
 A REPRESENTATION THEOREM FOR G6-VALUED

 MULTIFUNCTIONS

 By S. M. SRIVASTAVA

 1. Introduction. In this paper we prove the following representa-

 tion theorem for G6-valued multifunctions:

 THEOREM 1.1 Let T, X be Polish spaces, 3 a countably generated

 sub a-field of the Borel a-field (3T and F: T - X a multifunction. Then
 the following are equivalent:

 (A) F is 3-measurable, Gr(F) E 3 0 (63x and F(t) is a G6 in Xfor
 each t E T.

 (B) There is a function f : T X -X such that for t E T, f (t, . ) is a

 continuous, closed map from S onto F(t) andfor a E ,f f, a) is

 3-measurable, where E is the space of irrationals.

 The necessary definitions and notation are given in Section 2 where

 we also state some known results for easy reference. In Section 3 we prove

 the implication (A) X (B) when X is, moreover, zero-dimensional; this

 implication for an arbitrary Polish space X is proved in Section 4. The im-

 plication (B) X (A) is proved in Section 5.

 The author [10] had earlier established the existence of a 3-measur-

 able selector for a multifunction F: T - X satisfying condition (A).

 Various representation theorems for such multifunctions are also proved

 in [9]. Similar results for multifunctions taking closed values in a Polish

 space can be found in [5], [11].

 Our result can be viewed as a sectionwise version of the following well

 known characterization of Polish spaces: a second countable, metrizable

 space is completely metrizable if and only if it is the image of irrationals

 under a closed continuous function. The 'if' part of this result was proved

 by Vainstein [14] and we carry over this proof for each F(t), t E T,

 uniformly to prove the implication (B) * (A). Engelking [4] proved the

 'only if' part of the above result.

 I received invaluable help and suggestions from Drs. A. Maitra and

 H. Sarbadhikari while working on the problems considered in this paper.

 I express my deep indebtedness to them.
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 2. Definitions and Notation. The set of positive integers will be

 denoted by N. S will denote the set of all finite sequences of positive in-

 tegers, including the empty sequence e. For each non-negative integer k,

 we denote by Sk the set of elements of S of length k. For s E 5, IsI will
 denote the length of s and if i c is I is a positive integer, si will denote the
 i-th coordinate of s. If s E S and n E N, sn will denote the catenation of s

 and n. We put E = NN. Endowed with the product of discrete topologies

 on N, E becomes a homeomorph of the irrationals. For u E and k E N,

 Uk will denote the k-th coordinate of a and aIk (a, .I. ., Uk). If k = 0,

 aIk = e. If s E Sk, E, will denote the set {ua E a :Ik s} .
 Let (X, () and (Y, (3) be measurable spaces. We denote by (a 9 d?

 the product of the a-fields (a and (3. We say that the u-field (a is countably

 generated if there exist subsets An, n E N, of X such that (a is generated by

 {An:n E N}. A non-empty setA E a2 is called an A-atom if A D B E a2 >

 B = A or B = 0. If Z c X, C2 IZ will denote the trace of the u-field Ca on Z.
 So, (2 6Z = {A n Z: A E (2} . If X is a metric space, EBx will denote the

 Borel a-field of X. If E C X X Y and x E X, Ex will denote the set {y E

 Y: (x, y) E E} and will be called the section of E at x. We use fIx to denote

 the projection from X X Y to X.

 A multifunction F: T - X is a function whose domain is T and whose
 values are non-empty subsets of X. A functionf: T - X is called a selector

 for F iff(t) E F(t) for each t E T. The set {(t, x) E T X X:x E F(t)} is

 denoted by Gr(F) and is called the graph of F. If X is a metric space and 3

 is a u-field on T, we say that F is 3-measurable if the set { t E T:F(t) n

 V ? 0} E 3 for every open set V in X.

 Let X, Y be topological spaces and A C X. We say that A is a retract

 of X if there is a continuous functionf: X - A such thatf(x) = x for each

 x E A. The mapf is called a retraction of X onto A. A continuous function

 g :X - Y is called closed if for every closed set C in X g(C) is relatively

 closed in the range of g.

 The rest of our terminology is from [6].

