Computers & Geosciences Vol. 18, No. 9, pp. 1195-1211, 1992
Printed in Great Britain. All rights reserved

it regands —
[t surebe >
0098-3004,92 $5.00 + 0.00
Copynght € 1992 Pergamon Press Lid

ROSE.C—A PROGRAM IN “C” FOR PRODUCING
HIGH-QUALITY ROSE DIAGRAMS

T. S. KUTTY and PARTHASARATHI GHOSH
Geological Studies Unit, Indian Statistical Institute, 203 B.T. Road, Calcutta-700 035, India

(Received 10 February 1992; accepted 13 April 1992)

Abstract—ROSE.C is a program written in “C” to draw Rose diagrams of high quality using 24-pin
dot-matrix printers. It can handie both unidirectional and bidirectional (axial) data, and also compute
and print various statistical parameters such as the direction of the resultant, the circular variance,
consistency ratio, and the mean angular deviation. The diagrams produced can be scaled up to a maximum
size of 9.3 cm. A number of options, including a selection of nine different patterns to shade the Rose
diagram, have been | rovided. One of them allows the user to control the pattern. The program is designed
to run up to 20 datafiles in a batch, each with its own options.

Key Words: Rose diagram, 24-pin dot-matrix printer, Directional data, “C" language.

INTRODUCTION

Scientists may be faced with the analysis of 2-dimen-
sional directional data and their graphic represen-
tation. Usually, these types of data are represented by
Rose diagrams. ROSE.C, a program for the PC,
written in “C” language, is intended to meet the need
of the general user in preparing high-quality outputs
of Rose diagrams, without having to depend on
expensive software. Some programs which use more
sophisticated output devices such as plotters, or for
use with larger computers are available (Parks, 1974;
Charlesworth and others, 1989). ROSE.C, however,
is meant for use on 24-pin dot-matrix printers. The
diagrams produced by this program are scalable, and
this facilitates their direct use in publications (see
Figs. 1 and 2).

Usually, the necessity also arises to put a large
number of Rose diagrams together in order to com-
pare the patterns in different groups. To meet such
needs there is an option to select from nine different
patterns with which the diagrams can be shaded, or
none. »

Another need is to process large number of data
sets quickly. ROSE.C can handle up to 20 files in 2
batch. User’s options for each file are entered at the
beginning, after which the files are processed one
after another in quick succession.

The program also calculates some common statisti-
cal measures for each data set. These include the
mean angular deviation of Batschelet (1981), the
direction of the resultant (or the mean direction), the
circular variance, and the consistency ratio.

PROGRAM STEPS

The following are the main steps of the program,
and are explained in subsequent sections.

(i) The user is prompted to provide information
about the data files and also select some
options.

(i) It initializes all relevant varables using the
information provided.

(iii) Reads data from the file—ignoring dips if they
are included—and forms an array of class
frequencies.

(iv) Calculates the direction of the resultant vector
and consistency ratio and sector radii.

(v) Prepares an image of the Rose diagram in the
computer memory as per options specified
(magnification and shading).

(vi) Sends the image O the printer for the output.

FILE INFORMATION AND USER OPTIONS

A data file for use with ROSE.C must contain only
data entries; there is no provision for any comments
within it. All data entries must be separated by at
least one blank or carriage return; comma, semicolon,
etc. should not be used as delimiters. The figures in
this paper are based on the data file SAMPLE.DAT
given here. ’

120.5 130.5 086 110 1405 100 155
090 335 3415 122 098 145 128
123 1245 115 116 105 014 077
145 '105.5 138 110 1055 105 127
112 136 122.5 215 110 085 1155
100 1355

When the program is run there is an initial interac-
tive session in which the user will be prompted to
provide answers to a number of queries. These
queries are listed next along with explanations
thereof. The output of Figure 1 was produced by a
single run of this program, and is used here to

1195

/Za%am 5@‘74/‘%

1196 T.S. KUTTY and P. GHOSH

File : sample.dat
Ciasses = 18

Direction of Resultant = 113.8
Circular Variance = 0.20

Radius of Circle =1 cms.
Observations = 17

Kean Angular Deviation = 25.8
Consistency = 79.7

File : sample.dat
C}asse = 18

Direction of Resultant = 118.8
Circular Variance (unad;)=
Consistency (unadjusted) = 68.

Radius of Circle =1 cms.
Observations = 37

Mean Angular Deviation = 22.9
Circular Variance (ad} .)=_0.08

Congistency {(adjusted

792.0

Figure 1. Rose diagram outputs of SAMPLE.DAT (i) as unidirectional data (top) and (ii) as bidirectional
data (bottom).

illustrate this interactive session. To produce the
output, SAMPLE.DAT was processed twice, first as
a unidirectional data set (which it really is), and next
as a bidirectional data set. The responses for the
queries in running this program are indicated within
parentheses at the end of each item. Quote marks do
not form part of the response, and are used here
merely for clarity.

(1) Number of data files to be processed (<20):
the program as given here can take up to 20
files in one run. The answer must be a
number between 1 and 20. If 0 is given the
program will be terminated. (In the example
SAMPLE.DAT was processed twice; so, the
respons: was “2'.)

The program then prompts user for responses
to queries (ii)~(vii) for each file, one file after another.

(ii) Name of data files (include paths where
needed): the response is read as a string and

(iii)

(iv)

stored in a character array of size 30. Path
must be specified if the file is not in the
current directory. (“‘sample.dat” for both
files.)

Whether the data have only directions or
include dips and directions: the response must
be *y” or “n™. If dips are included, the first
number read in a record will be taken as dip
and ignored, and the next will be read as
direction. In such situations it therefore is
necessary that, for each record, the dips must
be the first and then the direction. Also a file
should not have a mixture of the two types.
(SAMPLE.DAT does not contain dip
measurements, so the response was “n”.)
Whether the data are unidirectional or bidi-
rectional: response must be “b” or “u”. (The
dataset first was processed as umdxrcctional
data, so the response for the first file was
“u"; the second file was processed as bidirec-
uonal data, so the response was “b™.)

High-quality Rose diagrams from a “C" program 1197

(v) The magnification desired: the response must

be a number. The upper limit for the mag-
nification is limited by certain memory con-
siderations explained later and also the
nature of the data. Some onscreen hints are
supplied. If a large magnification is given,
the program will reduce it to the maximum
possible value which it calculates at the time
of execution. (For both files processed, the
magnification used was 10, so that the radius
of the circle will be exactly 10 mm.)

(vi) Selection of pattern for shading the Rose

(vii)

diagram: there are 10 options to select from,
including no shading. Response must be a
number. The patterns basically consist of
rows of dots or lines, either horizontal or
vertical. One option is a dot pattern where
the user can specify the spacing between dots
(horizontal) and between rows (vertical).
[For the first file pattern No. 1 (closely
spaced dots) was used, and for the
second pattern No. 2 (spaced-out dots) was
used.]

