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 B-SPACES ARE STANDARD BOREL

 BY S. RAMAKRISHNAN AND B. V. RAO

 Indian Statistical Institute

 Separated B-spaces introduced by E. B. Dynkin are just standard Borel and
 thus here we have an intrinsic definition of standard Borel spaces.

 We consider a measurable space (2, F) where F is countably generated and contains
 singletons. Following Dynkin [ 1978], we say that a countable family Wof bounded functions-
 always real valued-on (2, F) is a support family if the following two conditions hold:

 (A) If (00,) is a sequence of probability measures on F and if for eachf E W, limn if djun
 = 1(f) exists then there is a probability IL on F such that for eachf E W, 1(f) = ff dAi.

 (B) If a class H of functions on 2 contains W and is closed under addition, multiplication
 by constants, and bounded convergence then H contains all bounded measurable functions
 (fn converges boundedly to f means fn converges to f pointwise and the functions fn are
 uniformly bounded).

 (2, F) is said to be a B-space if it has a support family. From Condition (B) it follows that
 if (5, F) is a B-space and W is a support family then W generates F. As noted by Dynkin
 every standard Borel space is a B-space. We now show that the converse is also true, that is,
 every B-space is a standard Borel space. We find this observation helpful in understanding the
 content of Dynkin [1978].

 So, let (02, F) have a support family W = {fi, f2, * }. Let M be the space of all
 probabilities on (Q, F). The a-field M on M is the usual one generated by all functions of the
 form p f-* p(A) for A E F. By (B), M is also the a-field generated by the functions p -> ff i dp
 (i 2 1). Since F is countably generated it is easy to see that the collection D of point masses
 belongs to M and further (D, D n M) is Borel isomorphic to (02, F). We shall now topologize
 M as follows: consider the map e:p I-* (f fi dp, ff2 dp, ...) from M to R x R x ... = Ra.
 By (B) e is a 1-1 map and by (A) the range of e, denoted by e(M), is closed in Ra. Thus
 identifying M with e(M) we make M into a complete separable metric space. Let M be the
 Borel a-field of M. Since the Borel a-field on R' is generated by the coordinate maps, M is
 generated by the maps p 1-* i dp (i - 1). This implies that M = M and so (M, M) is a
 standard Borel space. As remarked earlier (2, F) is isomorphic to a Borel subspace of (M, M)
 so that (2, F) is also a standard Borel space. This completes the proof of the observation.

 We assumed F to be countably generated. If (s2, F) has a countable support family then
 Condition (B) implies that F is countably generated. We assumed F to contain singletons. This
 is no restriction because otherwise we can look at the space of atoms.

 The referee has remarked that the concept of B-space was introduced in Dynkin [1971] and
 was used extensively in Dynkin and Yushkevich (1979).
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