 Now we state two results which will be useful in the sequel.

 LEMMA 2.1. Let T, X be Polish spaces and 3 a countably generated

 sub a-field of (6 T. Let B E 3 0 (63x and let the sections of B be a-compact.

 Then IT(B) E 3.

 PROOF: By a result of Arsenin and Kunugui [1] (See also [13]) it

 follows that HT(B) is Borel in T. Further, HT(B) is a union of 3-atoms.
 As 3 is countably generated, by a result of Blackwell [2], HIT(B) E 3.
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 The next is a very useful result for G6-valued multifunctions. A proof

 of this is given in [10].

 LEMMA 2.2 Let T, X be Polish spaces and 3 a countably generated

 sub a-field of (6T. Let G E 3 0 (3)x and Gt be a G6 in Xfor each t E T.

 Then there exist sets Gn E 3 X (i)x such that G,,t is open in Xfor t E T and

 nENand G =ln o= G, .

 3. The zero-dimensional case. Our first result is on closed valued

 multifunctions. This result is itself interesting and it is very easy to deduce

 (under a weaker measurability condition) loffe's representation theorem

 for closed valued multifunctions [5] from this

 PROPOSITION 3.1 Let (T, 3) be a measurable space and F: T -

 be a 3-measurable multifunction such that F(t) is closed in E2for each t E
 T. Then there is a map g: T X , - E such that

 (i) for each t E T, g(t, .) is a closed retraction of E onto F(t), and

 (ii) for a E E, g(., a) is 3-measurable.

 Proof Let s E S. Let T, = {t E T:F(t) n i: ? 0}. As F is
 3-measurable, T, E 3. Define a closed valued multifunction FP T, - E by

 Fs (t) = F(t) n r5, t E T,

 Fs is 3 T,-measurable. By the selection theorem of Kuratowski and Ryll-
 Nardzewski [8], we get a 3 5 T,-measurable selectorf: T,- E for FP. Now,
 define g: T X E -S by

 g(t, a) = a if or E F(t)

 = fln - I (t) if a ? F(t) and n is the first positive integer m such
 that F(t) n Eujm = 0.

 As F is closed valued, g is defined on all of T X E2. (i) is easily checked. To

 check (ii), fix aa E E, and define

 Tn=(fn Tim) \Tan n EN
 m<n

 The sets Tn , n E N, belong to 5 and are pairwise disjoint.
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 Further,

 g(t, o) = f,1,(t) ift E Tn

 = or if tE(T \(U Tn).
 n=1

 It follows that g(., a) is 3-measurable.

 From now on, in this and in the next section, T, X will denote ar-

 bitrary Polish spaces and 3 a countably generated sub a-field of (B3 TX will

 be given a complete metric such that diam (X) < 1. We fix a base

 { Vn : n E N} for the topology of X such that it is closed under finite inter-

 sections and finite unions, Vi = 0 and V2 = X. In this section X will be,

 moreover, zero-dimensional and basic open sets will be closed as well.

 Finally, in both these sections F: T - X will denote a multiunction satis-

 fying condition (A). Gn , n E N, will be a sequence of sets in 3 0 63x such

 that Gnt is open for t E T and n E N andG = n l= Gn, where G denotes

 the graph of F. The existence of such a sequence of sets is ensured by

 Lemma 2.2.

 LEMMA 3.2 Let X be compact. Then for each t E T there is a system

 {n, :s E S} of positive integers and a system {F,(t) s E S} of clopen subsets
 of X such that for s E Sk, k is a non-negative integer, and t E T

 (i) t' - nt is a 3-measurable map defined on T,

 (ii) diam (F,(t)) < 2-k,
 (iii) Gt c Fe(t) and Gt nf FS(t) C U x'=1 FS,(t,
 (iv) Fsm(t) c Gk+lt nFl(t), m EN,

 (v) F(t) = Vnt ifk 0, or k EN and Sk= 1.

 = Vnst \ U i<sk Vntslk l- if k E N and Sk > 1.

 In particular, it follows that if s, s' E Sk and s ? s' then Fs(t) n
 Fs (t) = 0.

