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 The linear model (Y, X3, V), where X is any matrix sat-
 isfying the conditions a (U) C & (X) and 2k (A') C 2k
 (X'), is considered, U and A being known matrices and
 2k (v) denoting range space. Nonnegative definite matrices
 V, for which every linear representation or some linear

 representation of the BLUE of AO3 under (Y, X,B, V1)
 continues to be its BLUE under (Y, Xr3, V) for every
 such matrix X, are characterized. Conditions under which
 estimable linear parametric functions admit a BLUE for

 the variance components model are also given.

 KEY WORDS: Ordinary least squares estimator; Best
 linear unbiased estimator; Variance components model.

 1. INTRODUCTION AND SUMMARY

 Consider the general linear model Y = X, + e where
 Y E Rn is a random vector, X is the n x m design matrix,
 3 E Rm is a vector of unknown parameters, and e is an
 n x 1 random vector with E(e) = 0 and cov(e) = V
 (possibly a singular matrix). Such a model will henceforth
 be denoted by the triplet (Y, Xj3, V). An estimable linear
 paramatric function, ordinary least squares (OLS) esti-
 mator, and best linear unbiased estimator (BLUE) under
 the model (Y, Xg3, V) are well-known terms.

 The following notations are used in this article. For any
 matrix A, 2k (A) and X (A) denote respectively the vector
 space spanned by the columns (or the range space) and
 the null space of A, r(A) denotes the rank of A, A - de-
 notes a generalized inverse of A, A,- denotes a least
 squares g-inverse of A, A + denotes the Moore-Penrose
 inverse of A (see Rao and Mitra 1971, Ch. 3) and A'
 denotes a matrix of maximum rank that satisfies A'A'
 = 0.

 Conditions under which the OLS estimators are also
 BLUE's have been investigated by Rao (1967), Zyskind
 (1967), Watson (1967), Kruskal (1968), and IHaberman
 (1975). McElroy (1967) has given a necessary and suffi-
 cient condition so that for all models (Y, X13, V) in which
 every element of the first column of X is equal to one,
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 the OLS estimators are also BLUE. This problem has
 been considered in a more general framework by Zyskind
 (1969). He considers linear models, with r(X) = p, such
 that & (X) contains a particular vector subspace 2k (U)
 of dimension less than p, and gives general conditions on
 the form of V so that for all such models every OLS es-
 timator is also BLUE. One important consequence of
 Zyskind's result is that if V satisfies appropriate condi-
 tions, then all parametric augmentations of the linear

 model Y = Up + e will give rise to models for which
 the OLS estimators are also BLUE's.

 We start with the set up described by Zyskind and con-
 sider all linear models (Y, X3, VI) with a common linear
 part 2k (U), that is, r(X) = p < n such that 2k (U) C 2k
 (X), U being a known matrix with r(U) < p. The class
 of such matrices is denoted by CP(U). As pointed out by
 Mitra and Moore (1973), the BLUE of an estimable par-
 ametric function may not have a unique linear represen-
 tation under (Y, X,B, VI) when VI is singular. In Section
 2 we consider design matrices X E CP(U) further satis-
 fying the condition 2k (A') C 2k (X'), where A is a given
 matrix with 1 < r(A) s p. The class of such matrices X
 is denoted by CAP(U). We characterize matrices V such
 that every linear representation or some linear represen-

 tation of the BLUE of AP3 under (Y, Xf, VI) continues
 to be its BLUE under (Y, X3, V) also. It turns out, sur-
 prisingly, that if, for some nonnull matrix A, every linear

 representation of the BLUE AP under (Y, X,3, VI) con-
 tinues to be its BLUE under (Y, X3, V) for every X E

 CAP(U), then every linear representation of the BLUE
 of every estimable parametric function under (Y, X,B, VI)
 continues to be its BLUE under (Y, Xf3, V) for every X
 E Cp(U).

 Section 3 deals with the variance components and co-
 variance components models. We obtain conditions

 under which AP admits a BLUE for every X E CAP(U)
 when the variance components and covariance compo-
 nents are unknown.

 2. BLUE ESTIMATION WITH AN INCORRECT
 DISPERSION MATRIX

 In this section, we characterize V such that every linear
 representation or some linear representation of the
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 BLUE of AP under ( Y, X,B, V1) continues to be its BLUE
 under (Y, X,B, V) for every X E CAP (U).

