1))

= a(0)ξ(0) ⊗ a(1)(1)ξ(1)(1)σ
−1(a(1)(2), ξ(1)(2)).

Hence V ∗ασ(a)V = ρσ(a) for all a ∈ A0. 2

Now we are ready to prove the main result of this section.

Theorem 6.4.12. Aσ and Mσ are isomorphic with Aσ and Mσ (respectively) as a C∗

(von Neumann respectively) algebras.

Proof:

First observe that according to the definition of Aσ (Definition 3.3 of [40]) for the special

case where G (Q) is a CQG, treating 1 ∈ C(G) as a unit vector in L2(G), we can choose

ν (according to the notation of Proposition 3.1 of [40]) to be the element of K(L2(G))∗
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given by y →< 1, y1 > i.e. the vector state given by the vector 1 to show that the

map Tν of Definition 3.3 of [40] is nothing but our map πσ on the dense subspace Q0.

Hence Aσ (Mσ respectively) is the C∗ (von Neumann respectively) closure of ασ(A0)

in B(H⊗ L2(G)), which is isomorphic to C∗ (or von Neumann respectively) closure of

ασ(A0)|L by Lemma 6.4.10, which by Lemma 6.4.11, is isomorphic to corresponding C∗

(or von Neumann respectively) closure of ρσ(A0) in B(H) i.e. Aσ (Mσ respectively).

2

6.4.2 Identifying Mσ with the generalised fixed point subalgebra

We now give a partial answer to the question asked in [40] by identifying Mσ with the

generalised fixed point subalgebra (M⊗̄L∞(G;σ))f whenM is a von Neumann algebra.

Lemma 6.4.13. The map ρσ(a)→ ασ(a) for a ∈ M0 is an isomorphism between Mσ
0

and (M0 ⊗alg Qσ0 )f , where ασ is as in the previous Subsection.

Proof:

It suffices to check that the map is one-one and onto. For injectivity of the map, note that

ρσ(a) = V ∗(Φ(ασ(a)))V in the notation of Lemma 6.4.11. For any X ∈ (M0⊗algQσ0 )f ,

α((id⊗ ε)X) = (id⊗ ε⊗ id)(α⊗ id)X = (id⊗ ε⊗ id)(id⊗∆σ)X = X. Hence α is onto.

2

Theorem 6.4.14. Mσ = (M⊗̄L∞(G;σ))f .

Proof:

We note that it suffices to show the inclusion

(M⊗̄L∞(G;σ))f ⊂Mσ.

Let C = (M⊗̄L∞(G;σ))f . Then by Proposition 6.4.1, the spectral subalgebra C0 is

weakly dense in C. Moreover ασ(M0) = (M0 ⊗alg Qσ0 )f is weakly dense in Mσ. Hence

it is enough to argue that C0 ⊂ (M0 ⊗alg Qσ0 )f . From the definition of the spectral

projections {P Cπ : π ∈ Rep(C(G))} corresponding to C ∈ B(H ⊗ L2(G)) and the fact

that (adV ⊗ id) = (id ⊗ adW ) gives the von Neumann algebraic action on C, we have

P Cπ = (PMπ ⊗ id) = (id⊗ PG,lπ ).

Thus on one hand

(P Cπ (C)) ⊂ (PMπ ⊗ id)(M⊗̄L∞(G;σ))

= M0 ⊗alg L
∞(G;σ).
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And on the other hand,

(P Cπ (C)) ⊂ (id⊗ PG,lπ )(M⊗̄L∞(G;σ))

= M⊗alg Qσ0 ,

i.e.

(P Cπ (C)) ⊂ (M0 ⊗alg L
∞(G;σ)) ∩ (M⊗alg Qσ0 )

= (M0 ⊗alg Qσ0 ).

So clearly P Cπ (C) ⊂ (M0 ⊗alg Qσ0 )f for all π. Hence C0 ⊂ (M0 ⊗alg Qσ0 )f . 2

6.4.3 Deformation of a spectral triple by dual unitary 2-cocycles

Let (A∞,H,D) be a spectral triple of compact type. Also let R be a positive un-

bounded operator on H commuting with D. Then we have R twisted spectral triple

(A∞,H,D, R) as discussed earlier. Let σ be a dual unitary 2-cocycle for (A∞,H,D, R)

on some object in the category Q′R(D).

Given such a dual unitary 2-cocycle we get corresponding induced dual unitary 2-

cocycle on Q̃ISO+
R(D), which will again be denoted by σ with a slight abuse of notation.

Let U be a unitary representation of Q̃ISO+
R(D) on H. Then U commutes with D.