 Proof. We define these by induction on Is 1.
 Define net = 2 and Fe(t) = Vnet, t E T. (i)-(v) are satisfied for s = e

 and t E T. Suppose nst and Fs(t) are defined for t E T and s E S of length c

 k satisfying (i)-(v). Fix an s E Sk. We observe that the set {t E T: U C

 Gtk+1 Fl F(t)} E 3 for every open set U in X. To see this let t E T. We have:
 If k = 0, ork E Nandsk = 1, then

 U c Gtk+1 n Fs(t) X (31 E N) (nst = l and U C Gtk+ fl v,)
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 whereas if k E N andSk > 1, then

 u C Gt?k + Fl nFst) (3 (1, . S, ik) E Nsk ((Vi C Sk) (ntslk -,, = 1,)

 and

 U C Gtk +, n (Vlsk\ U v1o))
 1<s

 By the induction hypothesis and Lemma 2. 1, the assertion is now easy

 to check. For each t E T, we now define nt, , p E N, by induction on p. For
 m E N, let

 TmO = 0 if diam(V,,) 2 -(k+l)orm 1
 = {t E T: Vm C Gtk+l nFs(t)

 and

 (vli < m) (diam(V1) < 2 -(k + 1) X VI ? Gtk +, n

 Fs(t))}I if diam (Vm) < 2-(k?+) and m > 1

 By the above observation, the sets Tm?, m E N, belong to 3 and are pair-

 wise disjoint. Define

 nts = m if t E T?0

 = 1 if t E T\ U Tm?
 m=I

 Clearly, the map t - nts is 3-measurable. Suppose for some p E N, maps

 t - ntsi are defined for every i c p and are 3-measurable. For m E N, let

 TmP = 0 if diam (Vm) ? 2 (k?),

 = {t E T:ntsp < m, Vm c Gtk+l f Fs(t)

 and

 (vl < m) (diam(VI) < 2-(k+l) (n'1S, ? m or

 V1 ? G'k f n Fs(')))}, if diam (V,,,) < 2(k+1).
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 The sets Tm, m ? 1, belong to 3 and are pairwise disjoint. Define

 nt'P+1= m if t E Tmp,

 - 1 if tET\U Tm".
 m=l

 Ass E Sk andp E Nwere arbitrary, this completes the definition of {nts : s' E

 Sk+l }. We define {Fs,(t) :s ' E Sk?+ } satisfying (v), t E T. It is easy to verify
 that the systems {ns :s E S} and {Fs(t) :s E S} thus defined satisfy the re-
 quired conditions for each t E T.

 Proof of (A ) X (B) when X is a zero-dimensional, Polish space. Since

 each zero-dimensional Polish space can be embedded in a zero-dimen-
 sional compact metric space in which it will automatically be a G6, we see

 that it is sufficient to prove the result when X is, moreover, compact. So,

 we assume that X is a compact, zero-dimensional, metric space. We get a

 system {nst : s E S} of positive integers and a system {Fs(t) :s E S} of clopen

 sets in X satisfying (i)-(v) of Lemma 3.2. We define a multifunction

 H:T -L , by

 H(t) = {aE r :FUIk(t) ? 0forallk EN}, t E T.

 Using standard arguments, we show that H(t) is closed in S for each t E T.

 Further, H is 3-measurable. To see this, let t E T and s E Sk. Then

 H(t) n Es X 0 X Gt nFs(t) X 0,

 and if k = 0, ork E Nandsk = 1, then

 Fs(t) n G't 0 X F(t) n vns,t X 0

 (31lEN)(nst=l and F(t)fn V1?0)

 whereas if k E N and Sk > 1, then

 Fs(t)fnGtx0xF(t) n (v,st\ U V,,tSIk l) ? 0
 X<sk

 (3 (11(.. lsk) E Nsk) ((Vi -< Sk) (ntslk- 1, li)
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 and

 F(t) n (VIsk \ U V1i) ? 0)
 l <Sk

 By 3-measurability of F and the condition (i) of Lemma 3.2, it follows that

 {t E T: H(t) n Es 0} E S. Thus, H is 3-measurable. By Proposition 3. 1,
 let h: T X 2 - E be a map such that for each t E T, h (t, . ) is a closed

 retraction of F2 onto H(t) and for each a E E, h (., a) is 3-measurable.

