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 PARAMETRIZATIONS OF BOREL SETS WITH LARGE SECTIONS

 A. MAITRA AND V. V. SRIVATSA

 ABSTRACT. The main result of this article unifies, extends, and simplifies the proofs

 of Borel parametrization theorems for Borel sets with large sections.

 1. Introduction. Suppose X is a separable metric space, Y a Polish space, and B a

 Borel subset of X x Y with uncountable vertical sections. A function : X x 2W * X

 x Y is said to be a parametrization of B if, for each x E X, f(x, ) is a Borel

 isomorphism of 2W and { x } X Bx. If, moreover, f is Borel measurable, we say that f
 is a Borel parametrization of B.

 Though Borel parametrizations were already implicit in the work of Purves [7], it

 was not until relatively recently that the first systematic study of the problem of

 finding Borel parametrizations of Borel sets with uncountable sections was under-

 taken. This was done by Mauldin in [4], which article is our point of departure.

 Roughly speaking, Mauldin proved, under the assumption that the horizontal axis X

 is Polish, that the set B admits a Borel parametrization provided that the vertical

 sections of B are large. The precise sense in which the sections are large was

 expressed by Mauldin by assuming that either the vertical sections of B have positive

 measure under a Borel measurable nonatomic transition function, or that the

 sections are nonmeager and Y is perfect.

 The aim of this article is to unify, extend, and simplify the proofs of these results

 of Mauldin. The extension is to the situation where the horizontal axis X is separable

 metric. We achieve the unification by formulating the notion of largeness in terms of

 a-ideals of the Borel a-field of Y satisfying a definability condition as in [3] and an

 extra condition. In [3] a similar unification was obtained with respect to measurable

 selectors for Borel sets with large sections. Indeed, the present article can be viewed

 as a continuation of [3].

 The main result of the paper is

 THEOREM 1. Let X be a separable metric space and Y a Polish space. For each

 x E X, letfx be a a-ideal of subsets of the Borel a-field of Y such that
 (i) for each Borel set C in X x Y, the set { x e X: Cx % fx ) is Borel in X, where

 Cx= {y Y: (x, y) C C), and
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 (ii) for each x c X, fx contains all singleton subsets of Y.

 Let B be a Borel set in X x Y such that Bx %/x for each x c X. Then there is a
 one-one function f: X X 2W - X X Y satisfying

 (a) for each x c X, f (x, ) is a Borel isomorphism of 2W and { x } X Bx, and
 (b) f and f -1 are Borel measurable.

 Condition (i) above ensures the existence of a Borel measurable selector for B; see

 [3]. Condition (ii) unifies the measure-theoretic condition in Mauldin's measure

 result that the transition function be nonatomic with the topological requirement in

 his category result that the space Y be perfect.

 The main theorem will be proved in ?3. In ?2 we explain the notation to be used.

 ?4 will discuss special cases of our theorem. In ?5 we present necessary and

 sufficient conditions for a Borel set to admit a Borel measurable parametrization and

 for a Borel set to admit a Borel measurable selector.

 2. Notation. We denote the set of natural numbers by w. Finite sequences of

 natural numbers will be identified with their sequence numbers (see [6]). The set of

 sequence numbers is denoted by Seq. We denote by Seq2 the set of sequence

 numbers of finite sequences of O's and l's. If n c w, denote by Kn) the sequence

 number of the one-element sequence (n). For s, t c Seq, we write s c t to denote

 that the finite sequence coded by s is an initial segment of the finite sequence coded

 by t; write s c t if the sequence coded by s is a proper initial segment of the

 sequence coded by t. If s, t c Seq, s * t denotes the catenation of the sequence coded

 by s followed by the sequence coded by t. The length of the sequence coded by

 s c Seq is denoted by lh(s).

 The set of infinite sequences of natural numbers (O's and l's) is denoted by

 wW(2W). If a c @w, n E w, then a(n) denotes the nth coordinate of a, and a-(n)

 denotes the sequence number of the finite sequence (a(0), a(l),...,a(n - 1)). For

 s c Seq, set N(s) = {a of wc : o(lh(s)) = s ). The sets N(s), s c Seq, form a base for
 a topology on W'. Endowed with this topology WW becomes a Polish space which is

 homeomorphic to the space of irrationals. The set 2W is topologized in a similar

 fashion so that it becomes a homeomorph of the Cantor set.

