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 UNIVERSAL OPTIMALITY OF A CLASS OF TYPE 2
 AND ALLIED SEQUENCES

 By RAHUL MUKERJEE and MAUSUMI SEN
 Indian Statistical Institute

 SUMMARY. This paper proves the universal optimality of a particular kind of serially
 balanced type 2 sequences for estimating the direct and first order residual effects when the treat
 ments are applied sequentially to a single experimental unit. Universal optimality results have
 also been obtained for some more general types of sequences. A method of construction has
 been suggested.

 1. Introduction

 In some experiments each experimental unit receives a number of
 treatments in succession. In such situations the Residual effect' of a

 treatment in the following period is also an important source of variation
 along with its 'direct effect' in the period in which it is applied. Williams
 (1949) considered such a problem with several experimental units. In some
 situations, specially in the field of biological assay, there is only one subject
 which receives each treatment several times. For such experiments, Finney
 and Outhwaite (1955, 1956) introduced serially balanced sequences of types
 1 and 2. Sinha (1975) proved the optimality properties of type 1 sequences.
 The objective of this paper is to investigate the optimality properties of type 2

 sequences. In fact, this paper proves the optimality of a larger class of
 sequences, of which the type 2 sequences are a particular subclass.

 A serially balanced type 2 sequence of order v and index m is a closed
 chain of symbols such that (i) each of the v distinct symbols occurs m(v? 1)
 times in the sequence, (ii) the sequence falls into m(v? 1) blocks each contain
 ing the v symbols once each, (iii) the v(v? 1) possible ordered pairs of distinct
 symbols occur exactly m times each, no symbol following itself.

 A type 2 sequence is called completely reversible if each block ends or
 begins with the same symbol (Sampford (1957)).

 Definition 1.1 : A serially balanced completely reversible type 2 sequence
 will be called a type 2* sequence if

 (i) the sequence is of index 1 and

 (ii) each block ends with the same symbol.

 AMS (1980) subject classification : 62 K 05.
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 Example 1.1 : With blocks written as rows and symbols 0, 1, 2, ...,
 two type 2 sequences are shown below of which the second one is a type 2*
 sequence.

 (i) v = 4, m = 1 (ii) v = 5, m = 1
 12 3 0 12 3 4 0

 2103 24130

 1320 31420

 4 3 2 10

 Interpreting symbols as treatments, it is immediate that in a type 2*
 sequence the direct effect versus residual effect incidence matrix is Ew~Iv
 (where Iv is the identity matrix of order v and EVv is a v x v matrix with all
 elements unity), which is, in fact, the incidence matrix of a symmetric balanced

 incomplete block (SBIB) design. Therefore, Definition 1.1 may be extended
 to yield the following.

 Definition 1.2 : A type 2*(u) sequence of order v and length vu (u < v?1)
 is a closed chain of symbols such that (i) each of the v distinct symbols occurs
 u times in the sequence, (ii) the sequence falls into u blocks each containing
 the v symbols once each, (iii) the direct effect versus first order residual effect
 incidence matrix is that of an SBIB design and (iv) each block ends with the
 same treatment.

 Clearly for practical applications a type 2*(u) sequence is usually more
 economic than a type 2* sequence (since the former is of a shorter length)
 and reduces to a type 2* sequence if u ? v?1. A construction procedure,
 with illustrations, for type 2*(u) sequences has been presented in Section 4.

 Let Q(n) be the class of all sequences with v symbols and length n. It
 will be shown in this paper that within <B(vu) a type 2*(u) sequence, if it
 exists, is universally optimal (Kiefer (1975)) for estimating both direct and
 residual effects. As a corollary, the universal optimality of a type 2* sequence
 within (B(v(v? 1)) will follow. These optimality results are fairly general
 since the competing designs are all possible designs of the same length.

 It may be noted that a similar problem was considered by Hedayat and
 Afsarinejad (1978) in the context of repeated measurements designs. The
 set-up here is, however, completely different as there is only one experimental
 unit.

 B2-8
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 2. Model and notations

 Consider an arrangement of v symbols (treatments) 0, 1, ..., v?l accord
 ing to any sequence in Q(n). Suppose the sequence consists of b blocks.
 As usual (cf. Sampford (1957)) it may be assumed that the last treatment in
 the last block is also applied as a conditioning treatment right in the beginning
 of the sequence, any observation arising out of this conditioning treatment
 being excluded from the analysis.

 Denoting by g^, hy the treatments whose direct and first order residual
 effects occur in yy, the j-th observation from the i-th block, one may take
 the following fixed-effects additive linear model,

 Vij = fi+?i+8a, +L +%: H M  Hi  (2.1)

 where ?i is the general mean, ?% is the i-th block effect and 8W, ?w are respec
 tively the direct and first order residual effects due to the w-th treatment
 (w = 0, 1, ..., v?l), ?i, 8W, ?w being measured from the general mean. The
 random disturbances e# are uncorrelated with means zero and a constant
 variance a2.

