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 RELATIONSHIP BETWEEN BAYES, CLASSICAL AND
 DECISION THEORETIC SUFFICIENCY

 By K. K. ROY and R. V. RAMAMOORTHI
 Indian Statistical Institute

 SUMMARY. Three notions of sufficiency, Bayes, classical and decision theoretic have
 been considered in the literature. These three notions are equivalent when the statistical
 structure is dominated, In this paper relationship between the three notions is investigated in
 the undominated case with particular attention to the case when the cr-fields are countably
 generated.

 0. Introduction

 Suppose (X, y?) is a measurable space carrying a family of probability

 measures [P0 : 0 e ?}. Though relevant only in a later section we shall through
 out assume that 0 is equipped with a cr-field gaud that for all A in ji 0-* PQ(A)
 is (^-measurable. There are three approaches to the concept of sufficiency of
 a sub cr-field S of j%.

 (i) Classical : There is a conditional probability on j% given ?3 inde
 pendent of 0 in 0.

 (ii) Decision theoretic : Given any decision problem and any decision
 rule 8 therein, there is a ?g-measurable decision rule Sf equivalent
 to 8.

 (in) Bayesian : Given any prior \ on (0, <?), the posterior on 0 given
 jt is the same as the posterior given ?.

 These concepts are defined more precisely in the next section. We shall
 refer to classical sufficiency simply as Sufficiency and to (ii) and (iii) as D-Suffi
 ciency and Bayes Sufficiency respectively.

 The three notions are equivalent when {P0 : 0 e 0} is dominated by a
 cr-finite measure. Burkholder's Example (1961) of a non-sufficient cr-field
 containing a sufficient cr-field shows that neither (ii) nor (iii) is equivalent
 to (i). Blackwell conjectured to us that when the spaces (X, j<0 and
 (0, (?) are standard Borel and & is countably generated (i), (ii) and (iii) would
 be equivalent even if {Pe : 0 e 0} is undominated. As a first step towards
 settling the conjecture, in this paper we study the relationship between the
 three definitions when the cr-fields considered a,re all countably generated.
 Interest in countably generated cr-fields stems from the fact that these are
 precisely the cr-fields generated by Borel measurable real valued statistics.



 STJFFICIENCY-BAYES CLASSICAL AND DECISION THEORETIC 49

 1. Relationship between Z>-sufficiency and sufficiency

 We begin by giving precise definitions of Sufficiency and D-Sufficiency.

 Definition : ? (2 J?is Sufficient for ( X, ^/?,P0:de@) if given any bounded
 real valued ji measurable function /, there is a ?g-measurable function /*
 such that /* is a version of Ee(f\ ?) for all 0 e 0.

 Let (A, cr) be a set A equipped with a cr-field cr. We shall refer to (A, cr)
 as Action Space. By a decision rule 8(*, ) we mean a stochastic kernel from
 (X, jf) to (A, cr) i.e., for every x, 8(x, .) is a probability measure on cr and
 for every E e cr #(., E) is ^-measurable as a function of x. A decision rule
 ?(.,.) is said to be ??-measurable if for all E e cr, d(x, E) as a function of x is
 ?g-measurable.

 Definition : A sub cr-field ? of ji is D-Sufficient if given any action space
 (A, cr) and a decision rule 8(.,.) there is a -measurable decision rule S'(., .)
 such that for all E eor and 0 e 0

 J 8(x, E) dP9 = J 8'(x, E) dPg ... (1.1) x x

 Proposition 1.1 : ? is D-Sufficient for (X, ji, Pe : 6e 0) iff there is a
 ?-measurable stochastic kernel Q(.,.) from (X, ?) to (X, J?) such that for A e j?
 and de?

 ?Q(z,A)dPB = P,U)- (1.2) X

 Proof: The 'if part is trivial. For the 'only if part choose (A, a) to
 be (X, jt) and as 8 the decision rule 8(x, E) = ij&(a?).

 We now state the main theorem of this section. [Q. E. D.]