Whether to draw the resultant direction
(Y/N): response must be “y” or “n”. ("'y”
was given for both; if “n” was selected the
arrow indicating the resultant vector will not

be drawn.)
(j%‘ .
E ‘

The following quenes from (viii) to (x) are collec-
tively for the batch, not individually for each
file.

(viii) Number of classes: this specifies the number
of classes into which the data are to be
grouped. The response must be a number
less than or equal to 20. (For the example the
response given was “18".)

(ix) Whether to print the statistics (Y/N): re-
sponse must be “y” or “n”. If “y" the name
of the data file, the radius of the unit circle
(reflecting the magnification used) and the
various statistical measures will all be
printed above the diagram. If “n™ these will
not be printed. (The response given was
“y")

(x) Printing 10 be in draft mode or final mode
(D/F): response must be “d” or “f". If “f”
is pressed, each line will be printed twice so
that the lines and dots are darker and clearer.
{To produce the output in Fig, 1, “f’ (final
mode) was selected.)

The diagrams in Figure 2 also were produced by
processing SAMPLE DAT. They show the other
ready-made shade patterns available. Note also that
the diagrams are smaller than in Figure 1, and were
obtained by selecting magnification 5 which gives a

)

Figure 2. Sample outputs showing some of available shade patterns.

1198

circle with radius S mm. In this example the response
for query No. (ix), that is printing the statistics, was

given as “‘n” to obtain only the diagrams.

CLASS FREQUENCIES, RESULTANT DIRECTION,
AND CONSISTENCY RATIO

Unidirectional data (or simply, directional or vec-
torial data) can be represented by points lying on a
circle; the values have a range from 0 to 360°. For
axial or bidirectional data, the observations consist
only of one end of the axes (the other can be obtained
as reflection through the center); these observations
therefore can be represented as a distribution of
unidirectional vectors on a semicircle. The treatment
of these two types of data are slightly different and
are discussed separately.

Unidirectional data

Directional measurements may have values in the
range of 0-360°, and the end values refer to the same
vector. Directions are by convention measured from
the North in a clockwise direction. If we take the
E-W axis as the X-axis and the N-S axis as the
Y-axis, then any vector OP;, where O is the origin
and P, is a point with coordinates (x,.y;), will have
components along X- and Y-axes equal to sin 6,
and cos 0,. The resultant will have a direction 6 such
that

sin@ =Xsinf,;cosf =Zcosb,.

We also must take care of boundary conditions, that
is when the resultant is exactly along N, E, §, or W
direction. The magnitude R of the resultant is given
by

R=/(Zsinb)+ (Zcosh)

If N = the total number of observations, then R = N
implies that all data points are in the same direction,
and R =0 implies a complete lack of preferred
orientation. R/N, therefore is a measure of concen-
tration, and lies between 0 and 1; the consistency
ratio is the samie measure expressed as percentage
(Sengupta and Rao, 1966). (1 — R/N) is known as
the circular variance (Mardia, 1972). Another
measure of dispersion is the “mean angular devi-
ation” of Batschelet (1981). This is defined as
(1 = R/N), and is measured in radians; it also can
be converted and expressed in degrees. The class
frequencies are calculated while reading the data
(function Read_U and Read_B). The statistical
measures are computed within Read_U.

Axial or bidirectional data

The usual way of handling axial data, which has a
distribution on a semicircle, is by spreading it out
onto a circle, a method developed by Krumbein
(1939). This can be achieved by the transformation
¢ = 268 modulo 360, where 8 and ¢ are corresponding
angles on the semicircle and the circle respectively.

T.S. KutTY and P. GHOsH

These transformed data (¢s) are unidirectional, and
the vector mean, circular variance, etc. can be calcu-
lated as before. To get the resultant direction it is
necessary to apply the reverse transformation, that is
@ = &/2. The circular variance also will need some
adjustment. If ¥ is the circular variance for the axial
distribution and ¥’ for the distribution spread onto
the circle, then Mardia (1972) suggests the approxi-
mation ¥V = V’/4; however he also adds that this
adjustment usually is not used. For axial data,
Batschelet’s *‘mean angular deviation” is modified to
J 2(1 — R/N), and can be converted and expressed in
degrees. It must be noted that the statistical signifi-
cance of these measures of dispersion for the axial
case are somewhat ambiguous.

For the axial data the program first goes into
function Read B where the class frequencies are
calculated. The data are read again in Read_U where
it is spread first onto the full circle before computing
the statistical measures.

The results of the calculations are printed out along
with the name of the data file and the magnification
used at the beginning before printing the Rose dia-
gram. Figure 1 gives a sample output for uni-
directional and bidirectional data sets.

SECTOR RADII

The radius of the sectors are calculated in such a
way that the area of each sector is proportional to the
frequency of the corresponding class, that is if r, is the
radius of the ith sector, f, is the frequency of the
corresponding class, C is the total number of classes,
and N is the total number of observations, then
r;=/(fi x C)/N. These r;s are stored in the array
ra[}. The sum of the area of all the sectors will then
be equal to =, that is the area of a circle with unit
radius.

SCALE AND MAGNIFICATION

It is useful to have some sort of scale for the
diagrams for help in companison. For this purpose,
we have provided the given circle with unit radius.
This circle would represent a hypothetical Rose dia-
gram had the data points been distributed equally in
all the sectors.

The Rose diagrams are printed with a resolution of
180 dots per inch (dpi). This value of 1/180th of an
inch forms our unit of measurement. So, unless the
diagram is magnified before drawing, it will be too
small to make sense. A magnification factor therefore
has been provided. Note that radius of the circle used
for scale also is one unit; therefore the magnification
factor also will be the radius of the circle; this is the
variable RC in the program. The sector radii have to
be magnified too; these magnified values are stored in
the array RA}].

High-quality Rose diagrams from a “C" program

THE MEMORY IMAGE OF THE ROSE DIAGRAM

Suppose that we have a graph paper where the
spacing between lines is 1/180th of an inch. The graph
divides the total area into a number of cells arranged
in rows and columns, and we can refer to any
cell uniquely by its row and column number. The
arrangement is exactly as a two-dimensional array.
Suppose that we superimpose a Rose diagram on this
graph sheet. We then define the value of a cell to be
0 or | depending on whether any part of the Rose
diagram passes through the cell. It is precisely such
an array of values that we form in the memory and
then pass on to the printer for printing.

In this program Fig[}{][] is the array that keeps the
memory image. It is here a three-dimensional array.
This is purely for convenience in addressing cells and
communication with the printer.