 Theorem 2.1. Every linear representation of the BLUE

 of AP under (Y, X,B, VI) is its BLUE under (Y, X,B, V)
 for every X E CAP(U) if and only if any one of the fol-
 lowing equivalent conditions holds:

 (i) VU' = XV,U' for some A -0
 (ii) Every vector in Rk (U') is an eigenvector of V with

 respect to VI
 (iii) V = XVI + UB U', for some matrix B and scalar

 A > 0 such that V is nonnegative definite.

 Proof. It is well known that L Y is the BLUE of AP
 under (Y, X3, V1) if and only if X'L = A' and X" V1L
 = 0. If (i) holds, then X1' V1L = 0 l X" VL = O for
 every X E CAP(U), thus proving the "if' part. We shall
 prove the "only if' part by considering two cases.

 Case 1: Rk (V1) C Rk (U). In this situation X" V1 = 0
 for every X E CAP( U) and hence we want to obtain suf-
 ficient conditions of V such that X'L = A' a X1' VL
 = 0 for every X E CAP(U). Solving X'L = A' and sub-
 stituting in X1' VL = 0, we get the result that the con-
 dition X1'- VX' A' + X1'' VX'Z = 0 should hold for
 all Z and for every X E CAP(U) X VX' = 0 for every
 X E CAP(U) < VU1 = 0, which is condition (i) with X
 = 0.

 Case 2: Rk (V1) ?Q R (U). X'L = A' and X" V1L =
 0 a X" VL = 0 only if the equations X'L = A', X1 ' L
 = 0 and X" VL = 0 are jointly consistent. A necessary
 and sufficient condition for this is

 a (A: 0: 0)' C Rk (X: V,X': VXY)'

 <* X (X: V,X': VX') c Xf (A: 0: 0) (2.1)

 We now show that (2.1) is equivalent to

 k (x) n A (V&X-: vx ) = {0}. (2.2)

 That (2.2) => (2.1) is trivial since XN (X: 0: 0) C XN (A: 0:
 0). Now suppose (2.1) holds and there exists a nonnull

 vector x C &k (X) n A (v,x,: VX'). One can then con-
 struct a matrix XO such that Rk (X0) = Rk (X), Rk (A') C
 Rk (X,'), and if x = XO a, then Aa # 0 (see Lemma A.2
 in the Appendix). This contradicts (2.1); hence (2.1) X
 (2.2) and, applying Lemma A.3, we get Rk (VX') C Rk
 ((VI + V)X'), which must hold for every X E CAP(U).
 In view of Lemma A. 1, we see that a necessary and suf-
 ficient condition for this is VU' = ot(V1 + V) U' for
 some t ?-0 (1 - o) VU' = otVI U'. Since Qt (V1)
 ? %k(U),wegetO t < 1 andhence VU' = XVIU'-,
 where X = ot/(l - at). This completes the proof of part
 (i) of the theorem. Part (ii) of the theorem is a restatement
 of part (i) of the theorem and the equivalence of (i) and
 (iii) is easily established.

 Corollary 2.1. Every linear representation of the BLUE
 of A,B under (VY, X,B V.) is its BLUE under (IY, X,B, V)
 for every matrix X of rank p satisfying Qlt (A') C Qlt (X')
 if and only if V = AV, .

 It is interesting to note that the condition on V stated
 in Theorem 2.1 does not involve the matrix A. Thus we
 have another corollary.

 Corollary 2.2. Every linear representation of the BLUE
 of X,B under (Y, X,B, V1) continues to be its BLUE under
 (Y, X,B, V) for every X E CP (U) if and only if V satisfies
 any one of the equivalent conditions given in Theorem
 2.1.

 Corollary 2.3. (Zyskind 1969). Consider the linear
 model (Y, X,B, V) where X E CP(U). In each of these
 models all OLS estimators are also corresponding
 BLUE's if and only if anyone of the following equivalent

 conditions holds:

 1. VU' = XU' for some A 2 0.
 2. Every vector in &k (U') is an eigenvector of V.
 3. V = XI + UBU' for some matrix B and scalar 2>

 0 such that V is nonnegative definite.

 Remark. Putting U = 1, = (1, 1, . . . , 1)', the rep-
 resentation given in condition 3 of Corollary 2.3 becomes

 V = AI + b In In, where X 2 0 and b is a scalar such
 that V is nonnegative definite. This representation for V
 has been obtained by McElroy (1967) under the assump-
 tion of full rank of the design matrix and nonsingularity
 of the dispersion matrix.

 Theorem 2.2.

