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 SUMMARY

 This paper explicitly derives a Bartlett-type adjustment for the conditional likelihood

 ratio statistic of Cox & Reid via that for the usual likelihood ratio statistic.
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 1. INTRODUCTION

 In recent pioneering work Cox & Reid (1987) introduced the notion of the conditional
 likelihood ratio statistic, derived results on it and posed several open problems; for a
 very illuminating further discussion, see Cox (1988, ?? 5.2, 5.4). One of these problems
 relates to the derivation of Bartlett-type adjustments (Bartlett, 1937; Barndorff-Nielsen
 & Cox, 1984) for the conditional likelihood ratio statistic via that for the usual likelihood
 ratio statistic. The present paper attempts to settle this problem to some extent.

 We recall some definitions from Cox & Reid (1987). Let {Xi} (i ? 1) be a sequence of
 independent and identically distributed random variables with common densityf(x; 0, m)
 where 0 is the one-dimensional parameter of interest and m is the nuisance parameter.

 Consider the null hypothesis Ho: 0= 00. For scalar m, the conditional likelihood ratio
 statistic is defined as

 An =2{h(0) - h(00)},

 where

 h(0) = lx(0 m')- log {nJmm(0, ma)},

 n is the sample size, mr is the maximum likelihood estimator of m given 0,

 Jmm(0, m)=-n 1E2logf(Xi; 0, m)/am2, lX(0, m)=Elogf(Xi; 0, m)

 S denotes summation over i (1 - i - n) and h(0) = sup, h(0). Also, the usual likelihood
 ratio statistic is given by A n = 2{ lx (10, m ) - x (l0, m )}, where (0, m ) is the unrestricted

 maximum likelihood estimator of (0, m) and m* = moo.
 In this paper, primarily for notational simplicity, we consider the situation where both

 0 and m are one-dimensional. Of course, the present discussion can be extended to the

 case of multi-dimensional m with additional algebra. However, the assumption that 0 is

 one-dimensional is nontrivial. In particular, if 0 and m are both multi-dimensional, then
 in general one cannot employ global parametric orthogonality as noted by Cox & Reid
 (1987).
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 2. SOME PRELIMINARY RESULTS

 The following notation will be helpful. For i j, i', j' = O, 1, . .. ., let

 K11(0, m) = E0,m log f(X; 0, m)

 K.01(0, m) = E0,m a i+i log f(X; 0, m) i'+i' log f(X; 0, m) K1.ij(0, m)- aE0m t aoiam1 a0oiam1

 nr& i+ log f(X,; 0, m)-Km)
 H1j(0, m) = n,-1/2 E {; Kj(0 m)}

 KJ= K1j(00,m*), Kijy = Kj.ijj( 00, ms), HJ = H1j( 00, sM),

 Lij= K1j(00,m), Lj.jj, = K1jjj(00,m), S1j=H1j(00,m),

 a*0 =-K* a--K*2, a20=-L20, aO2 =-L02

 Similarly we define Kij.jT.VT(0, m), Lijj,, etc. Note that Lij, Lijij,, etc. are functions of
 m. Since 0, m are both one-dimensional, we assume global parametric orthogonality (Cox

 & Reid, 1987), that is K,,(0, m) 0 for every 0, m. Then under standard regularity
 conditions, the per observation information matrix at 00 is given by diag (a20, a02) and
 this is assumed to be positive definite for every m.

 All formal expansions used in this paper are over a set An with P0O(An) = 1 + o(n-1)
 (Chandra & Ghosh, 1979, p. 40). Most of the computational details have been omitted
 here to save space but may be obtained from the authors.

 Considering first the likelihood ratio statistic, computations similar to those of Cox &
 Reid (1987, p. 13), see also Chandra & Ghosh (1979), with the use of parametric
 orthogonality yield

 = + n - n *) H+n{(a*0)2H*oH + (a*0) 3K*(H*o)2}+o(n), (2 Ia)

 m * = in + n-1{(a a*2f)1HioH*H + '(a* )f-2(a*2f)-'K*(H*o)2} + o(n-1), (2. lb)
 whence, using a Taylor's expansion about (00, min),

 An = W2n + o(n1), (2-2a)

 where

 Wn=(a*)-1H*o+ nQ1 + nf1Q2, (2.2b)

