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 FACIAL CHARACTERIZATIONS

 OF COMPLEX LINDENSTRAUSS SPACES
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 ABSTRACT. We characterize complex Banach spaces A whose Banach dual spaces

 are L'( A) spaces in terms of L-ideals generated by certain extremal subsets of the
 closed unit ball K of A*. Our treatment covers the case of spaces A containing
 constant functions and also spaces not containing constants. Separable spaces are
 characterized in terms of w*-compact sets of extreme points of K, whereas the

 nonseparable spaces necessitate usage of the w*-closed faces of K. Our results

 represent natural extensions of known characterizations of Choquet simplexes. We

 obtain also a characterization of complex Lindenstrauss spaces in terms of

 boundary annihilating measures, and this leads to a characterization of the closed
 subalgebras of Cc(X) which are complex Lindenstrauss spaces.

 1. Introduction. Let S be a compact convex subset of a locally convex Hausdorff

 space and let A(S) denote the Banach space of all real-valued continuous affine

 functions on S for the supremum norm. It is well known (see Alfsen [1]) that S may

 be identified with the state-space ({9 E A(S)*: qp > 0, (p(1) = 1) of A(S) and that
 the unit ball of A(S)* may be identified with co(S U - S). S is called a (Choquet)

 simplex if A(S)* is a vector lattice for the natural dual partial ordering. The set of

 extreme points of S will be denoted by Ms.

 If F is a face of S then the complementary set F' consists of the union of all

 faces of S which are disjoint from F; each x in S may be decomposed x = Xy +

 (1 - X)z with 0 < X < 1, y E F, z E F'. If F' is itself a face of S and if the
 constant A is uniquely determined by x, then F is called a parallel face of S, and if,

 in addition, y and z are uniquely determined by x (0 < A < 1) we say that F is a

 split face of S.

 Ellis [9] showed that S is a simplex if and only if every closed face of S is split.

 This result may be rephrased to state that S is a simplex if and only if linR F (the

 real-linear hull of F) is an L-ideal in A(S)* whenever F is a closed face of S (see

 Alfsen and Effros [2, p. 161]). (A closed linear subspace L of a Banach space V is

 called an L-ideal if there exists a projection P from V onto L such that for each

 x E V, IlxII = IIPxII + lIx - PxI .) For this result it is only necessary to assume the
 condition for each peak face F of S (see ?3). Earlier, Rogalski [21, Theoreme 37]
 had shown that if S is metrizable then S is a simplex if and only if co E is a split

 face of S (equivalently linR co E is an L-ideal in A(S)*) wherever E is a w*-com-
 pact subset of aS. Ellis and Roy [10, Theorem 1] have shown that Rogalski's result
 does not extend to the general nonmetrizable case.
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 The compact convex set S is a simplex if and only if A(S)* is isometrically

 isomorphic to a real L'(It) space, i.e. if and only if A(S) is a real Lindenstrauss
 space (see, for example, Semadeni [22]). In this paper we study the analogues of the

 results just mentioned to complex Banach spaces, that is, we characterize complex

 Lindenstrauss spaces (complex Banach spaces whose duals are isometrically isomor-

 phic to complex L'([t) spaces) in terms of L-ideals generated by certain extremal
 subsets of the dual unit ball.

 In the first part of ?3 we consider the most natural complex analogue of A(S)

 spaces, namely the closed linear subspaces A of Cc(X) containing constants and
 separating points of X, where X is a compact Hausdorff space. In this situation the

 state-space S = (p e A *: zp(l) = 1 = I I II} plays an important and natural role.
 We show that A is a complex Lindenstrauss space if and only if linc F (the
 complex linear hull of F) is an L-ideal in A * whenever F is a closed (peak) face of

 S. This generalizes the result of Ellis [9]. At the end of ?2 we adapt the example of

 Ellis and Roy [10] to show that there exists a nonseparable space A which is not a

 complex Lindenstrauss space but for which linc co TE is a (w*-closed) L-ideal in
 A* whenever E is a w*-compact subset of the closed unit ball K of A*. The

 methods used for these results are generally adaptations of the methods for A(S)

 spaces.