 Theorem 1 : Suppose ? is D-sufficient for (X, jt, Pe : 0 e 0) then ?-con
 tains a sufficient cr-field.

 Proof : Let Q(.,.) be a ?6-measurable kernel satisfying (1.2). For each
 bounded ^/tf-measurable function / define

 Tf(x) = J f(&) Q(x, dy).

 Associate with each bounded yi-measurable function / a ?g-measurable
 function /* as follows

 / (*) = A

 1 n
 lim ? 2 Tk f(x) when the limit exists n_? ? n jc=x

 0 otherwise.
 A12-7
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 Let ?0 =2 cr{/* : /-bounded ^/tf-measurable}.

 So C & ??d we 8na,H show that ?0 is sufficient. By Hopf's ergodic
 theorem (Neveu, 1965) for all 0e0

 f*(x) = E0(f\?B)[Pe] ... (1.3)
 where

 #9 = lAe^:TI? = IA[P?]}.

 By (1.3) ?0 = ?9[Pel Hence by (1.3)

 f*(x) = Ee(f\?0)[Pe]

 establishing sufficiency of >ff0. [Q. E. D.].

 Theorem 2 : If ? is countably generated and D-sufficient then ? is itself
 sufficient.

 Proof : By Theorem 5 of Burkholder (1961) any countably generated
 cr-field containing a sufficient cr-field is itself sufficient. [Q. E. D.]

 The following corollary is an immediate consequence of Theorem 1.

 Corollary : If ? is D-sufficient then ? is also Bayes sufficient.

 Weaker forms of _D-Suffieiency can be obtained by considering restricted
 classes of action spaces such as

 (Dx) compact metric action spaces

 (D2) finite action spaces

 (D3) 2-point action spaces.

 When the sample space is standard Borel Dx would be equivalent to D.
 Z>3 is known in the literature as 'Test Sufficiency'. We do not know the
 relationship between Dx, D2, Dz in the undominated case.

 2. Bayes sufficiency and classical sufficiency

 As before (0, (?) is a measurable space and Pe(.) is a stochastic kernel

 from (0, (?) to (X, jt). 0 stands for all probability measures on (0, (?).

 For each probability measure ? in 0 we denote by A? the probability measure
 on (1x0, jixe) defined by

 A?AxC)= i PQ(A)dl(0). c
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 We shall denote by A$ the marginal of Ac on (X, jt). We shall denote by
 Xx(B the cr-field containing all sets of the form X x G for G in Q. jtX 0 and

 ?X 0 are similarly defined. For a function / on X, by / we shall mean the

 function onlxG defined by f(x, 6) -=f(x) Vx, 0.

 Definition : A sub-cr-field ? of j<l is said to be Bayes Sufficient for

 (X, yt,Pe:0e?) if for all G in Q and for all ? in 0.

 EXi(Ixxc\^8X&) - E^(IXXC\^X?).

 Proposition 2.1 : The following are equivalent :

 (i) ? is Bayes sufficient for (X, j?, Pe : 6 e 0).

 (ii) The sub-cr-fields yi? x and Xx(? are conditionally independent given

 ?X? on the probability sapee (Xx?, jiX(?, A?) for each \in 0.

 (iii) For every bounded ^-measurable function f on X there is a ?-measur
 able function f* such that

 f* = Bx(f\ ? X <?) for each ? e 0.

 Proof : Immediate from Proposition 25.3A of Loeve (1955, p. 351).
 [Q. E. DJ

 We had already remarked that in the undominated case Bayes sufficiency
 does not in general imply sufficiency. In this section we address ourselves
 to the situation when the cr-fields under consideration are all countably
 generated. We first give an example to show that the assumption of countable
 generation is not enough to ensure the implication.

 Example 2.1 :

 Z = 0 = [O, 1].

 D : a non-Borel universally measurable subset of [0, 1].

 ? : Borel cr-field on [0, 1].

 jt = Q : cr-fiold generated by {?, D).

 P0(ji) = i?(0) : i.e., PQ is the measure degenerate at 0.

