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AN EFFECTIVE SELECTION THEOREM

ASHOK MAITRA

§1. Introduction. A recent result of J.P. Burgess [1] states:

THEOREM 0. Let F be a multifunction from an analytic subset T of a Polish space
to a Polish space X. If F is Borel measurable, Graph(F) is coanalytic in T x X and
F(t) is nonmeager in its closure F(t) for each t € T, then F admits a Borel measurable
selector.

The above result unifies and significantly extends earlier results of H. Sarbadhi-
kari [8], S.M. Srivastava [9] and G. Debs (unpublished). The reader is referred to
[1] for details.

The aim of this article is to give an effective version of Theorem 0. We do this
by proving a basis theorem for /I} sets which are nonmeager in their closure and
satisfy a local version of the measurability condition in Theorem 0. Our basis
theorem generalizes a well-known result of P.G. Hinman [4] and S.K. Thomason
[10] (see also [5] and [7, 4F.20]). Our methods are similar to those used by A.
Louveau to prove that a >}, o-compact set is contained in a 4}, o-compact set
(see [7, 4F.18)).

The paper is organized as follows. §2 is devoted to preliminaries. In §3, we
prove the basis theorem and deduce as a consequence an effective version of
Theorem 0. We show in §4 how our methods can be used to give alternative proofs
of some known results.

Discussions with R. Barua, B.V. Rao and V.V. Srivatsa are gratefully acknowl-
edged. I am indebted to J.P. Burgess for drawing my attention to an error in an
earlier draft of this paper.

§2. Preliminaries. The effective results will be established for the space (w@)* x !,
where k£ > 1. Since such a space is recursively isomorphic to w®, we shall work
in w®. It should be mentioned that the results could be formulated and proved
for the recursively presentable Polish spaces of Moschovakis [7], but we have
not done so in order to keep the exposition simple.

We fix a base N, for the topology of w®, where

N, = {a € w*: @ (1h(s)) = s}, S € w.

If s and ¢ are sequence numbers, we write s < t if s = ¢ | i for some i less than
1h(z); we write s < tif s < t or s = . A tree on w is identified with the set of
sequence numbers of its elements. We say that a € w® is a code for a tree T on ¢ if
(Vs)(a(s) = 0 — s € T). Plainly, a tree T (as a subset of w) is 4} iff it has a 4} code.
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If T is a tree on w, then [T], the body of T, is closed in w®; conversely, if F is
closed in w®, then F = [T] for some tree T on . If B = w® x w?®, we denote the
projection of B to the first coordinate by z[B].

Towards localizing the measurability condition in Theorem 0, we make the
following definition.

DEeFINITION. Let /" be a pointclass. A set A C w® is [-normal if R,, as a subset
of w, is in I", where

Rys) < AN N, # @.

We state some easily verifiable facts about /'-normal sets, where /" is the point-
class 41 or the pointclass 4}(x).

(a) P is I'-normal iff P, the closure of P, is /"-normal.

(b) If P is /"-normal, then Pisin /.

(c) Any dense set is /"-normal.

(d) Any open set in I" is I'-normal.

(e) Any g-compact setin /" is /™-normal.

(f) There exist /I sets which are not 4}-normal.

Our notation and terminology will closely follow [7]. The only result which
we will use and which is not explicitly stated in [7] is the following observation of
Louveau [6].

SELECTION LEMMA. Let P be a II} subset of w® x w®. Let B ={acw®: (3B €
A(@)P(e, B)}. If A is 2} and A < B, then there exists a d}-recursive function f:
w® — w® such that Va € A) P(a, f(a)).

Here and in the sequel 4}-recursive functions are assumed to be total functions.
We can do this because a partial function is 4}-recursive iff it is the restriction of a
Ai-recursive total function to a 4i set.

Relativized versions of our results will not be stated as they are easy to formulate
and can be proved just like the absolute versions.

§3. Basis and selection theorems. In this section, £ will be a fixed closed, 4}-normal
subset of w. It follows by (b) of §2 that Eis then a 4} set. Also fix a [[}-recursive
partial function d: w — w® which parametrizes points in 4} () w®. This can be
done by [7, 4D.2].

We next define some relations.