From now onwards we shall denote the von Neumann algebra (A∞)′′ inside B(H) by

M. H = ⊕k≥1Hk, where each Hk is an eigen space for D and let N be the dense

subspace H spanned by Hk’s. Since U commutes with D, U also preserves each Hk. So

U(N ) ⊂ N ⊗ Q̃ISO+
R(D)0 and we have the following decomposition of Hk.

Hk = ⊕
π∈Ik⊂Rep(Q̃ISO+

R(D))
Cdπ ⊗ Cmπ,k ,

where mπ,k is the multiplicity of the irreducible representation π on Hk, and Ik is some

finite subset of Rep(Q̃ISO+
R(D)). As (id ⊗ φ)ad

Ũ
(M) ⊂ M for all bounded linear

functionals φ on Q̃ISO+
R(D). Then we have the corresponding spectral subalgebra

which is SOT dense. Also for any subalgebra A0 of M, on which ad
Ũ

is algebraic, we

can deform it by a dual unitary 2-cocycle as in Subsection 4.3 to get a new subalgebra

in B(H) which we denote by Aσ0 . Then we have

Theorem 6.4.15. There is a SOT dense ∗-subalgebra A0 in M such that

(1) ad
Ũ

is algebraic over A0,

(2) [D, a] ∈ B(H) for all a ∈ A0,
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(3) (Aσ0 )′′ =Mσ,

(4) (Aσ0 ,H,D) is again a spectral triple.

Proof:

We consider the SOT-dense subalgebra G = {a ∈ M : [D, a] ∈ B(H)} of M. Let b ∈ G.

Then for a state φ of Q̃ISO+
R(D), we have by definition (id⊗ φ)ad

Ũ
(b) ∈M. Also

[D, ((id⊗ φ)ad
Ũ

(b))]

= (id⊗ φ)ad
Ũ

([D, b]),

using the commutativity of D and Ũ . Hence (id⊗ φ)ad
Ũ

(b) ∈ G for all bounded linear

functional φ of Q̃ISO+
R(D) i.e. G is ad

Ũ
invariant SOT-dense subalgebra of M. Now

(1),(2),(3) follow from part (3) of Lemma 6.4.2, takingA0 to be the span of the subspaces

Pπ(G), π ∈ Rep(Q). To prove (4), observe that ∀a ∈ A0, ρσ(a) ∈ B(H) by the proof of

(1) of the Lemma 6.4.3. So we only need to check that [D, ρσ(a)] ∈ B(H) for all a ∈ A0.

Again with similar notations used as before, for ξ ∈ N and a ∈ A0 we have for some

k ∈ N,

[D, ρσ(a)](ξ)

= Dρσ(a)(ξ)− ρσ(a)D(ξ)

=

k∑
i=1

(Dai(0)ΠV (σi)(ξ)− ai(0)ΠV (σi)D)(ξ)

=
k∑
i=1

[D, ai(0)]ΠV (σi)(ξ) (using the commutativity of D and V )

Since [D, ai(0)] is bounded for all i = 1, ..., k, we have that [D, ρσ(a)] is bounded for all

a ∈ A0. 2

Remark 6.4.16. We can re-cast the deformed spectral triple (Aσ0 ,H,D) in the frame-

work of Neshveyev-Tuset ( [40]). Consider the image K of the representation V viewed

as an isometric Hilbert space operator from H to H ⊗ L2(Q, h) (where h is the Haar

state of Q). It can be shown that VAσ0V ∗ ∈ B(H ⊗ L2(Q, h)) is ∗-isomorphic with Aσ0
and (VAσ0V ∗,K,D ⊗ 1L2(Q,h)|K) is the realisation of the deformed spectral triple in the

Neshveyev-Tuset framework.
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6.5 QISO of deformed spectral triple

Fix as in previous section a spectral triple (A∞,H,D) of compact type and a positive

unbounded operator R on the Hilbert space H commuting with the Dirac operator D.

Assume that there is a dual unitary 2-cocycle σ, say on Q (with Q being an object in

the category Q′R(D)). Then Q is a quantum subgroup of Q̃ISO+
R(D). Let U , V be

corresponding unitary representations of Q̃ISO+
R(D) and Q respectively on H. Let A0

be any SOT dense subalgebra of (A∞)′′ =M satisfying the conditions of (1) of Theorem

6.4.15. Recall from Subsection 4.1, the induced dual unitary 2-cocycle σ
′
on Q̃ISO+

R(D).

