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 AN EFFECTIVE SELECTION THEOREM

 ASHOK MAITRA

 ?1. Introduction. A recent result of J.P. Burgess [1] states:

 THEOREM 0. Let F be a multifunction from an analytic subset T of a Polish space

 to a Polish space X. If F is Borel measurable, Graph(F) is coanalytic in T x X and
 F(t) is nonmeager in its closure F(t) for each t E T, then F admits a Borel measurable
 selector.

 The above result unifies and significantly extends earlier results of H. Sarbadhi-
 kari [8], S.M. Srivastava [9] and G. Debs (unpublished). The reader is referred to
 [1] for details.

 The aim of this article is to give an effective version of Theorem 0. We do this

 by proving a basis theorem for #11 sets which are nonmeager in their closure and
 satisfy a local version of the measurability condition in Theorem 0. Our basis

 theorem generalizes a well-known result of P.G. Hinman [4] and S.K. Thomason
 [10] (see also [5] and [7, 4F.20]). Our methods are similar to those used by A.
 Louveau to prove that a 21, ai-compact set is contained in a A1, ai-compact set
 (see [7, 4F. 18]).

 The paper is organized as follows. ?2 is devoted to preliminaries. In ?3, we
 prove the basis theorem and deduce as a consequence an effective version of
 Theorem 0. We show in ?4 how our methods can be used to give alternative proofs
 of some known results.

 Discussions with R. Barua, B.V. Rao and V.V. Srivatsa are gratefully acknowl-
 edged. I am indebted to J.P. Burgess for drawing my attention to an error in an
 earlier draft of this paper.

 ?2. Preliminaries. The effective results will be established for the space ((9Ww)k X co 1
 where k > 1. Since such a space is recursively isomorphic to ww, we shall work
 in aw. It should be mentioned that the results could be formulated and proved
 for the recursively presentable Polish spaces of Moschovakis [7], but we have
 not done so in order to keep the exposition simple.

 We fix a base N, for the topology of ww, where

 Ns = {a(e@: d (lh(s)) = s}, sE.

 If s and t are sequence numbers, we write s < t if s = t r i for some i less than
 lh(t); we write s < t if s < t or s = t. A tree on co is identified with the set of
 sequence numbers of its elements. We say that a E aw is a code for a tree T on cv if

 (Vs)(a(s) = 0 '-+ s E T). Plainly, a tree T (as a subset of ca) is A1 iff it has a A1 code.
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 If T is a tree on w, then [T], the body of T, is closed in aw; conversely, if F is
 closed in aow, then F = [T] for some tree T on Ao. If B C cow x cow, we denote the
 projection of B to the first coordinate by 7c[B].

 Towards localizing the measurability condition in Theorem 0, we make the
 following definition.

 DEFINITION. Let r be a pointclass. A set A cz cow is r-normal if RA, as a subset
 of co, is in r, where

 RA(s)A f Ns o 0.

 We state some easily verifiable facts about P-normal sets, where r is the point-
 class ZI or the pointclass 41(a).

 (a) P is P-normal iff P, the closure of P, is P-normal.
 (b) If P is P-normal, then P is in r.
 (c) Any dense set is P-normal.
 (d) Any open set in r is r-normal.
 (e) Any ai-compact set in r is r-normal.
 (f) There exist Jo10 sets which are not 41-normal.
 Our notation and terminology will closely follow [7]. The only result which

 we will use and which is not explicitly stated in [71 is the following observation of
 Louveau [6].

 SELECTION LEMMA. Let P be a 711 subset of cow x Ww. Let B = {a E cEm: (3 E

 zl(a))P(a, A)}. If A is El' and A c B, then there exists a Al-recursive function f:
 cow E COW such that (Va E A) P(a,f(a)).

 Here and in the sequel 41-recursive functions are assumed to be total functions.
 We can do this because a partial function is 41-recursive iff it is the restriction of a

 Al-recursive total function to a 41 set.
 Relativized versions of our results will not be stated as they are easy to formulate

 and can be proved just like the absolute versions.

 ?3. Basis and selection theorems. In this section, Ewill be a fixed closed, 4l-normal
 subset of aw. It follows by (b) of ?2 that E is then a 41 set. Also fix a 1111-recursive

 partial function d: cv -a cow which parametrizes points in all n Ww. This can be
 done by [7, 4D.2].

 We next define some relations.