 Q1=2(a20) a H*H2 +?6(a20) K*3(H*o)2, (2-2c)

 Q2 = -(a20) 5/2H1H0(H*0)2 + 5 (a* )f7/2K* (H* )2H*

 +[ 1 (a* ) -7/2{K*o+3( K21)2 /a2}?+(a2)-9/2 (K3*)2](H* )3

 + 1(a0) -5/2(H* )2H*0 + '(a*0) -3/2(a*2)-1H*(H* )2

 +2(a*80 -/(a*8) -'K* (H* )H*l (2.2d)
 Next considering the conditional likelihood ratio statistic, similar computations show that

 0 = 0 + nn-K* /(2a 0a*) + o(n-1), mu = m + o(n-1), (2.3)

 where 0, m are as in (2.1), and as before

 An= ( Wn)2+ o(n-1), (2.4a)



 Bartlett-type adjustment for conditional likelihood ratio 367

 where

 W, =(a2*0)-H *0+n -Q1+n 1Q2, (2.4b)

 Ql= Q 2+0(a !(a*2)-K*2, (2 4c)

 Q2 = Q2 + 2-(a2*0(a0* ) H*2 +(a2* ) (a* -K* H* + Ko*H*

 + [(aO*)- K2*2 +'(aO* )-2fK2* KO* + (K* )21} '(a* a* )-l K* K* ](a* )-3/2 H*o 4 2 22 4 02 -{21K03 12 6 20 02 K2K30 (ao32Hico

 +'(a 0) -3/2(a*2)-K*2H*0. (2.4d)
 It should be noted that the derivation of (2-2a), (2-4a) also requires terms of order

 O(n-3/2) in (2.1), (2.3). However, simple calculations show that the contribution of such
 terms eventually cancel out and hence these terms are not shown here. The expressions

 for Q1, Q1, as in (2 2c), (2-4c), were also noted by Mukerjee (1989a). Observe that, as
 A * '-telttrosrain noted by Cox & Reid (1987), m - m0 = O( n), 0-0= O(n1); the latter observation,

 together with the fact, see (2 la, b), that

 m = m6 = m* + n-1(H* d + 'K*d2)/ a* + o(n-1),

 where d = n2(0 - 0O), provides a kind of intuitive justification for the second relation in
 (2.3).

 In order to derive the Bartlett-type adjustment for A, through that for An, it will be
 convenient to work with their 'square root' versions Wn and W-n. In fact, as recent studies
 (Chandra & Ghosh, 1979; Bickel & Ghosh, 1990; DiCiccio, Field & Fraser, 1990; Levin
 & Kong, 1990; Mukerjee, 1990) show, such an approach is useful in other contexts as
 well. In order to obtain the approximate cumulants of Wn, W,Vn we note that

 mO* = m + n 2(-) + n 1(ajS0S02+2aj20L23S-1) + o(n-1), (2-5)
 ao2

 and make a further Taylor's expansion about (00, m) to get

 WVn = a- Sio+ n 2QO+ n-1Q2+ o(n-1), (2.6a)

 where

 Q= v1S10S20+v2S0+ v3S10S01+v4S0 +v5S01S11' (26b)

 = Y1 S10S20 + y2SS20 + y3S30 + y4S20S30 + y5S10S 1 + y6SS0S0S S1 1 + y-SLS1

 +Y8S20Sol + y9S1OSO S21 + ylOS2oSol + yl 1S20S0S1 +Yl2S2oSloSol +Yl3SolS1S02

 + yl4Sl0SlS+ S21SJJ S31 + Y18S21 Y19S2 (2-6c)
 1 -3/2 ~ 5/2 1' 3/222

 v=a20 ,v a20 02 ~ 2 02v12 v= a-03/2, I2 =L30a2-s2 s32a2aO) -L21 V4 =(a20aO)L2

 v5 =(a20 a02f, Y' = a/ Y2-= lS a2 L3, yy- 2a4aJ2-(L40+33L221/ aO2)+9 20 L&
 1 -5/2 32 -1322'a52 - 3 Y4 = j;a20 Ys = '(a32a02-1, Y6 = (a 2a2f)1L12+ (a5]a02) L3o, (2-7a)

