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SUMMARY

This paper explicitly derives a Bartlett-type adjustment for the conditional likelihood
ratio statistic of Cox & Reid via that for the usual likelihood ratio statistic.
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1. INTRODUCTION

In recent pioneering work Cox & Reid (1987) introduced the notion of the conditional
likelihood ratio statistic, derived results on it and posed several open problems; for a
very illuminating further discussion, see Cox (1988, §§ 5.2, 5.4). One of these problems
relates to the derivation of Bartlett-type adjustments (Bartlett, 1937; Barndorff-Nielsen
& Cox, 1984) for the conditional likelihood ratio statistic via that for the usual likelihood
ratio statistic. The present paper attempts to settle this problem to some extent.

We recall some definitions from Cox & Reid (1987). Let {X;} (i=1) be a sequence of
independent and identically distributed random variables with common density f(x; 6, m)
where 0 is the one-dimensional parameter of interest and m is the nuisance parameter.
Consider the null hypothesis H,: 6 = 6,. For scalar m, the conditional likelihood ratio
statistic is defined as

An=2{h(6) ~h(6,)},
where
h(o) = lX(09 mo) _% IOg {nJmm(oy mO)}9
n is the sample size, i, is the maximum likelihood estimator of m given 6,
Joum(0, m)=—n""Y 8’ log f(X;; 6, m)/om?, Ix(6, m)=Y logf(X;; 0, m)

Y. denotes summation over i (1<i < n) and h(6) = sup, h(0). Also, the usual likelihood
ratio statistic is given by A, =2{Ix(6, m)—Ix(6,, m§)}, where (6, i) is the unrestricted
maximum likelihood estimator of (6, m) and m§ = r,,.

In this paper, primarily for notational simplicity, we consider the situation where both
0 and m are one-dimensional. Of course, the present discussion can be extended to the
case of multi-dimensional m with additional algebra. However, the assumption that 6 is
one-dimensional is nontrivial. In particular, if § and m are both multi-dimensional, then

in general one cannot employ global parametric orthogonality as noted by Cox & Reid
(1987).
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2. SOME PRELIMINARY RESULTS
The following notation will be helpful. For i, j,i',j'=0,1,...,let

0" log f(X; 6, m)}

Kij(09 m)= Eo,m{

90'om’
0™ log f(X; 0, m) 3" log f(X; 6, m
K;iy(0, m)= EO,m{ g{( j ) g,f( 7 )} s
d0'om 96'om
1 [0 log f(X,; 6, m) }
H. — 1/2 { sy 7o - K.
J(6,m)=n? 3 58T S(6,m)1,

K: = Kl'j(OO, mg‘)9 K:;.i’j' = Kij.i'j’(009 m?):)9 H:l; = Hij(OO’ mz)k)9
L;= Kij(oo, m), L= Kij.i'j'(oo, m), Sy = Hij(009 m),
af=—K%, aph=—K&, ap=—Ly, apn=—L,.

Similarly we define Ki.ijo (0, m), Ly i, etc. Note that L;, L;;;, etc. are functions of
m. Since 6, m are both one-dimensional, we assume global parametric orthogonality (Cox
& Reid, 1987), that is K,,(6, m)=0 for every 6, m. Then under standard regularity
conditions, the per observation information matrix at 6, is given by diag (a,, ay,;) and
this is assumed to be positive definite for every m.

All formal expansions used in this paper are over a set A, with Py (A,)=1+o0(n"")
(Chandra & Ghosh, 1979, p. 40). Most of the computational details have been omitted
here to save space but may be obtained from the authors.

Considering first the likelihood ratio statistic, computations similar to those of Cox &
Reid (1987, p.13), see also Chandra & Ghosh (1979), with the use of parametric
orthogonality yield