Since ad
Ũ

is algebraic over A0, so is ad
Ṽ

and it is easy to see that Aσ
′

0 = Aσ0 . Now

the category Q′Rσ(Aσ0 ,H,D) for some unbounded operator Rσ does not depend on the

choice of the SOT dense subalgebra A0. Let us abbreviate it as Q′Rσ(Dσ). We have the

following:

Lemma 6.5.1. (Qσ, Vσ) is an object in the category Q′Rσ(Dσ), where Rσ = ΠV (v)∗RΠV (v)

and v is as in equation (7).

Proof:

By Theorem 6.3.6, Vσ is again a unitary representation of Qσ on the Hilbert space H.

Also note that ad
Ṽ

is algebraic over A0. Let a ∈ A0 and ξ ∈ N , where N is the subspace

of H given by span of Hk’s. Then we have

Vσ(ρσ(a)(ξ)) = Vσ(a(0)ξ(0)σ
−1(a(1), ξ(1)))

= a(0)(0)ξ(0)(0)σ
−1(a(1), ξ(1))⊗ a(0)(1)ξ(0)(1)

= a(0)ξ(0)σ
−1(a(1)(2), ξ(1)(2))⊗ a(1)(1)ξ(1)(1)

On the other hand

(ρσ ⊗ [.])ad
Ṽ

(Vσ(ξ))

= (ρσ(a(0))ξ(0))⊗ a(1).σξ(1)

= a(0)(0)ξ(0)(0)σ
−1(a(0)(1), ξ(0)(1))⊗ σ(a(1)(1)(1), ξ(1)(1)(1))a(1)(1)(2)ξ(1)(1)(2)σ

−1(a(1)(2), ξ(1)(2))

= a(0)ξ(0)σ
−1(a(1)(1)(1), ξ(1)(1)(1))σ(a(1)(1)(2), ξ(1)(1)(2))⊗ a(1)(2)(1)ξ(1)(2)(1)σ

−1(a(1)(2)(2), ξ(1)(2)(2))

= a(0)ξ(0)ε(a(1)(1))ε(ξ(1)(1))a(1)(2)(1)ξ(1)(2)(1)σ
−1(a(1)(2)(2), ξ(1)(2)(2))

= a(0)ξ(0)ε(a(1)(1)(1))ε(ξ(1)(1)(1))⊗ a(1)(1)(2)ξ(1)(1)(2)σ
−1(a(1)(2), ξ(1)(2))

= a(0)ξ(0)σ
−1(a(1)(2), ξ(1)(2))⊗ a(1)(1)ξ(1)(1)
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So ad
Ṽσ

(ρσ(a))(Vσξ) = Vσ(ρσ(a)ξ) = (ρσ ⊗ [.])ad
Ṽ

(a)(Vσ(ξ)). By density of N in H we

conclude that

ad
Ṽσ

(ρσ(a)) = (ρσ ⊗ [.])ad
Ṽ

(a),

for all a ∈ A0. Also for φ ∈ (Qσ)∗,

(id⊗ φ)ad
Ṽσ

(ρσ(a)) = ρσ(a(0))φ(a(1)) ∈ Aσ0 .

So in particular (id⊗ φ)ad
Ṽσ

(A0) ⊂ (A0)′′.

Vσ commutes with D since as a linear map Vσ is same as V .

Recall the decomposition (Section 3) of the Hilbert spaceH = ⊕k≥1π∈Ik⊂Rep(Q)Cdπ⊗
Cmπ,k , where mπ,k is the multiplicity of the irreducible representation π on Hk and Ik
is some finite subset of Rep(Q). By Theorem 2.3.12, R has the form

R = ⊕π∈Ik,k≥1Fπ ⊗ Tπ,k,

for some Tπ,k ∈ B(Cmπ,k) so that ΠV (v)∗RΠV (v) is of the form ⊕π,kA∗πFπAπ ⊗ Tπ,k,
for some Tπ,k where Aπ, Fπ’s are as in (ii) of Proposition 6.3.7. Now Recalling (ii) of

Proposition 6.3.7, we see that F σπ = cπA
∗
πFπAπ for some positive constant cπ. Then

Rσ is of the form ⊕π∈Ik,k≥1F
σ
π ⊗ c−1

π Tπ,k, for some Tπ,k. Hence ad
Ṽσ

preserves the

Rσ-twisted volume by Theorem 2.3.12. 2

Remark 6.5.2. By looking at the proof we can easily conclude that if (Q, V ) is an

object in the category Q′(D), then (Qσ, Vσ) is an object in the category Q′(Dσ).

Now replacing Q by Q̃ISO+
R(D) and using the dual unitary 2-cocycle on Q̃ISO+

R(D)

induced from σ on its quantum subgroup, we get

Corollary 6.5.3. Q̃ISO+
R(D)σ ≤ ˜QISO+

Rσ(Dσ).