 The situation for complex Banach spaces A whose unit balls possess no extreme

 points is more complicated. In this case we use the machinery of complex Choquet

 theory (see Phelps [20]) and rely heavily on the work of Effros [8] and Lima's

 characterization [17, Theorem 5.8]; the Bishop-Phelps theorem [3] also plays a

 crucial role here, as it does in the real situation (see Ellis [9]). In the first part of ?2

 we show that for separable complex Banach spaces the result of Rogalski men-

 tioned above has a natural analogue: A is a complex Lindenstrauss space if and

 only if linc co TE is an L-ideal in A * (where T denotes the unit circle) whenever E

 is a w*-compact subset of 8K. In ?3 the main result (Theorem 3.3) of the paper

 shows that, in general, A is a complex Lindenstrauss space if and only if linc F is
 an L-ideal in A* whenever F is a w*-closed face of K. The proof of this result

 depends on the corresponding result for spaces A containing the constant func-

 tions. We conclude ?3 by giving a characterization of complex Lindenstrauss

 spaces in terms of norm-closed faces of the dual ball, and also by applying our

 previous results to characterize real Lindenstrauss spaces.

 In ?4 we extend a measure-theoretic characterization of complex Lindenstrauss

 spaces, due to Hirsberg and Lazar [14], to the case without constants. This enables

 us to characterize the closed subalgebras of Cc(X) which are complex Lin-

 denstrauss spaces.

 If X is any compact Hausdorff space then by a measure on X we will always

 mean a regular Borel measure on X. If A is a subspace of Cc(X) we will write A

 for the set of measures y on X such that f f dji = 0 for allf in A,
 The third author wishes to thank the U. K. Science Research Council for

 financial support during the writing of part of this paper.
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 2. Separable spaces. In order to prove the characterization of separable complex

 Lindenstrauss spaces which is the analogue of Rogalski's characterization of

 metrizable simplexes, we need to establish some properties of complex Lin-

 denstrauss spaces which are valid in the nonseparable case also. We first recall

 some notation of complex Choquet theory (see Phelps [20]).

 Let A be a complex Banach space and let K, with the w*-topology, denote the

 closed unit ball of A*. If g belongs to Cc(K) (the complex-valued continuous
 functions on K) we define a T-homogeneous function hom g in Cc(K) by

 (hom g)(L) = f tg(tL) dt, L E K,

 where T = { z E C: Iz = 1 } and the integration is with respect to Haar measure on
 T. For a complex Borel measure y on K we define another complex Borel measure

 hom tL, with lihom till < 11 tIiI, by

 (hom [i)( g) = 1i(hom g), g E Cc(K).
 For any complex Borel measure y on K we can write dji = hdl 41, where h is a

 Borel function with modulus 1, and we define a positive Borel measure Rji on K by

 (Rji)( g) = f g(h(L)L) dl tLI(L), g E CC(K).

 Then we have IIRtI I = II 1, hom Rji = hom t, and if y is a probability measure on
 K with resultant L e K with IILI = 1 we have R(hom [i) = y (see Phelps [20]).

 Effros [8] showed that A is a complex Lindenstrauss space if and only if

 hom y1 = hom A2 wherever Al, 2 are maximal probability measures on K with
 common resultant L E K.

 PROPOSITION 2.1. Let A be a complex Lindenstrauss space (not necessarily separa-

 ble) and let K be the closed unit ball of A*. Let E be a compact subset of 8K, let
 F =co TE and let J = linc F. Then J is a w*-closed L-ideal in A* such that
 J n K = F.

 PROOF. Clearly F is contained in J n K. In order to show that F = J n K we
 must show that if x E J n K with xlxiI = 1 then x E F. But such an x can be

 written x = ap for some a > 0 and p E F, and so it will be sufficient to prove that

 p/ IiII belongs to F wheneverp belongs to F with 0 < IIPI < 1.
 Let y be a maximal measure on K, supported by TE, with resultant r( i) = p,

 and let wp = R(hom 4). Recourse to the definitions shows that hom y and wp are
 also supported by TE. Choose a maximal probability measure v on K with

 r(v) = p/llpll, and let q e 8K. Then if

 9 = IIPIIv + (1 - IIPII)(21q + 2-q),

 9 is maximal with r(9) = p and so Effros' characterization of complex Lin-
 denstrauss spaces shows that hom 9 = hom t. However hom 9 = lI plIhom v be-
 cause (hom Cq)(g) = (hom g)(q) = -(hom g)(- q) = -(hom C -q)(g) for g in
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 CC(K). Therefore we have

 wp = R(hom 9) = R(Ilpllhom v) = IlplIR(hom v) = IIpIlv,

 so that v is supported by TE. Hence p/llpll belongs to F and, consequently,
 F=J n K.