Si(@) 2, a codes some tree on w

—— (Vs)[a(s) = 0 — (Seq(s) & (Vt)(Seq(t) & t < s

= a(?) = 0))),
Sale, B) &, (Yn)(a(B(n) = 0),
Sy(@) 2, & codes some tree T on o such that [T] = E and
[T]is nowhere dense in E
—— Si(a) & (VB) (Sx(a, ) —» BE E)
& (Vs)(Rg(s) = (A1) (Re(t) & 5 < 1 & (VB)(Sa(ex, B)— B ¢ N))).
Plainly, S, and S, are [T, while S is /I}.
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LEMMA 1. Suppose A is 2}, Bis I}, M is closed, nowhere densein Eand A ¢ M c
B < E. Then there is a 4} tree T* on w such that [T*] is nowhere dense in E and
A < [T*] ¢ B. _

ProoOF. By arguing as in the proof of [7, 4F.14], one can prove that there is
dedl N o and a set Fin JI)©) such that 4 = F = B. Now, by a relativized
version of [7, 4A.1], there is a set R = w such that R is recursive in 9, Seq (s) &
Seq(t) & s < t & R(t) — R(s), and

a € F « (Ym)R(a(m)).
We define a tree T on @ by
T(s) « Seq(s) & R(s).
Plainly, T'is 4} and F = [T].
Next define
S(s, £) « —Rg(s) V [Seq(s) & Re(t) & s < t& A\ N, = @].

Then S is JI}. Moreover (Vs)(3¢)S(s, t), since 4 is nowhere dense in E. Hence, by
the 4-selection principle [7, 4B.5), there is a 4}-recursive function g: @ — w such
that (Vs)S(s, g(s)). Define

T*(1t) o T(t) & —Au)Av)(Rp(w) & gw) = v& v < 1).

Clearly, T* is a 4! tree on @ and A c [T*] c [T] = B. It remains only to argue
that [T*] is nowhere dense in E. So assume Rg(s) and put ¢ = g(s). Then Ry(z),
s < tand t ¢ T*. It follows that [T*] | N,= ¢, which shows that [T*]is nowhere
dense in E. This completes the proof.

LEMMA 2. If Ris 21, R < E and R is meager in E, then

R(a) » AT)(T is a 4} tree on w, [T] < E,[T]is nowhere dense in E & a €[T])).

Proor. Fix a recursive function F: @ — w* and a JI{ set A c ® such that
F(A) = R. Define
A* = {aew?: As)ae N, & (VB)(BeA N N, —
@AT)T is a 4} tree on w, [T] < E, [T] is
nowhere dense in E & F(8) € [T])))}.
Plainly, A* is open. To see that A* is [T}, rewrite 4*:
aed* o @s)aeN,&(VYBed N N, - (An)d(n) |
& S3(d(n) & Syd(n), FB))).

To complete the proof, we need only show that 4 = 4*. Assume towards a
contradiction that B = 4 — A* # @. Note that B is closed and 21. Since R is
meager in E, there exist sets K, = E such that K,, is closed, nowhere dense in E and
R = | J,K,. 1t follows that @ s F(B) < | J,K, Hence, by Kunugui’s lemma

[7, 4F.13], there exist so€ w and n € w such that @ # F(B | N,) < K,. Since
F(B | N,)isa 3} set, it follows from Lemma 1 that there is a 4} tree T on w such
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that F(B (| N,) < [T] c E and [T] is nowhere dense in E. Now fix a € B ] N,,
and let 3e A N N,. We now consider two cases: 3 € A* and 8 ¢ 4*. In either
case, there is a 4} tree T* on o such that [T*] = E, [T*] is nowhere dense in E and
F(B) € [T*]. In the first case, this follows from the fact that 8 € 4 and the definition
of 4*; in the second case, this follows from the fact that 3 B () N, and our
previous observation about F(B 1 N,). Consequently, s, witnesses that o € 4*.
But this contradicts « € B. This concludes the proof. :

LeEMMA 3. If R is 21, R < E and R is meager in E, then there is Q < & X w®
such that Q is 4, each n-section Q, of Q is closed, nowhere dense in E and
(Va)(R(@) ~ @n)Q(n, ). ‘

Proor. Define
Q'(n, @) «> d(n) | & S3(d(n)) & Sy(d(n), @)

and Ry(a) « @An)Q'(n, «). Then Q' and R, are I} sets. Now Lemma 2 implies that
R < R;. Hence, by the separation property of 31 sets [7, 4B.11], there is a 4} set
R, with R < R, = Ry. Clearly (Va € Ry)(An)Q’'(n, «). So by the 4-selection
principle [7, 4B.5], there is a Ji-recursive function g: w® —  such that (Va € Ry)
0'(g(a), ). Next define

Ay(n) & Qa € R)(g(e) = n),
Ayn) <> d(n) L & Ss(d(n)).