Thus in particular, we have the dual unitary 2-cocycle σ−1 on Qσ ≤ ˜QISO+
Rσ(Dσ)

and can deform Dσ by it. Consider M1 = Sp{Pπσ((M0)
′′
) : π ∈ Rep(Q)}, where

Pπσ = (id ⊗ ρπσ)adṼσ (recall ρπσ from Subsection 2.1 ). Then again as before ρσ−1 is

defined on M1 and it is the maximal subspace on which adṼσ is algebraic. As ad
Ũσ

is

again a von Neumann algebraic action of Qσ on (A0)′′ = ρσ(M0)′′, we have SOT dense

subalgebra C0 of ρσ(M0)′′ over which ad
Ũσ

is algebraic. Then ad
Ṽσ

is also algebraic

over C0. Hence by maximality C0 ⊂ M1. Again by SOT continuity of ρσ−1 on the

image of Pπσ , we have ρσ−1(C0)′′ = ρσ−1(M1)′′. On the other hand as ad
Ṽσ

is algebraic
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over ρσ(M0), we have

ρσ(M0) ⊂M1

⇒ ρσ−1(ρσ(M0)) ⊂ ρσ−1(M1)

⇒ M0 ⊂ ρσ−1(M1)

By maximality of M0, we conclude that

ρσ−1(C0)′′ =M′′0 = (A∞)′′,

which implies that Q′
(Rσ)σ−1 ((Dσ)σ−1) = Q′R(D)

Lemma 6.5.4. ˜QISO+
Rσ(Dσ)σ

−1 ≤ Q̃ISO+
R(D)

Proof:

Observe that ˜QISO+
Rσ(Dσ)σ

−1
preserves volume τR and

ad
Ũ

(a) = ad
Ũσ

(ρσ−1(a)),

for all a ∈ C0.

But by definition (id⊗ φ)ad
Ũσ

(ρσ−1(a)) ⊂ ρσ−1(C0)′′ = (A∞)′′. 2

Combining all these and using the fact that Q̃ISO+
R(D)’s are universal CQG’s, we

get

Theorem 6.5.5. ˜QISO+
Rσ(Dσ) ∼= (Q̃ISO+

R(D))σ and hence QISO+
Rσ(Dσ) ∼= (QISO+

R(D))σ.

Recall the category Q
′
(D) from Section 3. We know that in general we can not

say anything about the existence of the universal object in this category. However by

looking at the proofs in this section, with the notations used in this section we have the

following

Corollary 6.5.6. If QISO+(A∞,H,D) and QISO+(Aσ0 ,H,D) both exist, then

QISO+(A∞,H,D)σ ∼= QISO+(Aσ0 ,H,D).

Remark 6.5.7. Viewing the Rieffel deformation as a special case of cocycle twist, the

above theorem in fact improves the result (Theorem 5.13 of [10]) obtained by Bhowmick

and Goswami by removing the assumption about a nice dense subalgebra on which the

adjoint action of the quantum isometry group is algebraic. In fact, techniques of this

paper have enabled us to prove existence of such nice algebra in general.
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Chapter 7

The averaging trick

7.1 Introduction

In case of a smooth group (compact) action on a classical, compact, Riemannian man-

ifold we can average out the Riemannian inner product of the manifold with respect

to the action using the the Haar state of the group. In this chapter we shall extend

this classical averaging technique in the context of compact quantum group action on

a classical compact Riemannian manifold. Similar averaging technique has been used

in [18] to prove the nonexistence of genuine quantum isometry group for an arbitrary

compact, connected, Riemannain manifold.

7.2 The averaging technique

Before we state and prove the main result in the next section, let us collect a few facts

about a smooth faithful action of compact quantum groups on compact manifolds, for

the details of which the reader may be referred to [18] and references therein.

Proposition 7.2.1. If a CQG Q acts faithfully and smoothly on a smooth compact

manifold M then we have:

(i) Q has a tracial Haar state, i.e. it is Kac type CQG.

(ii) The action is injective.

(iii) The antipode κ satisfies κ(a∗) = κ(a)∗.

We usually denote by ⊗ algebraic tensor product of vector spaces or algebras. We

also use Sweedler convention for Hopf algebra coproduct as well as its analogue for (co)-

actions of Hopf algebras. That is, we simply write ∆(q) = q(1) ⊗ q(2) suppressing finite

summation, where ∆ denote the co-product map of a Hopf algebra and q is an element

of the Hopf algebra as in the previous chapters. Similarly, for an algebraic (co)action α

of a Hopf algebra on some algebra C, we write α(a) = a(0) ⊗ a(1).