 The Krein-Smulian theorem now shows that J is a w*-closed linear subspace of

 A *. To show that J is an L-ideal we need to show that J n co(J') = 0, where J' is
 the complementary cone of J (see Alfsen and Effros [2, p. 110]). Suppose that

 0 # x = ar1 + (1--a)r2, x E J, 0 # r. E J', 0 < a <1.
 Since rI, r2 belong to J' we have

 face(rj/llrjll) n J = 0,

 and so rjl/11irj belongs to J' for] = 1, 2. Let p = x/IIxII and put /3 = aIIrll +
 (1 - a)IIr2l1. Then we have

 ,8 -(ajjrjII(rj/1IrjII) + (1 - a)jjr211(r2/1jr211))

 = x/: = llxll/p + (1 - llxll/13)O.
 Choose a probability measure y on K, supported by TE, with r( i) = p, and choose

 maximal probability measures yj on K, supported by J' with r( j) = r1/ rjlI. (For
 the latter choice see Alfsen and Effros [2, p. 113, Lemma 4.3].) Using Effros'

 characterization of complex Lindenstrauss spaces we obtain

 aIlrlllhomtL1 + (1 - a)jjr21jhomtL2 = jjxjjhom[t,

 and since hom 6. is supported by TJ' = J' and hom y is supported by J, we must
 have hom y = 0. But then r(hom [i) = r( i) = x = 0, giving the required contradic-
 tion.

 THEOREM 2.2. Let A be a separable complex Banach space and let K be the closed

 unit ball of A *. Then A is a complex Lindenstrauss space if and only if J =

 linc co TE is an L-ideal in A* whenever E is a compact subset of aK.

 PROOF. The necessity of the condition is shown by Proposition 2.1, so we assume

 the condition concerning E to prove sufficiency.

 If we can show that whenever x E K, lix II = 1, such that Px = x or Px = 0 for
 all L-projections P on A * then x belongs to 8K, we will have verified all the

 conditions of Lima [17, Theorem 5.8(ii)] and it will follow that A is a complex

 Lindenstrauss space. Fix such an x and choose a maximal probability measure y

 on K with r( i) = x. We will show that y is supported by a single point, and thus x

 belongs to 8K.

 Whenever E is a w*-compact subset of aK we will show that J n K =co TE.

 Since J is norm-closed and is generated by a w*-compact convex set it is w*-closed

 (see Dunford and Schwartz [6, V.5.9]), and so if J n K properly contains co TE

 there is an extreme point y of J n K not belonging to TE. Because J is an L-ideal

 y belongs to 8K, and TE is contained in Jy', the complementary L-ideal to linc{y).
 Let p E co TE and let q be a probability measure on TE with r(,q) = p. If e is the

 L-projection with range linc{y) then the function q -). v o e(q) (q E K, v E A) is
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 w*-Borel and satisfies the barycentric calculus (see Alfsen and Effros [2, p. 113]).

 Therefore

 v o e(p) = v o e(tz) dq(tz) = 0

 for all v in A and, consequently, p belongs to J;. But then y E J is contained in J
 which gives a contradiction.

 If E is a compact subset of aK let PE denote the L-projection associated with J.

 The condition on x implies that either x E J or x E J', where J' is the L-ideal

 complementary to J. Write ,u = il TE and ,u2 = Ml(aK \ TE) (aK is a Borel set
 since A is separable). If pij #! 0 let yj E K be the resultant of j/ll ,Ill, and let
 xj = I I yjIyj; otherwise put xj = 0. Then we have x = xl + x2 and, since IIxjII <
 uj I 1, we have 1 = IlxII = IIxIII + Ilx21i and, moreover, xl E co TE so that xl E J.
 If x E J', then x = (I - PE)X = (I - PE)X2, and, since I|(I - PE)X2II < IIX211,

 we must have xi = 0, that is, ,u(TE) = 0.
 On the other hand, suppose that x belongs to J. Then x = PEX = xl + PEX2

 implies that IIPEX2Ii = IIX21i, so that x2 belongs to J also. If x2 =# 0 then, since ,u is
 supported by MK, we must have ,(E') 7# 0 for some compact subset E' of AK \ TE.

 If y denotes the resultant of i IE'/lu(E'), and if u = t(E')y, we can write x = xl +
 u + v for some v in K, where 1 = IlxIII + Ilull + vlvii. This implies that u belongs
 to J. Since J n K =co TE there exists a maximal probability measure v on K,

 supported by TE, with r(v) = u. Then if v' = IIjE' the measure v - v' is a
 boundary affine dependence on K and, since linc co TE' is a w*-closed L-ideal,
 (v - v')ITE' annihilates AO(K) (see Alfsen and Effros [2, p. 115, Theorem 4.5]).
 Consequently v' and, hence, v belong to Ao(K)', and so u = r(v) = 0. This
 contradiction shows that x2 = 0 and that 4(aK \ TE) = 0.