Then A, is 2}, A, is [T} and 4; = A,. Again by the separation praperty of 21 sets,
we can find a 4 set 4 with 4; ¢ A = A,. Finally, define

On, ) one A&dn) | & Syd(n), a).
Compute '
0, a) o (n¢ A) v (dn) L & Sx(d(n), a)).

It follows that Q is 4}. The remaining assertions about Q made in the statement of
Lemma 3 are now easy to verify. This completes the proof.

Kechris [, Corollary 4.2.4] proved Lemma 3 above when E = . However, h1s
methods are quite different from ours.

LEMMA 4. Assume that E # @, Ris 3}, R c E and R is meager in E. Then E — R
contains a 43 point.

PrOOF. Let Q satisfy the assertion of Lemma 3. To exhibit a 4} pointin E — R
one need only give an effective proof of the Baire category theorem. So define

S(n, s, t) < Rg(s) Vv [Seq(s) & Re(t) & s < t
& (Ya)(Q(n, @) — o ¢ N)].

Then S is /I}, and since each Q, is nowhere dense in E, we have: (Vn)(Vs)(31)
S(n, s, t). By the A4-selection principle [7, 4B.5], there exists a Ji-recursive
function g: w X w — w such that (Vn)(Vs)S(n, s, g(n, s)). We define f: w — w by
primitive recursion: f(0) = g(0, 1) (recall 1 is the sequence number of the empty
sequence) f(n + 1) = g(n + 1, f(n)). According to [7, 7A.3], f is Il}-recursive.
Since fis a total function, it follows that f must be 4}-recursive.
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Clearly, (s Ny is a singleton, say {a*}, and a*e€ E. Since R < |J,0,,
a* ¢ R. Finally,

s€U(a*) L, a* e N,
—— (In)(Seq(s) & s < f(n)).

It follows that a* is a 4} point in E — R. This completes the proof.

We now formulate our basis theorem.

THEOREM 1. Let P < w® be a II{ set. If there exists sy € w such that P (\ N, is
nonempty, A}-normal and comeager in P (\ N, then P contains a 4} point.

PrOOF. In Lemma 4, take E= P} Ny = P (1 Nyand R = E — (P 1 N,).
The theorem now easily falls out of Lemma 4.

An immediate consequence of Theorem 1 is the following result of Hinman and
Thomason which we mentioned in the introduction.

COROLLARY 1. If P < w* is II} and nonmeager, then P contains a 4} point.

PROOF. Since P satisfies the Baire property, there is 5o € @ such that P | N is
comeager in Ny. Now apply Theorem 1.

We now use Theorem 1 to deduce an effective selection theorem.

THEOREM 2. Let P < @w® x w® be a I} set. Let A be 2} and suppose that A = z[P].
Assume that

(Va € A)3s)(Pa (1 N, is nonempty, 44 (a)-normal and comeager in P« (| N,).

Then there is a d}-recursive function f: w® — w® such that Va € A)P(a, f()).

ProoF. Let B = {a € w®: (3B € di(a))P(a, B)} In view of the hypotheses, a
relativization of Theorem 1 implies that A = B. The selection lemma in §2 now
does the rest.

Some of the more interesting consequences of Theorem 2 are incorporated in
the next corollary.

COROLLARY 2. Let P ¢ @® X w® be a II} set. Let A be 3} and assume that A <
%[ P]. Suppose that one of the following conditions holds:

(i) (Va € A)(Pa is dY(a)-normal and nonmeager in Pa).

(ii) (Va € A)(Pa is d(a)-normal and ITY).

(iii) (Va € A)(P« is nonmeager).
Then there is a A}-recursive function f: w® — w® such that Vo € A)P(a, f(@)).