131
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7.2.1 The main result

Fix a compact Riemannian manifold M (not necessarily orientable) and a smooth action

α of a CQG Q. We make the following assumptions for the rest of the paper.

Assumption I: There is a Fréchet dense unital ∗-subalgebra A of C∞(M) such that

<< dα(df), dα(dg) >>∈ A for all f, g ∈ A.

Assumption II: There is a well-defined representation Γ on Ω1(M) in the sense dis-

cussed earlier, such that Γ(df) = (d ⊗ id)(α(f)) for all f ∈ C∞(M). We’ll denote this

Γ by dα.

We now state and prove the main result that we can equip M with a new Rieman-

nian structure with respect to which the action becomes inner product preserving using

an analogue of the averaging technique of classical differential geometry.

Theorem 7.2.2. M has a Riemannian structure such that α is inner product preserv-

ing.

Note that the first assumption holds for a large class of examples, such as algebraic

actions of CQG’s compact, smooth, real varieties where the complexified coordinate

algebra of the variety can be chosen as A. On the other hand, the second assumption

means that the action on M in some sense lifts to the space of one-forms. This is

always automatic for a smooth action by (not necessarily compact) groups, and in fact

is nothing but the differential of the map giving the action. Moreover, it is easy to see

that any CQG action which preserves the Riemannian inner product does admit such

a lift on the bimodule of one-forms, i.e. satisfies the assumption II. Therefore, it is a

reasonable assumption too.

Remark 7.2.3. We have already mentioned in the introduction that the existence of

an invariant Riemannian inner product, i.e. the conclusion of Theorem 7.2.2 has been

proved in [18] as a part of much more general scheme; in fact, without even Assumption

I, i.e. only under the assumption II. However, our aim in this chapter is to give a direct

and easier construction of the invariant Riemannian inner product. But in doing this,

we had to pay a price: the scope of our methods are slightly restrictive as we had to

impose Assumption I.

Nevertheless, we believe that the alternative construction of an ivariant Riemannian

structure presented here should be valuable beyond classical manifolds, i.e. in the wider

context of noncommutative geometry.

Proof of Theorem 7.2.2:

We break the proof of into a number of lemmas.
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Lemma 7.2.4. Define the following map Ψ from A⊗Q0 to A :

Ψ(F ) := (id⊗ h)(id⊗m)(id⊗ κ⊗ id)(α⊗ id)(F ).

Here m : Q0 ⊗ Q0 → Q0 is the multiplication map. Then Ψ is a completely positive

map.

Proof:

As the range is a subalgebra of a unital commutative C∗ algebra, it is enough to prove

positivity. Let F = G∗G in A ⊗ Q0 where G =
∑

i fi ⊗ qi, (finite sum) for some

fi ∈ A, qi ∈ Q0. We write α(f) = f(0) ⊗ f(1) in Sweedler notation as usual, and observe

that

Ψ(F )

=
∑
ij

f∗i(0)fj(0)h(κ(f∗i(1)fj(1))q
∗
i qj)

=
∑
ij

fj(0)f
∗
i(0)h(qj(κ(fj(1)))

∗κ(fi(1))q
∗
i )

= (id⊗ h)(ξ∗ξ) ≥ 0,

where ξ =
∑

i f
∗
i(0) ⊗ κ(fi(1))q

∗
i , and note also that we have used above the facts that h

is tracial and κ is ∗-preserving. 2

For ω, η ∈ Ω1(A) We define

<< ω, η >>
′
:= Ψ(<< dα(ω), dα(η) >>),

which is well defined as we have assumed that << dα(ds1), dα(ds2)) >>∈ A ⊗ Q0 for

s1, s2 ∈ A. Moreover, by complete positivity of Ψ this gives a non-negative definite

sesquilinear form on Ω1(A). As the action is algebraic over A, we shall use Sweedler’s

notation to prove the following

Lemma 7.2.5. For ω, η ∈ Ω1(A), f ∈ A, << ω, η >>′= (<< η, ω >>′)∗ and <<

ω, ηf >>′=<< ω, η >>′ f

Proof:

It is enough to prove the lemma for ω = dφ and η = dψ for φ, ψ ∈ A. First observe

that as we have κ = κ−1, for z ∈ Q0 applying κ on z(1)κ(z(2)) = ε(z).1, we get

z(2)κ(z(1)) = ε(z).1. (7.2.1)
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We denote << dφ(0), dψ(0) >> by x and φ∗(1)ψ(1) by y. Then

<< dφ, dψf >>′

= (id⊗ h)(id⊗m)(id⊗ κ⊗ id)(α⊗ id) << dα(dφ), dα(dψf) >>

= (id⊗ h)(id⊗m)(id⊗ κ⊗ id)(α⊗ id)(xf(0) ⊗ yf(1))