 Now given \ in 0 there is a B^ in ? such that ?(2?c) = 1 and ? is clearly
 sufficient for (X, jl, Pd'deB?)> Bayos sufficiency of ? now follows from
 Proposition 2.2. But ? is not sufficient,
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 Remarks : In the above example ? is far from being sufficient. It is
 easy to see, by considering Id(%), that ? is not even test sufficient. In parti
 cular in the testing problem HQ : 0 eD against Hx :.df D with 0-1 loss
 function the decision rule

 f accept H0 if x belongs to D

 m = \ I accept Hx if x belongs to Dc

 has a risk function identically equal to zero. In terms of risk function every
 ? measurable decision rule is worse than 8 and in this context use of ? measur

 able rules would be unsatisfactory. On the other hand if one were concerned
 with only Bayes risks then restriction to ^ff-measurable decision rules will not
 entail any additional loss.

 In what follows we investigate the equivalance of these two notions under
 certain additional assumptions. However we are unable to decide the res
 trictiveness of these assumptions even in the case when the spaces 0 and X
 are both standard Borel.

 Proposition 2.2 : Suppose j$ and ? are countably generated. Then ?

 is Bayes sufficient iff for every ? e 0 there is a set E^ in (? of ^-measure 1 such

 that ? is sufficient for (X, yi, P& : 0 e E$).

 Proof: If part'.

 Given ? since there is an j_7$ of ^-measure 1 such that ? is sufficient for
 (X, J?, Pe : 0 e E?)9 for any bounded J?-measurable function / choose an /*,
 /ff-measurable such that

 f = E9(f\?) 0eE<.
 Now for C e Q

 I ?7*dA,= ? \ f*dPedt>(0)= ? ? f*dPM0) C B C B CC\E B

 = ? ? f?PBmo)= f { M . COE B C B

 'Only if part'.

 Fix E e 0. Given / bounded ji-measurable, there is by Bayes sufficiency
 of ?, a ?g-measurable /* such that

 /* = ^(/l<ex<?).
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 Now j J /* dPQ dl(d) = ] J fdP0 dl(d) for all G in Q. Therefore J /* dPe = c B ob b

 J fdP0 a.e. \ for each B in ?. By running B through a countable subalgebra B

 generating ?

 j f*dPe = f / dPe for Be ? outside a ? null set N?.
 B

 Thus
 r = Ee(f\?). Q + Nt.

 Now taking a countable union of null sets with / running through indi
 cators of sets in a countable algebra generating j<[., the proposition is proved.
 [Q. E. D]

 Proposition 2.3 : Assume that ? is countably generated. Let f be a boun
 ded jt-measurable function. There is then a version of E9(f\ ?) which is jointly
 measurable in (x, 6) with respect to (?x<B).

 Proof: Let [Bx, B2, ...} generate ?.
 ?n = tr(Blf B2, ..., Bn), let B\... B*n) be atoms of ?n. For Aeji

 fnix) ,*g>p^n^) j lx) h[)~ it Pe(B<) WX)
 is a version of E9(Ia | <ff?) which is jointly measurable with respect to (?n x Q).

 Define
 lim fg(x) whenever the limit esists f lim

 ?(*) = i * I C 0 otherwise.

 Since {fS(x) : n > 1} forms a martingale for each 0 and ?n ? ? it is easy to see
 that f*Q(x) = EQ(lA\?). The proof can now be completed by considering
 simple functions and their limits. [Q. E. D.]

 Definition : {(0, (B)(X, ji, Pg'.de 0)} is said to be 'weakly coherent'
 if for any bounded j? X (^-measurable function f$(x) satisfying (*)

 ] r Y? e ? ( #?> l(Et) = 1, and /. : ^/tf-measurable)  ... (.)
 !_ such that for 6eE(ft(x) = f?(x) [P9]

 there is au ,/?-measurable function /* such that

 f(x) = fg(x) [Pe] for all 6 in 0.
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 A discussion on weak coherence will be deferred to the next section.

 Hero we shall investigate the effect of weak coherence on Bayes Sufficiency.

