SIZE DISTRIBUTION OF SUSPENDED PARTICLES —
UNIMODALITY, SYMMETRY AND LOGNORMALITY

J. K. GHOSH and B. S. MAZUMDER

Indian Statistical Institute
Calcutta 700 035, India

SUMMARY. The shape of the grain size distribution of suspended
material is related to the parameters of flow and the grain size
distribution in the bed. It is noted that under certain condi-
tions lognormality may be achieved in suspension even with a
hyperbolic distribution in the bed.
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1. INTRODUCTION

Grain-size frequencies of naturally occurring sediment popu-
lations often follow lognormal (Krumbein, 1938) or hyperbolic
distributions (Barndorff-Nielsen, 1977; Bagnold and Barndorff-
Nielsen, 1979). Controlled flume experiments indicated that under
suitable conditions lognormality can be attained through a pro-
cess of grain sorting during suspension transportation in water
flows, even when the source (bed) materials are not lognormal.
These experiments also showed that the suspension load's grain-
size distribution is related to flow velocity, height of suspen-
sion, and nature of the bed material (Sengupta, 1975, 1979).
Lognormality was explained as a transitional phenomenon attained
through a process of size sorting within a critical range of
velocity and height above a sand bed of a given composition.

The purpose of the present paper is to develop a theoretical
framework with a view to relating the suspension load's grain-size
distribution, particularly the occurrence of unimodality, symmetry
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and lognormality, to flow parameters and grain-size distribu-
tion of the bed material. Grain-size data of two bed materials
used for the earlier experiments (bed nos. 2 and 3 of Sengupta,
1979) have been utilized for the present discussion.

The theoretical model that we use here is a simpler version
of an earlier model developed from the diffusion equation (Ghosh
et al., 1979). The model is briefly explained in Section 2 and
compared with some observed data. The statistical consequences
relating to shape of the suspension distribution are studied in
Section 3, both for the observed data of Section 2 and for
general lognormal and hyperbolic beds. Among other things it
will be clear from the following discussion that if the bed is
lognormal or hyperbolic with a mode lying between 1 and 59,
(where ¢ = —1og2D, D is grain diameter in mm) then under

certain flow conditions the suspension distribution follows
lognormality,

2. THE MATHEMATICAL MODEL

Consider a steady uniform flow of depth d and longitudinal
velocity u(y) at height y above the bed surface. The weight
frequency wb(q>) is the weight of grains in the sand bed in the

range ¢-.5 to ¢+ .5. (We shall also regard it as the weight
frequency density at ¢.) Let wl')(cb) = wb(q))/(z wb(d>)). The

bed roughness ks is that value of ¢ for which Z w]')(dJ) = .65.
¢>2ks
The average concentration Sy(¢) at height y is the weight

frequency in the range ¢-.5 to ¢+ .5 per unit volume. The
average concentration S}"(d)) = sy(q))/(z Sy(¢)). The average
$

concentration will be assumed to depend only on the space
coordinate y.

One needs a model for predicting S}"((b) for wl')((b). In an

earlier paper (Ghosh et al., 1979), we advocated a diffusion
mc?del for achieving this, and compared numerically our results
with other existing approaches due to Einstein (1950) and Gessler
(1965).. We develop below a simplified version of this. A key
step in our earlier approach was the observation that if we fit
Hunt's (1954) velocity profile to the observed u(y) and extra-
polate it up to ks’ then the fitted value is zero at ks. To

retain this feature but simplify the model in Ghosh et al. (1979)
we tried the following logarithmic profile



SIZE DISTRIBUTION OF SUSPENDED PARTICLES 23

u(y) = (u/0log(y/k) - (1)

where u, 1is the shear velocity, ¥ 1is the von-Kirmin constant
(0.4) and the constants have been adjusted to make u(kS) = 0.

It was found that the fit with observed velocity was excellent.