IMAGE FORMATION

Drawing the Rose diagram involves drawing the
sector boundaries, which include an arc of a circle
and two lines from the center to the ends of the arc,
for each sector with nonzero frequency. Drawing
them is done by plotting closely spaced points along
them, close enough so that they look continuous. Not
that the image formation is done after applying the
desired magnification.

The printer moves from the left to right on a line
and from the top line to the bottom. We therefore
have used the top left position as the origin for our
coordinate reference axes, x increasing to the right
and y towards the bottom. The angles, however, are
measured from the North (top) in a clockwise direc-
tion.

If the center of the Rose diagram is at (x,,,) then
any point at an angular distance ¢ from the North
and at a distance r” from the center will have
coordinates (x, + r sin @, y, —r cos ¢). The function
Enterarray() locates the .address of the cell of the
image array corresponding to these coordinates and
assigns the value 1 to the cell.

The functions Line() and Circle() determines the
points on a line segment, arc, or a circle as specified
in their arguments; the Circle() function is based on
a fast algorithm making little use of trigonometric
functions (Neal and Pitteway, 1990).

Filling the sectors with a pattern proceeds as
follows. Along a line parallel to the X-axis points are
selected at regular intervals (stepx) starting from the
left boundary of the sector to its right boundary. This
procedure is carried out from the top of the sector to
its bottom in fixed steps (stepy). This procedure is
followed for dot patterns and horizontal lines. For
vertical lines points are plotted on a line parallel to
the Y-axis at intervals stepy from the top to the
bottom of the sector and this is done from the left of
the sector to the right at intervals stepx. The function
Patternchoice() fixes the values for these steps. There

1199

is one option which allows the user a selection of
stepx and stepy for a dot pattern. The algorithm is
rather long, mainly because of the large number of
situations possible. Figure 2 illustrates some of the
shading options.

The image also includes a North indicator and an
arrow mark to indicate the resultant vector. These are
done by the functions North() and Arrow() (see Figs
1 and 2).

PRINTING THE IMAGE

The function Printarray() sends the image of the
Rose diagram to the printer with appropriate printer
commands. There are mainly three such commands.

(i) ESC “U” 1 This sets the printer on uni-
directional printing mode.

(ii) ESC “3” 24 This sets line spacing at 24 dot
rows, at 1/180th of an inch per row.

(i) ESC “»” 3%,n1,n2 This puts the printer in
triple density graphics mode and sets the
horizontal resolution at 180dpi. (i) and (iii)
ensure the correct aspect ratio. Here, nl and
n2 tells the printer how many bytes of infor-
mation it is to print in graphics mode. The
reader may refer to any printer manual for
further details.

The commands are valid for the NEC P5300 24-pin
printer. This printer is compatible with Epson
LQ1500. For other 24-pin printers the user should
consult the printer manual to ensure their validity.

COMMENTS

The program offers an output which, at present, is
limited in size to 9.3 cm. If larger diagrams are
needed, this limitation can be overcome by increasing
the size of the image array Fig[}{jf}; however, this
might involve some memory problems. Another sig-
nificant limitation is the fact that it will not work with
an 8-pin printer, in its present form. This will require
some modifications of the function Printarray(); just
changing the commands will not suffice.

It is easy to change the program to make it accept
a larger number of files in a batch. All it needs is to
change the size of the structure array name}.

As it stands the maximum number of classes that
the data can be grouped into is 20. To make this
larger, although the need seems to be unlikely, all that
is required is to change the definition of SECTORS
to the required number.

A screen display has been omitted. If needed, this
can be incorporated readily in:o the program logic as
a separate function.

If the user wants to omit the Unit Circle from the
drawing all that he has to do is 10 comment out the
call to the function Circle() from the function
Rosedgm(). The same also can be done for the North
indicator.

REFERENCES

Batschelet, E., 1981, Circular statistics in biology: Academic
Press, London, 371 p.

Charlesworth, H., Cruden, D., Ramsden, J., and Huang, Q..
1989, ORIENT: an interactive FORTRAN 77
program for processing orientations on a microcom-
puter: Computers & Geosciences, v. 15, no. 3, p.
275-293.

Krumbein, W. C., 1939, Preferred orientation of pebbles
in sedimentary deposits: Jour. Geology, v. 47, no. 7,
p. 673-706.

T.S. KutTy and P. GHOsH

Mardia, K. V., 1972, Statistics of directional data: Academic
Press, London, 357 p.

Neal, L. R., and Pitteway, M. L. V., 1990, Yet more arcle
generators: Computer Jour., v. 33, no. 5, p. 408-411.

Parks, J. M., 1974, Paleocurrent analysis of sedimentary
crossbed data with graphic output using three integrated
computer programs: Jour. Math. Geology, v. 6, no. 4,
p. 353-362.

Sengupta, S., and Rao, I. S., 1966, Statistical analysis of
cross-bedding azimuths from the Kamthi Formation
around Bheemaram, Pranhita-Godavari Valley:
Sankhya: Indian Jour. Stat., ser. B, v. 28, p. 165-174.

APPENDIX

Program Listing

/* ROSE.C -

/t

#include <stdio.h>
#include <math.h>
#define XSIZE 648

#define LINES XSIZE/24
#define SECTORS 21
#define RADIAN 0.017453
#define RADINV 57.29578
fdefine TRUE 1

#define FALSE 0

#define MMSTODOT 7.086614
#define DOTTOCMS 0.0141111

/* global variables */

A Program to draw Rose Diagrams
Processes upto 20 datafiles in a batch */

/* fixes max. possible size of Rose diagram

*/

*/
*/

*/
*/

/* No. of Classes + 1
/* degree to radian
/* radian to degree

millimetres to dot resol.
/* dot resol. to cms.

/i

/% ra{) - initial values of sector radii;

RA(] - magnified sector radii;

RL(] - sector boundaries tobe drawn;

a[) - class limits;
Fig[)[]1([] - image array;

RC - magnification (also radius of circle);
resultant - direction of resultant;

consistency - Consistency Ratio

rmax - max sector radius (pre-magnification);

RMAX - after magnification
figsize - max radius of diagram

{includes ARROW and RESULTANT indicators)
x0,y0 - coordinates for the centre of diagram;

Clas - No. of classes;
N ~ No. of observations;

count - No. of datafiles in the batch;

dratt - 0 for draft mode printing & 1 for final mode
heading -~ 0 for not printing & 1 for printing
maxmag - max. possible magnification

var - circular variance

angdev - mean angular deviation #/

int
int
float

Clas, x0, y0, N, noofdots;
ra{SECTORS), RA[SECTORS];
float RMAX, RC, resultant, maxmaqg,
FILE *out;

unsigned char Fig[LINES][XSIZE][3};
float
float
typedef struct

adjvar, adjcons;

{ char nam(30);
float mag;
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

} NAME;

namef{21]), fil;

ub:1;

