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 We consider the problem of sequentially estimating one parameter in a
 class of two-parameter exponential family of distributions. We assume a
 weighted squared error loss with a fixed cost of estimation error. The

 stopping rule, based on the maximum likelihood estimate of the nuisance
 parameter, is shown to be independent of the terminal estimate. The
 asymptotic normality of the stopping variable is established and approxima-
 tions to its mean and to the regret associated with it are also provided. The
 general results are exemplified by the normal, gamma and the inverse
 Gaussian densities.

 1. Introduction. Let

 (1.1) f(x;0) = a(x)exp(01U1(x) + 02U2(x) + c(0)}, 0 = (01,02),
 be a density function (w.r.t. Lebesgue measure on DR), of a regular two-param-
 eter exponential family of distributions [see Brown (1986)]. The natural pa-
 rameter space 0 is defined by

 6 = et} (E R2; e-c(8) E a(x)exp(0lUi(x) + 02U2(x)} dx < x)

 so that 0 int e * 0. It is well known that for any 0 E 0 the r.v. U -

 (U1, U2) has moments of all orders. In particular, we denote

 (1.2) E9(U) = (A1l 2)' Ai= -ac(o)/la6, i = 1,2
 and

 V6(U) = (0ii), O'j= -d2c(0)/dOid0j, i,j = 1,2,

 where V,(U) is the corresponding (positive definite) variance-covariance ma-
 trix.

 Let Xl,..., Xn, n > 1, be n independent identically distributed r.v.'s hav-
 ing a common density of the form (1.1). Let Ti n = E:= IUi(Xj) and denote by
 Ti: nf i = 1 2 the usual averages. The joint distribution of T = (Ti: n T2:n) is a
 member of the two-parameter exponential family and

 (1.3) E6(T) = (nA,u, n,u2), V1(T) = (noij), iXj = 1,2.
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 SEQUENTIAL ESTIMATION RESULTS 485

 In the present paper we consider a particular subfamily of (1.1), which was
 studied in detail by Bar-Lev and Reiser (1982) (henceforth referred to as BLR),
 in the context of construction of UMPU tests. This subfamily is characterized
 by the following two conditions which we assume to hold throughout the
 paper:

 ASSUMPTION A. 1. The parameter 02 can be represented as 02 = -011Y(
 where (AL2) = dq'(p2)/dA2, for some function q.

 ASSUMPTION A.2. U2x) = h(x), where h(x) is a 1 - 1 function on the
 support of (1.1).

 By using the mixed parametrization (01, 02) -> (01, 2) which is a homeo-
 morphism with (0k, /L2) E 01 X 'A72 (varying independently, respectively), it
 can be shown that under Assumptions A.1 and A.2 the following relations hold
 (see BLR):

 (a) The variance of U2 is given by

 (1.4) 22(0) = (> 0).

 (b) The functions c(0) and ,LuL(0) when expressed by 01 and /2, have the
 following form

 (1.5) c(01,p2) = 01[A21&'(A2) - OGLA -G(01),
 -i = frL2) + G'(01),

 where G(01) is an infinitely differentiable function on 01 for which G"(01) > 0,
 for all 01 c 01. Here G' and G" denote the first and second derivatives of G,
 respectively.

 An immediate consequence of (1.4) and Assumptions A.1-A.2 (see BLR) is
 that either 01 c R or 01 c RD.

 Suppose that on the basis of n independent observations xl,..., xn from
 (1.1), we wish to estimate /L2 E9(U2) in the presence of the nuisance parame-
 ter 01. Let 01 and /2 denote the maximum likelihood estimators of 01 and _2,
 respectively. It is easy to show that under the preceding assumptions, /L2 = T2n
 and that 01 satisfies the equation

 (1.6) nG'(0i) = Tl:n - nq(T2:n) Zn.

 The distributional properties of the statistic Zn have been studied thoroughly
 by BLR. It has been shown there (see BLR, Theorem 3.2) that the distribution
 of the statistic Zn is a member of the one-parameter exponential family of
 distributions indexed by 01. Denoting by Mz ( ) the moment generating func-
 tion of Zn, BLR have shown that

 (1.7) Mzn(t) = eHn(t+01)-Hn(61) t + 01 E 01'
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 486 A. BOSE AND B. BOUKAI

 where for all 01 E 01

 (1.8) H(J01) = nG(01) - G(n01).

 It follows (by Basu's Theorem) that for any fixed n and for all 0 E 0, the

 statistics Zn and T2: n are stochastically independent.
 For the estimation problem considered here, we assume that the loss

 incurred by using T2 n as an estimate for AL2 is

 Lp(T2: n) = PIql"'(2) I('2: n - A 2) + n,

 where p > 0. The factor pIG"(,LO2)J represents the importance of the estimation
 error relative to the cost of one observation.