Again for simplicity, we use the single diffusion equation for
sediment

} 3s_(¢,t)
B0 2 eos @0l s F ot o
t y

where c(¢) 1is the settling velocity of the grain (Terminal
fall velocity of quartz spheres in water) and

e() = uy(L-y/D /S

Under equilibrium conditions, the equation (2) leads to, vide
Rouse (1938),

ds_(¢,t)

€M) o + (S (0,0) = 0. )

y

Integrating the equation (3) from ks to y, we get

c($)
k Xu
s, =5, (ﬂ-d_f; ) * )
y s y s
and hence
v k
s
1 v d_ks
where Y = —/—— log( —) (6)
XU, d-y kS
is a parameter summarizing the effect of flow and
e‘g(lll) = z s! (d)) e"lPC(Qb). (7)
k
¢ s
Assuming Sl'< o w]') , we can calculate S}"(cb) from equation
s

(5). Calculated values of S;’(d)) as well as observed values
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of S'(¢) for beds 2 and 3 are shown in Figures 1 and 2,
y

respectively.

Formula (5) is frequently used for obtaining S;(¢)
from S (¢), where O < y, <y, are both within the so-called
y
suspensiclm zone. This formula is not used for obtaining S'(d)

from wl‘) for two reasons: (a) expression (5) breaks down if
Yy < 0 and (b) ¥y, = 0 is outside the suspension region. Our
main observatibn in this context is that (i) effective height of
the bed (bed roughness, ks) is not zero and (ii) at least for

the grain sizes O € ¢ € 5, use of a simple diffusion model
does not lead to greater error than the more complicated diffusion
models discussed earlier (Ghosh et al.,1979).

It is worth pointing out that equation (2) has an elegant
probabilistic interpretation. Consider a particle of size ¢
whose displacement is Markovian with drift b(y) = €'(y) - c($)

and variance per unit time a(y) = 2e(y). Then Kolmogorov's
forward differential equation becomes

3s_(¢,t) 52 3
—y————at =1 ;;7 [a(y)sy(¢,t)] " 3y [b(y)sy(¢,t)] (8)

where Sy(¢,t) is the concentration at time t (before the

steady state is reached); clearly equation (8) is identical with
(2). Following Dynkin and Yushkevich (1969, Chapter 4), the
upper boundary y = d can be taken as repelling and the lower
boundary reflecting. If we take the lower boundary to be reflect-
ing, then the stationary distribution is given by

y
P(y,0) = explf =2 443

26 (y) S

> (y)

s

] y
where K is chosen such that f p(y,9d)dy = 1.
k

s
If we assume that the supply S"((b)

of material of size ¢
from the bed is such that §

is continuous at y=k_, then

sy = Skse(ks)/K and sy(¢) = sgs(¢)py(¢)

. is the solution (4).

Note that more generally as long as b(y)

and a are
such that y=4d ig repelling and y = k 4
s

is reflecting, our
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FIG. 1: Bed 2, grain-size distribution (relative concentration)
(a) in the bed Sl'< (¢); (b) in suspension S;(¢) at y = 23.3 em.
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FIG. 2: Bed 3, grain-size distribution (relative concentration)
{a) in the bed SI‘< ($);(b) in suspension S"c (¢) at y = 17.5 em.
s s
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method works and yields a solution

5. (6) = Y exp{a(y)c(DY] S; () exp{A(y)c(9)}. (10)
s ) S

For fixed y, A(y) is a constant and can be determined by the
method of least squares. This was done for both beds 2 and 3.
For bed 3 there was practically no improvement over (5); for
bed 2 the improvement was much greater.

3. SHAPES OF SUSPENSION DISTRIBUTIONS FOR LOGNORMAL AND
HYPERBOLIC BEDS

In this section we shall think of S;(¢) as a density.

Among other things equation (7) should be interpreted as
W _
o B = f Sl'( (4) e ‘PC(fb)d(b. (11)
-0 s

In view of equation (5) it is more convenient to write S;(d))
as Sl})((b)‘ We shall assume throughout that expression (5) is

true but in most of the discussion the actual form (6) of ¥

will not play any role; thus our discussion would cover the more
general form (10).