NAME

dip:1;

/* name[]) - keeps names or options for
/* each datafile;

RL{SECTORS), a[SECTORS), count, draft, heading;

rmax;

figsize, consistency, var, angdev;

rsitnt:l;
pat:4;
stepx:8;
stepy:8;

*/
r£11’ has the current file */

High-quality Rose diagrams from a “C" program

void Pause ()

/* waits for user to press a key #*/

{ puts("Press Any Key to Continue");
getch ();

} >

vold quit ()

{

}

clrscr ();

puts ("\n\n\nDo you want to stop the program ? y / n%);
if ({(tolower {(getch ())) == ‘y’) exit ();

void Initialise ()

{

}

void Enterarray (x,Yy)

int i, 3, k;

for (i = 0; 1 <= LINES-1; ++i)
for (4 = 0; J <= XSIZE~1; ++3)
for (k = 0; kX <= 2; ++k)
Fig{i1{31(k) = "\0’;
for (i = 0; i < SECTORS; ++i)
{ rafi) = 0.0; RA[1] = 0.0; }
rmax = 0.0; N = 0;

/* finds the cell in the image array #/

/* corresponding to a point & makes it 1 #/

unsigned int x,y;

}

unsigned int Lin, Byte, Row, Bit;

Lin = y /24; Row = y ¥ 24; Byte = Row/8;

Bit = 7 - (Row § 8);
Fig[Lin)[x]([Byte] |= (1 << Bit);

void Line (X,Y,p,q,phi)

int
float

{

}

X,Y,p,q;

phi;

int i,x%,y;
float 21,2z2;

z1l = sin (phi); z2 = cos (phi);
for (i = p; 1 <= q; ++1)
{ x =X+ 1 *2z1+40.5;

Yy =Y -1 % 22 +0.5;

Enterarray (x,y);

}

void Arrow (alpha)
int alpha;

{

}

void North () /% draws North indicator */

{

int i,x1,y1,p,q9;
float phi;

printf ("RESULTANT %d\n", alpha);
phi = alpha * RADIAN;

/* draws an arrowhead @/

P = 13 « RMAX / 12 + 0.5; g = 16 * RMAX / 12 + 0.5;

Line (x0,y0,p,q,phi);

X1 = X0 + g * sin(phi) + 0.5;

Yl = yO - g * cos(phi) + 0.5;

phi = (alpha + 150) * RADIAN;

q = RMAX / (6 * sqrt (3.)) + 0.5;
Line (x1,y1,1,q,phi);

phi = (alpha + 210) * RADIAN;
Line (x1,y1,1,q,phi);

int ilxryllelqlkl.
float bl=150,phi;

puts ("NORTH INDICATOR");

for (i = 13*RMAX/12; i <= 18+*RMAX/12;
{ y = yo - {; Enterarray (x0,y);
phi = bl * RADIAN;

Y = yO - 18 # RMAX / 12;

g = RMAX / (3 *» agrt (3.));

Line (x0,Y,1,q,phi);

X = x0 + q * sin(phi);

Y = Y - g * cos(phi);

q = RMAX / 6;

++1)
}

1201

1202

T.S. KuTTY and P. GHOSH

for (i = 1; i <= q; ++i)
{ y=Y-1i; Enterarray (X,y); }

}

void Circle (X,Y,r)
int X,Y;

float b

{ int X,Y;

float xi1,yl,psi,c,s,w,f,d;

f = 57.5 / r; psi = f * RADIAN;

c =1 - psi*psi/2;

s = psi * (l-psi*psi/8);

printf ("\nUNIT CIRCLE\n");

xl =r; yl = 0.0;

for (d = 0.0; @ <= 90.0; d += f)

{ w=yl;

Y1l = yl*c - Xl*s;
X1 = w*s + X1l*c;
x = X + x1;
Yy =Y -yl
Enterarray (x,Y);
Enterarray (2*x0-x, Y);
Enterarray (x, 2*y0 - y);
Enterarray (2*x0 - x, 2*y0 - y);
} }
int Select_Quadrant (thetal,theta2) /* finds the quadrant #/
int thetal,theta2; /* sector falls in #/
{ int quadrant;
/* 1. 1st quad only ; 2. 1st & 2nd quad */
if (thetal < 30) quadrant = (theta2 <= 90) ? 1 : 2;
/* 3. 2nd quad only ; 4. 2nd & 3rd quad */
else if (thetal < 180)
quadrant = (theta2 <= 180) ? 3 : 4;
/* 5. 3rd quad only ; 6. 3rd & 4th quad */
else if (thetal < 270)
quadrant = (theta2 <= 270) ? 5 : 6;
/* 7. otherwise 4th quad only */
else quadrant = 7;
return (guadrant);
}
void FillArcAreal (r,y,tl1,t2,q) /* patternfill area bounded */
int Y.d; /* by arc & line #/
float r,t1,t2;
{ int k,x,xla,x2a,i;

float v,z;

zZ =Yy - yo; v = fabs(r*r - z*z); v = sqrt(v);

switch (q)

{ case 1: xla = x0 - z*tl; x2a = x0 + v; break;
case 3: xla = x0 - 2*t2; x2a = x0 + v; break;
case 4: xla = x0 - v; x2a = x0 + v; break;
case 5: xla = x0 - v; x2a = x0 - z*tl; break;
case 7: Xla = x0 - v; x2a = x0 - z*t2;
default: break;

}

for (k = xla; k <= x2a; k += £il.stepx)

for (i = 1; i <= noofdots; ++i)

{ x =Xk + {i;

it (x <= x2a) Enterarray {(x,y);

} }
void FillLineAreal (y,t1,t2,q) /* pattern fill area */
int vy,q; /* bounded by lines only */
float ti,t2;
{ int X,x%x,%x11,%x21,1;

float z;

z =y - Yy0o;

switch (q)

{ case 1: x11 = x0 - z*tl; x21 = x0 -~ z*t2; break;
case 3:
case 4:

case 5: x11 = x0 - z*t2;

X21 = x0 - z*tl;

break;

High-quality Rose diagrams from a “C” program

case 7: X1l = x0 - z#tl; x21 = x0 - z#*t2;

default:

}
for (k = x11;
for (1 = 1;

break;

k <= x21; k += fil.stepx)
1 <= noofdots; ++1i)