 If X is a separable metric space, e3 ( X) will denote the Borel a-field of X.

 Unexplained notation and terminology are from [6].

 3. Proofs. We begin with the statement of a result (Lemma 3.4) from [8], to which

 the reader is referred for a proof.

 LEMMA 1. Let X be a separable metric space. Suppose h: X X 2' - 2W is a Borel

 measurable function such that for each x X X, h (x, ) is a homeomorphism. Let

 h(x, a) = (x, h(x, a)), x c X, a c 2W. Then, for each Borel set E in X X 2W, h(E) is

 Borel in XX 2X.

 The proof of the theorem is executed by reducing it to a special case. We consider

 the special case first.
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 LEMMA 2. Suppose X is a separable metric space and let A be a Borel subset of

 X X o' with closed vertical sections. For each x E X, let Ox be a a-ideal of the Borel
 a-field of o" such that

 (i)foreach x E X, A x,
 (ii) for each (x, a) E A, {o} e E , and

 (iii) for each open set V in o", the set {x E X: Ax n V 0 f, ) is a Borel set in X.
 Then there is a Borel parametrization g of A such that g 1 is Borel measurable.

 PROOF. Let T(s) = {x E X: A., n N(s) E f, }, s E Seq. By hypothesis, T(s) is
 Borel in X. Set

 M = A \U{T(s) X N(s): s E Seq}.

 Plainly M is Borel in X x ww, Mx O fx for each x E X, Mx is closed in & for each
 x G X, and for any t E Seq,

 Mx n N(t) 0 0 -*Ax f N(t) ?fy

 It follows that {x c X: M, n N(t) o 0 } is Borel in X for each t ( Seq. Since _x
 contains singleton subsets of AX, if Mx n N(t) * 0, then Mx n) N(t) is uncounta-
 ble. So Mx is perfect for each x e X.

 Next we define a function cp: X X Seq2 -* Seq satisfying the following conditions:
 (a) for each u E Seq2, (., u) is Borel measurable on X,

 (b) u, v C Seq2 & u C v p(x,u) C (x, v),

 (c) u, v e Seq2 & lh(u) = lh(v) & u + v -- N(cp(x, u)) n N(c(x, v)) = 0,

 (d) for each u E Seq2, lh(p(x, u)) > lh(u), and

 (e) M,r n N(T(x, u)) 0 0 for each u e Seq2.
 The function 9p is defined by induction on lh(u). Set p(x, 1) 1. (Recall that 1 is the
 sequence number of the empty sequence.) Suppose now that T(x, v) has been

 defined for all v E Seq2 such that lh(v) < k. Fix u c Seq2 such that lh(u) = k. We

 have to define p>(x, u * KO)) and q (x, u * (1)). Set

 q: (x, u* (O)) = [it[Seq(t) & qp(x, u) c t & Mx n N(t) 0 0

 &(3s)(Seq(s) & p(x, u) c s & M n N(s) # 0

 & N(s) n N(t) =0 )]

 and

 p(x, u * (1)) = us[Seq(s) & T (x, u) c s & M n N(s) 0

 & N(T9(x, u * (O))) n N(s)= 0].

 Since, by the induction hypothesis, Mx rn N(T(x, u)) # 0, and since Mx is perfect,
 the functions p(x, u * (0)) and p(x, u * (1)) are well defined. Borel measurability
 of these functions follows from the condition that for each s E Seq the set { x e X:

 M, n N(s) # 0 } is Borel in X and the induction hypothesis.
 The function Tp enables us to define a parametrization into A. Indeed, define h:

 X x 2' --* w' by setting h(x, a) to be the unique element of nf N(T(x, a-(n)) :
 n G co }. It is a straightforward matter to check that for each x e X, h(x, ) is a

 homeomorphism of 2' into Ax. Moreover, using the fact that the function p(x, u) is
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 Borel measurable in x, one verifies easily that for each fixed a E- 2W, 9pQ(, a) is a
 Borel measurable function on X. It now follows from a classical result (see [2]) that h

 is Borel measurable.