 Sl(a) defA a codes some tree on cv

 (Vs)[a(s) = 0 (Seq(s) & (Vt)(Seq (t) & t < s

 a(t) = 0))],

 S2(a, )ef 2 (Vn)(a(s(n)) = 0),

 S3(a) ief a codes some tree T on cv such that [T] c E and

 [T] is nowhere dense in E

 S1(a) & (Va) (S2(a, ,3) -, E E)

 & (Vs)(RE(s) -+ (3t)(RE(t) & s < t & (V,)(S2(a, ,3 Nt))).

 Plainly, S1 and S2 are no, while S3 is ill.



 390 ASHOK MAITRA

 LEMMA 1. Suppose A is 21, B is n1l, M is closed, nowhere dense in E and A c M c
 B c E. Then there is a A1 tree T* on w such that [T*] is nowhere dense in E and
 A c [T*] c B.

 PROOF. By arguing as in the proof of [7, 4F. 14], one can prove that there is
 a Er fl nww and a set F in I1O(a) such that A c F c B. Now, by a relativized
 version of [7, 4A. 1], there is a set R c a) such that R is recursive in a, Seq (s) &
 Seq(t) & s < t & R(t) -+ R(s), and

 a E F * (Vm)R(a(m)).

 We define a tree T on co by

 T(s) + Seq(s) & R(s).

 Plainly, TisJlandF= [T].
 Next define

 S(s, t) - RE(S) V [Seq(s) & RE(t) & s < t & A p NN = 0].

 Then S is I1I. Moreover (Vs)(3t)S(s, t), since A is nowhere dense in E. Hence, by
 the d-selection principle [7, 4B.5], there is a 4l-recursive function g: wt) co such
 that (Vs)S(s, g(s)). Define

 T*(t) '-+ T(t) & -(3 u)(3v)(RE(U) & g(u) = v & v < t).

 Clearly, T* is a Al tree on w and A c [T*] c [T] c B. It remains only to argue

 that [T*] is nowhere dense in E. So assume RE(S) and put t = g(s). Then RE(t),

 s < t and t 0 T*. It follows that [T*] nfN = 0, which shows that [T*] is nowhere
 dense in E. This completes the proof.

 LEMMA 2. If R is 21, R c E and R is meager in E, then

 R(a) -+ (3 T)(T is a Al tree on w, [T] c E, [T] is nowhere dense in E & a E [T]).

 PROOF. Fix a recursive function F: ow ow and a I1 set A c ww such that
 F(A) = R. Define

 A*- {a e w: (3s)(a e Ns & (V1,)(,eA E nNp

 (3 T)(T is a Al tree on co, [T] c E, [TI is

 nowhere dense in E & F(3) E [T])))}.

 Plainly, A* is open. To see that A* is II1l, rewrite A*:

 a e A* (3s)(a E N, & (V13)(13 e A n NN (3n)(d(n) I

 & S3(d(n)) & S2(d(n), F(Q))))).

 To complete the proof, we need only show that A c A*. Assume towards a

 contradiction that B = A -A* 0. Note that B is closed and 21. Since R is
 meager in E, there exist sets Kn c E such that Kn is closed, nowhere dense in E and

 R c U"K". It follows that 0 : F(B) a U"K". Hence, by Kunugui's lemma
 [7, 4F.13], there exist so e a) and n e a) such that 0 # F(B n Nso) c Kn. Since
 F(B n Nso) is a 2? set, it follows from Lemma 1 that there is a 41 tree T on cv such
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 that F(B n N,) c [T] c E and [T] is nowhere dense in E. Now fix a eOB E NN0
 and let p e A f NN0. We now consider two cases: ,3 E A* and ,3 X A*. In either

 case, there is a A1 tree T* on w such that [T*] c E, [T*] is nowhere dense in E and

 F(P) E [T*]. In the first case, this follows from the fact that ,3 E A and the definition
 of A*; in the second case, this follows from the fact that ,3 E B f NN0 and our

 previous observation about F(B f NN0). Consequently, so witnesses that a E A*.
 But this contradicts a E B. This concludes the proof.