 In what follows 71^ will denote the set of ^/tf-measurable ?] null sets and

 (ee 6e?

 Theorem 3 : Assume that the experiment is weakly coherent. If ? is

 Bayes sufficient then ?= f] ?\J7l^ is sufficient. Consequently if
 See

 ? = ?VTl, then ? is itself sufficient.

 Proof : Let / be bounded ji-measurable. Choose a jointly measurable
 version f*e(x) of EQ(f\ ?). Since ? is Bayes sufficient, by Proposition 2.2, f*e(x)
 satisfies (*). Now by weak coherence there is an ^/f-measurable function /*

 such that f*(x) =f0(x) [Pe], for 0 e 0. We shall complete the proof by showing

 that f*(x) is ?\jYlz measurable for each 2 6 0.

 E = {x:f*(x)=?Ux)}

 K\(E) = j P9(E)dl(0) e

 = I PB(E)dl(0)+\ Pe(E)d^(0)^O. [Q.E.D.]

 ._ Theorem 4 : Assume

 (i) (X, jl) is standard Borel ;

 (ii) {(0, (?) (X, J?, Pe> 0 e 0)} is weakly coherent ;

 (iii) n = {$.
 If further ? is countably generated and Bayes sufficient then ? is itself sufficient.

 Proof : By Theorem 3 it is enough to show

 ? =__= f| ? V ??c = ?.

 Since (X, jt) is Standard Borel and ? is countably generated it suffices
 to show, (see Blackwell, 1955), that every set B e ? is a union of ? atoms.

 Suppose B0 is a ??-atom such that B0f) B =?<fi and B0 f] Bc ^ ?o. Since

 71 = {?o} there is 0, and 02 such that Pe(BQ.f\ B) > 0 and P?2(B0 f) Bc) > 0.

 Let ?0 give mass ? to each of 0X and 02. Then B 4 ?\' 7l? for, any set E in ?

 must either contain B0 or be disjoint with it and in both the cases A? (E&B) > 0.

 And this proves the Theorem. [Q. E. D.]
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 3. Coherence, weak coherence and measurable coherence

 The concept of coherent statistical structure is introduced by Hasegawa
 and Perlman (1974). The original idea is due to Pitcher (1965) who introduces
 compact statistical structures and generalises results in sufficiency for domi
 nated structures. Compactness may be shown to be equivalent to coherence
 (see Ghosh, Morimoto and Yamada (1978).

 Weak coherence differs from coherence in the following two aspects :

 (a) restriction to jointly measurable function fg(x)

 (b) requirement in (*) for all priors on (0, (S) rather than discrete priors
 only.

 If 0 is equipped with a natural cr-field then in the context of Bayes suffi
 ciency and also in view of Proposition 2.3, requirement given by (a) is very
 natural. Using the requirement (a) we define a concept stronger than weak
 coherence as follows.

 Definition : A statistical structure (X, j?. Pe, 6 e 0, 0, C) is called mea
 surably coherent if for any bounded ^/ix?-measurable function satisfying the
 following restriction (**)

 r for all pairs 01; 02 in 0 there is an %/f-measurable function

 fdx e2( * ) su?h that fh h(x) =f6i(x)[Pdi] for i = 1, 2,

 (-)

 there is an ^/tf-measurable function /*(. ) such that f*(x) = f^(x)[Pg], for
 all 0 in 0.

 Trivially measurable coherence implies weak coherence but the converse
 is not always true as is seen in the following example.

 Example 3.1 :

 X = 0 = [0, 1]
 G = ji = Bore! cr-field

 PBU) = \ A(4)+i IA(6) 0 e [0, l\Aeji
 where A is Lebesgue measure on j%.

 It is easy to see that the above structure is not measurably coherent by
 considering

 f 1 if 0 = x

 I 0 otherwise.
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 On the other hand let fQ(x) bc a jointly measurable function on ?xX
 satisfying (*). Define

 f*(x) = fx(x) for all x in X

 then /* is ^/i-measurable and to check that for any 0 in 0, f*(x) = fg(x) [Pg]

 one takes a prior ? = -?^-A-f- - 80 where 8g is the probability measure concen

 trated at 0 and one uses the condition (*) for ?. Hence this structure is
 weakly coherent but not measurably coherent.