 (i) If &k (V1) C Qt (U), then at least one linear repre-

 sentation of the BLUE of AP under (Y, X3, V,) is
 its BLUE under (Y, X3, V) for every X E CAP (U)
 and for arbitrary V.

 (ii) If &k (V1) ? &k (U), then at least one linear repre-

 sentation of the BLUE of AP under (Y, X1, V,) is
 its BLUE under (Y, X3, V) for every X E CAP( U)
 if and only if every linear representation is so.

 Proof. We want conditions on V under which there
 exists L which satisfies X'L = A', X' V1L = O, and
 X"'VL = 0 for every X E CAP (U). A necessary and
 sufficient condition for this to hold is

 &k (A: 0: 0)' C & (X: VIX': VX')' (2.3)

 for every X E CAP(U). If &k (V1) C &k (U), then X 'V,
 = 0 for every X E CAP(U). In this case (2.3) simplifies
 to &k (A: 0)' C &k (X: VX')' and it is easy to see that
 this condition holds for any nonnegative definite matrix
 V and for every X E CAP( U). This proves part (i) of the
 theorem, since (2.3) is equivalent to (2.1). The proof of
 part (ii) follows easily.

 Corollary 2.4.
 1. If &k (V1) C &k (U), then at least one linear repre-

 sentation of the BLUE of every estimable parametric
 function under (Y, X,B, Vr) is its BLUE under (Y, X1,B
 V) for every X E CP(U) and for arbitrary V.

 2. If Qt (V1) ? a (U), then at least one linear repre-
 sentation of the BLUE of X,B under (Y, X,B, V1) is its
 BLUE under ( Y, X,B, V) for every X C CP ( U) if and only
 if every linear representation is so.
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 For every X E CP(U), let Gx be a least squares g-
 inverse of VI + XX' and consider the linear represen-
 tation X(X' Gx X)--X' GxY of the BLUE of X13 under
 (Y, X13, VI). If St (VI) ? A (U), then it follows from
 Corollary 2.4 that if X(X' Gx X)-X'GxY is the BLUE
 of X3 under (Y, Xj, V) for every X E CP (U), then every
 linear representation of the BLUE of X[ under (Y, Xr3,

 VI) will also be its BLUE under (Y, Xr3, V), and VU'
 = kV, U' for some X 0. Now we assume that St (VI)
 C R (U) and we shall obtain conditions on V so that X(X'

 Gx X) - X' Gx Y is the BLUE of X3 under (Y, Xf3, V)
 for every X E CP(U).

 Theorem 2.3. Suppose A (VI) C A (U) and let Gx be
 a least squares g-inverse of VI + XX'. Then X(X' Gx
 X)-X' Gx Y is the BLUE of X13 under (Y, Xp3, V) for
 every X E CP(U) if and only if VU' = XU' for some
 X - 0.

 Proof. We want conditions on V so that

 X'GxVX' = 0 for every X E CM(U)
 X (VI + XX')GxVX' = O for every X E CP(U)

 (using the fact that 9J (VI + XX') = k (X))
 X GX'(V1 + XX')VX = 0 for every X & CP(U)

 (using the fact that (VI + XX')Gx is symmetric since
 Gxis(VI +XX')j-)

 < X'VX' = OforeveryX& C (U)
 (premultiplying by X')

 <X 2k (VX') C 2k (X') for every X E CP(U)
 < VUI = xU

 for some X 0, using Lemma A. l. Theorem 2.3 is thus
 established.

 3. THE VARIANCE COMPONENTS MODEL AND THE
 COVARIANCE COMPONENTS MODEL

 The variance components model is a linear model with

 E(Y) = X and V(Y) = E . 2 Vi. Here the Ur2(i =
 1, 2, . . ., k) are unknown parameters and the Vi (i = 1,
 2, .. . , k) are known nonnegative definite matrices. If
 V(Y) = I Ui'JW Ui, where Ui (i = 1, 2, . .. , k) are
 known s x n matrices and W = ((wij)) is an unknown
 nonnegative definite matrix of order s x s, then the linear
 model is known as the covariance components model.
 Mitra and Moore (1973) have shown that for i c j = 1,
 2, . .. , s, there exist 'wij (depending on wij) satisfying
 V( Y) = 1= I Ui' W Ui = Ei,j 'ij Vij, where the Vij's
 are known nonnegative definite matrices for i c j = 1,
 2, . . . , s.