= (id⊗ h)(id⊗m)(id⊗ κ⊗ id)(x(0)f(0)(0) ⊗ x(1)f(0)(1) ⊗ yf(1))

= (id⊗ h)(x(0)f(0)(0) ⊗ κ(x(1)f(0)(1))yf(1))

= x(0)f(0)(0)h(f(1)κ(f(0)(1))κ(x(1))y)(by tracial property of h)

= x(0)f(0)h(f(1)(2)κ(f(1)(1))κ(x(1))y)

= x(0)f(0)h(ε(f(1)).1.κ(x(1))y)

= x(0)(id⊗ ε)α(f)h(κ(x(1))y)

= x(0)fh(κ(x(1))y).

On the other hand,

<< dφ, dψ >>′ f = [(id⊗ h)(id⊗m)(id⊗ κ⊗ id)(α⊗ id) << dα(dφ), dα(dψ) >>]f

= [(id⊗ h)(id⊗m)(id⊗ κ⊗ id)(x(0) ⊗ x(1) ⊗ y)]f

= x(0)fh(κ(x(1))y).

Also we have

<< dφ, dψ >>′

= (id⊗ h)(id⊗m)(id⊗ κ⊗ id)(α⊗ id)(<< dφ(0), dψ(0) >> ⊗φ∗(1)ψ(1))

= (id⊗ h)(id⊗m)(id⊗ κ⊗ id)(α⊗ id)(<< dψ(0), dφ(0) >>
∗ ⊗φ∗(1)ψ(1))

= (id⊗ h)(id⊗m)(id⊗ κ⊗ id)(<< dψ(0), dφ(0) >>
∗
(0) ⊗ << dψ(0), dφ(0) >>

∗
(1) ⊗φ

∗
(1)ψ(1))

= << dψ(0), dφ(0) >>
∗ h((κ(<< dψ(0), dφ(0) >>))∗φ∗(1)ψ(1))( since κ is ∗ preserving)

Hence we have

<< dφ, dψ >>′∗=<< dψ(0), dφ(0) >> h((κ(<< dψ(0), dφ(0) >>))ψ∗(1)φ(1))

( since h is tracial and h(a∗) = h(a)).
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But we can readily see that

<< dψ, dφ >>′=<< dψ(0), dφ(0) >> h((κ(<< dψ(0), dφ(0) >>))ψ∗(1)φ(1)),

which completes the proof of the lemma. 2

Actually we can extend <<,>>′ to a slightly bigger set than Ω1(A) namely

Ω1(A)C∞(M) = Sp {ωf : ω ∈ Ω1(A), f ∈ C∞(M)}.
For ω, η ∈ Ω1(A)C∞(M), ω =

∑
ωifi and η =

∑
ηigi( finite sums), ωi, ηi ∈

Ω1(A) and fi, gi ∈ C∞(M) (say) we can choose sequences f
(n)
i , g

(n)
i from A such that

f
(n)
i → fi and g

(n)
i → gi in the corresponding Fréchet topology and by Lemma 7.2.5

observe that

<<
∑
i

ωif
(n)
i ,

∑
j

ηjg
(n)
j >>′

=
∑
i,j

f
(n)
i << ωi, ηj >>

′ g
(n)
j

→
∑
i,j

fi << ωi, ηj >>
′ gj :=<< ω, η >>′ (7.2.2)

Clearly this definition is independent of the choice of sequences f
(n)
i and g

(n)
i . We next

prove the following

Lemma 7.2.6. For φ, ψ ∈ A,

<< dα(dφ), dα(dψ) >>′= α(<< dφ, dψ >>′) (7.2.3)

Proof:

With x, y as before we have

Claim 2: We can extend the definition of <<,>>′ for ω, η ∈ Ω1(A)C∞(M) such

that

∀ f ∈ C∞(M), << (dφ), (dψ)f >>′=<< dφ, dψ >>′ f (7.2.4)

Proof:

For f ∈ C∞(M), define << (dφ), (dψ)f >>′:= lim << dφ, dψ fn >>
′, where fn ∈ A

with lim fn = f , where the limits are taken in the Fréchet topology.

Observe that << dφ, dψ fn >>
′ is Fréchet Cauchy as

<< dφ, dψ fn >>
′ − << dφ, dψ fm >>′

= << dφ, dψ >>′ (fn − fm)
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So << dφ, dψf >>′= lim << dφ, dψ >>′ fn =<< dφ, dψ >>′ f , again the limit is

taken in the corresponding Fréchet topology.

That proves the claim.