 Y7= 2(a2a02)1L21, Y8=2(a 20 02) L21L 2+6(a20a02) +1 (a20a02)- L30L21

 y9= 2(a2aO2), Y10= 4(a2a02)L2, Yll = 21(a32ao2f1,

 Y12 = 4(a2O a02) L21, Y13 2 20 02

 {4( a2 / 8I2a213 4 2 I(aO2) 6(3ao1
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 Y15 ~(a2 a f(L+ 2L) Y16 (a-0a02f1 {- Li3+ (Li+43)+1 (Ll2L2l)

 Y17= 0a Y18 (a20a02)1Li2, y19=3(a+2 0aa2)4.
 Similarly,

 Wn = a2-Slo + n-1Q' + n-1 Q + o(n-1), (2-8a)

 where

 Q = Q1+V,V Q 2+ Y, (2-8b)

 v = 1(a20aO2) f1i2, (2.9a)

 Y= yIS12+y2SO2+y3S11 +y4S20+YS10O+y6S01, (2.9b)

 y1 = (a2oao2< y = 2(a2 a 2K1Li2,
 Y3 = (a 12a 2 143, y4 = '(a3A/o2 -1L,

 A = (a~2ao 2) { L22?4 a 4(L24 03+ L2) a L12L ) (2.10)

 YF ( (a2baO2) (1 th Lat + 4 (2 a20 / ( a2)

 From (2-8b), (2-9), observe that Q1 differs from Q' only by a constant while Q2 differs
 from Q2 only by a linear term, a fact which plays a crucial role in the subsequent
 derivations. Since the expressions in (2-6), (2.7), (2.9), (2-10) are, indeed, involved, the
 computations have been verified by alternative methods, for example, by considering
 expansions about (00, m) directly instead of working in two stages as shown above. An
 advantage of the present two-stage derivation is that at the intermediate stage one obtains
 expansions, up-to o(n-1) and free from the nuisance parameter, for 0, mi, 0, m5, A,n and
 An, see (2.1)-(2.4), and these may be useful in other contexts as well. Moreover, as our
 computational experience suggests, the algebra in the two-stage derivation appears to be
 a little- simpler than that in a direct one-stage expansion about (00, m).

 3. THE BARTLETT-TYPE ADJUSTMENT

 As indicated in the Appendix, the approximate cumulants of W,, under 00, are given
 by, say,

 k1n( Wn) = n IR, + o(n 1), k2n( Wn) = 1 + n-'R2+ o(n-1), (3.1)

 krn( Wn) = o(nl) (r 3),

 where

 2 {(aO2) 3 (a2O }(.a

 = a2(-L40 + L20.20+ L10.30+ L10.10.20) + a (7l0.20 + 161I-30L,0.20 +18 e3)

 + (a20aO2<1(2L11 + L01.21 + 2L.0j.0j + L0 1+2 22)

 - (a20aO2) 2(L2 + L2lL4l.02+2L2l43 + L12L10.02)

 - (a20a02) 1(4L21 +4L30L12 +2L12L10.20+ L2L D.0) (3.~2b)
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 The expressions in (3.1) and (3 2) may be compared with equation (9) of DiCiccio et
 al..(1990).

 Observe that by (2 6), (2 8), W,, = Wn + n-2v + n- Y+ o(n-). Hence using the facts
 that (i) v is a constant, (ii) Y consists only of linear terms, (iii) Wn = a-So0 + O(n-A),
 and (iv) the limiting joint distribution of S10 and Y, under 00, is bivariate normal, up to

 the first order of approximation, with

 E00(S10) = E00( Y) = 0, varoo(S10) = a1l, covo6(S10, Y) = c,
 for each m, where, by (2.9b), (2-10),

 c = (ao0aO2) 1{2L20.02+442 + ag L12(4L10.20+6ILO) + aO (2L12L10.02 -4L03L21 +4L12)},

 (3*3)

 it follows by a little algebra from (3 -1) that the approximate cumulants of Wn, under 00,

 are given by

 kln(Wn) = n-2R,+o(n-1), k2n(Wn)=l+n-lR2+o(n-1),

 k3n( Wn) = o(n-1), k4n( = )o(n-=),

 where

 R1=R1+v, R2= R2+2a-c. (3-5)

 Furthermore, calculations similar to those in the Appendix show that

 krn(Wn)o=(n1 ) (r:5). (3-6)

 By (2-4a), (3.4),

 E00,m(An) = Eo, m( Wn) + o(n-)-1 + n-1a(m) + o(n-1), (3.7a)
 where

 a(m)=R2+R . (3.7b)

 Consider now the Bartlett adjusted statistic

 ABn = Anlfl + n- a(mO)}. (3-8)

 By (2-4a), (2-5),

 ABn = WBn + o(n1), (3-9)

 where

 WBn= Wn{1-1n-1a(m)}.

