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 COMPLEXITY OF WINNING STRATEGIES FOR AO GAMES

 RANA BARUA

 (Communicated by Andreas R. Blass)

 ABSTRACT. For a AO game played on co, we show that the winning player has
 a winning strategy that is recursive in E1 , where E1 is the total type-2 object
 that embodies operation v .

 0. INTRODUCTION

 The complexity of winning strategies for certain definable games played on co
 can, quite often, be expressed in terms of recursion in (appropriate) higher types.
 The simplest and the earliest known result is for no games. It is a well-known
 result in descriptive set theory that if player II wins a no? game then she has a
 winning strategy that is Al recursive. Since the Al sets are precisely the sets
 that are recursive in 2E, the Kleene's type-2 object that embodies countable U
 (cf. [5]), player II has a winning strategy that is recursive in 2E. For X0 games,
 there is an analogous result. Solovay has shown that a set is 05? if and only
 if it is El Ind, where e denotes the game quantifier (see [10, 7C. 10]). But the
 El-Ind sets are precisely the sets that are semi-recursive in EO, by a result of
 Aczel [1], where El is the partial type-2 object that embodies operation v (see
 also [5]). Thus 05? is the class of sets that are semirecursive in E#. The Third
 Periodicity Theorem of Moschovakis [10] coupled with the above-mentioned
 fact shows that if player I wins a 10 game then he has a winning strategy that is
 recursive in EO . More recently John [7] showed that the complexity of winning
 strategies for X0 games is related to recursion in Kolmogorov's operator IR.
 Quite naturally, one would like to have similar results for definable games that
 are in the higher levels of the arithmetical hierarchy. Such results, it appears,
 are quite difficult to obtain. In this short note we show that for AO games
 the result of Solovay-Aczel can be improved, i.e., we show that for AO games
 the winning strategy can be chosen to be recursive in E1 , the (total) type-2
 object that embodies operation v . Although this result may not be of much
 significance, we feel that the proof, which is an adaptation of the techniques
 developed by Burgess in [4], could be useful in analysing AO games for n > 3.
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 1. NOTATION

 We denote the set of natural numbers by co. The letters i, j, k, m, n, ...
 will stand for natural numbers. SEQ will denote the set of sequence (or Godel)
 numbers of finite sequences of natural numbers. The letters s, t, ... will de-
 note finite sequences of natural numbers as well as their sequence numbers. If
 s, t E SEQ then s * t denotes the sequence number of the concatenation of
 s followed by t. If s, t E SEQ then we write s C t if t extends s (both
 considered as finite sequences).

 The set of infinite sequences of natural numbers will be denoted by co@.
 Elements of WW will be called reals and are denoted by a, ,B, y s, .... If

 a e Ewco and n E w, then (x(n) = (a(O), (x(1), ... , ax(n - 1)). WO denotes
 the (codes of) wellorderings of co. If a E WO, then Icla is the ordinal of the
 wellordering coded by a and <-a denotes the wellordering. If P C X x Y
 then for x E X, Px denotes the vertical section {y: P(x, y)} .

 The symbol E1 stands for the type-2 object that embodies operation _v and
 is defined by

 El (a)= 0 if (3fl)(Vn)(ca(fl(n)) = 0)
 1 otherwise.

 The symbol E'1 stands for the type-2 object that embodies the open game quan-
 tifier. Thus

 E/ (a) { if 3aovbo3a,Vbl ..3n(a((ao 5 bo, . . an-I bn-1)) = O),5
 1 1 otherwise.

 The symbol E'1' is the type-2 object that embodies the closed game quantifier
 and is defined analogously. It is well known that E1, E'1, E'1 are in the same
 degree, i.e., they are recursive in each other.

 Unexplained notation and terminology from descriptive set theory are as in
 Moschovakis [10]; those from recursion theory are as in Hinman [5].

 2. THE MAIN RESULT

 Fix a recursive function q such that if a E WO, the set of wellorderings of

 co, then q$(ca, n) codes the strict initial segment of <-a with top n whenever
 n E Field(<,>); otherwise, it codes the empty relation.

 The following is an effective version of a result of Hausdorff (cf. [8, ?34VI]),
 due to Burgess, whose proof can be found in [2] (see also [9]).