 From (1.3) and (1.4) it follows that for a fixed 01 E 01 the corresponding
 risk is

 Rp(n) = EA[Lp(T2:n)] = + nf.

 The optimal sample size which minimizes the risk is obtained by choosing an

 integer adjacent to no = (p/1011)1/2 at which Rp(n0) = 2n0. However, since 01
 is an unknown nuisance parameter, this optimal sample size cannot be deter-

 mined. So one may use a random sample size Np based on the following
 stopping rule,

 Np = inf{n ? MO; I 11 > p/n2),

 for some initial sample size mo (mo ? 2).
 Since the function G'(01) is strictly increasing on 01, it follows from (1.6)

 that the stopping rule Np has one of the following forms:

 (i) If 01 c W, then Np = inf{n ? mO; Zn < nG'(-p/n2)}.
 (ii) If Q1 c R+, then Np = inf{n ? mO; Zn > nG'(p/n2)}.

 By Lemma 1 these two cases are symmetrical and hence with no loss of
 generality we may assume from now on that 01 c R-.

 In the sequel, we consider a simple modification of the stopping rule Np in
 (i). This modification is intended to reduce bias incurred by underestimating

 no using Np. The modified stopping variable is defined as

 (1.9) Np = inf{n ? MO; Znan < nG( j

 where we suppose that an > 1 are of the form an = 1 + ao/n + an with
 An = o(l/n) as n -> oo. By Lemmas 1 and 2, the function G' is strictly
 increasing and positive on 01 and Zn converges a.s. to G'(01). Hence it follows
 that for each fixed p the stopping rule Np is finite w.p.1. It is also easy to see
 that limp--, Np = oo w.p.1.

 In Section 2 we present the main results concerning some of the asymptotic

 properties of the stopping variable Np (as p -* oo) and of the risk Rpf(Np)
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 SEQUENTIAL ESTIMATION RESULTS 487

 associated with it. In particular, we establish the asymptotic normality of

 (appropriately normalized) Np and obtain approximation to E6(Np). Denoting
 by W(p, 01) = Rp(Np) - Rp(no), the so-called regret (i.e., the additional risk
 incurred by the sequential estimation procedure based on Np instead of no),
 we also show that

 lim W(p, 01) = [402 G"(01)] -1> O*
 p - 00

 These types of results are usually referred to as second order approximations.
 These approximations are based on results from nonlinear renewal theory
 developed mainly by Lai and Siegmund [(1977), (1979)] and Woodroofe (1977).
 For a detailed exposition of this theory see Woodroofe (1982). A crucial key in
 proving our results is an independence result presented in Theorem 1. This
 result provides, in the general case discussed here, the independence of the

 event {Np = n} with the terminal estimator. Although we focus attention here
 on the point estimation problem, this result may also be used to study fixed
 width confidence interval problems.

 Sequential estimation procedures similar to the one considered here have
 been discussed by several researchers. For the estimation of the mean of a
 normal population, Robbins (1959) suggested a stopping rule N based on the
 successive estimates of the population variance by the sample variance. The

 estimate xn of the mean and the event {N = n} are then independent for every
 n. This property was heavily exploited by most researchers who worked on the
 normal problem. Starr (1966) showed that for the normal case the sequential

 estimation procedure is risk efficient [i.e., limp- 0 Rp(N)/RP(n 0) = 1], if and
 only if mo ? 3. Starr and Woodroofe (1969) found that the regret is bounded.
 Woodroofe (1977) used second order approximations to study the regret and

 proved that M(p) -> 1/2, as p -*oo if mo 2 6.
 Extensions of this procedure to nonnormal cases have also been discussed in

 the literature. Starr and Woodroofe (1972) dealt with the negative exponential
 distribution and proved the boundedness of the regret. Vardi (1979) provided
 similar results for his stopping time in the Poisson case. A survey of results
 concerning sequential estimation procedures for the negative exponential dis-
 tribution, with and without a truncation parameter, can be found in
 Mukhopadhyay (1988). Aras [(1987), (1989)] provided first and second order
 results for the case of censored data from negative exponential distribution. To
 estimate the mean with a "distribution free" approach, Ghosh and
 Mukhopadhyay (1979) and Chow and Yu (1981) allowed the initial sample size
 m0 to be a function of p, which tends to oo as p -> oo. They show the risk
 efficiency of the estimation procedure when the distributions are unspecified

 and mo -' oo. Similar results were proved by Sen and Ghosh (1981) for
 estimation of symmetric parametric functions using U-statistics. In the distri-
 bution free case, Chow and Martinsek (1982) have shown that the regret is
 bounded. With stronger conditions, Martinsek (1983) obtained an expression
 for the regret for nonlattice variables and bounds on the regret when the
 variables are lattice.
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 488 A. BOSE AND B. BOUKAI

 2. Main results. This section contains all the main results of this paper.
 To simplify the presentation, we provide their proofs separately in Section 3.
 Whenever possible we will omit the parameter subscript from probabilistic
 statements. We begin this section with the independence result mentioned in
 the introduction. Recall that Assumptions A.1 and A.2 are in force throughout
 the paper.