 Hence by (3.4), (3.6), (3.7b), the approximate cumulants of WBn, under 00, are given by

 kln( WBn) = n!2R1+ o(n1), k2n( WBn) = 1-n 1R + o(n1),

 krn( WBn) = o(n ) (r - 3),

 so that using an Edgeworth expansion for WBn (Bhattacharya & Ghosh, 1978) and

 recalling the symmetry of the normal distribution, it is clear from (3-9) that

 prO0(ABfl S x) = pro0(i WBnl < xl) + o(n-1) = g(z) dz+ o(n1) (3.11)

 for all x - 0 and all m, where g(z) is the density of the chi-squared distribution with 1
 degree of freedom. Hence by (3.7), (3 8), a Bartlett-type adjustment is available for An.
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 The above line of argument works primarily because, as a consequence of the rather

 special nature of the correction term Jmm( 0, M'z) involved in the definition of A,,, the third
 and higher order cumulants of W, like those of Wn, are of order o(n-1) under 00. It
 may also be emphasized that, in consideration of (3-7)-(3 10), by correcting the mean

 of the conditional likelihood ratio statistic A,,, all cumulants of An, under 00, are simul-
 taneously corrected up to o(n-1). This may be contrasted with the findings of Harris

 (1987) who worked directly with the moment generating function of An and perhaps
 overlooked the simplification that the consideration of the square root version Wn entails.
 As a final remark, in the spirit of equations (10)-(12) of DiCiccio et al. (1990) and in

 view of (3 4), one could as well have corrected WV1 by W = W -n- +RJ (1+n-1R2)1
 and then An by A* = W*2. Clearly, under 00 all the cumulants of W*, unlike those of
 WBfnl agree, up to o(n-1), with those of a standard normal variate and hence if interest
 lies in the one-sided tail probabilities for the square root version of the conditional

 likelihood ratio statistic then use of W* rather than WBn gives a closer approximation
 to normality. However, in the present context interest lies more often in tail probabilities
 concerning the conditional likelihood ratio statistic itself and it is easily seen that to this

 effect, use of A* will give no better approximation to the chi-squared probability integral

 than the Bartlett-type adjusted statistic ABn which satisfies (3- 11).
 We now indicate how the adjustment factor for An can be calculated from that for the

 usual likelihood ratio statistic An. By (2-2a), (2 5), (3.1), it can be seen that, analogously

 to (3-8), the Bartlett-adjusted statistic corresponding to An is

 ABn = Xn/{l + n-l(mof)}

 where

 Id (M) = A2 +R . (3-12)
 By (3-5), (3-7b), (3.12),

 a(m) = a(m) +2a2-c+2R1v + V2, (3-13)

 where v, R1, c are as in (2 9a), (3-2a) and (3 3) respectively. Equation (3 13) gives an
 explicit formula for deriving the Bartlett adjustment for An via that for An.

 Example 3- 1. Let

 f(x; 0, m) = (2r0!)-2exp {2(x m)2/0}.

 Then it can be seen that

 a20=2 0 aO2 =001, L12=0o2, L10101 = 0=

 41.21 = L30 =-22 = 203, L10.20 = L10.01.11 = -O-3 L40 =-9o-4

 L10.30= 3 0-4, L20-20 =-L .10.20=90 4 L 21= L10.12= L10.02= 0.

