A REPRESENTATION THEOREM FOR G;-VALUED
MULTIFUNCTIONS

By S. M. SRIVASTAVA

1. Introduction. In this paper we prove the following representa-
tion theorem for G;-valued multifunctions:

THEOREM 1.1 Let T, X be Polish spaces, 3 a countably generated
sub o-field of the Borel o-field &1 and F:T — X a multifunction. Then
the following are equivalent:

(A) Fis 3-measurable, Gr(F) € 3 ® Bx and F(t) is a G5 in X for
eacht €T.

(B) Thereis a functionf:T X ¥ — X such thatfort € T,f(t, .)isa
continuous, closed map from ¥ onto F(t) and foro € X, f(., o) is
3-measurable, where L is the space of irrationals.

The necessary definitions and notation are given in Section 2 where
we also state some known results for easy reference. In Section 3 we prove
the implication (A) = (B) when X is, moreover, zero-dimensional; this
implication for an arbitrary Polish space X is proved in Section 4. The im-
plication (B) = (A) is proved in Section S.

The author [10] had earlier established the existence of a 3-measur-
able selector for a multifunction F:T — X satisfying condition (A4).
Various representation theorems for such multifunctions are also proved
in [9]. Similar results for multifunctions taking closed values in a Polish
space can be found in [5], [11].

Our result can be viewed as a sectionwise version of the following well
known characterization of Polish spaces: a second countable, metrizable
space is completely metrizable if and only if it is the image of irrationals
under a closed continuous function. The ‘if” part of this result was proved
by Vainstein [14] and we carry over this proof for each F(z), t € T,
uniformly to prove the implication (B) = (A). Engelking [4] proved the
‘only if’ part of the above result.

I received invaluable help and suggestions from Drs. A. Maitra and
H. Sarbadhikari while working on the problems considered in this paper.

I express my deep indebtedness to them.
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2. Definitions and Notation. The set of positive integers will be
denoted by N. § will denote the set of all finite sequences of positive in-
tegers, including the empty sequence e. For each non-negative integer k,
we denote by Si the set of elements of S of length k. For s € S, |s| will
denote the length of s and if i < |s| is a positive integer, s; will denote the
i-th coordinate of s. If s € § and n € N, sn will denote the catenation of s
and n. We put ¥ = NV. Endowed with the product of discrete topologies
on N, X becomes a homeomorph of the irrationals. For ¢ € £ and k € N,
o« will denote the k-th coordinate of ¢ and ok = (04, ..., 0x). If kK = 0,
olk = e. If s € Sk, L; will denote the set {0 € X : 0|k = s}.

Let (X, @) and (Y, &) be measurable spaces. We denote by @ ® &
the product of the o-fields @ and B. We say that the o-field Q is countably
generated if there exist subsets A, n € N, of X such that Q is generated by
{A,:n € N}. A non-empty set A € Q is called an A-atom if A 2 B€ Q@ =
B=AorB=0.1fZ c X, @|Z will denote the trace of the o-field @ on Z.
So, @|Z ={A N Z:A € @}. If X is a metric space, Bx will denote the
Borel o-field of X. If E C X X Y and x € X, E* will denote the set {y €
Y:(x, y) € E} and will be called the section of E at x. We use IIx to denote
the projection from X X Y to X.

A multifunction F: T — X is a function whose domain is 7 and whose
values are non-empty subsets of X. A function f: T — X is called a selector
for Fif f(¢t) € F(t) foreacht € T. The set {(¢,x) € T X X:x € F(t)} is
denoted by Gr(F) and is called the graph of F. If X is a metric space and J
is a o-field on T, we say that F is J-measurable if the set {t € T:F(¢) N
V # 0} € J for every open set Vin X.

Let X, Y be topological spaces and A C X. We say that A is a retract
of X if there is a continuous function f: X — A such that f (x) = x for each
x € A. The map fis called a retraction of X onto A. A continuous function
g:X — Y is called closed if for every closed set C in X g(C) is relatively
closed in the range of g.

The rest of our terminology is from [6].

Now we state two results which will be useful in the sequel.

LeEmMMA 2.1. Let T, X be Polish spaces and 3 a countably generated
sub o-field of Br. Let B € 3 @ Bx and let the sections of B be o-compact.
Then I17(B) € 3.

Proor: By a result of Arsenin and Kunugui [1] (See also [13]) it
follows that II+(B) is Borel in T. Further, II(B) is a union of 3-atoms.
As 3 is countably generated, by a result of Blackwell [2], II7(B) € 3.
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The next is a very useful result for G;-valued multifunctions. A proof
of this is given in [10].