A L HF
0= 00'*'"_7( a’ll‘()) +n"Y(a%) PHfHi+3(a%) K3(HY) +o(n™"), (2-1a)
20

m=m§+ n_l{(azkoagcz)_lH?oHikl +%(a>2ko)_2(a:)k2)_lK=2k1(H=1k0)2}+0("_1), (2-1b)

whence, using a Taylor’s expansion about (68,, mg),

A= Wi+o(n™), (2-2a)
where
W, =(a%) tH¥+n20,+n"'Q,, (2-2b)
Q—l =3(a%) _3/2H’1k0H>2k0 +%(a’2ko)_5/2K>3ko(H’1ko)2, (2-2¢)
62 =3(a%) 2 HY(H%)? +13(a%) *K3(HY)* H%,
+ [za(a%) _7/2{Kfo + 3(K>2k1)2/ ad}+3(a%) _9/2(K’3]<0)2](HT0)3
+%(a’2ko)_5/2(H=1ko 2H§‘0+%(a§‘0)_3/2(a§2)_'H’1"0(H’,"1)2
+3(a%) " *(ad) ' KH(HY) HY; . (2-2d)
Next considering the conditional likelihood ratio statistic, similar computations show that
6=0+n"K%/(2akak)+o(n™"), mz=m+o(n"), (2-3)

where 5, m are as in (2-1), and as before
Ao=(W,)*+o(n™"), (2-4a)
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where
W, = (a;*o)—%H* +n72Q,+n7'Q,, (2-4b)
Q= O, +3(a) ¥a%) 'K, (2-4¢)
Q= Q_2+%(a’z"o)_%(ai)"z)_lH’,"z+§(a20)_5(a02)_2{K12 2+ K& HY
+[3(ad) ' KH +i(ad) H{KEKE+H(KD) a(akad) T KHh K] (a%) ™ 2 HY,
+i(a%) ™ (ad) KL H. (2-4d)

It should be noted that the derivation of (2-2a), (2-4a) also requires terms of order
O(n*?)in (2-1), (2-3). However, simple calculations show that the contribution of such
terms eventually cancel out and hence these terms are not shown here. The expressions
for Q,, Q,, as in (2-2c), (2-4c), were also noted by Mukerjee (1989a). Observe that, as
noted by Cox & Reid (1987), m—mi=0(n""), §—8=0(n""); the latter observation,
together with the fact, see (2-1a, b), that

m=mg=mE+n"'(Hd+3K¥%d*/aL+o(n™"),

where d = n%(é —6,), provides a kind of intuitive justification for the second relation in
(2-3).

In order to derive the Bartlett-type adjustment for A, through that for X,, it will be
convenient to work with their ‘square root’ versions W, and W,. In fact, as recent studies
(Chandra & Ghosh, 1979; Bickel & Ghosh, 1990; DiCiccio, Field & Fraser, 1990; Levin
& Kong, 1990; Mukerjee, 1990) show, such an approach is useful in other contexts as
well. In order to obtain the approximate cumulants of W,, W,,, we note that

m§ = m+n_%('zz;) n"'(ao3 801802 +3a05 Lo3S5,) +o(n"), (2-5)
and make a further Taylor’s expansion about (6,, m) to get
W, =a;3S,0+ntQi+n"'Qs+o(n™), (2-6a)
where
Q! = 1,810850+ 02870+ 13510501 + V4S5, + V5801511, (2-6b)
Q5= y15105%+ 2570820+ ¥3S30+ Y4S10S50 + ¥5S10511 + 6510801511 + ¥757051
+ ¥5570S01 + ¥9510801521 + ¥10520551 + 11520501811 + ¥12520810801 + ¥13501.510S02
+ 11481055, + 11555811 +y,6S(3)1 + 117801802511+ V18551802 + V19591512, (2-6¢)
L= %az—g/z, v, =3Ls0as’?, 2(“3/2002) 'Ly, s =%(a%20a%2)_1L12,
Us= (a%zoaoz)—l, nh= 8‘1505/2, V2= 12‘120 Lso, V3 —24‘1;3/2(L40+3L21/aoz) "'91‘1_9 2Lso,

J’4=%az_o/, }’5—2(02 aoz) 1 }’6=(a%zao2 1le 3(‘15/2“02) Ly, (2-7a)

}’7—2(‘15/2‘102) L, y8=§(a%2a(2)2) L)L+ 6(‘15/2‘102) Ly + 12(“7/2002) Ly, Ly,
—2(‘13/2“02) }’10=Z(a%2a02 1le, Y11—2(a3/2002) !

)’12=2(azo o) 'Ly, )’13'—'%(‘1%2“02) 'Ly,

3/2, 2 -1 LzLos) (LZI) 1 (L ) l(Laole)} .
yl4_(a {4( (21173 8\ ay Talat 21193 +6 (251 » (270)
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Ly, Lo

, B 1 L,,L, L,L,
=l 2 2 1 ____+______> { L ( 12 3) ( 1 )},
Wis 2(‘120‘102) ( o A V6= (a20a02) 6 13+ 2 Aoy 4 o

1 _
y17=(a50af‘)z) l, Ns= (a20a02) le, y19—2(a20a02) !

