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 Summary

 Godambe (1980) initiated the study of survey strategies when responses are randomized, within
 the framework of the unified theory (Godambe, 1955). For this randomized response situation we
 show that the optimality properties satisfied by the Horvitz-Thompson estimator in the conventional
 case are also satisfied by a version of the Horvitz-Thompson estimator appropriate for the
 randomized response case. It is also shown that the nonexistence of any best estimator for the
 population total continues to be true even when the responses are randomized.
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 1 Introduction and notation

 In sample surveys on sensitive issues like amount of income understated in income tax
 returns, respondents are normally reluctant to report the correct values. To overcome this
 difficulty, Warner (1965) suggested a randomized response approach which was
 generalized by Eriksson (1973). Unknown to the interviewer the respondent reports the
 actual values only with probability c (0 <c < 1), and otherwise would report a random
 value from a given set of numbers X1, X2, .. .. X that would cover the whole range of
 possible values for the characteristic of the survey. This way the exact value remains
 confidential and hence better response is expected. In this note we discuss the estimation
 problem in this randomized set-up.

 As usual, we write Yi for the characteristic value of the ith unit in the population. Let
 us write Z, for his response, where

 IY, with probability c,

 Z= X8 with probability (1- c)/M (j =1,2,..., M).
 We will write Y for the vector of population values and Z for the vector of responses. It is
 assumed here that, conceptually, the randomization can be done for every unit in the
 population beforehand.

 We denote the sample design by p, the probability of obtaining sample s by p(s), and
 the randomization giving 2 values by R. On the expectation operator g and variance
 operator V we use suffixes p, R, or both, to denote whether the operation is with respect
 to design, randomization or both, respectively.
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 2 Necessary and sufficient form of unbiased estimates

 If we assume that the sample respondents reported the actual 9/-values, an unbiased
 estimate of the population total Y = i Y1, where the sum is over i = 1,... , N, could be
 written as e(s, Y), where e depends on Y only through the units in the sample s. For a
 given e(s, Y) let us write

 1 1l-c ? 1 t(s, Z) - e(s, Z)- X, - (1) c cM i= irs ?Ti

 Then t(s, Z) is an unbiased estimator of Y when the responses are randomized. We may
 call t(s, Z) a derived estimator from e(s, Y). We will show below that any unbiased
 estimator under randomized response would necessarily be of the form (1). We need the
 following theorem.

 THEOREM 2.1. If for any real function h(s, Z) the expectation is zero under Rp for all
 parametric values Y, then 4p{h(s, Z)} is identically zero.

 Proof. Let us write 4[h(s, Z)]= 4(Z). We need to show that if ~,R[4(Z)] is 0, then
 4(Z) is 0 for every Z. We will prove the result by induction.

 First, let N= 1. Then

 1-c T
 R(Z)= co(Yi) + -- q(Xj)= 0, j= 1

 which implies that q(YJ) should be the same for all Y1. As the range of Y1 includes
 X1, X2,..., XM, we have q(Z) =0, and hence the claim is true for N = 1.

 Now assume that the claim is true for all N< m, and take the case N = m + 1. As
 randomization is independent from unit to unit,

 iR4(Z, Z2, .. ., Zm, Zm, Zm+l)= CgR4(Zl, Z2 .... , Zm, Ym+l) 1-cM
 + - eR 4(ZZ Z2,...7.. ,-Zm,)X).

 M 1i=

 If we argue as before, RC4(Zl, Z2,... , Zm, Ym+1) should be the same whatever the value
 of Ym+l, and hence should equal zero. But then from the induction hypothesis

 O (Zb, Z2,1...., Zm, Ym,+1) 0
 for any value of Y,,m+, and the claim follows for N = m + 1 and hence for every N.

 THEOREM 2.2. Any unbiased estimator a(s, Z) of Y is essentially of the form t given
 by (1).