/* patterns */

*/

/* by arc & line #/

{ x =k + i;
if (x <= x21) Enterarray (x,Y);
} }
void Filll (r,thetal,theta2) /* main function for horizontal #/
int thetal, theta2;
float r;
{ float betal, beta2, ci, c2, ti, t2;
int q, yla, y2a, yll, y2l1, y;
betal = thetal * RADIAN; beta2 = theta2 * RADIAN;
cl = cos (betal); c2 = cos (beta2);
if (thetal == 90) t1 = 99999.9;
else tl = (thetal == 270) ? -99999.9 : tan(betal);
if (theta2 == 90) t2 = 99999.9;
else t2 = (theta2 == 270) ? -99999.9 : tan(beta2);
q = Select_Quadrant (thetal,theta2);
switch (q)
{ case 1: yla = y0 -~ r * cl; y2a = y0 - r * c2;
for (y = yla; y <= y2a; y += fil.stepy)
FillArcAreal(r,y,tl1,t2,1);
y2l = y0;
for (; y <= y2l; y += fil.stepy)
FillLineAreal(y,t1,t2,1); break;
case 2: yla = y0 - ricl; y2a = y0;
for (y = yla; y <= y2a; y += fil.stepy)
FillArcAreal(r,y,t1,t2,1);
y2a = y0 - r * c2;
for (; y <= y2a; y += fil.stepy)
FillArcAreai(r,y,t1,t2,3); break;
case 3: yll = y0; y21 = y0 - r*ci;
for (y = yll; y <= y2l; y += fil.stepy)
FillLineAreal(y,t1,t2,3);
y2a = y0 ~ r#*c2;
for (; y <= y2a; y += fil.stepy)
FillArcAreal(r,y,tl1,t2,3); break;
case 4: yll = y0; y21 = y0O - r % ci;
for (y = yll; y <= y2l; y += £il.stepy)
FilllLineAreal(y,t1,t2,4);
y2a = y0 + r;
for (; y <= y2a; y += fil.stepy)
FillArcAreal(r,y,tl1,t2,4); break;
case 5: yll = y0; y2l = y0 = rkc2;
for (y = yll; y <= y2l; y += fil.stepy)
FillLineAreai(y,t1,t2,5);
y2a = y0 - r*cl;
‘for (; y <= y2a; y += fil.stepy)
FillArcAreal(r,y,t1,t2,5); break;
case 6: yla = y0 - r#*c2; y2a = y0;
tor (y = yla; y <= y2a; y += fil.stepy)
FillArcAreal(r,y,tl1,t2,7);
y2a = y0 - r*cl;
for (; y <= y2a; y += fil.stepy)
FillArcAreal(r,y,t1,t2,5);
break;
case 7:
yla = y0 - r*c2; y2a = y0 - r#*cil;
for (y = yla; y <= y2a; y += fil.stepy)
FillArcAreal(r,y,t1,t2,7);
Y2l = yo0;
for (; y < y21; y += fil.stepy)
FillLineAreal(y,t1,t2,7}; ’
break;
} }
void FillArcArea2 (r,x,tl1,t2,q) /* patternfill area bounded
int xX,q;
float r,t1,t2;
{ int X, ¥, Yla, y2a, i;

float v,2;

z2 = x - xX0; v= fabs(rer - 2%2); v = BQrt(v);

switch (q)

1203

T.S. Kurry and P. GHOsH

{ case 1: yla = y0 - v; y2a = y0 ~ z/t2; Dbreak;
case 2: yla = y0 - v; y2a = y0 + v; break;
case 3: yla = y0 - z/tl; y2a = y0 + v; break;
case 4: break;
case 5: yla = y0 - z/t2; y2a = y0 + v; break;
case 6: yla = y0 ~ v; y2a = y0 + v; break;
case 7: yla = y0 - v; y2a = y0 - z/t1;

default: break;

} .
for (k = yla; k <= y2a; k += fil.stepy)
for (i = 1; i <= noofdots; ++i)

y-k+i;
if (y <= y2a) Enterarray (x,y);
} }
void rillLineArea2 (x,t1,t2,q) /* pattern f£ill area bounded */
int x,q; /* by lines only #*/
float t1,t2;
{ int kK, vy, Y11, y21, 1i;
float Z;
z = x - x0;
switch (q)
{ case 1:
case 2:
case 3: yll = y0 - z/tl; y2l = y0 - z/t2;
case 4: break;
case 5:
case 6:
case 7: yll = y0 = z/t2; y21 = y0 - z/%t1;
default: break?
}
for (kK = yll; X <= y21; k += fil.stepy)
for (3 = 1; i <= nootdots; ++i)
{ y=X%+1i;
it (y <= y2l) Enterarray (x,Y);
}
void PFill2 (r,thetal,thetal) /* main function for vertical */
int thetal,theta2; /* patterns */
float r;
{ float betal, beta2, eta, 81, =2, 83, t1, t2, t3;

int q, xla, x2a, x1l, x21, x, p;

batal = thetal * RADIAN; beta2 = theta2 * RADIAN;
sl = sin (betal); s2 = sin (beta2);
if (thetal == 0 || thetal == 180) tl1l = 0.00001;
else if(thetal == 90 ll thetal == 270) tl = 9.99999e+33;
else tl1 = tan (betal);
if (theta2 == ¢ || theta2 == 180) t2 = 0.00001;
else if(theta2 == 90 || theta2 == 270) t2 = 9.99999e+99;
else t2 = tan (bata2);
q = Select_Quadrant (thetal, theta2);
switch (q) ’
{ case 1: x11 = x0; X2l = X0 + r#*sl;
for (x = xX11; x <= x21; x += fil.stepx)
FillLineArea2(x,t1,t2,1);
xX2a = X0 + r+*s2;
for (; x <= x2a; x += fil, stepx)
FillArcArea2(r,x,t1,t2,1);
break;
case 2: P = theta2 + thetal - 180;
if (p==0)
{ x11 = x0; x21 = X0 + r+sl;
for (x = x11; x <= x2]1; x += fil.stepx)
FillLineArea2(x,t1,t2,2);
x2a = x0 + r;
for { ; x <= x2a; X += fil.stepx)
FillArcArea2(r,x,t1,t2,2);
break; ’

}
else if (p < 0) .
{ eta = (180.0 - theta2) * RADIAN;
83 = gin(eta); t3 = tan(eta);
x1l = x0; %21 = x0 + r * g3;
for (x = x11; x <= x21; x += £il.stepx)
FillLineArea2(x,t3,t2,2);

case

case

case

case

High-quality Rose diagrams from a “C™ program

x2a = X0 + r;
for (; x <= x2a; x += fil.stepx)
FillArcArea2(r,x,t3,t2,2);
X1l = x0; x21 = x0 + r*si;
for (x = x11; x <= x21; x += fil.stepx)
FillLineArea2(x,t1,t3,1);
x2a = X0 + r*s3;
for (; X <= x2a; X += fil.stepx)
FillArcArea2(r,x,t1,t3,1);
break;
}
else /* if (p > 0)
{ eta = (180 - thetal) * RADIAN;
83 = sin(eta); t3 = tan(eta);
X1l = x0; x21 = X0 + r#sl;
for (X = X1l; x <= x21; x += fil.stepx)
FilllLineArea2(x,t1,t3,2);
x2a = X0 + r;
for (; X <= x2a; X += f£il.stepx)
FillArcArea2(r,x,t1,t3,2);
xX21 = X0 + r#*s2;
for (x = x0; x <= x21; x += fil.stepx)
FilllineArea2(x,t3,t2,3);
x2a = X0 + r*s3;
for { ; x <= x2a; x += £il.stepx)
FillArcArea2(r,x,t3,t2,3);
break;