 In this section, we obtain the conditions under which

 AP3 admits a BLUE under the variance components
 model or the covariance components model for every X
 E CAP(U). For a given linear model, specifically for a
 fixed X, this problem has been considered for the variance
 components model by Seely and Zyskind (1971) and Mitra
 and Moore (1973, 1976) and for the covariance compo-
 nents model by Mitra and Moore (1973). We now prove
 the following theorem.

 Theorem 3.1.

 (i) AP3 admits a BLUE under the model (Y, Xr3,
 , Vi) for every X E CAP(U) if and only if

 for i = 1, 2, . . . , k, ViU'L = XiV,0U' for some Xi
 - 0, where V = =Vi.

 (ii) For i <j = 1, 2, . , s,I let Vvj be as given in the
 beginning of Section 3. Then AP3 admits a BLUE
 under the model (Y, Xp3, >h= l U1' W Ui) for every
 X E CAP(U) if and only if for each i < j = 1, 2,

 . . ., s Vij U' = Xi, Vo U for some Xij 0 O, where
 VI, = Eic? Vjj.

 (iii) Xp3 admits a BLUE under the model (Y, Xp3,
 ,&= IFi.2 Vi) (or under (Y, X3, Uh= Ui' W Ui))
 for every X E CP(U) if and only if the condition
 stated in (i) (or (ii), respectively) holds.

 Proof. AP admits a BLUE under (Y, X)3, >Ik r= 2 Vi)
 for every X E CAP( U) if and only if for every X E CAP( U)
 there exists a matrix L satisfying X' L = A' and X" Vi
 L = 0 for i = 1, 2, . . . , k or, equivalently,

 bR(A : 0:0, . I . ,?

 C R9? (X: VIX' V2X' VkX')' (3.1)

 for every X E CAP( U). As in the proof of Theorem 2.1,
 it can be shown that (3.1) is equivalent to the condition

 A (ViX ) C a (VoX ), i = 1, 2, . . ., k for every X E
 CAP(U), where Vo = Ejk=I Vi. Part (i) of Theorem 3.1
 now follows from Lemma A. 1. Part (ii) is proved simi-
 larly. The proof of part (iii) is clear in view of the results
 in Section 2.

 Remark 3.1. When AP3 admits a BLUE under the var-
 iance components model (Y, Xr3, I li2 Vi), its BLUE
 could be computed as A(X' G,,X)-X' Go Y, Go being a
 g-inverse of V) + XX', where V) = E VIi.

 Remark 3.2. Suppose V is any nonnegative definite ma-

 trix in the k-dimensional linear space SE (VI, V2, ....
 Vk) spanned by the nonnegative definite matrices VI, V2,

 Vk. Then V can be written as V = Et;=I ai Vi,
 where all the ai's may not be nonnegative. Using argu-
 ments similar to those given in the proof of part (i) of
 Theorem 3.1 (i), it can be shown that whenever X E

 CAP(U), AP admits a BLUE under (Y, Xf3, V) for every
 nonnegative definite matrix V E S (VI, V2, . . ., Vk) if
 and only if ViU' = Xi Vo U' for some Xi '0 and for i
 = 1, 2,. . . , k, where Vo = E>J= I Vi. When this condition
 is satisfied, the estimator A(X' Go X) - X'G( Y is a BLUE
 of AP, where Go is a g inverse of V0 + XX'. Mitra and
 Moore (1976) have pointed out that even if a linear par-
 ametric function l'X3 does not admit a BLUE under (Y,
 X3, V), V being any nonnegative definite matrix in S (VI,
 V2, . . ., Vp), the estimator 1' X (X' Go X)-X' GO Y is
 an admissible estimator of 1' X 1; that is, no linear un-
 biased estimator of l'X1 can be better than l'X (X' GO
 X)-X' G Y.

 As an example consider the matrix VY,b = al ? b 1

 In', where 1In is the column vector with each element unity
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 and a and b any two real numbers that make Va,b a non-
 negative definite matrix. If U = I, V1 = I, and V2 = 1,
 int, then it is clear that V1 U' = (VI + V2) U' and V2
 U' = O.-Hence in view of Remark 3.2, we see that X,B
 admits a BLUE under the model (Y, X13, Va,b) for every
 X E CP(1n) and the BLUE can be computed as X(X'(I
 + In In) X) X' (I + In In') y.

 Remark 3.3. If U = 0, then from Theorem 3.1 it is clear
 that A P (A = 0) admits a BLUE under the variance com-
 ponents model or the covariance components model for
 every X of a particular rank p < n satisfying 2k (A') C
 2R (X') if and only if the dispersion of Y is known either
 completely or up to a positive scalar multiplier.