Om: mait} problem is to study the change in shape of the
suspension distribution §' with change in § for a given bed

distribution Sl'<s(¢)' More specifically, given Sl'( (¢), we
s

w}lﬁhhto c‘lete'rmim?_ whether there is one or more values of Y for
whic Sw is unimodal and either approximately normal or at

ieagt a Symmetr:ic distribution. In the later case one would also
€ interested in the kurtosis of S'.

Y

inteminttheccontext the following mathematical problem is of
st. Can one choose Sl'c (¢) such that equation (5) does
s

not alter the shape and only cation
the lo i ?
: i ; ation is changed? 1In other

SJ)(‘b) = const. SL (o-a@@)). (12)
s

}S{?rzb)a(ﬁr)ld Wg‘;‘ld be the difference in the mean or median of
k (¢). The following proposition contains a

v
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complete answer:

Proposition. If SI'< (¢) and Sq'J((b) satisfy equation (12)
s
and a(y) 1is continvously differentiable for 0 < Y < ®, then
c(¢) is linear in ¢ and Sl'< (¢) 1is normal.
s

This may be proved using Theorems 4 and 4a of Dynkin (1951).
We have also a direct proof which is omitted because of lack of
space.

Since in our case c¢(¢) 1is not linear this must be regarded
as a negative result implying the non-existence of S{( (9)
s

satisfying equation (12).

As the following discussion shows, a more promising line of
enquiry is to relax equation (12) by introducing a scale para-
meter B(Y) as well as a location parameter a(y), requiring
a relation like (12) to hold only approximately and that too
only for the range of ¢ of interest (from the point of view
of studying suspension), namely 1 < ¢ £ 5, i.e., we want to
investigate the possibility of

sq')(¢) > const. 511 {{lo-a@ /B, 1< ¢ < 5. (13)
S

Let us begin by studying the question of unimodality of
SJ}((I)). It is noted that log c(¢) 1is approximately linear in

¢ (Table 1), i.e., log c(¢$) = a+bp, 1 < ¢ < 5, where
a = 3,.5758, b = -1.1840.

TABLE 1
¢ 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Observed ; ¢17 1.169 .688 .140 -.329 -1.139 -1.796 -2.526

log c(¢)

Computed ; g0 1,208 .616 .024 -.568 -1.160 -1.752 ~-2.344

log c(¢)

Let C‘P«b) = log SlL (¢) and Cks(¢) = log Sl'(s(d)); using

(11), equation (5) can be written as

Clb(¢) =C @ - ye(o) + g(W). (14)
S
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Now C‘P(¢) may be expected to be unimodal if we can find a

unique solution to the equation for the mode ¢. Then from
equation (14)

6@ = o @ - = o, (15)
S

where primes denote derivatives with respect to ¢. Since
1<¢ <5, we are interested in solutions lying in 2 < ¢ < 4.
Here (I) since b < 0, equation (15) can have a solution

only when Cl'c (¢) < 0, and (II) the solution of (15) is unique
s

if Cl'b'(¢) <0 for € ¢ € 4. Clearly a sufficient condition

2
for (II) is Ci; () < 0 for 2< ¢ < 4.
s
This condition holds if Sl'c (¢) is normal or hyperbolic
s
(Barndorff-Nielsen, 1977) with mode to the left of 2. For such

S{( (¢) the set of wvalues of ¢ for which equation (15) has a
s

solution will determine the region of unimodality. Bed 3 in the

range 2 < ¢ £ 5 is approximately hyperbolic with mode near 3.0,
and will be discussed later.