 Let N(vxb) (JV*^xft>) be the incidence matrix considering direct (first
 order residual) effects of treatments with respect to blocks. Denote by
 rw the number of replications of the w-th treatment (w ? 0, 1, ..., v?l)
 and by k% the i-th block size (i = 1, 2, ..., b). Let r6 = Diag(r0, ..., rv_t)9
 k5 = Diag (kv ..., k0). Also define Z(vXV) = ((zym')), where Zww' is the number
 of times the direct effect of the w-th treatment occurs with the first
 order residual effect of the w'-th treatment.

 Then for any sequence in (2(n), under the model (2.1), it can be easily
 seen that the coefficient matrices of the reduced normal equations for direct
 and first order residual effects are respectively given by

 G1^r?-[ZN'\

 G2 = r*-[Z' N*\

 iV*n

 N*' k?

 N

 N' k?

 T z' '

 r Z

 N*'

 (2.2)

 3. The optimality results

 In this section some universal optimality results will be obtained follow
 ing a method due to Kiefer (1975). For that the following three lemmas

 will be required. The proof of the first lemma is trivial and hence omitted.
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 Lemma 3.1 : Let X = [Xl9 X29 Xs]. Then

 [X1X1? Xi X2( X2X2)~X2X^\

 f JL22L^ X^2i^\ ~ /_l_2^-i\ ~~|
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 X{.
 (-A2A2 A2A3\ /A2A1\ ) ( ) X$X2 X^X3/ \X^X1J

 is nonnegative definite.

 Lemma 3.2 : Considering n = vu (u < #?-1), for any sequence in <?(vu)9

 (i) tr(Gx) < v(u-l)9 (ii) tr(G2) < v(u-l).

 Proof: Since, by Lemma 3.1,

 '- fr*-(Z N)(r ) ( ) L \N*' ks / \N' J
 r*?Zr-aZ'

 is nonnegative definite, it follows by (2.2) that

 tT{Gt) < tr(r?-Zr~*Z') = n-"s "__ (4?./rw,)

 v-i v-i
 < n? 2 2 (zwirn*) = v(u?l)9

 since n ? vu and 2 z^' = %' for each w'. This proves (i). The proof of
 w

 (ii) is similar.

 Lemma 3.3 : Considering n = vu(u < v?l)9 for a type 2* (u) sequence
 (if it exists)

 triGi) = tr{G2) = v(u-l).

 Proof: By Definition 1.2, for a type 2*(u) sequence the direct effect
 versus block and the first order residual effect versus block incidence matrices

 are those of a randomised block design. Thus N = N* = ?Evu and r* = ulv,
 k? = vIU9 where Im is the raXm identity matrix and Emm>, is an mxm' matrix

 with all elements unity. Further, the direct effect versus first order residual
 effect incidence matrix Z is that of an SBIB design and hence

 ZZ' - (u-X)Iv+?Ev  (3.1)

 ? being the usual ? parameter of the SBIB design given by Z. Hence by (2.2),
 for such a sequence

 ulv Evu
 G1 = uIv-[Z Evu]

 Euv Vlv

 Z

 Euv UV ?*
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 Since
 u-xIv ?(vu^Evu ~|

 -(vu^Euv v-^u + ^u^Euu J

 one ultimately obtains, applying (3.1),

 Gx =-- (?ju)(vlv-Evv). ... (3.2)
 Hence, the fact that A(v? 1) = u(u?l), leads to tr(6rj) = v(u?l). Similarly
 one can check that tr(Gr2) = v(u? 1).

 Note that if v ? 2, then the relation v > u > ? makes Gi (i = 1, 2)
 as in (3.2) a null matrix. To avoid such trivialities, consider hereafter v > 2.
 Then the matrix Gi (i ? 1, 2) for a type 2*(u) sequence is completely symme
 tric (by (3.2)) and. has maximum trace (by Lemmas 3.2, 3.3) in (S(vu). There
 fore, by Proposition 1 in Kiefer (1975), the following universal optimally
 result holds.

 Theorem 3.1 : Within the class (B(vu) if a type 2*(u) sequence exists then
 it is universally optimal for both direct and first order residual effects, under the

 model assumed, provided v > 2.

 Since a type 2* sequence is nothing but a type 2*(u) sequence of length
 v(v? 1), the following corollary is immediate.

 Corollary 3.1 : Within the class ? (v(v-?l)) if a type 2* sequence exists
 then it is universally optimal for both direct and first order residual effects, under

 the model assumed, provided v > 2.