 To complete the proof we have to define a parametrization onto A. This is done

 by a Cantor-Bernstein type argument as in [4]. The details are as follows. First

 imbed o' as a G, in 2', so we can think of A as a Borel subset of X X 2'. Define h:
 X x 2W X X 2W by setting h(x, a) = (x, h(x, a)). Plainly h is Borel measurable,
 and, by Lemma 1, h(E) is Borel in X x 2W whenever E is Borel in X x 2W. Define

 sets S, inductively as follows:

 So = (XX 2')\A,

 Sn + i = ( Xx 2w) \(A \ h (Sn)) n E co.

 Let S U n U n w Sn and define g: X x 2' - X x 2'? by

 g(x, a) = h(x, a) if (x, a) E S*,
 =(x, a) if (x, a) E (X X 2w)\S*.

 Since the sets Sn are Borel in X x 2W, so is S *. It now follows easily that g is a Borel
 parametrization of A and g-1 is Borel measurable. This completes the proof.

 We now turn to the

 PROOF OF THEOREM 1. Let X be the metric completion of X. Choose a Borel subset

 B of X x Y such that B = B n (X x Y). By a classical result (see [1]) there is a

 closed subset D of OW and a one-one continuous function h on D onto B which takes

 Borel sets in D to Borel sets in B. Let A = {(x, a) E X X D: rl o h (a) = x}, where
 7T1 is projection to the first coordinate. Observe that A is a closed subset of X x .o
 and h maps Ax in a one-one manner onto { x) X Bx for each x E X.

 LetYx = {h-1({x} XE):EC Bx &Efx },x E X.Then,foreachx E X,,x is
 a a-ideal of Q3( w), and, sincefx contains all singleton subsets of Y, Ox contains all
 singleton subsets of Ax. Moreover, Ax 0 Ox as Bx i Jfx . Finally, if V is an open set
 in cow, then

 xX : Ax n V X _ x X: (h(D n V)n(Xx Y))x Ofx

 By condition (i) of the theorem and the bimeasurability of h, the set on the right side

 is Borel in X; hence, so is the set on the left. Consequently, A and Ox, x E X, satisfy
 the hypotheses of Lemma 2, which yields a Borel measurable parametrization g of A

 such that g1- is Borel measurable. Let f = ho o2 g, where v2 is projection to the
 second coordinate. It is now easy to verify that f is a Borel parametrization of B such

 that f -1 is Borel measurable. This completes the proof of the theorem.

 REMARK. The idea of reducing the problem of finding a parametrization for a

 Borel set to that of finding one for a Borel set with closed vertical sections can also

 be used to give a very simple proof of the selection theorem in [3]. Indeed, we can

 proceed as in the proof of the theorem of the present article, getting a one-one

 continuous function h on a closed subset D of Ow, a closed set A in X x cow, and the

 a-ideals ,x of 93(CW ), x E X. The only difference now is that ,x may contain some
 singleton subsets of Ax, since, as per the hypotheses of the selection theorem of [3],



 PARAMETRIZATIONS OF BOREL SETS 547

 /x may contain singleton subsets of Y. Next we construct the set M from A as in the
 proof of Lemma 2. The set M will have the same properties as the M of Lemma 2,

 except that MX may not be perfect. But the last circumstance is irrelevant. The

 properties that M enjoys are already sufficient for the Kuratowski-Ryll-Nardzewski

 selection theorem (see [2]) to be applicable, giving us a Borel measurable selector g:

 X -- co' for the set M. Setting f = v2 oh o g, we get a Borel measurable selector for
 B.

 4. Special cases. In this final section we deduce several known parametrization

 theorems from the main result of this paper.

 Let X, then, be a separable metric space, Y a Polish space, and B a Borel set in
 xx Y.