 APPENDIX: SOME ALGEBRAIC RESULTS

 Lemma A.1. If VI and V are nonnegative definite mat-
 rices, then a (V XI) C a (VI X') for all X C CAP(U)
 if and only VU' = XV, U' for some A ? 0.

 Proof. Theorem 1 in Zyskind (1969) states that 2R

 (VX') C 2 (V,X') if and only if w' VIX' = 0 X w'
 VX' = 0. This is equivalent to demanding that VI w E
 2k (X) > V w E 2k (X); we therefore want conditions on
 V such that VI w E 2k (X) > V w C 2k (X) for every X
 E CAP(U). Since p < n, if VI w E 2 (U) and V w q k
 (U), we can choose X c CAP( U) such that V1 w E a (X)
 and V w ? 2k (X). Thus we necessarily have

 R (VU') c &(VI U') (A.1)

 Now let w, = U'z. Let the matrix C be such that R (C)
 = 2k (U: Vlwl: V w1)', and consider the matrix X
 satisfying a (A') C R (X') and 2 (X) = 2 (U: V,w,:

 CO), where C, is chosen in such a way that 2 (Cl) C 2
 (C) and r(X) = p. For such an X, V,w, E 2 (X), and
 hence we should have V w, E 2k (X). Thus V w, = U ot,
 + AVIw, + C1 xt2 for some vectors ox1 and t2 and scalar
 X. From the choice of C, it then follows that V w, = U
 ot + XV, wI. However, from (A.1), V wI = VU'z E 2R
 (V1 U') and 2 (VI Ul) n 2 (u) = {0}; therefore V w1
 = X , wi. Thus V U'z = XV, U'z for every z and hence
 VU' = AV, U'. Since premultiplication by U" leaves
 nonnegative definite matrices on both sides, we should
 have X ? 0. This completes the proof of Lemma A. 1.

 Remark A. 1. If V1 and V are nonnegative definite mat-
 rices, then 2k (V X') C 2 (V1 X') for all X EC CP(U) if
 and only if VU' = AVI U', for some X > 0.

 Lemma A.2. Let A and X be given matrices with r(A)
 c r(X) and let x be a non-null vector in R (X). Then there

 exists a matrix X, satisfying 2 (X,) = 2k (X), 2R (A') C
 R (X,'), and ifx = X, a, then A a #0.

 Proof. Let the columns of (x: S) be a basis of R (X),
 the rows of T, be a basis of the row space of A, and T =
 (T,': T2')' be a matrix of linearly independent rows. For
 somej, let the jth column of Tbe (1, O, O, .. , 0)', which
 is possible since the rows of T are non-null. Put XO = (x
 :S)T. Then the jth column of XO is x, or, in other words

 if a is the jth column of the identity matrix, then XO a =

 x. However, T, a = (1, 0,.. ,0)' 0. Hence A a =#
 0.

 Lemma A.3. Let V1 and V be n x n nonnegative def-

 inite matrices and X be an n x m matrix. Then the fol-
 lowing conditions are equivalent.

 (i) a (X: 0 :0) C ak (X: V1X' : VX')'.
 (ii) X (X: V1X I: VX') c X (X: 0: 0).
 (iii) k (x) n a (v, xl : vX1) = {o}.
 (iv) R2(V1X' : VX') = QR((VI + V)X').
 (v) R (VPVXL)C P((VI + V)X1).

 Proof. Equivalence of (i), (ii) with (iii), and (iv) with

 (v) is fairly straightforward. To show that (iv) a> (iii) we
 observe that on account of Theorems 2.1 and 2.3 of Mitra

 and Puri (1979), (V + V1)X' = {(V + VI) - 5 (V +
 Vj)} XI, where 9 (V + VI) is the shorted nonnegative
 definite matrix (V + VI) and 9' = R (X). Furthermore,

 a {(V + V1) - 9' (V + V1)} n a (x) = {o}.

 Hence (iv) a> (iii) since a (VX' : V1 X') C a (V + VI)
 and 2k ((V + V1) X') C 2k (V X' : V1 X'); if (iv) is not

 true, there exists a non-null vector in 2k (VX I: VI XI)
 that is also in a (9 (V + VI)). This contradicts (iii) since
 2R (9 (V + V1)) C 9' = 2 (X). Hence (iii) and (iv) are
 equivalent.

 [Received October 1981. Revised August 1982.]
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