 4. A METHOD OF CONSTRUCTION

 This section considers the problem of construction of type 2* and type
 2*(u) sequences. Recall that a type 2* sequence is nothing but a serially
 balanced completely reversible type 2 sequence of index unity, where each
 block ends with the same treatment. For the details of construction of such

 sequences, reference is made to Sampibrd (1957). Following Sampford, a
 type 2* sequence in v symbols for every odd v(v !> 3) and also for some even v
 can always be constructed.

 As for type 2*(u) sequences, which are generalisations of type 2* sequences,
 the constructional aspects pose more stringent combinatorial problems. A
 method of construction, obtained by suitably modifying the method of differ
 ences for the construction of balanced incomplete block designs (Raghavarao
 (1971, Ch. 5)) and having a satisfactory coverage, is described below.

 tUiy EvU I
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 Suppose v is a prime and let M be a module {0, 1, ..., v-? 1} and
 S = {ax, ..., au} be a set of u distinct nonzero elements of M such that among
 the ordered differences arising out of S, each nonzero element of M is repeated
 a constant number (say, ?) of times. Then

 ax 2ax ... (v?l)a1 0
 a2 2a2 ... (v?l)a2 0 , ... (4.1)
 au 2au ... (v-l)au 0

 where each entry is reduced mod v, can be seen to be a type 2*(u) sequence
 (with blocks, as usual, given by rows) in v symbols and length vu. This is
 because, with notations as before, clearly N ? N* ? Evu- Further, for
 0 4^. iv <z v - 1, in (4.1), the symbol w is followed by the symbols w+a$
 (1 <; i < u). Hence Z is the incidence matrix of the SBIB design generated
 by the method of differences from the initial set {al9 ...,au), proving our
 assertion.

 In particular, if v == 4?+3 be a prime then S may be taken as any block
 (not containing the symbol zero) of the SBIB design, constructed by the
 method of differences, involving (4?+3) symbols, having block size (2?+1)
 and the usual parameter ? = t (Raghavarao (1971), p. 83). This gives a
 type 2*(u) sequence with v ~ 4?-f 3, u ? 2t-\-l. For example, if v = 7 or 11
 one may take S = {1, 2, 4} or S = {1, 3, 4, 5, 9} respectively. Apart from
 this series, other SBIB designs, obtained by the method of differences, can
 be reoriented to yield type 2*(i?) sequences, as illustrated by the following
 example.

 Example 4.1 : Let v = 13. Then M = {0, 1, ..., 12}. Taking
 S ? {1, 2, 4, 10), among the ordered differences arising out of S9 each non
 zero member of M is repeated ? (= 1) times. On developing S, as in (4.1) as

 1 2 3 4 5 6 7 8 9 10 11 12 0

 2 4 6 8 10 12 1 3 5 7 9 11 0

 4 8 12 3 7 11 2 6 10 1 5 9 0 ,

 10 7 4 1 11 8 5 2 12 9 6 3 0

 one gets a type 2* (u) sequence with v = 13, u = 4. Incidentally, S is as
 well an initial block from which, by the method of differences, one can
 construct an SBIB design in 13 symbols having block size 4 and the usual
 parameter ? = 1.
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 5. Concluding remarks

 As Definition 1.1 indicates, a type 2* sequence has index unity. A
 question naturally arises that if a type 2* sequence be repeated ra(> 1)
 times, then Avhether such a sequence will also be universally optimal, both
 for direct and residual effects, within the class @(mv(v?l)) of sequences of
 length mv(v? 1). The answer to the above question will, however, be in
 the negative as the following example illustrates.

 Example 5.1 : With v ? 3, m ? 3, consider the two sequences

 8X : 0 1 2 8V : 0 1 2
 10 2 2 0 1

 0 12, 120.
 10 2 0 2 1

 0 12 10 2

 10 2 2 10

 S? is obtained by repeating a type 2* sequence thrice, while S2 is a type 1
 sequence (Sampford, 1957). Both 8t and S2 belong to 6(18). By direct
 computation it can be shown that Sx is inferior to 82 from the point of view
 of Z)-optimality for estimating any complete set of orthonormal contrasts of
 direct effects. Hence SL cannot be universally optimal in 6(18) for direct
 effects.

 The above phenomenon is expected since if a type 2* sequence be
 repeated m(> 1) times then the direct effect versus residual effect incidence
 matrix no longer remains that of an SBIB design and the technique of
 Lemma 3.3 fails.

 Before concluding, it may be remarked that the universal optimality
 results proved in this paper hold even if in the model (2.1) the random distur
 bances Cij have a (known) intraclass correlation structure, instead of being
 uncorrelated. It may be pointed out that " class" in the intraclass correla
 tion structure refers to a block. Since in this kind of experimentation all
 the observations relate to the same experimental unit, the study of optimality
 properties in the presence of correlation of this kind sometimes becomes
 relevant. The proof of this robustness property of the optimality results is
 lengthy but straightforward and, for the interested reader, reference may
 be made to Mukerjee and Sen (1983) for the details.
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