 Suppose now that (supp ,u) n aK contains points z1, Z2 with Tz, n Tz2 = 0. We
 can find disjoint open neighbourhoods of Tz1 and Tz2, and, hence, we can find a

 compact subset E of aK with ,u(TE) > 0 and M(tK \ TE) > 0. The previous
 reasoning shows that these inequalities holding simultaneously is impossible. There-

 fore M is supported by Tz for some z E MK. However, since x = r( M) and llxii = 1
 it is evident that ,L is supported by a singleton, as required.

 The proof of Theorem 2.2 depends heavily on the metrizability of 3K, or at least

 on the fact that maximal measures on K are supported by 3K. Ellis and Roy [10,
 Theorem 1] have shown that Rogalski's characterization of standard simplexes [21,

 Theoreme 37] does not extend to the general nonstandard case. We now adapt this

 construction to show that the separability condition may not be dropped from

 Theorem 2.2.

 Let S be a compact convex set and let AC(S) denote the Banach space of all
 continuous complex-valued affine functions on S, with the supremum norm.

 THEOREM 2.3. There exists a complex Banach space A with dual unit ball K which

 has the following properties:

 (i) J = linc co TE is an L-ideal in A * whenever E is a compact subset of aK;
 (ii) A is not a complex Lindenstrauss space.
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 PROOF. Let S be the compact convex set which is constructed in Ellis and Roy

 [10, Theorem 1] (denoted there by K). Then S is not a simplex, the compact subsets

 of as are the finite sets E and co E is a split face of S. Let A = AC(S).
 The space A is selfadjoint with state-space S, and since S is not a simplex it

 follows that A is not a complex Lindenstrauss space (see Hirsberg and Lazar [14]).

 The map qp)p/(p(l) is a w*-continuous mapping from aK onto as, and hence if
 E is a compact subset of aK then linc E = J is finite dimensional, say J =
 linc {xl, . . ., x"} where xj E aS for 1 < j < n. SinceF= co{xl,. . . ,x"} isasplit
 face of S, and since A is selfadjoint, co(F U - iF) is split in Z = co(S U - iS)

 and therefore J is an L-ideal (see Hirsberg [13, Corollary 2.7]).

 Theorem 2.3 also gives an example of a non-Lindenstrauss space A with the

 property that whenever E is a compact subset of aK every continuous linear

 functional on linc E has a norm-preserving extension in A (compare the example in

 Alfsen [1, Proposition 11.3.19]).

 3. General spaces. We saw, in Theorem 2.3, that the characterization of separable

 complex Lindenstrauss spaces given in Theorem 2.2 is not valid in the general
 nonseparable situation. We now seek a characterization of complex Lindenstrauss
 spaces, valid in the separable and nonseparable cases, which is analogous to the
 facial characterization of simplexes given by Ellis [9]. Our present characterization
 will be in terms of faces of the dual unit ball K.

 A face F of a compact convex set S is called a (w*-closed) peak face for A(S) if
 F = f -(o) for some nonnegative function f in A(S). Briem [5] generalized the
 result of Ellis mentioned above by showing that S is a simplex if and only if every

 peak face of S is parallel; a simple proof of Briem's result can be obtained by a

 slight modification of the proof of Ellis and Roy [10, Theorem 2]. This result will
 be used in what follows.

 Firstly we consider the situation for complex Banach subspaces of Cc(X)
 containing constants, where X is a compact Hausdorff space. The required char-
 acterization in this case follows closely the characterization of real Lindenstrauss

 spaces of the type A(S), and is much more straightforward than the general case.

 THEOREM 3.1. Let A be a closed linear subspace of Cc(X) containing constants and
 separating the points of X, where X is a compact Hausdorff space. Let S be the
 state-space of A and let K be the unit ball of A *. Then A is a complex Lindenstrauss

 space if J = linc F is an L-ideal in A* such that J n K =co TF whenever F is a
 peak face of S for A(S).

 PROOF. To prove that A is a complex Lindenstrauss space it will be sufficient,
 using the result of Hirsberg and Lazar [14, Theorem 2], to show that the set
 Z = co(S U - iS) is a simplex. By Briem's characterization of simplexes it will be

 sufficient to show that each A(Z)-peak face of Z is parallel.
 Let H = co(F u - iG) be an A(Z)-peak face of Z, so that F and G are