 Now, define a map g: Gr(H) - X by taking g(t, a) to be the unique

 point innf nI- Fok(t), (t, a) E Gr(H). By standard arguments, we show that
 for each t E T, g (t, .) is a homeomorphism from H(t) onto Gt = F(t). Let

 U C X be open and (t, a) E Gr(H). Then

 g(t, or) E U <* n F,jk(t) C_ U
 k

 X (3k) (FUlk(t) C U)

 < (3s E S) (ao Es andFs(t) c U).

 Thus,

 g-1(U) = Gr(H) n U ({t E T:F5(t) C U} X Es)
 SES

 We argue as before and show that for every s E S, { t E T: Fs(t) C U} E 3. It

 follows that g is 3 0 @s I Gr(H)-measurable.
 Finally, definef: T X -X by

 f(t, a) = g(t, h(t, or)), t E T, a E 2.

 It is easily checked that f has the desired properties.

 4. The General Case. The main idea contained in this part of the

 proof is contained in Ponomarev [12].

 LEMMA 4.1. Let X be compact. Then for t E T and i, j E N there ex-

 ist positive integers nijt and nit such that

 (i) the maps t- nt and t - nijt are 3-measurable,
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 GOi diam ( Vni,t ) -< 2-i,
 (iii) F(t) C U M=: Vtli't'
 (iv) m > nit nimt = 1.

 Proof Let G = {(t, x) E T X X:x E F(t)} . For every open set U in

 X, {t E T: Gt n U ? 0} = {t E T:F(t) n U ? 0} E 3. Fix i E N. We shall
 define maps t - n,t, j E N, by induction on j. For m E N, let

 Tm? 0 if diam (Vm) ? 2-i

 = {t E T:Gt nVm ;V, 0 and
 (vl < m)(diam(Vi) < 2 Gt n v1 =

 if diam(Vm) < 2-i.

 By the above observation, the sets Tm?, m E N, belong to 3 and are pair-

 wise disjoint. Also, T U ,m=i Tm?. We define

 ni,t = m if t E Tm0.

 The map t - n, it is clearly 3-measurable. Now, suppose for some p E N,

 ni/t is defined for all j c p and t E T and the maps t --n-- jn p, are
 3-measurable. We observe that for every open set U in X,

 {t E T:(Gt \ U V,1it) n u x 0} E S.

 To see this, first observe that if t E T and x E X, then

 (t, x)? G X x ? F(t)

 < (3n EN)(xE V,,andV,, nFF(t) = 0).

 So that

 00

 TX X\G U ({t E T:F(t) n V1 = 0} X V,) E 30( 3x.

 The above assertion now follows from the induction hypothesis,

 Lemma 2.1 and the following equivalence for every t E T:

 (G' \ U V,i11t) nfU ? 0 < (3(1, .. . lp) E NP) ((y, _ p) (nil' = 1,) l?p
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 and

 (G'\U v11)fn U?0).

 For m E N, define

 Tmp = 0 if diam(Vm) ? 2-

 {t E T:nip' < m, (Gt \ U Vnut) n V. x 0
 J<p

 and

 (vi < m) (diam(Vi) < 2- ' (1 c nipt or

 (Gt u v,,t ) n v, = o))I, if diam ( Vm ) < 2 -
 1 <P

 By the observation made above, it follows that the sets TmP, m E N,

 belong to 3 and are pairwise disjoint. We define

 nti,p+= m if t E Tmp

 = 1 if t E T\ U Tmp.
 m=1

 Asp E N was arbitrary, this completes the definition of the maps t -nijt,

 j E N. To define n,t, t E T, notice that Gt is compact and so, (3m E N)
 (vi > m) (niat = 1). We define nit to be the first such positive integer m,

 t E T. It is an easy matter to verify that conditions (i)-(iv) are satisfied.

 LEMMA 4.2 Let X be compact. Then there is a set B C T X , and a

 map g: B -X such that for t E T

 (i) B E 3 (0 s,
 (ii) Bt is non-empty and compact.