LEMMA 2.2 Let T, X be Polish spaces and 3 a countably generated
sub o-field of Br. Let G € 3 ® Bx and G' be a G5 in X for each t € T.
Then there exist sets G, € 3 Q Bx such that G, is open in X fort € T and
ne€NandG= N3 G,.

3. The zero-dimensional case. Our first result is on closed valued
multifunctions. This result is itself interesting and it is very easy to deduce
(under a weaker measurability condition) Ioffe’s representation theorem
for closed valued multifunctions [S] from this

Prorosition 3.1 Let (T, 3) be a measurable space and F: T — L
be a 3-measurable multifunction such that F (t) is closed in ¥ for each t €
T. Then thereis amap g:T X ¥ — X such that

(i) for each t € T, g(t, .) is a closed retraction of ¥ onto F(t), and '

(ii) for 0 € &, g(., o) is 3-measurable.

Proof. Lets € S. Let T, = {t € T:F(t) N L, # 0}. As F is
3-measurable, T € 3. Define a closed valued multifunction F;: T — X by

F.t) =F@ N L, teT,.

F, is 3|T,-measurable. By the selection theorem of Kuratowski and Ryll-
Nardzewski [8], we get a 3| T;-measurable selector f; : T, — X for F;. Now,
defineg:T X ¥ — L by

gt,o)=o¢ if o € F(z)

= foln—1(2) if o £ F(¢) and n is the first positive integer m such
that F(z) N L, = 0.

As Fis closed valued, g is defined on all of T X L. (i) is easily checked. To
check (ii), fix ao € X, and define

T”=(Q Tolm)\Ta|nr neN

The sets 7", n € N, belong to 3 and are pairwise disjoint.
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Further,

g(t9 0) =fu|n—l(t) if ¢ €T
=0 ifre7\(U 77).

It follows that g(., o) is 3-measurable.

From now on, in this and in the next section, T, X will denote ar-
bitrary Polish spaces and 3 a countably generated sub o-field of B r- X will
be given a complete metric such that diam (X) < 1. We fix a base
{V.:n € N} for the topology of X such that it is closed under finite inter-
sections and finite unions, V, = @ and V, = X. In this section X will be,
moreover, zero-dimensional and basic open sets will be closed as well.
Finally, in both these sections F: T — X will denote a multifunction satis-
fying condition (A). G,, n € N, will be a sequence of sets in 3 ® ®Bx such
that Gt is open fort € Tandn € Nand G = 3=, G,, where G denotes
the graph of F. The existence of such a sequence of sets is ensured by
Lemma 2.2.

LemMA 3.2 Let X be compact. Then for each t € T there is a system
{ns:s € S} of positive integers and a system {F,") :s € S} of clopen subsets
of X such that for s € Sk, k is a non-negative integer, andt € T

(i) t' — ns' is a 3-measurable map defined on T,
(i) diam (F,9) < 27k,
(iii) G* € FWand Gt N F© < U= F0,
(IV) F, O € Ge+' N F0, méeN,
) Fo =V, ifk =0,0ork € Nand s, = 1.
= Vag N\ Uicy Vargu—1, if k € N and se > 1.

In particular, it follows that if s, s' € Sx and s # s' then F¥ N
Fs'(t) = 0.

Proof. We define these by induction on |s|.

Define n.! = 2 and F.®) = V,, t € T. (i)-(v) are satisfied for s = e
and ¢ € T. Suppose n,* and F,® are defined for ¢ € T and s € S of length <
k satisfying (i)-(v). Fix an s € Sx. We observe that the set {t € T:U <
G%+1 N F,©} € 3 for every open set U in X. To see this let z € T. We have:

Ifk =0, 0ork € Nand sy = 1, then

UcGu+1 NFY e AleN)(n! =1land U € G%+1 N V)
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whereas if k € N and s > 1, then
Uc G NFY o A, ..., L) e Nk (Vi < si) (10 = 1)
and

UcCGu+i N (lek\_y Vi)
1 Sk

By the induction hypothesis and Lemma 2.1, the assertion is now easy
to check. For each ¢ € T, we now define n’,,, p € N, by induction on p. For
m € N, let

T.°=0 ifdiam(V,) =2 *®+tborm =1
= {t €T:V, C Glyy1 N FO

and

(vl < m)(diam(V,) < 27¢+0 = V, ¢ G4+, N
F0)}, if diam (V,,) < 2~**Yandm > 1

By the above observation, the sets 7,.°, m € N, belong to 3 and are pair-
wise disjoint. Define

ns =m ifteT,°

1 ifreT\U T,

Clearly, the map ¢t — n';; is 3-measurable. Suppose for some p € N, maps
t — n'y; are defined for every i < p and are 3-measurable. For m € N, let

T.» =90 if diam (V,,) = 27&+1,
={teT:n'y, <m,V, S Gy NFO
and
(vl < m) (diam(V;) < 2=%*D = (n'y, = m or

Vi & Giesr N F0))}, if diam (V,,) < 2-&+D,
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The sets T,,», m = 1, belong to 3 and are pairwise disjoint. Define

n'sp+1 = m ift € T,”,

1 ifteT\U Tp.