 A(S)-peak faces of S. We first show that J n S = F, where J = linc F. If p

 belongs to J n S then, by hypothesis,

 = w*- lim kE A?a)?)YAa) ,
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 where 0 < A(4a) < 1, Emk_ 1 (a) = 1, tk) e T, y(a) E F. In particular we have

 ma

 p(1) = 1 = rim E a)t)
 a k=1

 and it follows that
 ma

 p = lim I X4Oyta) E F
 a k=1

 as required. Similarly we obtain (linc G) n (- iS) = -iG.
 Since J is an L-ideal and J nS = F, a result of Hirsberg [13] shows that

 J n z = co(F U - iF) is a split face of Z. Now if IL belongs to A(Z)' n M(aZ)
 (where M(MZ) denotes the real boundary measures on Z), then ,llco(F U - iF)
 belongs to A(co(F U - iF)), and because F is a parallel face of co(F U - iF), it

 follows that ,u(F) = 0 (see Hirsberg [12]). Similarly we can show that [( - iG) = 0
 and, hence, u(H) = 0. Therefore H is a parallel face of Z, so that Z is a simplex.

 The converse of Theorem 3.1 is also true. This will follow from a more general

 result (Theorem 3.3) below. Variations on the hypotheses of Theorem 3.1 may be

 given, and these are discussed in the following corollary. In particular it will follow

 that if A is assumed to be selfadjoint in Theorem 3.1 then the hypothesis

 J n K =co TF may be dropped.

 COROLLARY 3.2. The hypotheses on F in Theorem 3.1 may be replaced by either of
 the following two conditions:

 (i) F is a split face of co(F U - iF) and J is an L-ideal whenever F is an

 A(S)-peak face of S;

 (ii) J is an L-ideal such that J n K =co TF whenever F is a peak face of S for

 re A, i.e. F =f-I(0) n Sfor somef E re A,f > 0.

 PROOF. (i). A straightforward verification shows that i n S = F and the proof

 proceeds as before.

 (ii). As in the theorem we can prove that J n S = F and I n (-iS) = -iF, and

 so co(F U - iF) is a split face of Z. Now, using the result of Briem [4, Theorem
 3], it follows that A is selfadjoint and S is a simplex. Consequently A is a complex

 Lindenstrauss space.

 We now turn to the general case in which A is a closed linear subspace of Cc(X)

 separating points of X, but not in general containing the constants. Again, let K

 denote the unit ball of A * with the w*-topology.

 Let p denote the topological embedding of X in K, where .p(x)(f) = f(x) for
 each x in X and f in A. A complex Borel measure ti on X will be called a boundary
 measure for A, denoted ,i E M(aA), if ILI o 19 -' is a maximal measure on K. A
 closed subset E of X of the form (p - l(TF), where F is a closed face of K, will be

 called an M-set for A if ,u E A ` nM(MA) implies pulE E A '. Note that if 1 E A
 and if F is a closed face of the state-space S of A, then the set E is an M-set for A

 in the usual sense (see Hirsberg [13]).
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 THEOREM 3.3. Let A be a closed linear subspace of Cc(X) separating the points of
 X, and let K be the unit ball of A *. Then the following statements are equivalent.

 (i) A is a complex Lindenstrauss space.

 (ii) Whenever F is a closed face of K the set E = -1( TF) is an M-set for A.

 (iii) J = linc F is an L-ideal in A * whenever F is a w*-closed face of K.

 PROOF. (i) =X (ii). If E satisfies the conditions of (ii) and if jt E A ' n M(3A) with

 jj,yijj= 1, we must show that /LjE e A. The measure v = ,u O-1 is a boundary
 measure on K with r(v) = 0 and, consequently (see Effros [8, Lemma 4.2]), Rv is a

 maximal probability measure on K with r(Rv) = 0. Since A is a complex Lin-

 denstrauss space we have hom(Rv) = hom(EO) = 0, and therefore hom(Rv)j TTp(E)
 = 0. Since Tp(E) is T-invariant, it follows that hom{Rvl TT(E)} = 0 and, hence,
 r(Rvl T(E)) = O so that f Tqp(E)f d(Rv) = 0 for all f in A.

 Choose functions {g } in CR(K), 0 < ga < 1, such that { ga } is pointwise

 decreasing to XT,,(E). We have, for all f in A,

 O = f d(Rv) = lim Jffga d(Rv)
 T.(E) a K

 = lim f f(h(x) p(x))g.(h(x)rp(x)) dj IAI(x), (*)
 aX

 where d,u = hdlj l is the polar decomposition for y. Now if x E E we have
 h(x).p(x) e T.P(E), so that g,(h(x)qp(x)) -> 1. If x is not in E then h(x)fp(x) is not
 in Tip(E), and so g,(h(x)(p(x)) -O 0. Therefore (*) gives

 O = f f(h(x)Tp(x)) dj ijI(x) = ffd,u, Vf E A.