 Lemma. Let E be a AI nAO subset of Y = -I x (ww)k . Then there is a recursive
 ordinal ,u such that for every recursive code a of ,u there is a AI, closed set
 F C wo x Y with the following properties:

 (a) FnCFm,ifm<ann;
 (b) Fn = nnfl <a nF if Ik0(a, n)I is limit;
 (c) E = U{Fn - Fn+: I q(a , n)I is even & n <a n+& 1$0(a, n+)I

 = 10(Ca, nlI+ 1}.

 The proof of the next result is based on the techniques in [4]. The idea of the
 proof has been extracted from the Characterization Theorem in [4], in which
 Burgess proves that OAO sets are the R-sets of Kolmogorov (see ? 12 of [4]).
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 Theorem 1. If A C Y, where Y = - i x (Cow)k, is in OAO then A is recursive
 in E1.

 Proof. First observe that since a Al, closed set is FI?(y) for some Al real y, we
 shall drop the parameter y in our proof. Now, fix a 11? set G C co x a) x ,)W x Y
 that is a good co-universal for 1I? subsets of co x w(0 x Y (cf. [10]). We shall
 show that the following predicate is recursive in E1:

 P(e, a, x) *- a E WO & Ge satisfies (a) and (b) of the above

 lemma with respect to a & O3fD(e, a, fi, x),

 where e is the game quantifier, and

 (*) De,a =U{Ge,n - Ge,n+: 1q(a, n)l is even & 10(a, n+)l = 10(a, n)l + 1}.

 Note that this will prove our theorem. To see this, observe that if Q c Y is
 OAO then for some AO set S c WoO x Y we have

 Q(x) +-,BfS(,l?, x).

 Hence, by the lemma (ignoring the parameter y that is involved), there is a
 recursive a E WO and e E co such that Ge satisfies properties (a) and (b) of
 the lemma with respect to a and

 S = U{Ge, n - Ge,n+: Iq$(a, n)j is even
 & 10(a, n+)l = 1k(a, n)l + 1}.

 Consequently, Q is the (e, a)-section of P (defined as in (*) above) and,
 since a is recursive, Q is recursive in E1 . Thus we only need to show that P
 is recursive in E1 . To obtain this, fix a recursive set R such that

 (i) G(e , n, fl, x)-(Vk)R(e, n, fl(k), x);
 (ii) S E SEQ & R(e, n, s, x) & t C s - R(e, n, t, x).

 We now define a function y,(c, e, a, x) as follows.

 y(c, e, a, x) El (As * XR(e, n*, s, x)) if ai= & n* e Field(<a);
 E (As * 2E(An * Even[q(a, n), {c}E (S(e*, e, s), q(a, n+), x)]))

 if lal is even & Ge satisfies (a), (b) of the lemma w.r.t. a;

 c E' (As * 2E(An * El' (At XR(e, n*, s * t, x)){C}EI (S(e*, e, s), d/(a, n*), x)))
 if lal is odd & Ge satisfies (a), (b) of the lemma w.r.t. a;

 - 1 otherwise,

 where,
 Even(a, n) = 0 iff a E WO & lal is even & n = 0,

 n* is the largest element of <a when lal is odd, and the recursive function S
 and the integer e* are obtained as follows.

 Put

 (iii) F(e, s, m, /, x) +-? (Vj)R(e, m, s * 1(j), x).
 Clearly, F is rI. Hence there is an e* E co such that

 (iv) fle, s, m, l, x) +_+ (e*, e, s, m,/x) +G(S(e*, e,s),m, 3, x),
 by the Good Parametrization Lemma [10, 3H.4]; G being a good co-universal
 for rIo subsets of (co)3 x EW x Y.
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 Since ll sets are easily seen to be recursive in E1 , it is easy to check that

 qV is recursive in E1 . Hence by the Recursion Theorem there is c* E co such
 that

 V/ (c *,e,ac, x) jC*}E,(e, ax, x).
 We shall prove by induction on Icla that {c* }Ei (e, a , x) is the characteristic
 function of P. This will establish that P is recursive in E1 .