 (iii) g(t, . ) is a continuous map from Bt onto F(t),

 (iv) D is a dense subset of F(t) * {a E :g(t, a) E D)} is dense in Bt,
 (v) g is (3 09 f3f S )B-measurable.
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 Proof. For t E T and i, j E Nwe get positive integers n,t and n/ satis-

 fying condition (i)-(iv) of Lemma 4.1. Let G {(t, x) E T X X:x E F(t)}
 and let

 u,(t) = v filt n Gt ifj = 1

 l n Gt)\ U (Vi,t n fGt) if] > 1.
 1<J

 We have

 (1) U#(t) is relatively open in Gt,
 (2) diam (U(t)) < 2 - ,

 (3) m ? n f Uim(t) n uijn= 0,
 (4) m > nit Uim(t) = 0

 (5) 6t = Uk= Ui(t)
 (6) for every open set U in X, {t E T:&t n U c Uy(t)} E 3,
 (7) if P is a finite subset of N X N and if U c X is open then

 {t E T: nf umn(t) n u ? 0} E .
 (m, n) EP

 Properties (1)-(5) are clear. To see (6), notice that if ] = 1

 Gt n u C Upt) * (31 E N) (nut = l and&Gt n u c v)

 while ifj > 1

 Gt n U C u(t) Gtn UC Vnut\u(vkktfnlt)
 k<j

 < Gt n uC Vnijt and (vk < j) (Gt n ufn Vnikt o)

 <= (3 (11 .. l j) E Ni) ((Vk ' j) (nikt = lk),

 Gt n U C Vij and
 (vk < j) (Gt n u nVIk = 0))

 Now, (6) follows from (i) of Lemma 4.1 and Lemma 2.1. (Note that G E

 3 ( (3x). To prove (7), first notice that
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 n U,I(M nU fu ? 0 * (3k E N) (Vk C U and
 (nI,II)EP

 (V(m , n) E P) (G' n vk c:UP,,)

 Now, (7) follows from (6).

 For t E T and i, j, E N, we define the following by induction on i:

 mit = nit if i = 1

 = mti-, nit if i > 1,

 and W4J(t) = UP() if i = 1
 = W(t)ilkfn ui(t) if i > 1, 1 c k mti-l,

 1c I< nit andj =I(k-1) nit + I

 =0 ifj > mit.

 We have

 (a) the map t - mit is 3-measurable,

 (b) WU(t) is relatively open in G',
 (c) diam ( W#(t) ) < 2-i,
 (d) m ? n 1 wi4(t) nf Wi(t) = 0,
 (e) k > m it = Wik(t) =0,

 (f) G'= U=1 l(t),
 (g) (V(i, j) E N X N) (3k E N) (W(t)i+,, c Wik(t)),
 (h) V(t)i+?,j C W1k4(t) > w(t) i +j CV Wik(t), k E N,

 (i) {t E T: Wi(t') ? 0} E 3,
 (j) U is open in X t {t T: Wl,(t) C U} E 3,

 (k) {t E T: W(t)k+l,,?, C Wkn(t} E 3.

 (a)-(h) are easily verified. (i) follows from (7). Also, from (7), we get

 that the closed set-valued function t - Wij(t) is 3-measurable. Hence, by
 [15, Theorem 4.2], its graph is in 3 0 ()x. Now, (j) follows from Lemma

 2.1. To verify (k), notice

 {t E T: W(t)k+1,m C W(t)k,} = {t E T: W(t)k+l 0} U {t E T:0

 ? W(t)k1+1, +n 1C Wk( V t) }

 - {t E T: W(t)k+ m,m = 0} U U {t E T:j,,
 < mk',p = nt'k+},
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 where the last union is taken over all (p, q) E N X N such that q ' p and

 Im = (j-1). p + q. Now, (k) follows from (i), (a) and (i) of Lemma 4. 1.
 We define

 B = {(t, a) E T X : (vk) (WkUk(t) ? 0 and W(t)k+?,ak+l C Wkuk(t)}

 - {(t, a) E T X : (vk) (WkUk(t) 0 and W(t)k?+ ak+l C Wkuk(t)}

 = (t, or) E T X E:(vk) (W1,1(t) *** Wkak(t) M?0)