 Hence, by (2-9a), (3 2), (3 3), (3410), (3413),

 V=2-21 R=-5(2-'), R294 c=- H0 a(m)=3 a(m)=3 3 P12 ~~~12 8
 In this example, both a(m) and a(m) do not depend on m.
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 APPENDIX

 APPROXIMATE CUMULANTS OF fVn

 A technique discussed by Mukerjee (1989b) will be helpful in the derivation. From elementary
 considerations, as by, for example, Chandra & Joshi (1983), first note that the approximate

 cumulants of S1O, under 00, are given by

 kin (Si S) = 0, k2n (S1o) = a20, k3n(S10) = n 2L,o 1o 1o,

 k4n(Sio) = nl(Ll0.l0.l0.10-3a20), krn(S10) = o(n-l) (r 5).

 Hence the approximate characteristic function of Slo, under 00, is

 {1 + n-IF1(6, m) + n-lF2(6, m)} exp (1a20o2) + o(n-'),

 where

 (=(-1)2t, F1(6, m) =63L10.10.10, (A-la)

 F2(g, m) = ~24 (L10.10.10.10 -3a20) +7 26L101010. (A. lb)

 Let 0On = 00+ n-18, where 8 is free from n, and

 Eo0n,m(Q;) = C1GS, m) + n-2M1(8, m) + O(n-),

 Eo,,,m(Q;) = C2(8, m) + O(n2), E0,,m(S20QD = C3(8, m) + 0(n-2)

 Eon,m{(Q)2} = C4(8, m) + O(n-),

 where Ci(8, m) (1 - i - 4), M1(8, m) are free from n. Then following Lemma 3 of Mukerjee
 (1989b), the approximate characteristic function of Wn, under 00, is given by

 E0oom{exp (eWn)} = X(4, m) exp (142) + o(n-'), (A.2a)
 where

 x(4, m) = 1+ n- 2{F1(aj-26, m) + 6C1(aj-24, m)}

 +n-{F2(a-i2, m)+ M1(a7-1, m)+ C2(a2-, m)-a-03C3(aj-, m)
 + 02C4(a?J4, m) -la'2 ?oCi(a -e, m)}. (A.2b)

 Using (2-6), (2-7), calculations similar to those of Mukerjee (1989a) show that

 C1(8, m) = - 2(a-0a02) -lL2 - 6a2L10.10.10(l + 82a2O), (A-3a)

 M1(8, m) = 1a212{1(L10.10.20+ a 0)

 + (L30Lo.10.101 /a20) + l(a20L12L10.0101/ a22)

 +2l(L2lL10.1001/aO2) + (a20L1001l11/aO2)}

 + 283{a02( L1.20l + 'Llo 1010L10.20 + 2a20L20.20 + !a20L101020

 +3L30L1020 + _L30Ll010l0)- (a10a02) L2(L200+ L10.10.01)}, (A3b)

 C2(8, m) = 8[a-5/2{3a2o(L0.20o- a220) +4L 20 5+1403L1020 + -L 2}

 + a2-0 (8L40 + 2Ll030) +(a oaO2)1(!Lllll + 221101 + 4L-22 + L12)

 + (a2/ aO2) -1(0L21L2o0o0 - 4 2- 6 12 - 12L,0.20)

 - (a20a02) -1(21L2 141.02 +4L2143 + 2L12)]

 + 8{a2-03(8L120.20 +j5L30L1 20+ 9L30) + aj0(2lL4o +6L10.30) + (a220a02) ' L21}, (A-3c)
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 C3(8, m ) = 8{2a2-0(4o2o0- a20) + a2'32(Llo20 2+ 240L10.20) - 2( a20a02) -1(L21L20.01 + L12L10.20)}

 + 28 ajL2o0(L1o2o + 0 (A-3d)
 C4(8, m)-={C1(8, m)}2+4a2-0(L20.20- a20) + (a20a02f11 lLll + a234l02+Ll.o3+1L0

 + 82{4a2-](L2o.20 - a20) + a224l02 -3L02 L0

 -(a20a22f L21(L20 00 --L.01} (A3e)

 From (A ), (A2), (A3), after considerable algebra, which is omitted here, the relations (3d),
 (3 2) follow. Simple regularity conditions like the following, some of these being consequences

 of parametric orthogonality, are useful in the derivation:

 aL0.2L =-L, L30 =-L12, L1 +3L120+L30 0A?,

 L4 + 4L10 30 + 3L20 20 + 6L13.21220 + L1010) = 0,

 LC2M.I1 + L1011 + L10M10201 = 0, L101 + L 4102+ L100101 = 0.
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