}

X1l = x0; x21 = X0 + r*s2;

for (x = x11; x <= %x21; x += fil.stepx)
FillLineArea2(x,tl1,t2,3);

x2a = %0 + r*si;

for (; x <= x2a; x += fil.stepx)
FillArcArea2(r,x,t1,t2,3);

break;

xla = x0 + (r#*s2); x2a = x0;

for (x = xla; x <= x2a; x += fil.stepx)
FillArcArea2(r,x,t1,t2,5);

X2a = X0 + r * s};

for (; x <= x2a; x += fil.stepx)
FillArcArea2(r,x,t1,t2,3);

break;

xla = X0 + (r*s2); x2a = 30 + r#*sl;
for (x = xla; x <= x2a; x += fil.stepx)
FillArcArea2(r,x,t1,t2,5);
x21 = x0;
for (; x <= x21; x += fil.stepx)
FillLineArea2(x,t1,t2,5);
break;
= theta2 + thetal - 540;
it (p==0)
{ xla = x0 -~ r; x2a = x0 + (r*s2);
for (x = xla; x <= x2a; x += fil.stepx)
FillArcArea2(r,x,t1,t2,6);
x21 = x0;
for (; x <= x21; x += £il.stepx)
FilllLineArea2(x,t1,t2,6);
break;

}
else if (p < 0)
{ eta = (540 - theta2) * RADIAN;
83 = sin(eta); t3 = tan(eta);
xla = X0 - r; x2a = x0 + (r*s3);
for (x = xla; x <= x2a; x += fil.stepx)
FillArcArea2(r,x,t3,t2,6);
xla = x; x21 = x0;
for (x = xla; x <= x21; x += £il,stepx)
FilllLineArea2(x,t3,t2,6);
x2a = X0 + (r#sil);
for (x = xla; x <= x2a; x += f£il.stepx)
FillArcArea2(r,x,t1,t3,5);
x2) = x0;
for (; x <= x21; x += £il.stepx)
FilllineArea2(x,t1,t3,5);

*/

1206

}

case 7:

}

void Arc ()

{

} }

void Select_Fillpattern (pattern)

int

T.S. KutTY and P. GHOSH

break;
}
else /* 1if (p > 0)
{ eta = (540 -~ thetal) * RADIAN;
s3 = gin(eta); t3 = tan(eta);
xla = X0 -r; x2a = x0 + (r*sl);
for (x = xla; x <= x2a; x += fil.stepx)
FillArcArea2(r,x,tl1,t3,6);
xla = X; x21 = x0;
for (; x <= x21; x += fil,stepx)
FillLineArea2(x,t1,t3,6);
x2a = x0 + (r*s2);
for { x = xla; x <= x2a; x += fil.stepx)
FillArcArea2(r,x,t3,t2,7);
x21 = x0;
for (; x <= x21; x += fil.stepx)
FillLineArea2(x,t3,t2,7);
break;

}

xla = x0 + (r*sl); x2a = x0 + (r#*s2);

for (x = xla; X <= x2a; x += fil.stepx)
FillArcArea2(r,x,t1,t2,7);

%21 = x0;

for { ; x < x21; x += fil.stepx)
FillLineArea2(x,t1,t2,7);

break;

xX,y,k;

float x1,yl,phi,psi,c,s,w,f,d, theta;

theta = 360.0 / Clas;

for .

{ X = 1; kX <= Clas; ++k)

{ phi = a[k-1) * RADIAN;
if(RA[K]) > 0)

{

}
ir

it

f = 57.5 / RA[K);

psi = £ * RADIAN;

c = 1 - pei*psi/2;

8 = psi * (1-psitpsi/s);

printt ("SECTOR &34 - $3d\n",af{k-1),ai(k});
yl = RA[k) * cos(phi); x1 = RA([k] * sin(phi);
for (4 = 0.0; 4 <= theta; 4 += f)
{w=y1;

Yyl = yl*c -~ xl1ts;

X1l = w*g + xl#*c;

X = X0 + x1;

Yy = Y0 - y1;

Enterarray (x,y);

}

(RL(k] > 0) .

Line (x0,y0,1,RL[X],phi);
(RA{k] > 0.0)

{ it (fil.pat == 0);
else if (fil.pat <= 6) Fil11(RA[X],a(k-1],a({k]);
else FL112 (RA[Kk],a[k=-1},a[k]);

}

/% assigns values for stepx

int pattern; /* & stepy
{ switch (pattern)

case 1: /* Closely spaced dots

{

fil.stepx = 4; fil.stepy = 4; noofdots = 2;
break;

case 2: /* Med. spaced dots

fil.stepx = 8; fil.stepy = 8; noofdots = 2;
break;

case 3: /* Choose own dot spacing

noofdots = 2;
break;

case 4: /* Close horiz. lines

fil.stepx = 1; fil.stepy = 5; noofdots = 1;
break;

case 5: /* Spaced out horiz. lines

fil.stepx = 1; fil.stepy = 8; noofdots = 1;
break;

*/
*/
*/
*/
*/
*/

*/

*/

High-quality Rose diagrams from a "C™ program 1207

case 6: /* Broken horiz. lines */
fil.stepx = 12; fil.stepy = 6; noofdots = §;
break; .
case 7: /* Close vertical lines #/
fil.stepx = 5; fil.stepy = 1; noofdots = 1;
break;
case 8: /* Spaced vertical lines %/
fil.stepx = 8; fil.stepy = 1; noofdots = 1;
break;
case 9: /* Broken vertical lines */
fil.stepx = 6; fil.stepy = 12; noofdots = 6;
break;
default: /* No Fill pattern */
break;
} }
void Magnify (m) /* scales ra[] into RA[] */
float m;
{ int i;
figsize = 18 * m * rmax / 12. + 1;
for (i = 1; i <= Clas; ++i) RA[i] = ra{i] * m;
RA[0] = RA[Clas]}; RMAX = n * rmax;

for (i = 1; i <= Clas; ++i)
RL{i] = (RA[i-1} > RA{i)]) ? RA[i-1]) : Rali);