 THEOREM 1. For all n ? 2 and 0 E- 0, the random variables (Z2, ... X Zn)
 are jointly independent of T2 n.

 REMARK 1. Clearly [see (1.9)] the event {Np = n} is determined only by
 (ZmO . .. . Zn) and therefore by Theorem 1 it is independent of T2 n.

 THEOREM 2. Let Np be the stopping time defined in (1.9). Then for all
 0 E 0 the following hold:

 (a) limp-. Np/no = 1 w.p.1.
 (b) limp 0. E(Np/no) = 1.

 The next result provides the asymptotic normality of Np (appropriately
 standardized), as the cost of the sampling error relative to the cost of one
 observation tends to infinity. It is understood that the two statements {p -*> oo}

 and {no -* oo} are equivalent.

 PROPOSITION 1. As n0 -? c,

 (2.1) Np = ( 0 9 402G"(01)

 As was shown by Starr (1966) and by Woodroofe [(1977), (1982)], the initial
 sample size m0 plays a crucial role in an attempt to analyze the risk as well as
 the regret associated with Np. It was also shown [see Woodroofe (1977), page
 987], that the left tail behavior of the underlying c.d.f. is crucial in the risk's
 assessments. For the general case discussed here, we impose the following two
 natural conditions on the model. The first condition is imposed on the function
 G'. Note that the function G' determines the boundary for the stopping rule

 Np, as well as the moments of Zn [see (1.7) and (1.8)]. The second condition is
 imposed to ensure an appropriate initial sample size mo.

 ASSUMPTION A.3. For some y > 1/2, SUp,>4J011 xYG'(-x) < M < oo.

 ASSUMPTION A.4. The initial sample size mo is such that for some 13 >
 2/(2y - 1) and for all 01 E 01, E01(Z0) < oo
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 SEQUENTIAL ESTIMATION RESULTS 489

 Proposition 2 shows the risk efficiency of our procedure under these weak

 conditions. The condition on f3 in A.4 will be strengthened subsequently in
 order to establish the second order results.

 PROPOSITION 2. If G' and mO satisfy Assumptions A.3 and A.4, then

 R p(NP)
 lim = ) 1
 p -+o RP(no)

 THEOREM 3. If Assumptions A.3 and A.4 with f3 > 3/(2y - 1) hold, then

 as n0 -?? ,

 E(ANP) = nO + bo - 40SG"(01) [2 + 21ao(1)- G (0 )j] + o (1)

 where bo is

 1 1 ~~~~~~~~00

 2 0 2 E -E (Sk I[Sk < 0] ) 2 8 1G"(01) k=1lk

 and Sk, k ? 1, are partial sums of i.i.d. r.v.'s. defined in (3.19).

 THEOREM 4. If Assumptions A.3 and A.4 with 13 > 5/(2y - 1) hold, then

 lim M(P, 01) = 02 ur -- ( p 0 4 1G"(01)

 It is interesting to note that this regret is always positive. This is in contrast
 to the distribution free case where arbitrary large negative values of the regret
 are possible [see Martinsek (1983)].

 The following are the only examples of distributions known to us which
 satisfy Assumptions A.1 and A.2.

 EXAMPLE 1 [The normal distribution, N(Q, o,2)].

 (a) 01 = -1/2U2, 02 =/uAI2, e = R-X R.
 (b) U1(X) = X2, U2(X) = X, Ti n = E=1Xi2, Ti2, T2n =n
 (C) ,A2 = -02/201, 02 =-201A2
 (d) ,u1 = tL2 - 1/201 ,_(,2) = A22 G'(01) = -1/201.
 (e) Zn = Ti n- n(T2 ) = X J1(Xi - Xn)2 > 0 a.s.

 EXAMPLE 2 [The gamma distribution, c9(a, A)].

 (a) 01 = a, 02 = -A, 0 = R+X R-.
 (b) U1(X) = log(X), U2(X) = X, Tl n = ELk'1 log(Xi), T2:n = Xi=
 (c) Au2 = a/A, 4(/Q2) = log1(2), G'(a) = F'(a)/F(a) - log(a).
 (d) Zn = Ti:n - ni(T2n) = Ei= log(Xi/Xn) < 0 a.s.
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 490 A. BOSE AND B. BOUKAI

 EXAMPLE 3 (Inverse Gaussian distribution).