The deduction of Corollary 2 from Theorem 2 is straightforward and is omitted.
Corollary 2 (under condition (i)) can be viewed as an effective version of Theorem 0.

We conclude the section by deducing Theorem 0 from Corollary 2. Since any
uncountable Polish space is Borel isomorphic to w®, without loss of generality we
may assume T < . Since any Polish space is a continuous, open image of e,
without loss of generality we may assume X = @*. Let P! = Graph(F). Find a
Il set P < @* x w®suchthat P! = P (| (T x w®). As Fis Borel measurable on
T, for each s € w, the set H! = {ae T: P 1 N, # @} is Borel in T, so there is a
4} set H; ¢ w® such that H! = H; (1 T. Define H(e, s) <> a € H,. It is easy to see
that H is a 4} subset of w® x w. Find z such that P is [[}(z), T is J}(z) and H is
4i(2). Now, for each a € T,
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Rp(s) = Pa (| N, # @
—PION, # @
—aeH!

« H(a, ).

Consequently, Rp, is 4}(z, a), hence Pe is 4}(z, a)-normal for « € T. Furthermore,
P. is nonmeager in P.. So a relativized version of Corollary 2 applies to yield a
AY(z)-recursive function f: w® — w® such that(Va € T)(f(a) € F(a)). The restriction
of f'to T is a Borel selector for F.

§4. Further results. In this last section we show that the methods of §3 can be used
to give alternative proofs of known results. Throughout this section, the set F
fixed at the beginning of §3 will be taken to be w®. The relations Sy, S5, 53 defined
in §3 have the same meaning as before except that S5 is defined with respect to we.
Then as before Sy, S, are IT{ sets, while S; is /1. By [7, 4D.2], we fix a [T{-recursive
partial function d*: @ X w® — w® which parametrizes points in 4}(a) | w®.

The next result was first proved by Kechris [5]; Vaught [11] independently proved
the boldface version of the result. See also [7, 4F.19] and [2].

THEOREM 3. Let P < w® x w®. If P is 31 (IIY), then {a € w®: Pa is nonmeager}
is 2} (IY). Similarly, if P is 2% (I%), then {a € w®: Pa is comeager} is 2} (II}).

PRrROOF. Let P be 21. By a relativization of Lemma 2, we have:

Pq is meager « (VP)[P(a, B) = An)(d*(n, a) |
& S3(d*(n, a)) & Sx(d*(n, @), B))].

It follows that {a € w®: P« is nonmeager} is J}.
Suppose next that P is JI{. Since each P. satisfies the Baire property, we have:

P, is nonmeager «— (3s)(N, — Pq is meager).

It follows from what we have just proved for 21 sets that {& € w®: P« is nonmeager}
is /1}.

The second assertion follows from the first.

THEOREM 4. If P ¢ w® X w®, P is 3} and P« is meager for each «, then there is
Q c w x w® x w®suchthat Q is 4%, each (n, a)-section Q,, , of Q is closed, nowhere
dense and

(Va)VB)(P(a, B) > @n)Q(n, a, P)).
ProOF. We have only to rewrite the proof of Lemma 3 uniformly in ¢. Define
Q,(n’ a, .B) hnd d*(ns a) i & S3(d*(n, O.’)) & SZ(d*(n, a), .B)a
Pi(a, B) < GmQ'(n, a, ).

Then Q' and P, are [I}. Moreover, by a relativization of Lemma 2, P = P;. Arguing
as in the proof of Lemma 3, we get a 4}-recursive function f: w» x @® — ¢ such that

(V(a, B) € P) O'(f(a, P), @, B). Next define
Rl(na a) hnd (aﬁ)(P(aa ﬁ) &f(aa ﬁ) = n),



394 ASHOK MAITRA

Ry(n, a) & d*(n, a) | & S3(d*(n, a)).

Then R, is 3}, R, is [l and R, < R,. By the separation property of 2'1 sets, there
is a 4} set R such that R, =« R = R,. We now define

o, a, B) < R(n, @) & d*(n, @) | & Sy(d*(n, ), ).

It is easy to verify that Q has the desired properties. This completes the proof.
A boldface version of Theorem 4 has been obtained independently by Cenzer
and Mauldin [2] and Hillard [3].
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