Ass € Sy and p € N were arbitrary, this completes the definition of {n’, :s' €
Sk+1}. We define {F, ¥ :s' € S¢+,} satisfying (v), ¢ € T. It is easy to verify
that the systems {n,':s € S} and {F,:s € S} thus defined satisfy the re-
quired conditions for each ¢ € T.

Proofof(A) = (B)when X is a zero-dimensional, Polish space. ~ Since
each zero-dimensional Polish space can be embedded in a zero-dimen-
sional compact metric space in which it will automatically be a G, we see
that it is sufficient to prove the result when X is, moreover, compact. So,
we assume that X is a compact, zero-dimensional, metric space. We get a
system {n, :s € S} of positive integers and a system {F :s € S} of clopen
sets in X satisfying (i)-(v) of Lemma 3.2. We define a multifunction
H:T — L by

H(t) ={o€L:F;» # 0forallk e N}, teT.

Using standard arguments, we show that H(z) is closed in Y foreacht e T.
Further, H is 3-measurable. To see this, letz € T'and s € S,. Then

HNYE, #0 e G NFO %9,
and if kK = 0, or kK € N and s = 1, then

FONG' #0eFit)NV,y #9
o (AleN)(ny =1 and F®)NV #0)

whereas if K € N and s, > 1, then

FONG #8aFONVu\U Vi, ) =0
1<sk '

& (A -+ L) € Nov) (Vi < 1) (hyumr = 1)
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and

F@) N (V,\U V,) % 9)
I<Sk

By 3-measurability of F and the condition (i) of Lemma 3.2, it follows that
{te T:H(t) N X, # 0} € 3. Thus, H is 3-measurable. By Proposition 3.1,
let h:T X ¥ — ¥ be a map such that for each z € T, h(¢, .) is a closed
retraction of L onto H(¢) and for each o € X, k(., o) is J-measurable.

Now, define a map g:Gr(H) — X by taking g(z, o) to be the unique
pointin N =, F,x, (¢, o) € Gr(H). By standard arguments, we show that
foreacht € T, g(¢, .) is a homeomorphism from H(z) onto G* = F(t). Let
U < X be open and (¢, o) € Gr(H). Then

g(t, g)eU & r’) Falk(t) cU

& (3k) (Fo» <€ U)
& (3seS) (o€ X and F,© c U).
Thus,

g '(U)=Gr(H) N Ler {teT:Foc U} X L))

We argue as before and show that foreverys €S, {t e T:F,.® c U} € 3. It
follows that g is 3 ® ®z|Gr(H)-measurable.
Finally, definef: T X ¥ — X by

f@t,0) =gt ht,0),teT,o€k.
It is easily checked that f has the desired properties.

4. The General Case. The main idea contained in this part of the
proof is contained in Ponomarev [12].

LeEmMMa 4.1. Let X be compact. Then fort € T and i, j € N there ex-
ist positive integers n;' and n; such that
(i) the mapst — n/andt — n; are 3-measurable,
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(i) diam (Vo) = 274,
(iii) F(t) € Ug=1 Vi,
(iv) m > n/ = n,' = 1.

Proof. Let G = {(t,x) € T X X:x € F(t)}. For every open set U in
X, {teT:G'NU#0)={reT:Ft) N U # 0} €3.Fixi € N. We shall
define maps ¢t — n;’, j € N, by induction on j. For m € N, let

T,°= if diam (V,,) = 2~

={teT:G'NV, # 0and
(VI < m)(diam(V;) <27 = G' NV, = 0)},

if diam (V,,) < 277,

By the above observation, the sets 7,,.°, m € N, belong to 3 and are pair-
wise disjoint. Also, T = U z-, T,,°. We define

niat'=m ift e Tmo.
The map t — n,' is clearly 3-measurable. Now, suppose for some p € N,
n;' is defined for all j < p and ¢ € T and the maps ¢ — n,/, j < p, are

J-measurable. We observe that for every open set U in X,

{teT:(G'\U V,,)NU#0}e3.
J=p :

To see this, first observe that if ¢+ € T and x € X, then

(t,x)£G & x £ FQ)
e @neN)(x€V,and V, N F(t) = 0).