<< dα(dφ), dα(dψ) >>′

= (id⊗ h⊗ id)(id⊗m⊗ id)(id⊗ κ⊗ id⊗ id)(α⊗ id⊗ id)(x⊗∆(y))

= (id⊗ h⊗ id)(id⊗m⊗ id)(id⊗ κ⊗ id⊗ id)(x(0) ⊗ x(1) ⊗ y(1) ⊗ y(2))

= (id⊗ h⊗ id)(x(1) ⊗ κ(x(2))y(1) ⊗ y(2))

= x(0) ⊗ h(κ(x(1))y(1))y(2).

On the other hand

α(<< dφ, dψ >>′) = x(0)(0)h(κ(x(1))y)⊗ x(0)(1)

= x(0) ⊗ x(1)(1)h(κ(x(1)(2))y)

= x(0) ⊗ x(1)(1)h(κ(y)(x(1)(2)))( since h(κ(a)) = h(a))

Hence it is enough to show that h(κ(c)b(2))b(1) = h(κ(b)c(1))c(2) where b, c ∈ Q0, for

then taking x(1) = b and y = c we can complete the proof.

We make the transformation T (a⊗ b) = ∆(κ(a))(1⊗ b).
Then

(h⊗ id)T (a⊗ b)

= (h⊗ id)∆(κ(a))(1⊗ b)

= ((h⊗ id)∆(κ(a)))b

= h(κ(a))b

= (h⊗ id)(a⊗ b)

Hence h(b(2)κ(c))b(1) = (h⊗ id)T (b(2)κ(c)⊗ b(1)).

So, by using traciality of h it is enough to show that T (b(2)κ(c)⊗ b(1)) = c(1)κ(b)⊗ c(2).



137 The averaging technique

T (b(2)κ(c)⊗ b(1))

= ∆(κ(b(2)κ(c)))(1⊗ b(1))

= ∆(cκ(b(2)))(1⊗ b(1))

= (c(1) ⊗ c(2))[κ(b(2)(2))⊗ κ(b(2)(1))](1⊗ b(1))

= (c(1) ⊗ c(2))m23(κ(b(2)(2))⊗ κ(b(2)(1))⊗ b(1))

= (c(1) ⊗ c(2))m23(κ⊗ κ⊗ id)σ13(b(1) ⊗ b(2)(1) ⊗ b(2)(2))

= (c(1) ⊗ c(2))m23(κ⊗ κ⊗ id)σ13(b(1)(1) ⊗ b(1)(2) ⊗ b(2))

= (c(1) ⊗ c(2))m23(κ(b(2) ⊗ κ(b(1)(2))⊗ b(1)(1))

= (c(1) ⊗ c(2))(κ(b(2))⊗ ε(b(1)).1Q)(by (10))

= (c(1) ⊗ c(2))(κ⊗ κ)((b(2))⊗ ε(b(1)).1Q)

= (c(1) ⊗ c(2))(κ⊗ κ)(ε(b(1))b(2) ⊗ 1Q)

= c(1)κ(b)⊗ c(2)

Which proves the claim.

Now we proceed to define a new Riemannian structure on the manifold so that the

action α will be inner product preserving. For that we are going to need the following

Lemma 7.2.7. (i) For m ∈M , Sp {ds(m) : s ∈ A} coincides with T ∗m(M).

(ii) If {s1, ..., sn} and {s′1, ..., s′n} are two sets of functions in A such that each of

{dsi(m) : i = 1, ..., n} and {ds′i(m) : i = 1, ..., n} are bases for T ∗m(M) and for v, w ∈
T ∗m(M) with v =

∑
i cidsi(m) =

∑
i c
′
ids
′
i(m) and w =

∑
i didsi(m) =

∑
i d
′
ids
′
i(m), then∑

i,j

c̄idj << dsi, dsj >>
′ (m) =

∑
i,j

c̄′id
′
j << ds′i, ds

′
j >>

′ (m),

where <<,>>′ is the new C∞(M) valued inner product introduced earlier.

Proof:

Choosing a coordinate neighborhood U around m and a set of coordinates x1, ..., xn we

have ds(m) =
∑n

i=1
∂s
∂xi

(m)dxi(m).

Pick any η ∈ T ∗m(M) i.e. we have η =
∑n

i=1 cidxi(m) for some ci’s in R. Choose any

f ∈ C∞(M) with ∂f
∂xi

(m) = ci. For f ∈ C∞(M), by Fréchet density of A we have a
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sequence sn ∈ A and an n0 ∈ N such that

| ∂s
∂xi

(m)− ∂f

∂xi
(m)| < ε ∀ n ≥ n0.