 (a) f(x: A, a) = (27)112X-3/2A1/2 exp{-ax/2 - A/2x + (aA)1/2}, x, A e R+,
 a IR+u{O}.

 (b) U1(X) = 1/X, U2(X) = X, 01 = -A/2, 02 = -a/2, 0 = R-X(R-U{0).

 (C) A2 = -(01/02)1/29 ql(2) = 1/A2, G'(01) = -1/201.
 (d) Zn - XP=l(d/Xi) - (n/X) > 0 a.s.; although this model is steep, all

 results stated above for a regular model hold for 0 E int(e). For further
 discussion see BLR.

 REMARK 2. (a) In all of these cases explicit expressions for the statistic Zn
 and the function G are available. It can be shown that in these three cases

 Assumption A.3 holds with y = 1 and Assumption A.4 is satisfied with mo >
 1 + 2,8. Hence, the second order result of Theorem 4 requires an initial sample
 size mO 2 12. For specific cases the initial sample size may be reduced. For
 instance Woodroofe (1977) has shown that in the normal case m0 2 6 suffices.

 (b) It is interesting to observe that for the normal case and for the inverse
 Gaussian case the asymptotic regret [402G'"(01)]-1 is independent of 01 and is
 equal to 1/2. Thus, it is easily verified that in these two cases our estimation
 procedure has asymptotic local minimax regret in the sense of Woodroofe
 [(1985), page 678].

 3. Auxiliary results and proofs. In this section we provide the proofs of
 the main results along with some auxiliary results needed in the sequel. We
 begin with the proof of Theorem 1 which requires only the validity of Assump-
 tions A. 1 and A.2.

 PROOF OF THEOREM 1. By Basu's theorem, it suffices to show that the
 distribution of (Z29 ... 9 Zn) does not depend on 02. To that end, we let Mz(a),
 a = (a2 ... , a) denote the (joint) moment generating function of Z -
 (Z29 .. * *'zn)9

 (3.1) MZ(a) = E0l, 02(eXP {E ajZj)

 We will show by induction, that (3.1) is independent of 02. This is carried out
 in two steps.

 STEP 1. Show that (Z-1, Zj) I T2: j for all 2 < j < n.

 STEP 2. Show that if (Z2 ... , Zk) T2 k for all k < n - 1, then
 (Z29 ... Zn) T2: n
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 PROOF OF STEP 1. Let j> 2 and Ei?, 4() denote expectation under the
 (product) probability measure of X1, .. ., Xj. Then by (1.1) and (1.6),

 E, ,2(exp{aj-1Z-1l + ajZi})

 (3.2) - exp{jc(01, 02) -jC(01 + aj, 02))

 x EJ+J ,2(exp{aj-1Zj1i} x exp -jajr(T2 j)).

 By Theorem 3.2(iii) of BLR, Zj1 L Tj and hence Zj-1 I T2:jil +
 U2(Xj) T2 j. Hence, the expectation on the r.h.s. of (3.2) factors and the
 first expectation term does not involve T2 - nor 02 and therefore we can write

 (3.3) E1 +J,o2(exp{aj-_1Zji _ }) = Qj(01 + a,), say.
 For the evaluation of the second expectation term in the r.h.s. of (3.2) we use
 Theorems 3.1 and 3.2(i) of BLR, to obtain that under Assumptions A. 1
 and A.2,

 (3.4) Ed+,o 2(exP(-Jaj0((T2:j)}) = exp(c(j(01 + ai),j92) - CJ019,J02)}
 By substitution of (3.3) and (3.4) in (3.2) we get

 EJi1 -2(ex{j-l Zy_ 1+ ajZj}) = Qj(01 + a )exp{jc(01, 02) - jc(0l + aj, 02))

 X exp{c(J(01 + aj),j02) - C(J01,AJ2)}.

 Finally, we let /D2' /4 denote the mean of U2 under (k1, 02) and (61 + aj, 02)
 respectively. By Theorem 3.1 of BLR (under A. 1),

 A2- 2( 019 02) = A2( 01, JA2),

 51*2- 2(01 + aj, 02) =/2(j(01 + a), j02).
 Then by using the identities (3.5) in conjunction with relation (1.5) of the c(*)
 function, it is easy to verify that

 Eal,2(exp(aj1Zj-1 + ajZj}) = Qj(01 + a )exp{Hj(01 + aj) - Hj(01)q
 where Hj(/) is defined in (1.8). This completes the proof of Step 1. The proof of
 Step 2 is similar and therefore omitted. [

 The following Lemmas are needed for the proof of our main results.

 LEMMA 1. If 01 c RW- (if 01 C R +), then:

 (a) i/ is strictly convex (concave) function on X2.
 (b) Z1 = 0 and Zn > Zn-, a.s. (Zn <Zn- a.s.).
 (c) G' is positive (negative) on 01.