So that

TXXN\G= U ({te T:F() N V, =0} X V,) €3 ® Gr.

The above assertion now follows from the induction hypothesis,
Lemma 2.1 and the following equivalence for every ¢ € T

(G'\ L<JP Vi )NU =B e 3 ---1,)eEN)(V, =p)(n,,=1)
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and

(G Y V) N U # 0).
jsp
For m € N, define

7., =0 if diam(V,,) = 2°¢
{teT:ny <m,(G\U V)NV, =0
J=p
and
(vl < m) (diam(V;) < 27 = (I < ny' or

G\ U V)NV, = )}, if diam (V) < 277,
1<p

By the observation made above, it follows that the sets 7,,», m € N,
belong to J and are pairwise disjoint. We define

Rlip+1 —m ift € TP

1 ifreT\U T,p.

As p € N was arbitrary, this completes the definition of the maps ¢t — n;,

J € N. To define n!, t € T, notice that Gt is compact and so, (3m € N)
(vl > m) (nyst = 1). We define n/ to be the first such positive integer m,
t € T. It is an easy matter to verify that conditions (i)-(iv) are satisfied.

LeEMMA 4.2 Let X be compact. Then thereisasetB € T X L and a
map g:B — X such that fort € T

(i) Bel ® ®Bg,
(i) B! is non-empty and compact.
(iii) g(z, .) is a continuous map from B* onto F(z),

(iv) D is a dense subset of F(t) = {0 € L:g(t, 0) € D} is dense in B,
(v) gis (3 ® ®Bz)|B-measurable.
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Proof. Fort € Tandi, j € N we get positive integers n,! and n;* satis-
fying condition (i)-(iv) of Lemma 4.1. Let G = {(t,x) € T X X:x € F(1)}
and let

U=V, NG ifj=1

(V,,:ﬂG)\U(V,,,,:ﬂG) ifj>1.

We have
(1) U is relatively open in G*,
(2) diam (U;®) < 274,
@B m#n=U,»NU,9 =9,
@ m>nt=U,0=290
6) G'=Up Ua®
(6) for everyopenset Uin X, {t € T:G*' N U < U;"} €3,
(7) if P is a finite subset of N X N and if U < X is open then

{teT: N U,.2NUz=0}el.
(m,n)epP

Properties (1)-(S) are clear. To see (6), notice that if j = 1
GNUCUW e @leN)(ng =1andG' N U S V)
while if j > 1

GNUCU &G NUC Vi \U (Vi 0 G

ni

eG'NUCYV,

nij

tand (VkE < ) (G' N UN Vyyr = 0)

& 3y --- L) eN)(VEk = )) (nat = 1),
G'NU < V;and
(VkE < (G N UN V,=0))

Now, (6) follows from (i) of Lemma 4.1 and Lemma 2.1. (Note that G €
3 ® Gx). To prove (7), first notice that
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n Umu(’)nU#ﬂé(ikEN)(VkEUarld

(m,n)eP

(V(m,n) e P)(G' N V., € UY)).

Now, (7) follows from (6).
For ¢t € T and i, j, € N, we define the following by induction on i:

m! =n/ ifi =1
=m'i—-n ifi > 1,
and W0 = Uy ifi =1

=WO,_ 1N U, ifi>1,1<k<m'i,
l<l=<nfandj=(k— 1n/+1
=90 lfj > m.

We have
(a) the map ¢t — m/ is 3-measurable,
(b) W, is relatively open in G,
(¢) diam (W;0) < 271,
dm#n=W,0N W,0 =9,
(e) k > m/ = Wy =90,
® G =Ugz, w0,
(g) (V(i, j) € N X N)(3k € N) (WO, © WiD),
(h) WOy ; € Wi = WO, ; € Wi, k €N,
(1) {reT:W;0 =0} €3,
() UisopeninX = {re T:W,0 c U} €3,
k) {t e T:WO 4y, € W0} €3.