For bed 2, vide Figure 3, (I) implies that equation (15) can
have a solution only to the right of ¢ = 3.5; there a straight
line describes Ck (¢) adequately so that (II) holds, i.e., if

s
(15) has a solution, the solution is unique. Thus the conclusion
of above paragraph holds for this bed. Now we will study the
normality of suspension distribution above the bed 2 when equation

(15) has a solution and (II) holds at

¢ = ¢. It can be checked
from Table 1 that

@) ¥ (@) +%c"@) -0,  |o-06] <1 (16)

and if we assume
6 @ =, B +xgy @-@-2  le-el <1, an
s s
then one gets from equation (14)

€ = Cu@) +x @ 0-9,  Jo-3l < 1. (18)

The reason for confining attention to

that most of the mass of §' I¢"¢| €1 in (16) is

is concentrated here. Clearly
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equation (17) holds for a lognormal or hyperbolic bed S' (%)

s
with mode to the left of ¢ = 2; it also holds for bed 2. Then
S‘PM) looks approximately like a normal with mean ¢ and

Variance = () = -cp (¢) + bl e a+bo. (19)
We shall now study in detall the bed 3. In this case we
fit a hyperbolic distribution to Sy (¢) for 2 < ¢ £ 5 as

s
2
log 8] () = v = 5y, +¥,) {67+ (-2} + %y, = v,) (b-w). (20)
s
We' determine the parameters Yl’YZ and W graphically using

the geometrical interpretation of these parameters given by
Bagnold and Barndorff-Nielsen (1979) and § from their equation
(2.2). The constant v has been adjusted to agree with the
observed frequency in the range 2 < ¢ < 5. The estimated values
are y; = 1.787, Yy = 4.294, u = 3.228, § = .5039 and v = -.225.

Here also from Figure 3, it is clear by (I) that equation
(15) can have a solution only to the right of ¢ = 3.0 and (II)
also holds for ¢ > 3.23. Hence, whenever (15) has a solution,
it is unique so that the corresponding S (¢) is unimodal.

v

We shall now examine when Sd)((b) can be symmetrical as well
a8 unimodal. Expanding c(¢) around ¢ up to the quadratic
term, we get

log S1(8) = g(¥) + v - kCy, +7,) 87+ (6= *1?

1]

4307, = ¥,) ($-1) = ¥e(®)
b (0-0)c(B) - % wbP(6-0)2c(B) . (21)
In order to get symetry ¢ must be nearly equal to U and
(Y, - Y,) - ¥be(d) = O. (22)

(Note that (22) follows from (15) if ¢ = p.) Then around ¢,
we have

2.%

log §,(8) = g¥) + v = By, +7,) 67+ (6= "]

v

35 yb2(0-0)2e(9). (23)

Inspection of (23) suggests that the presence of the term
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2 2.0
[8° + (¢-¢) ]’i is likely to lead to less peakedness and hence
higher values of the coefficient of kurtosis 82 than the normal.

fonfirmation of this expectation is provided in the following
numerical calculations.

For the values of y = 17.5 cm, u, = 6.297 cm/sec,
d=27.5 cm and kS = .0451 cm, we get the value 1y = 2.7676.

The skewness and kurtosis of the corresponding suspension distri-
bution are, respectively, 0.343 and 4.152 (see Figures 12 and 13
of Sengupta, 1979).

The above analysis illustrates how one can study the
unimodality, symmetry and normality of S' for a given hyper-

Y
bolic bed distribution S (¢).
s
We now study briefly how one can determine, for a given bed

distribution, the flow parameters y and u, leading to

unimodality. Here the relation (6) determining ¥ will be used.
To fix ideas we work with bed 2. Since by (I) and Figure 3,
equation (15) can have a solution only for ¢ = 3.5 and observed
data with &3 > 4,5 is likely to be scarce, 1e_rt us work with

3.5 ¢ $ € 4.5, For fixed a; in this range we now solve (15)

for Y; for ¢ = 3.5 ¥ = 1.663 and for § = 4.5, ¥ = 5.441.

The curves obtained by plotting y against u, for these two
fixed values of Y in (6) are shown in Figure 4. The zone
between these curves givas the values of y and wu, which will

give unimodality with peak at some 3.5 < ¢ < 4.5. As noted
before these unimodal distributions will be approximately log-
normal.

A similar analysis was made for bed 3. To achieve symmetry
v kept ¢ in the range 3.23 to 3.5. The resulting curves
{y against u,) are also shown in Figure 4., The combinations

(¥, u,) obtained this way agree well with our experimental

observations for both beds 2 and 3.
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