 PROOF. The proof is similar to that of Lemma 4.2 in BLR and is therefore
 omitted. [
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 LEMMA 2. For each 01 E- 01, asn r?,

 (a) Zn- Zn/n -> G'(01) a.s.
 (b) lFn(Zfn - G'(01)) ->, N(O, G"(01)).

 PROOF. (a) follows by the strong law of large numbers and (1.5). To prove

 (b) we expand qr(T2: n) about 12 to get

 f(T2:n) = f((L2) + (T2:n - 12)1 (12) + en/n

 where (n = n(T2:n - A2)2,/q(1fn)/2 and An satisfies lAn - A21 < IT2:n - A212
 Accordingly, Zn can be rewritten as

 n

 (3.6) Zn _ i(
 j=1

 where

 (3.7) yj = U1(Xj) - 4('(A2) U2(Xj) + ('I(A2)A2 - /(A2)) J = 9 . . . , n

 Clearly Y1,..., Yn are i.i.d. r.v.'s. Using (1.2)-(1.5) it follows that E(Y1) =
 G'(01) and Var(Y1) = G"(01). Next, observe that 0"('n) 2 (/f"Q2) as n -> oo
 and that Vn(T2:n - A 2) -o 0 so that n/n i-4 0, as n -> oo. The proof of (b)
 now follows from Slutsky's Theorem and the C.L.T. [

 REMARK 3. It can be verified that the sequence en in (3.6) satisfies condi-
 tions 4.1 and 4.2 of Woodroofe (1982) [see Example 4.1(ii) there] and thus is
 said to be slowly changing.

 LEMMA 3. Let n0 = (p/1011)1/2 and e > 1 be fixed. Then for all n > n 0
 there exists a constant C depending on e and G such that

 P(N > n) < P(anZn > nG'( n)) < exp{-(n - no)C).

 PROOF. The first inequality follows from the definition (1.9) of Np. To
 verify the second inequality, let en = (no/n)2 < 1 and tn = 01(En - 1). Clearly
 tn c [0, - 0). By Markov inequality and (1.7),

 P(a~Z~ > nG'(018n)) < e tnan-G'(61en)M (t) ) en{G(t1)n+ nt G(E)

 where we have put Pn(t) = Hn(t + 01) - Hn(0d) - ntG'(018n) and f3n -
 ao/n + o(1/n). By using the definition of Hn(-) [see (1.8)],

 pn(tn ) = Hn(tn + 01) - Hn(0J1) -tnnG'(0En)

 (3.8) = n[G(01en) - G(01)] - [G(n01en) - G(n01)]

 + 0(1 -en)nG'(lEn)

 Since G(n0len) - G(n 0) > 0, and G"(-) > 0, the last equality in (3.8) implies
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 that for some En between 1 and en

 (3.9) qpcn(tn) < -nO(1 -en)n

 Note that there exists a constant C0 > 0 such that G"(x) ? C0 for all x E
 [01G 0]. Since n > noe we have

 (3.10) (1(1 - (1 - 1/)(1 - En) (1 - 1/E)(1 - no/n).

 It is also easy to see that for arbitrarily small C1 (positive) and large no,

 (3.11) ntn/3nG'(O1En) < (n - no)Cl.

 The lemma then follows by combining (3.9)-(3.11). U

 PROOF OF THEOREM 2. (a) We make use of Lemma l(b) along with the

 definition (1.9) of Np to obtain the inequalities

 (Np 1)G '(N j < ZN-a-<Za1 a p a.s.
 (NT - 1))2 <NZNNN aNP1,as

 Since aN -* 1 a.s. and ZN aN/NP G'(01) a.s. as p oo, it follows that
 limpe0 G'(-p/NP2) = G'(01). By using the relation -p = Oln2 the required
 result follows.

 (b) For e > 1,

 00

 mO < E(Np) < nO + , P(Np > n)
 n=no+ 1

 (3.12) - (3.12) ? no + (no + 1)(E - 1) + 13 P(Znan > nG( i1))

 where K = [(n0 + 1)E] + 1 and [x] denotes the integer part of x. By Lemma 3,
 for all n 2 K and for some constant C > 0,

 P(Znan > nG'( n) < e (nn)C

 Hence, the last inequality in (3.12) implies that
 00

 E(Np) < nO + (nO + 1)(E - 1) + E e-(n-no)C
 (3.13) n=K

 eCn o(?1)
 < nO+ (nO + 1)(E - 1) + 1 - e-C < 00

 From part (a) and Fatou's Lemma lim infp 0 E(Np,/n0) ? 1.