 Proof. Note that eRa(s, Z) is an unbiased estimator of Y, and this could be used as an
 estimator when there is no randomization. Hence there is an estimator of the form (1).
 Under p the expectation of this derived estimator and of a(s, Z) are the same by Theorem
 2.1. Using the form (1) then,

 1 1-cT

 aa(s, Z)=_1 Z XN, c i=1 cM i=1
 and hence

 4[ca(s,Z)+ 1-c =16 T N
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 from which it follows that

 1-cT 1

 e (s, Y)= ca(s, Y) + - X M l j=1 iES

 is an unbiased estimator of Y in the conventional case and a(s, Z) is the corresponding
 derived estimator.

 3 Nonexistence of a best unbiased estimator

 It is well known that for the conventional sampling set-up there does not exist a best
 unbiased estimator (Godambe & Joshi, 1965; Basu, 1971). Such a nonexistence result is
 true for the randomized response situation also. We use Basu's proof with some modifica-
 tion.

 Let us define independent random variables a1, %a2,..., aN each taking one of two
 values 0 and 1 with probabilities 1-c and c respectively, which give rise to the
 randomized response

 (Y, ifai=1,
 Zi Xj with probability 1/M if a1 = 0 (j= 1, 2,..., M),

 and another set of responses

 Zio Yio if a = 1,
 Xi with probability 1/M if a1 = 0 (j = 1, 2,..., M).

 The vector of the Yio's (assumed to be known) may be denoted by Yo, and the vector of
 the Zio's by Zo.

 Now let a(s, Z) be a best estimator if one exists. Consider the estimator

 a*(s, Z) = a(s, Z) - a(s, Z0)+ eR [a(s, Z)],

 which is unbiased for Y. When Z = Z0,

 a*(s, Z0) = 'R (a(s, Zo))
 and hence

 VRP(a*(s, Zo)) < VRP(a(s, Zo))

 unless 4~VR(a(s, Zo))= 0, which is not possible. Hence a(s, Z) is not uniformly minimum
 variance.

 4 Optimality of Horvitz-Thompson estimator

 For the conventional sampling set-up the Horvitz-Thompson estimator, defined as

 e *(s, Y) = ',
 is known to have many optimum properties (Godambe & Joshi, 1965; Godambe &
 Thompson, 1973; Cassell, Sirndal & Wretman, 1976; C.R. Rao, 1971). All these
 optimality properties are true also in the random response case for its derived estimator

 iZs C7ti
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 where

 M =1

 To establish this, we need the following lemma.

 LEMMA 4.1. Let h(s, Z) have expectation zero under Rp and hence under p by Theorem
 2.1. Then

 4, CovR (t*(s, Z), h(s, Z))= 0. (2)

 Proof. Now

 , z h(s, Z) = z* h(s, Z) pI = Z, h(s, Z)p, es Cti Cstles C i i=1 s:ies C ti

 =E AI h(s, Z)- 2 h(s,Z)p, -s) h(s, Z)p,
 i=1 C i s:ios i=1 C Ti s:its

 from Theorem 2.1. On taking expectation under R of both sides, and remembering that
 the randomization is done independently on each unit, we get

 Z* N* 9 (Zi)
 e=s i i=1 C1Ti s:iqs

 =2 :R(z) Y 9R(h(sq,Z))ps i=1 C1Ti s:ies

 as Es, R(h(s, Z))p = 0, and thus

 z Z* ,eh((s, Z)) = * h(.Z) (h(s, Z))p, tes I~i S i es CIZi

 = 4{9R(2: Z1 h(s, Z)1. (3)
 Hence

 f, COVR (t*(s, Z), h(s, Z)) = f, CovR (~ i h(s, Z)

 =4{R((  (s, Z) - ~R(, I (h(s, Z))= =0, from (3). Thus the lemma.

 Now we can establish the following theorem from which the optimality results follow.

 THEOREM 4.1. For any unbiased estimator a(s, Z) of Y we have

 vR, (a(s, Z)) = Vp{(Ra(s, Z)}+ a4{V,(t*(s, Z))}+ 24,{ VR(a(s, Z)- t*(s, Z))}.
 Proof. We have

 VRP,(a(s, Z)) = Vp{'Ra(s, Z)}+4 ,{VRa(s, Z)}

 = v,({?a(s, z)}+ {,Vt*(s, Z) + VR(a(s, Z)- t*(s, Z))
 + 2 CovR (t*(s, Z), a(s, Z)- t*(s, Z))}.
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 Because

 Ra,P{a(s, Z) - t*(s, Z)} = 0,

 the result follows from Theorem 2.1.