 LEMMA 3. If R is 2l, R c E and R is meager in E, then there is Q c w x ow
 such that Q is al, each n-section Q, of Q is closed, nowhere dense in E and

 (Va)(R(a) -+ (3n)Q(n, a)).
 PROOF. Define

 Q'(n, a) '-+ d(n) 4 & S3(d(n)) & S2(d(n), a)

 and Rj(a) (3n)Q'(n, a). Then Q' and R1 are Ill sets. Now Lemma 2 implies that
 R c R1. Hence, by the separation property of 2? sets [7, 4B. 11], there is a 41 set
 R2 with R c R2 c R1. Clearly (Va E R2)(3n)Q'(n, a). So by the A-selection
 principle [7, 4B.5], there is a 41-recursive function g: aw -+ w such that (Va E R2)
 Q'(g(a), a). Next define

 Al(n) *-+ (3a e R)(g(a) = n),

 A2(n) * d(n) 4 & S3(d(n)).

 Then A1 is C1, A2 is II and A1 c A2. Again by the separation property of ll sets,

 we can find a 41 set A with Al c A c A2. Finally, define

 Q(n, a) n E A & d(n) j & S2(d(n), a).

 Compute

 Q(n, a) '-+ (n 0 A) V (d(n) 4 & -iS2(d(n), a)).

 It follows that Q is al. The remaining assertions about Q made in the statement of

 Lemma 3 are now easy to verify. This completes the proof.
 Kechris [5, Corollary 4.2.4] proved Lemma 3 above when E = aw. However, his

 methods are quite different from ours.

 LEMMA 4. Assume that E # 0, R is 21, R c E and R is meager in E. Then E - R
 contains a al point.

 PROOF. Let Q satisfy the assertion of Lemma 3. To exhibit a al point in E - R
 one need only give an effective proof of the Baire category theorem. So define

 S(n, s, t) *-* -'RE(S) V [Seq(s) & RE(t) & S < t

 & (Va)(Q(n, a) - a N)].

 Then S is fll, and since each Q,, is nowhere dense in E, we have: (Vn)(Vs)(3t)
 S(n, s, t). By the A-selection principle [7, 4B.5], there exists a 41-recursive
 function g: c x c -+ c such that (Vn)(Vs)S(n, s, g(n, s)). We define f: c -+ c by
 primitive recursion: f(O) = g(O, 1) (recall 1 is the sequence number of the empty
 sequence) f(n + 1) = g(n + 1, f(n)). According to [7, 7A.3], f is 7ll-recursive.
 Since f is a total function, it follows thatf must be 41-recursive.
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 Clearly, nflo Nf(n) is a singleton, say {a*}, and a* E E. Since R c UnQn
 a* X R. Finally,

 S E q/(a*) def (a* E Ns

 - (3n)(Seq(s) & s < f(n)).

 It follows that a* is a A1 point in E - R. This completes the proof.
 We now formulate our basis theorem.

 THEOREM 1. Let P c ow be a nil set. If there exists so e co such that P p Nso is
 nonempty, Al-normal and comeager in P A Nso, then P contains a z1 point.

 PROOF. In Lemma 4, take E = P f Nso = P A Nso and R = E - (P Nso).
 The theorem now easily falls out of Lemma 4.

 An immediate consequence of Theorem 1 is the following result of Hinman and
 Thomason which we mentioned in the introduction.

 COROLLARY 1. If P c ow is 1ll and nonmeager, then P contains a A1 point.

 PROOF. Since P satisfies the Baire property, there is so e c such that P f Nso is
 comeager in Nso. Now apply Theorem 1.

 We now use Theorem 1 to deduce an effective selection theorem.

 THEOREM 2. Let P c cow x co be a 11l set. Let A be El and suppose that A c 7[P].
 Assume that

 (Va E A)(3s)(Pa f Ns is nonempty, 4l(a)-normal and comeager in Pa Ns).

 Then there is a Al-recursive function: cow - ow such that (Va e A)P(a,f(a)).
 PROOF. Let B = {a E cow: (S3 e Al(a))P(a, if)} In view of the hypotheses, a

 relativization of Theorem 1 implies that A c B. The selection lemma in ?2 now
 does the rest.

 Some of the more interesting consequences of Theorem 2 are incorporated in
 the next corollary.

 COROLLARY 2. Let P c cow x cow be a 11l set. Let A be 21 and assume that A c
 7[P]. Suppose that one of the following conditions holds:

 (i) (Va e A)(Pa is 41(a)-normal and nonmeager in Pa).
 (ii) (Va E A)(Pa is 4l(a)-normal and HIO).
 (iii) (Va E A)(Pa is nonmeager).

 Then there is a Al-recursivefunctionf: cow f co such that (Va e A)P(ac,f(ca)).
 The deduction of Corollary 2 from Theorem 2 is straightforward and is omitted.