 By (3.13), limsuppO E(Npl/n0) < 1 + (e - 1). Finally by letting E 1 the
 proof of (b) is complete. FL
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 LEmmA 4. If G' and mO satisfy Assumptions A.3 and A.4, then

 (a) E -I[ N, < no/2] ) 0 as p -oo.

 If in addition Assumption A.4 holds with / > 3/(2y - 1), then

 (b) noP(Np < no/2) 0 as p - oo
 and

 (c) E(( - I[Np < no/2] 0 as p -*o.

 PROOF. We will only prove the first part since the proofs of the other parts
 are similar. Let 1/2 < a < 1 be fixed (to be chosen later) and let C be a
 generic constant. Then

 E( I[mo Np <no/2]) <noE( I[mO <Np <nOI)

 + nl-a)P(na < Np < no/2)

 = I, + I2, say.

 For the first term II,

 1 ~~~~~~[naj 1
 E (I[mo < Np < n = E kP(Np = k)

 < E k P (Zkak < kG 0 k

 [ ?] 1 ( _ _ _ _ _ _ \
 k =MO k kt*k<neoiM
 [nZi 1 k 1+2y < i -kaP kZk < n2y IOj

 [nao] 1 k' +2nyo

 < E(Zg )CnYo2 <
 k =mO

 where the last two inequalities were obtained using Assumptions A.3 and A.4
 (with , > 2/(2y - 1) and Lemma l(b). Accordingly,

 I, < E (Zm -) Cn(l- 2y +aP(l + 2y)) -_O 0

 for a < (2y,3 - 1)/,l(1 + 2y).
 Clearly, I2 < n (1-a)P[Zkak < kG'(01(no/k)2), for some k E (n a, no/211]. De-

 fine Ll:k = Tl:k - kL1, L2:k = (P(T2: k) - pP(A 2). Note that Zk = Ll: k - kL2: k
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 and by (1.5), ,'k - P(/L2) = G'(01). Hence

 I2 0 1 k)P[L - kL2: k < kAk for some k e 7 2j]

 with L k = ak[G'(01(n0o/k)2) - G'(01)]. Since G'Q() is increasing and k < no/2,

 Ak < 2[G'(401) - G'(01)] - -2t3(< 0), say.

 Thus,

 2 < n(I -a)P[Ll.k - kL2:k <-k e for some k E (na n #}]

 < n(I -a)P [IL, kI > kE for some k E= nan j]

 + fg a)P[kIL2:kl > ke for some k e (na 3]

 ='21 + 22' say.

 Since Tl k has moments of all orders, it follows by using submartingale
 inequality that

 21 < nomax JL1:kJ >no 121- ? 7 )P[na<k<no/2

 (3.14) <nl -a)nlar8rE((Ll[no/2]) r) r > 0

 =0( n' -a-r(1/2 -a)).

 For the second term I22, it follows by the continuity of sK(-) that there is
 (8) > 0 such that Ix - i,u21 < (S) k kP(x) - (p(,2)1 < E. Thus, by using sub-
 martingale inequality as in (3.14),

 '22 < n(la)P[T:k - /k2I > 3(e) for some k (E no2]]

 (3.15) < ngo)P [IT2:k - kiL21 > n'o8(8) for some k E( no 2?]]

 = O(n'-a+r(l/2-a))

 Finally, by combining (3.14) and (3.15) and choosing r large and a > 1/2, we
 obtain

 I2 < O(n1-a+r(l/2-a)) > 0.

 Finally, upon choosing 1/2 < a < (2yJ3 - 1)/[13(1 + 2y)] with /8 > 2/(2y - 1)
 as required, the proof is complete. o
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 496 A. BOSE AND B. BOUKAI

 REMARK 4. By using the same arguments as in the proof of Lemma 4(a), it
 can be easily verified that for k > 1,

 nk P(N? < n0/2) -> O as p -*oo

 provided that the condition on 13 in A.4 is replaced with 13 > (1 + 2k)/(2y - 1).

 PROOF OF PROPOSITION 2. By definition

 RP(NP) = E(PIOfI"(I2)1(T2: Np - /A2) + Np

 Thus

 RP(NP) = E( jp + E(NP)

 = E 0 +E(NP)
 {lNp)

 and therefore

 RP(NP) _ noN
 R,(n0) 2 Np 2 nO

 In view of Theorem 2 it suffices to show that lim supp, E(nO/Np) < 1. Fix
 0 < E < 1/2. Then

 E p EN -[ Np _no/2]) + E -I 2 < Np< no(l E)]

 + E (NI[no(l -8) < Np < no(1 + 8)])

 + E? I[Np > nO(l + E)])

 =B1+B2+B3+B4, say.