 10. We consider Mauldin's measure result first. Let Q(x, E), x E X, E E (Y),
 be a Borel measurable transition function such that Q(x,. ) is a nonatomic probabil-

 ity measure for each x c X. We assume that Q(x, Bx) > 0, x E X. Let

 fx ={E 9(Y): Q(x, E) = O}, x E X.
 It is an easy fact of measure theory that the a-ideals jx, x c X, satisfy the
 definability hypothesis of our theorem. Since each Q(x, ) is nonatomic, <x
 contains all singleton subsets of Y, so that condition (ii) of our theorem is also

 satisfied. Mauldin's measure result is clearly implied by our theorem.

 20. We turn now to Mauldin's category result, where we assume that BX is
 nonmeager in Y for each x E X and Y is perfect. We define

 Xx = {E E (Y): Eismeagerin Y}, x E X.

 Again it is well known that the a-ideals fX, x c X, satisfy condition (i) in our
 theorem (see [9]). Condition (ii) is satisfied as Y is perfect. Mauldin's category result
 now falls out of our theorem.

 30. For our third example we make the following assumptions on B: (a) the

 multifunction x -* BX is Borel measurable, i.e. the set { x E X: Bx n) V = 0 } is
 Borel in X for each open set V in Y, (b) Bx is nonmeager in cl(Bx) for each x E X,
 and (c) cl(Bx) is perfect for each x c X, where cl denotes the closure operator in Y.
 For each x E X, we define fx to be the u-ideal of 93 (Y) generated by the family

 { E c cl(Bx): E E- 93(Y) & meager in cl(Bx)} U { Y\ cl(Bx)} .

 Using the methods of [9], one easily proves that the u-ideals fx, x E X, satisfy
 condition (i) of our theorem. Condition (ii) holds because of (c). It now follows from

 our theorem that there is a Borel parametrization of B, a result which was proved for

 analytic X by Mauldin and Srivastava [5].

 5. Necessary and sufficient conditions for existence of parametrizations and

 selectors. It was observed in the previous section that Mauldin's measure-theoretic

 result was a special case of our main theorem. But, as pointed out by the referee of

 this paper, Mauldin's hypotheses are, in fact, equivalent to the existence of a Borel

 measurable parametrization. To complete this circle of ideas, we incorporate this

 observation in the following theorem which gives necessary and sufficient conditions

 for a Borel set to admit a Borel measurable parametrization.
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 THEOREM 2. Let X be a separable metric space, Y a Polish space and, B a Borel

 subset of X x Y. Then the following conditions on the Borel set B are equivalent:

 (I) There is a nonatomic Borel measurable transition function Q(x, E), x c X,
 E 3E (Y), such that Q(x, By) > O for each x c X.

 (II) There exist a-ideals f., x c X, of 03(Y) satisfying conditions (i) and (ii) of
 Theorem 1 and such that B. %/x for each x c X.

 (III) There is a one-one function f: X X 2' -* X X Y satisfying (a) and (b) of
 Theorem 1.

 The implication (I) (II) is trivial, while (II) -* (III) is just our main theorem.
 Finally, to prove (III) (I), one fixes a nonatomic probability measure jt on the
 Borel subsets of 2'0 and defines Q(x,* ) = ,uf(x,. )-1. It is easy to see that Q satisfies

 (I). The equivalence (I) <-> (III) was observed by Mauldin in [4] for Polish X.
 In view of the Remark at the end of ?3, one can formulate entirely analogous

 necessary and sufficient conditions for a Borel set B c X X Y to admit a Borel

 selector as follows.

 THEOREM 3. Let X be a separable metric space, Y a Polish space, and B a Borel

 subset of X X Y. Then the following conditions on the Borel set B are equivalent:

 (I) There is a Borel measurable transition function Q(x, E), x c X, E c O(Y),

 such that Q(x, Bx) > O for each x c X.
 (II) There exist a-idealsfx, x c X, of 3(Y) satisfying condition (i) of Theorem 1

 and such that Bx 0 Xx for each x c X.
 (III) There is a function f: X -> Y such that (x, f (x)) c B for each x c X.
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