Similarly,
W, =a3Si+n Qi+ n'Qs+o(n™), (2-8a)
where
Qi=Qi+ny, Q:=0Q3+Y, (2-8b)
v =13(akoa02) ' Liz, (2:9a)
Y = y1S12t y5S0+ ¥3Si + ¥4Ss0+ y5Si0t Y6Sor (2-9b)
yi=1(abourr) !, yi=3(aload) 'Ly,
yi=3(a¥’as,)” ‘lm, yi=4(a3’ap) 'Ly,

3/2 -1 Ly,L; (2:10)
ys=(ax ao)"~ { Lzz“' aoy (Lyy L03+L2)+6( ) ’

(20

. _ L 1 Ll
ye=(a3,as,) { Lt 4( fo)*( ;01203)}

From (2-8b), (2-9), observe that Q/ differs from Q) only by a constant while Q) differs
from Q) only by a linear term, a fact which plays a crucial role in the subsequent
derivations. Since the expressions in (2-6), (2:7), (2:9), (2-10) are, indeed, involved, the
computations have been verified by alternative methods, for example, by considering
expansions about (6,, m) directly instead of working in two stages as shown above. An
advantage of the present two-stage derivation is that at the intermediate stage one obtains
expansions, up.to o(n~') and free from the nuisance parameter, for 0 m, 0 ms, A, and
A, see (2:1)-(2-4), and these may be useful in other contexts as well. Moreover, as our
computational experience suggests, the algebra in the two-stage derivation appears to be
a little simpler than that in a direct one-stage expansion about (6,, m).

3. THE BARTLETT-TYPE ADJUSTMENT

As indicated in the Appendix, the approximate cumulants of W,, under 6,, are given
by, say,

ki (W) =n"iR;+0o(n™"), kn(W,)=1+n"Ry+o(n™"),
kn(W,)=0(n"") (r=3),

— 1 —1 L12> 1 (LIO.IO.IO)}
R.=——a.2 —=) = - 32
! 2 {<aoz 3 Ay ’ (3:28)

R, = a3 (4Lso+ Lyo 207+ Liosot+ L1o.1020) + @50 G L0 20+ % Lo L1020+ 18 L30)
+(a20a02) "'(2L11 11+ Loior+2L10.0111+ Lioaz+3L)
—(@20a3;) "' GLi2+ Ly Loy.o2+ 3101 Los + Liz Lio.0)
—(@30a02) '(GL31 +3Lso L1z +3 L1z Lio 20+ Ly Lo o) (3-2b)

(3-1)

where
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The expressions in (3-1) and (3-2) may be compared with equation (9) of DiCiccio et
al..(1990).

Observe that by (2:6), (2-8), W, =W, +nFv+n"'Y+o(n""). Hence using the facts
that (i) v is a constant, (ii) Y consists only of linear terms, (iii) W, =a;§S,0+ O(n3),
and (iv) the limiting joint distribution of S, and Y, under 6,, is bivariate normal, up to
the first order of approximation, with

EOQ(SIO) = Eoo( Y)=0, Varoo(slo) =@y, COVoo(Slo, Y)=gc
for each m, where, by (2-9b), (2-10),
c= (a%zoaoz)_l{%Lm.lz +31L22+ a;(} le(%L10.20+%l’30) + ‘1521 (ElleLlo.oz _ZlLostl +ZIL212)},
(3:3)

it follows by a little algebra from (3-1) that the approximate cumulants of W,, under 6,,
are given by

kln( Wn) = n_%Rl + O(n“l)a k’2n( Wn) = 1 + n_1R2+ O(H_I),

k(W)= 0(n™),  ken(Wa) = 0(n™), G4
where
R,=R,+v, R,=R,+2ajc. (3-5)
Furthermore, calculations similar to those in the Appendix show that
kn(Wo)=0(n") (r=5). (3-6)
By (2-4a), (3-4),
Egy m(An)=Egy m(W3)+o0(n"")=1+n""a(m)+o(n™"), (3-7a)
where
a(m)=R,+R}. (3-7b)
Consider now the Bartlett adjusted statistic
Aga=A,/{1+n" a(m§)}. (3-8)
By (2-4a), (2-5),
Apn=Wp,+o(n™'), (3-9)