 By Lemma 4(a), B1 -* 0 as p -* oo.
 As immediate consequences of Theorem 2 and Lemma 3,

 2 - 2 - nO
 1

 14 ? P - >1 + 0.
 (1 +) no/

 By using the dominated convergence theorem B3 1 as p oo. This com-
 pletes the proof. O
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 SEQUENTIAL ESTIMATION RESULTS 497

 To derive additional properties of the stopping variable Np, we will present
 its definition (1.9) in a different form. Since G'(f) is monotone increasing on

 0,, we rewrite Np as

 (3.16) Np = inf(n > mO; n(-g(znan)) / > p1/2}

 with g(u) = G' - 1(u). By using the relation g(G'(01)) = 01 and Taylor's expan-
 sion of g about G'(01) we obtain

 n(-g(Zna V)1/2 = n -1) 1/2 _n(Znan - G'(01))

 (3.17) bnJ =n(6)/ 2( _-61) 1/2G"f(61)
 n(Z-an - G'( 01) )2
 + ~~2

 where Q(yn) = d2[(_g(0)l/2]/d0210 =Y and yn satisfies lyn - G'(01)I <
 IZnan - G'(ol)l. Using this and expression (3.6) for Zn in (3.17) we immedi-
 ately obtain

 ( 3.18) ( na z =S

 where with (n = n(T2: n - /2 2)2 qf(/n)/2 as in (3.6) and Yi as in (3.7) and with
 r(O1) = - Gf (01))

 Sn =1 Yi kY = 1 (YiG'(01)) i> 1

 (3.1) -_ ____n Zn~(ao + n8n) n(Znan - 2f0)
 (3 .(01) (4O+) + ( 2(_ 0)1/2 Q(Yn)

 So that by (3.16), (3.18) [and with pl/2 = no(--1)1/2]

 (3.20) Np = inf{n ? n; Zm > no}.

 Clearly S_n n > 1, are partial sums of i.i.d. r.v.'s. with E(Yi)= 1 and
 V(Yj) = G'"(01)/r2(o1). Also, by following Example 4.1(ii) and Lemma 1.4 in
 Woodroofe (1982), it is easily seen that Sn are slowly changing. Further, in
 view of Lemma 2 and the independence of T2. n and Zn, it follows that
 -n V as n - oo, where

 __V=____)- -G')- G"(01) (3.21) V = G2(O [ o 'i - 2 V- 0j"(jV- J0jG(0
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 498 A. BOSE AND B. BOUKAI

 with V1 and V2 being two i.i.d. X(2) random variables. In particular it follows

 that n/ V i-* 0 as n -* oo.

 PROOF OF PROPOSITION 1. Since (3.18) and (3.20) hold, fn/ 1 n 0 and
 ,n are slowly changing, the result is an immediate consequence of Lemma 4.2
 in Woodroofe (1982). n

 Let E > 0, An = {ITi:n - A1l < E and IT2:n n-21 < E} and Vn = fnI[An]. In
 the following lemma we show that conditions 4.10-4.15 in Woodroofe (1982)

 are satisfied by Vn and the sets An, n ? 1. These conditions together with the
 result of Lemma 4(b) are required to establish Theorem 3.

 LEMMA 5. Let An and Vn be as above. Then

 00

 (a) EP( UAk < 00

 n=1nl 2

 (b) f,P(Vn <- n) < oo, for some5, 0< 5< 1.
 n = 1

 (c) max IVn+kl , n ? 1 is uniformly integrable.

 (d) Vn V asn - o.

 PROOF. Since I[An] -> 1 w.p.1. and n -n V, Lemma 5(d) follows triv-
 ially. Since i/ is twice differentiable, for a fixed Ag2,

 40JX) - 4//(O2) = (X - A2)V(X*)

 for some intermediate point x* between x and A2. On Ix - /121 < E; IP'(x*)l <
 c(E) for some constant c(E). Also on An the functions qf and Q are bounded.
 Thus

 2 2

 1Vnl < c1n(Tl n - Al)+ c2n(T2 fn - /2) + C3,

 for some constants ci, i = 1,..., 3 depending only on E, qf and Q. Now
 Lemmas 5(b) and (c) follow as in Example 4.3 of Woodroofe (1982) and relation
 (2.14) there. To prove Lemma 5(a) note that

 n = I (k>n n n= I k2n 1 ul>2)

 n n k=n 2 )
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 SEQUENTIAL ESTIMATION RESULTS 499

 and each of these last two sums is finite by applying the reverse submartingale

 inequality to the sequences {ITi: n - A i ; n ? 1), i = 1, 2.
 This completes the proof of the lemma. o

 PROOF OF THEOREM 3. The assertion follows immediately from Lemma
 4(b), (3.21), Lemma 5 and Theorem 4.5 in Woodroofe (1982). o

 LEMMA 6. Let Np* be as defined in (2.1). If Assumptions A.3 and A.4 with

 ,f > 3/(2y - 1) hold, then as nO -> 00,

 (a) E(tNM*2I[Np < no/2]) + E(N*2I [Np 2no]) -> 0.
 (b) Np*2In/2 <Np < 2 n 2 ], n 0 2 1, are uniformly integrable and

 lim E(N*2)- [402GW(ol)]-l.