So Sp {ds(m); s ∈ A} is dense in T ∗m(M). T ∗m(M) being finite dimensional Sp {ds(m) :

s ∈ A} coincides with T ∗m(M). Which proves (i).

For proving (ii) first we prove the following fact:

Let m ∈ M and ω ∈ Ω1(A) such that ω = 0 in a neighborhood U of m. Then <<

ω, η >>′= 0 for all η ∈ Ω1(A)

For the proof of the above fact Let V ⊂ U such that V ⊂ V̄ ⊂ U . Choose f ∈
C∞(M)R such that supp(f) ⊂ V̄ , f ≡ 1 on V and f ≡ 0 outside U . So we can write

ω = (1− f)ω. Then

<< ω, η >>′ (m)

= << (1− f)ω, η >>′ (m)

= << ω, η >>′ (m)(1− f)(m) (by (7.2.4))

= 0.

Applying the above fact we can show:

Let m ∈ M and ω = ω′, η = η′ in a neighbourhood U of m. Then << ω, η >>′=<<

ω′, η′ >>′, ∀ω, ω′, η, η′ ∈ Ω1(A).

For the proof it is enough to observe that << ω, η >>′ (m)− << ω′, η′ >>′

(m) =<< ω − ω′, η >>′ (m)+ << ω′, η − η′ >> (m).

As {ds1(m), ..., dsn(m)} and {ds′1(m), ..., ds′n(m)} are two bases for T ∗m(M). Then

they are actually bases for T ∗x (M) for x in a neighborhood U of m. So there are

{fij : i, j = 1(1)n} in C∞(M) such that

dsi =

n∑
j=1

fijds
′
j

on U for all i = 1, . . . , n. Hence by the previous discussion

<< dsi, dsj >>
′ (m) =<<

∑
k

fikds
′
k,
∑
l

fjlds
′
l >>

′ (m) (7.2.5)

Let v =
∑n

i=1 cidsi(m) =
∑n

i=1 c
′
ids
′
i(m) and w =

∑n
i=1 didsi(m) =

∑n
i=1 d

′
ids
′
i(m). So
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by definition

< v,w >′ =
∑
ij

c̄idj << dsi, dsj >>
′ (m)

=
∑
ijkl

c̄idj f̄ik(m)fjl(m) << ds′k, ds
′
l >>

′ (m) ( by (7.2.4)

=
∑
kl

c̄k
′d′l << ds′k, ds

′
l >>

′ (m)

2

Proof of Theorem 7.2.2:

Now we can define a new inner product on the manifold M . For that let v, w ∈ T ∗m(M)

by (i) of Lemma 7.2.7 we choose s1, ..., sn ∈ A such that ds1(m), ..., dsn(m) is a basis

for T ∗m(M). Let {ci, di : i = 1, ..., n} be such that v =
∑

i cidsi(m) and w =
∑

i didsi.

Then we define

< v,w >′:=
∑
i,j

c̄idj << dsi, dsj >>
′ (m).

It is evident that this is a semi definite inner product. We have to show that this is a

positive definite inner product. To that end let < v, v >′= 0 i.e.∑
i,j

c̄icj << dsi, dsj >>
′ (x) = 0,

where v =
∑

i cidsi(x) ∈ T ∗x (M). Since the Haar state h is faithful on Q0 and by

assumption << dα(dsi), dα(dsj) >>∈ Ω1(A)⊗Q0, we can deduce that∑
i,j

c̄icj((id⊗m)(id⊗ κ⊗ id)(α⊗ id) << dα(dsi), dα(dsj) >>)(x) = 0.

Since ε ◦ κ = ε on Q0, applying (ε⊗ ε) to the above equation, we get∑
i,j

c̄icj((id⊗m)(id⊗ ε⊗ ε)(α⊗ id) << dα(dsi), dα(dsj) >>)(x) = 0.

Using the fact that ε is ∗-homomorphism we get∑
i,j

c̄icj < ε(dα(dsi)(x)), ε(dα(dsj)(x)) >= 0.

It is easy to see that ε(dα(dsi)(x)) = dsi(x) for all i. Hence we conclude that

<
∑
i

cidsi(x),
∑
i

cidsi(x) >= 0,
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i.e < v, v >= 0 and hence v = 0 (as < ·, · > is strictly positive definite, being an inner

product on T ∗xM) so that < ·, · >′ is indeed strictly positive definite, i.e. inner product.

We have already noted ( (ii) of Lemma 7.2.7) that our definition is independent

of choice of si’s, and also that with respect to this new Riemannian structure on the

manifold, α is inner product preserving. This completes the proof of the Theorem 7.2.2

on Ω1(A) and hence on Ω1(C∞(M)). 2
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