 - n U ({t E T: WIst D _ Wksk(t) ? 0} x )
 k=1 SESk

 From (i) and (k), it follows that B E 3 63. By Konig's infinity lemma

 [7, pp. 326] we get that Bt ? 0, for each t E T. It is easy to check that for

 t E T, Bt is closed in E and Bt c X l= ({1, . . ., mit}). Thus, Bt is a non-
 empty, compact subset of E, t E T. We define g: B - X by taking g (t, a)
 to be the unique point in n ,'=l Wkok(t) (t, a) E B. Using Konig's infinity
 lemma, we check that g(t, .) is a continuous map from Bt onto Gt, t E T.

 For a proof of (iv) the reader is referred to Ponomarev [12]. Finally, if

 (t, a) E B and U is open in X, then

 g(t, a) E U X (3k E N) (3m E N) (Wkm(t) C U and Ork = m)

 From (j), it follows that g is 3 0 (3r IB-measurable.

 Proof of (A) X (B). Since each Polish space can be embedded in a

 compact metric space in which it will automatically be a G,, it is sufficient
 to prove the result for a compact metric X. So we assume that X is a com-

 pact metric space. We get a set B C T X E and a map g: B - X satisfying
 conditions (i)-(v) of Lemma 4.2. We define a multifunction H: T -S by

 H(t) = {a E 2:g(t, a) E F(t)}, t E T.

 H(t) is a non-empty, G6 set in E and by (iv) of Lemma 4.2, H(t) is dense in

 Bt, t E T. Thus by (i) and (ii) of Lemma 4.2 and Lemma 2.1, it follows that

 H is 3-measurable. By (i) and (v) of Lemma 4.2 and the fact that Gr(F) E

 3 X (63x, we get that Gr(H) E T (0 Br. By (A) * (B) for zero-dimen-



 G6-VALUED MULTIFUNCTIONS. 177

 sional Polish spaces proved in section 3, we get a map h: T X E-S such

 that for each t E T, h (t, . ) is continuous, closed and onto H(t) and for

 each a E E, h(., a) is 3-measurable. Definef: T X E-X by

 f(t, a) = g(t, h(t, a)), t E T, a E S.

 It is easily checked that f satisfies (B).

 5. Proof of (B) * (A). We first check that F is 3-measurable. Let

 {rna:n E N} be a dense sequence in E. Then {f(t, an):n E N} is dense in
 F(t), t E T. Therefore, for U c X open,

 00

 {t E T:F(t) n u ? 0} = U (f(., an)-I (U)) E 3.
 n=1

 Now, let { Un : n E N} and { Vn n E N} be bases for E and X respectively.
 We define a set B C T X E as follows:

 (t, a) E B X (3x E X) (eitherf(t, . ,)-I (x) is not open and a is a

 boundary point of it, orf (t, . ) - 1 (x) is open and a = an, where n

 is the first positive integer m such thatf(t, a-) = x).

 It is easily checked that for t E T, B' is closed in , and f(t, B') = f(t,

 E) = F(t). It follows from a result of VaTnsteTn [14] (see also [3, p. 204])
 that the restriction off (t, . ) on B' is perfect. Valnste-in [14] proved that if

 a separable metric space Z is the image of a Polish space under a perfect

 map, Z is Polish. From this it follows that F(t) is a G6 in X for each t E T.

 Finally, observe that

 (t,o)EB X Either[(vm)o{a Un, (3k)(ak E Un andf (t, ak) ;? f(t, a))}]
 or [(3n) {a = arn, (Vi < n) (f(t, a') ?f(t, a'))

 and(3p)(f(t, a') E Vp and
 (vl) (f(t, a') E Vp X f(t, a') =f(t, a")))}]

 Thus, B E 3 0 63E. Now,

 (t, x) E Gr(F) X (3a oE E) ((t, a) E B andf(t, a) = x).
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 Therefore

 Gr(F) HTxx ({(t, a, x) E T X S X X: (t, a) E B andf(t, a) = x})

 By Lemma 2. 1, Gr(F) E 3 X (M x .
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