 We may note that, from Theorem 2.1 and (1), we have

 VR, (a(s, Z)) - VRp(t*(s, Z)) > Vp{R(a (s, Z))}- VPR (t*(s, Z))}

 = Vp{R(a(s, Z))}- Vp(e*(s, Y)).
 This observation leads to the following optimality theorem.

 THEOREM 4.2. Let a(s, Z) be an unbiased estimator of Y. If 9R(a(s, Z)) has larger
 expected variance than e*(s, Y) under some superpopulation model, then a(s, Z) has larger
 expected variance than t*(s, Z) under the same model.

 The following corollaries are immediate.

 COROLLARY 4.1. If e*(s, Y) together with an appropriate design has minimum expected
 variance amongst all unbiased strategies of Y under some superpopulation model, so does
 t*(s, Z) under the same model.

 COROLLARY 4.2. If e(s, Y) is a linear estimator and has larger variance than e*(s, Y),
 then the corresponding derived estimator t(s, Y) has larger variance than t*(s, Y).

 The optimality results of Godambe & Joshi (1965), Godambe & Thompson (1973,
 1977), Cassel et al. (1976) and many others would then get extended for the randomized
 response case through Corollary 4.1. The comparisons made between Horvitz-Thompson
 and other strategies by Rao (1966), Vijayan (1966) and Chaudhuri & Arnab (1979) also
 have their analogues in the present case; some details are given by Chaudhuri & Adhikari
 (1981).
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 R6sum6

 Godambe (1980) a initi6 l'&tude des strat6gies des enquetes dans les cas de reponses randomisees, dans le
 cadre de la theorie unifi&e par Godambe (1955). Pour cette situation des reponses randomisbes on montre que
 les propriet6s optimaux satisfaites par l'estimateur Horvitz-Thompson dans le cas classique sont aussi satisfaites
 par une version de cet estimateur appropri6 au cas des reponses randomisees. On note aussi que la manque d'un
 estimateur optimal pour la population totale est vraie meme dans le cas des rtponses randomistes.

 [Paper received March, 1982, revised November 1983]

 Discussion of paper by A.K. Adhikari, A. Chandhuri and K. Vijayan

 P.K. Sen

 Department of Biostatistics 201H, University of North Carolina, Chapel Hill, NC 27514,
 USA

 It is a pleasure for me to contribute to the discussion of this interesting paper.
 Randomized response trials play a vital role in survey sampling, and the present paper has
 indeed made a valuable theoretical contribution in this area.

 I have, however, a few observations and comments to make. First, the assumed
 randomized response model (for the Z,) is somewhat less general than the usually adopted

 one. In a general context, one assumes typically that with the set X= {xx,...., x"} of realizations, there is an associated set Q = {q1,... , qm}, where the qj are nonnegative real
 numbers and jq =l1 with the sum over j=1,..., m, such that, for some c
 (0 <c<1),

 { Y, with probability c,

 1z xj with probability (1- c)qj (j = 1, ..., m),
 for i = 1,..., N; without any loss of generality, we take x1,.... , xm to be all distinct. If the
 qj are all rational numbers, then, of course, M and Xx1,..., X, may be so chosen that Mqi
 of the Xi are equal to xi (j = 1,..., m), and hence the uniform probability model
 considered by these authors can be worked out by allowing Xx1, .. .,X to be not
 necessarily all distinct. On the other hand, this reduction to a discrete uniform distribution

 may not be generally possible. As a simple example, consider the case T = {0, 1} and
 q0 = 1- q, = 7r-x, so that the probabilities are not rational numbers. In this case, the finite
 and discrete uniform distribution will not work out. The results in the current paper can
 easily be modified to suit this more general model. In fact, in (D1), m may also be equal
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