 Consequently E is an M-set for A.

 (ii) X= (iii). Let F be a closed face of K, and let E = p- (TF). We define a linear
 mapping e: A* A* by

 e(p)(a)=f a di, a EA,

 where p E A * and y E M(MA) represents p. The fact that E is an M-set implies

 that e is well defined. If p E F then p = r(X) for some maximal measure X on K

 supported by F, and so X o p E M(MA) represents p and is supported by E.

 Consequently

 e(p)(a)= a d(X o m) = p(a), a E A,

 so that e(p) = p and hence the range of e contains J = linc F. We will show that e
 is an L-projection on A * with range equal to J.

 If 0 4 p e A* we can find, by Hustad's theorem (see Phelps [20, Theorem 2.2]),

 a measure y e M(3A) with 11= 1 representingp/IIpI 1. Therefore

 e(p/lllpl)(a) = J a d/i, a E A,
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 and so

 r(R(KItE)) = e(p/llpll) E co TF.

 Hence the range of e is contained in R+co TF. However since F is a w*-compact

 convex set it is easy to see that G = {ax: 0 < a < 1, x E F) is w*-compact and
 convex and that TF is contained in G - G + i(G - G). Consequently co TF is

 contained in linc F, and therefore J is the range of e.
 If p belongs to A let ji E M(QA) representp with I I = lp IIP Then, for a in A,

 p(a) = a d,= a d,u + X a d,Ju
 X E z X~.\E

 = e(p)(a) + (p - e(p))(a) = f a d,t + (p- e(p))(a),

 so that

 lIe(p)II + Ip - e(p)IJ < IIpIEII + 11 IX \ Ell = IIPII.

 It follows that e is an L-projection.

 (iii) =X (i). If F is a w*-closed face of K, and if J = linc F, then J n K = co TF.
 In fact if J n K properly contains co TF then there is an extreme point x of J n K

 not belonging to TF. Since J is an L-ideal, x belongs to aK so that Jx = linc{x) is
 an L-ideal disjoint from F. But then F, and consequently J, is contained in the

 complementary L-ideal Jx, giving a contradiction. Now let vo E A, IlvoI = 1, be
 such that F = { x E K: re vo(x) = 1) is nonempty. By hypothesis J = linc F is a
 w*-closed L-ideal in A * and so, if I = J1, I is an M-ideal in A such that

 J = (A /I)*, where A/I has the quotient norm. We have

 Ilvo + III = sup{lvo(x)l: x E J n K) = 1,
 and since J n K =co TF it follows that TF contains all extreme points of the
 closed unit ball of J, giving

 llv + III = sup{lv(x)l: x E J n K} = sup{lv(x)l: x E F}
 for v + I E A/I. Consequently A/I can be naturally embedded as a closed linear

 subspace of AC(F), F being the state space of A/I and vo + I mapping into the
 constant function 1.

 If G is a w*-closed face of F then G is a w*-closed face of K and so, by

 hypothesis, linc G is a w*-closed L-ideal in A *.
 Evidently linc G is a w*-closed L-ideal in J.
 Therefore A /I is a complex Lindenstrauss space, by Theorem 3.1.

 As in the proof of Theorem 2.2, to prove that A is a complex Lindenstrauss space

 it suffices to show that if p e K, with I IIPI = 1, has the property that ep = p or 0
 whenever e is an L-projection on A * then p is an extreme point of K. Suppose that

 IIPII = 1 and ep = p or 0 for all L-projections e on A*. By the Bishop-Phelps
 theorem [3], given E > 0, we can find a point po with IIP - Poll < E such that po
 belongs to a w*-closed A-peak face F of K of the kind considered earlier in this
 proof. If e' denotes the L-projection of A* onto the L-ideal J = linc F we have
 e'p = p or 0, and because IIe'p - poll = lle'(p - Po)II < E, we must have e'p = p so
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 that p belongs to J. If e is any L-projection on J then e o e' is an L-projection on

 A *, so that e o e'(p) = p or 0. Consequently ep = p or 0 and, because J is an

 L-space, Lima's theorem [17, Theorem 5.8] shows that p belongs to

 a(K n J) = a(co TF). Therefore top e VF, for some to in T, so that p is an
 extreme point of K as required.

 Combining Corollary 3.2 and the implication (i) =X (iii) of Theorem 3.3 we obtain

 the following characterization of complex Lindenstrauss spaces containing the

 constants.