 PROOF. (a) Clearly, on the set (N. < no/2}, N*2 <cno, a.s. for some
 constant c. Therefore by Lemma 4(b) as no -> 00,

 E(Np*2I[Np < no/2]) < cnoP(N. ? no/2) -> 0.

 Also, since Np*2 < (N,2/no + no), we have

 E(N*2I [Np ? 2no]) < - E(N 2I[N. ? 2noJ) + nOP(Np 2 2nO).
 0 0 ~~no

 By using Lemma 3 it follows that

 2 00
 E(Np*2I[Np ? 2no) < - E ke-(k-2no)c + n0e-nOc -> 0.

 k-2 nO k=2no

 (b) The second assertion is an immediate consequence of the first assertion,
 Proposition 1 and part (a) above. To prove the first assertion it suffices to show
 that there exists a function A(x) such that xA(x) is integrable [w.r. to
 Lebesgue measure on (0, oo)] and

 P(no/2 < No < 2no, lNp* > x) < A(x)

 for all x and no (sufficiently large).

 If x ? 2n /2, then clearly P(n0/2 < No < 2n0, No* < -x) = 0.
 If 0 < x < Vn/2, then N. > no/2 and N,* < -x imply that no/2 < No <

 no- n/0x.

 Define Ino:x = {k: no/2 < k < nO - n/ix}. Since ak > 1,

 (3 22) P( N~~~~~~~~~~~~~~~~~~~~~ > ?, Np* < _x) P (Z, < kG (k for some kEIox (3.22) P 2~ 0 2) o

 By using expression (1.5) for G'(01) and (1.6) for Zk and the fact that G" is
 positive and continuous, it follows that the event Zk < kG'(-p/k 2) implies
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 that for sufficiently large x and no,

 Tl:k - k1i - k(qI(T2:k) - I(/2)) < k (G( 2) - G1(1) ? -10cVnox.

 Thus for some constants cl and c2, the right-hand side of (3.22) is bounded by

 P[Tl: - kkil < - noxci, for some k E Ino:x]

 + P[-k(4(T2:k) - P(L2)) < - nXC2, for some k E Ino x]

 II + I2.

 By the submartingale inequality,

 II < P max ITl:k kyll > xcl < CX no/2<k?no 1

 for some constant C. Since qf is twice differentiable, for any 5 > 0 there exists
 a constant A(a) such that Ix - A21 <8 implies l+(x))- 'K2)1 < A(8)Ix - A21.
 Let

 A =(IT2:k -21 < A k , for all kEIno} x

 Notice that /nox/k < 1 for k E Ino: X. By choosing A small, on the set A, for
 all kE Ine:x'

 bfr(T2:k) - qf(A2)1 < A(1)A _n- < n 0 2
 k k

 Again, by using the submartingale inequality (as in I,),

 I2 < p| max IT2:k- kj21 > X8 < Cx
 no/2<k <nO

 The same bound can be obtained for P(no/2 <ANp < 2no, Np* > x), x> 0, by
 similar arguments. This completes the proof of the lemma. o

 PROOF OF THEOREM 4. Let Rp(Np) denote the risk associated with the
 stopping time Np. Then

 Rp(Np) =PI(/2)IE[(T2: Np - 2) + NpJ

 By using the relation n2 = p/IO11 and (1.4) along with the independence result
 stated in Theorem 1, we obtain that Rp(Np) = E(n 2/Np* + Np). Accordingly
 the regret M may be written as

 W(PX 01) = E ( + Np )2no = noE (u (-)- u(1))

 where u(x) = x + 1/x. By using a second order Taylor series expansion of
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 SEQUENTIAL ESTIMATION RESULTS 501

 u(x) about 1, we obtain that

 u - n)- u(1) = -

 for some intermediate point b satisfying lb - 11 < INp/no - 11, b -> 1 a.s. and
 b 2 1/2 on the set {Np, > no/2}. Hence by Lemma 1 and Lemma 6

 E (lO (U( - u(l))I[Np> nO/2] )

 =ENp2(b I[N p n/] 2(0 )
 On the set {Np < no/2} with no > 1, 0 < (u(Np/n0) - u(1)) < cno, for some
 constant c > 0. It follows that

 E(o ?( (nO u(i)i[N, < no/2] < cnOP(N, < no/2).
 By Lemma 4(c) and Remark 4, the right side of the above inequality tends to 0

 as no -* oc provided that 1 > 5/(2y - 1). This completes the proof. m
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