 It is also easy to see that coherence with appropriate cr-field on 0 implies

 measurable coherence and hence weak coherence. Thus if [Pg, 0 e 0} is domi
 nated by a cr-finite measure the statistical structure is measurably coherent,
 being already coherent. Further coherence with countably generated ji
 would entail {Pg, 0 e 0} to bo dominated by a cr-finite measure (see Rogge,
 1972). However many undominated structures are measurably (a fortiori

 weakly) coherent even if Jt is countably generated.

 Below we shall exhibit a class of undominated structures which are

 measurably coherent.
 Let us assume that

 (i) Each Pg, 0 in 0 is discrete
 (?) n = n n9 = {</>}. 0

 Definition: Say that {(X, j?, Pe : 0e&), (0, (?)} admits a measurable
 estimator for 0 if there is a measurable function g from X to 0 such that

 Such a g will be referred to as a measurable estimator of 0.

 Theorem 5 : // {(0, (B), (X, jl, Pg : 0 e 0} admits a measurable estimator
 then it is measurably coherent.

 Proof: Let g be a measurable estimator. Then given any fg(x) jointly
 measurable satisfying (**) define /* as

 It is easy to see that f*(x) =fQLx) [Pg] for all 0. [Q. E. D.]
 Remarks : (I) Measurable estimators of 0 are loosely speaking measur

 able versions of good estimators of 0. For instance if a measurable version
 of the maximum likelihood estimate for 0 exists, then the MLE itself would
 be a measurable estimator.
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 (2) Assume Pg(x) is jointly measurable in 0 and x; so that the set
 {(x,6): Pe(x)>0} is measurable in 1x0. For each x in X look at
 Ax = {0 : Pg(x)>0}. Ax? are all measurable sets andthatthey are allnon-empty
 is ensured by requiring Ifl to be empty. The problem of obtaining measurable
 estimators is then one of measurable selection of points from [Ax : x e X}.
 Various theorems on the existence of such selectors are available when the

 underlying spaces are Polish (Wagner, 1977).
 While the existence of measurable selectors ensures the weak coherence

 of statistical structures, we do not know the validity of the converse in the
 Polish case. Below we shall give an example of a statistical structure not
 admitting a measurable estimator. It should be noted that in the example 0

 and X are both Polish, P?'s are discrete further dx ^ 02 implies P0 ^ Pg .
 This example is due to B. V. Rao.

 Example 3.2 :
 0 = X = [0, 1].

 G = J? : Borel cr-field.

 Let D be a Borel subset of [0, 1] X[0, 1] not containing a graph (Blackwell,
 1969) such that (a) nxD = [0, 1] where nx denotes the projection to the 1-st
 coordinate (b) D does not intersect the diagonal. By the Borel isomorphism
 theorem there is a 1-1, measurable map <j> from 0 = [0, 1] onto D. Let
 (j) = (<f>v ?j2) be such an isomorphism. For 0 e [0, 1] define Pg as the measure

 1 2
 giving mass ? to (?>x(d) and ? to 02(0). o o

 We shall show that the above statistical structure does not admit a
 measurable estimator.

 For, suppose g is a measurable estimator

 A = {x: <j>x(g(x)) = x], B = {x : $2(g(x)) = x}

 A|JB = [0, 1], since for all x, Pgix)(x) > 0 and Af)B = <j> since D does not
 intersect the diagonal.

 Then the graph of h, defined by

 h = <f>2 ogIA+6xogIB
 is contained in D.

 It is easy to construct examples of non-weakly coherent structures where
 the spaces X, 0 are not standard Borel. We do not know of any non-weakly
 coherent statistical structure in the standard Borel case. We are unable

 to check whether example 3.2 is weakly coherent or otherwise.
 A12-8
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