 If IcaI = 1, the result can be easily established. So assume that I a > 1 and
 Ge satisfies properties (a) and (b) of the lemma. To fix ideas, assume that Ica
 is an even ordinal. We shall show that

 OflD(e, ax, ,B, x)
 + (3a0)(Vbo)(3al )(Vbl) ..(3 i)(3 n)

 (** ) !fl{(3m <- n)(10(ca, n)l is even & 1k(ca, m)l is even

 & (Vj)R(e, m, (ao, bo, ..., ai-1, bi-,) * fl(j), x)

 & (Vk)R(e, m+, (ao, bo, ... ., ai-1, bi-,) * /3(k), x))}
 where D is as in (*) above. Assume that we have obtained (**). Then, in
 view of (iii) and (iv), P(e, a, x) holds iff

 (3ao)(Vbo) ... (3i)(3n){11(ca, n)l is even
 & P(S(e*, e, (ao, bo, ... , ai,b. bi-,)), q$(a, n+), x)},

 i.e., iff

 (3ao)(Vbo) (3i)(3n){ q(ca, n)I is even
 & {c*}E1(S(e*, e, (ao, bo, ... , ai 1 , bi-,)), 0(a , n+), x) = O},

 by induction hypothesis, i.e., iff V(c*, e, a, x) = 0, by the definition of qV.
 Thus it remains to show that (**) is valid. Now observe that (**) is plainly
 equivalent to the following:

 (3a0)(Vbo)(3al)(Vbl) ..D(e , a . (ao 5bo a, a, bi 5 ... ), x)
 .((3am)(nbo)(3al))(bl) (3i)

 {(3 n)(3a') (Vb')(3al ) (Vbl ) ..(3m< an)

 (kI(aG, n)I and IkG(a, m)I are even (* * *) & (Vj)R(e, m, (ao, bo, 5... , ai bi-,)
 *(al, bo, * *, bj b ) , x)

 & - (Vk)R(e, m+, (ao, bo, ... , ai-, , bi-,)

 *~~~- (ao bo * k-1 1k- 1) X)).

 The game on the right-hand side of *** *) will be called the 9-game and the
 game on the left will be called the Y-game. To see (* * *), first assume that
 3 wins the Y-game with strategy z. Now 3 wins the 9-game cleverly using
 the strategy z as described below. Observe that the Y-game is a game of
 length co whereas the 9-game is, essentially, a game of length co + co. Thus,
 after co many moves, i.e., after the end of the first subgame, 3 is able to use
 the strategy z provided he ignores all but the first finitely many moves of the
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 subgame. This he is able to do since the winning condition of the 9-game
 depends only on the first 2i moves of the first subgame, for some i. Thus 3
 plays as follows. He plays (the first subgame) according to the strategy z so
 that after co moves the sequence (ao, bo, ...) is produced, where ai 's are the
 moves of 3 as dictated by z and bi 's are the moves of V. Since the sequence
 (ao, bo, al, b1, ... ) is consistent with z and z is a winning strategy for the
 5-game we must have D(e, ax, (ao, bo, ...), x). By the definition of D and
 (i), this implies that there is an n E Field(<?) such that, for some i,

 -R(e , n+, (ao 5 bo,5 ...,. ai-_ . bi-,) . x);

 where q$(ca, n)I is even and q0(a , n+)I = l0(a, n)I + 1. Furthermore, we have

 R(e , n,. (ao 5 bo,5 ..., ai-_ . bi-,) . x).

 Thus after co moves 3 plays these integers i and n so obtained. To continue
 the 9-game using the strategy z the player 3 ignores the moves
 ai, bi, ai+I, bi+I, ... ., i.e., he assumes that the game has been played upto stage
 i producing the sequence of moves ao, bo, ... , ai 1, bi_1 and then continues
 to play according to the strategy z. This enables 3 to play the second subgame
 using the strategy T. Suppose the sequence ao, bo, ... , ai-, bi-, a', bo, a',
 b, ... of moves consistent with z is produced- aj, bJ being the moves of 3
 and V in the second subgame. Since the above sequence is consistent with z
 and z is a winning strategy for 3 in the 5-game, we have, for some m with

 I (ca, m) I even,

 (Vj)R(e, m, (ao, bo, ..., ai. , bi-,) * (al, bl ..., a>_ , b>1), x)
 & - (Vk)R(e, m+, (ao, bo, ..., ai_-, bi-,)

 * 0a b5 *.. 1 ak-I k k- ) X).