 Corollary 2 (under condition (i)) can be viewed as an effective version of Theorem 0.
 We conclude the section by deducing Theorem 0 from Corollary 2. Since any

 uncountable Polish space is Borel isomorphic to low, without loss of generality we
 may assume T c ad. Since any Polish space is a continuous, open image of cow,
 without loss of generality we may assume X = cow. Let P1 = Graph(F). Find a
 111 set P c cow x cod such that P1 = P A (T x cow). As Fis Borel measurable on
 T, for each s E co, the set H1 - {a E T:Pa f Ns # 0} is Borel in T, so there is a

 J1 set Hs a cow such that H1 - Hf nT. Define H(a, s) +-a E H. It is easy to see
 that H is a J1 subset of cw x cv. Find z such that P is 11l(z), T is 21(z) and H is
 al(z). Now, for each a E T,
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 Rpa(s) Pa A N, # 0

 Pa n N. $ 0

 a E H1

 H(a, s).

 Consequently, Rpa is 41(z, ac), hence Pa is 4l(z, a)-normal for a E T. Furthermore,
 Pa is nonmeager in Pa. So a relativized version of Corollary 2 applies to yield a

 41(z)-recursive function f: con -. cow such that (Va E T)(f(a) e F(a)). The restriction

 off to Tis a Borel selector for F.

 ?4. Further results. In this last section we show that the methods of ?3 can be used

 to give alternative proofs of known results. Throughout this section, the set E
 fixed at the beginning of ?3 will be taken to be col). The relations S1, S2, S3 defined
 in ?3 have the same meaning as before except that S3 is defined with respect to co@.

 Then as before S1, S2 are 1o sets, while S3 is }11. By [7, 4D.2], we fix a Hll-recursive
 partial function d*: co x co --a co which parametrizes points in J1(a) n ce.

 The next result was first proved by Kechris [5]; Vaught [I 1] independently proved
 the boldface version of the result. See also [7, 4F. 19] and [2].

 THEOREM 3. Let P c dow x cow. If P is 21 (11), then {a E co: Pa is nonmeager}

 is 21 (Hll). Similarly, if P is 21 (HI), then {a E co: Pa is comeager} is 21 (Hl ).
 PROOF. Let P be 21. By a relativization of Lemma 2, we have:

 Pa is meager+-. (Vj)[P(a, P) -+ (3n)(d*(n, a) 1

 & S3(d*(n, a)) & S2(d*(n, a), 3))].

 It follows that {a E clw: Pa is nonmeager} is 271.
 Suppose next that P is Hl. Since each Pa satisfies the Baire property, we have:

 Pa is nonmeager .-. (3s)(N, - Pa is meager).

 It follows from what we have just proved for 21 sets that {a E cow: Pa is nonmeager}
 is HI.

 The second assertion follows from the first.

 THEOREM 4. if P C cow x aow, P is 21 and Pa is meager for each a, then there is
 Q c cv x aow x Ao such that Q is 41, each (n, a)-section Qn, a of Q is closed, nowhere
 dense and

 (Va)(V/)(P(a, /) -+ (3n)Q(n, a, /)).

 PROOF. We have only to rewrite the proof of Lemma 3 uniformly in a. Define

 Q'(n, a, A) 4-+ d*(n, a) I & S3(d*(n, a)) & S2(d*(n, a), /3),

 P1(a, 0) 4-. (3n)Q'(n, a, /3).

 Then Q' and P1 are l. Moreover, by a relativization of Lemma 2, P c P1. Arguing
 as in the proof of Lemma 3, we get a 4l-recursive functionf: co x cow --. co such that
 (V(a, /3) E P) Q'(f(a, /3), a, /3). Next define

 R1(n, a) .-. (3,)(P(a, /) &f(a, 3) = ,
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 R2(n, or) *-+ d*(n, a) 1 & S3(d*(n, a)).

 Then R1 is 1l, R2 is Il and R1 c R2. By the separation property of 2l sets, there
 is a Al set R such that R1 c R c R2. We now define

 Q(n, a, )-+ R(n, a) & d*(n, a) 1 & S2(d*(n, a), j3)*

 It is easy to verify that Q has the desired properties. This completes the proof.
 A boldface version of Theorem 4 has been obtained independently bya Cenzer

 and Mauldin [2] and Hillard [3].
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