where
Wsn = W,{1-2n""a(m)}.
Hence by (3-4), (3-6), (3-7b), the approximate cumulants of Wjy,, under 6,, are given by
kin(Wa) =n7iR +0(n™"),  kon(Wp,) =1-n"'Ri+o(n™"),
kn(Wga)=0(n"") (r=3),

so that using an Edgeworth expansion for Wy, (Bhattacharya & Ghosh, 1978) and
recalling the symmetry of the normal distribution, it is clear from (3-9) that

(3-10)

X

pro,(Ag. <x)= pr00(| Wl < x3)+ o(n™")= J g(z)dz+o(n™), (3-11)

0

for all x=0 and all m, where g(z) is the density of the chi-squared distribution with 1
degree of freedom. Hence by (3-7), (3-8), a Bartlett-type adjustment is available for A,.
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The above line of argument works primarily because, as a consequence of the rather
special nature of the correction term J,,,,,(6, ;) involved in the definition of A, the third
and higher order cumulants of W,, like those of W,, are of order o(n™') under 6,. It
may also be emphasized that, in consideration of (3:7)-(3-10), by correcting the mean
of the conditional likelihood ratio statistic A,,, all cumulants of A,, under 6,, are simul-
taneously corrected up to o(n~'). This may be contrasted with the findings of Harris
(1987) who worked directly with the moment generating function of A, and perhaps
overlooked the simplification that the consideration of the square root version W, entails.
As a final remark, in the spirit of equations (10)-(12) of DiCiccio et al. (1990) and in
view of (3-4), one could as well have corrected W, by Wk =(W, —n"iR,)/(1+n"'R,)?
and then A, by A¥ = W*?, Clearly, under 6, all the cumulants of W* unlike those of
Ws,, agree, up to o(n™"), with those of a standard normal variate and hence if interest
lies in the one-sided tail probabilities for the square root version of the conditional
likelihood ratio statistic then use of W3 rather than Wj, gives a closer approximation
to normality. However, in the present context interest lies more often in tail probabilities
concerning the conditional likelihood ratio statistic itself and it is easily seen that to this
effect, use of A} will give no better approximation to the chi-squared probability integral
than the Bartlett-type adjusted statistic Ap, which satisfies (3-11).

We now indicate how the adjustment factor for A, can be calculated from that for the
usual likelihood ratio statistic A,.. By (2-2a), (2-5), (3-1), it can be seen that, analogously
to (3-8), the Bartlett-adjusted statistic corresponding to A, is

Apn=A,/{1+n""a(m§)},
where
a(m)=R,+ R3. (3-12)
By (3-5), (3-7b), (3-12),
a(m)=a(m)+2ay}c+2R,v+1? (3-13)

where v, R,, ¢ are as in (2:9a), (3-2a) and (3-3) respectively. Equation (3-13) gives an
explicit formula for deriving the Bartlett adjustment for A, via that for A,.
Example 3-1. Let
f(x; 6, m) = (270) % exp {—3(x — m)*/ 6}.
Then it can be seen that
Ao =%062, Qo2 = 061, L,= 052, Lio1010= L= 063,
Loy 2y =Lyo=—Lp= 2053, Lio20= Lio.or.11= _053, Ly= _9054,

Ligso= 3064, L;020=—Li0.1020= %064, Ly =Lyo.12= L1002 =0.

Hence, by (2:9a), (3-2), (3-3), (3-10), (3-13),
v=27, Ry=-307Y, Re=i, c=-1 6" atm=%, a(m=1

In this example, both a(m) and a(m) do not depend on m.

ACKNOWLEDGEMENTS

The work of the first author, now on leave from the Indian Statistical Institute, was
supported by a grant from the Centre for Management and Development Studies, Indian



Bartlett-type adjustment for conditional likelihood ratio 371

Institute of Management, Calcutta. The authors are grateful to the referees for their very
constructive suggestions.