 In particular, we have R(e, m, (ao, bo, ..., ai-, bi-,), x). If n <a m then
 n+ <a m, and hence R(e, np+, (ao, bo, ... , ai, bi-,), x) holds. This con-
 tradicts the choice of n. Thus m <a n and so 3 wins the 9-game.

 Conversely, suppose 3 wins the 9-game with strategy a, say. To win the
 5-game 3 uses the strategy a judiciously. If he simply plays as dictated by
 a then it will amount to playing the first subgame of the 9-game and this
 alone will not ensure a winning condition for 3 in the 5-game. So 3 adopts
 the following tactics. He will play the 5-game as dictated by a until a stage
 i - 1 is reached with the property that there exist moves bi, bi+ ... of V at
 stages i, i + 1, etc., such that if these are played by V after the stage i - 1
 and 3 plays with strategy a, the strategy a would have forced 3 to play this
 integer i satisfying the predicate within {I} in (*** *). Such an integer i exists.
 Otherwise, after every stage i - 1 , whatsoever the moves bi, bi+I, ... of V at
 stages i, i + 1, ... are, with 3 following the strategy a, the condition within
 { } in *** *) will not be satisfied. Using the determinacy of AO games, this
 shows that V is able to beat the strategy a in the 9-game. This contradicts the
 fact that a is a winning strategy for 3 in the 9-game. Thus such an integer
 i exists. After this stage, 3 pretends that he is playing the second subgame of
 the 9-game, the moves of the first subgame being
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 Observe that the moves in boldface represent the moves that have actually taken

 place bi, bi+I, etc., the simulated moves of V at positions i, i + 1, etc. (in
 the first subgame of M-game) whose existence we have already proved and

 ai, ai+I, etc. the moves of 3 as dictated by a . Now suppose a', bo, a', b/,...
 represent the moves in the second subgame of the simulated 9-game, where 3
 plays according to strategy a. Thus 3 plays the Y-game pretending that he
 is playing the '-game where V has made the moves bi, bi+l, ... in the first
 subgame. Note that the sequence ao, bo, ... , aiI, bi-I, a' bb, a', b,...
 constitute a play in the .-game, while the corresponding simulated play of the
 9-game is

 ao, bo, .., aiI.1, bi-., ai, bi, ai+l, bi+1, .. i, n
 a/, b, al, b1..

 Since in the above play 3 plays according to a and a is a winning strategy in

 the 9-game, we have for some m such that 10(a, m)l is even

 ( &j)R(e, m, (ao, bom,(a., b0-, ., al b ....1 , a _b, I.. , a' , x)
 &(Vk)R(e, m+ ,(ao, bo ,...ai- 1bi- I ,ao', b' at lb'_))

 In view of (i) and (ii) this shows that 3 wins the S-game. Thus equivalence
 *** *) holds and the proof is complete.

 By the Third Periodicity Theorem of Moschovakis [10, 6E], the winning
 player for a Ag game has a winning strategy that is 5AO-recursive, and thus we
 have

 Theorem 2. If I or II wins a AO game then he has a winning strategy that is
 recursive in E1l

 The next result shows that 5AO cannot exhaust 2sc(E1).

 Theorem 3. There is a set of reals recursive in E1 that is not OAO

 Proof. First observe that by a result of Burgess [4], 5AO sets are i'-sets, where
 F is the smallest a-field containing the closed sets and closed under operation
 v . By [3] there is a set of reals recursive in E1 that is not in W. The result
 now follows immediately.

 Corollary. 5Ag C 2sc(EI) C 01? n en1g.

 Proof. By the result of Solovay-Aczel, 5Xg n 0II2 is precisely the set of reals
 that are recursive in E* . Since there is a set recursive in Eo that is not recursive
 in E1 , the result follows from Theorems 1 and 3.

 Remarks. 1. Notice that for sets of numbers, we have the inclusion 5AO C
 isc(E1). But sets of numbers recursive in E1 are precisely the effective W-
 sets as was shown by Hinman in his fundamental paper [6]. Hence for sets of
 numbers the above method does not seem to work and we do not know whether
 O5AO exhausts sets of numbers recursive in E1 , although we suspect this is not
 the case.

 2. The result of Burgess mentioned in the proof of Theorem 3 is not explicitly

 proved in [4]. One direction of the result viz. AO C F-sets, can be obtained
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 as in the proof of Theorem 1. The reverse inclusion can be proved in a much
 similar fashion.
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