 COROLLARY 3.4. Let A be a closed linear subspace of Cc(X) containing constants
 and separating the points of X, and let S, K denote, respectively, the state-space of A

 and the unit ball of A *. Then A is a conmlex Lindenstrauss space if and only if

 J = linc F is an L-ideal in A* such that J n K = co TF whenever F is a peak face
 of S for re A.

 The equivalence (i) X= (iii) of Theorem 3.3 leads to the following characterization

 of complex Lindenstrauss spaces in terms of the norm-closed faces of the dual unit

 ball.

 COROLLARY 3.5. Let A be a complex Banach space, and let K be the closed unit

 ball of A*. Then A is a complex Lindenstrauss space if and only if linc F is an
 L-ideal in A * whenever F is a norm-closed face of K.

 PROOF. Suppose that A has the property stated concerning norm-closed faces of

 K. Then if F is a w*-closed face of K, linc F is a norm-closed L-ideal in A* and,

 hence, a w*-closed L-ideal in A *. Therefore Theorem 3.3 shows that A is a complex

 Lindenstrauss space.

 Conversely, if A is a complex Lindenstrauss space then, using standard argu-

 ments, we may assume that A * is isometrically isomorphic to a space L (1 ) such
 that A ** is isometrically isomorphic to L '( ,i). Let F be a proper norm-closed face

 of K. Then (see Alfsen and Effros [2, p. 104D F is contained in a maximal proper
 (norm-closed) face G of K. As observed by Olsen [19] (see also Nielsen and Olsen

 [18]) G must have the form

 G {Jif:f> 0, f fdL =I

 where 4 C Lc'( t) and IJj = 1 a.e. (j4). [To see this separate G from the open unit
 ball of A* by means of some q E Lc( t), so that G C (f: ffA dy = 1, f IfIdp =
 1}. If

 H = {y E LC(A): 11y11 < 1, f yf d = 1 Vf E G

 then H is a w*-compact face of the unit ball of L'(tt) and hence contains an
 extreme point t0 withj4,0j = 1. If we put4, = 40then G C {fip: f > 0, J f dL = 1),
 and the maximality of G implies that equality holds.] Without loss of generality we

 may assume that 4 = 1, so that F is a face of the simplex G, where

 G = {f E L(K) f > 0, f dK = I}.
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 Now linR F is an L-ideal in LA( u) (see Alfsen and Effros [2, p. 161]) and, by

 consideration of the fact that (linR F)' is an M-summand in L'(,U), it is easy to
 show that linR F has the form {fXE: f E 14( A)} for some I-measurable set E.
 Hence linc F has the form { fXE: f E Ll( ,u)}. It now follows easily that linc F is
 an L-ideal in L1( A).

 Several authors have studied the facial structure of the dual unit ball K of a

 complex Lindenstrauss space. Olsen [19] showed that if E is a w*-compact subset

 of aK such that E n tE = 0 for t E T \ {1}, then co E is a face of K. Nielsen and

 Olsen [18] showed that if F is a w*-closed (norm-closed) face of K then linc F is a
 w*-closed (norm-closed) L-ideal.

 The facial structure of the dual unit ball of real Lindenstrauss spaces has been

 studied by several authors, for example Alfsen and Effros [2], Effros [7], Lau [15]

 and Lazar and Lindenstrauss [16]. Uttersrud [23] has given a characterization of
 real Lindenstrauss spaces in terms of decomposability of L-ideals in the dual space.

 Using the results of the authors just mentioned, and making the obvious

 alterations in the proofs of Theorems 2.2 and 3.3, we can obtain the following

 facial characterizations of real Lindenstrauss spaces.

 THEOREM 3.6. Let A be a real Banach space and let K be the unit ball of A *. The

 following statements hold.

 (i) If A is separable then A is a real Lindenstrauss space if and only if J=

 linR co E is an L-ideal in A * whenever E is a w * -compact subset of aRK.

 (ii) A is a real Lindenstrauss space if and only if J = linR F is an L-ideal in A*

 whenever F is a w*-closed face of K.

 If S is the set referred to in the proof of Theorem 2.3 then the space A = A(S)

 shows that the separability condition may not be removed from Theorem 3.6(i).

 4. Some further results and examples. When A is a closed linear subspace of

 CC(X), containing constants and separating points of X, Fuhr and Phelps [11,
 Theorem 4.4] and Hirsberg and Lazar [14, Theorem 2] showed that A is a complex

 Lindenstrauss space if and only if A' n M(aA) = (O}. We give the analogue of
 this result in the case when A does not contain the constant functions.