APPENDIX
APPROXIMATE CUMULANTS OF W,

A technique discussed by Mukerjee (1989b) will be helpful in the derivation. From elementary
considerations, as by, for example, Chandra & Joshi (1983), first note that the approximate
cumulants of S,,, under 6,, are given by

kin(S10) =0, k2n(Si0) = 20, K3a(S10) = "_%Lno.lo.no,
ksn(S10) = ' (Li010.1010—3a%), Kkm(Si10)=0(n"") (r=5).
Hence the approximate characteristic function of S,,, under 6,, is
{1+ n_%Fl(fa m)+n~'F,(& m)} exp (a0€’)+o(n™),
where
E=(-1%, F,(&m) =4 Lig10.105 (A-1a)
Fy(& m) =3£*(L1o.10.1010— 350) +75¢° L0 10.10- (A-1b)
Let 6, = 0,+ n'%ﬁ, where 8 is free from n, and
Ey (@) =C\(8, m)+n":M,(5, m)+O(n™"),
Eo,m(Q5) = Ca(8,m)+0(n™?), Ey m($:20Q1)=Cs(8, m)+0(n"%),
Eq, m{(Q1)%} = Cu(8, m)+0(n7),

where Ci(8, m) (1<i<4), M,(5, m) are free from n. Then following Lemma 3 of Mukerjee
(1989b), the approximate characteristic function of W,, under 6y, is given by

Eoy miexp (6W,)} = x(& m) exp (3¢%) +o(n ™), (A-2a)
where
x(& m)=1+n"HF (a3} m)+ £Ci(azsé, m)}
+n T {Fy(ay3€, m)+EMy(azde, m)+ECy(azge, m)—3az £ Cy(asie, m)
+38 Culazgt, m) —gax" ¢ Ly Ci(azgé, m)}. (A-2b)
Using (2-6), (2-7), calculations similar to those of Mukerjee (1989a) show that
C (8, m)=— 2(“20002) 'Li,— 6‘123 Lio10.10(1+ 8%ay), (A-3a)

M, (8, m) = a5 3/ {3(L1o.1020 T a30)
+8(LsoL10.10.10/ @20) +3(ax0L12Lioor.01/ 432)
+3(Ls1 Lio.10.01/ @02) + (@20L10.01.11/ @02)}
+38%{as; 26" 2(3L30.20F 3L10.10.10L10.20 F 3320 L20.20 + 3820 Li10.10.20
+3Ls0 L1020+ 5Ls0L10.10.10) ‘%(aéoaoz)_llm(lfzo.m + L1001}, (A-3b)
Cy(8, m) = 5[ a; 5/2{8‘120(Lao 20 —a%o) +3Lio20+3Lso Lo, 20+5L30}
+ a3’ (3Ls+3L1030) + (azoaoz) 'GLyai+3La101 F ko2 H3L1012)
+(a36’ap;) " (GLa1 Lao.or —3L51 ~§Lso L1 —5L12 Lo 20)
(azoaoz) 'GLz1Loy.oz +5La1 Los +3L1)]
+8*{a5"*(3Lio20+ i3 LsoLro. 20+5L30) + a;g(z4L4o+6L10 30)+ s(azoaoz) L3}, (A-3c)
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C3(8, m) = 8{3a38(Lao 20— @30) + a3 *(Lio 20+ 3 LaoL10:20) = 5(@3o802) ™ (L2 Lao.or + LizLro0)}
+48°a33 Lio.20(Lio.20% 3 Lso), (A-3d)
Ca(8, m)={C\(8, m)¥*+3a35 (Lao 20— a30) + (a2002) ' Lys.i1 + @26 (3L30 20+ 3L10:20L30 + T5.L30)
—3(axat2) "' L1~ 3(a30a02) ' (La1 Lao.or +3L31)
+ 32{%‘1;01 (L2020~ a%o) + 02_02 (%Lfo,zo +%L30L10.20+ %Lgo)
- (azoaoz)‘llm(%lqo.on _%1’21)}' (A-3e)

From (A-1), (A-2), (A-3), after considerable algebra, which is omitted here, the relations (3-1),
(3-2) follow. Simple regularity conditions like the following, some of these being consequences
of parametric orthogonality, are useful in the derivation:

Lioni=-Ly, Louiui=—L, Lioioi10t3Lio2t+ L;,=0,
Lyo+4Lyo30+3Ly020+6L10.1020F Li0.10.10.10=0,
Lyyo1+Lio11t Lio1001=0, Li1.o1+ Liooz+ Lio.or.o1=0.
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