}
float Choose_Magnification () /* Option for magnification */
{ float Mag;
clrscr ();
printf ("\n\nCHOOSE A MAGNIFICATION\n\n\
\n Magnification = Radius of the Unit Circle\n\
\n Max. Possible Size of diagram = 93 mms\n\
\n Circle to diagram ratio depends on data\n\
\n A CHOICE OF 10 mms IS USUALLY OK .\n\
\n Too large a value will be automatically reduced\n\
\n Give only the number ... \n\n\
\NCHOICE OF RADIUS (in millimetres) = "ys
scanf ("$f", &Mag);
return (Mag * MMSTODOT);
}

void Setprntdefault ()

fprintf (out, "Sctc",27, ’\&%);
printf ("Printer has been set to default\n");
"fclose(out);

}

void Printarray () /* prints image array in graphics mode #*/
{ int i,3,%,1;
int ni,n2,linel,line2,p;

for (i = 0; i <= LINES-1;-++i)
for (J = 0; j <= XSIZE-1; ++3j)
for { X = 0; K <= 2; ++k)
if (Fig[i][j)[k) ==10) Fig(i){}][k] = 11;
else if (Fig[i)[j)(k] == 26) Fig[i)[J)(k] = 27;
printf ("Printing Rose Diagram. Wait .,.. \n");
k = x0 + figsize ;
n2 = k / 256; nl =k % 256;
linel = (y0 - figsize) / 24;
line2 = (y0 + figsize) / 24;
if (line2 > 24) line2 = 24;
fprintf (out, "%cicic",27,’U’,1);
for (1 = linel; i <= line2; ++ i)
{ 1 =0;
Final: fprintf (out , "\t\t");
fprintf (out,"Yc¥ctciclc",27,’+*7,39,n1,n2);
for (J = 0; 3 <= k=1; ++3)
fprintf (out,"tcictc",
Fig(i1(3)(0],Fig(di1{331[1),Fig{ii(3)(2]})
if (draft) ({ fprintf (out, "%ctcic",27,'3’,24);
fprintf (out,"\n"); }
else { if ((++1)==1) fprintf (out, "tcic3c",28,/3,0);
else fprintf (out, "“%clcycm™,27,'37,24);
fprintf (out,"\n");
if (1<2) goto Final; }

CAGEO i8p-H

1208 T.S. KuTry and P. GHOsH

fprintf (out,"\n");

int Patternchoice(i) /* Options #/
int i;
{ int pattern, nl=0, n2=0;

clrser();

printf ("\nSELECT FILLPATTERN \n\n");

printf ("Enter choice of fill pattern: \

\n\n\t\t\t0. NONE\n");

printf (™\t\t\tl. Closely spaced DOTS\n");

printf ("\t\t\t2. Med. spaced dots\n");

printf ("™\t\t\t3. Choose own dot spacing\n");

printf ("\t\t\t4. Close HORIZ. LINES\n");

printf ("\t\t\t5. Spaced out horiz.lines\n");

printf ("\t\t\t6. Broken horiz. lines\n");

printf ("\t\t\t7. Close VERTICAL LINES\n");

printf ("\t\t\t3. Spaced vertical lines\n");

printf ("\t\t\t9. Broken vertical lines\n\n "),

scanf ("$d", &pattern);

if (pattern == 3)

{ printf ("\n Enter choice of spacing as integer values. \n\n");
printf (" Note that units here are in 1/180 th of an inch\n\
. \n 0 spacing is illegal\n\n");
printf (" Horizontzlly - ");
while (n1 == 0) scanf ("%d", &nl);
name{i].stepx = nl;
printf (" Vertically - ");
vhile (n2 == Q) scanf ("%d", &n2);
name(i].stepy = n2;

}
return (pattern);
}
void AdjustRadii() /* finds sector from sector frequencies #*/
{ int i;
float z;
for (i = 1; i <= Clas; ++1i)
{ 2z = ra(i} * Clas / N;
ra{i} = sqrt (z) ;
if (ra[i) > rmax) rmax = ra{i}];
}
void Fileinfo () /* Prompts for user for information #*/
{ int i,j,bidir = 0;
char ch, ¢;
FILE *in;

puts("Enter number of files to be processed { <= 20)");
Numb: scanf ("%d", &count);
if(count > 20 || count < 0)
{ printf ("Number MUST be < 20 ... "); goto Numb; }
else if (count == 0) exit();
puts("Enter [path\) name of files :\n");
for (1 = 1; i <= count; ++i)
{ printf(™ File &d. ", i);
Nane: scanf ("%s", nare(i].nam);
in = fopen (name(i}.nam, "r");
if(in == NULL)
{ printf ("\07");
printf("File: ‘38’ could not be accessed\n", name[i].nam);
puts(“Please check spelling & path and RETYPE ");
goto Name;

}

fclose (in);

puts ("\n\nRecords include dip values ? Y/ N ")
/*DIP*/ while((ch=tolower(getch())) != ’y’ && ch I= ’'n’);

name[i).dip = (ch==’y’|| ch==’Y’) ? TRUE : FALSE;

puts ("\n\nData Unidirectional / Bidirectional ? U/ B ");
/*UB*/ while ((ch = tolower (getch())) != fu’ ¢& ch I= ’b’);

namef{i).ub = (ch == ‘u’) ? FALSE : TRUE;

if (namefi).ub) bidir = 1;

name{i).mag = Choose_Magnification();

name[i).pat = PatternChoice(i);

puts("\n\nPlot resultant vectors ? Y/ N");

while ((ch = tolower(getch ())) != ‘y’ && ch i= ’n’});

High-quality Rose diagrams from a “C” program

name[i).rsltnt = (ch == ‘y7) ?2 1 : 0; clrscr();

}
puts ("\n\nTHE FOLLOWING OPTIONS WILL BE SAME FOR ALL FILES");

printf("\n\nNO. OF CLASSES: Must be EVEN if there is axial data)\

\n\nNumber of Classes :-\n\n\n");
Sect: scanf (“%d%,iClas);
if(Clas <= 1)
{ printf("\07");
puts ("Number of Classes must be > 1\n\n"); goto Sect; }
else if ((Clas % 2) && bidir)
{ printf ("\07");
puts("Batch includes bidirectional data;\
\nNumber of Classes MUST BE EVEN \n\n"); goto Sect; }
else if (Clas > SECTORS-1)
{ printf("No. of Classes must be < %d\n",SECTORS); goto Sect;
puts ("\nPrint Statistical Measures? Y / N%);
while ((ch = tolower(getch{))) != 'y’ &k ch != 'n?);
heading = (ch == ‘y’}) ? 1 : 0;
puts ("\n\nPrint Draft / Final mode ? D / P\n\n\n");
while ((ch = tolower(getch())) != ‘d’ && ch != '£/) ;
draft = (ch == ’d’) 2 1 : 0;

}

void Read_B (in)

FILE *in;