 We will require the following notation used by Phelps [20]. If A is a closed linear

 subspace of Cc(X) separating the points of X, we denote by A the closed linear
 subspace of Cc(X) consisting of the functions g in Cc(X) such that sg(x) = tg(y)
 wherever s, t E I, x, y E X and sf(x) = tf(y) for all f in A. If X and IL are complex
 measures on X we write A IL if A( g) = ,( g) for all g in A. We retain the notation
 9p from the previous section.

 There exists (see Phelps [20]) a Borel measurable map s: TJp(x) -> T X X such

 that s(L) = (tL, XL) and L = tL(XL). Given a maximal probability measure 1t on K
 we define a complex boundary measure Hit where, for g E Cc(X),

 f g dH, = tLg(xL) di(L).
 I(X)

 If p is the resultant of tL then HIL represents t
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 THEOREM 4.1. Let A be a closed linear subspace of CC(X), separating the points of
 X. Then the following statements are equivalent:

 (i) A is a complex Lindenstrauss space;

 (ii) M E A ln M(oA) imwlies ii 0.

 PROOF. (i) =X (ii). Let i belong to A n M(MA) with IL = 1. If v = I o -1
 then Rv is a maximal probability measure on K with r(RP) = 0, where K is the

 closed unit ball of A* with the w*-topology. Since A is a complex Lindenstrauss

 space, hom Rv = 0 (Effros [8]), and so hom v = hom Rv = 0. Therefore we have

 I 0 (see Phelps [20, Proposition 3.5]).
 (ii) =X (i). It will be sufficient to prove that if y is a maximal probability measure

 on K with r( t) = 0 then hom y = 0 (see Effros [8], in particular the proof of

 Theorem 4.3). If we write X = Hy then X belongs to A' n M(aA), and so X - 0.
 Therefore hom(Hy o ,p -) = 0 so that (H,L o ,p- 1)(g) = 0 for all T-homogeneous
 continuous functions g on K. For such functions g we have

 0 = (HK o 0-')(g) = HI(g o :p) = f tLg((p(xL)) dK
 Tp(X)

 g(tLp(xL)) dK =fg dM.
 T(X)

 Consequently hom y = 0 as required.

 The following result generalizes the result of Hirsberg and Lazar [14, Corollary

 3.5].

 COROLLARY 4.2. Let A be a closed subalgebra of Cc(X), separating the points of X.
 Then A is a complex Lindenstrauss space if and only if either A = Cc(X) or
 A = { fE Cc(X): f(xo) = 0) for some xo E X.

 PROOF. We need only prove the necessity of the conclusion. Let v be a measure

 on X with v E A '. Then we can write V = a1pi - a2v2 + i(a3V3 - a4u4), where

 aj > 0 and vj are probability measures on X. We can find probability boundary
 measures on X such that j -j E A',j = 1,2,3,4, and so IL = a1,L -t2
 + i(a3 v3- a4 4) belongs to A' n M(aA). But then, by Theorem 4.1(ii), L 0
 and this implies that y = 0 (see Phelps [20, Proposition 3.4]). But then a1 L - a2 J2
 = 0 so that re v E A'. Consequently A is selfadjoint and the conclusion follows

 from the Stone-Weierstrass theorem.

 That the second possibility may occur in the above corollary is seen by consider-

 ing the complex sequence space co.
 In Theorem 3.1 the condition that linc F is an L-ideal cannot be replaced by the

 condition that linc F is a w*-closed Ll-space; for example let S be a square in R2
 and let A = AC(S). In the same theorem it is not sufficient to assume the
 conditions concerning F for A -peak faces of S only; in fact if A is the disc algebra

 then the A-peak faces of S are generated by the closed subsets of the unit circle

 with linear Lebesgue measure zero, and the complex-linear spans of such faces F

 are w*-closed L-ideals J satisfying J n K = co TF.
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 The condition J n K =co TF is not generally true for w*-closed faces F of the

 dual ball of a complex Banach space A, even if J is a w*-closed L-ideal in A *. For

 example let A = C2 and let the norm in A * be given by

 II(x,Y)II = max{IxI, IYI, Ix + y}.
 Then if F = {(x,y): 0 < x,y, x + y = 1), F is a closed face of K such that
 J = linc F = A *; however it can easily be checked that co TF is properly con-
 tained in K-for example (1, - 1) E K \ co TF.

 Finally, the condition in Theorem 3.3(ii) that p - '(TF) is an M-set whenever F is

 a w*-closed face of K may not be replaced by the condition that ,p -(F) is an

 M-set. For example, let A be the complex G-space {f E Cc[O, 1]: f(O) = if(l)}.
 Then F = m(O) is a w*-closed face of K such that {O) = - '(F) is not an M-set,
 whereas q' - l(TF) = {O, 1) is an M-set for A.
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