(a)-(h) are easily verified. (i) follows from (7). Also, from (7), we get
that the closed set-valued function ¢ — W is 3-measurable. Hence, by
[15, Theorem 4.2], its graph is in 3 @ ®x. Now, (j) follows from Lemma
2.1. To verify (k), notice

{t E T:W(’)k-l—l,m g W(')k"} = {t E T:W“)k+|.,n = ﬂ} U {t G T:G
* W(')k+l.m o Wkn(’)}

:{t € T:W“)k"’l.m = ﬂ} U U {t € T:jn
S mi,p = Rk+1},
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where the last union is taken over all (p, g) € N X N such thatq < p and
Jm = (. — 1). p + q. Now, (k) follows from (i), (a) and (i) of Lemma 4.1.
We define

B={(t,0) €T X L:(Vk) (Wi, ® # Band WOy 1, ,, S Wi, @)}
={(t,0) € T X L:(Vk) (Wi, ® # B and W1, ,, S Wi, )}

={(t,0) €T X L:(VEk) (W, 2 + -+ 2 Wi, © # 0)}

=N U ({teT:W,,©®2 -+ 2 Wi, » # 0} X L))

k=1 seSy

From (i) and (k), it follows that B € 3 ® ®z. By Kénig's infinity lemma
[7, pp. 326] we get that B! = 0, for each ¢ € T. It is easy to check that for
teT,B'isclosedin L and B' € X2, ({1, ..., m}). Thus, B'is a non-
empty, compact subset of L, ¢ € 7. We define g: B — X by taking g(¢, o)
to be the unique point in M-, W—k:"’, (¢, 0) € B. Using Kénig’s infinity
lemma, we check that g(¢, .) is a continuous map from B onto G, t € T.

For a proof of (iv) the reader is referred to Ponomarev [12]. Finally, if
(¢, 0) € B and U is open in X, then

g, 0)elU & (3k € N)(3m € N) (W, € U and o, = m)

From (j), it follows that g is 3 ® ®:|B-measurable.

Proof of (A) = (B). Since each Polish space can be embedded in a
compact metric space in which it will automatically be a G,, it is sufficient
to prove the result for a compact metric X. So we assume that X is a com-
pact metric space. We getaset B € T X L and a mapg: B — X satisfying
conditions (i)-(v) of Lemma 4.2. We define a multifunction H: T — X by

H(t) ={o€XL:g(t o) € Ft)}, teT.

H(¢) is a non-empty, G set in X and by (iv) of Lemma 4.2, H(¢) is dense in
Bt t € T. Thus by (i) and (ii) of Lemma 4.2 and Lemma 2.1, it follows that
H is 3-measurable. By (i) and (v) of Lemma 4.2 and the fact that Gr(F) €
3 ® ®Bx, we get that Gr(H) € T ® B:. By (A) = (B) for zero-dimen-
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sional Polish spaces proved in section 3, we get amap h: T X L — ¥ such
that for each ¢ € T, h(z, .) is continuous, closed and onto H(¢) and for
eacho € L, (., 0) is 3-measurable. Define f: T X ¥ — X by

ft,o0) =gt , h(t,0),teT,o€k.
It is easily checked that f satisfies (B).

5. Proof of (B) = (A). We first check that F is J-measurable. Let
{o":n € N} be a dense sequence in X. Then { (¢, 0"):n € N} is dense in
F(t), t € T. Therefore, for U < X open,

(teT:FO)NU =0} = ”Ql (f(., oM~ (1)) €3.

Now, let {U,:n € N} and {V,:n € N} be bases for ¥ and X respectively.
We define aset B € T X X as follows:

(t, 0) € B & (3x € X) (either f(¢, .,) ! (x) is not open and o is a
boundary point of it, or £ (¢, .) ™! (x) is open and ¢ = ¢”, where n
is the first positive integer m such that £ (¢, o) = x).

It is easily checked that for ¢ € T, B is closed in X and f(¢, B') = f(t,
L) = F(t). It follows from a result of VainsteTn [14] (see also [3, p. 204])
that the restriction of f(¢, .) on B’ is perfect. Vainstein [14] proved that if
a separable metric space Z is the image of a Polish space under a perfect
map, Z is Polish. From this it follows that F(¢) is a G; in X for each ¢ € T.
Finally, observe that

(t,0) € B & Either[(vm) {c € U,, = (3k) (6% € U, and f (¢, o%) # f (¢, 0))}]
or[(3n) {0 =07, (VI < n) (f(t, o) #f(¢t,0"))
and (3p) (f(¢,0") € V,and
(VD) (f(t,0!) €V, = f(t,0!) = f(t, 0"))}]

Thus, B €3 ® ®:. Now,

(t,x) € Gr(F) & (30 € X) (¢, 0) € B and f(t, 0) = x).
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Therefore
Gr(F) = Il;xx ({(¢t,0,x) € T X ¥ X X:(t,0) € Bandf(¢, 0) = x})
By Lemma 2.1, Gr(F) € 3 ® ®x.

INDIAN STATISTICAL INSTITUTE, CALCUTTA.
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