{ int i, n, eot_flag=0;

float fdat;
char *formati={"s*fyf"}, *format2={"3f"}, *format;

/* Choose appropriate format for uni- or bidirectional data #*/
if (fil.dip) format = formatl; else format = format2;
for (i = 1; eof_flag != EOF; ++i)

{ eof_flag = fscanf(in,format, &fdat);
it (eof_flag != EOF)

}

/* Take that end of axis which is in 0 - 180 %/

if (fdat == 360.0) fdat = 0.0;
else if (fdat >= 180.0) fdat -= 180.0;
n =2C_Clas / 2;
/* ¥ake Class frequencies for 0 - 180 and duplicate for 180 - 360 */
for (1 = 1; { <= n; ++i)
if (fdat < a[i})
{ ra[i) +=1;
rafi+n] += 1;

break;
Y1}
rewind (in); /* Has to ba read again in Read_U »/
}
void Read_U (in) /* Read routine for Unidirectional data ¢/
PILE +in;
{ int i, eof_flag=0, spread;

float fdat, phi, R, Rsq, S=0.0, C=0.0 ;
char *formatl={"§+£Yf"), *format2={"%f"}, +format;

/* Choose appropriate format for uni- or bidirectional data #/
it (£il.dip) format = formatl; else format = format2;
for (i = 1; eof_flag != EOF; ++i)

{ eof_flag = fscanf(in,format, &fdat);
if (eof_flag != EOF)
{ spread = (fil.ub) ? 2 : 1 ;

/* It axial data in 0 - 180 must be spread to 0 ~ 360 #*/

fdat *= spread ;

if (fdat == 360,0) fdat = 0.0;
elge if (fdat > 360) while (fdat > 360} fdat -= 2360;
N += 1.,

for (1 = 1; { <= Clas; ++1{)
/* For axial data class frequencies have already been calculated #/
if (fdat < a{i))

{ if (ifil.ub) ra{i] += 1;
phi = fdat * RADIAN;
C += cos(phi); /* Sum of Cosines */
S += gin(phi); - /* Sum of Sines %/
break;

Yy)

AdjustRadii();

R = sqrt (S®*S + C*C) ; /* Langth of resultant s/
it (fabs(R) < 0.1e-2) (fil.rsltnt = 0; resultant = 0.0; }

1210

T.S. KuTrTY and P. GHOSH

else /* Find direction of resultant #/
{ resultant = asin (S/R) * RADINV;
if (resultant == 0)

resultant = (C > 0.0) ? resultant : 180;
else if(resultant > 0.0)
resultant = (C >= 0.0) ? resultant ¢ 180 - resultant;
else resultant = (C >= 0.0) ? 360+resultant : 180 - resultant;
}
if (fil.ub) resultant /= 2; /* adjust for spreading */
consistency = R/N;
var = 1 - consistency; /* circular variance */
adjvar = var / 4; /* adjust for spreading #/
if (£il.ub) angdev = sqrt (2* adjvar) * RADINV;
else angdev = sqrt (var) * RADINV; /* Mean ang.dev.#/
consistency *= 100; /* Consistency Ratio s/
adjcons = 100 * (l-adjvar); /* adjust for spreading #/
) N
void ReadData () /* main read routine; calls other read routines #/
{ int i,3;
FILE *in;
char c;
puts (" Reading Data ")
in = fopen (fil.nam,"r"%);
4 = 360 / Clas;
for (i = 0; i <= Clas; ++i) afi) =i * j;
if (fil.ub) { Read_B(in); Read_U(in); } else Read U(in);
fclose(in);
}
void Headings ()
{
fprintf (out, "%¥ctcic", 27, 120, 1);
fprintf (out, "tctc",27,77); /* 12 cpi printing #/
fprintf (out, "tcyc",27,48); /* 8 lines per inch #*/
fprintf (ocut,"\n\tFile : %$-29s8", fil.nam);
fprintf (out,"Radius of Circle =%,1f cms.\n", RC*DOTTOCMS);
fprintf (out, "\tClasses = %t34%23c", Clas,’ ’);
fprintf (out, "Cbservations = $4d\n",N);
if (resultant)
{ fprintf(out,"\tDirection of Resultant = $5.1f%6c",
resultant,’ *);
if(fil.ub)
{
fprintf (out,"Mean Angular Deviation = %.1f\n", angdev);
fprintf (out,"\tCircular Variance (unadj.) = %§5.2f%2c",
var,’ ');
fprintf(out,"Circular Variance (adj.)= %5.2f\n",adjvar);
fprintf(out,”\tConsistency (unadjusted) = %4.1f%5c",
consistency,’ ’);
fprintf(out,"consistency (adjusted) = %4.1f\n",6adjcons);
}
else
fprintf (out, "Mean Anqular Deviation = %.1f\n", angdev);
fprintf (out,"\tCircular variance = %5.2f%1l1c",var,’ ’);
fprintf(out,"Consistency = %.1f\n",consistency);
})
else fprintf (out,"\n\tLENGTH of Resultant = 0.0\n");
fprintf (out,"\n\n"};
fprintf (out, "tctcte", 27,120,0);
}
void Rosedgm () /* Rose dlagram controlling routine #/
{ int 1,3,%x,m;
char c;
start: x0 = yO = XSIZE /2 ;

out = fopen ("LPT1", "w");
Initialise ();
ReadData ();
maxmag = (XSIZE - x0 - 1)*12 / (18*rmax); /* Max.feasible mag.w/
RC = fil.mag;
if (RC > maxmag) .
{ fprintf (out,"Magnification %.1f too high. Reducing to ",
(RC/MMSTODOT));
printf ("Magnification too high.”);
RC = maxmag;

High-quality Rose diagrams from a “C" program 1211

printf("New Magnification (Max.possible) = %5.1f\n",
(RC/MMSTODOT) });
fprintf (out,"%5.1f\n\n\n",RC);

}

Magnify (RC);

if (heading) Headings ();
Select_Fillpattern (fil.pat);

i = resultant+0.5; if(fil.ub) j = i+180;
if (£il.rsltnt) { Arrow (i); if (fil.ub) Arrow (3); }
North ();

Arc();

Circle (x0,y0,RC);

Printarray ();

Setprntdefault ();

}

void main ()

{ int i,n;
char c;

begin: clrscr();
Fileinfo ();
for (1 = 1; 1 <= count; ++ i)
{ f£il = name(i};
clrscr();
printf ("file being processed is %s\n", fil.nam);
Rosedgm ();
fclose (out);
/* Pressing ESC will stop processing of remaining files #*/
if (xbhit() && ((c = getch ()) != ‘\0’ &k c == 27)) quit ();
}

clrscr();

puts("\n\n\nAny more files to process ? y / n");
c = getch ();

if (c == 'y’ || ¢ == 7Y’) goto begin;

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17

